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1. I n t r o d u c t i o n  

In an exterior domain ~ of R n, n ~ 3 ,  with smooth boundary S we consider the following 

stationary problem for the Navier-Stokes equations: 

-Aw+w.Vw+Vp=] (xE~), 

V . w = 0  ( x e f l ) ,  (1.1) 

wls = w' ,  w-~ 0 (Ixl -~ ~ ) ,  

with a (smooth) prescribed boundary data  w* and a smooth external force f of the form 

f=(fl,.. . ,fn), f j=s  Oj=O/Oxj. (1.2) 
k = l  

Here w=(wl, ..., wn) and p denote, respectively, unknown velocity and pressure; and 

n n n 

v=(o,,...,o,), V u= r u vu=  jO u 
j = l  j = l  j = l  

By an exterior domain we mean a connected open set with compact complement. 

As shown in the next section, problem (1.1) possesses a solution w satisfying 

Iwl ~< C/Ixl, IVwl < C/Ixl ~, (1.3) 

under appropriate assumptions on given data. In this paper we are interested in the 

stability property of the solutions w as mentioned above. To be more precise, consider 
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the nonstationary problem 

Ov 
Ot ~ - v . V v - A v + V q = f  ( t > 0 ,  xEf~),  

V.v=O (t o, (1.4) 

v l s=w*,  v- 0 vl =0=v0. 

Inserting v=w+u,  vo=w+a and q=p+p~ into (1.4) we obtain the equations governing 

the perturbation u: 

Ou 
Ot 
- - - - A u + w . ~ Y u + u . V w + u . V u + V p ' = O  ( t > 0 ,  x E ~ ) ,  

V . u = 0  (t~>0, ze f~ ) ,  

u l s  = 0, 0 (Izl --* u]t-_o = a. 

(1.5) 

Under some smallness assumptions on w, problem (1.5) was studied by [6], [20]-[22], 

[31] and [34]. Inspired by the works [20], [21] of Heywood, Masuda [31] treated (1.5) in 

the case where n=3 and w--*w~176 as Ixl---*oo, and deduced an algebraic decay rate 

in time of L~ of a weak solution u. Heywood [22] then improved the decay result 

of [31]. Miyakawa and Sohr [34] also studied (1.5), assuming n=3 and w--*w~ 

and proved that any weak solution u satisfying the strong energy inequality goes to 0 in 

L2-norm as t--*oo. In [6] the present authors also studied weak solutions and deduced 

an algebraic decay rate in time of L2-norm in case w ~176 and a logarithmic decay rate 

in case w~176 

When n=3, it is known that a weak solution satisfying the strong energy inequality 

becomes a strong (i.e. regular) solution after a finite time. Heywood [22] and Masuda [31] 

used this fact in deducing decay rates of L~ of weak solutions. However, it is not 

yet clear whether the L~176 result of [22], [31] is optimal, mainly because of lack of 

knowledge on the behavior of the derivative Vw of the stationary solution w. Kozono and 

Ogawa [25] and Chen [11] have recently treated problem (1.5), assuming that wEL n and 

Vw EL '~/2 are small enough, and discussed asymptotic behavior of weak solutions ([11]) 

and strong solutions ([25]) of problem (1.5). However, their assumption: Vw EL n/2 seems 

too restrictive in case n=3. In fact, Galdi and Padula [16] shows that when n--3, such 

a stationary flow w exists only in some unrealistic situations; and Kozono and Sohr [27] 

shows that if n=3 and if w is a weak solution of (1.1) constructed as in Leray [29], then 

~Tw is in L 3/2 if and only if the total net force exerted to the obstacle R 3 \ ~  by the flow 

(w,p) and the external force f vanishes: 

f s  v . (T[w,p]-w* | + F) dS = O, (1 .6 )  
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where v is the unit outward normal to S and 

= 

As shown in w the main reason for this difficulty in three dimensions lies in the fact 

- ! n  which is just the that  if n--3, then the dual exponent n ' - - n / ( n - 1 )  of n equals 3 -  2 , 

exponent of required integrability of Vw. 

To overcome the above-mentioned difficulty in three dimensions, we have to find out 

the right behavior of Vw. In w we establish our existence result of a stationary flow 

w, with the aid of the recent results of Deuring and Varnhorn [12] and Wiegner [47] on 

Schauder estimates for the boundary layer potentials, and the estimate of Novotny and 

Padula [35] for the volume potentials. Novotny and Padula [35] gave a complete proof of 

the existence of a stationary flow satisfying (1.3) in a different functional setting, while 

we had proved similar results for n ~> 4 and the result 

Iwl<<. C/]x], V w e L ~ / 2 N L  ~ (n~>3), (1.3') 

where L p denotes the weak Lp spaces. This last result is actually equivalent to estimate 

(1.3) from the point of view of stability theory, and our results in w167 3-6 all hold even if we 

replace (1.3) by (1.3'). However, we shall give in w a complete proof of (1.3) within the 

framework of our functional setting, employing a result (see Lemma 2.2 in w from [35], 

only in order to clarify the situation and to simplify the subsequent presentation. The 

result of [35] contains additional information, especially on the behavior of the associated 

pressure, and will be published elsewhere. Estimate (1.3) not only extends the result of 

Finn to higher space dimensions, but also provides the estimate: IVwl<<.Clx1-2 in all 

dimensions n>/3, while Finn [13] deduces only a weaker estimate: IVwl<~Clx1-2 log Ixl 

in case n=3. We further show that  if n=3 ,  w E L  3 and E E L  3/2, then our solution w has 

to satisfy (1.6) provided V w E L  3/2. In this sense, the result (1.3) for Vw seems to be 

optimal when n--3. 

After establishing our existence result for problem (1.1), we discuss the existence 

and asymptotic behavior of solutions of perturbation equation (1.5). We first consider 

in w the linearization of problem (1.5): 

Ou 
O - - t - A u + w ' V u + u ' V w + V p '  ---- 0 (t > O, x E f~), 

V.u=O ze ), (1.7) 

uls=o, u- 0 

and show that  if w is small in an appropriate sense, the correspondence a~-~u(t) defines a 

bounded analytic Co semigroup in general L r spaces of solenoidM vector fields. We then 
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apply simple perturbation arguments to the results of [4], [11], [23] to deduce various 

decay estimates in general L r spaces for solutions of (1.7). These decay results will be 

effectively applied in w167 4 and 6 to the study of weak and strong solutions of nonlinear 

problem (1.5). 

w is devoted to the study of existence and asymptotic behavior of L 2 weak solutions 

of (1.5). Based on the results of w we show that  if w is small, then problem (1.5) 

possesses for every aEL 2 at least one weak solution whose L:-norm goes to 0 as t-~c~. 

We further deduce explicit decay rates for the weak solutions under additional smallness 

assumptions on w, applying the results of w The decay result in w improves, in the 

case w ~ =0, our previous result obtained in [6]. We prove the result of w by employing a 

spectral method, which was initiated in the case of the Cauchy problem by Schonbek [39], 

[40] and Wiegner [46] in terms of the Fourier transformation and then systematically 

developed by the works [3], [4], [5], [6], [24] of the present authors in an operator-theoretic 

formulation. 

w studies strong solutions of (1.5) belonging to the weak L n space: L~. It is now 

well known in the Navier-Stokes theory that  the space L '~ is the basic space in which 

to find a strong solution of the Navier-Stokes equations. In other words, we have so 

far been able to construct global-in-time strong solutions of the Navier-Stokes equations 
n n only when the initial velocities are small in L n. Since L CL w, our result in w contains 

as a special case the known existence results of global strong solutions. The results in 

w are closely related to the work [25] of Kozono and Ogawa, which establishes the same 

type of existence results in L '~, local in time for general initial data  and global in time 

for small initial data. Although our results provide only global solutions for small initial 

data, they not only generalize and improve the global existence results of [25] to weak L r 

spaces, but also include decay results for L~-norm, which will be derived by employing 

an idea of Chen [11]. We further show that  if n E L l ,  VaEL~/2 and ais=O, then the 

corresponding strong solution u also satisfies 

u(t) E L~ and Vu(t) E L n/2 for all t ~> 0. (1.8) 

Observe that  ]x1-1 e L~ and ]x1-2 ~-rrn/2~w , and so our stationary solutions w obtained in 

w always satisfy (1.8). 

To find strong solutions satisfying (1.8), we need to examine the fractional powers of 

the Stokes operator in weak L ~ spaces. This is the subject treated in w We introduce 

Lorentz spaces L (r,q) l < r < ~ ,  l<~q<~cx), so that  L~---L (~'~) and T. (~ '~)- / .~ and discuss 

properties of the Stokes operator in these spaces. In particular, we give a characterization 

of the domain of (the square root of) the Stokes operator in Lorentz spaces and apply it 

in w to finding global strong solutions of (1.5) satisfying (1.8). 
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The basic tool for proving our results is the so-called LP-L q estimates for the semi- 

group defined by solutions of problem (1.7). These estimates are first deduced in w by 

applying duality and perturbation arguments to the estimates for the Stokes semigroup 

as given in [4], [11], [23], and then extended in w to estimates in weak L ~ spaces through 

an interpolation argument. We apply these LP-L q estimates to the proof of the stability 

results in w167 4 and 6. In particular, it will be shown in w that  they can be applied to 

improving, in the case w~176 the Loo-decay result of I22], [31] for strong solutions of 

problem (1.5). 

As will be shown in w when n~>4, problem (1.1) possesses a solution w satisfying 

1 (1.9) V w  E L"ML ~ for some n~< r < ~n, 

under appropriate assumptions on given data. It should be noticed here that  our basic 

assumption (1.3) implies 
V w  E L~,/2ML oo, 

which is apparently weaker than property (1.9). Based on a result of [11], we show in 

w167 3, 4 and 6 that  the time-decay properties of solutions of problems (1.5) and (1.7) can 

be improved if the stationary flows w satisfy (1.9). When n=3,  we have to assume that  

V w E L r M L  oo for some l < r < 3 ,  (1.10) 

in order to get similar improvements in time-decay properties for nonstationary problems. 

However, condition (1.10) automatically implies V w E L  3/2 and so it turns out that  we 

are dealing with stationary flows w satisfying the vanishing flux condition (1.6). We do 

not know if our time-decay rates for weak and strong solutions are optimal. We refer the 

reader to [40], [41] for the optimality in the case of the Cauchy problem with w--0. 

When w=O, problem (1.5) is just the exterior nonstationary problem for the Navier- 

Stokes equations. Since the solution w=O obviously satisfies (1.9) or (1.10), the above- 

mentioned improvements hold also for the weak and strong solutions of the Navier-Stokes 

equations. We note in particular that  an Loo decay result given in w actually improves 

the known result of [26] for strong solutions of the Navier-Stokes equations. 

2. E x i s t e n c e  of  s t a t i o n a r y  f l o w s  

We first collect some basic results on weak L r spaces, which will be effectively applied 

throughout the paper. Let 1 < r < cr A measurable function f defined on a domain D of 

r - L ~ ( D )  if and only if R n is said to belong to L ~ -  

[[f[[*,~ =_supt[D(lf[ > t)[ x/r < +oo, 
t > 0  
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where D(I f l>t)={xeD:  If(x)l>t} and IEI denotes Lebesgue measure of a measurable 

set E. It is easy to see that  LrcL~,  with estimate ]lfllr,~-.~llfllr for f e L  r, where II" lit 

denotes Lr-norm, and that  L~ (D) C L~o r (9)  for any 1 ~< s < r with continuous injection. 

Fhrthermore, f is in L~ if and only if 

I[f[i~,~ ----sup IEl-l+'/r f ff[ dx < +co, 
E JE 

and L~ is a Banach space with norm II" IIr,w. Indeed, we have 

r 
llf]l~,,~ <~ ]Ifll,.,w <~ ~_l llf]l:,~ �9 (2.1) 

To show (2.1), suppose fEL~,  so that  

)~(t) - [D(I f  I > t)[ <~ (fir[l* ~)~t -r .  

Then, for any E c D  with 0<[E  I <+co ,  the function AE(t)=IE(If] >t)] satisfies 

hE(t) <~ min(,~(t), }El) ~< min((llfll*,~)~t -~, IEI). 

�9 ,/r Letting ~=llfllr,w/IEI , we thus obtain 

fE lf' dx = fo~)~g(t) dt= fo3AE(t) dt + f~)~g(t)  dt 

~0 3 )~oo r 1-1/r 
�9 r t -rat= llfll; IEI , IEI dt+(llfllr'w r - 1  ,w 

which implies the second inequality of (2.1). To show the first, we take E=Eo--DABo, 
where B~ is the ball with radius 0 centered at the origin. By Chebychev's inequality we 

get 

tlEo(lfl > t)l <~ /E ]fl dx ~ [Ifllr,~lEo(Ifl > t)] 1-'/r, 
o(l/l>O 

and therefore tlEu(lfl > t ) l l / ' ~  < IIfll~,w. Letting Q---~co gives 

tID(Ifl > t)[ ' / r  < [[f[[r,~, 

which shows the first inequality of (2.1). 

The following lemma is frequently used in this paper. 
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LEMMA 2.1. (i) (The weak HSlder inequality.) Let l<p<.c~, l < q < c ~  and l < r < o c  

satisfy 1 / r=l /p+l /q .  If f ~ L ~  and gELS, then fgEL~ and the estimate 

Ilfgll~,~ ~ cIIfllp,~,llgllq,~ 

holds with C>O depending only on p and q. Here, we understand that L ~ = L  ~.  
(ii) (The weak Young inequality.) Let l < p < c ~ ,  l < q < c ~  and l < r < o c  satisfy 

l + l / r=  l /p+ l/q. If f EL~(R '~) and gcLq~(R~), then the convolution f *g is in L~,(R ~) 

and satisfies the estimate 

IIf *gll~,~,R~ ~ C]lfllp,~,R~llgllq,~,Rn 

with C > 0  depending only on p, q and n. 

Proof. (i) Suppose first that  l < p < o ~ .  We need only deduce the desired inequality 

in terms of the quasinorms I1" I1". From Young's inequality: 

Ifgl < pCP/rlflP/~+r~-ql~lglq/rq 

for any e>0,  we obtain 

D(If g I > t) C D(Ifl > cle-ltr/P)uD(lgl > c2et ~/q) 

with constants cl and c2 depending only on p and q. Direct calculation then gives 

* r _~ p * p - q  * q (llfgl[r,w) ":C1E ( l l f l l p , w )  + C 2 ~  (Itgllq,w) 

for all e > 0 with C1 and C2 depending only on p and q. The result now follows by taking 

the minimum with respect to s>0.  

When p=oe, direct calculation shows that  

fE tf g I dx Ilfllo~ ~ Igl dx <. Ilfll~llgtlq,~lEI 1-1/q <<. 

which shows the desired result. 

(ii) is found in [37, pp. 31-32], so the details are omitted here. 

In the rest of this section we establish an existence result for the problem: 

- A w + w . V w + V p = f  (xef~), 

v . w = 0  (xea ) ,  (2.2) 

wls = w*, w - ~  o ( Ix l -~  cr 
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with smooth prescribed boundary data w* and a smooth external force f of the form 

n 

y = (yl,..., y,), yj = ~ OkF~j. (2.3) 
k = l  

Under appropriate decay conditions on Fkj and VFkj, we apply the results of [12], [47] 

and [35] and show in particular the existence of a stationary flow w such that 

Iwl <~ C/Ixl "-2, IVwl 4 C/Ixl "-~. (2.4/ 

Novotny and Padula [35] gave a complete proof of (2.4) for the first time in case n=3  

in a different functional setting. In this section we employ their technique of estimating 

volume potentials and prove (2.4) in all dimensions n~>3. 

We formally transform (2.2) into the integral equation 

w = r = E. ( I -w.Vw)+f(~ .T[E,  Q].v+E.h) dS, (2.5 / 
ds 

where 

E.(f -w. Vw)(x) = ]~ E(x-y) . ( f  -w. Vw)(y) dy, 

and E= (Ejk) and Q= (Qj) are the Stokes fundamental solution tensor with components 

1 (  I F_. + xjx  xj 
EM~)  = 2~. \ n - 2  I~l" ] '  QJ(~) = ~d~l ~ 

Here, v is the unit outward normal to S; T[E,Q].v denotes the normal stress corre- 

sponding to E and Q ([28], [36]); and wn is the surface area of the (n-l/-dimensional 

unit sphere. The function ~=qa(w) will be defined below as a solution of the boundary 

integral equation 

�89 f ~.T[E,Q].vdS=g (2.6) 
J S  

with the right-hand side 

g=w*- (E . ( f -w.Vw)+ f sE .hdS)  s (2.7) 

and 
n(n+W2 

h = h ( w ) =  ~ c~r c , = c i ( w / e I t .  (2.8 / 
i = l  

Here, {r is any fixed basis of null solutions of the integral equation adjoint to (2.6). 

As shown in [28], [36], equation (2.6) is solvable for any given continuous g satisfying the 

relation 

fsgr *dS=O, i = l , . . . , l n ( n + l ) .  (2.9) 
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Moreover, the matrix A=(A3k) with components 

Ark = / J f s •  r162 dS~ dSn 

is nonsingular (see [28], [36]); so the coefficients ci in (2.8) are uniquely determined by 

(2.9). To define the function ~ in (2.6) uniquely, we also require 

s~vr i = 1,..., �89 (2.10) 

Recall that (see [28], [36]) the boundary values of the single layer potentials fs E.r dS 
form a basis of the null space of integral equation (2.6), which consists of the boundary 

values of the infinitesimal generators of rigid motions. 

Now suppose that the tensor F satisfies the decay condition 

IVjkl < C/Ixl "-~, IVFjk)~ C/Ixl" , (2A1) 

for some/.t~>3, and introduce the Banach space 

x .  = (w e c ~(f iF:  sup txl"-21wl +sup I~l "-x IVwt < +o0} 

with norm 

Ilwllx. = sup Ixl t'-2 Iw I +sup Ixl u- t  IVw I. 

(Here and in what follows we assume that 0 ~ . )  

Given w*EC2(S), FEXu+x and wEX u with wls=w*, we estimate the function 

q)(w) in the space X u, applying the Schauder estimates of [12], [47] for potentials defined 

by E and Q, and the estimates 

{ C'x''~-`~-~ (O<~<n)' 
Ix-Yl-'~(l+lYl)-~dY<~ Clxl -'~ (f~ > n), (2.12) 

which hold for 0<c~<n and (~+/3>n. Suppose first that n > 3  and 3<~/~<n, and fix 

0 < a < l .  By Theorem 1 of [47], the double layer potential belongs to the Hhlder space 

CI+~(~) if the corresponding density is in Cx+~(S). This implies that the integral 

operator in (2.6) defines a bounded linear operator from CI+'~(S) into itself; so equation 

(2.6) is inverted under constraints (2.9)-(2.10) to yield the estimate 

II~llc,+o(s) <- cIIgllc~+o(s), (2.13) 

where I1 IIc,+~ is the usual H61der norm. Since 9 is defined by (2.7), we get 

['gllc'+~ <'llw'llc=(s)+llE'(f-w'Vw)llc~+~(n)+llfsE'hdSltc,+~(~) (2.14) 

= IIw* ilc=(s) +Ix + I2. 
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The last two terms are estimated in the following way. Firstly, (2.11) and (2.12) imply 

IE.( f -w.Vw)l  <~ C(llFIIx,+, +llwll~- )M ~-', (2.15) 

and 

IVE' ( f  -w 'Vw)]  <. C(IIFIIx.+, +]lwll2.)lxl 1-" (2.16) 

Moreover, since IVEl<~CIx-ylX-L applying Morrey's inequality [15] implies that the 
a-HSlder seminorm of V E . ( f - w . V w )  is estimated as 

<~ Ctlf  - w . V w i l r  <<. C(})Fllx,+ , +llwll2x,), (2.17) 

where r>n is taken so that a = l - n / r .  Since Izl-leL~176 because of the assumption 
0~fi, combining (2.15)-(2.17) gives 

11 <~ C(tlFllx.+, + Ilwll~.). (2.18) 

Secondly, to estimate I2 we use the following result of [12], [47]: 

I2 <<. Cllhllco(s). (2.19) 

By (2.8), IIh]lvo(s)<~C~ Ic~(w)l, and ci(w) are determined by constraint (2.9). So, by 
(2.12) and (2.19) we have 

12 <~ CIIhllco(s) <~ C(llw*llc~(s)+sup IE . ( f -w ,Vw) l )  
fl 

<~ Ctlw*llc~(s) +c(llFIIx.+,+llwil~x.)]zl=-~ (2.2o) 
W 2 <. C(llw*llc=(s)+llFIIx.+, +ll IIx.), 

since Ix1-1 ~Z~(f~) by assumption 0 ~ .  From (2.13), (2.14), (2.18) and (2.20) we obtain 

Ilqollc,+.(s) ~< C(llw* Ilc2(s) +llFI}x,+, +}lw}12x,). (2.21) 

Using (2.21), we can now estimate in X,  the nonlinear map �9 defined by (2.5). By (2.15) 
and (2.16) we obtain 

IlE-(f -w .Vw) l lx , ,  <~ c(llgllx,+ ~ +tlw]l~,). (2.22) 

The single and double layer potentials on the right-hand side of (2.5) are estimated as 
follows: Choose R>0  so that (R" \ f~ )c{ [x l<R }. Then, by (2.21), 

sup [xl "-2 f ~o.T[E, Q].udS <~ CRIJ~o]J~,s <. CRI]qOllc~+~(s) 
I~ >R as (2.23) 

~< C(llw* I lc,(s)+ lIFIIx,,+, + II w I1.~.). 
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By Theorem 1 of [47] and (2.21), 

sup Ixl s Ql.  s <.cRsup 
fln{l*l<R} 

Js ~'T[E'Q]'udS c,+.(~) (2.24) <~ CR 

~< Cll~llc,+o(s) 
~< C(llw* IIc~(s)+lIYllx,+,+ Ilw ILK.). 

In the same way, we can estimate the first derivatives, to obtain the following estimate 

for the double layer: 

fs ~ ' T [ E , Q ] ' u d S  <~ c(llw*llc~(s) + IIFllx,+, + Ilwl[~,). (2.25) 
x ~  

To estimate the single layer potential in (2.5), we apply the result of [12], [47] as used 

in deducing (2.19), which asserts that  the single layer potential is in C~+~(~) if the 

corresponding density is in Ca(S). Using this and (2.20), we obtain as above 

sE 'hdS <~ C[[h[[c~(s) <~ C([[w*[[c2(s)+[[F]Ix~+~ +][w[]2x,). (2.26) 

By (2.22), (2.25) and (2.26), we conclude that if 3~<p<n, then r maps X~, into itself 

with the estimates 

IIr ~< Collw*llc~(s)+C~llFllx.+, +c2ll~ll~. 

and 

l i t (w1)-  r ~ C3(llw, IIx,, + IIw2 IIx~ )llw, -w2 IIx,,. 
So, the contraction mapping principle ensures the existence of a unique solution of (2.5) 

in X~, provided that w* and F are sufficiently small in C2(S) and in X~+I, respectively. 

When # > n > 3 ,  the foregoing calculation, together with (2.12) in case 13>n, applies 

with slight modification to deduce that �9 maps Xn into itself and there hold the estimates 

II~(w)IIx~ ~< Collw*IIc~<s)+CilIFIIx.+, +C211wll~. 

and 

II~(wl)-'~(w2)llx. <<. C3(llw, llx. +llw2llx.)llWl-W211xo. 
The existence of a desired solution wEXn of (2.5) is again deduced via the contraction 

mapping principle. 

We next prove the existence of w satisfying (2.4), assuming n/>3 and FCXn+I. In 

this case, however, the foregoing estimate for the volume potential does not work for 

deducing estimate (2.22) with p = n ,  and so we are forced to employ another way. It is 

here, where we appeal to the following lemma, which is due to Novotny and Padula [35]. 
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LEMMA 2.2. 

Then 

Let n>~3, FEXn+I, f=(fl , . . . , fn) and 

f j = ~-~ Ok Fk j . 
k = l  

IIE.(f -w.Vw)llx~ < C(llFIIxn+, +llwjl2n), 

with C>O independent ofF and wEXn. 

Proof. The proof below is due to [35]. We may assume without loss of generality 

that  Ixl > 1 if xE~t. An integration by parts gives 

E. ( f -w .Vw)  = fs  E.v . (F-w|  dS+(VE).(F-w| 

Applying the result of [12], we see as in the foregoing paragraph that  

fs E.v . (F-w|  <~ CIIF-w| 2-n 
(2.27) 

~< C(llFIJx.+, + Ilwll~n)lxl 2-", 

while (VE).(F-w| is directly estimated as 

<~ C(llFllx~+~ +llwll2x.) fa lx-yll-"lyll-" dy<~ C(llFIJx.+l +llwll2x.)lxl2-n. (2.28) 

To deduce the bound for the derivatives of E. ( f -w .Vw) ,  we divide the integral into 

several terms. We may assume that  R=lxl is sufficiently large. Let 

f~,=ftf3BR/2(0),  f l 2 = S l ( z ) ,  ~3=Bn/2(x)\S,(x), 

ft4 =B3R/2(O)\(BR/2(O)UBR/2(x)), f15 = fl \B3a/~(0),  

where B,.(y) is the open ball with radius r centered at y. We write 

(VE). ( f - w . V w )  (x) = (VE).  (V. (F-w| 

= (~TE)(x-y)(V.(F-w| 
"= J j = l  

and estimate each term separately. First, integrating by parts gives 

I ,1 c f. lz-ul-"l(F-w| f 

+c ftyl=R/21x-Yll-nl(F-wOw)(y) I dSy. 
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By Theorem 1 of [47], the integral over S is estimated as 

<. CllF-w|176 ~-~ <<. C(IIFIIx.+~ +llwl l~ . ) lx l  x-". 

On the other hand, since lyl-< �89 implies ]x-yl>. �89 and since 

§ W 2 l - n  I(F-w| II IIx.)lY[ , 

the integral on { lyl = �89 R} is bounded as 

<. C(llfllx.+, + Ilwll~.)R 1-= = C(IIFIIx.+~ + Ilwll~:.)lxl 1-=, 

while the integral over ~1 is bounded as 

C F w 2 R - , ~ f  1 - .  -< (ll IIx.+~+ll Ilx.) _J~IYl dy 

~< C(IIFI[x.+~ + Ilwll2x.)R-nS.l<R/2]Yll-n,o dy 

Ilwllx.)R =C(llFllx.+, +llwll~x.)lxl 1-". =C(llFllx.+, + 2 1 - n  

We thus have 

[I1[ ~< C([]FJJx.+, +#]wll~.)lxl 1-". (2.29) 

Secondly, we have 

1121 < C f,_~t<llX-yl~-"lV(F-w| dy 

J~l~ x 1-n -n  (2.30) <--C(llFIIx.+l +llwll2x.) _ ~ t < l - Y l  lYl dy 

-< C(IIFIIx.+, + ilwll~.)lzl-". 

Third, yE~23 implies 1.<lx-yl<�89 so lYl>~n-ly-xl>�89 and 

lI3l < C(IIFIIx.+ ~ +l[w[12 ) __/n31x-yll-"lYl-" dy 

<. C(HFIlx.+, + IlwlS.)R-"f~<.l~_~l<R/2lx-yll-" dy (2.31) 

<.C(llFllx=§ IIwllx.)l 1 2  x x-.. 

Fourth, y6f~4 implies Ix-yl/> �89 and �89 lyl < 3R. Thus, 

I/4l ~< C~,_.. Ix-yll-"lV(F-w| dy 

/ I -Y[ [Y[ dy (2.32) 
4 

<. C(llFllx.+l +llwll~x.)R1-2"[ dy=C(llfllx.+l +[lwll2x.)lxl ~-~. 
J I y I < 3 R / 2  

22-950233 Acta Mathematica 174. Imptim~ le 20 juin 1995 
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Finally, if y E D5, then 

and so, 

ix_yl>~lYl_R>~lyl ~ 1 lyl/> ~ lyl, 

II~1 ~< C(llFIIx,,+, + Ilwll~-,,) Z Ix-y l l -n ly l - "  dy 

<<. C(IIFII,:o+, +IIwlI~o) f lYl ' -~" dy (2.33) 
JlyI>R/2 

= C(llFllx, ,+,  + Ilwll~-,,)lxl 1- ' .  
Combining (2.27)-(2.33) gives the desired result. This proves Lemma 2.2. 

By Lemma 2.2, we can now apply the contraction mapping principle to the map (I) 

in X .  and obtain the desired solution w. In conclusion, we have proved 

THEOREM 2.3. (i) Let n > 3  and 3 ~ # < n .  I ]w*EC2(S)  n and FEX~+I are su~i- 

ciently small, there exists a unique solution w of (2.2) such that 

Iwl ~< cIIxl "-~, IWl  ~< c/Ixl ~-1. 

(ii) Let n ~ 3  and n<.#<oo. I /w*EC~(S)  n and FEX~+I are sul~iciently small, there 

exists a unique solution w of (2.2) such that 

Iwl ~< C/Ixl "-2, IVwl ~< CIIxl "-1. 

Remark. Theorem 2.3 generalizes the three-dimensional existence result of Finn [13], 

[14] to the case of general space dimensions n~>3 (but, only in the case where w--*0 as 

Ix]-~oc). By the standard regularity result of [1], [9] for the stationary Stokes system, 

the function w is a classical solution of (2.2). As seen from its proof, Theorem 2.3 

is most difficult to prove in case n=3; in fact, we had to appeal to the technique of 

Novotny and Padula [35] in estimating the volume potential. In [35] they deal with the 

three-dimensional case in a different functional setting and give a complete proof of the 

existence of solutions with the above-mentioned decay property. They further prove a 

decay result for the associated pressure. When n > 3  and #>3 ,  we have 

IxI 2-~ E L~/O'-2)ML~ c LnML ~ and IxI 1-~ E L~,/O'-I)ML ~162 c L~/2ML ~ 

so that  the solution w given in Theorem 2.3 with # > 3  satisfies 

w E L n M L  ~ ,  IVwl EL~/2ML~. (2.4') 

Stability of stationary flows w satisfying (2.4') for n~>3 was discussed in [11], [25]. 

However, when n=3, condition (2.4') seems to be too restrictive, as easily seen from the 

following result (note that  i 1 n =~n= 3 if n=3). 
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THEOREM 2.4. Let n>~3 and let w be any solution of (2.2) given in Theorem 2.3 (ii). 

If FEL "~' and VwEL n', then we have 

where 

~ ~,.(T[w,p]-w*| +F) dS : O, (234) 

where 

~(w) = (.~k(w))j~=,, ~ , ( ~ )  = �89 

Since V w e L  'r it follows from the Sobolev-type inequality as given in [8], [19], [34] that 
TEL n/(n-2). Thus, wELn/(n-2)ML~cLn, and we conclude that w| n'. Hence, 

both sides of (2.36) are continuous in ~ with respect to the norm IIV~iin. We fix an 

arbitrary cER n with c~0, take C E C ~ ( R  n) so that r  if 151>/R and r  if 

]x I < �89 for some large R so that ( R n \ ~ ) C  {151 < ~R}. Consider the function 

r162 

where SD is the operator introduced in [4, Proposition 3.3] with respect to the bounded 

domain D={�88 Then ~ r  V . ~ = 0 ,  and ~c(z)=c (15]~>3R), 

~c(x)=0 (lxl~<lR). As shown in [7], [17], ~c is approximated in the norm ]lV~]]n 

by functions ~k in C~(12) n with V.~k=0; so (2.36) with ~=~k implies 

2<~(w), E(r = -<F-w| Vet>. 

We next multiply (2.35) by ~c and integrate over 12N{Ixt<4R } to get 

[ v (r[w,p]+r) 

Since V~c=0 for Ix[/>4R, integration by parts gives 

/nn{,=i<4nV'(w| ~=i=4nu'(w| V ~ ) '  

(2.37) 

TIT,p] ~- (Tjk[W,p])~,k=l, Tjk[W,R] ---- --~jkP-~OjWk +OkWj. 

Proof. First observe that the equation in (2.2) is written as 

V. (T[w,Pl-W| = O. (2.35) 

Multiplying (2.35) by ~EC~(f~) ~ such that V .~=0  and then integrating by parts gives 

2(e(w), e(,,p)) = -(F-w| VV), (2.36) 
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and 

V.(T[w,p]+f) .cpcdx= [ u . (T[w,p]+F).cdS-2(e(w) ,~(~vc))- (F,  V~vr 
n{Iz l<4R} Jlxl=4R 

Thus, in view of (2.37) we have 

/,x,=j.(rlw,pl+ F) cdS= dS. 

But, c was arbitrary; so 

lxl=4av. (T[w, p] - w | w + F) dS = 0. (2.38) 

Integrating (2.35) over f~NB4R(0), applying the divergence theorem and taking (2.38) 

into account, we obtain (2.34). The proof is complete. 

The following result examines the integrability property of Vw when w satisfies the 

assumption of Theorem 2.4. 

THEOREM 2.5. Let n>~3 and let w be the stationary flow given in Theorem 2.3 with 

F6X~,+I for some Iz>.n+ l. 

(i) Suppose that n>>.4, w 6 L  "/("-2) and Vw6L" ' .  Then V w 6 L  r for all l<r~<oo. 

(ii) / f  n=3,  V w e L q  for some 1<q<3/2  and weLq" with 1 / q * = l / q - 1 / 3 ,  then 

V w e L  ~ for all l<r~<oo. 

Proof. By the assumptions on w and Vw and by Theorem 2.4, the function w 

satisfies the vanishing total flux condition (2.34) together with an associated pressure p. 

To examine the integrability property of p we write w = w l + w 2  and P=pl+P2, where 

(wl, Pl) solves 

-Awt+Vp, =0 in f~, 

V.wt=0 in fl, 

tOl lS = l~t/* , lillll ~/1 ~--- 0 ,  
Iffil--*~ 

and (w2,p2) satisfies 

-Aw2+Vp2 = V.(F-w| 

V-w2 =0 in f ' ,  

W21S = O, l i r a  w 2 = O .  

in ft, 
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As is well known ([28], [36]), the pair of functions (wl,pl) can be taken to satisfy 

Ipx(z)l=O(Izll-"), Wp (x)l=O(Izl-"), 
Iwl(x) l  = O(Iz12-") ,  IVw ( )l = 

as [ x [ ~ .  So we see in particular that WWlEL s and p lEL s for all n'<s<n.  Thus, 

V w 2 = V w - V w I e L  s for all n'<s<n.  On the other hand, the assumption implies that 

F - w |  ~ for all n'<s<n.  Hence, it follows from [4, Theorem 3.5(ii)] that P2 can 

be taken to satisfy p2EL s for all n'<s<n.  We thus conclude that pEL s for all n'<s<n.  
Using this integrability property of the function p, we can apply the standard argument 

of the potential theory to obtain the representation 

= fr p] ds+.  Q].r, dS 

( V E ) - ( F - w |  f s  E.~,.(T[w,pl-w* | + F)dS+ Jfs w*.T[E, Ql.v dS. 

The derivatives of the last term are O([x[ -n) as IxI--*cr so belong to L r for all l < r ~ c r  

By using (2.34), the single layer potential is rewritten as 

/ s E ( x ,  y).~,. (T[w,p]-w* | +F)(y)  dS~ 

where 

Since 

E(x, y) = E ( x -  y) - E(x) = E ( x -  Oy) dS. 

~Clxl -n for large Ixl and y e S ,  

with C > 0 independent of x and y, the derivatives of the single layer potential are in L r for 

all 1 <r~<oc. It thus suffices to discuss the behavior of the function (V2E) . ( F - w |  

Suppose first that n>~4. Then, since wEL ~r the assumption wEL n/(n-2) implies that 

w|  r for all l < r ~ .  Since FEL" for all l < r ~ < ~  by assumption, and since V2E is 

a Calderon-Zygmund kernel [43], it follows that ( V 2 E ) . ( F - w |  r for all l < r < o o .  

We thus obtain V w E L  ~ for all l < r < c r  But, since we already know that V w E L  ~176 this 

shows the result in case n~>4. Suppose next n=3. In this case, 

q* 3q 
w| E L ql ML ~ with ql . . . .  < q, 

2 2(3-q)  

and so ( V 2 E ) . ( F - w |  ql. Hence, V w E L  ql, and therefore wEL q~ with 1/q~= 

1/q1-1/3, by the Sobolev-type inequality as given in [8], [19], [34]. Hence, 

3ql 
w| c0 with q2=2(3_ql)  <ql, 
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and so (V2E) �9 ( F - w |  q2. Repeating these processes, we see that  

3qj 3 
( V 2 E ) . ( F - w |  qj+l, qj+l=2(3_qj)  < q j < q < -  ~ ( j = l , 2 , . . . ) ,  (2.39) 

and that the sequence qj defined recursively by (2.39) tends to zero as j--*c~. This 

eventually shows that  V w E L  r for all l < r < c o ,  and the proof is complete. 

Remark. When n=3 ,  we do not know if wEL3ML ~ and VwEL3/2ML~ together 

imply that V w E L  ~ for all l<r<~c~. Indeed, in this case the above proof of Theorem 2.5 

merely implies that  V w E L  3/2. Chen [11] discusses L 2 stability of stationary flows w 

satisfying the assumption of Theorem 2.5 (ii). However, the existence of such flows is 

guaranteed only in a very restrictive case; see [16]. 

3. Analysis  o f  the linearized operators 

In this section we fix a stationary flow w satisfying 

lwl < c/lxl, I:Twl.< C/ixl 2 (3.1) 

and discuss large time behavior of solutions of linear problem (1.7). Observe that  since 

n - 2 / > l  and : ~n~n when n~>3, the stationary flows w obtained in Theorem 2.3 all 
1 satisfy condition (3.1). In case n~>4, we have n ' <  :n ;  so Theorem 2.3 ensures existence 

of a stationary flow w satisfying 

1 (3.1') IVw IELqNL ~176 for s o m e q w i t h n ' < q < : n .  

Employing a result of Chen [11], we further show that under condition (3.1') the solutions 

of (1.7) behave better than in the case of condition (3.1). 

The following notation is adopted: Let L~,, l < r < o o ,  be the L~-closure of the set 

C~,~(12) of compactly supported smooth solenoidal vector fields in ~t. Then we have the 

Helmholtz decomposition [331, [42]: 

n~(~) '~ =L~GG , 

where L~, and G r are characterized as 

L~={uELr(~) '~:V .u=O,u .~ l s=O},  G~={VpEL~(~l)n:pEL[oc(~)}.  

We denote by P=P~ the associated bounded projector onto L~. As shown in [33], 

(L~)*=L~' ,  (G~)*=G ~', P:=P~,  ( 1 / r ' = l - 1 / r ) ,  



O N  S T A B I L I T Y  O F  E X T E R I O R  S T A T I O N A R Y  N A V I E R - S T O K E S  F L O W S  329 

where (L~)* and (G*) * mean the dual spaces and P* the dual operator. We next intro- 

duce the Stokes operator in L~, 

A = A ~ =  - P ~ A  

and the operator 

with 

L = A + B ,  B u = B ~ u = P ~ ( w ' V u + u ' V w )  

D(L)  = D(A)  = {u �9 W2'r(f2)n : uls -- O, V ' u  = 0}. 

(3 .2)  

It is also shown in [33] that 

A : = A ~ , ,  1 / / = l - 1 / r .  

We examine properties of the operator L and its adjoint L*, and apply them to the study 

of solutions of (1.7). The results will then be applied in w167 4 and 6 in discussing existence 

and asymptotic behavior of weak and strong solutions of problem (1.5). 

We begin with the proof of 

LEMMA 3.1. Let n>~3 and let ~ be a smooth exterior domain in R n. 

(i) For l < r < n  there is a number C=C~>0  such that we have the estimate 

IIw.Vullr < CIIwll. IIV2ull~., 

where I1" I1~ is the L~-norm and 

(ii) 

where 

u e D(A~), (3.3) 

Ilwll = s u p ( I x l . l w ( x ) l ) .  

For l < r < � 8 9  there is a number C=Cr>O such that we have the estimate 

[[u.Vw[[~<C[[Vw[I.l[V2u[lr, u e  D(A~), 

IlVwll = sup(Ixl~lVw(x)l). 

(iii) For l < r < � 8 9  we have 

IIBul}r, IIS*ull,- ~< c~(llwll+llVwll)llV%ll~, 

where B* is the adjoint to B.  

u e D ( A r ) ,  

(3.4) 

(3.5) 
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We first recall the Sobolev-type inequalities due to [8], [19], [34]: 

II?~llnr/(n--2r) < 6111VU{lnr/(n--r) < 6211V2ult~, ~ ~ w2,~(~), 

for l < r < � 8 9  n~>3, and 

(3.6) 

and 

Since 

for l < r < n ,  n~>2. Consider now the Riesz potentials 

Tjg(x) = / tx-ylJ-n g(y) dy, j --- 1, 2, n/> 3. 

Since [xJ-leL~, and [x[1-~eL~', Lemma 2.1 gives 

for 1 < r < n. Similarly, we have 

r,w,R, ~ C~[IT2glI~/(~-2~)'w'R" ~ Crllg[l~,~,X~- (3.8) 

for 1 < r < in .  Applying the Marcinkiewicz interpolation theorem [2], [43], [45] to each of 

(3.7) and (3.8), we obtain 

~,R- ~ C~[[g[I~,R- (1 < r < n) (3.7') 

�9 1: ~,R- < C~]lgllr)R- 

for l < r < n ,  and 

lu(x)l < CnTj(IvY~l)(x), 
for uEC~(Rn) ,  it follows from (3.7') and (3.8') that 

<C-llv2"il ,R -,  
T)~L n 

(1 < r < �89 (3.8') 

j = l , 2 ,  

e wI , ' (R ' ) ,  (3.7") 

u e W2'r(Rn),  (3.8") 

Ilull.=/(.-.) < CllVutl., u e w l , r ( ~ ) ,  (3.6') 
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for l < r < � 8 9  We next show that 

for l < r < n ,  and 

�9 w ' , ' ( n ) ,  (3.9) 

i • l = l  ~<C~llV=ull ,, ueW2,'(n), 
r 

for l < r < � 8 9  Indeed, choose a function C E C ~ ( R  ") so that 

0 ~< r ~< 1, r  = 0 (Ixl ~< R), r  = 1 (1=1/> 2R), 

(3.10) 

and 

Combining (3.11) and (3.12) gives (3.9). 

get 

<~ c ( l l C v 2 ~ l l , + l l v ~ w l l , + l N v % l l , )  

~< C(l lV==l l ,  + I lVul l ,  �9 +11=11,..) ~< cI IV==l l ,  

To prove (3.10), we apply (3.6) and (3.8") to 

= , < Cllull , ,~n{i, l<2,} < Cllull,.. < cI Iv=~l l , ,  (3.14) 

where 1 / r * * = l / r - 2 / n .  Estimate (3.10) follows by combining (3.13) and (3.14). 
Now, estimate (3.3) is obtained from (3.9) as 

,,w'Vul,r <~,,w,l" l~xU~ ] <~ Cr"w,l'l,V2ullr ( l < r < n ) ,  
T 

and estimate (3.4) is similarly obtained from (3.10). Finally, estimates (3.5) are deduced 
from (3.3). (3.4) and the boundedness of the projector Pr. The proof is complete. 

(3.13) 

for some fixed n > 0  satisfying (Rn\gt)C{[xl<R}. Then estimates (3.7"), (3.6') and 
HSlder's inequality together yield, with 1/r*= 1/r-1/n, 

~ ~< CllV(ur ~< c({{r162 (3.11) 

~< C( l lVul l ,+{ l~ l l~ . )  ~< Cl lVul l r .  

On the other hand, since we assume 0 ~ ,  it follows that IxI-1EL~ thus, (3.6') and 
HSlder's inequMity together yield 

~ ~ <~ Cllullr,,~n(l=J<=R} <~ CIl~ll~. ~< c I I W l l , ,  (3.12) 
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PROPOSITION 3.2. Let L be the operator defined in (3.2) and L* its formal adjoint. 

1 and 0 < w <  �89 there is a number '7='7(r, w) >0  such that if For l < r < ~ n  

Ilwll + I I W ,  II < ,7, 

then we have the estimates 

r l ( ) , + L ) - l u l l ,  �9 ~< C,- I lul l , , / l~l ,  I I ( ~ + L * ) - l u l l ,  - ~< CrllulWI),l, (3.15) 

and 

I IV2(~+L)- 'ul I , ,  ~< Crllull,-, I IV%X+L*)- lu l I ,  - ~< Crllull,-, (3.16) 

for all uEL~ and A e C \ 0  with rargAl~<Tr-w. 

Proof. Due to the equality 

A+L = A + A + B  = ( I + B ( , ~ + A ) - I ) ( ~ + A )  on D(A) ,  

we can formally write 

0 r  

( )~+L) - 'u  = ( s  -1 E ( - B ( ) ~ + A ) - ' ) J u .  (3.17) 
j=O 

From the estimate I]V2()~+A)-lullr<<,Crllullr for l < r < � 8 9  (see [8]) and from (3.5) we 

get 

II(B(),+ A)-')3ulIr <~ [C'(llwll+llVwll)]311ullr, 

so the right-hand side of (3.17) converges provided C'(llwll + IlvwLI) < 1. Estimates (3.15) 

and (3.16) are then deduced from the estimates 

I I (~+A)-I l I<~C/I) , I ,  IIV2(,X+A)-'II~<C, 

as established in [8]. The case of the adjoint operator L* is treated similarly. The proof 

is complete. 

COROLLARY 3.3. (i) For each l < r < o e  and 0<w<�89 there is a number "7= 

~?(r,w)>0 so that if 

Ilwll + IlVwrl < ,7 

then (A+L) -1 and (A+L*) -1 exist as bounded operators in L~ for )~EC\0 with larg)~l <<- 

~r-w and satisfy the estimates 

II()~+L)-lll <, C/I,~ I, II()~+L*)-l]] ~<C/lA I. 
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(ii) I l l < r <  l~n and 

II~II +IIV~ll < 7, 

then the operators V()~WL) -1 and V(&+L*) -1 exist as bounded operators from L~ to 
L r satisfying 

IIV(~+L)-~II <~ C/lAl ~/~, IIV(,~+L*)-lll <<. CIl,~l 1/2. 

Proof. (i) We see by duality that  (3.15) holds for l < r < � 8 9  and n / ( n - 2 ) < r < o c .  

Since the spaces L~ form a complex interpolation family, we obtain (3.15) for all 1 < r < c r  

by interpolating between the above two cases. (ii) is a consequence of (3.15), (3.16) and 

the estimate 

l~i~/21lVull~ ~< C(l~I' Ilull:)~/211V2ullV ~. 

The proof is complete. 

In view of the standard theory of analytic semigroups in a Banach space as given 

for instance in [37] and [44], Corollary 3.3 (i) asserts that  the operators - L  and -L*  

generate in L~, l < r < c o ,  bounded analytic semigroups, which we denote by {e-tL}t>~O 
and {e -tL* }t>~0, respectively, through the Dunford integrals 

e-tL = 2~i eXt()~+L) -1 d)~, e-tL" = 2r eXt(A+L*) -1 d)~. 

Here, the path F of integration in the complex plane is taken in the form 

F = F+UFoUF_,  

where 

r•  1/ t<r < +cr ro= {t-le~e :-w<<. e<<.w}, 

for an arbitrarily fixed w with �89 Furthermore, these integrals, together with 

Corollary 3.3 (ii), yield the estimates 

IlVe-~LulI~ <~ C~t-X/=llull~, IiVe-~L'ull~ < c~t-~/211uIl~, (3.18) 

for 1 < r < �89 Estimates of the form (3.18) are indispensable for our purposes and so are 

desirable to be extended to the case of more general r. This extension is given by the 

following 
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P R O P O S I T I O N  

~(r,w)>O such that if 
{{w{{ < ~, 

then we have the estimates (as bounded operators from L~ to L r) 

3.4. Let n '<r<n  and 0<w<l~r.  Then there exists a number 77= 

I IV(,~+L)-l l l  ~< CIl~l ~12, 

for all A e C \ 0  with largAl<Tr-w. 

Proof. This time, we write 

IIV(,~+L*) -~ II ~< Cll,~l li2, 

o o  

W(A+L) -1 = W E ( - ( A + A ) - I B ) J ( A + A ) - I  (3.19) 
j=O 

and 
o o  

V(A+L*) -1 = V E ( - ( A + A ) - I B * ) J ( A + A ) - I  
j = 0  

and discuss convergence of the right-hand sides. To do so, we need the following 

LEMMA 3.5. I f  nP<r<n, we have the estimates 

IIV(~X + A)-~Bull~ ~ Vl#wll.IWull~, ue  D(A~), 

(3.20) 

(3.21) 

(3.24) ( s  IiV(X+L*)-lui]~ <~ (Cliw{I) i {{V(XWA)-lu{ir ~ CiiV(~+A)-tul{~. 
" j=O 

On the other hand, since r<n, we see by Theorem 4.4 of [4] that 

[IV(A+A)-lutI~ ~< CiiA1/2(A+A)-lulI~ 

< C[[A(A+A)-lu[ilr/2[i(A+A)-lu[[lr/2 < C]]u][,-/IA] 1/2, 

and 

and 

}]V(A+A)-IB*uHr <. Ciiw H.iiVuHr, u �9 D(A~), (3.22) 

uniformly for A e C \ 0  with {argA{~<lr-w. 

Admitting Lemma 3.5 for a moment, we continue the proof of Proposition 3.4. From 

estimates (3.21) and (3.22) it follows that if {Iw H is sufficiently small, then 

HV(A+L)-XuH~ ~< (C[{wH) j HV(A+A)-lu{I~ ~< C{IV(A+A)-luI[,, (3.23) 
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and the desired result follows. 

Proof of Lemma 3.5. We apply a duality argument. In what follows ( -,- > denotes 

the duality pairing between various Banach spaces. For ~oEC~(fl) we have 

I{V()'+ A) -1Bu, ~P) I = I< Bu, (A+A)-IP(V~)>[ 
<. [(w. Vu, ( A + A )-I P(U~p))I + ](u. Vw, (A+A)-IP(Vcp))] 

= [(u, w.V(A+A)-IP(V~))I+]{w, u.V(A+A)-'P(V~o)> I 

~< 21]wl] .]})xI-~u}ir]IV(;~+A)-IP(V~)}}~, 

< CIIwll" ItVuII,.II~7(A+A)-IP(Wp)[[,., 

and 

[(V(A + A)-I B* u, ~}[ = [(B'u, (A+A)-IP(V~P))I = I(u, B(A + A)-I P(V~a)}I 

<~ I{u, w. V(A+ d)-l  P(Vcp)}[+[<u, (A+ A)-I P(V~).Vw)I 

= I<u, w. V(A + A)-I  P(Vq0))[ + I ((A + A)-I  P(V~o)- Vu, w) l 

<~ CIIwII.IIVu[I,IIV(A+A)-~P(Vw)II,,. 

Estimates (3.21) and (3.22) are thus deduced from 

LEMMA 3.6. I]n' <r<n, then 

JJV(A+A)-~P(V~)IIr < CIl~ll~, 

uniformly in A e C \ 0  with largAl~<zr-w. 

Proof. In view of the relation 

V(A+A)-'P(Vqa) = V(A+A)-~/2(~+A)-t/2P(V~) 

and the fact that (A+A)-I/2PV is just the dual to V(A+A) -1/2, it suffices to show that 

if n~<r<n, then the estimate 

iIV( A + A )-'/%J]r <~ Cllull~ (3.25) 

holds uniformly in A~0 with fargAI~<Tr-w. Since r<n, by Theorem 4.4 of [4] we have 

[[V(A+A)-II~ut}~ <~ Ct]AIlR(A+A)-I/2u}}r. (3.26) 

Hence we get (3.25) for A>0 (see [30]). For general A, we write A=}Ale ie with 0<101~< 

7r-w. Then, as shown below, the standard evaluation of the Dunford integral shows that 
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the fractional powers (e-ieA)l/2 and (IAl+e-ieA) -1/2 are well defined and satisfy the 

relation 

A1/2=ei~ 1/2, (A+A)- l /2=e-ie /2([A[+e-ieA)- l /2 .  (3.27) 

It thus follows from (3.26) and (3.27) that (see [30]) 

IIV()~+ A)-l/2ullr <~ CIl(e-*~176 <~ Coll~llr ~< GII~II~, 

which proves Lemma 3.6. 

There remains to establish (3.27). We shall show below more generally that  if 

A= IAle ie, 101 ~<~r-w and 0 < a <  1, then the fractional powers (e-i~ ~ and (IAI +e-i~ -~ 
are well defined and satisfy 

A '~ = ei'~~176 '~, (A+A) -~ = e-i'~~176 (3.27') 

In what follows we assume without loss of generality that  0>0,  and write [1' II~=ll �9 II. 

Since I[(#-e-i~ -1[[ <<.Co/[#[ for # ~ 0  in a conic neighborhood of the negative real axis, 

the fractional power (e-ieA) a is defined as 

(e_iOA)~u = sin 7ra f ~ t . _  l(t+ e- i~176 dt, 
7r ,Io 

for uED(e- '~  (see [30]). By the change of the variable #=te  '~ we have 

sin 7rae_~O o f # o _ I ( # + A ) _ I A  u d#, (3.28) 
7r J r  

( e - ~ ~ 1 7 6  = 

where the path of integration 

F = {te i~ : 0 < t < +c~} 

is oriented in the direction from t = 0  to t = + ~ .  Now fix 0 < e < R .  Since a ( - A ) c R _ ,  
where a ( - A )  is the spectrum of - A ,  the integrand of (3.28) is analytic in the closed 

region surrounded by the closed curve 

with 

and 

C = {~ <<. t <<. R}UCRUG,RUG, 

Fe,R = {te~~ : E <~ t <. R} 
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By the Cauchy integral theorem in the complex function theory, we have 

fr~.R #~-1 ( . +  A)-l Aud.  = j[Rt~-i(t+ A)-l Audt 

+.~a-- #~-x(#+A)-IAu d# 

+ fc~ #~-I(#+A)-IAu d#. 

The norm of the integral over CR is estimated as 

10 ~ R a-1 [I(Re~ +A)-I[I.llAullRd~<. COR"-~HAu[[ ~ 0 ,  

while the norm of the integral over C~ is estimated as 

10 ~a--1 iiA(ee~+A)-~ulled~<~ COe,~llull~O. 

Hence, (3.29) gives 

(3.29) 

r#a-l(#+ A)-l Au d# =/o~ta-~(t+A)-lAu dt 

for u6D(A). Combining this with (3.28) gives the first assertion of (3.27'). To show the 

second assertion of (3.27'), we use the representation (see [44]) 

/o ( ,~+A)_~u - sin ~ra t_~(t+)~+A)_Xudt (3.30) 

for all u6L~. Since 

(t +)~+ A) -1 = e-iO(te -~o + IAL +e-~eA) -1 , 

the change of the variable #=te -~e applied to (3.30) yields 

(A+A)_~u = e_i~ o sinTra~ fr #-~(#+lAl+e-'~ d#, (3.31) 

where the path of integration 

F = {te -i~ : 0 < t < +oo} 

is oriented from t=O to t = + c e .  Since a(-IA ] -e-iSA)=-])~l-e-i~ the integrand of 

(3.31) is analytic in the closed region surrounded by the closed curve 

C = rn,~ UCRUC~ U {R >. t >1 e}, 
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with 

and 

F R,~ = { t e - ~  : E <~ t 4 R }  

CR = { R e ~ :  - 8  < ~ <~ 0}, C~ = {~e~:  0 >i ~ >i - 8 } .  

The integral over CR is estimated as 

<~ R - ~  ~ II ( R e ~  + IAI + e-'gA) -111" Ilull R d~ <~ VIA 18R -~ Ilull --* 0 

as R--.oc, while the integral over C~ is estimated as 

/o ~ ~ e  -a II(sei~q-lA[q-e-ieA)-ll[.llulled~Cl~lSel-allu]l--*0 

as c-~0, since in this case the resolvent is bounded as e--*0. So, by the Cauchy integral 

theorem, 

"-~176 d" -- f0 t-o(t+lal+e-'~ et. 
This, together with (3.31), yields the result. 

COROLLARY 3.7. For each l < r < n  there is a number v/=T/(r)>0 such that if 

Ilwll+llVwll < , ,  

then we have the estimates (3.18). 

Proof. The result immediately follows from Corollary 3.3 (ii), Proposition 3.4 and 

complex interpolation. The proof is complete. 

The above proof of Proposition 3.4 implies the following result for the resolvents 

of - L  and -L*, which is interesting when compared with Proposition 3.2 in that no 

assumptions on Vw are needed. 

PROPOSITION 3.8. Let n' < r < n and O < w < �89 ~r. Then there exists a number ~?= 

~(r,w) such that if 

Ilwl$ < , ,  
then we have (as bounded operators in L~ ) 

It(A+L)-lll <~C/IAI, II(~+n*)-lll <<.C/IAI, 

for all AeC\0  with l a rgAl~r -w .  

Proo]. Since n '<  r < n if and only if n~< r~< n, it suffices only to deduce the estimate 

for operator L. As in the proof of Proposition 3.4, we write 
oo 

(A+L) -I = E(-(A+A)-IB)J(A+A)-I. (3.32) 
j=0 

In addition to Lemma 3.5, we here also apply 
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LEMMA 3.9. If  n '<r<n ,  we have the estimate 

II(),+A)-~BulI~ <<. cl),l-~/211wtl.llVullr, u e D(A~), (3.33) 

for all A E C \ 0  with largAl~<Tr-w. 

We continue the proof of Proposition 3.8, admitting Lemma 3.9 for a moment. From 

Lemmas 3.5 and 3.9 we see that if Ilwll is small enough, then 

I[(A+L)-lulI~ ~<C]At-~llullT+Cllwll-lAI -l/~ (C'llwlt) j-1 IIV(,~+A)-lull~ 
\ j = l  

~< Cl~l-Xllull~, 

which proves Proposition 3.8. 

Proof of Lemma 3.9. As in the proof of Lemma 3.5, we apply a duality argument. 

For qaeC~,~(f~) we have 

I(('~+ A) -1Bu,  ~)1 = I( Bu, (A+A) - I~ )  I 

<. ](w.Vu,(A+ A ) - I ~ ) I + I ( w , u . V ( A +  A)-a~)I 

~< Ilwll" IlVullT II Ixl-l(-~ + A)-X~llr , + Ilwtl" II IxI - lu l I r l IV(~+A)-X~II~  ' 

CIIwll "llVull~l lV(~+ A)-X~ll~ , <<. Cl~l-~/211wll- IlVull~ll~llr', 

which shows Lemma 3.9. 

Corollary 3.3, Propositions 3.4 and 3.8 together imply 

THEOREM 3.10. (i) Let n>.3 and l < r < o c .  Then there is a number/~=A(n,r)>0 

such that if 

Ilwll + ItVwll < ,~, 

then {e-tL}t>~o and {e -tz" }t~>0 are bounded analytic Co semigroups on L~. 

(ii) Let n>~3 and n' <r<n.  Then there is a number r}=~?(n,r)>0 such that if  

Ilwll < 0, 

then {e-tL}t>~o and {e-tL'}t>~O are bounded analytic Co semigroups on L~ and sat- 

isfy (3.18). 
(iii) Let n >>. 3. For l < q ~ < r < ~ ,  there is a number )J = )V ( n, r, q ) > O such that if 

Ilwll+llvwit < ~', 

23-950233 Acta Mathematica 174. lmprim~ Ir 20juin 1995 
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then we have the estimates 

Ile-tL a]]r, Ile-tL*a]lr < Mt-(n/q-n/r)/211all q. (3.34) 

(iv) Let n>~3. For l <q<r<n,  there is a number ~?'=~'(n,r,q)>O such that if 

Ilwlt+llVwll < 

then we have the estimates 

II~e-tL a[Ir, IIVe-tL'allr ~< Mt -1/2-(n/q-n/r)/211aNq. (3.35) 

(v) Under the assumptions of (i) and (iii) with q<r, we have 

lira Ile-tLallr=O, lira Ile-tL*allr=O, 
t ---~ oC t - -*  oO 

for all aEL~. 

Estimates (3.34) and (3.35) are deduced from (3.18) via the Sobolev inequality. 

When w=0,  Iwashita [23] shows that (3.35) holds for l<q<~r<.n. Assertion (v) follows 

from (3.34), the boundedness of the semigroups in L~, and the fact that C~,~(~) is dense 

in L~. 

Remark. Kozono and Ogawa [25] prove (3.18) for l < r < � 8 9  or for l < r < 2  and 

n=3 ,  4, assuming that 

w E L n ( ~ ) n n ~ ( ~ ) ,  V w  �9 Ln /2 (~)NL~(~)  (3.36) 

and that Ilwlt~ + lt~wiln/2 is small, depending on r. Obviously, our results improve those 

of [251. 

1 Thus, the stationary flow w obtained for instance in When n~>4, we have n'<~n.  

Theorem 2.3 (ii) satisfies 
1 V w � 9  ~ for a l l n ' < r < ~ n .  

Using this kind of condition, we can improve Theorem 3.10. Our subsequent arguments 

of this section are based on the following result, which is due to Chen Ill]. 

PROPOSITION 3.11. Let n>~3. Then we have the estimate 

Ile-tAall~ ~ Mrt-n/2rllall~ (1 < r ~< 2n). 

Proposition 3.11 is proved in [11, Appendix] for n=3; but the proof applies in all 

dimensions n/> 3. 
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PROPOSITION 3.12. (i) Let n>~4 and suppose ~TwEL~fqL ~ for some n'<.q< �89 
Then we have the estimates 

Ile-tAButloo +l lVe-tABull , ,  < Ct-nl2P(l +t)-'#~r+nl ~p 
(3.37) 

• (llVwllq,~+llVwll~)(llull~+llVull~) 
and 

Ile-tAB* ull ~ + II Ve-~AB* ulI,~ < Ct-nl2P( 1 +t)-'~12~+'~/2P 

x (llVwllq,,,, + I lVwl l~) ( l lu l l~  + IlVulln), 

for ueC~,~(f~) with q<r < �89 

(3.37') 

When p=n, estimates of the form (3.37) and (3.37') hold with IlVwll~,~ reptaced by 

Nwll+llVwllq,~. 
(ii) Let n = 3  and suppose that V w E L q n L  ~ for some l < q < ~ .  Then we have 

lle-ta Bull~ + [f~T e-tA Bu[f3 <~ Ct-312P( I + t )-312r+31zP 
(3.38) 

• (llVwllq + IlVwll~)(llull~ + IlVull3) 
and 

Ile-tAB* uli~ + IIVe-tAB* uil3 <. ct-al2p(1 +t)-ai2r+312p 
(3.38') 

x (l]Vwli~ + llVwll~)(IMI~ + IlVull~), 

for ueC~(~) w~th q~<~<~<p<3. 
When p=3, estimates of the form (3.38) and (3.38') hold with llVwll~ replaced by 

ll~ll+llVwll~. 
Proof. We here prove only (i); s tatement  (ii) is proved similarly. For s=p,r ,  Propo- 

sition 3.11 yields 

Ile-tmBull~ ~< Ct-~/2~(ll w.vull~ + II u. Twill) 

<~ c t - , , l ~  (llw II n~i (.-~)II W l l  n + Ilull ~ II w I1~) 

<~ c t  -ni~, I IW, ll. ( l lul l~ + II Wll,~) 

<~ c t - n / ~  (llV~llq,w + I IW, II ~)(11~11 ~ + ItWll, ,) 

and, similarly by [23], 

IlVe-'ABulln ~< C-nl~(llw'Vull~ + Ilu'VwllD 

<~ ct- '~l~(l lVwll~,~, + I lVw II<,o)(llull<>o + l lVulln). 

Since nl2p<l<nl2r, we obtain (3.37). When p=n, we apply the estimate 

IlwVulln ~< II~ll~llV~ll. ~< CIIwll.llVull. 

in the above calculations and obtain (3.37) with p=n. Estimate (3.37') is deduced in the 
same way. The  proof is complete. 
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THEOREM 3.13. 
Then we have the estimates 

Ile-~%ll~o, Ile-tL'a/l~ ~< M~t-nl2~llall, 

and 

(i) Let n>>.4 and let w satisfy the assumption of Proposition 3.12 (i). 

(1 < s ~< n) (3.39) 

IlVe-<%ll~, IlVe-'L'all~ ~< M.t-"/2"llall, (1 < s ~< n), 

provided Ilwll+ I IWl I , .~+  IlWll~o is su~cientZy small, dependin9 on s. 

(3.39') 

(ii) Let n = 3  and let w satisfy the assumption of Proposition 3.12 (ii). Then we have 

Ile-~%lloo, Ile-~'altoo ~< M~t-a/2~llall, (1 < s ~< 3) (3.40) 

and 

IlVe-~%N3, IlVe-'L'alf3 < Mr (1 < s < 3), 

provided Ilwll + ][VWllq+ ]lVwll~ is sufficiently small, dependin9 on s. 

(3.40') 

Proof. (i) We deduce (3.39) and (3.39') only for the semigroup {e-tL}~>0; the case 
of the dual semigroup is treated similarly. Furthermore,  in view of Theorem 3.10, it 
suffices to assume �89 Now, the function v( t )=e- tLa  satisfies 

/o v(t) = e- tAa - e - ( t - ' )ABv( r )  dr. 

We take q<r< �89 set 

v( t )=  sup </='(llvlloo+llVvll.)(r) 
O<v<t 

and apply Propositions 3.11 and 3.12, to obtain 

Ilv(t)ll~ < Clt-"/2"llall, 

+c2  f'(t--rl-"n~(t--r+ tl-"l~+"12~(llvll~+llVvll.l(rl dr 
(3.41) 

<~ Cr 

Io' +C2V(t) ( t--r)- '~/2P(t--r+l)-"/2r+n/2Pr-n/2"dr 

and 

IIVv(t)ll,, ~< C~t-'~12~llall~ 

// +C; (t-r)-nl2p(t-r+l)-~12r+nl2P(llvll~+llVvll,,)(r)dr 
(3.42) 

<. C~t-"12~llall~ 

+ C; V (t) f ~  (t - r)-nl2p (t - r + 1 ) -nl2r+'~12pr- nl2s dr, 
ao 
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where C2 and C~ are constant multiples of [{Vwtlq,~o + I IVw I[ ~ .  Consider the integral 

I (t--T)--n/2p(t--T+l)--n/2r+n/2pT -n/2s dT = t/2 t : + -- 11 + 12. 
Jo 2 

When t ) 1 ,  the change of the variable T : t a  yields 

r l /2  
I1 = t 1-~12r-n/2s ]o (1-(7)-n/2P(1-ad-t ;-1)-n/2r ' t 'n/2Pa-n/2" do'. 

By our choice of p, r and s, we get 

[ 112 
11 <. Ct 1-n12r-n/28 (1 --a)-nl2Pcr -nl2s da <. Ct  -"12". (3.43) 

JO 

When O < t < l ,  we apply 1 - a + t - l > t  -1 to obtain 

r l /2  
11 < t 1-n/2r-n/2s" t n/2r-n/2p .In (1--a)--n/2P~r -n/2s dtr 

(3.44) 
= Ct l -n /2p-n/2s  ~ C t  -nl28. 

On the other hand, we easily see that 

rt/2 
12 <. Ct -~/:s [ r-n/2P(T T1)-n/2r+n/2P dr  

JO (3.45) 
<. Ct -~12~ --]O~176 + 1)-n/2~+n/2p dr = Ct-nl2L 

Combining (3.41)-(3.42) with (3.43)-(3.45) we obtain 

IIv(t) II ~ + IlVv(t)ll,, ~< ct-"/2"(llall, +c'v(t)) 

and therefore 

v(t) <~ c(uaU,+c'v(t)), 

where C'  is a constant multiple of I[wl[ + [IVW[Iq,. + [[Vwllor Taking w sufficiently small, 

we get V(t)~Cl(a[[,. This proves (i). Assertion (ii) is proved similarly, so the details are 

omitted. 

COROLLARY 3.14. Under the assumption of Theorem 3.13, we have 

Ile-tLal]2 <~ Mt-n/4[lalll, a E L~NL 1. (3.46) 

Proof. We apply a duality argument. Given ~EC~,~(fl), Theorem 3.13 implies 

](e-tLa,~p)l = I(a,e-tL*~o)l ~ HaHIHe-tL'cp[I~ ~ ct-n/411al[lllcpll2. 
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Since C~,a(f~ ) is dense in L 2, we see that  e-tLaE(L2)*--  2 --L~ and (3.46) holds. The proof 

is complete. 

Remark. Proposition 3.12, Theorem 3.13 and Corollary 3.14 are essentially due to 

Chen [11]. He deduced similar estimates, assuming that  n=3 and 

V w E L r M L  p for some l < r <  23- < p ~ 2 .  (3.47) 

We note that  if n = 3  the assumption of Proposition 3.12 or Theorem 3.13 implies VwE 

L 3/2 and so by Theorem 2.4 the total net force exerted to the obstacle by the flow w 

vanishes identically. Thus, in case n=3 the stationary flows w with this property exist 

in a very restrictive situation (see [16]). 

4. S t a b i l i t y  in L 2 

We first define the notion of weak solution of perturbation equation (1.5). The definition 

is due to Masuda [32]. Given a E L~, a weakly continuous function u: [0, ~ ) - - ,  L~ is called 

a weak solution of (1.5) with initial velocity a if 

uEL~(O,~c;L2) ,  VueL~oc([O,~c);L~(f~)), u(O)=a, 

and the identity 

(u(t), ~(t)} - (u(s), ~(s)) + (Vu, V~I dT 

// /' = (u, ~'1 dT-- ( w | 1 7 4 1 7 4  V~)  dT 

holds for all O<.s<.t and all ~EC([0, oo); L~MW~'~(f~)MLn(f~))MCI([O, oo);n~). Condi- 

tion ~EL'~(f~) is needed for the nonlinear term to make sense when n~>5. 

In this section we prove the following 

THEOREM 4.1. Let w be a stationary ]tow with the property that 

IIwll+llVwlt < 

There is a constant C,~ with 0<Cn~<�89 such that if  

IIwll < cn ,  

then w is stable in the following sense. 

(i) For each ae  L~, problem (1.5) possesses at least one weak solution u defined for 

all t ~ 0 such that 

lim ]lu(t)]t2 = 0. 
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(ii) 

IJwll < min(Cn, ~), 

and if the initial perturbation a E L~ satisfies 

Ile-~Lall2 --O(t -~) 

for some ~>0,  then, as t ~ o o ,  

{ O ( t  -~1 
Ilu(t)ll2 = O(tS_n/4 ) 

1 For each 0<5< ~ there is a positive number ~7=~?(5) such that if 

a s  t---+ o o  

( .  <~ �88 
(~ >~ i n - 5 )  

(iii) Suppose in addition that V w e L q f q L  ~176 for some n'<~q< 7nl in case n>>.4, and 

llwl[+llVwllq+llVwll~ ~ (n----3), 

then the following result holds: Let aEL 2 satisfy 

Ile-tLall2--O(t -") as t ~  

for some a>0 .  Then, as t--*oc, 

{ 1 o(t -~') (,~ < in),  
Ilu(t)ll== o(t_ . /4)  (,~>~�88 

Here, the number # = # ( n ) >  0 is taken so that the semigroup {e -tL* }t~>o satisfies estimates 

of Theorem 3.13 with s=~n.  

Remark. Theorem 4.1 improves our previous results obtained in [6], in which is 

shown among others that if n=3,  Ilwll < �89 and if Ile-'Lall2=O(t-~), then 

{o(t -'~ ) (~< �89 
Ilu(t)ll2= o(t,_,/2) (~...>�89 

where 0<~< 1 is arbitrary. When n>~3 and w=O, we proved in [5] that 

o(t-o) (~< �88 
Ilu(t)ll2 = [ o( t -" / ' )  (~ >1 �88 

or if 

that VwELqf-)L c~ for some l < q <  3 in case n=3.  There exists # = # ( n ) > 0  so that if  

Ilwll+llVwllq,~,+llVwll~ ~<# (n>~4), 
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provided Ile- Aall2=O(t- % 
We notice that  in the case of Theorem 4.1 (iii), there exists an initial perturbation 

a satisfying Ile-eLal]2=O(t-n/4), as shown in Corollary 3.14. It should also be noticed 

that no assumption is imposed in statements (i) and (ii) on the size of Vw. 

Given dELl ,  we construct approximate solutions u~ of problem (1.5), solving the 

integral equation 

// Uk(t) ---- e- tLak -- C- ( t - r )Lp(uk  "V)Uk(r) dT. (4 .1 )  

Here, ak=( I+k- lL2 ) - la  and ~k is the standard (spatial) mollification of the zero- 

extension of uk. As shown below in the proof of Theorem 4.1, L2 is a regularly accretive 

operator [44] in n2~ provided Ilwll<�89 and so, in this case, ]la~l12<~llai12. For any 

fixed k, integral equation (4.1) is easily solved globally in time by applying the contrac- 

tion mapping principle, and the convergence of (a subsequence of) us to a weak solution 

is proved in the standard manner; see [34] for the details. 

In what follows we write simply u=uk and deduce decay estimates for u which are 

uniform in approximation. The desired decay results are then obtained for the con- 

structed weak solution through passage to the limit k---,cx~. Let 

A2 = ~ o ~  dE~ 

be the spectral decomposition for the positive self-adjoint operator A2. As in our previous 

works [3]-[6], the key estimate for the nonlinear term is given by the following 

LEMMA 4.2. (i) For each 0<~<�88 there exists a number r/-~/(~):>0 such that if 

llwll < 7, 

then we have the estimate 

1/2 n/4 1/2 6 1 2~ 1+26 I[E~e-tLP(fi.Vu)H2 <<. Ct-  ~ - - Hull2- [IVull2 . 

(ii) Suppose w satisfies the assumption of Theorem 4.1 (iii) with the same number 
# : # ( n ) > 0  as given there. Then we have the estimate 

ItE~e-tL P( fi. Vu)H2 < Ct-3/4 A (n- 3)/aHul[2HVull2. 

Proo/. (i) We set s=n/(l+2~).  Then, Theorem 3.10(ii) implies, for ~eC~,a(f~), 

J(E~e-tL P(~ �9 V)u, ~o) 1 = I I~| Ve-~L*E~)I 

<~ I{fi| llVe-'L*Ex~ll, < Ct-1/211ult2 ~, IIE~ll,.  
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Since n' < s < n and 

1/s = 1 /n+ 25/n = 1 / 2 -  ( n / 2 - 1 - 2 5 ) / n  

with �89 � 8 9  if 0 < 6 <  �88 by Corollary 4.5 of [4] we have 

IIEA~lb <. ClIA'~/4-1/2-~EA~II2 <. CAn/4-1/2-~11~112. 

On the other hand, since [IA1/2uII2=l[Vu[12 and since 

1/2s '= 1 / 2 - 1 / 2 s  = 1 / 2 - ( 1 / 2 + 5 ) / n ,  

Corollary 4.5 of [4] gives 

Ilull~, ~< cllA~/4+~/~utl2 <. CII~II~/~-~IIA~/~II~/~+~ = cllull~/~-~llwil ~/~+~, 
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But, since (see [28], [29]) 

Combining these gives the desired result. 

Proof of Theorem 4.1. We here prove only (i) and (ii), employing Lemma 4.2 (i), 

since the proof of (iii) is the same as in [5] if we employ Lemma 4.2 (ii). The arguments 

below are essentially the same as those developed in [4], [5]. We multiply the equation 

du 
- ~  + Lu+ P(~t.V)u = 0 

by u and integrate by parts to get 

~.dl lul l~+l lvul l~+(u.vw, u) = O. 

2 
u <~ ~:_i_211Vull ~ 

2 

which implies the result. 

(ii) For ~eC~,~(12) we have 

I{E,~e-tLp(~t �9 Vu), r I = I( ~t| Ve-tL'EA~>I <~ IlUll 2n' II V e - t L ' E ~ l l n  �9 

The Sobolev embedding yields Ilull2n, <.C(tlull211Vull2) 1/2. On the other hand, applying 

Theorem 3.13 with s= ~n and Corollary 4.5 of [4] yields 

[[Ve-tL'Ex~o[l~ < Ct -3/4 [[Ex~ltRn/3 

Ct -3/4 H A(n-3)/4EA~II2 ~ C t -  3/4 ~ (n- 3)/4 t]~H2. 
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for uEW~'2(a), n ) 3 ,  we have 

I(u.Vw, u>l = I(w, u.Vu>l <. Ilwll. Illxl-~ull21[Vull2 < ~ [Iwll. IlVullg. 

It follows that 

(Lu, ul = (u , L 'u}=  I,Vul,2 + Iu. Vw, u} >~ ( 1 -  ~ - 2  ' 'wl') 'lVu''22' 

Thus, if IIwll<�89 then both n and L* are regularly accretive in n~; 
N(L*)=0 in n2; so R(L) is dense in n~; and therefore 

lira Ile-tnall2=O for all ac:n~. 

Purthermore, we get 
d 2 ~llulP2 +2CollVull N < o 

for some Co>0, so that 

IIu(t)ll2 ~< ilakl[2 ~< flail2 

Here, we apply the estimate 

fO0 ~ and 2Co IlVullNds~llakllN<llall~. 

IlVullg = IIA1/2ullg/> A dllE~ull~ >1 o(llullg-IIEoull~) 

for any fixed 0>0, to obtain from (4.2) 

2]lull2d llull2+ 2Coollull~ <<. 2CoollEoull~. 

Since I[Eoull2 <~ Ilull2, we finally obtain 

d 11~II2 +Cooll~ll2 -< CoollEouii2. 

On the other hand, integral equation (4.1) gives the estimate 

/: IIEouIl2 <~lle-tLalh+ IIEoe-(t-OLP(f~.V)ull2dr. 

Applying Lemma 4.2 (i) then yields 

fo  t 1/2 1 25 1+26 IIEoull2<.lle-tLall2+Co '~/4-~/2-e (t--T)- llull2- IlVull2 dr 

< Ile-tLall2+CQn/4-1/2-eFl(t)l/2-~F2(t) 1/2+~, 

N(L) = 

(4.2) 

(4.3) 

(4.4) 

(4.5) 



ON STABILITY OF E X T E R I O R  STATIONARY N A V I E R - S T O K E S  FLOWS 349 

where 

/0 /o F l ( t ) =  (t-r)-~1211ull~dr, F2( t )=  (t-r)-~1211Vull~dr. 

We thus obtain from (4.4) and (4.5) 

d l l u l l~+Co~ l lu l l=  <~ (4.6) Coao( lle-tL all2 -t-C Qn/ n-1/2-h F: /2-h F1/2+5). 

Now, set Q=rn(Cot) -1 with a sufficiently large integer rn>0 and then multiply both sides 

of (4.6) by t m to obtain 

~(t mllull~) ~ + m -  . . , : - t L _  ,, . ,.-,.<l12 +,~-n14 m l 1 2 - ~  ~ l 1 2  +~ , 
, , ~ b  t l l  c U l 1 2  -r- ~.J b . t '  1 x '  2 # 

and therefore, 

// Ilu(t)ll2 ~<t -m m r  m-ll le-~Lall~dr 

1 ~ \1/2+~ (4.7) 

Since IlVulI~eL~(R+) by (4.3), we see that 

/o t -1 F2 dr <~ Ct -1/2, 

so we get from (4.7) 

\~/2-~ 

Now, [luii2$L~176 by (4.3); so it follows from (4.8) that 

Uu(t) l}2 < t--m L t mr m-1 He-~'L all2 dv-I-Ct 1/2-n/4 ---+ O, 

since Ile-tLal]2---+O. This shows assertion (i) of Theorem 1.1. Furthermore, (4.8) yields 

Ilu(t)ll~ ~< C(t-~ +t 'i2-nl4) 

provided lle-tLail2=O(t-<~), and this shows assertion (ii) for a<~ � 88  ~.l If a >  7n-1 2'1 we 
have Ilutl~=O(t-1/2); so F l e L ~ ( R + ) ,  and therefore 

1 t 
t-  L FldT~C. 
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It thus follows from (4.8) that  

Ilu(t) 112 < c( t  -~ + t1/4+5/2.n/4) < c (  t-a +t3/8-n/4) �9 

1 ~, we  have  I I . t l ~ = O ( t - 3 / " )  so that This shows the result for a~< i n -  3. If a >  z n -  

1 t (t- jfO Fl dT)I/2-5 ~ Ct-1/s+5/4 ~ Ct-1/16 ' 

and therefore (4.8) gives 

IlU(t) II 2 ~ C( t-a Jc t3/16+5/2-n/4) ~ C(t -a Jcth/16-n/4), 

1 5 which shows the result for a <  ~ n - ~ .  If a >  i n -  5 ,  we have Ilull2~=O(t -7/s) so that  

1 t (t- ~ Fl dT)l/2-5 ~ Ct-3/16+35/S ~ ct-3/32, 

and therefore (4.8) gives 

Ilu(t) 112 ~ C( t-a + t5/32+5/2-n/4) ~ C( t-a -Ft9/32-n/4), 

which shows the result for a~< i n -  9 

Repeating these processes, we arrive at the situation where 

]]u(t)]]~ = O(t -2~) (a ~< I n - ( 2  ~-1 +1)/2t+1), 
(4.9) 1_ ,~l-~+1)/2~+~), llu(t)ll~ <. C(t-2~+t -1+1/2~) (a > zn-~L 

for an arbitrarily given integer />0. Since �89 we have Ilu1122= 

O(t -1+1/2~) in the latter case of (4.9), which implies 

r t  \1/2-~ 
t - ' ]o  F1 dT) ~ Ct (1/~'-'/2)(1/2-6), 

and so (4.8) gives 

Ilu(t)ll= ~< C ( t  - ~  +t~-" /4+ ' ) ,  
1 ~ 1 3--6-p>�89 can set where # = ( ~ - 5 ) / 2  . Since we may take l so that  ~ n - 5 - p > ~  we 

in -~ - ,~>  �89 

with x > 0 .  Thus, we obtain 

liu(t) [[~ <~ C( t-2~ + t - 1 - 2 " )  �9 (4.10) 
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Suppose now that  n~>4. Then, in view of (4.9) and (4.10), we may assume that  2 a >  

n/2--(21-1+1)/21>~3/2--1/2 z for some large I. So, (4.10) implies that  IlulJ~eLl(R+). 
Hence, 

(t-l fotFl dT) 1/2-5 ~ Ct-1/4+6/2, 

which, together with (4.8), yields 

Ilu(t)ll2 <~ C(t-~+t ~-n/4) (4.11) 

and the proof is complete. Consider next the case n=3. Then, if 2 a >  1 - 1 / 2  z, we obtain 

I)u]12=O(t -1+1/2z) from (4.9). So, the argument above implies Ilull2=O(t -~) in case 

a<�89  When a> �89  the same argument as above shows I]ull2=O(t -1+1/2z) for all l; so 

we get (4.10) for some x > 0 ,  which in turn implies Ilull~=O(t -l-n) for some 7]>0 since 

2 a > l .  Hence, Ilull2eLl(lCt+) and we arrive at the desired result (4.11). There remains 

_1 By (4.3), (4.9) and (4.10) we may assume to discuss the case a - ~ .  

IIu(t)ll~ ~< C((t+ l)-l +(t + l) -1-2x) (4.12) 

for some x > 0 .  It follows from (4.12) that  

( / o  t t -I FI dr) 1/2-~ <. C([t -1/2 log(t+l)]l/2-6+t -1/4+6/2) 

which, together with (4.8), implies that  

H,~(t)l[ 2 ~ C ( t - 1 / 2  j v t - l + ~ / 2 ( l o g  t)1/2-6 .~_t5-3/4) .~. O(t-1/2). 

This completes the proof of Theorem 4.1. 

5. Fractional  powers  of  the  Stokes  operator  in Lorentz  spaces 

In this section we study the Stokes operator A in the Lorentz spaces over an exterior 

domain ft. The result will be applied in w to show the existence of a global-in-time 

solution u of problem (1.5), satisfying 

u(t) eL~, Vu(t) eLn~/2 for allt>~0. 

Notice that  the stationary solutions w obtained in w all satisfy these properties. 
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We first recall the definition of the Lorentz spaces (see [2], [45]). Let l < r < o c  and 

l~<q~<cc. A measurable function f defined on a domain D C R  n is said to belong to 

L (~'q) (D) if and only if 

~o ~r d t ( t l / r f * ( t ) ) q T < + o c  (q<oc) ,  s u p t l / r f * ( t ) < + o c  (q=co) ,  (5.1) 
t > 0  

where f* is the nonincreasing rearrangement of f .  It is well known that  the quantity 

= ! (tl/ f (q < 
IIflJ*,q ( suPt>o tl/r f*(t) (q = oc) 

defines a quasinorm on the vector space L(~,q)(D). Notice also that  L(r'r)=L r and 

L (~ ,~) -L~ in our previous notation. As shown in w L~ is a Banach space with respect 

to a norm which is equivalent to the quasinorm ]1' I1",~. The same is true of general L(r'q); 

indeed, the interpolation theory of Banach spaces [2], [45] gives the following result. 

THEOREM 5.1. Let l < r < c o  and l~q<. c~. 

(i) We have 
L(r'q)(D) = (nl(D),  n~(D))o,q, 1/r = 1 -0 ,  

where ( . , .  )O,q stands for the real interpolation spaces constructed via the K-method. 

(ii) I f  l <ro <rl < oO, l <.q<~ oc and O<O<l, then 

(L~~ L ~' (D))o,q = L(~'q)(D), 1/r = ( 1 - 0 ) / r 0 + 0 / r l .  

(iii) I f  l < r < o c  and l~q<o c ,  then 

(L(~'q)(D))*=L(r"q')(D), 1 / r ' = l - 1 / r ,  t / q ' = l - 1 / q .  

For the proof of (i) and (iii) we refer to [21, [45]. (ii) follows from the reiteration 

theorem in the interpolation theory. In this section we denote the norm of the space 

L (r'q) by I1" IIr,q. 
We next consider the Helmholtz decomposition of the space L (~'q) (l't) ~ over a smooth 

exterior domain f ~ c R  n, n~>2. Let P = P r  be the projector associated with the Helmholtz 

decomposition of Lr(Q) ~. Then, P defines a bounded projector on each of L(~'q)(ft) ~, 

1 < r < c c ,  1 ~q~<co. 

THEOREM 5.2. Let L (r 'q)=R(P) and G (~'q)-N(P).  Then 

L (~'q) (ft) n = L (~'q) G a (*,q) (5.2) 
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and 
L (r'q) = {u E L(r'q)(~)n : V ' u  = 0, u '~ ls  = 0}, 

G (r'q) = {Vp e n (r'q) (~t)n : p e Llr'c q) (~)}. 

Fu~thermore, if l <.q<c~, then 

(r  r ( r ' , q ' )  * G(r ' ,q ' ) .  (L ' q ) )*=~  , (G (~'q)) = 

(5.3) 

(5.4) 

Proof. Since P is a bounded projector, (5.2) is obvious. Relation (5.4) follows from 

Theorem 5.1 (iii) by interpolating the relation: P* =Pr' in L~. It is also easy from the 

interpolation theory to see that the spaces on the left-hand sides of (5.3) are included 

in the right-hand sides. So, it suffices to show that the intersection of the spaces on the 

right-hand side consists only of 0. But, this is easily obtained from the following lemma, 

so the proof is complete. 

LEMMA 5.3. Let p be a distribution on an exterior domain ~ of R n, n>~2, with 

smooth boundary S. Suppose VpEL(r'~)(~) n for some l < r < ~ .  If 

Op s 
A p = 0  i n~ ,  ~ =0 ,  

then Vp=0.  

Proof. By assumption Vp is harmonic in ft. Taking xE~t with B(x,  : :lxl)ca, we 
apply the mean value theorem for harmonic functions to get 

V p ( x ) = t B ( x , ~ l x l ) l - ' f  Vp(y)dy, B = B ( x ,  �89 

Then 

IVp(x)l < IB(x, �89163 IVpl dy 

<. [B(x, ~lxL)[-ll[Vpll~,~lB(x, ~ X )" l - - l i t  

= IlVpll~,~ [B (x, �89 Ixl)1-1/~ -+ 0, 

as Ixl ~(xD. Hence, the expansion theorem for harmonic functions yields 

{ O((xl 2-n) (n>/3), 
iVp(~)I= o(ixl-:) (n=2). 

Thus, Ip(x)! is bounded in ~ if n >i 4 and t p(x)l < C: + C2 log Ix[ for large I xt in case n = 2, 3. 

Applying again the expansion theorem yields 

{ po+P~lxl2-'~+O(Ixl :-n) (n~>3), 
p(x) = 

PO-}-Pl log Ixl +O(Ix1-1) (n = 2), 
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with some constants P0 and Px. But,  since the assumption implies 

f 1= ~ ~rr d S = 0  

for large r, it follows from the expansion theorem that  Pl =0.  We thus obtain 

p(x)=po+O(IxI l-n) so that  IVp(x){ =O(Ix l  -n )  

as Ixl--+cr Let B~ be the open ball of radius r centered at the origin. Since p has zero 

flux through each point of S, we can integrate by parts to see that  the function q=P-Po 
satisfies, for large r>O, 

f f Oq S jmnnlVql = dz  = _J~l=. q Or d <~ C r - " .  

Letting r--*cx~ yields {IVql{2=0 and so 7 q = V p = 0 .  The proof is complete. 

THEOREM 5.4. Let 0<r0<r l<cx~,  l~<q~<cx~, 0 < 0 < 1  and 

1/r = (1--O)/roq-O/rl.  

Then we have 

Proof. 
23]). 

L (*'q) = (Ly ,  L;  ~)o,q, G (~'q) = (G TM, G ~')o,q. 

The result is easily verified since P is a bounded projector (see [45, pp. 22- 

THEOREM 5.5. Let l<r<cx3 and l ~ q < o c .  Then the set C~,r of smooth sole- 

noidal vector fields with compact support in f~ is dense in L (~'q). 

Proof. By Theorem 5.4 and general theory of interpolation spaces, L~ ~ f3L~, 1 is dense 
I " 0  ? ' 1  �9 in L(~ ~'q). It thus suffices to show that  C~,~(fl) is dense in the space L~ ML~ Let 

t n 

~o ~')* = L~ +L~ f E (L~ n L ,  r0 ~1 

t 

so that  we can decompose (non-uniquely) f =  fo +f l ,  f j  E L :  j , j =0,  1, and assume that  f 

annihilates C~,~(12). By [38, Theorem 17q, we have f - - V p  for some distribution p on fL 

But, then 

OP I = 0 .  A p = 0  in f / ,  ~ s 

Since A(Vp)=0  with VpEL"; +L"'~, it follows from the mean value property of harmonic 

functions that IVp(x)l=O(Ixl 2-') if n~>3, and IVp(x)l=O(Ix1-1) if n=2 .  By the same 

reasoning as in the proof of Lemma 5.3, we get Vp=0.  This proves the result. 

We next study the Helmholtz decomposition in more detail when 1 < r < n. We begin 

by extending the Sobolev-type inequality as given in w167 2 and 3 to Lorentz spaces. 
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LEMMA 5.6. Let n>~2, l < r < n ,  l~<q~oo and 1/r* = l / r - 1 / n .  
(i) IS feL(P'~)(R n) for some p<oo and if VfEL(r,q)(R'~) n, then f E L ( r " q ) ( R  '~) 

and the estimate 

llfll~.,q,R~ <. CIIV fll~,q,R~ 
holds with C > 0  independent of f .  

(ii) If V f EL(~,q)(R') n for some distribution f ,  then there is a function 

geL(~*'q)(R n) so that V g = V f .  

Proof. (i) We may assume f is smooth in R '~. Indeed, C ~ ( R  n) is dense in L(~,q)(R ~) 
when q<oo; and when q=oo, we take ft=etZXf ( t>0),  the convolution of f by the heat 

kernel, which belongs to C~176 n) and satisfies 

lim [Iftllr,oo = Ilfll~,oo, ~i~ I[vftll~,oo = IlvfIIr,o~. 
t ---*0 

For any fixed x we set 

eN (Y) = r x)/N) 

where eEC~C(R~), 0~<r r  if lyl~<l, and r  if lyl~>2. Using 

f ( x )=r  fo~d (r I"~l 1, 

we get 

l/(x)l ~< C/ lx - y l i -~ lV ( r  dy. 

The right-hand side is estimated as 

~< C f  Ix -y l l -n ( l eNVYl  + IfVCN I)(Y) dy 

~< c / I x -  yll-~ I v S (y)l dy + c g  -~ IN < ,.-~l ~<~ If (y)l dy. 

Since p<oo,  the last term is estimated as 

<<. CN-n f Iftdy<~ CN-n/Pllfllp,o~-,O 
J B ( x , 2 N )  

as N--* oo, so we get 

If(x)l ~< C ]  Ix-yl~-~lV f(y)l dy. 

Assertion (i) follows from the boundedness of the Riesz potential ]xl 1-n from L(r,q)(R n) 

to L(~*'q)(R~). 
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(ii) By assertion (i) the space 

y(r,q) = {f  �9 n(r*,q)(Rn): V f  �9 L(r'q)(R'~) n} 

is a Banach space with norm IlVfll~,q,~,. To prove (ii), it suffices to show that the map 

V: Y(~'q) --* G(~'q)(R '~) 

is an isomorphism. To this end we first prove that 

V: H01'r (R n) --+ G~(R ") (1 < r < n) (5.5) 

is an isomorphism, where 

Hot'~ (R  ~) = {f  �9 L~'(R'~): V f  �9 L~(R") ~ } 

is a Banach space with norm IIVflI~,R~ (see [17], [19]). To show (5.5), observe that  (i) 

shows that R(V) is closed in G~(Rn). It thus suffices to show that  R(V) is dense in 

G~(R~). Suppose I = V B e G r  * annihilates R(V). Then Ap=0  in R ~, so 

A(Vp)=0  in R n, and therefore f - - V p = 0  since VpeLr  This proves (5.5). 

Now, let l < r j < n  ( j=0 ,1 ) ,  ro~rt,  l<.q<.cx~, 0 < O < l  and 1/r=(1-8)/ro+O/rt .  
Then, (5.5) implies that 

v: (R"), (Rn))0,q 

is an isomorphism. But, we easily see that  

(Ho1'~~ (Rn),/~o I'~' (Rn))0,q C {f �9 L(~"q)(R'~) : V I  �9 n(~'q)(R'~) n } = y(r,q) 

and so V is surjective from y(r,q) to G(r'q)(Rn). Since it is obviously injective, we get 

the desired result (ii). The proof is complete. 

The following is a refinement of the Gagliardo-Nirenberg inequality [15]. 

LEMMA 5.7. Let n<r<oo, l<<.q<~oo, and suppose that fEL(r'q)(R n) with V f � 9  
L(r'q)(Rn)'L Then f E L ~ ( R  n) and we have the estimate 

n/r l--nit 
[ I f [ Ic~,R" ~< CIIVfll~,q,a. Ilfll~,q,R~" 

Proof. Since L(r'q)CL (~,~176 we need only to consider the case q=c~. This time we 

u s e  

g(z) = -  [e-t(r dt, J~ot = 1, 
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to obtain, as in the proof of Lemma 5.6 (i), 

[g(x)l < c f [x-y{1-ne-lx-Yl([g[+[Vg[)(y) dy 

<<" C f~x-~l<llx-yll-n(lgi+iVgll(y) dy+C fJlx-yi~le-lx-Yl(IglTIVgl)(y) dy 
=- C(Iz -+-Is). 

Using the definition of the norm IIgil~,~ as given in w we evaluate the above two integrals 

in terms of the measure #=(Igl + ]Vgl)dy, to obtain 

/0 I~+I2= ~[{y : Ix -y l  ~-n > t}] d t+  ~[{y: e-I~-~l >t}]dt 

= f~C~[B(x,t-~/("-x))]dt+ Jol/~#[B(x, logt-~)]dt 

/ t o o  ~ i r l / e  i \ 

~Cn(l[giir, cc+liVgilr,~)~J 1 t -n /rdt+Jo (logt-1)n/rdt) 

= c~,~ (ilgll~,~ + l lvg l l , ,~ ) ,  

since nP/r'> 1. We thus have 

Ilgll~,R- -< C(l lgl l~ ,~,a-  + l lVgll~,~,a-) ,  

We then insert g(x)=f~(x)=f(x/)~), )~>0, to obtain 

HfJ]oo,R" < C(~/~Hfi]~,~,a. +)~-a+n/~i[VfJ[~,~,a-), 

with C > 0  independent of A>0. Taking the minimum with respect to )~>0 gives the 

desired result. 

LEMMA 5.8. Let n>~2 and let D be a smooth bounded domain in R ~. For l < r < n  

and 1<. q<. oo we have the following: 
(i) If V f ~_L(~'q)(D) ~ for a distribution f on D, then I EL(~*'q)(D) and we have 

f-- lDl-l  fD f dx r',q,D < CIIV flir'q'D' (5.6) 

with C independent of f .  
(ii) If fEL(r,q)(D) and V fEL(~'q)(D) '~, then fEL(~*'q)(D) and the estimate 

H f]l~',q,D ~ C([[f[[~,q,D + []Vf Jl~,q,D) 

holds with C > 0 independent of f . 
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Proof. (i) The result is known to be valid with L(r'a)(D) replaced by L~(D). This 

implies in particular that  the linear operator 

T: G~( D) ~ V f H f - IDI -1 /D  f dx E L~* (D) 

is well defined and bounded from G r (D) to L~'(D). By interpolation, the same operator 

T is bounded from G(~,q)(D) to L(r"q)(D). This proves (i). 

(ii) From (5.6) we have 

Ilfll~*,q,O <<. CIIV fll~,q,o+ IOl-l fD f dx 
r*~q~O 

+ IOl-X / O f  dz �9 II 111~. ~< CIIV fll~,q,D ,q,O. 

Since the constant function 1 belongs to L(P'S)(D) for all l < p < o c  and l~<s~<oc because 

D is bounded, the last integral is estimated as 

f o  f dX <<. Ilfll~,q,DIIllt~',q',D =Cllfll~,q,D. 

This proves (ii). 

We are now in a position to establish 

THEOREM 5.9. Let f~ be a smooth exterior domain in R n, n>~2. 
(i) If f E L(r*'q)(f~) and V f E L(r'q)(f~) n for some l < r < n  and l <~ q<~ oc, then 

llflt~.,q < CIIVfll~,q, (5.7) 

with C > 0  independent of f .  
(ii) Let l < r < n  and l<<.q<<.oc. If VfeLr n for a distribution f on f~, there 

exists a function gEL(~',q)(fl) such that V g = V f .  

Proof. (i) Suppose the contrary; then there exists a sequence f j  such that  

IIf~llr.,q-1, Ilvfjll~,q-~ 0 (5.8) 

as j--*co. Since L("',q)CL (r',~176 with continuous injection, we may assume that  f j  
converges weakly* in L (r*,~) to a function f .  So, V f = 0 ,  and therefore f = 0  since 

f~L(r"~)( f~)  and r*<eo.  On the other hand, we see from (5.8) that  for any smooth 

bounded subdomain DCl) ,  f j  are bounded in LS(D) for any s<r* and Vf j  --*0 in LP(D) '~ 
for any p<r. So, the Rellich-Kondrachov compactness theorem applies to see that  fj--*0 
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in LP(D). Since we can take p, s and so so that p<r<s<so<r* and since f j  is bounded 

in LSo(D), it follows that f j  converges also in LS(D). But, since (L~NLP)(D)CL(~,q)(D) 
with continuous injection, and since fj--*0 in (L~ALP)(D), we conclude that fj--+0 in 

i(~,q)(n). Therefore, by Lemma 5.8 (ii), 

fj-*O in i(~*'q)(n). (5.9) 

On the other hand, let ~ � 9 1 7 6 1 7 6  n) be such that 0~<~<1, ~ = 1  for large Ixl and ~--0  in 

a neighborhood of the complement of 12. Then Lemma 5.6 implies 

II(fj- fk)~ll~*,q,rt. <<. CHV( (fj - fk)~)ll~,q,rt- 

~< C ( l l v ( f j  - A )  II~,q + II (f j  - A)  Vqall~,q) 

c( l l  v ( f j  - h ) l l  ~,~ + II f j  - f~ I1~,~,o) --, 0, 

where D is a neighborhood in f~ of the compact set supp V~. This, together with (5.9), 

implies that f j 4 0  in L(r',q)(f~), which comradicts the assumption Ilfjll~.,q_--1. Thus, 

we get estimate (5.7). 

(ii) Consider the Banach space 

X~ = {f  �9 L~'(ft): V f  �9 L~(f~) ~} with norm IlVfll~. 

We already know (see [34]) that when 1 <r<n, 

V: Xr ~ G ~ is an isomorphism. 

Hence, by interpolation 

V: (Xro, X~l)o,q --* G (~'q) is an isomorphism. 

But, we easily see that 

(X~ o, X~l)O,q C {f  �9 : V f  �9 (12)"} -_- Y(~'q), 

and so V maps y(r,q) onto G (r'q) . Since it is also injective, it follows that 

(Xro, Xrl )O,q = y(r ,q)  

and V defines an isomorphism between y(r,q) and G (~'q). The proof is complete. 

The proof of Theorem 5.9 (ii) shows in particular the following 
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COROLLARY 5.10. Let n~2 ,  l < r < n ,  l~<q~<oe and 1 / r * = l / r - 1 / n .  Then, on a 

smooth exterior domain ~ we have 

G (*'q) = {Vp �9 L(~'q)(fl)n : p �9 L(~*'q)(fl)}. 

We now examine the fractional power A 1/2 of the Stokes operator A in the Lorentz 

spaces over an exterior domain. Let n~>3 and l < r < o e .  We know by [8] that  the linear 

operators V J ( A + I )  -1, j = 0 ,  1, 2, are bounded from L~ to L~(~). Interpolating between 

the indices ro and r l  with ro y~rl, we see that  the same operators are bounded from L (r'q) 

to L (*'q)(~), 1 ~<q~< oe; hence we obtain the estimate 

2 

IIVJ ll,-,q < C(IIA IIr, +IlulP, ). (5.1o) 
j = O  

Thus, A defines a closed linear operator in L (r'q) with domain 

D(r,q)(A) = {u �9 L(~'q) : VJu �9 L(*'q)(~), j = 1, 2, u[s = 0}. 

Notice that  D(~,q)(A) is dense in L (~'q) provided q<oe;  indeed, in this case C~,~(~) is 

dense. 

Suppose next that  u�9 and Au=O. Applying (5.10) and Theorem 5.9 re- 

peatedly, we see that  uEL(P'q)(~) and VuEL(P'q)(fl) for some p>n,  so by Lemma 5.7, 

uEL~ (Note that  u[s=0. )  Hence, 

u �9 (L~176 C (L~176176176 C LS(fl) 

for all s with p < s < o e ,  and therefore 

[u[2[x]-n dx=o( logR)  R--~oo. a s  
n{Izl~<n} 

The uniqueness theorem of Chang and Finn [10, Theorem 6] then implies u=O. 

shows that A is injective in L (~'q). The parabolic resolvent estimate [8] 

This 

I I ( . X + A ) - ' u l I ,  �9 Cllull  /I),l (1 < r < oo) 

is also extended via interpolation to the space L (r'q) , and this implies that  the semigroup 

{e-tA}t>~o i n  the space L (r'q) is bounded and analytic, and so the fractional powers of A 

are well defined. However, notice that  this semigroup is not strongly continuous at t--O 

if q--oe, since in this case D(r,oo)(A) is not dense in L (~'~176 
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Consider next the space 

D~ = the completion of D(Ar) in the norm IIAullr (1 < r < �89 

As shown in [4], [8], 

D~ = {u e L~**: Vu e nr*(g/) n2 , V2u e Lr (f~) n3 , uls = 0}, 

with 1 / r * * = l / r - 2 / n  and 1 / r* - - - - l / r - l /n ;  and the estimate 

c-111V2ull~ < IIAull~ ~< cIIV2ull~, u �9 D~, 

holds with C > 0  independent of uCD~. The first inequality above implies in particular 

that  

IIV~(,X+A)-lulI~ < Cllull~ (1< r < �89 

for uEL~, with C > 0  independent of A>0; so we see by interpolation that  if we set 

D 1 - (D 1 D 1 )O,q, (r,q)--\ to' r l  

for roar1, l•q<oo, 0 < 0 < 1  and 1/r=(1-O)/ro+O/rl, then 

c-111V~ullr,q < Ildull~,q < CIIV%ll~,q (1 < r < �89 

for uED~,.,q). Combining these with Theorem 5.9 gives 

THEOREM 5.11. Let n>~3, l < r < � 8 9  and l<.q<, cc. Then 

01 = {ue L (~'''q) VueL(~"q)(12) n2, V2ue LO"q)(f~) n3, u[s 0}, ( r , q )  : 

where l/r** = 1/r -  2 /n and i / r * =  l / r - 1 In .  Furthermore, A maps D~r,q ) injectively onto 
L (r'q), with estimate 

C -IlIv2ulI~,~ ~< ][Aull~,~ < CIIV2ull~,~. 
The second assertion of Theorem 5.11 follows via interpolation from the fact that  if 

! n  l < r <  2 , then A maps D~ injectively onto L~. 

Let n>~3, l < r < n  and 

D~/2 = the completion of D(A 1/2) in the norm IIA1/2ul[r. 

We next characterize 
D1/2 =(D1/2 D1/2~ 

( r , q )  ~, ro  ' r l  IO,q" 

To do so, we introduce 

^ l ~ r  H~,~(f~) = the completion of C~,~(f~) in the L~-Dirichlet norm IlVu[l~ 

As shown in [4] we have 

H0,~(~ ) = {u �9 L;*: Vu �9 L~(~) ~2, uls = 0}. 

We also recall the following result (see [4, Theorem 4.4]): 
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THEOREM 5.12. Let n~3  and l < r < n .  Then 

and we have 

D1/2 ^ l , r  
r --- H0,a(f~) 

C - 1 H V u l I r  < IIA1/2Ullr ~ CllVUHr 

for all uED~/2 with C > 0  independent of u. 

Starting from Theorem 5.12, we now prove 

THEOREM 5.13. I f  n ) 3 ,  l < r < n ,  l ~ q ~ c ~  and 1 / r * = l / r - 1 / n ,  then 

D1/~ = {u �9 n(r*'q) : V u  �9 L(r 'q)(~) n2 u l s  = 0}, (r,q) 

and the estimate 

(5.11) 

Thus, 
Z. (~ll,ro {l~n~ ~-1,rl (/-)1/2 D1/2~ __ D1/2 

�9 ~**o,a ~** ] ,*-o,a  (Rn))O,q--* x--to , rl ) e , q -  (r,q) 

c-1lWulJr,q ~ IlA1/2u[lr,q < C[Wu[lr,q (5.12) 

holds for ~.~1/~ u e u(r,q ) with C > 0 independent of u. 

Proof. Since R(A 1/2) is dense in L~, Theorem 5.12 implies that  A 1/2 is an isomor- 
/31/2 r phism between ~ and L~. By interpolation we see that  

A1/2:[D1/2 ,~1/2~. _ r)1/2 __,L(~,q) is an isomorphism. (5.13) 
k r 0 , I  J r  I / ~ , q - - ~ ( r , q )  

Fhrthermore, interpolating between V: D~/2-~L~(12) yields 

D1/2 ~1/2,  C {uE n(~ ~''q)" V u e  L(r'q)(fl) n~, u}s =0} =Y(~'q) ~ro  ' l ) r l  )O,q 

with continuous injection, and so 

r)1/2 (5.14) J]VulJ~,q ~< CJlA1/2uJl~,q, u �9 

Consider next the operator Z as introduced in [4, w We know by [4] that  if l < r < n ,  

then 
~'rl,rl=.~n\ n l / 2  

Z: no,~t~t ) --* u r  

is bounded and, with E0 denoting the zero-extension of functions, 

ZEou = u for u �9 ]-)1/2 
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is bounded and, by definition of Z given in [4, w 

ZEou = u for u E y(r,q). 

But, as shown below, we have 

(5.15) 

( ~ ' l , r o  []:~ n~ ~ l , r l  n "'0,~ k'~ j,H~,~ (R))o ,q={ueL(r* 'q ) (Rn) :VueL(~ 'q) (Rn) '~2} .  (5.16) 

,-,1/2 y(r,q) c-D1~ 2 It follows from (5.15)-(5.16) that  ZEo:Y(~,q)--*u(~,q) is bounded, so ._ (~,q), and 

we have 

[[A1/2ull~,q= [[AI/2ZEou[[~,q <<. Ci{VEou[[~,q=C[[Vu[[~,q, u e  Y (r'q). (5.17) 

The result follows from (5.14) and (5.17). 

It remains to prove (5.16). As shown in the proof of Lemma 5.6 (ii), 

(H l '~~  (5.18) 

Let 15 be the bounded projector associated with the Helmholtz decomposition of L~(R)'L 

Since 
n 

(Pu)~= ~-~(~k+nfl~k)uk, j =  l,...,n, 
k = l  

where Rj are the Pdesz transforms [43], we see that  

~ I w  n ~ ^ l , r  n n H(~,~,(R )---PH~ ( R )  . 

Since P defines a bounded projector on L(~,q)(R'~) '~, it follows from (5.18) that  

( ~ X , r o / ~  ~1,,~ "*o,~ , ' "  ,,**o,~ (Rn) )e ,q - - [ ) {ueg(r* 'q ) (an)n:VueL(r 'q ) (Rn)  n2} 

= {u e n(~"q)(Rn): Vu e n(~,q)(R~)~ }. 

This proves (5.16). 

6. Stability in L,~ 

We now discuss the existence and asymptotic behavior of strong solutions of perturbation 

equation (1.5), assuming that  the initial perturbations a are small in the Banach space 

L~,~ = {u e L~(f~)n : V-u = 0, u.vls = 0}. (6.1) 
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Notice that  in (6.1) the trace u.~ls makes sense, since L~(a)  CLqoc(~) with continuous 

injection, whenever 1 <~q<r<oo. 

As is now well known, the space L~ is the basic space in which to find strong solutions 

for the Navier-Stokes system, i.e., equation (1.5) with w=0.  In other words, it has so far 

been possible to get a global-in-time strong solution of the Navier-Stokes system only 

when a is sufficiently small in L~. As shown by Kozono and Ogawa [25], the same is true 

for perturbation equation (1.5) if 

w E LnML ~176 Vw E Ln/2ML ~176 (6.2) 

and if Iiw]ln+llVwi]n/2 is small enough. We establish in this section an L~,w-version of 

the global existence result of [25]. To be more precise, we shall show that  if 

Iwl < c/Ixl, IVwl < C/Ixl 2, (6.3) 

and if IIwll + flVwlr is small enough, then equation (1.5) admits a unique strong solution 

in L~, w defined for all t ~> 0 provided that  a is small in L~,w. Since L~ C L~,~, this includes 

the global existence result of [25] as a special case. We further remark that  condition 

(6.2) is much stronger than our condition (6.3) when n=3 .  In fact, when n=3, we have 

shown in Theorem 2.4 that  conditions (6.2) and F E L  3/2 together imply the vanishing of 

the total net force: 

s v . (T[w,p]-w* | * + F) dS = O, 

which would not always be valid for our stationary flows. 

As in [25], we systematically use in this section the LP-L q estimates for the semi- 

g r o u p s  {e-tL}t>~O a n d  {e -tn* }t~>0 as established in w so the size of the derivatives Vw 

in L~/2ML c~ plays an important  role. Kozono and Ogawa [25] deduced their version 

of LP-L q estimates for the semigroups {e-tL}t>~o and {e-tL*}t>~O, and applied it to dis- 

cussing the solvability in L~ of equation (1.5). Since our version of the LP-L q estimates 

improves theirs, most of our results in this section are deduced in essentially the same 

way as in [25]. However, we state our proofs in detail, since most readers would not be 

familiar with the use of Lorentz spaces in the study of nonlinear differential equations 

and since our results include an L ~ estimate, which is not discussed in [25]. 

We now introduce our class of strong solutions of problem (1.5), or equivalently, that  

of the evolution equation 

d--u-U+Lu+P(u.V)u=O ( t>O),  u (O)=a .  (6.4) 
dt 
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Definition 6.1. Let w satisfy assumption (6.3). Given a E L~,~, a measurable function 
u defined on f~ x (0, T) is called a strong solution of (6.4) on (0, T) if 

( 1 )  �9 �9 �9 uEC~([0, T), L~,w)nC ((0, T), L~,~), 

(2) LueC((O, T); L~,~); 
and the function u satisfies (6.4). Here C~ stands for the weak* continuity. (Recall that  
L~ =L(~, ~) = (L(r',l))*.) 

Our first results are the following; the second results (L ~ estimate) will be stated 
in Theorems 6.8 and 6.9 in the final paragraph. 

THEOREM 6.2. There exists a (small) number ,k--A(n)>0 so that if 

I[al[n,w<,~ and Ilwli+llVwIl<)h (6.5) 

then there is a unique strong solution u defined for all t>/O satisfying 

u E BCw([0, (x~); L~,~)NBC((0, oo); L~,,~), tU4u( �9 ) E BC((0, (x~), nr 2n), 

where BC stands for the space of bounded continuous functions. Moreover, for each 

n < r < o o  there is an ~/=7/(n,r)>0 so that if 

Ilwll+ IlVwll < 7, (6.6) 

then the solution u obtained above satisfies 

Ilu(t)llq < Ct -(1-n/q)/2 for n < q <. r (6.7) 

with some C=C(n ,  r, q)>0.  

THEOREM 6.3. (i) Let l < r < n  and aeL~,~NLy,,~. Then, there is a positive number 

iV = r )  

so that if 

Ilalln,w~)~' and Ilwll+llVwll~)~', 

then the solution u given in Theorem 6.2 satisfies 

u e BC~([0, o0); L~,~)NBC((0, oc), L~,~). 

Moreover, under the assumption (6.8) we have 

t l /2Vu(  �9 ) E BC((0, oc); L~,). 

( 6 . 8 )  

(6.9) 

(6.10) 
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P " (6.8) wi thr=p .  Then foreachp<r<c(~  (ii) Let l < p < n ,  aELa,wMLa, w and assume 

there is a positive y ' = y ' ( n , p , r ) < ~  so that if 

Ilwll +llVwll ~< ~', (6.11) 

the function u satisfies, as t---*oo, 

Ilu(t)llq = O(t  -(~/p-~/q)/2) for p < q <. r. (6.12) 

Moreover, suppose p < r < n  and (6.8) holds. Then under the assumption (6.11), the 

function u satisfies, as t---+~, 

IiVu(t)iiq = O(t -(n/p-n/q)/2-1/2) for p < q <~ r < n. (6.13) 

(iii) Let l < p < n .  For each ~>0 there is a number # = # ( p , ~ ) > 0  so that if 

T H E O R E M  6 . 4 .  

then 

I lVu( t ) l l .=O( t  ~-"/~p) a s t - ~ .  (6.14) 

(i) Under the assumption of Theorem 6.2, the solution u satisfies 

lim Iiu(t)iin,~ = 0 
t---* o~ 

provided a is in the L~,-closure of C~,~(~). 

(ii) Let aEL~,w, VaEL~/2  and ais=O. Then, under the assumption of Theorem 6.2, 
we have 

Vu E BCw([0, co); n~/2)nBC((0 ,  co); L~/2). 

We shall deduce Theorems 6.2, 6.3 and 6.4, solving the integral equation 

u(t) = e- tLa - e - ( t - ~ ) L p ( u . V ) u ( T )  dr (6.15) 

in the class of mild solutions in the following sense: 

Definition 6.5. Given aEL~,~ and n < r < c ~ ,  a measurable function u on 12• (0, T) 
is called a mild solution of (1.5) in the class St(0, T) if it satisfies 

(1) uEBC~([0,  T); L~,~)MBC((0, T); L~,w); t(1-n/r)/2u(" )eBC([0,  T); L~); and 
(2) (u(t), r r  fo(U| Ve-(t-~)L~162 dT, 

for all CEC~,~(Ft) and 0 < t < T .  

Our definition of mild solution is essentially due to [25]. To establish an existence 

and uniqueness theorem for equation (6.15) in the class of mild solutions, we interpolate 
between estimates (3.34) and (3.35) to get similar estimates in Lorentz spaces. 



ON STABILITY OF EXTERIOR STATIONARY NAVIER-STOKES FLOWS 367 

P R O P O S I T I O N  6 .6 .  

of the space L(P'q)(~). 

(i) For each r with p ~ r < c ~  there is a number y(p,q,r)>O so that if  

then we have 

Let n>/3, l < p < c ~  and l <<. q<<. c~, and let I1" Ilp,q denote the norm 

Ilwll+llWwll < o(p,q,r), 

Ile-~L all~,q, Ile-t~*all~,q <. Mt-C"/P-"/~)/211allp, ~. 

Furthermore, when p<.r<n, there is a number rf(p, q, r)>O so that if  

[Iwll+llVwlt < ~'(p,q,r),  

IIVe-~Lall~,~, IIVe-~L*all~,~ < Mt-~/2-(n/'-n/~)/211allp, ~. 
(ii) For each r with p<r<co  there is a number )~(p,r)>0 so that if 

Ilwll+llVwll < ~(p, r), 

then 

then we have 

Ile-~all~, Ile-~Uall~ ~< M.,~t-('~/"-'~/~)/~llall.,,.. 
Furthermore, when p < r < n ,  there is a number A'(p,r)>O so that if 

llwl[ + IlVwl[ <~ A'(P, r), 

then 

(6.16) 

(6.17) 

(6.18) 

IlVe-~L~ll~, IlVe-~Uall~ ~< Mp,~t -~/~-(n/p-n/~)/211~ll~,~. (6.19) 

Proof. (i) follows by interpolating estimates (3.34) and (3.35) between the spaces 
L~ 'q) . Assertion (ii) is easily obtained from estimates (6.16) and (6.17) with q=oc, since 

0 x-o o LP~ c L p and Ilfllp <<. C(po,pl, )llfllpo,~llfllp~,~ 
provided that 

Po#Pl ,  0 < 0 < 1  and 1/p=(1-O) /po+O/p l .  

The proof is complete. 

Proof of Theorem 6.2. Consider now the iteration scheme: 

uo(t) = e-tL a, 

u j+l ( t )=uo( t )+v j ( t ) ,  j>~O, (6.20) 

vj (t) = _ --it e-Ct- ~)L p(uj. V)uj (r) dr. 
J0 
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Assuming a E L~,,o to be sufficiently small, we show that  the functions uj are well defined 

and converge in an appropriate sense to a mild solution. The mild solution obtained 

below is actually a strong solution; but, its proof is standard and so omitted in this 

paper. The following argument is essentially the same as in f18], which deals with the 

case of the Cauchy problem for the Navier-Stokes system in R ~. Let 

Kj  = max(sup&/4[[u3(t)[12,, sup  [lu~(t)l[,~,,~), j = O, 1, 2, . . . .  
t > 0  t > 0  

Proposition 6.6 and Lemma 2.1 (i) together imply that  

I<u| v~ -(~-r)L* ~)1 < I1~| ull~,~/3,~, iiV~-t,-r)L* ~11(~/3),,1 

< CM'llull2.11ull.,~(t-~-)-3/411~ll~,,l 

and 

- - ( t - -T )L*  I(~,| Ve-(~-~)L*~>l ~< Ilu| ~11., ~< M"llull~.(t-~)-s/411~ll(=.), 

for ~,EC~,~(f~). We thus have 

Ile-tt-~)LP(u.Vu)ll.,~ <<. CM'(t-T)-s/allull2.11ull~,~ 

and 

This implies that  

tt 3 4 II~-('-')LP(~-Vu)II2. ~< M ( t -T) -  / I1~1[~., 

Ko <~ Mllla}J.,.o, gj+a ~ MIIlalI.,,o+MuDKy, j ~o, (6.21) 

where 

M1 = max(M.,2. ,  M. ) ,  M2 = max(CM', M"),  
1 1 /3 : max(B(�88 ~), B(g ,  3)), 

and B(- ,- ) is the beta function. Thus, an elementary calculation shows that  if 

4MaM2DIlaJJ.,.o < 1, 

then for each j > 0, 

Kj ~<k= 1 -  X/1-4MaM2/311aI["'~ 1 
2M~e < 2M2-----~' 

(6.22) 



O N  S T A B I L I T Y  O F  E X T E R I O R  S T A T I O N A R Y  N A V I E R - S T O K E S  F L O W S  369 

so that  

Iluj(t)lln,w < k, Iluj(t)l12n < kt -1/~. (6.23) 

In the same way, the relation 

wj(t) - u j+ l ( t ) - u j ( t )=  - e-( t - ' )L(P(wj_~ .V)uj+P(uj_~.  V)wj_~)(7-)dr 

implies that  if we fix T>0 ,  then 

[Iw~(t)lln,,~ 4 2M2k~ sup [Iwj_i(t)lln,~, 
O<t<~T (6.24) 

tl/41]wj(t)ll2n ~ 2M2k~ sup tl/411Wj_l(t)ll~ , 
O~t~T 

for tE (0, T]. Since 2M:k~< 1 by (6.22), it follows from (6.24) that  there exists a function 

u satisfying 

Ilu(t)lln,w ~ k, Ilu(t)ll2n < kt -U4, (6.23') 

such that  tl/4uj( �9 ) and uj( .  ) converge uniformly for bounded t > 0  to tU4u( �9 ) and u(.  ), 

respectively. It then easily follows that  

/o' (u(t) ,~))=(e-tLa,@+ (u|  (6.25) 

for all CEC~.~. Estimate (6.23') ensures the absolute convergence in L n n L  ~n of the 
~ ~ O "  ( l l J  - -  - - O "  

integral on the right-hand side of (6.15); so it is continuous in t ) 0  with values in L~,,w, 

and continuous in t > 0  with values in 2~ L~ . The linear term e-tLa is continuous for t > 0  

with values in _~,~L n .._~nL 2~, and weakly* continuous at t = 0  with values in L~, w. These 

observations, together with (6.23'), imply that 

u �9 BC~([0, ~ ) ;  L~,w)NBC((0, oc); L~,~), tl/au( �9 ) �9 BC((0, oc); L~).2~ 

Thus, u is a mild solution of class $2~. The proof of uniqueness is standard, so omitted. 

We next prove (6.7). Since u�9 we obtain 

Ilu(t)ll  < cllu(t)ll  , ll (t)ll 7: clt (t)ll  llu(t)ll 7  c t  

for n<q<2n,  where 1/q=(1-O) /n+8/2n .  This, together with (6.23'), shows (6.7) with 

r=2n. When q>2n, we apply this with q=2n to (6.25), to get by Proposition 6.6, 

Ilu(t)llq ~ Cqllall~,wt -(1-n/q)/2 + Un,qk 2 t--T)--l+n/2qT--1/2 dT 

= (Cqllall~,~+M',qk:)t-(~-~/q)/: = Kqt -(1-n/q)/2. 
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This completes the proof of (6.7). 

Proof of Theorem 6.3. We first prove (6.10). Note that  if l < r < n ,  then 1/r+ 
1 / q < l  for sufficiently large q. Thus, Proposition 6.6 and (6.7) together imply that if 
IIVuj(t)ll~,w <<. Cjt -1/2, then 

]]Vuj+l(t)l]~,w <~ Cot-1/2]lallr,w-{-M fnt(t-r)-l/2-n/2qHujllqHVUj I l r ,w(r)dr  

<~ Co t-l/2 Ilallr,w '1- MKqCj f t (t - r)-l/2-n/2qr-l§ dr 
Jo 

= Co t-112 Ilall,,~ +MKqCjB(1/2-  nl2q, nl2q)t -112, 

where Kq is the constant in the estimate Ilu~(t)llq<~Kqt-(1-"/q)/u. Hence, 

Cj+l <~ Collall~,~+MKqB(1/2-n/2q, n/2q)Cj. 

Since we may assume Kq sufficiently small as shown in the proof of (6.7), we obtain (6.10). 

We can now prove (6.9), using (6.7) and (6.10). Let l < r < n  and choose q > l  so that  

1/r+l/q<l.  Since r.~ - / r ( ~ " l ) )  * by Theorem 5.2, the estimate 

liu.vu(r), e-('-~)~'r ~< Cllullq,~(r)llWll~,~(r)lle-C'-~)L'r 
<~ Cr-(~-"/q)/2r-~/2(t-r)-"/~qllCll~,,a 
= Cr- l+n/2q( t -  r) -n/2~ I1r 

implies that 

C f0 t II~(t)ll~,~ < M~II~II~,~ + ( t -r ) -" l~% -~+" /~  d~ 

= Mrllallr,~+CB(1-n/2q, n/2q). 

This completes the proof of (6.9). 

We next prove (6.12) and (6.13). When q=p=r, these results are just  (6.9) and 

(6.10), respectively. Let l < p < r ,  and suppose that 

0 < I / p -  1/r < 1/n. (6.26) 

We take a large s so that 1 / s + l / p - 1 / r < l / n  and apply (6.10) with the exponent p and 

(6.7) with the exponent s to get by Proposition 6.6, 

Ilu(t)llr ~< Mt-(nlp-nlrV2llallp,~ + M [t(t-r)-('~l'+nlP-"/~)/2r -l+n/~" dr 

= Mt-Cnlv-n/~)/2 Ilallp,~ +M 't-cn/v-n/~)/2, 
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since �89 This proves (6.12) for p<q=r under the assumption (6.26). 

The result in case p<q<r is deduced via the interpolation inequality: 

llullq o cIluLli llp,w, 1/q=(1-o)/,+o/r. 

The proof of (6.12) is thus complete under the assumption (6.26). In the same way, we 

see that  if r<n and if (6.26) holds, Proposition 6.6 yields 

~0 t IIV~(t)ll~ <Mt-1/2-(~/P-~/~)/21lallp,~+M (t--T)-l/2-(~/'+~/P-~/~)/2r-l+~/2"d'r 

= Mt-1/2-(n/p-n/r)/2, 

since 1 +  �89 < 1. This shows (6.13) for p<q=r <n under the assumption 

(6.26); and the case p<q<r<n is deduced via interpolation. 

Consider next the case 

1In <. l / p -  1/r < 2In (6.27) 

and choose l with p<l<r so that  

O < l / p - 1 / l < l / n ,  O < l / l - 1 / r < l / n .  

Writing the integral equation (6.15) in the form 

/; u(t) = e- tL /2u( �89 -- e - ( t - ' ) L p ( u . V ) u ( r )  dT, 
2 

and bearing in mind the estimate 

IlW,(t)ll~ ~< Ct-1/2-(n/p-~/~) /~,  

(6.28) 

we take s > l  so that  1 / s + l / l - 1 / r < l / n  and apply (6.7) with q=s, to get 

Ilu(t)ll, ct-("/'-n/r)/2llu(�89 
/; +C (t--r)-(n/"+~/~-n/r)/2r-1/~-('~/P-'~/Zl/2r -C1-n/~)/2 dr 

2 

<~ Ct -(n/p-~/~l/2 +C (t--r)-('~/~+~/l-n/~)/2r -l-(~/p-~/~-n/O/~ dr 
Jr~2 

<~ Ct-('~/P-n/~)/2 

for t>0 ,  since s can be taken so that  1/p>l/ l+l/s .  This shows (6.12) with p<q=r and 

the case p<q<r is deduced via interpolation. Thus, we have proved (6.12) under the 

25-950233 Acta Mathematica 174, lmprim~ le 20 juin 1995 
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assumption (6.27). Similarly, since �89 + �89 (nls + n i l -  n/r) < 1, assuming r < n we obtain 

IIVu(t)ll~ ~< Ct -1/2-(n/p-n/r)/2 

f; +C (t-r)-l/2-(n/~+~/~-~/~)/2r-t-(~/P-~/~-n/~)/2 dr 
2 

C t  - 1 / 2 - ( n / p - n / r ) / 2 .  

This shows (6.13) for p<q=r<n under the assumption (6.27); and the case p<q<r<n 
is deduced via interpolation. 

When 

j / n<~ l /p -1 / r<( j+ l ) / n ,  j>~2, 

we choose l so that  p<l<r and 

O < l l p - l l l < j l n ,  O < l l l - l l r < l l n ,  

and repeat the above processes to get (6.12) and (6.13) in all cases. 

To prove (6.14), we rewrite (6.28) in the form 

s; ~ ( t )  = ~ - ~ / ~ ( � 8 9  ~-(~-')~(B~+P(u.W))(,)~r (6.28') 
2 

in terms of the Stokes operator A and apply the estimates of Iwashita [23]: 

Ile-tAall~ ~ Ct-('~lq-'~/~)/211all q (1 < q ~< r < oc), 
( 6 . 2 9 )  IIVe-tAall~ <~ Ct-1/2--(~/q-n/~)/211all q (1 < q ~< r ~< n). 

The function 

f; v~( t )=~-~/~( �89  ~-('-')AP(~.Vu)(r)~r 
2 

is estimated as in the proof of (6.13) and we obtain 

llVvl(t)ll,~=O(t-"/2P) as t--*oc. 

The remaining term 

j t 

v2(t) = - ~-(~-~)AB~(r) dr 
/2 

is estimated as follows. Given a small (5>0, we apply (6.29) to get 

J; IIVv2(t)lln <<. C (t-r)-l+~(llw.Vull./m_~l+llu.Vwllnlm_e)) dr 
2 

~6 (t--T)--~+6(IIwlI~/(I_3~)II~ulI,~/(~+~)+II~wJI~/(2_3~)IlulI~/~)(T)dr 
�9 / ' 2  

f; ( t-  r)-1+~ II V'u IIn/(1 +~/(r) dT <. cIIVwll~/(2-3~) 2 

~< CIIVwll (t-r)-l+ellVulln/(l+e)(r) dT. 
2 
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Since IIVull~/(l+~) <~CT -~/2p+~/2 provided w is small depending on 5>0  and p, it follows 

that  

f; IIVv2(t)lln <~ C ( t - r ) - l + ~  --~/sp+e/s dr = O(t-n/2P+ae/s), 
2 

which completes the proof of (6.14). The proof of Theorem 6.3 is complete. 

Proof of Theorem 6.4. Let ul and u2 be the solutions with the initial data al and as, 

respectively. Then v = u l  - us satisfies 

v(t) -~ e - tL (al - a2) - fot e - ( t - ' )L  p (  (v �9 V)Ul -F- (u2. Vv) )(T) dT, 

SO that  

IIv(t)lln,w <~ Mlllal-azlln,w+ Ms (t--~')-3/4(llulll2,~+lIuslls,~)llvlln,w(T)dT 

<. MI Ilal - a2 II,,,~ + 2 M 2 k ~  sup IIv(~)lln,~. 
r > 0  

This shows that if we assume 4M~Ms~llajll,,,~<l for j = l ,  2, so that  (6.22) holds, then 

sup Ilu~(T)-Us(~)ll~,~ < Ctlax -as l l  . . . .  
7->0 

which shows that  the map a H u  is continuous from a neighborhood of 0 in L~,~ to 

BC~([O, oo); L~,~o ). On the other hand, (6.12) shows that if aEL~,~ML~,~ for some 1< 

r < n, then II u(t)II ~,~ --' 0 as t -~ oo. Hence, Theorem 6.4 (i) follows through approximation 

of the initial value a. 

We finally prove Theorem 6.4 (ii). To this end we need 

LEMMA 6.7. Let n>~3 and l < r < n .  Under the assumptions of Theorem 3.10(i) or 

(ii), we have the estimates 

IlVe-'L all~,w, IlVe-tL'all~,w ~ M~llVall~,w (6.30) 

_ ~  n l / 2 _ _  r ~ l / 2  for all t>~O and u ~  . . . .  u(~,~). 

Assuming Lemma 6.7 for a moment, we prove Theorem 6.4 (ii). Let aEL~,w, VaC 
~,-- / 3 1 / 2  L~/s and a ls - -0  so that ~ , / 2 , ~  by Theorem 5.13. Consider the iteration scheme 

(6.20). Lemma 6.7 and (6.16) yield 

Iluo(t)ll~,w +llVuo(t)ll,/2,~ <~ M(llalln,~o +llValln/s,w ). (6.31) 

Let 

Kj =sup(l i . j ( t ) l l . ,w+llw~(t) i i . / s ,w) .  (6.32) 
t > 0  
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The proof of Theorem 6.2 (i) shows that 

/o' Iluj+l(t)ll,~,,~ <~ Iluo(t)ll,,w+cn (t-'~)-31411ujll~nllusll,,,~(~-)dT. (6.33) 

Fhrthermore, (6.17) and the weak H61der inequality together imply 

II vus+ l  (t)II./~,w -<< II Vuo (t)II ~1~,~ + Cn[ t  (t - -  T)-3/4 II ~ v u  II ~./5,w (~) d~- 
,#U (6.34) 

<<. IlVuo(t)ll.12,w+C,, (t-r)-31411usll2nllVusllnl2,~,(~')d~'. 

Since Ilus(t)ll2,~<<.kt-ll 4 by (6.23), it follows from (6.32)-(6.34) that 

KS+I <. Ko+O.kn(�88 �88 

Since Ko is finite by (6.31), assuming k sufficiently small, we get a uniform bound for K s. 

Similarly, we can show the convergence of u s and Vu s by estimating W s : U s +  1 --?lj. This 
proves Theorem 6.4 (ii). 

Proof of Lemma 6.7. We consider only the case of operator L. The case of L* is 

discussed similarly. Suppose first 1 < r  <: �89 and consider the Neumann series expansion 

OO OO 

( A + L ) - l u  = (A+A) -1 E ( - B ( A + A ) - I ) J u  = E ( - ( A + A ) - I B ) S ( A + A ) - l u .  (6.35) 
S=0 S=O 

Since l < r <  �89 we get IIV2(A+A)-lll <~ClIA(A+A) -111 <~C; and so 

IIV2(,X+A)-'BvlIr < CIISvll~ <. Cr(llwll + IlVwll)llV%llr. 

Hence, (6.35) gives 

I IV2(s~+/ ) - lu l l~  <~ C~(llwll+llVwll)] s V:(A+A)-lulI~. 

But, since l < r < � 8 9  we have 

[[ V2 ( A + A )- lui]r < CII A( A + A )- IuI[~ = CI[ ( A + A )- ~ AuIi~ 

CIIAulIUI~I < c I IV2~ l lU l~ l  �9 

Thus, assuming Ilwll+llVwll to be small, we get from (6.35) 

IIV~(A+L)-I~II,. ~< cIIV2ullUl~l (6.36) 
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for u �9 D~. Now, according to [4, Proposition 4.3 (ii)], the space D~/2 equals the complex 

interpolation space I r [D~, L#]I/2. Thus, interpolating between (3.15) and (6.36) shows that 
1 if l < r <  7n, then we have 

IIV(),+L)-lulI,- ~< cIIVull,./IAI, u e DI/2 - - ' T "  " 
(6.37) 

Suppose next that n f < r < n .  We again appeal to the Neumann series expansion (6.35) 

and get (3.23): 

IIV(A+L)-luII~ ~< CIIwll) j V(A+A)-IuII~. 

Since r < n ,  we have 

HV()~+A)-luHr ~< CJOA1/~(A+ A)- luHr  = CII()~+ A)-IA~/2u]I~ 

<<. C]lA~/2u]l~/lAl <~ CIIVulI~/IAI 

for u E D  1/2. Since I1 11 is small by assumption, this shows (6.37) for n ' < r < n .  Now let 

l < r < n  and choose l < r 0 < l n  and n ~ < r l < n  with r o < r < r l .  Then, by [4, Proposition 

4.3 (iii)] and [4, Theorem 4.4 (iii)], we have 

0 /2 D 1/21 ----/91/2 l l r  = (1-O)/ro-~t-0/rl . (6.38) ro  ' r l  JO ~ r  , 

Hence, it follows via interpolation that (6.37) holds for all l < r < n .  

Now, (6.37) implies 

I lVe- tLal l ,  . <~ M, IlValI,, a ~ D ) /~  (1 < r < n). (6.39) 

But, since 
DI/2 = tr)l/~ D 1 / ~  1/r  = (1-0) / roq-0/ r l ,  (r,oo) ~ r o  ' r l  1~,o~, 

estimate (6.30) follows by applying interpolation to (6.39). This proves Lemma 6.7. 

Remarks. (i) In this section we have discussed only the existence of a (unique) global- 

in-time mild solution in the sense of Definition 6.5. But, the properties of the obtained 

mild solution as described above ensure that they are in fact strong solutions in the sense 

of Definition 6.1. Since the proof is standard, the details are omitted. 

(ii) The method of this section applies also to the proof of the existence of a (unique) 

local-in-time strong solution if we take the initial value a from the usual L p spaces instead 

of the weak L p spaces. This case is discussed in detail in [25] (but, under assumption 

(6.2)), except for the fact that if a E L  n and V a E L  n/2, then u ( t ) c L ~  and V u ( t ) E L  n/2 
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for all t > 0  in the existence interval of the strong solution u. This latter result is proved 

in almost the same way as Theorem 6.4 (ii), by applying Theorem 4.4 of [4]. 

(iii) For large initial data a in L~,w, we do not know if there exists a corresponding 

local-in-time strong solution. As noticed in [18], the main difficulty arises from the fact 

that  the semigroups {e-tA}t>~o , {e-tL}t~O a n d  {e-tL*}t~O are not strongly continuous 

at t = 0  in the weak L p spaces, while they are all strongly continuous in the usual L p 

spaces. 

We conclude this paper with deducing decay rates of L~-norm of strong solutions. 

'~ P for some l < p < n  and let u be the corresponding T H E O R E M  6 . 8 .  Let  a E L ~ , w M L ~ ,  w 

strong solution given in Theorem 6.2. 

(i) For each ~>0 there is a number #=#(p ,~)  so that if 

Ilwll+llVwlt < ~, 

then u ( t )EL  ~ for large t > 0  and 

Ilu(t)l l~ = o ( t  ~-'~/2p) as t - - ~ .  

(ii) Let V w E L ~ M L  ~ for some n ' ~ q < � 8 9  in case n ~ 4 ,  and let V w E L q M L  ~ for 

some l < q <  ~ in case n=3 .  There exists a number #=#(p ,  n)>O so that if 

or iS 

Ilwll + IlVwlla,w + IlVwl[~ ~< (n/> 4), 

Ilwll+llVwl[q+llVwll~ <~ (n=3) ,  

then u ( t )EL  ~ and V u ( t ) E L  n for large t > 0  and 

Ilu(t) l l~ = o ( t - " / 2 P ) ,  IlVu(t)ll, ,  = o ( t  -n/=p) as t ~ cr 

Here, the number #(p, n)>0  is taken so that the semigroup { e-tL }t>~o satisfies estimates 

of Theorem 3.13 with s = p  and s= ~n. 

Remark. When w=0,  Kozono, Ogawa and Sohr [26] deduce the decay result 

Ilu(t)ll~ -- o(t -n/2V(logt)  1-1/n) as t ~ cr (6.40) 

n p for their strong solutions u corresponding to a E L ~ n L ~  for some l<p~<2, via a variant 

of Trudinger's inequality and estimates (6.29) of Iwashita [23]. Contrary to [26], we 

establish Theorem 6.8, applying Proposition 3.11 and Theorem 3.13, as well as Theorem 

6.3 (ii). Note that  Theorem 6.8 (ii) improves (6.40). 
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On the other hand, when n--3 and w=~0, Heywood [22] proved that if aEL~NL~,3 2 
then 

Ilu(t)ll~ =O(t -U4) as t - * c o .  (6.41) 

Theorem 6.8 (i) is stronger than (6.41) and is valid also in higher space dimensions, while 

(6.41) holds also in the case w ~ 50.  

Proof o] Theorem 6.8. (i) The function u satisfies 

u(t) = e-tA/2u(�89 -- e - ( t - ' )A(Bu+P(u.Vu))(r )  dr. (6.42) 
/2 

Applying Proposition 3.11, we see as in the proof of (6.14) that  

Ile-~ABull~ ~ Ct-l§ + IlVwll)llVulln/(l+~) 

with C > 0  depending on 5>0,  and 

Ile-'Ae(u'Vu)llo~ <. Ct-~+~llulln/(1-3~)IlVull~/(l+~). 

These estimates, together with (6.12) and (6.13), yield 

Ilu(t)ll~ ~ Ct-'~/2pllu(�89 (t--r)-l+6(r-'~/2P+e/2+, 1/2-'~/p-~) dr 
/2 

<. O(t-'~/2P)+O(t-'~/2P+3e/2)+o(tl/2-n/p) = O(t-n/2P+3e/2), 

since p<n. Choosing 5>0 sufficiently small, we get (i). 

(ii) We write 

ft ' e-(t-r)Lp(u'VU)(T) dT u(t)=e-tLI2u(�89 12 (6.43) 

and apply (6.12), (6.13) and Theorem 3.13 with s=p and s-gn,-2 to obtain 

f; Hu(t)H~ ~<ct-n/2pllu(�89 2(t--r)-3/4Hu'Vulh~/a(r)dr 

<<. Ct-n/2P+ (t--r)-a/4(IJu[l~llVulJ2n/3)(r) dr 
2 

2 <~ ct-~/2p +c  (t-r)-a/4rl/4-~/2Pllu[J~(~)dr 
2 
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and 

IIVu(t)lln < c t - n / ~ ' +  (t-r)-a/4(ll~ll2~llWll~)(r) dr 
2 

f; C t - n / 2 P - t - C  ( t - r ) - 3 / 4 r l / 4 - n / 2 P l l V u H n ( r )  dr .  
2 

Thus, if we set V(t)=suPT<,<t rn/2p(llull~ + IIVu[l~)(r) for a fixed T>O, we easily obtain 

V(t) ~ C1 +C2tU2-n/2pv(t) ~ C1 +C2T1/2-n/PV(t) 

since 1/2-n/2p<O. Taking T > 0  sufficiently large, we obtain 

V(t)~CI+�89 f o r t > / T .  

Hence we get V(t)<.C for large t, which proves (ii). 

Finally, we prove a refined version of Theorem 6.8. 

THEOREM 6.9. Let w satisfy the assumption of Theorem 6.8 (ii) with the same num- 
her # = # ( p , n ) > 0  as given there. Let u be the strong solution given in Theorem 6.2 with 

p n initial value aEL~AL~,. If l <p<.n' or p=2,  then 

Ilu(t)ll~ = o(t -~/2p) as t - ~  ~ .  

Proof. In view of the integral representation (6.43) and the calculations that  follow, 

it suffices to show that  u(t)EL~ for all t ) O  and 

liu(t)llp--, 0 as t--* cx~. (6.44) 

For p=2 this follows from the result of w since in the present situation u is the only one 

weak solution corresponding to a. So, we need only to discuss the cases where l<p<~nq 
The argument below is due to [4, w The assumption implies aEL~, and so our 

strong solution u is in the class of weak solutions. Thus, we have 

(u(t), ~} = {u(s), e-(t-s)i'cfl)-- (u.VV(T), e-(t-r)L*~} dr (6.45) 

for all ~EC~,a(~t) and O<.s<.t. The boundedness of the semigroup {e-tL*}t>~o in L p' 

implies 

I<u.vu, e-(~-')s'~>l < cIl~llp' llull2p,/(p,-2) llVull2 
, U 1--niP' ?.t niP' 411~ollp II 112 II 112~,,(:,.,_~)llVull., 

~< cIt~llp, ilull~ - ' ' p '  II V'~ll~ +' 'p ' .  
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Hence, (6.45) gives 

/ r t  ~ ~ \ I[u(t)llp<. CIIle-(t-s'Lu(s)[Ip+], Ilul112 -n/p HVu[[2 t+n/" dr). (6.46) 

By assumption we have 1-n/p'>/O and l+n/pt<~2; so the integral in (6.46) with s=0 is 

finite, since u is a weak solution. Furthermore, (6.12) and (6.13) together imply that 

Ilull  Ilwlll+ /P' C T  - 1 / 2 - n / 2 p  = C T  - l - a ,  O~ = n / 2 p - -  1/2 > 0, 

for large T>0. It follows from (6.46) that 

and the integral on the right-hand side is finite for any fixed s )  0. This shows in particular 

that u(t)eL~ for all t~>0. Applying Theorem 3.10 (v) to (6.47) gives 

C f 8  ~X~ t I lim sup I lu ( t ) l l ,  ~< Ilull~ -n / '  tlVull~ +n/" d r  -~  0 
t----~ OO 

by letting s--*oe. This shows (6.44) and the proof of Theorem 6.9 is complete. 
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