
A c t a  M a t h . ,  175 (1995) ,  4 9 - 7 3  

Points whose coordinates are logarithms 
of algebraic numbers on algebraic varieties 

by 

DAMIEN ROY(1) 

U n i v e r s i t d  d ' O t t a w a  
O t t a w a ,  C a n a d a  

In tro d u c t io n  

The main conjecture about the set s  C of logarithms of algebraic numbers is that  any 

family of elements of s which is linearly independent over Q is algebraically independent 

over Q (see Chapter III of [13]). Our goal is to present here a new point of view on this 

conjecture and to establish some results in this context. 

We first show that this conjecture is equivalent to saying that ,  for each integer n > 0  

and each algebraic subvariety X of C n (irreducible or not) defined over the algebraic 

closure Q of Q, the set XNL: n of points of X with coordinates in s is contained in 

the union of all vector subspaces of C n defined over Q and contained in X. Baker's 

theorem [2] shows that this is true when X is a linear subvariety of C n defined over Q. 

Let Mdj be the vector space of all d x I matrices with coefficients in C. A result of 

W.D.  BrownaweU [5] and M. Waldschmidt [20] shows that  the above statement is also 

true when X is an affine curve defined over Q contained in the variety Mdj(1) of all dxl 
matrices of rank ~< 1 provided that  X is not contained in any of the subspaces of Mdj 
which are defined over Q and contained in Md,t(1). More generally, there is a result of 

M. Waldschmidt (Theorem 2.1 of [21]) which studies the points with coordinates i n / :  on 

the variety Maj(r) of dx  l matrices of rank ~<r, for given positive integers d, l and r. It 

shows that  these points are contained in some subspaces of Md,t defined over Q. These 

subspaces are not necessarily contained in Md,l(r) but we prove in w that  they can be 

chosen inside Mdj(2r)  so that  they contain a subspace of codimension ~ 2 r  2 contained 

in Md,t (r). 
In w we study the special case where X is the affine cone over the Grassmannian 

which parametrizes the subspaces of dimension k of C 'n for given integers k>~2 and 
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m>~k+2. This variety is naturally embedded in C n with n= (~) and we get that ,  for 

any xEXNs n, the smallest subspace of C n defined over Q which contains x is either 

of dimension ~<6 or contained in X.  Our result is in fact more precise and implies that  

if the conjecture is true for k=2 and m--4 then it is true for all values of k and m. 

This is translated in terms of a new conjecture about  4 x 4 skew-symmetric matrices with 

coefficients in s  of which the four exponentials conjecture is shown to be a special case. 

The proof of this result uses both Gel'fond-Schneider's theorem and the result of 

M. Waldschmidt mentioned above. The method goes by constructing an injective linear 

map 0: cn'+Md,l defined over Q, with d =  (kin_l) and l=m, which maps X into Mdj(k); 
it thus maps the points of X with coordinates in L: into those of Mdj(k). 

In w we show that  a similar construction can be done, at least locally, for any 

affine homogeneous algebraic variety X C C  n defined over Q where, by homogeneous 

affine variety, we mean the affine cone over some projective variety. This allows a priori 

to apply Waldschmidt's theorem to study the points of X with coordinates in L:. It 

implies that,  if the above version of the main conjecture for logarithms is true for the 

varieties Md,l(r), then it is true for any homogeneous affine algebraic variety X defined 

over Q. Finally, we indicate the limits of this method by showing that  it is not capable 

of proving the four exponentials conjecture. 

The above approach which we apply to the affine cones over Grassmannians is not 

intrinsic since the map 8 is not unique. One would like to apply directly the transcen- 

dence methods to the variety X by constructing an exponential polynomial with integer 

coefficients which would be "small" on this set. Such a construction is given in w It does 

not require that  X be defined over Q and generalizes an earlier construction of M. Wald- 

schmidt (Theorem 3.1 of [21]). This construction together with Liouville's inequality 

provides, under certain conditions, non-trivial vanishing statements for the affine cones 

over Grassmannians and for other varieties. It calls for a zero estimate which would be 

sufficiently precise to derive a conclusion from this vanishing. 

Finally, our results hold also with the p-adic field Cp instead of C, for any prime p. 

We discuss both cases simultaneously. Moreover, to avoid changes of coordinates, we 

prefer to work with abstract vector spaces equipped with a Q-structure rather than 

working with C n or C~. This is explained in w below. 

1. Preliminaries 

Let K be the field C or the completion Cp of an algebraic closure of Qp for a prime 

number p, equipped with its usual absolute value denoted I" I and normalized so that 

Ip[=p -1 if K=Cp. We denote by Q the algebraic closure of Q in K, by L4 the disk of 
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convergence of the exponential series in K, by exp: Lf---~K the function determined by 

this series and by L: the Q-subspace of K generated by exp-l(Q*). When K=C, s is 

simply the set of logarithms of algebraic numbers of C. 

Let F be a subfield of K and let V be a finite-dimensional vector space over K. 

If vl,...,v8 are elements of V, we denote by (vl, ..., vs)F the subspace of V generated 

by them over the field F. We recall that a Q-structure on V is a Q-subspace V' of V 

such that any basis of V' over Q is also a basis of V over K (w No. 1 of [4]). Given 

V with a Q-structure V', we say that an algebraic subvariety X of V is defined over F 
if, for some isomorphism f:  V-*K n with f (V ' )=Q n, the image of X under f is the set 

of zeroes of a family of polynomials with coefficients in F. This contains in particular 

the notion of subspace of V defined over F. If W is another finite-dimensional K-vector 

space equipped with a Q-structure W', we say that a linear or affine linear map f: V---* W 

is defined over Q if f(V')c_ W'. This gives a Q-structure on the vector space Horn(V, W) 

of K-linear maps from V to W. 

In the sequel, we denote by V(Q) a given Q-structure of V and by V(L:) the Q- 

subspace of V generated by the products ),v with AEs and vEV(Q) and, for each subset 

X of V, we put 

X ( Q ) = X n V ( Q )  and X(s163  

For example, if V = K  n, we take V(Q)=Q n and then we have V(s n. If V is the 

K-vector space Md,t of all dx I matrices with entries in K, we choose for Md,I(Q) the set 

of dxl  matrices with entries in Q and Md,t(/:) becomes the space of dx I matrices with 

entries in s Moreover, for any integer r~>0, the set Ma,l(r) of all elements of Ma,l of 

rank ~<r is an algebraic subvariety of Md,l defined over Q. 

Given V with its Q-structure, we put on its dual V* the dual Q-structure V*(Q) 

which consists of all CeV* such that r On each subspace W of V defined 

over Q, we also put the induced Q-structure W(Q)=WNV(Q).  Finally, for each integer 

k>~l, we give AkV the Q-structure Ak(V(Q)). We denote by G(k, V) the image of the 

map 

V k ~ A ~ v 

(vl ,  .... vk) ~ v lA . . .Avk .  

This is an algebraic subvariety of A k v  defined over Q: it is the affine cone over the 

Grassmannian of subspaces of V of dimension k (Lecture 6 of [11]). If V = K  '~ with 

V(Q)=Q n, then the points of G(k, V)(s are those which come from subspaces of V of 

dimension k which possess at least one set of Pliicker coordinates in s 
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As mentioned in the introduction, the main conjecture for logarithms says that  

any family of elements of s which is linearly independent over Q is also algebraically 

independent over Q. We restate it in the following form: 

CONJECTURE 1.1. For each finite-dimensional K-vector space V equipped with a 
Q-structure and for each algebraic subvariety X of V defined over Q, X(s is contained 
in the union of all vector subspaces of V defined over Q and contained in X.  

To see that  the two conjectures axe equivalent, assume first that  Conjecture 1.1 

is true. Given Q-linearly independent elements A1, ..., An of s we choose V = K  n and 

take for X the Zariski closure over Q of the point (A1, ..., An). Since K n is the smallest 

subspace of K n defined over Q which contains this point, we get K n C_X. Thus, A1,..., An 

are algebraically independent over Q and the main conjecture for logarithms is verified. 

Reciprocally, assume that  the latter is true and let V and X be as in the statement of 

Conjecture 1.1. Then, the Zariski closure over Q of any point xEX(s  is the smallest 

subspace S of V defined over Q containing x. We get xGSC_X and so Conjecture 1.1 is 

verified. 

In this context, the theorem of A. Baker [2] and its p-adic analog ([6], [7], [18], [19]) 

show that Conjecture 1.1 is verified when X is a linear subvariety of V defined over Q. 

For K=C,  we also have the result of W. D. Brownawell and M. Waldschmidt mentioned 

in the introduction, but its p-adic analog is not known. To study other algebraic varieties 

we use the following result [21]: 

THEOREM 1.2 (M. Waldschmidt). Let d,l be positive integers and let M EM~j(s 
Assume that the rows of M are Q-linearly independent, that the columns of M are Q- 
linearly independent and that the rank r of M satisfies r<dl/(d+l). Then, there exist 
matrices PEGLd(Q)  and QeGLt (Q)  such that 

P M Q =  ( MI* M20 ) (1.1) 

where M1 is a dlxll  matrix of rank rx>0  with 

dl d 
- - > -  and dlll <.rs(dl+ll). (1.2) 
rl  r 

Although this theorem does not prove Conjecture 1.1 for the varieties Mdj(r), it 

implies the following: 

COROLLARY 1.3. Let d, l, r be positive integers. For each M EMaj(r)(s there exist 

subspaces S and T of Md,z defined over Q with 

MG T C_ Md,l(2r), S C TNMdj(r) 

and dim(S) ~> dim(T) - 2 r  2. 
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Proof. Let MEMd,l(r)(s Without loss of generality we may assume that the rows 

of M are Q-linearly independent and that its columns are Q-linearly independent. By 

replacing M by its transpose if necessary, we may also assume d~> 1. If l ~ r, the corollary 

is verified with S=T=Md,~. In particular, it is verified when d+/=2 .  This allows to 

assume l>r .  If dl~r(d+l), we have l<.2r; we take for S the subspace of MdJ consisting 

of all d• matrices whose last l - r  columns are zero, and put T=Md,z: The corollary is 

then verified because 

dim(S) = dr >1 dl - rl >/dim(T) - 2r 2. 

Otherwise, if dl>r(d+l), we have d>2r and the hypotheses of Theorem 1.2 are satisfied. 

We may thus assume that M is of the form (1.1) where M1 is a dl • 11 matrix of rank 

rl >0 with dl, ll and rl satisfying (1.2). Since d>2r,  the inequalities (1.2) imply dl >2rl 

and ll<2rl. Moreover, M~ is a d~xl2 matrix with coefficients in s and rank r2>0 where 

d2=d-d l ,  12=l-ll  and r 2 ~ r - r l .  

By induction on d+l, we may assume that the corollary is verified for/1//2. There thus 

exist subspaces $2 and T2 of Md2,~2 defined over Q with 

M2 E T2 C Ma2,1~ (2r2) ,  ~2 C_ T2 nMd2,~2 (r2)  

and dim(S~)>~dim(Ta)-2r]. We then take for T the set of dxl  block matrices of the 

form 

N3 N2 

with N1 of size dl• and N2ET2, and we take for S the subspace of T consisting 

of all those matrices for which the 11-rl last columns of N1 and N3 are zero and for 

which N2ES2. We have M E T  as required and, since rl+r2~<r and 11 <2rl,  we also have 

TC_Mdj(2r) and SC_Md,l(r). Finally, we get the upper bound 

dim(T) - dim(S) <~ d ( l l  - rl)-i-2r2 2 

~Z~+2r] (by (1.2)). 

Since 11 <2rl ,  it implies d im(T)-d im(S)~  2rrl +2r~ ~ 2r 2 as required. 

Finally, since we will need it often, we recall as a second corollary the so-called six 

exponentials theorem due to Siegel (historical notes of Chapter II of [13]), S. Lang [12] 

and K. Ramachandra [15]. We take our formulation from Corollary 1.3 of [22]: 
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COROLLARY 1.4 (the six exponentials theorem). Let d, l be positive integers with 

d>/3 and I>~2, and let MEMd,~(f.). Assume that at least three of the d rows of M 

are Q-linearly independent and that at least two of the 1 columns of M are Q-linearly 

independent. Then the rank of M is at least 2. 

This implies that if S, T are finite-dimensional vector spaces over K equipped with 

Q-structures and if f:  S-- ,T  is a linear map of rank ~<1 satisfying f ( S ( Q ) ) C T ( f . )  then 

(i) either f ( S )  is contained in a subspace of T defined over Q of dimension <~2, 

(ii) or f (S(Q))  is of dimension ~<1 over Q. 

Remarks. (i) Define the structural rank of a matrix MEMd,l(f-.) as the smallest 

integer s for which Mdj(s)  contains a subspace of Mdj defined over Q containing M. 

Then, Corollary 1.3 shows that the rank r of M satisfies r<~s<<.2r. This can also be 

deduced from the arguments in the proof of Corollary 2.2.p of [21]. Conjecture 1.1 

predicts r=s.  Note that a classification of the subspaces of Md,~(r) is given in [1] and [8] 

for r~<3. 

(ii) Corollary 1.3 gives the best upper bound one can expect to deduce from Theo- 

rem 1.2 for the codimension of S in T since this theorem says nothing about the elements 

of M2r,2r(s of rank r and since all subspaces of M2r,2~ contained in M2~,2~(r) have codi- 

mension ~>2r ~ in M2r,~r ([3], [9], [10]). The space T constructed inductively in the proof 

is a compression subspace of Md,l(2r) in the sense of [8]. 

(iii) All the statements of this section and those of w167 2 and 3 remain true if one 

replaces everywhere Q by Q and /: by the Q-vector subspace of K generated by s 

whose elements are the so-called linear forms in logarithms. The corresponding analog of 

Theorem 1.2 which one needs is Theorem 4 of [16]. It is also possible using this theorem 

to make analog statements in the situation where/~ is replaced by the Q-vector subspace 

of K generated by Q-t-Z:. 

2.  A f f i n e  c o n e s  o v e r  G r a s s m a n n i a n s  

Let V be a vector space over K of dimension/> 2 equipped with a Q-structure. The main 

objective of this section is to establish the following result: 

THEOREM 2.1. Let k be an integer >~2. Assume dimV>/k+2. Then, any element 

of G(k, Y)(f..) belongs 

(i) either to a subspace of /~k V defined over Q and contained in G(k, V), 

(ii) or to a subspace of A k V defined over Q of dimension 6 of the form vl A...A 

vk-2 A (/~ 2 U) where U is a subspace of V defined over Q of dimension 4, and vl , ..., v~_2 E 

V(Q). 
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In this statement, the restrictions k ) 2  and dim V ) k + 2  exclude the trivial cases 

where G(k, V) coincides with A k V. We first mention one consequence of this result: 

COROLLARY 2.2. For any aEG(k, V)(12), the smallest subspace of Ak v defined 

over Q containing c~ contains a subspace of codimension <~ 3 which is defined over Q and 
contained in G(k, V). 

In fact, it follows from Theorem 2.1 that, if4t is not contained in G(k, V), the smallest 

subspace of A k V defined over Q containing ~ contains a subspace of codimension <~3 of 

the form vlA...Avk_IAW where W is a subspace of V defined over Q. 

The proof of Theorem 2.1 goes by steps. We begin by recalling the following result 

(see Exercise 6.9 (ii) in [11]): 

PROPOSITION 2.3. For any positive integer k<dimV, the maximal subspaces of 

A k v defined over Q and contained in G(k, V) are of the following forms: 
(i) vlA...Avk_IAV with vl , . . . ,vk- leV(Q),  
(ii) A k U where U is a subspace of V defined over Q of dimension k + l .  

We also introduce some notations. Firstly, for all subspaces S of V (resp. of V*), 

we denote by S • the subspace of V* (resp. of V) consisting of all elements which are 

orthogonal to S. For each integer k ) l  and each a E A  k V, we denote by Va the smallest 

subspace W of V such that a E A  k W. If Re0,  its dimension is ) k  with equality if and 

only if c~eG(k, V). We also denote by g: V* x A k V ~ A  k-1 v the unique bilinear map 

(so-called contraction) which satisfies 

k 

g(r vl h... Ark) = Y~(-- 1)i- 1 r A ... Affi A ... Ark 
i=1  

for all CEV* and all vl .... ,vkEV. For each a E A  k V, it gives a linear map 

g. :  V* --* A k-1 v 

r 1 6 2  

whose kernel is V~ and whose rank is therefore equal to dim V~. To see that kerg~ 

is V~, choose CeV* with r  and choose v e V  with r  Put U=kerr Since 

Y = ( v ) g ( ~ U  , w e  can write ~=vA]~+~, with Z e A  k-1 v and k u.  We get ga(r 

So, r is in ker go if and only if V~ C_ker r This proves our assertion. In particular, an 

element c~ of A k V belongs to G(k, V) if and only if the rank of g~ is ~<k. 

The last statement can be reformulated in the following way. Put l-=dim(V), d= 

dim(A k-1 V) and identify Hom(V*,A k-1 V) with the space Md,z of dxl  matrices by 
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choosing basis in V*(Q) and A k-1 V(Q). Then, we get an injective linear map 

g: A k v - ~  Md,t 

again denoted by g, which is defined over Q and induces an isomorphism between G(k, V) 

and the intersection of Mdj(k) with the image of g. This determinantal presentation of 

G(k, V) plays a central role in the proof of Theorem 2.1. Given aEG(k, V)(s g~ is an 

element of Md,t(k)(~.) and we may apply Theorem 1.2 to it. This is what we will do in 

w for the case k=2 and in w for the case k--3 and dim V=5. An induction argument 

in w will reduce the general case to those two special cases. 

We will also need the fact that, for any aEG(k, V), the image ofg~ is A k-1 V~. This 

is because, if a~t0, both subspaces of A ~-1 V have the same dimension, and the first is 

contained in the second. In particular, the image of ga is contained in G(k-1 ,  V) and, 

for each CeV*, if we put ~=g~(r then we have V~CV~. 

The following lemma is useful. We will employ it below to derive another conse- 

quence of Theorem 2.1. 

LEMMA 2.4. Let r, s be positive integers with r+s~<dim V and let a E G ( r + s, V ) ( ~ ) 

with c~O. Assume that there exist vl, ...,vrEV(Q) and a subspace U of V defined over 

Q such that 

Then, we have Vl, . , . ,vrEY a 

ZeV(s,V)(L) 

aevl^...^v~A(ASU). 

and ~ can be written in the form o'=vlA...AvrAfl with 

Proof. Suppose first that UN(vx, ...,Vr)K~--0. Under this additional assumption, we 

will show, by induction on r, that there is one and only one ~E/~ 8 U satisfying 

a = v l A . . . A v r A ~  (2.1) 

and that this f~ belongs to G(s, U)(s This will imply that V~ is the subspace of V 

generated by vl, .... vr and VZ; thus afortiori vl, ...,vrEV~. 

To prove the above claim, we use the fact that ga maps V*(Q) to G ( r + s - 1 ,  V)(s 

and choose CE V* (Q) such that r  1 and r for all v E (v2,..., Vr)K ~ U. Consider 

g~(r and write a in the form (2.1) with f~E/~' U. If r = l ,  we have ga(r This 

proves the unicity of j3. Since ga(r163 and since VoC_U, this also implies 

/3eG(s,U)(s If r > l ,  we have g~(r Since g ~ ( r  

the claim follows by the induction hypothesis applied to g~(r 
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In general, write U=Uo~U1 where Uo, U1 are subspaces of V defined over Q such 

that 

UoC(Vl,. . . ,Vr) g and Ulf"I(Vl,...,Vr)K----O. 

Since 

vl ^...^vr ^(A u ) =  vl ^...^vr ^(A s 

the conclusion follows from the above special case of the lemma applied with U1 instead 

of U. 

PROPOSITION 2.5. If Conjecture 1.1 is verified for the variety G(2, K4), then it is 
also verified for G(k, V). 

Proof. Assume that Conjecture 1.1 is not satisfied for some aEG(k, V)(L:). Then, 

Theorem 2.1 together with Lemma 2.4 shows that there exist Vl, ..., vk-2EV(Q) and a 

subspace U of V defined over Q of dimension 4 such that a can be written c~=VlA...A 

vk_2AB with/~EG(2, U)(s This bivector/~ does not belong to any subspace of A2U 

defined over Q and contained in G(2, U). Therefore, if we identify U with K 4 via a linear 

map defined over Q, we find that the conjecture does not hold for G(2, K4). 

2 . 1 .  T h e  c a s e  o f  2 - p l a n e s  

Proof of Theorem 2.1 for k=2. Let a be a non-zero element of G(2, V)(/:) and let 

d=dim V. We may assume without loss of generality that V is the smallest subspace of 

V defined over Q which contains V~ and that its dimension d is > 4. In virtue of Propo- 

sition 2.3, it remains to show that V~NV(Q) contains a non-zero element v because, in 

this case, we get aEvAV. To this end, consider the map 

g~: V* -* V. 

Since its kernel is V~, this map is injective on V*(Q). Since its image is V~, its rank 

is 2 and V is the smallest subspace of V defined over Q containing its image. Now, 

choose some basis of V(Q) and V*(Q) so that g~ can be identified with an element of 

Md,d(2)(f-.). By the above, this matrix fulfils all the hypotheses of Theorem 1.2. This 

implies that there exist subspaces S of V* and T of V both defined over Q such that 

ga(S)C_T and such that, if we put 

ll=dim(Y*/S) and dl =dim(V/T) ,  

and if we denote by rl the rank of the linear map from V*/S to V/T induced by g~, we 

then have rl >0, 
dl d 
- -  > and dill <~rl(dl+ll). 
rl 
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This implies r l : l ,  d1>/3 and 11=1. Since T r  T does not contain the image of g~, 

and, since S is of codimension 1 in V*, the inclusion ga (S)C T forces ker ga C_ S. As ker g~ 

is V~, this gives S• and therefore V~NV(Q)r 

The case where dim V=4 cannot be studied by the above method but leads in terms 

of matrices to the following generalization of the four exponentials conjecture. 

CONJECTURE 2.6. For any 4 x 4 skew-symmetric matrix M with entries in s and 

rank <.2, either the rows of M are linearly dependent over Q or the column-space of M 

contains a non-zero element of Q4. 

To see how this follows from Conjecture 1.1, assume dimV--4,  choose a basis of 

V(Q) and take the dual basis in V*(Q). Then, the map from A2V to Ma,a which 

associates to an element c~ of A 2 V the matrix of g~ in these bases gives a bijection 

between G(2, V)(s and the set of 4 x 4 skew-symmetric matrices with entries in s and 

rank ~<2. If M is such a matrix, and if c~ is the corresponding element of G(2, V)(s 

Conjecture 1.1 together with Proposition 2.3 shows that either we have V~ NV(Q)~0 or 

Va is contained in a subspace of V defined over Q of dimension 3. Since V~ is the image 

of ga, this means that the column space of M either contains a non-zero element of Q4 

or is contained in a subspace of K 4 defined over Q of dimension 3. In the last case, the 

rows of M are linearly dependent over Q. 

The four exponentials conjecture (Chapter II, w of [13]) says that if a 2x2  matrix 

()~ij) with entries in s has rank one then, either its rows are linearly dependent over Q, 

or its columns are linearly dependent over Q. This follows from the above conjecture 

applied to the matrix 

I 0 )~11 )~12 0 1 
--)~11 0 0 --)~21 . 
--)~12 0 0 --)~22 

0 )~21 )~22 0 

In general, the condition that a skew-symmetric 4 • 4 matrix M : ( x i j )  has rank ~<2 

is expressed by saying that its Pfaffian is zero, that is 

X12X34--X13X24-~X14X23 = O. 

The algebraic variety defined by this equation can be seen as the affine cone over the 

variety of incidence of lines and points in projective 2-space. This suggests to look more 

generally at the affine cone over the variety of incidence of hyperplanes and points in 

projective n-space, whose defining equation in K 2n+2 is xoYo +Xlyl W... q-XnYn--O. 
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2.2. The  case of  3-planes in 5-space 

The proof of Theorem 2.1 in the case k - 3  and dim V--5 requires two preliminary lemmas. 

LEMMA 2.7. Let k be an integer >12 and let aEG(k ,  V)(E.). Assume that a is 5 0  

and contained in a subspace o / A  k V defined over Q o/dimension 42.  Then, we have 

v~nv(q)#0. 

P~of.  We first consider the case k=2. In this case, there exist a basis B={el,  ..., ea} 

of V(Q) and elements A, a3, ..., ad, b3, ..., ba of K such that a=Avl  Av2 with 

Vl =el+a3e3+...+aded and vs --:es+b3e3+...+bded. 

Choose B such that the Q-subspace F of K generated by aa, ...,ad, b3, ...,bd satisfies 

FMQ=0. If F=O, then Vl,V2EVaMV(Q) and the lemma is verified. Assume F ~ 0  and 

put C={eiAej : 1 4 i < j 4 d } .  Since a is contained both in A 2 V(/:) and in a subspace of 

A 2 V defined over Q of dimension 42, the coordinates of a in the basis C generate a 

subspace E of E of dimension 42. Now, E is generated by A and the products Aai, Abi, 

k(aibj -a jb i )  for i , j - -3 ,  ..., d. In particular, E contains AQSAF and so, F is of dimension 

1 over Q. Let {t} be a basis of F over Q. Then, {A, At} is a basis of E over Q. Moreover, 

since t is the ratio of two elements of / : ,  Gel'fond-Schneider's theorem shows that t is 

transcendental over Q. Therefore, At 2 does not belong to E and so, we have aibj -a jb i  =0 

for i, j = 3, ..., d. This means that the vectors a3e3 +... + aded and b3e3 +... + bded of tV(Q) 

are linearly dependent over Q. Thus, V~ contains a non-zero element of (el,e2)Q and 

the lemma is again verified. 

Assume now k~3. Since a~0 ,  there exists CEV*(Q) such that V ~ k e r  r Put f~= 

go(C). We have f ~ 0 ,  ~ E G ( k - 1 ,  V)(/:) and Vf~ C_Vs. Moreover, since the map ~-*g(r ~,) 

from A k V to A k-1 v is linear and defined over Q, we also have that f~ is contained in a 

subspace of A k-1 v defined over Q of dimension 42. By induction over k, we may thus 

assume Vf~ M V (Q) ~ 0. Since V~ c Va, t he conclusion follows. 

LEMMA 2.8. Assume dimV=5 and let U be a subspace of V of dimension 3. As- 

sume that A 2 U is contained in a subspace of A 2 v defined over Q of dimension <. 7, and 

that we have UMV(Q)=O. Then, U is contained in a subspace of V defined over Q of 

dimension 44.  

Proof. Choose bases {Ul, u2, u3} of U and {el, ..., es} of V(Q) such that 

ul = el-fae4-fbes, us -= es-{-ce4-{-de5, u3 = e3%ge4+hes, 

where a, ..., h E K  generate a Q-subspace F of K satisfying FMQ=0, and denote by U' 

the Q-subspace of U generated by {Ul, us, u3}. 
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Suppose first that  U' contains an element which does not belong to any subspace of 

V defined over Q of dimension 42.  Then, we may assume that  Ul is such an element, so 

that  1,a, b are linearly independent over Q. Let {r : l~<i<j~<5) be the basis of A 2 V* 

dual to the basis (eiAej:l<~i<j<<.5} of A 2 V. The hypothesis on U means that  the 

Q-subspace E of g 3 generated by the triples (r r AU3), r with 

l~<i<j~<5 has dimension <~7. If we omit (i,j)=(4, 5), we find that  E contains the nine 

vectors: 

(i) (!)(i)(:)(i)(!)(i)(i)(!) , , , , ~ , , , �9 

- - g  

The first seven of them being linearly independent over Q, the remaining ones are linear 

combinations of these. If we consider only their first two coordinates, this gives e, d, g, hE 

(a, b)Q. By replacing u2 and Us by other elements of U' if necessary, we may therefore 

assume cE (b)q and g =0. If c~0,  this implies that  the eighth vector is a non-zero multiple 

of the fifth one, so h=0,  which is impossible since e3~U. Thus c=O, and the hypothesis 

UnV(Q)=O implies that  1, d and h are linearly independent over Q. This gives a 

contradiction since the ninth vector is a linear combination of the first seven. 

Thus, any element of U' belongs to a subspace of V defined over Q of dimension 

~< 2. In particular, we can write 

u~ = ei + tJi  

with fie(e4, es)q and fiEF for i=l, 2,3. The condition UNV(Q)=O implies that  all 

products tif~ are ~0  and dimQ(tl,  t2,t3)Q/>2. By permuting the ui's if necessary, we 

may assume that  tl  and t2 are linearly independent over Q. Then, by permuting Ul 

and u2 if necessary, we may also assume that  tl  and t3 are linearly independent over 

Q (because t3r Since Ul+U2 and Ul+U3 belong to subspaces of V defined over Q 

of dimension ~<2, this forces f2e ( f l )Q  and f3E{fl)Q. Therefore, U is contained in the 

subspace of V generated by el, e2, e3 and f l ,  and the lemma is proved. 

Proof of Theorem 2.1 for k=3  and d i mV= 5 .  Let aEG(3, V)(s with a r  If Va 

is contained in a subspace of V defined over Q of dimension ~<4, the theorem is verified 

for (~. Otherwise, since dim V=5,  the linear map 

g,~: v*---, A2V 

is injective on V*(Q). Assume that  this is the case. Let T be the smallest subspace of 

/~2 V defined over Q which contains the image/~2 V~ of go, and let d be its dimension. 

If d~<7, Lemma 2.8 shows that  Va contains a non-zero element v of V(Q). We then get 
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aEvA(A 2 U) where U is any subspace of V defined over Q such that V=(V)K(~U , and 

the theorem is verified for a. We may thus assume d~>8. In that case, we choose bases of 

V*(Q) and T(Q) so that go can be identified with a matrix in Md,5(3)(s This matrix 

fulfils all the hypotheses of Theorem 1.2. Therefore, there exist subspaces $1 of V* and 

T1 of T both defined over Q such that go(S1)C_T1 and such that, if we put 

l,=dim(V*/S1) and dl=dim(T/T1),  

and if we denote by rl the rank of the linear map from V*/S1 to T/T1 induced by go, 

we have rl >0, 
dl d 
- - >  and dlll<.rl(dl+ll).  
rl 

We will show that this again implies VoNV(Q)r and thus Theorem 2.1 will be verified 

for ~. If r l=l ,  the above inequalities give d1>~3 and 11=1. Since TICT, T1 does not 

contain the image of go. Since it already contains go(S1) and since $1 is of codimen- 

sion 1 in V*, this implies kergoCS1, thus S~C_Vo and so VoNV(Q)r as announced. 

It remains the case where r1=2. In that case, we get dl>~6 and 11~3, so dimSl>~2. 

Moreover, the restriction of go to a linear map from S1 to T1 has rank ~< 1. Since it 

maps SI(Q) injectively into T1(s the six exponentials theorem (Corollary 1.4) shows 

that go(S1) is contained in a subspace of T1 defined over Q of dimension ~<2. Let r 

be any non-zero element of SI(Q) and put/3=go(r Since j3 is a non-zero element of 

G(2, V)(s Lemma 2.7 gives V/~ n V(Q) ~0. Since Vz c_ Vo, our assertion is again verified. 

2.3. T h e  genera l  case  

The inductive argument is based on the following proposition: 

PROPOSITION 2.9. Let k be an integer >t3. Let aEG(k, V)(E) and CEV*(Q), and 

put f~=go(r Assume 13~0 and let S be a subspace o] V defined over Q which contains 

V~. Then, 

(i) either we have Vof~Y(Q)~0, 

(ii) or there exists ueV(Q)  such that VoC(u)g+S. 

Proof. Put U=kerr  and choose veV(Q) such that r Since V=(v)K$U, 
we can write a=vA~-F~ with ~ E A k - I u  and 5eA k U. Since ga(r we get ~=~  

and therefore V~ C U. By replacing S by SnU if necessary, this allows to assume SC_U. 

Consider the decomposition 

A k-1 v = @^(A U))@A k-1 U 
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and let 7r: A k-1 V--~vA(A k-2 U) denote the projection on the first factor. We observe 

that  the composite map 

~'og,~: V* --, vA(A k-2 U) 

is given by 
= 

for all CEV*. This implies that  7toga vanishes identically on S • and that  its rank 

coincides with the rank of g~. Since ~ E G ( k - 1 ,  V) and ~ # 0 ,  this rank is k - 1 .  As go 

has rank k, the restriction of go to S • must therefore have rank ~<1. Since CES • and 

since g~(r this means that  go maps S • onto (~)N- Since moreover go maps V*(Q) 

to (A k-1 V)(E), the six exponentials theorem (Corollaxy 1.4) gives that  

(i) either ~ belongs to a subspace of /~k-1 V defined over Q of dimension ~<2, 

(ii) or go maps S•  to (f~)q. 

In case (i), Lemma 2.7 gives V~MV(Q)#0 and so, we get V~MV(Q)#0 since V~C_V~. 
Finally, in case (ii), there exists u E V ( Q )  such that  

g(~(r162 

for all C e S  • Pu t  e=a-uAfl. Then, ge vanishes identically on S • This means VeCS 
and so V~C_(u)K+S. 

Proof of Theorem 2.1. We proceed by induction on k. The case where k = 2 being 

proved, we assume k~>3. Let a be a non-zero element of G(k, V)(s If V~ contains 

a non-zero element v of V(Q),  we have (~EvA(A k-1 V) and so, by Lemma 2.4, we 

can write ~=vA~ with ~EG(k-I,V)(~). This allows, by induction on k, to assume 

that  the theorem is verified for ~. It is then also verified for c~. Otherwise, that  is if 

V~MV(Q)=0, we choose CEV*(Q) such that  g ~ ( r1 6 2  and put f~=g~(r We have ~ # 0 ,  

BeG(k-1, V)(s  and V~C_V~, so V~MV(Q)=0. By induction on k, we may assume that  

the theorem is verified for ~. Since k~>3 and Vf~MV(Q)=O, this implies, by Lemma 2.4, 

that  

(i) either f~ belongs to a subspace T of A k-1 V defined over Q and contained in 

a(k- l ,V) ,  
(ii) or k=3 and ~ belongs to A 2 S for a subspace S of V defined over Q of dimen- 

sion 4. 

In the first case, Lemma 2.4 and Proposition 2.3 show Tc_Ak-Is where S is a 

subspace of V defined over Q of dimension k. Thus, in each case, we have V~ _C S where 

S is a subspace of V defined over Q of dimension k if k~>4, of dimension 4 4  if k=3. Also, 

by Proposition 2.9, there exists u e V ( Q )  such that  VaC_(U)K-+-S. We thus get aEAku 
where U={u)K+S is a subspace of V defined over Q of dimension ~<k+l if k~>4, of 
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dimension 4 5  if k=3. If k~>4, this proves the theorem for ~. If k--3, we observe that  we 

have more precisely c~EG(3, U)(s  with dim U~<5 and this brings us back to the special 

case where k=3 and dim V=5 studied in w This completes the proof. 

Remark. It is simpler to prove the weaker result that ,  for k~>2 and dimV~>k+2,  

any element c~ of G(k, V)(s belongs either to a subspace of A k V defined over Q and 

contained in G(k, V), or to a subspace of A k v of the form A k u where U is a subspace of 

V defined over Q of dimension k+2.  This follows as above, by induction on k, using only 

the special case k=2 studied in w It thus needs the transcendence result (Theorem 1.2) 

only for matrices of rank ~< 2. The general result needs it for matrices of rank ~< 3. 

3. G e n e r a l  af l ine a l g e b r a i c  va r i e t i e s  

3.1. E m b e d d i n g s  in to  l inea r  d e t e r m i n a n t a l  va r i e t i e s  

The intersection of a generic determinantal variety Md,l(r) with a linear subvariety of 

Md,t is called a linear determinantal variety. In w we studied the points of G(k, V)(f~) 

by observing that  G(k, V) is isomorphic to a linear determinantal  variety, via a linear 

map defined over Q. The following result shows that  this can be done at least locally 

for any affine homogeneous algebraic variety defined over Q (compare with the remark 

before 9.21 in [11]): 

THEOREM 3.1. Let X C K n be any a~ine homogeneous algebraic variety defined over 

Q and let H be any subspace of K n defined over Q o] codimension 1. Then, there exist 

integers d, l, r with rain{d, l ) >  r/> 0 and an injective linear map defined over Q, 

8: K n ~ Mdj, 

which induces by restriction an isomorphism between X N U  and Md,l(r)nS(U), where U 

denotes the complement of H in K '~. 

Given a point xeX(f. .)  with x ~ H ,  the matrix 0(x) belongs to Md,z(r)(L) and The- 

orem 1.2 may apply to this matrix and bring some information on x. In this spirit, we 

deduce: 

COROLLARY 3.2. If  Conjecture 1.1 is true ]or the variety Md,l(r) for any integers 

d, l, r with rain(d, l )> r />0 ,  then it is true for any a1~ine homogeneous algebraic variety 

X defined over Q. 

Proof. Let XC_K n be an affine homogeneous algebraic variety defined over Q, let 

x E X ( s  and let S be the smallest subspace of K n defined over Q which contains x. 
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We want to show SC_X. This is certainly true if x=O. Otherwise, choose a subspace 

H of K n defined over Q of codimension 1 with x r  and consider the map ~ given by 

Theorem 3.1. Since ~ is injective and defined over Q, we have O(x)EMd,~(r)(~), and ~(S) 

is the smallest subspace of Md,t defined over Q which contains O(x). If Conjecture 1.1 

is true for the variety Md,l(r), this implies O(S)CMd,l(r), so S N U C X ,  and thus S C X  

because S n U  is Zariski dense in S. 

For the proof of Theorem 3.1, we need: 

PROPOSITION 3.3. Let R be a Noetherian ring and let I be an ideal of R[Y1, ..., Ym]. 

Then, there exist integers d,l ,r with min{d,l} >r>/O and a d x l  matrix M with entries 

in R+ RY1 +... + RYm such that I is generated by the minors of order r + 1 of M. 

Proof. We first observe that ,  if E and F are R-submodules of R[Y1, ...,Ym], and if 

N is a matrix with coefficients in the submodule E F  of R[Y1, ..., Ym] generated by the 

products fg  with f E E  and gEF, then N can be written (in a non-unique way) as the 

product AB of a matrix A with coefficients in E by a matrix B with coefficients in F.  

We also observe that,  if A, B are matrices with coefficients in R[Y1, ..., Ym] of respective 

sizes d x s  and sx l ,  and if t is an integer/>0, then the ideal J of R[Y1, ...,Ym] generated 

by the minors of order t + l  of the product AB coincides with the ideal generated by the 

minors of order s+t+ 1 of the matrix 

- . 4  0 ' 

where I~ denotes the s x s identity matrix. To see this, multiply this matrix on the left 

by 

and on the right by 

where Id and It are respectively the d x  d and I x l identity matrices. Since these matrices 

have determinant 1, this does not change the ideal generated by the minors of order 

s+t+l .  The result is the matrix (i 0 o) 
for which it is simpler to verify our claim. 

For each integer k~>l, we denote by Ek the R-submodule of R[Y1, ..., Ym] consisting 

of all polynomials of degree ~< k. We thus have E1 = R+RY1 +... + R Ym and Ek =E1Ek_ 1 

for each integer k~>2. So, the preceding observations imply that ,  for each integer k~>2, 
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each integer t>~0 and each matrix N with coefficients in Ek, there exist a matrix M with 

coefficients in Ek-1 and an integer r~>0 such that  the ideal generated by the minors of 

order t +  1 of N coincides with the ideal generated by the minors of order r + l  of M. By 

induction on k, this matrix M can also be taken with coefficients in El .  The conclusion 

follows by choosing t--O and N to be any matrix whose coefficients generate the ideal I. 

Proof of Theorem 3.1. Without loss of generality, we may assume that  H is the 

subspace of K n defined by  Yn=O. Let E be the translate of H defined by Yn=l, and 

let I be the ideal of all polynomials of Q[Y1, ..., Yn-1] vanishing identically on XnE.  
Put m = n - 1  and let d, l, r and M be as given by Proposition 3.3 for this choice of I.  

Viewing the coefficients of M as affine linear functions on E, we get an affine linear 

map r E--~M~,z defined over Q for which XfqE=r If 0 • r  if r is 

injective, the linear map 0: Kn--*Md,t which extends r has all the required properties, 

Otherwise, we can rectify the situation by replacing M by 

(0 
where L is the row matrix (1, I"1, ..., Yn-1), and by replacing d, l and r by d + l ,  l+n and 

r +  1 respectively. 

Remark. Proposition 3.3 also shows that  any affine algebraic variety defined over Q 

is isomorphic to a linear determinantal variety via an affine linear map defined over Q. 

Therefore, if Conjecture 1.1 is true for all translates A+Md,t(r) with AeMd,t(Q), then 

it is true for all affine algebraic varieties defined over Q and therefore it is true in general 

(see also [17]). 

3.2. Homogeneous surfaces 

The preceding sections show how Theorem 1.2 can be applied in order to study the points 

with coordinates in /~ on homogeneous affine algebraic varieties defined over Q. This 

method however has its limits. When X C_ K 3 is an absolutely irreducible homogeneous 

surface defined over Q of degree >/2, it cannot lead to a proof of Conjecture 1.1 for X. 

In particular, it cannot lead to a proof of the four exponentials conjecture: take for 

X the zero set of x y - z  2. Indeed, the conjecture predicts that X(/:)  does not contain 

any point whose coordinates are linearly independent over Q. However, X contains 

infinitely many points (A1,)~2,A3) whose coordinates are linearly independent over 

and we cannot exclude the possibility that  these points belong to X(s  because for each 

linear local embedding of X into some Ma,l(r), the image of those points are matrices 

which formally satisfy Theorem 1.2. This follows from the following result (see [17] for 

other related results): 

5-950414 Acta Mathematica 175. lmprim,~ le 1 septembre 1995 
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THEOREM 3.4. Let d, 1 be positive integers, let A1, A2, A3 be elements of K which are 

linearly independent over Q, and let M be a d x 1 matrix with coefficients in (A1, A2, A3)Q. 

Assume that the rows of M are Q-linearly independent and that its columns are Q-linearly 

independent. Then its rank r satisfies 4r>/d§ and so r(d-bl)>/dl. 

Proof. Let Lo=()~l, )~2, A3)Q and let E be the Q-subspace of Lto generated by the 

rows of M. For each non-zero uEE,  consider the smallest subspace U of K l defined over 

Q containing u. Among those u, choose Ul such that  the dimension of U is minimal, 

and put 

dl -- d imQ(EAU),  11 = dimg U, r l  -- d i m g ( E N U ) g .  

We claim that  dl+l l  ~4r l .  

To prove this inequality, let L1 be the Q-subspace of L0 generated by the coordinates 

of Ul. Since l l=d imQ L1, we have ll ~<3. Moreover, let r U--*K be any non-zero linear 

form on U defined over Q. By the choice of u l, we have ENker  r  0. Since r U)C L0, 

this implies dl ~<3, thus dl q-ll ~<4rl in the case r l  >/2. Assume r l  = 1. Then, each element 

of ENU is of the form tul where t E K  satisfies tL1C_Lo. Since A1,A~, A3 are linearly 

independent over Q, the dimension over Q of the set of all t E K  such that  tL1C_Lo is 1 

if 11=3, <~2 if 11=2 and ~<3 if 11=1. This implies d1+/1~<4 in all cases. 

If r l=r,  we have U = K  l, so dl=d, l l=l  and the theorem is proved. Otherwise, 

choose P E G L d ( Q )  such that  the first dl rows of P M  form a basis of E N U over Q. 

Then, choose QEGLz(Q) such that  

0 

where M1 is a d lx l l  matrix of rank r l .  Since the rank r2 of M2 is ~<r - r l ,  we may 

assume, by induction on r, that  ( d -  dl ) q- ( l -  11) <~ 4r2. This gives d +  l ~< 4r as announced. 

4. C o n s t r u c t i o n  o f  a n  a u x i l i a r y  f u n c t i o n  o n  a n  a l g e b r a i c  v a r i e t y  

We present here a construction of an auxiliary function which generalizes an earlier result 

of M. Waldschmidt (Theorems 3.1 and 3.1.p of [21]). We consider simultaneously both  

the Archimedean case where K = C  and the p-adic case where K--Cp.  We also give an 

application of this construction. 

First, we fix a closed locally compact subfield K: of K and we denote by ]Co the 

topological closure of Q in K.  In the Archimedean case, ]Co is 1~ and/C is R or C. In 

the p-adic case, ]Co is Qp and/C is an algebraic extension of Qp of finite degree. In bo th  

cases, we denote by v the degree of K: over ]Co. We also fix a positive integer d. For 
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each d-tuple r=(r l  .... ,r4) of non-negative real numbers, we denote by B(r)  the closed 

polydisc 

B(r)  = { (z l ,  ..., zd) �9 Kd:  Iz l for 1 ~< i ~< d} 

and, when F is a function defined on B(r)  with values in K, we write 

IFl~ = sup{IF(z)[ : z �9 B(r)}. 

Finally, if I is an ideal of/C[Y1,..., Ya], we denote by H(I; T)  the Hilbert function of I. 

Its value at a real number T~>0 is the dimension over/C of the quotient of the ~-vector 

space C consisting of all polynomials of ~[Y1,-.., Yd] of degree ~<T modulo the subspace 

.~=~r7I. For all integers T sufficiently large, H ( I ; T )  is given by a polynomial in T 

whose degree is equal to the dimension of the zero set of I in K d. 

THEOREM 4.1. Let d and L be positive integers, let I be an ideal of ]C[Y1, ...,Yd], let 

S, U be positive real numbers, let r=(r l ,  ..., rd) be a d-tuple of positive real numbers, and 

let r ..., eL be a family of K-valued continuous functions on B(er)  which are analytic 

in the interior of B(er)  and which map ]CdAB(er) to IC. Assume 

3<.U, 

in the Archimedean case, and 

logp~<U, S~<U 

in the p-adic case. Assume also 

s < u  and U 
Z=l  

and max{ l r  <. e g 

LS  ~ 4vUH(I;  4U). 

Then, there exist integers Pl,.. . ,PL not all zero, with - e  s <~Pl,...,PL <~ e S, and a polyno- 

mial Q E I such that 
L 

Z p ~ r  <. e - v .  
'X=I  Iv 

The construction of M. Waldschmidt mentioned above corresponds to the special 

case of this result when I=O. The proof of our result follows the same lines. We start 

by establishing a Siegel lemma: 

LEMMA 4.2. Let b ,B be positive real numbers with b<.B, let C be a finite-dimen- 

sional vector space over ]C equipped with a norm [1" tl, let jz  be a subspace of g, and let 

(xi)ieg be a family of elements in C of norm <.B. Assume that 

card(J) > Q~ dim,: (E/~')  ( 4 . 1 )  
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where #=l + 2B/b in the Archimedean case and Q=pB/b in the p-adic case. Then, there 

exist i , j E J  with iTtj and y �9  such that Iixi-xj-yll<~b. 

Proof. Assume first that  9r=0. We choose a Haar measure on E and consider the 

closed balls 

do={xEC:llxll<~ro} and C={xEE:llxll<<.r} 

where to= �89 and r = B +  �89 in the Archimedean case, and ro=b and r = B  in the p-adic 

case. By hypothesis, the translates x i+do  with iEJ  are all contained in 6 and their 

volumes are equal to the volume of Co. Now, choose c~�9 with Ic~l=tJ if K = C ,  or with 

Q>~ Ial >1 Q/p if K=Cp.  Since multiplication by c~ maps Co to a ball which contains 6, we 

obtain 

vol(d) ~< Ic~l ~dim~(E) vol(Co) < ~ vol(x,+Co). 
iEJ  

There must therefore exist distinct elements i , j  of J for w h i c h t h e  balls x i+do and 

xj +Co intersect. This implies I l x i -  xj I I ~< b and proves the lemma when ~-=0. 

In the general case, let 7r: E--~C/~- be the canonical projection. We give C/~" the 

quotient norm I1" [l' defined by 

Ilzll' = in f {  Ilxll : x �9 ( z ) }  

for all z E,~/~. Since II~(x~)ll '~ IIx~ II ~ B for all i �9 J,  the special case of the lemma proved 

above applies to the quotient s  and to the family of points (Tr(x~))~ej for the same 

values of b and B. There thus exist distinct i, j �9 J such that  117r(x~) - ~(xj ) l l '  ~< b and, for 

this choice of i and j ,  there exists y6~" such that  tlxi-xj-Yll<<.b. 

To state the analytic estimates which we need, we recall the notations of [21]. For 

each t= ( t l ,  ..., td)EN d and each z=(z l ,  ..., Zd)EK d, we put t!=tl! ... td!, Iltll=tl +...+td, 
z' =z~' ... z~ d and Dt =(a ' , taz~ ' ) . . .  (a"IO 2). 

LEMMA 4.3. Let d, T be positive integers, let r=(rl ,  ...,rd) be a d-tuple of positive 

real numbers, and let F: B(er)---*K be a continuous function which is analytic in the 

interior of B(er). We put 
1 DtF(O)zt" f ( z ) - -  Z ~.. 

Iltll<T 

Then, we have 

and also 

IF-- f l r<.e-TlF-- f ler ,  (4 .2)  

if K = C ,  
(4.3) 

if K = C p .  
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Proof. The first inequality follows from Schwarz's lemma. In the Archimedean case, 

the second one is a consequence of Parseval's inequality as in the proof of Lemma 3.4 

of [21]; for the p-adic case, see w of the second part of [21]. 

Proof of Theorem 4.1. Let T=[4U]+I.  We denote by s the subspace of K:[Y1, ..., Yd] 

consisting of all polynomials of degree <T  and we put 5r=EMI. The dimension of s r 

over/C is thus H(I; 4U). We equip s with the supremum norm on B(r). We also denote 

by J the set of all (Pl, ...,PL)EZ L with O<.p:~<~e s for I < ~ < L ,  and, to each (Pl, ...;pL)EJ, 
we associate the polynomial 

L 
1 Dtr 

A=I Iltll<T 

This defines a family of elements of E indexed by J because, for each ~=1, ...,L, the 

function Cx maps ICdMB(er) to K~ and so its derivatives Drew(0) all belong to K:. In 

the Archimedean case, the inequality (4.3) applied to the functions Cx together with the 

hypothesis ~ Ir U shows that the norm of these elements of s is <.vfTe s+v. In 

this case, we put b=�89 -U and B = v ~ e  s+U. This gives 

l+2B/b= l+4vfTe s+2U ~< l + 4 ~ . e  3U ~< e av, 

since T~<4U+I, S<.U and U>~3. In the p-adic case, the same inequality (4.3) applied 

to the same functions together with the hypothesis max 1r let <~ ev shows that the norm 

of the same elements of s is <~e U. We then put b=e -v  and B=e U. This gives 

pB/b=pe 2U ~ e 3U 

since U>~logp. In both cases, the number Q of Lemma 4.2 is bounded above by e 4U and 

the main condition of this lemma is fulfilled since 

Qvdim~:(e/~') ~ e4uUn(I;4U) < eLS < card(J). 

This lemma thus applies and shows that there exist integers Pl, ...,PL not all zero, of 

absolute value <~e s, and a polynomial QEI of degree <T, such that the polynomial 

L 
1 

f ( Y ) = Z  p~ Z ~ Dtr 
,~=1 I l t l l<T 

satisfies If-Qlr<<.b. For this choice of integers Pl, ...,PL, we put 

L 

F = Z Px Cx. 
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In the Archimedean case, we obtain, by Lemma 4.3, 

IF-Ql~ <<. lf  -Ql~ §  flr 

l e-U + e - T I F -  f[er 

�89 -u+ (l+v )e- lFlo  

and, since IF[~ ~<e s ~ ]r I~ <~ e2U, this gives 

IF-QI~ <. �89 ( l + ~ ) e  -2U < e - v  

as required. In the p-adic case, using the same lemma, we obtain 

IF-QI  max{If-Ql , IF-flJ 
< max{e -u, e-TIE-- f ie f}  

~< max{e -v, e-TIF[or}. 

Since IF[e~ <max Ir u, this implies IF-QI~<<.e - v  as required. 

For each aEQ,  we denote by h(a) the absolute logarithmic height of a equal to 

[Q(a):Q] -1 logM(a) where M(a) is the Mahler measure of a. As in w we also denote 

by /4 the disc of convergence of the exponential series in K. Theorem 4.1 then implies: 

THEOREM 4.4. Let n,d be positive integers with n<d, let X be an algebraic sub- 

variety of K a defined over IC of dimension n, let Co be a finitely generated subgroup of 

~.NIC contained in/4, and let ~t, ...,•, Q1, ..., Qd be non-negative real numbers with 

51 +...+~d > n-max{~l +~1 .... , Qd+Sd). 

Then, for each su~iciently large integer N>0,  there exists a non-zero polynomial 

PN(Y1, ..., Yd) e Z[Y1, ..., Y,~] 

of degree <~ N 6~ in Yi for i= l, ..., d, which satisfies 

Pg(exp(xl),  ..., exp(xd)) = 0 

for all (Xl, . . . ,xd)EXNs g with [xi[<~N Q~ and h(exp(xi))<N ~' for i= l ,  ...,d. 

Proof. Let s=max{ol§ and let I be the ideal of all polynomials of 

/C[Y1, ...,Yd] vanishing on X. Since X is defined over /C, X is the zero set of I and 

therefore we have H(I; T) <~cT '~ for some constant c>0 and all T>  1. In the Archimedean 
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case, we apply Theorem 4.1 with the parameters S=  N 8, U= N 8 log N, r----(N~ ..., N ~ 

and the functions 

exp(AlZl+...+AdZd) (0 <. A1 <. N ~, ...,0 <. )~d ~ N~).  

In the p-adic case, we choose a real number r0 >0 such that the closed disc B(ero) of ep  is 

contained in L! and an integer m~>0 such that pms We then apply Theorem 4.1 

with the parameters S--N ~, U=N ~ log N, r=(pmro, ...,pmro ) and the functions 

exp(Alpmzl+...+A~pmzd) (0 ~ A1 ~p-mN~' ,  ...,0 ~ A~ ~p -mN~) .  

For any large enough integer N, the conditions of this theorem are fulfilled and therefore, 

there exists a non-zero polynomial PN E Z[Y1, ..., Yd] of height ~< e s and degree ~< N 6' in 

Yi for i=l,  ..., d, such that the function 

satisfies 

FN (zl, ..., Zd) = PN (exp(zl), ..., exp(zd)) 

suP{lFg(z)l : z c X NB(r) } <. e -v .  

Let x= (x 1,..., xa)eXNs d with [xi[<N ~ and h(exp(xi))~N 0~ for i=  1, ..., d. It remains 

to show FN(x)=O independently of the choice of x when N is large enough. Since xE 

XnB(r) ,  we have [Fg(x)l <.e -U. On the other hand, FN(x) belongs to the extension E of 

Q generated by the numbers exp(A) with AEs Since E has finite degree over Q, Liou- 

viUe's inequality together with [FN(x)[<.e - v  implies FN(x)=O if U>[E:Q]h(FN(x)). 
This is true for large enough N because 

d \ d / 

N6* h(exp(xi) ) 
" i = 1  i = 1  

d d 

<. S+ E N6' + E Nt'+~ <. (2d+l)S. 
i-----1 i = 1  

Thus, for sufficiently large values of N, the polynomial PN has all the required properties. 

Application. Let k,m be integers with m~>k+2~>4 and let X=G(k,  Km). Put 
d m Ak K m K d = (k), and identify with by the choice of a basis taken in A k Qm. Then, 

X becomes a subvariety of K d of dimension n = k ( m - k ) + l  (Lecture 11 of [li D. Now, 

choose a point y=vlA...Avk in X(s Assume that the coordinates of y in K ~ belong 

to b/and are linearly independent over Q. Denote by s the subgroup of s that they 

generate. We get a map 

a: GLm(Z) ~ X(s 

A H (AkA)(y) = Avl A...AAvk. 
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For each integer N ) 1 ,  denote by SN the image under a of the set of all elements of 

GLm(Z) with entries in {0, ..., N}. Finally, choose real numbers 5 and 0 with 
nQ 

0 > k  and ~i>d_------ ~. 

There exists a constant Cl>0 such that  each (Xl, ...,Xd)ESN satisfies both Ixi[<~ClN k 
and h(exp(xi))<.clN k for i=l,...,d. Thus, for large enough values of N,  Theorem 4.4 

shows that  there exists a non-zero polynomial PN E Z[Y1,..., Yd] of degree ~<N e in each 

variable, which satisfies 

Pg(exp(x,), ..., exp(xd)) = 0 for each (xl,..., Xd) e SN. 

If we view this as a system of linear equations in the coefficients of PN, then the 

preceding statement is non-trivial as soon as the caxdinality of SN exceeds the upper 

bound (N~-{-1) d for the number of coefficients of PN. Now, the map a is injective 

on the set of elements of GLm(Z) with entries ) 0  because, if matrices A, BEGLm(Z) 
satisfy (7(A)=a(B), then the hypotheses on y imply AkA=AkB.  Thus, they satisfy 

A(U)=B(U) for each subspace U of K "~ of dimension k. Since 0 < k < m  and since A 

and B are invertible, they also satisfy the same condition for each subspace U of K m 
of dimension 1. From this we deduce A=)~B with )~EK. Thus )~k=l and so A=B if 

A and B have entries />0. Note also that  the set of elements of GLm(Z) with entries 

in {0, ..., N} has cardinality )c2N m2 for some constant c2 >0. The cardinality of SN is 

thus )c~N m2' and the existence of PN becomes non-trivial for large values of N when 

m 2 >d& This condition is achieved for suitable choices of Q and 6 if 

m 2 nk 
> - -  (4.4) 

d d-n" 
This in turn is verifed when m>~k2+2k because, since n<k(m-1) ,  we have for such 

values of m 

rn2-nk > m~-k2(rn-1) > 2ink, 

and thus 

d(m2-nk) > ( 2 ) 2 m k = m 2 ( m - 1 ) k  > m2n. 

A more careful computation in the case k=2 shows that  (4.4) is verified for all m ) 7 .  

However, the present zero estimates which deal with non-commutative algebraic groups 

do not lead to the expected contradiction for these values of m (see [14]). 
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