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One of the most important mathematical achievements of the last decade has been the 

theory of quantum groups created by V. Drinfeld, M. Jimbo, and others. Quantum 

groups provide an algebraic background for various chapters of theoretical physics such 

as the quantum inverse scattering method, the theory of exactly solvable models of 

statistical mechanics, the 2-dimensional conformal field theory, the quantum theory of 

angular momentum, etc. Quantum groups also found remarkable applications in low- 

dimensional topology. 

Quantum groups are defined in terms of what Drinfeld [D1] calls "quasitriangu- 

lar Hopf algebras" and their construction is based on a general procedure also due to 

V. Drinfeld assigning to a Hopf algebra A a quasitriangular Hopf algebra D(A) (see [D1] 

or w The Hopf algebra D(A) is called the "quantum double" of A. When consider- 

ing topological applications, one has to extend the algebra D(A) by a so-called ribbon 

element (see Reshetikhin and Turaev [RT]). This yields a "ribbon Hopf algebra". 

The notions of quasitriangular and ribbon Hopf algebras have purely categorical 

counterparts that are related to algebras via representation theory. It is well-known 

that the category of finite-dimensional representations of a Hopf algebra acquires in a 

canonical way the structure of a monoidal category with duality. Moreover, if the Hopf 

algebra is quasitriangular, then the category of its finite-dimensional representations is a 

braided monoidal category in the sense of Joyal and Street [JS1]. The distinctive feature 

of a braided monoidal category is the presence of a "braiding" which may be viewed as a 

commutativity law for the tensor product satisfying the Yang-Baxter equation (see [JS1] 

or w If the Hopf algebra is a ribbon algebra, then the category of its finite-dimensional 

representations is a ribbon category in the sense of Turaev [T1] (such categories are also 

called tortile categories in [JS1], [JS2]). In addition to a braiding each ribbon category 

possesses a "twist" which is responsible for the involutivity of the braiding and relates 

the braiding to duality (see w 
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The above-mentioned relationships between Hopf algebras and monoidal categories 

raise the problem of a direct description of the quantum double and its ribbon extension 

in terms of monoidal categories. Such a description would clarify these two constructions 

and place them into a most general framework. A categorical interpretation of the 

quantum double was given by Drinfeld and independently by Joyal-Street [JS2] and 

Majid [Mj]. They introduced a beautiful and simple "centre construction" producing 

a braided monoidal category Z(C) out of any monoidal category C. Unfortunately, the 

centre construCtion does not allow to upgrade duality in C to a duality in Z(C). It turns 

out that the duality may be tamed if it is considered simultaneously with the twist. In 

other words, there is a categorical analogue of the composition of the ribbon extension 

with the quantum double. 

This categorica ! construction is the main result of this paper. More precisely, we 

show how to assign a ribbon category :D(C) to an arbitrary m0noidal category with dual- 

ity C. The definition of :D(C) is an elaboration of the definition of the centre Z(C): When 

C is the category of finite-dimensional representations Of a finite-dimensional Hopf alge- 

bra A, the category :D(C) is shown to be isomorphic to the category of finite-dimensional 

representations of the ribbon extension of D(A). 
In the authors' opinion, one of the most interesting features of this work is the 

systematic use of elementary ideas of knot theory in the proof of purely categorical 

results. It is this beautiful blend of algebra and 3-dimensional topology that makes the 

whole subject so amazing. 

Ribbon Hopf algebras were originally invented with topological applications in mind. 

Namely, any ribbon Hopf algebra A gives rise to a topological invariant of knots and links 

in the 3-sphere (see [RT]). This invariant is applicable to oriented framed links whose 

components are labeled with finite-dimensional representations of A. A more general 

invariant may be derived from an arbitrary ribbon category :D (see [T1]). It applies 

to oriented framed links in S 3 whose components are labeled with objects of :D. In 

particular, in the rSle o f / )  we may use the ribbon category :D(C) constructed from an 

arbitrary monoidal category with duality C. This leads to a link invariant taking values 

in the semigroup of endomorphisms of the unit object of C. This construction generalizes 

the famous Jones polynomial of links. 

The paper is essentially self-contained. It is organized as follows. The first four sec- 

tions are concerned with categories. In w we recall the definitions of monoidal, braided, 

and ribbon categories. In w we present our main construction and state the main result 

(Theorem 2.3). In w we set up a graphical calculus for monoidal categories. In w we 

use this calculus to prove Theorem 2.3. Finally, in w we recall the notions of quasi- 

triangular and ribbon Hopf algebras and describe the relationship between our categori- 
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cal construction on the one hand and the ribbon extension and the quantum double for 

Hopf algebras on the other hand. 

1. Definit ions 

We start by recalling a few definitions and facts on monoidal and ribbon categories. For 

more details, see [Mc], [JS1], [JS2], IT2]. 

1.1. Monoidal  categories 

Let C be a category and | a covariant functor from CxC to C: for any pair (U,V) of 

objects of C there exists an object U| called the tensor product of U and V, and for 

any pair 

( f :  U --, U' ,  g: V ~ v ' )  

of morphisms of C, there exists a morphism 

f | U| --* U' | I. 

We have idu|174 for all objects U and V, and 

(f '  | | : (f'o f)| (1.1a) 

whenever composition is defined. 

An associativity constraint is a family of natural isomorphisms 

au, v,w: (U | V)QW --* U Q(V QW) 

defined for all objects U, V, W in C and satisfying Mac Lane's pentagonal axiom (see 

[Me]). 

A unit is an object I of C for which there exist natural isomorphisms 

lu:U| and ru:IQU--*U 

satisfying three conditions expressing compatibility with the associativity constraint. 

A monoidal category is a category C equipped with a functor | C • an asso- 

ciativity constraint and a unit I. In the sequel, we shall assume for simplicity that  all 

monoidal categories considered here are strict, i.e., that  the isomorphisms au, v,w, Iu, 

and ru are all identities in C. Then the pentagon axiom and the compatibility conditions 

of the unit are automatically satisfied. There is a coherence theorem by Mac Lane [Me] 

which allows to replace any monoidal category by a strict one. 
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1.2. Duality 

Let (C, | I) be a (strict) monoidal category with tensor product | and unit I as defined 

above. It is a monoidal category with left duality if for each object V of C there exist an 
object V* and morphisms 

bv:I---~V| and d v : V * |  

in the category C such that 

( idv |174 and (dv |174  (1.2a) 

We define the transpose f*: W*--*V* of any morphism f:  V--*W in C by 

f* : ( dw| )(idw. | 174  | (1.2b) 

It is easy to check that 

(idv)* = idv. 

whenever f and g can be composed. 

and (fog)*=g*of* 

1.3. Braidings 

Let (C, | I) be a monoidal category. A braiding in (C, | I) consists of a family of natural 

isomorphisms 

cu, v: U|  ~ V|  

defined for all objects U, V of C such that 

and 

for all U, V, W in C. 

cv, v | = (idv | )(cv, v |  

Cu| = (cu, w |  | w ) 

ing. 

(1.3a) 

(1.3b) 

A braided monoidal category is a monoidal category (C, | I) equipped with a braid- 
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1.4. Ribbon categories 

Let (C, | I) be a braided monoidal category with left duality. A twist is a family 

Ov: V---,V of natural isomorphisms defined for all objects V in C such that 

Ou| = ( Ou |  )cv, vcv, v 

and 

(1.4a) 

Or* = (Or)*. (1.4b) 

A ribbon category is a braided monoidal category with left duality and with a twist. 

Observe that we also have 

Ou| = cv, ucu, v (Otr | = cv, u (Sv | v (1.4c) 

because of the naturality of the twist and of the braiding. 

Finally in any ribbon category C we have the following relations for any pair (V, W) 

of objects of C, 

Ov 2 = ( dv | | lv )( Cv, v �9 |  )( bv | (1.4d) 

and 
. . - - ] .  �9 

c v . , w  = (dv |174 )0dv. | w |  ) ( idv . |174  (1.4e) 

They can easily be proved using isotopies of framed tangles (see, e.g., [T2]). 

2. The  main result 

Let (C, | I) be a strict monoidal category with left duality as defined in w We now 

define a new category :D(C) which will eventually turn out to be a ribbon category. 

Definition 2.1. An object of :D(C) is a triple (V, cv,- ,  Ov) where 

(a) V is an object of C, 

(b) cv,- is a family of natural isomorphisms cv, x: V | 1 7 4  defined for all 

objects X in C, 

(c) Ov is an automorphism of V in C, subject to the following relations: 

(i) for all objects X, Y in C we have 

CV, X | = (idx @cv, v )( cv, x |  (2.1a) 

(ii) for each object X we have 

(idx @Ov )cv, x = cv, x (Ov @idx), (2. lb) 

(iii) we have 

0v 2 = (dr  |  | v )( Cv, v �9 |  )( bv | (2.1c) 
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The naturality in condition (b) above means that for any morphism f: X---*Y in C 
the square 

commutes. 

V |  ~v,x X |  

idv| lf| (2.16) 

V |  ~v,v Y |  

The morphisms in :D(C) are defined as follows. 

Definition 2.2. A morphism from (V, cv,-, Ov) to (W, cw,-, Ow) is a morphism 
f: V - * W  in C such that  for each object X of C we have 

(idx | f)cv, x = cw, x (f  |  (2.2a) 

and 

fOv = Owf. (2.2b) 

It is clear that the identity idv is a morphism in D(C) and that if f, g are composable 
morphisms in D(C) then the composition gof in C is a morphism in :D(C). Consequently, 
:D(C) is a category in which the identity of (V, cy,-, Oy) is idy. 

We now state the first main theorem. 

THEOREM 2.3. Let (C, | I) be a monoidal category with left duality. Then D(C) is 

a ribbon category where 

(i) the unit is (I, id, idz), 

(ii) the tensor product of (V, cv,-, Ov ) and (W, cw,-, Ow ) is given by 

(V, cv , - ,  Ov)| cw,- ,  Ow) = ( V |  cv|  Or| 

where cv| V |174174174  is the morphism in C defined for all objects X 
in C by 

cv| = (cv, x |  (idy | cw, x ) (2.36) 

and Ov| is the automorphisrn of V |  given by 

Ov | w = ( Ov | Ow )cw, v cy, w , (2.3b) 

(iii) the triple (V*,cv. , - ,Ov.)  is left dual to (V, cv,-,Ov) where cv*,x is the mor- 

phism from V*|  to X |  defined by 

cv*,x = (dr |174 )(idv* | Cv, lx | )(idv. | | (2.3c) 
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and Oy. is the automorphism 
Ov* = (Ov)*, (2.3d) 

(iv) the braiding is given by 

cv, w: (y, cv,-, Ov)| ~w,-, Ow) ~ (w, ~w,-, Ow)| cv,_, Or) 

and the twist by 
Ov: (V, cv,_,Ov ) --* (V, cv,_,Ov). 

This theorem is proven in w The second main theorem (Theorem 5.4.1) of the 

paper relating the construction D with the quantum double is stated in w 

The ~D-eonstruction should be compared to t h e  "centre construction" of Drinfeld+ 

Joyal-Street [JS2], and Majid [Mj]. Let us recall that  their category Z(C) is defined 

as follows for any monoidal category C. Objects of Z(C) are pairs (V, cv,_) where V 

and cv,- are defined as  in Definition 2.1 and satisfy condition (2.1a). Morphisms of 

Z(C) are defined as in Definition 2.2 and satisfy condition (2.2a). In contrast to our 

construction ~D, the centre construction does not involve duality. 

The reader will find in [JS2] a proof that  Z(C) is a braided monoidal category, the 

tensor product, the unit and the braiding being given as in Theorem 2.3. Note, however, 

that  our proof of Theorem 2.3 is independent of the results of [JS2]. 

2.4  

We end this section with a universal property of the construction D. 

Let F:C-+C ~ be a functor between monoidal categories with left duality. We say 

that  F is a monoidal functor if F preserves the tensor product and the duality, i.e., if we 

have 

f ( I ) = I ,  F (V |174  F(Y*)=F(Y)* 

and 

F(bv)=bF(v) and F(dv)--dF(v) 

for all objects V, W in C. 

If, moreover, C and C' are ribbon categories, then F is said to be a ribbon functor 

if it is monoidal and preserves the braidings and the twists, i.e., if for all objects V, W of 

C we have 

F(cv, w)=cF(v),F(W) and F(Ov)----OF(V). 

For any monoidal category C with left duality, the functor H: D(C)~C given by 

II(V, cv,-, Ov ) = Y 

is a monoidal functor. It is universal in the following sense. 
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THEOREM 2.5. Let F be a monoidal functor from a ribbon category T~ to a monoidal 

category C with left duality. Suppose that F is bijective on objects and surjective on 

morphisms. Then there exists a unique ribbon functor Z)(F): T~--*/)(C) such that F=  

noV(F). 

Proof. Let us first prove the existence of / ) (F) .  For any object V of 7~ we set 

Z)( F)(V) -- ( F(V),  cF(v),-, OF(V)) 

where cF(V),- and OF(V) are defined for all objects X in C by 

CF(V),X = F(CV, F-I(X)) and OF(V) = F(Ov). 

Here cv,- and Ov are respectively the braiding and the twist in ~ .  

Let us check that :D(F)(V) is an object in 2)((:). Relation (2.1a) is satisfied because 

F is monoidal and we have (1.3a) in T~. Relation (2.1b) follows from the fact that the 

braiding cy,- in 7~ is natural in V. Relation (2.1c) is a consequence of the corresponding 

relation (lAd) in ~ .  

If f:  V ~ V '  is a morphism in T~, then set Z)(F)( f )=F(f) .  Relations (2.2a)-(2.2b) 

are satisfied because of the naturality of the braiding and of the twist in R. This proves 

that :D(F) is a functor. Clearly, Ho:D(F)=F. Let us now check that :P(F) is a ribbon 

functor. 

It preserves the tensor products because of (1.3b) and the duality because of (1.4e). 

We have 

l)( F)(bv ) = F(bv ) = bF(v), 

which is bv(F)(V) by definition of the duality in Z)(C). Similarly, we have Z)(F)(dv)= 

d~(F)(v). 
The monoidal functor ~)(F) respects braidings and twists. Indeed, we have 

Z)( F)( cv, w ) = F( cv, w ) = CF(V),F(W), 

which is the braiding of Z~(C). Similarly, 

D( F)( Ov ) = F( Ov ) = OF(V) 

is the twist in Z)(C). 

The uniqueness of T)(F) is a consequence of the fact that it preserves braidings and 

twists. [] 

Applying Theorem 2.5 to the identity functor of the ribbon category ~ ,  we get the 

following result. 

COROLLARY 2.6. For any ribbon category T~ there exists a unique ribbon functor D 

from 7~ to 7)(~) such that 
IIoD = idu .  
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3. Graphical  calculus 

Theorem 2.3 can be proved by purely algebraic formulas. However, because of their 

complexity, we prefer giving graphical proofs following conventions we describe in this 

section. 

3.1. Represent ing  morph i sms  in a monoida l  category 

We discuss a pictorial technique to present morphisms of a monoidal category by pla- 

nar diagrams. This technique is a kind of geometric calculus which replaces algebraic 

arguments obscured by their complexity. For further details and references the reader is 

referred to [JS3], [K], [RT], IT2]. 

Let g be a monoidal category. We represent a morphism f: U---,V in g by a box with 

two vertical arrows oriented downwards as in Figure 3.1.1. Here U, V are treated as the 

"colours" of the arrows and f as the "colour" of the box. Such coloured boxes are called 

coupons. The picture for the composition of f:  U---*V and of g: V---,W is obtained by 

putting the picture of g on top of the picture of f ,  as showed in Figure 3.1.2. From now 

on the symbol - displayed in the figures means equality of the corresponding morphisms 

in C. 

The identity of V will be represented by the vertical arrow 

I V 

directed downwards. The tensor product of two morphisms f and g is represented by 

boxes placed side by side as in Figure 3.1.3. If we represent a morphism f:U1 | | U,n 

VI|174 as in Figure 3.1.4, then we have the equality of morphisms of Figure 3.1.5. 

The pictorial incarnation of the identity 

f@g = (foid)@(idog) = (idof) @(goid) 

is in Figure 3.1.6. 
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~ V 

f 
~U 

Fig. 3.1.1 

~:W ~ W 

~ f 

Fig. 3.1.2 

~U 

Fig. 3.1.3 

UI Um 
Fig. 3.1.4 

U' V' U' V I 

U V U V 

Fig. 3.1.5 

Fig. 3.1.6 
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3.2. Duality 

Suppose in addition that the monoidal category C is a category with left duality. Then 

we represent the identity of V* by the vertical arrow 

TV 

directed upwards. More generally, we shall use vertical arrows oriented upwards under 

the convention that the morphism involves not the colour of the arrow, but rather the 

dual object. For example, any morphism f:  U* ~ V *  may be represented in the four ways 

of Figure 3.2.1. 

The morphisms by: I---~VQV* and dy: V*| are respectively represented by 

the pictures of Figure 3.2.2. The identities (1.2a) between these morphisms have the 

graphical form given in Figure 3.2.3. 

With our convention we can represent the transpose f* of a morphism f: V---*W as 

in Figure 3.2.4. 

We define a morphism Av, w: W* | V* --* (V | W)* by the formula 

Av, w = (dw |174 )(idw. | |174174 )(idw. | |174 (3.2a) 

A-1 "(V|174 by and a morphism v,w" 

Av, lw = (dv|174174174174174174 )(id(v| | (3.2b) 

- 1  The morphisms Av, w and Av, W are represented by the pictures in Figure 3.2.5. We invite 

the reader to use the graphical calculus to give a painless proof of the fact that Ay, w is 

an isomorphism from W*| onto (V| with inverse given by A -1 V,W" 

Fig. 3.2.1 

<._}v F- v 
Fig. 3.2.2 
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l V 
Fig. 3.2.3 

Tv 

~ V 

Fig. 3.2.4 

Av, w *-- 

V |  

W V  

Fig. 3.2.5 

W V  

V |  

3.3. Picturing objects of  2~(C) 

Let (V, cv,- ,  Or) be an object of :D(C) as defined in w By convention we shall represent 

cv, x and its inverse Cv,~: respectively by the pictures in Figure 3.3.0. Figure 3.3.1 follows 
from the definitions. 

The naturality of cv,- is expressed in the left part of Figure 3.3.2. It implies the 

naturality of Cv, 1_ shown in the right part of Figure 3.3.2. 

The pictorial transcription of (2.1a) is given in Figure 3.3.3. For (2.1b) see Figure 

3.3.4. The oddly-looking relation (2.1c) has the simple pictorial translation drawn in 

Figure 3.3.5. 

The relations (2.2a) and (2.2b) ensuring that a morphism f: V---*W is in T~(C) re- 

spectively correspond to the pictures of Figure 3.3.6 and Figure 3.3.7. 

Finally, for any object (V, cv,- ,Ov) of :D(C) and any object X of C we agree that 

the pictures of Figure 3.3.8 represent the morphisms cy, x .  :V|174 V and Cylx . : 

X* |174 respectively. The relations shown in Figure 3.3.9 are obvious. 
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cv, x *-- 

V X 

Fig. 3.3.0 

X V 

V X V X  

Fig. 3.3.1 

X V X V  

Y 

V X 

Y 

V X 

V Y V Y 

X X 

Fig. 3.3.2 

V X |  

Fig. 3.3.3 

V X Y 
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X 

Fig. 3.3.4 

X 

I~ 21 
Fig. 3.3.5 

X 

e___ 

W 

Fig. 3.3.6 

~ W 

I I  ~v 
ov l 
~v 

Fig. 3.3.7 

~ W 

Iow 
~w 

~v 
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CV, X * .''y'- 

V X 

C--1 �9 
V,X* 

X V 

Fig. 3.3.8 

V X V X  X V X V  
Fig. 3.3.9 

4. P r o o f  o f  T h e o r e m  2.3  

Let (C, | I) be a monoidal category with left duality. In order to prove Theorem 2.3, 

we have to show 

(i) that  7)(C) is a monoidal category, which reduces essentially to check that  the 

triple (VQW, cu| Ov| defined in Theorem 2.3 is an object of D(C), 

(ii) that  D(C) has left duality, which means verifying that  the triple (V*, cv. ,- ,  Ov. ) 

of Theorem 2.3 is an object of I)(C) and that  by and dy are morphisms of D(C), 

(iii) that  7)(C) is a ribbon category, which needs checking that  both cv, w and 0v 

are morphisms in 9(C). 

We shall constantly use the graphical notation of w 

4.1.  P r e l i m i n a r i e s  

Let (V, cv,-, Ov) be an object of the category/)(C).  As a consequence of the naturality 

of cv,- and of Cv)_ we have the equalities of morphisms in C represented in Figures 4.1.1 

and 4.1.2 (they show special cases). In particular, we have the equalities depicted in 

Figure 4.1.3, expressing the exchange between cv,- and the structural duality maps bv 

and dv. 

Let us first state a Yang-Baxter-type relation. 
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LEMMA 4.1.1. Let (V, cy , - ,Ov)  and (W, cw,- , 'Ow) be objects of 1)(C). For each 

object X in C we have 

( cw, x |  | x )(cy, w |  = (idx | w )(cy, x |  | x ). 

The graphical representation of this equality is in Figure 4.1.4. For the proof see 

Figure 4.1.5 where we use the equalities of Figures 3.3.2 and 3.3.3. 

We need a few variants of Lemma 4.1.1. Let us list them. First, replacing X by X*, 

Figure 4.1.4 becomes Figure 4.1.6. Taking the inverses in Figure 4.1.4 gives Figure 4.1.7. 

We shall also need the equality of Figure 4.1.8: it follows from the equalities of Figures 

3.3.2 and 3.3.3. Finally, we have the equality in Figure 4.1.9: its proof is given in Figure 

4.1.10 and relies on Figure 4.1.6. 

LEMMA 4.1.2. Under the hypothesis of Lemma 4.1.1, we have 

( Ov | Ow )cw, v cv, w = cw, v ( Ow | 8v )cy, w = cw, v cy, w ( Ov | Ow ) . 

Proof. See Figure 4.1.11. The second and sixth equalities are derived from relation 

(2.1b), whereas the third and the fifth ones come from the functoriality of cy , -  and 

of cw, - .  

LEMMA 4.1.3. 

in C, we have 

[] 

For any object (V, cy ,_ ,Ov)  of ~)(C) and any pair ( X , Y )  of objects 

CV,(X| = ('~X,Y @ idv)cv, yo | (idv @ AxI  Y ). (4. la) 

Proof. Applying the functoriality of Cy,- to the isomorphism )~X,Y of (3.2a), we get 

CV,( X | y)* ( idv  | )~ X,y ) = ( )~ x , y  | idv  )cv, Y*| X* . [] 

Using Figures 3.2.5 and 3.3.3, we can represent cy,(x|  as in Figure 4.1.12. 

In order to prove that ~D(C) has left duality we need some further preliminary results. 

Let (V, cy , - ,  Oy) be an object of ~D(C). Define morphisms 

bIv : I ---* V* | V and d~v : V | V* ---* I 

in C by the pictures in Figure 4.1.13. By convention we shall represent b~z and d~z as in 

Figure 4.1.14. 
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LEMMA 4.1.4. For any object (V, cy,-,Ov) of :D(C) we have 

! �9 . ! 
(dv| )(ldv| ) = idv. 

17 

Proof. Following the above definition we can represent the left-hand side as in Fig- 

ure 4.1.15. It is enough to show the equality represented in Figure 4.1.16. This follows 

from the sequence of equalities represented in Figure 4.1.17, the second one resulting 

from the naturality of cy,- (see Figure 4.1.1). [] 

Similarly, we have 

LEMMA 4.1.5. For any object (V, cv,-,Oy) of 7)(C) we have 

(idv. | |  ) = idy-. 

Proof. Let us first prove the equality depicted in Figure 4.1.18. The proof is given 

in Figure 4.1.19. The first equality is by definition, the second by the naturality of c~, 1_ 

(Figure 4.1.2), and the third one by (2.1c). 

Now the proof of Lemma 4.1.5 is in Figure 4.1.20. [] 

LEMMA 4.1.6. For any object (V, cy,_,Oy) of 1)(C) we have the equality between 
the endomorphisms of V* depicted in Figure 4.1.21. 

Proof. The equality of Figure 4.1.21 is obtained from the one in Figure 4.1.22 by 

transposition. In Figure 4.1.22 the first equality results from the naturality of c-v1,_ 
(Figure 4.1.2), the second one from (2.1c), the third one from (2.1b), the fourth one from 

Figure 3.3.9, the fifth one from (1.2a), and the last one from (2.1c). [] 

Fig. 4.1.1 

2-950414Acta Mathematica 175. Imprim~ le I septcmbrr 1995 
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Fig. 4.1.2 

~ V  

Fig. 4.1.3 

V k~~W * 
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V W X V W X 

Fig. 4.1.4 
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Fig. 4.1.5 
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V W X V W X 

Fig. 4.1.6 

X W V X W V 

Fig. 4.1.7 

W X V W X V 

Fig. 4.1.8 

W V X W V X 

Fig. 4.1.9 

W V X W V X  W V X  W V X  

Fig. 4.1.10 
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V W V W V W 

Fig. 4.1.11 
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~ - ~  ~ . ~ =  
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Fig. 4.1.14 

Fig. 4.1.15 
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Fig. 4.1.16 
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Fig. 4.1.17 

Fig. 4.1.18 
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Fig. 4.1.19 
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Fig. 4.1.21 
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Fig. 4.1.22 
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4.2. P r o o f  that ~D(C) is a monoidal  category 

We now start the proof of Theorem 2.3. We have the following lemma. 

LEMMA 4.2.1. Let (V, cv,-,Ov) and (W, cw,-,Ow) be objects in I)(C). Then the 
triple (V| cv|174 defined in Theorem 2.3(ii) is an object of ~D(C). 

The pictorial descriptions of cy| and of Ov| are in Figure 4.2.1. 

Proof. It follows from the properties of (V, cy,-, Ov ) and (W, cw,-, Ow ) that cv| 
and Oy| are isomorphisms in C and that cy| is natural in X. Let us check graph- 

ically relations (2.1a)-(2.1c) of Definition 2.1. 

Relation (2.1a): Let X, Y be objects in C. The proof of relation (2.1a) holds in 

Figure 4.2.2. 

Relation (2.1b): See Figure 4.2.3. The first and last equalities are by definition, the 

third and the fourth ones by (2.1b), the fifth and sixth ones by Lemma 4.1.1. 

Relation (2.1c): We have to prove (2.1c) with V replaced by V|  This is done in 

Figure 4.2.4. The first equality results from Lemma 4.1.3 (Figure 4.1.12), the second one 

from (1.1a) (Figure 3.1.6), the third one from (1.2a), the fourth one from (2.1a) and the 

definition (2.3a), the fifth one from the naturality of Cy, 1_ and c -tW,_ (Figure 4.1.3), the 

sixth one from Figure 4.1.7, the seventh one from Figure 4.1.8, the eighth one from Figure 

4.1.6, the ninth and tenth ones from Figure 3.3.1, the eleventh one from the naturality of 

C-w1,_ (Figure 4.1.2), the twelfth one from (2.1c), the thirteenth one from Figure 4.1.8 and 

from (2.1b), the fourteenth one from the naturality of cw,- (Figure 4.1.1), the fifteenth 

one from (2.1c), the sixteenth from (2.1b) and the naturality of cw,-, and the last one 

by definition and by Lemma 4.1.2. [] 

LEMMA 4.2.2. If f and f '  are morphisms in T)(C), then so is f |  

Proof. We have to check relations (2.2a)-(2.2b) for f |  Relation (2.2a) is proved 

in Figure 4.2.5. The second and fourth equalities result from (2.2a). 

Relation (2.2b) is proved in Figure 4.2.6 (to be found on p. 28 in w The second 

equality results from (2.2b), the third and fifth ones from (2.2a), and the fourth one from 

the naturality of cv,_ and of cv,,-. [] 

PROPOSITION 4.2.3. The category T)(C) is a monoidal category. 

Proof. Lemma 4.2.1 and Lemma 4.2.2 show that | is well-defined on the objects 

and on the morphisms of :D(C). The tensor product is functorial and satisfies all the 

required axioms because it already does so in the original category C. [] 
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IW IW' 

I 

V| 

! 

f 
V V' 

W W' 
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~ / ~ |  W' 

V V I X V V' X V| X 

Fig. 4.2.5 

4.8. Duality 

Let (V, cv,-, Or) be an object of ~D(C). In order to prove that :D(C) is a monoidal category 

with left duality, we have to show that the triple (V*, cv*,-,O~) defined in Theorem 

2.3 (iii) is an object of :D(C) and that by and dv are morphisms of ~D(r Since by and 

dw satisfy relations (1.2a) in C, they will satisfy them in :D(C). The morphisms cy.,x 
and 0~ are represented graphically in Figure 4.3.1. 

We start with the following preliminary result. 

LEMMA 4.3.1. For all X in C, the map cv*,x is invertible with inverse Cvl..x re- 
presented in Figure 4.3.2. 

In Figure 4.3.2 we use the conventions of w and of w 

Proof. The proof of Cyl,xCv.,x=idv,| is given in Figure 4.3.3. The second and 

seventh equalities follow by definition, the third one by (2.1b), the fourth one from the 

naturality of cy,- (Figure 4.1.1), the fifth one from (1.2a), the sixth one from Figure 3.3.9, 

and the last one from Lemma 4.1.5. 

The proof of cv,,xCv~,x=idx| is in Figure 4.3.4. The second equality follows 

c -1 (Figure 4.1.2), the fourth one by definition of b~z, the third one by naturality of y,- 

from (2.1c), the fifth and seventh ones from (2.1b), the sixth one by definition of d~,, the 

eighth one from Figure 3.3.9, and the last one from (1.2a). [] 
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W |  W W'  W W'  W W'  

~-  W V - -  I 

V@V'  V V I V V'  V V I 

W W '  W 

" -  ~ W ' ~  

V V I V 

W '  W |  

�9 • 

V' V |  

Fig. 4.2.6 

It allows us to prove the following lemma. 

LEMMA 4.3.2. The triple (V*, c v . , - ,  Oy.) is an object of D(C). 

Proof. The maps c v . , x  are invertible by Lemma 4.3.1. They are natural in X. We 

have to check relations (2.1a)-(2.1c). 

Relation (2.1a): We have to prove the equality in Figure 4.3.5. This is clone in Figure 

4.3.6 where the second equality follows from (2.1a) and the third one from (1.2a). 

Relation (2.1b): We have to prove the equality in Figure 4.3.7. This is done in 

Figure 4.3.8 where the third and fifth equalities follow from (1.2a), and the fourth one 

from (2.1b). 

Relation (2.1c): We have to prove the left equality in Figure 4.3.9. The right one 

follows from the definition of 0v.. This is done in Figure 4.3.10 where the second equality 

follows from Lemma 4.3.1 and from the definition of cv*,-, the third one from Lemma 

4.1.5 and from the naturality of cv,-, the fourth one from the naturality of Cv1_, the fifth 

and seventh ones from (1.1a) (Figure 3.1.6), the sixth one from (1.2a), the eighth one 
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from Lemma 4.1.4, the ninth one by definition of b~, and d~,, the tenth one from (2.1b) 

and the naturality of c -1 y,-,  the eleventh and the thirteenth ones from (2.1c), the twelfth 

one from Lemma 4.1.6. [] 

The following statement concludes the proof that ~)(C) is a monoidal category with 

left duality. 

LEMMA 4.3.3. The morphisms bv:I-+V| and dv:V*| are morphisms 

of 

Proof. (a) Let us prove it for by. Relation (2.2a) which is 

cv| ,x (by |  = idx | by 

is proved graphically in Figure 4.3.11 where the first equality follows by definition and 

the second one from (1.2a). 

Relation (2.2b) reads as by=Sy| It is proved in Figure 4.3.12. There the 

first and third equalities follow from the definitions, the second one from (2.1c), and the 

fourth one from (1.2a). 

(b) Proof for dy. Relation (2.2a) reads: (idx |174 =dy |  The proof is 

in Figure 4.3.13. The first equality is by definition and the third one follows from (1.2a). 

Relation (2.2b) reads: dyOy.| The proof is in Figure 4.3.14. The second 

equality follows from the naturality of c-1 the third one from the naturality of cy,-, y~m, 

the fourth one from (2.1c) and the definition of 0y.,  the fifth one from (1.2a). 

V y cv. ,x - -  Ov. "-- 

X 

Fig. 4.3.1 

V 

- - I  �9 
CV.,X 

X V  
Fig. 4.3.2 
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Fig. 4.3.4 
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Fig. 4.3.5 
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f 

�9 

V 

Fig. 4.3.14 

4.4. P r o o f  t h a t  T~(C) is a r i b b o n  c a t e g o r y  

Let (V, cv,-, ~y) and (W, cw,-, Ow) be objects in :D(C). 

LEMMA 4.4.1. The morphism cy, w is a morphism in I)(C). 

Proof. We have to check relations (2.2a) and (2.2b). For (2.2a), see Figure 4.4.1 

where the middle equality uses Lemma 4.1.1. For (2.2b), see Figure 4.4.2 which uses 

Lemma 4.1.2. [] 

PROPOSITION 4.4.2. The monoidal category I)(C) is braided with braidings cy, w. 

Proof. The morphism cy, w is invertible by definition and it is natural with respect 

to all morphisms of C, hence to those belonging to 7)(C). In order for cy, w to qualify as 

a braiding, it has to satisfy both relations (1.3a) and (1.3b). Now the first one follows 

from the hypothesis (2.1a) and the other one by definition from (2.3a). [] 

We now show that  :D(C) has a twist. Let (V, cy,-, Ov) be an object of :D(C). 

LEMMA 4.4.3. ~Y is a morphism in 1)(C). 

Proof. Relation (2.2a) for/~y is (2.1b) whereas relation (2.2b) is obvious. [] 

End of proof of Theorem 2.3. The morphisms 8v satisfy relations (1.4a) and (lAb) 

by definition. So /~y qualifies as a twist in :D(C). Consequently, the latter is a ribbon 

category. [] 
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V|  X V W X V W X V |  X 

Fig. 4.4.1 

V|  V 

v 

W V|  

Fig. 4.4.2 

5. Application to Hopf algebras 

5.1. Categories of  modules 

Let A=(A,~,~?,A,e,S) be a Hopf algebra over a field k. Here ~:A| is the mul- 

tiplication~ ~?: k--* A the unit, A: A ~ A| A the comultiplication, ~: A---~ k the counit and 

S: A ~ A  the antipode. We henceforth assume that  S is an isomorphism. 

It is well-known that  the category A -  Mod of left A-modules is a monoidal category, 

the tensor product  V|  of two A-modules is V | 1 7 4  equipped with the A- 

action given by 

(~) 

for aEA, vEV and wEW. Here we use the Heynemann-Sweedler convention which 

expresses the comultiplication of an demea t  a in A as 

A(a)---- E a ' |  
(a) 

Under this convention we have 

(A|  = ( idA|  = E a' | @a"'. 
(a) 
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The unit in A - M o d  is the trivial A-module I = k  on which A acts by 

for all a E A .  

The category A - M o d f  

al =~(a) (5.1b) 

of left A-modules that are finite-dimensional over k is a 

monoidal subcategory of A-Mod .  The category A - M o d / h a s  left duality: if V is a left 

A-module, then V* is the dual vector space of V over k with left A-action given by 

(a f,  v) : ( f  , S(a)v) (5.1c) 

for aEA, vEV,  and fEV*.  The maps by and dv are given by 

by(1)=~-~vi|  ~ and dy(vi |  (v i ,v j ) :~ i j  (gronecker symbol) (5.1d) 
i 

where {vi}i is any basis of V and {v~}i is the dual basis in V*. 

5.2. Quas i t r i angula r  H o p f  a lgebras  and the  q u a n t u m  doub le  

According to Drinfeld [D1], a Hopf algebra A is quasitriangular if the monoidal category 

A - M o d  is braided or, equivalently, if there exists an invertible element R in A| called 

the universal R-matrix of A, such that 

~~ = R A ( a ) R - '  (5.2a) 

for all aEA (here A~ is the opposite comultiplication) and 

(A| = R13R23 and (idA| = R13R12. (5.2b) 

The equivalence between both definitions of quasitriangularity goes as follows. If 

cv, w denotes the braiding in A-Mod ,  then R is given by 

R = (12)(CA,A(1|  (5.2c) 

where (12) denotes the flip in A| Conversely, given the universal R-matrix R, then 

the braiding in A - M o d  is given for all A-modules V, W by 

cy, w(v| = (12)( R(v| ) (5.2d) 

where v E V and w G W. 
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Now suppose that A is finite-dimensional over k with a basis {ai}~ and dual basis 

{ai}i. Drinfeld [D1] has defined a quasitriangular Hopf algebra D(A), called the quantum 

double of A. It is constructed as follows. As a vector space D(A) is identified with A* | 

For simplicity we shall denote an element f| of A*| by fa. With this convention 

the multiplication of D(A) is determined by the fact that the natural embeddings of A 

and A* in D(A) are morphisms of algebras and by the relation 

a / =  E / ( S - - 1  (atlt)?at)a'! (5.2e) 
(a) 

in D(A) where aEA and lEA*. Here f(S-l(a'")?a ') is the linear form on A deter- 

mined by (f(S-l(a'")?a'),x)=(f, S-t(a'")xa'). The comultiplication of D(A) extends 

the comultiplication A of A and the comultiplication A of A* defined by 

(A(f), al | = (f,  a2al) (5.2f) 

for lEA* and al,a2EA. The main property of the Hopf algebra D(A) is that it is 

quasitriangular with universal R-matrix given by 

R = E a,| e D(A)| (5.2g) 

The element R is invertible. By [D2, Proposition 3.1], its inverse R -1 is given by 

R-'  = E a,| E S(a,)| (5.2h) 
i i 

We borrow from [Y] the following concept (also called quantum Yang-Baxter module 

in [R]). 

Definition 5.2.1. Under the previous hypotheses, a crossed A-bimodule is a k-vector 

space V equipped with linear maps 

~ v : A |  and Av:V---*V| 

such that 

(i) the map ~v (resp. Av) turns V into a left A-module (resp. into a right A- 

comodule) and 

(ii) the diagram 

A@V a| A|174174 idA|174 A|174174 ~v| V| 

A| T idv | 
A|174 ida| A| (12) �9 V| Av| V|174 

commutes. 
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If for aEA and vEV we write ~v(a| and 

Av(v) = ~ vv| ~ V| 
(,,) 

then the commutativity of the diagram in the previous definition is equivalent to 

Z a'vy| Z (a"v)y| (5.2i) 
(a)(v) (a)(v) 

for all aEA and vEV. 
The crossed A-bimodules form a category in which a morphism is a linear map 

commuting with the actions and the coactions. We relate crossed A-bimodules with the 

quantum double D(A). 

PROPOSITION 5.2.2. If A is a finite-dimensional Hopf algebra, then the category 
D ( A ) - M o d  is equivalent to the category of crossed A-bimodules. 

Proof (taken from [K, IX.5]). (a) Let V be a left module over D(A). Let us show 

that  V can be endowed with a crossed bimodule structure. By definition of D(A), the 

space V is a left A-module as well as a left A*-module such that  for any aEA, lEA*, 
and v E V we have 

a(fv) = Z f( S-l(a"')?a')(a" v)" (5.2j) 
(,~) 

Given a basis {ai}i of A and its dual basis {ai}i, we use the left action of A* on V 

to define a map Av:  V---*V| by 

Ay(v) = Z a'v| (5.2k) 
i 

Let us show that  this defines a right coaction of A on V. We have to check that  Av is 

coassociative and counitary. Rather  than verify this directly, we observe that  Av is the 

transpose of the (unitary, associative) right action V* | ~ V *  of A* on the dual vector 

space V* given by 

(c~f , v) = (c~, fv) 

for aEV*, vEV, and lEA*. Indeed, we have 

(c~| AV(V)) = Z v~(aiv)f(ai) 
i 

= (c~' (~i f(ai)ai)v ) 

= (0~, f v )  : (or f ,  v ) .  
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Incidentally, it proves that  Av  is independent of the chosen basis of A. 

In order to complete the proof that  V is a crossed A-bimodule, we have to check 

relation (5.2i) using (5.2j) and (5.2k). Let aEA, vEV, and fEA*. Then 

(id| a'vV| =(id|174 ) 

= Z a'(aiv)f(a"ai) = Z f'(ai)f"(a")a'(aiv) 
(a),i (a)(f),i 

,,,,o,,,o,((z,,,o,,o') )= = Z:  Z 
(,~)(f) i (a)(f) 

= 

(a)(S) 

-= Z f(a""S-l(a'")?a')(a" v) 
(a) 

= Z ~(am)f(?a')(a" v) = Z f(9"at)(a" v) 
(a) (a) 

= S'(a')S"(a"v/= a'(a"v)S"(a,)S'(a'/ 
(a)(y) (a)(S),i 

= ~_, ai(a"v)f(aia') = (id | f ) ( y~  ai(a"v)| 
(,~),i -(a),i - 

= ( i d |  Z a"v)v| 
(a)(v) 

This implies (5.2i). In the previous series of equalities, we used the comultiplication on 

A*, the fact that  S -1 is a skew antipode, that  r is a counit, relations (5.2j)-(5.2k) and 

the fact that  f = ~ i  f(ai) ai" 
(b) Conversely, let V be a crossed A-bimodule. We now show that  V can be given a 

D(A)-module structure. Observe that  if (V, Av: V--*V| is a right A-comodule, then 

V becomes a left module over the dual algebra A* by 

A*@V ida| " A*@V@A (23)) A*@A@V eva) V 

where evA is the evaluation map. In other words a linear form f E A* acts on an element 

vaV by 
f "v = Z <f ' VA)VV. (5.21) 

(v) 
In view of this observation, we see that  a crossed bimodule has a left A-action as well as 

a left A*-action. In order to prove V is a D(A)-module, it is enough to check relation 
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(5.2j). We have 

f(s-l(attt)?atl '(a try) = ~ <f , s-l(atttl(attvlAa'>(att vlv 
(a) (a)(v) 

= ~ (f,s-l(a"'la"vA>a'vv = ~ ~(a"l(f, vA)a'vv 
(~)(v) (~)(,) 

= ~ " ~ ( f ,  VA) a V v  = a(f.v). 
(v) 

The second equality is a consequence of (5.2i). The third one follows from the fact that  

S -1 is a skew-antipode. 

Now it is easy to conclude. [] 

5.3. Ribbon algebras 

Let D be a quasitriangular Hopf algebra with universal R-matrix 

R = ~-~ si| E D| 
i 

Set 

,, = s ( t , ) , , .  (5 .3a)  
i 

In [D2] it is shown that  u is an invertible element of D with inverse 

u- '=  (5.3b) 
i i 

that  uS(u)=S(u)u is central in D, and that  we have the following relations: 

~(u)= 1 and A(u)=(R21R)-X(u| (5.3c) 

Moreover, the square of the antipode is given for any x in D by 

S2(x) =uxu -1. (5.3d) 

A quasitriangular Hopf algebra D is a ribbon algebra in the sense of Reshetikhin- 

Turaev [RT] if there exists a central element/9 in D satisfying the following relations: 

82--uS(u), S(8)--0, e ( 0 ) = l ,  and A(O)=(R~IR)-I(8| (5.3e) 

The main property of a ribbon algebra D is that  the braided monoidal category with left 

duality D-Mode,  is a ribbon category in the sense of w with twist 0v given on any 

D-module V as the multiplication by the central element t9. 
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The following ribbon algebra D(9) has been associated by [RT] to any quasitriangu- 

lar Hopf algebra D. As an algebra, D(0) is the quotient of the polynomial algebra D[0] 

by the two-sided ideal generated by0 2-uS(u) .  We still denote by 0 the class in D(0) of 

the indeterminate 0. The Hopf algebra structure on D(0) is uniquely determined by the 

requirements that the natural inclusion of D into D(0) is a Hopf algebra map and that 

A(9)=(R~IR)-I(O| ~(0)=1, and S(O)--O. 

The following proposition characterizes D(0)-modules. 

PROPOSITION 5.3.1. Under the previous hypotheses, the category of left D(O)-modu- 

les is equivalent to the category whose objects are pairs (V, ~y ) where V is a left D-module 

and Oy is a D-linear automorphism of V such that for all v in V we have 

O~(v) =uS(u)v ,  (5.3f) 

and whose morphisms (V, ~v )--*(W, Ow ) are the D-linear f maps from V to W such that 

fOv = Ow f . (5.3g) 

Proof. (a) On any D(8)-module V we define 0y as the multiplication by 0. Since 

0 is central and invertible in D(0), the map Oy is a D-linear automorphism satisfying 

relation (5.3f). If f: V--*W is D(O)-linear, then f commutes with 0, hence it satisfies 

relation (5.3g). 

(b) Conversely, let (V, 9v) be a pair as in the proposition. We give V a D(0)-module 

structure by setting 

Ov = Or(v) .  

This makes sense in view of relation (5.3f). The rest follows easily. 

5.4. Determining the category ~D(A-Mod~.) 

We state the main result of w 

THEOREM 5.4.1. Let A be a finite-dimensional Hopf algebra with an invertible anti- 

pode. Then 

(i) Z (A-Mod)  and D(A)-Mod  are equivalent braided monoidal categories, 

(ii) Z ( A - M o d l )  and D(A) -ModI  are equivalent braided monoidal categories, and 

(iii) D(A-Mod/ )  and D ( A ) ( 8 ) - M o d  I are equivalent ribbon categories. 

The Z-construction was recalled after the statement of Theorem 2.3. According to 

[Mj], part (i) is due to Drinfeld (unpublished). The rest of this section is devoted to the 

proof of this theorem. We first relate Z ( A - M o d )  and D(A)-Mod.  Let us start with 

two lemmas. 
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LEMMA 5.4.2. Let (V, cy,-) be an object of Z ( A - M o d )  and A v  the linear map 

from V to V |  defined for all vEV  by Av(v)=cy,  l ( l |  Then along with the given 

left A-module structure on V, the map A v  endows V with the structure of a crossed 

A-bimodule. 

Proof. Let Av:  V--+V| be defined as above. By convention we write for any vEV 

Ay(v)  = Z VV| E V| (5.4a) 
(v) 

We call Av  the coaction of A on V. 

The naturali ty of cv,-, hence of c -1 y , - ,  allows us to express c -1V,x in terms of the 

coaction Av  for any A-module X. Indeed, given x in X and 2: A ~ X  the unique A- 

linear map sending 1 to x, we have the following commutative square: 

C--1 
V, A 

A |  , V |  

C--1 
X |  v,x V |  

It implies that  for any v E V and x E X we have 

CY, lx(x| = Av(v) ( I |  = Z VV| 
(v) 

(5.4b) 

Let us show that  the coaction Av  is coassociative. By (2.1a) we have 

(v) 

= (Cv,lx|174 1Y)(x|174 = Z (VV)V|174 
(~) 

Setting X = Y = A  and x = y = l  implies 

| = (Vv )v| )A | 
(,,) (v) 

which expresses the coassociativity of Av.  

We also have cy, k=idv because k = I  is the unit in the tensor category of k-modules. 

This implies 

(v) 
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for all v6V.  This means that  the coaction Av is counitary. So far we have proved that  

the coaction Av equips V with a structure of right A-comodule. 

Let us express the fact that  cv, x is A-linear. For aEA, v6V,  and x 6 X  we have 

c~, l ( a ( x  | = ac~,~ (x| 

Replacing c -1 y,x by its expression in Av,  we get 

A(a)Av(v)(l| = (Z 
(=) 

Setting X=A and x=l we have 

Z 
(.)(v) 

which is relation (5.2i). 

Ay(a"  v)(l| (l| ) �9 

a'vv| = 
(a)(v) 

By Proposition 5.2.2, we know that  V is a left D(A)-module. Let R=~--] i ai| i be 

the universal R-matrix of D(A). Let us express the braiding in the braided monoidal 

category Z ( A - M o d )  in terms of R. 

LEMMA 5.4.3. Under the previous hypotheses, if (V, cy,-) is an object of Z ( A - M o d )  

and X is an A-module, then the braiding cy, x is determined by 

Cv x(X| = (12)(R(x| 

for all x E X and v E V. 

Proof. By relations (5.4b) and (5.21) we have 

(v) (~),i 

= Z a~" v| = (12)(R(x| 
(~),i 

Proof of part (i) of Theorem 5.4.1. It will serve as a model for the proof of part (iii). 

(1) We first define a functor F from Z ( A - M o d )  to D ( A ) - M o d .  Let (V, cy,_) 

be an object of Z ( A - M o d ) .  By Lemma 5.4.2 and Proposition 5.2.2, the vector space 

F(V, cv,_)=V is a left D(A)-module. If f is a map in Z ( A - M o d ) ,  then (2.2a) shows 

that  f is a map of A-comodules, hence of A*-modules. Consequently f is D(A)-linear. 

This defines F as a faithful functor. 
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(2) Let us show that F preserves the tensor products. The tensor product of (V, cy,-) 

and of (W, cw,-) is (V| cy| where cy| is determined by 

--1 Cv | A = (idy | )(Cv1A | 

Therefore the coaction on V Q W  is given by 

Av|174 vv|174 
(~)(~,) 

By (5.21) the action of a linear form f on a tensor v| in V |  is expressed as 

f.(v| <:,w:A>v,:oww, 
(v)(~) 

which, by definition of the comultiplication A of A* (see (5.2f)), is equal to 

(v)(w) 

Therefore the D(A)-action on V |  is given by 

(a f)(v|  = A(a)( A( f) .  (v| ---- A(a f)(v| 

which is exactly the action given by the comultiplication in the quantum double D(A). 
(3) By definition of the braiding in Z(A-Mod) ,  Lemma 5.4.3 can be reinterpreted 

F(cy:w)(W| ) = (12)(R(w| 

which is the braiding in the category of D(A)-modules. Thus F intertwines the braiding 

of Z(A-Mod)  and the opposite braiding of D(A)-Mod.  

(4) Suppose that V is a left D(A)-module. For any A-module X define cy, x by 

Cy:x(X| ) = (12)( R(x| ) 

where v E V and x EX.  This is a well-defined natural isomorphism since R is invertible. 

Let us prove that it is A-linear. For aEA we have 

ey, lx(a(x| ) = (12)( R A(a)(x| ) = (12)( A~174 ) 

= A ( a ) ( 1 2 ) ( R ( x |  = ( x |  

in view of relation (5.2a). 
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We have to check relation (2.1a), namely 

Cy, lx| (x|174 = (Cy, lz |  |174174 ). 

The left-hand side is equal to 

(13)( ( A| )( R)(x|174 ) 

whereas the right-hand side is equal to 

(13)( R13R~3(x|174 ). 

Both are equal in view of (5.25). This construction defines an object G(V)=(V, cy,-) in 

Z ( A - M o d ) .  

Let f :  V---*W be a map of D(A)-modules. We have to check that  G(f)=f is a 

morphism in Z ( A - M o d ) .  First, it is A-linear since it is D(A)-linear. Next, we have to 

check relation (2.2a). Now 

Cy,~r (idx | f )(x|  = (12)(R(x| f (x)  ) ) = (12)((idx | f )(R)(x|  ) = ( f |  x . - 1  

(5) Clearly, FG=id whereas GF=id follows from Lemma 5.4.3. This shows the 

equivalence of Z ( A - M o d )  and of D ( A ) - M o d .  This ends the proof of part (i). 

Part  (ii) is proved similarly. Before we prove part (iii) of Theorem 5.4.1, we need 

two more technical results. 

Let A be a finite-dimensional Hopf algebra. As recalled above, its quantum double 

D(A) is quasitriangular with universal R-matrix described by (5.2g). The first result 

concerns the element uED(A) defined by (5.3a). 

LEMMA 5.4.4. We have 

= r 
i 

Proof. According to (5.2g) and to (5.3b) we have 

u-1 = a | 
i 

after identification of D(A) with A* | On the other hand, using the same identification, 

we see that  the right-hand side of the identity in Lemma 5.4.4 is equal to 

V :  r S-'(a'lOS(a,). 
i 
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Let us evaluate u -1 and u t on a@f where a belongs to A and f to A*. An immediate 

computation shows that  

(u -1 , a| ---'~"~ (a i, a)(f, S2(ai)) : (f ,  S2(a)) 
i 

= ~ (~', s(~))(/, s(ad) 
i 

= ~ (s -~(a~), ~>(:, s(~d) = (~', ~| 
i 

The fourth equality results from the fact that  the antipode on A* is the transpose of S -1. 

The next result deals with an arbitrary object (V, cy,-, Or) of the ribbon category 

:D(A-Modi ) .  From Lemma 5.4.2 and Proposition 5.2.2 we know that  V has the structure 

of a module over D(A). Let us determine the square of Ov. 

LEMMA 5.4.5. For any v in V we have 

O~(v) =~s(~)v. 

Proof. Recall from relations (5.2g) and (5.2h) and from Lemma 5.4.3 that  

cv, x(v| = ~ S(aj)x| and c~,~(~| ~ a'~| 
J J 

Now if {vi}i is a basis of V and {vi}~ is the dual basis of V*, then from relation 

(2.1c), namely from 

Oy 2 = ( dv| | y)(Cy, v . | )(bv| ), 

we derive the following expression: 

0v ~(v) = ~ (s(~)v', ~v) a~Jv,. 
i , j , k  

This can be rewritten as 

Ov2(v) = ~'~ (vi, S2(aj )ak v)akaJv~ = ~'~ a~aJ S2(a, )a~ v = ( ~  aku-l a~ ) v 
i,j,k j ,k 

by (5.35). Finally, from (5.3d) we get 

~ aku-lak-=U--l(~k uaku-lak ) = u - l ( ~  S2(ak)ak). 
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Now the latter is equal to 

U--Is(Z s-l(ak)S(ak)), 
" k 

which, according to Lemma 5.4.4, equals u-IS(u-I)= (S(u)u) -1. 
Summing up, we see that 0y 2 is the multiplication by the inverse of S(u)u=uS(u), 

which proves the lemma. 

Proof of part (iii) of Theorem 5.4.1. (1) We first define a functor F from ~ ( A - M o d / )  

to D(A)(O)-Modf. By part (i) we know that if (V, cy,-, Oy) is an object of 2)(A-Mody), 

then V is a D(A)-module. Relation (2.1b) shows that the A-linear isomorphism Oy is a 

map of A-comodules; hence it is D(A)-linear. Lemma 5.4.5 and Proposition 5.3.1 imply 

that V is actually a D(A)(0)-module. If f is a morphism in :D(A-Modf), then it is 

D(A)-linear again by the results of part (i). We invoke (2.2b) and Proposition 5.3.1 to 

deduce that f is D(A)(O)-linear. 
(2) Suppose that V is a finite-dimensional left D(A)(0)-module. We define cy,- as 

in part (4) of the proof of part (i) and 0y as the multiplication by 0. We have to check 

that (V, cy,-, Ov) is an object of T)(A-Modf). 

We have already showed that cy, x is an A-linear natural isomorphism and that Oy is 

an A-linear automorphism. Also relation (2.1a) has been checked in the proof of part (i). 

Relation (2.1b) is equivalent to the fact that Oy is D(A)-linear. The latter is implied 

by the centrality of 0 in D(A)(O). 
Relation (2.1c) is a consequence of Lemmas 5.4.3 and 5.4.5. 

This defines a map G from the finite-dimensional D(A)(O)-modules to the objects 

of :D(A-Modf). This map extends easily to a functor inverse to F. 

It remains to check that F preserves the ribbon category structures. 

(3) For the monoidal structure we refer to part (2) of the proof of part (i) and to 

the relation A(O)=(R21R)-l(O@O) of (5.3e). 

(4) We have to check that the duality coincides on :D(A-Modf) and D(A)(O)- 
Modf. Let (V, cv,-,Ov) be an object of Z~(A-Modf) and (V*,cv.,_,O{,) its left dual. 

By Lemma 5.4.3, the corresponding coaction Av* is given for any aEV* by 

~v-  (~) = c~. ~,A (1| = (12)(R(I| ~)) = ~ a ~  Oa~ = ~ ~(S(a ~)?) | a~. 
i i 

By (5.21) the action of a linear form lEA* on c~eV* is given by 

f ~  = ~ f(a~)~(s(a')?) = ~(s(f)?) ,  
i 

which turns out to coincide with the action of fED(A) on a. 
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(5) The compatibility of the braidings has been checked in the proof of part  (i). As 

for the twists, it results from Theorem 2.3 (iv) and the definition of D(A)(O). 

This concludes part  (iii) of Theorem 5.4.1. 

Remark 5.4.6. The natural  embeddings A C D(A) C D(A) (0) of Hopf algebras induce 

a monoidal functor D(A)(O)-Modf - - -~A-Modf .  It is easy to check that  it corresponds 

to the functor 

H: ~D(A-Modf)  ~ A - M o d f  

of w under the equivalence of Theorem 5.4.1 (iii). 
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