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O. I n t r o d u c t i o n  

Consider the following data: a Euclidean space a, a root system RCa* ,  a choice of 

positive roots R+ c R, and a multiplicity function k on the roots. Let [~ denote the 

complexification of a. In his paper  [2] Cherednik attaches commuting operators  D~ (~ E ~) 

to these data.  The De act on functions defined on [~ and are invariant for translations 

in the lattice 2~riZR v (RVCa is the coroot system). He shows that ,  together with the 

Weyl group W, these operators  generate an operator  algebra tha t  is isomorphic to the 

graded Hecke algebra t t  associated to R+ and the root labels k~ (the graded Hecke 

algebra was defined by Lusztig in [15]). As a result, many  natural  function spaces on [~ 

have the structure of an H-module.  For example, the spaces C~(a) and C~176 (where 

T=ia/2~riQ v with QV=ZRV) are H-modules  in this way. Moreover these spaces are 

equipped with natural  inner products  which are invariant for two different *-structures 

("*" and " + " ,  respectively) on I t .  The purpose of this paper  is to s tudy these two 

H-modules  from the viewpoint of harmonic analysis. We will s tudy decompositions of 
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these modules into irreducible H-modules which are unitary with respect to * and § 

respectively. 

It turns out that  the irreducible modules which occur in these decompositions all 

have the property that  the subspace of W-invariant vectors is 1-dimensional. Such mod- 

ules will be called W-spherical modules over H. This terminology is motivated by the 

fact that  the pair (H, W) behaves like a Gelfand pair: the space of W-invariant vectors 

of an irreducible H-module is at most 1-dimensional (cf. Proposition 1.2). 

Let us give a brief outline of this paper. The first three sections are introductory, 

but contain some new proofs of existing results. Section 2 is almost entirely due to Heck- 

man [8] and contains an elegant proof of the commutativity of Cherednik's operators 

"without calculations". Section 3 contains short proofs of results of Cherednik [3] and 

Matsuo [19]. As a result we obtain a detailed description of the holomorphic eigenfunc- 

tions of the Cherednik operators. In Section 4 we discuss the §  and *-structure on I-I, 

and a family of unitary irreducible W-spherical modules for each of these. In Section 5 we 

show how the results of Sections 1, 2 and 4 can be used to solve the spectral problem for 

the D~ acting on C~(T). This results in a complete set of orthogonal polynomials E(A) 

(AEP, the weight lattice) in C~(T). The L2 norms and values at eET can easily be cal- 

culated using induction on k. For each AEP, the span of the polynomials E(wA) (wEW) 

is an irreducible W-spherical H-module. The associated spherical functions are the so 

called Jacobi polynomials. In this way, the results of this section generalize the results 

of [20] in the sense that  we no longer restrict ourselves to W-invariant polynomials. It is 

noticable that  this simplifies the proofs somewhat. It seems likely that  this extension to 

noninvariant polynomials is also applicable in the case of Macdonald polynomials [18]. 

This would generalize the results of [4], and explain the Macdonald constant term con- 

jectures in terms of unitary structures of modules over the affine Hecke algebra. 

The rest of the paper is devoted to the decomposition of C~(a). Section 6 is a 

technical and preparatory section containing results on the growth behaviour and the as- 

ymptotic behaviour of the eigenfunctions G()~) for the D~. The uniform growth estimates 

for G()~) can be obtained from the results of Section 3 and a study of the KZ equation. 

Our analysis of the KZ equation at this point is analogous to the analysis of de Jeu [13] 

of the Dunkl operators. The asymptotic behaviour of G(A) can be obtained from known 

results for the hypergeometric function and results in Section 3. In Section 7 we define 

a transform 9 v for functions on a that  corresponds to the decomposition of C~(a) in a 

family of induced modules for I-I. We also introduce a wave packet operator J and we 

study the basic properties of ~" and J .  The Paley-Wiener theorem for the transform 

is discussed in Section 8. If xEa we denote by C~ the convex hull of the orbit Wx. We 

define a Paley-Wiener space ~r(M~) (for a precise definition we refer the reader to Defini- 
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tions 8.1, 8.2 and 8.3) and we show that .~'(C~(C~))C~r(Mx) and J(~r(Mx))cC~(C~). 
The proofs of these statements are analogous to Helgason's proof of the Paley-Wiener 

theorem for Riemannian symmetric spaces ([11, Chapter IV, w Finally, in Section 9 we 

show that JJ:=id and ~ ' J = i d ,  and we give explicit inversion formulas and Plancherel 

theorems. The key step in the proof of J J r = i d  is the beautiful idea due to van den Ban 

and Schlichtkrull [1] to use Peetre's characterization of differential operators. The results 

of Section 8 are of crucial importance here. 

In order to put our results in perspective it is enlightening to compare these with the 

theory of the spherical transform on a Riemannian symmetric space. It should be made 

clear that the harmonic analysis on Riemannian :symmetric spaces is the main source 

of inspiration for the results presented here. The theory of the spherical transform is 

generalized in two ways in this paper and it is worthwhile to discuss both these steps. 

Firstly, we replace the spherical function on a Riemannian symmetric space X = G/K 
by the more general notion of hypergeometric function associated to the root system R 

(the restricted root system of X) and a multiplicity function k. If 2k=m, the root 

multiplicity function of X, then this hypergeometric function reduces to (the restriction 

to a Cartan subspace of) the spherical function, but in general it is no longer associated 

to a geometric object such as X. (This procedure was studied in the papers [10] and [6] 

and simplified considerably since then by the work of Dunkl [5] and Heckman [7]; we 

refer the reader to [9] for an up to date account of these matters.) Our results imply that 

the inversion formula and the Plancherel formula for the spherical transform on X still 

hold when the spherical functions are replaced by hypergeometric functions, provided 

that the labels ks are nonnegative real numbers. 

The second generalization consists of the passage from the W-invariant functions 

(on a or T) to arbitrary functions. As we explained above, we work with W-spherical 

modules over H, embedded in the function spaces C~(a) and C~(T). The hypergeo- 

metric function is just a W-spherical vector of such a module. It turns out that there is no 

need to restrict oneself to the W-spherical part only. All the formulas that are relevant 

to harmonic analysis (special values, asymptotic behaviour, inversion and Plancherel 

formula) are equally simple and elegant with respect to properly chosen bases of the 

W-spherical modules. 

Let us conclude this introduction with two problems that seem to be interesting 

for further research. First of all, the results mentioned above indicate that there is a 

relation between the K-spherical representations of G and the irreducible W-spherical 

modules of H(k) (where k corresponds to the root multiplicities ms of X). Is there a 

more direct way to exhibit this relation? Secondly, we have avoided the situation where 

ks<0 in this paper. If ks<:0 (but small) the spectral problem is well-posed, and many 
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interesting new phenomena arise in the noncompact case. The decomposition of C~(a) 
now involves lower-dimensional spectral series which are related to irreducible unitary 

spherical H-modules that arise from unitary induction of "discrete series" representations 

of parabolic subsystems of positive rank. We hope to analyse this further in a forthcoming 

paper (joint work with G.J. Heckman). 

Acknowledgements. The author would like to thank E. van den Ban, I. Dolgachev, 

G.J. Heckman, M. de Jeu and E. Looijenga for valuable discussions. 

1. N o t a t i o n s  and prel iminaries  

The first part of this section serves to fix notations. The setup is similar to the setup 

in [22]. In the second part of this section we will review some elementary facts of the 

representation theory of the graded Hecke algebra. Let a be a Euclidean space of dimen- 

sion n and RCa* (the dual of a) be an integral root system. We do not assume that R is 

reduced, and we will write R ~ for the inmultiplicable roots in R and R0 for the indivisible 

roots in R. Denote by W the associated Weyl group. If a E R  then we use the notation 

~vea  for the element in a that satisfies ~(c~V)=2(a,)~)/(c~,c~). The set RV={c~V}ca 

is called the coroot system (and its elements are called coroots). We define Q=Z.R, 
the root lattice of R, and QV=Q(RV). We will also need the so called weight lattice 

P= P(R) =Homz (QV, Z) c a*. Let us denote by b the complexification C | a of a. The 

complex torus H is given by H=QV| • . We write A for the real split part of H, 

and T for the compact part of H, so that we have the decomposition H=AT. The Weyl 

group acts on H in a natural way (via the W-action on QV). If we put 

hX: H--.  C x , 
(1.1) 

h = x |  ~ z x(x) 

(where AEI~*, the dual of b), then this defines a single valued function if and only if AEP. 

The set {hX}Aep exhausts the algebraic characters of H, and the C-linear span of these 

characters is the ring C[H] of regular functions on H. The regular points of H for the 

action of W are Hreg={hEHI A(h)=II~eRo+(h~176 where R+ is a choice 

of positive roots (the function A is called the Weyl-denominator). The denominator 

formula of Weyl asserts that 

A(h)=  E det(w)h~ (1.2) 

where 

w E W  

1 
~i= ~ E c~. (1.3) 

aER~. 
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We also choose a basis (hi, ...,an) for R+, and let ( ~ I , . . . , ) ~ n ) C P  be the correspond- 

ing basis of fundamental weights. The subset Q+cQ ( P + c P )  is by definition the 

Z+-span of (ai)i~l ((~i)i~l) (where Z+--0, 1, 2, ...) and is referred to as "the positive 

roots (weights)". Corresponding to these notions of positivity we also have a+ (-- {x E a I 

a (x)>0  VaeR+}),  a~ (={~Ea*i)~(av)>0 VaeR+}),  A+ etc. Given a choice of positive 

roots we have a partial order on [~* (defined by )~<# <=> # - A E Q + )  and on W (the Bruhat 

order). Finally, the choice of the positive roots also determines a length function I on W. 

It is well-known that 

C[H] W -- C[Zl,..., zn] (1.4) 

where 

zi= E h~i  (1.5) 
wEWIW~ 

(where W~ is the subgroup of W that stabilizes A~). The map 

p r : H ~ C  n 
(1.6) 

h --* (zl (h), ..., zn(h)) 

parametrizes the W-orbits in H, and is ramified along the discriminant {zECnid(z)= 
A2(h)=0} of R. 

Let K: denote the linear space of multiplicity functions, i.e. the space of W-invariant 

complex functions on R. If k E/C we define 

1 
o(k) = Q(R+, k) - ~ E kate. (1.7) 

hER+ 

We associate a multiplicity k ~ (ko) of R ~ (Ro) to a given kE~  in such a way that 

k) = Q(Ro+, k0) = ~  k~ 

The graded Hecke algebra was introduced by Lusztig in [15]. The facts discussed 

below are completely elementary. For the most part they can be found in [15] or [2]. 

One can associate a graded Hecke algebra H to the following data: a Euclidean space 

a, a reduced integral root system R in a, a positive subset R+ in R, and a multiplicity 

function k on R. Let S(O) denote the symmetric algebra of ~ and let r~ denote the simple 

reflection in the simple root (~i of R. Then H(R+,  k) is the unique associative algebra 

over C with the following properties: 

(1) As a C-vector space, H=S(I~)| 
(2) The maps S([~)--*H, p--*p| and C[W]--*H, w--+l| are algebra homo- 

morphisms. 

(3) (p|174174 VpeS([}) VwEW. 
(4) (l|174174174 V~E~ Vi. 
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We often identify S(i~) and C[W] with their images in H via the maps indicated in 

the above description. (Consequently we may use either 1 or e in order to denote the 

unit element l |  of H!) 

PROPOSITION 1.1. (1) ~'~E~ VwEW: 

w. -w 
c~ER+~wR_ 

(2) VpeS(b) vi: 
ri "p-- pr~ . ri ---- -- kiAi (p), 

where a i  (p) = 

(3) 
(4) The center Z(H) of H equals S(h) w .  

Proof. (1) We use induction on the length ofT.  Write w=r iwl  with l (wl )<l (w) .  In 

this situation we have R+ MwR_ =r~(R+ MwlR_)U{ai} .  Using the induction hypothesis 

and the above description of the product in H this readily leads to (1). 

(2) Use induction on the degree of p. 

(3) Immediate from the above description of H. 

(4) Using (1) it is easy to see that Z(H)CS([)). Now apply (2) in order to con- 

clude (4). [] 

In the next proposition we collect some useful elementary facts about finite-dimen- 

sional representations of H. 

PROPOSITION 1.2. Let V be a finite-dimensionalH-module. If )~Et}* we define V~= 

{v Vl 
(1) 3)~Eb* such that V ~ O .  

(2) V~E~*: )~(a~)ri+ki maps V ~ to V r'~. 

(3) /f  A(aV)~•  V a E R  then d im(V~)=dim(U ~'~) V w E W .  

(4) Let ) , (av)~0,•  VaER.  If V has dimension IWI and has central character 

Xx: pES(t})w--*p()~) then V is irreducible. 

(5) Put I~=Ind~(0)(Gx)=H| x. Then I~ has central character X:~ and is 

isomorphic to the regular representation of G[W] when restricted to G [ W ] c H .  It has 

the following universal property: for any H-module V and v E V  ;~ there exists a unique 

H-module morphism I~ --* V such that 1 | 1--*v. 

(6) Let )~ be regular. The nonzero H-module morphism Ir,~-'*I~ determined by 

l |174 (cf. (2)) is an isomorphism if and only if ~ (av ) r177  

(7) Let V be an irreducible H-module. The dimension of the space of W-invariant 

vectors V W is at most one. 
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Proof. Straightforward and left to the reader (use (5) to prove (7)). [] 

The next theorem is less elementary. Although we will not really need this result in 

this paper it clarifies the definitions in Section 7 somewhat. For its proof we refer the 

reader to [2] (also see [24]). We note that the case where A is regular simply follows from 

the above proposition (use (6) for the "only if" part). 

THEOREM 1.3. I~ is irreducible if and only if A(av)~+k~ VaER. 

The next proposition will be useful for many computations. 

PROPOSITION 1.4. Let A be regular and such that A(av)r177 VaER. We define 

v~eIa inductively on the length of w e W  as follows: ve=l |  and if w<riw for 

some w E W and simple reflection ri then 

w~(~)  k~ 
v~,w = w~(~)+k~ r~v~ w~(a~)+k~ v~. (1.8) 

(1) O#v~EI~ ~, hence {v~}wEw is a basis for I~. 

(2) Formula (1.8) holds for all w E W  and simple reflections ri. 

(3) Put ~b~o,=lW1-1 ~ w e w  WVw,. Then ~)w,=r is independent of w' e W ,  and 

Moreover, dp spans I W . 

( ko) r 1-I 1 w~(~v) v~. 
wEW a E R +  

(4) Put G-=IWI -l~ew(-1)t(w)wv~ and Cwo=lWl -ly:~wew(-1)t(w)wwov~o 
(where wo denotes the longest element of W). Then 

and 

dPe=lW]-I H (l+~(~v))E(-1)'(W)Vw 
~ER+ w E T  

( ko) Go=lW1-1 H 1 A(av ) E (-1)l(W)vw" 
a E R +  w E W  

Proof. (1) and (2) follow from straightforward calculations and are left to the reader. 

As for (3), we first show the independence of w' using (2): 

w E W  

I W V ~ ~ ,.h =IWl--x Y~ \w',X(,~')+k~/ \w.~tc,,).~,./ 
wEW 

6-g50414 Acta Ma~hemafica 175. | m p r ~  le I septembre 1995 
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Now we calculate the coefficient b~o of v~ in r If we use (2) we see that  the only term 

in r162 -l~-~o,eWw'v~oo~ that  contributes to b~ is ]Wi-lwoVwow. Repeated 

application of  (2) now gives the asserted formula for bw. From Proposition 1.2 (5) we see 

that  I W has dimension 1, hence this subspace is spanned by r 

Let us finally consider (4). It is easy to check that  r is a skew 

element of Ix. Hence by Proposition 1.2 (5) both r and r are multiples of r The 

determination of the multiplicative constants is similar to the argument we used in (3) 

and is left to the reader. [] 

2. Cherednik's operators 

In this section we will discuss certain operators introduced by Cherednik in [2]. Cherednik 

analysed these operators in more detail in his paper [3] and the results of this section 

can all be found there. Instead of simply referring to these papers we choose to give 

an account here of a different approach due to Heckman [8]. Heckman's method is very 

direct and fits nicely into the framework of this paper. It is a pleasure to thank him for 

his kind permission to use this material here. 

Definition 2.1. Let REa* be a root system and kEIC a multiplicity such that k~ 

Vc~ER ~ Let dt be the Haar measure on T that is normalized by fT dt=l and let 6k(t)= 

l-Len(1 - t ~ )  ~ . We define a Hermitean inner product ( . ,- )k on C[P] by 

(f, g)k = fT y(t)g(t)6k(t) dt. 

Definition 2.2 (see [2]). Let R+ER be a choice of positive roots, kEK: an arbitrary 

multiplicity function and let ~Eb. The Cherednik operator D~ =D~(R+, k) is the differ- 

ential difference operator on I~ defined by 

Dr E k~a(~)l_-~-a(1-r~)-o(k)(~)" 
aER+ 

(VAE~* we define the function e ~ on b by e~(~)=e ~(~) V~Eb.) 

PROPOSITION 2.3 ([2, Proposition 3.8]). If k ~ >f0 and ~E a then D~(k) is symmetric 
with respect to (.,.)k. 

Proo]. This is a straightforward calculation, left to the reader. [] 

If A E a-~ we use the notation WA = {w I wA = A} and W ~ = {w I l(ww') >~ l(w) Vw' E Wx }. 
As is well-known, W ~ is a complete set of representatives for the right cosets of WA in W. 

Let RA = {c~E R I (c~, A)=0} be the parabolic subsystem of R associated with WA. 
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Definition 2.4 ([8]). For AEP we denote by A* the unique dominant weight in the W 

orbit of A. Let w~EW ~* be the unique element such that )~=w~A *. Define a partial 

ordering ~<w on P as follows: 

A~<w# r {(1) A*~<#*, 
(2) if A* = #* then w ~ ~< w ~. 

PROPOSITION 2.5 ([8]). The operators Dr act on C[P] and are upper tri- 

angular with respect to ~ w ,  i.e. D~(e~)=~-~<<.w~ a;~,~,e ~. 

Proof. Easy and left to the reader. [] 

Definition 2.6 ([8]). If kay>0 and AEP we define E(A, k)EC[P] by the conditions: 

(1) E(~, k)=e~+~<w ~ c~,~e~. 
(2) V#<wA: (E()~,k),e~)k=O. 

COROLLARY 2.7 ([8]). The E( A, k) are simultaneous eigenfunctions for the opera- 

tors D~(R+, k) and form a basis of C[P]. 

Proof. Use Proposition 2.5. [] 

LEMMA 2.8. Let D be a linear operator acting on meromorphic functions on [} and 

of the form D = ~ e w  D~w where D~ is a linear differential operator with meromorphic 

coefficients on [~. If  D vanishes on C[P] then Dw--O VwEW. 

Proof. By induction on the highest order d of the Dw. Let d=O. If xE[~ and 

/X(x)r then x and wx are different on H if wr Hence there exists a pEC[P] such 

that p(wx)=~,~.  Now from D(pW)=O VwEW it follows that Dw(x)=O VwEW. In the 

general case we notice that (cf. (1.5)) [Dw,zi]--O Vi--1, ...,n VwEW by the induction 

hypothesis. But {zi-z~(x)}'~= 1 is a set of coordinate functions at x if A(x)~0. This 

implies that d=O, and we have returned to the first case. [] 

COROLLARY 2.9 ([3, Theorem 2.4]). Let A denote the associative complex alge- 

bra with 1 of linear operators acting on holomorphic functions on [} generated by the 

D~(R+,k) and by wEW.  The linear map ~'~wew~| ~rom 
~| can be extended in a unique way to an isomorphism ~ e w p ~ |  

~-~ewP,~(D(k))w of the graded gecke algebra H(R ~ k ~ to A.  

Proof. By Corollary 2.7 and Lemma 2.8 the D~ commute with each other (be- 

cause they can be diagonalized simultaneously on C[P]). It is straightforward to check 

that r~D~(R+,k)-Dr,(r176 V a i e R  simple. Hence the linear map 

~'~wew ~ |  D~(R+, k)w can be extended uniquely to an epimorphism of al- 

gebras as indicated. To show the injectivity of this map we use Lemma 2.8 again. 
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Suppose that ) ~ c w  p~(D(k))w=O in A. If we write ~ w c w P w ( D ( k ) ) w = ~ e w  D~,w, 
then D~,=O VwEW by Lemma 2.8. On the other hand, let w' be such that the degree 

of p~, is maximal and let q denote its highest degree part. Then the highest order part 

of D~, equals q(O), hence q=0. Consequently, p~=0 VwEW. [] 

It is easy to calculate the eigenvalue of the E(A, k): 

PROPOSITION 2.10 ([8]). Define s:R--*{• by s(x)=x/Ixl if x#O and E(0)=- I .  

Given AeP we put A=A+�89 ~-~eR+ k~e(A(av)) a" Then 

D~(k)E(A, k) = A(()E(A, k). (2.1) 

If A6P+ then A=w~(A+~) where w~ denotes the longest element W~. Moreover, if A6P+ 
and w 6 W  ~ then (wA)'=wA. 

Proof. The statement about the eigenvalue follows immediately from the formula 

De(k)(e~) =i(~)e~+ Z a~,"e~ 
~<w A 

and this can be checked directly from Definition 2.2. We have wx(R~,+)=-R~,+ and 

w~(R+ \ R~,+ )=R+ \ R~+. Therefore: 

1 

aER+ aER+ 

and we see that A=wx(A+O). The last statement of the proposition is a consequence 

of the following well-known description of wX: wEW x if and only if w(a)ER+ 
VaER~,+. [] 

COROLLARY 2.11 ([8]). {E(A,k)}xep is an orthogonal basis of C[P] with respect 
to ( . , . )k .  

Proof. The eigenvalues are distinct since A## implies (if k~>~0 Va) that ~#/2. [] 

We close this section by relating the above operators and their eigenfunctions to 

the hypergeometric differential operators and the Jacobi polynomials P(A, k). We refer 

the reader to [10, Definition 2.5 (for the Harish-~Chandra homomorphism) and Defini- 

tion 2.13], and to [6] (for the Jacobi polynomials). 

Due to the commutativity of the operators De(k) we can extend the map 0 ~  

End(C[P]) in a unique way to an algebra homomorphism S(I])~End(C[P]) (cf. the 

proof of Corollary 2.9). The image of pES(I]) will be denoted by p(D(k)). If we do not 

want to specialize at any value of ;6 in particular we will write p(D). 
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THEOREM 2.12. (1) Let )~EP+. Then E()~, k) is Wx-invariant, and 

P(A,k) = Z E'~()~'k)" 
w E W  ~ 

Here E ~ denotes the function on T defined by E~(t)=E(w-lt) .  
(2) Let pe S(~) W and denote by Dp the (W-invariant) differential operator on C[P] 

that coincides with p(D) when restricted to C[P] W. Then Dp is the hypergeometric dif- 
ferential operator such that ~/( Dp)=p (where ~/ is the Harish-Chandra homomorphism). 

proof. (1) The W~-invariance is a consequence of Definition 2.6 and the fact that 

if )~EP+ and #<w)~ then W#<w)~ VwEW. Hence ~ e w  ~ Ew(A, k) is W-invariant and 

has leading term e n. By Corollary 2.11 it fits the orthogonality description of the P()~, k) 

as in [6]. 

(2) Because of Proposition 1.1 (4) and Corollary 2.9 we see that Dp is a W-invariant 

differential operator on C[P]. By (1) and Proposition 2.10 we have 

Dp(k)P(~, k) =p(~)P()~, k) 

--p(w~()~+~))P(A, k) 

= p(A + Q)P(A, k) 

= ~/(k)-l(p)P()~, k). 

Since differential operators on C[P] are determined by their action on C[P] W this com- 

pletes the proof. [] 

3. The Knizhnik-Zamolodchikov  connect ion  

In this section we want to study the eigenfunction problem for the Cherednik operators. 

This is of course essential to the study of the spectral problem for these operators. How- 

ever, the spectral problem on the compact torus T can be solved using the polynomials 

that were introduced in the previous sections. The reader might want to skip this section 

temporarily and read about the compact problem first (this problem is addressed in the 

next two sections). 

The material that is discussed here can for the most part be found in the papers [19] 

and [3] but we will follow a different and more direct route. The goal is to establish a 

precise relation between hypergeometric functions and eigenfunctions of the D~. We do 

this using the Knizhnik-Zamolochikov (KZ in the sequel)-connection as an intermediate 

step. An interesting feature of this method is that we do not need the integrability of 

the KZ-connection. In fact this turns out to be a simple corollary. 

Let us begin by fixing some notations. Let O be the sheaf of holomorphic functions 
o n  [~reg. 



86 E.M. OPDAM 

Definition 3.1. Let V=O| AEt)* and kE](:. The KZ-connection V(A, k) on V 

is defined by the following covariant differentiation (~E [~): 

1 ['l+e -a \ 

aER+ 

(Here c a ( w ) = -  sign(w-la)w.) 

If X e b  ~g is a W-invariant set then we have a natural action of W on O(X). When 

XE[] reg then we will use the notation Ow~ for the "multi-germs" at the orbit Wx, i.e. 

Owx=~wew 0 ~ .  When CeOw~ we write p~(r162 for the projection of r to the 

direct summand Ox of Ow~. We define an action 1rl of W on Ow~ by means of the 

formula r l (W)r162162  -1. Let 1r2 denote the action of W on C[W] by multiplication 

on the left. We have an action of W x W on Vw~=Ow~| via rl| The restric- 

tion of ~rt| to the diagonal subgroup A c W x W  is denoted by It, and the subspace 

of A-invariant elements of Vwx is denoted by V ~ .  Let p~ be the projection onto the 

summand Vx of Vw~ with respect to the decomposition Vwz=(~ew V~, and let pe 

denote the projection onto the summand Ow~| of Vwx with respect to the de- 

composition Vwx=(~e w Owx| Let f e C [ W ]  be the element f=~-~ew w. Clearly, 

7r(f): V~ -% Vw~= with inverse Px (3.1) 

and 

~r(f): Owx-% Vwa. with inverse Pe. (3.2) 

The next lemma is the key lemma of this section. 

LEMMA 3.2. Let ~2EVw~x and put r and r Then 

Vr Z lr(w)(V~-l~(I))= Z ((n~-'~ -wA(())r174 
w~W wEW 

Proof. The first equality is equivalent to lr(w)oV~or(w-1)=V~ and this is easy 

using the definition of V. For the second equality we first check that 

D 1 lrl(w)~176 ~+ 2 Z k~a(~)Zrl(r~)(1-sign(w-la)) 
aER+ 

1 l + e  -~ �9 1 
= 0 ~ + ~  a ~ +  ( ( i - - - ~ ) ( 1 - T r l ( r a ) ) - s l g n ( w - a ) T r x ( r a ) )  

using Proposition 1.1 (1). Then the assertion follows from Definition 3.1 and the fact 

that ~rl(ra)--Tr2(ra) on Vw~,. [] 
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Definition 3.3. Via the algebra A (see Proposition 2.9) we consider Owx as an 

H-module. Splitting this module according to the action of the center we obtain the 

following H(k)-modules: S ( A, k )= { r E Ow~ I P(D(k))r162 VpE S ( b ) W} (here AEb*). 

COROLLARY 3.4. V()~, k) E I~ • 

7r(f): V~ v(~'~) -~ Vw~ v(~'k) with inverse p~ 

and 

rr(f): S()~, k) ~ --% v ~ y  (~'k) with inverse Pe. 

Proof. Immediate using (3.1), (3.2) and Lemma 3.2. [] 

At this point it is clear that it is useful to investigate the H-module S. 

LEMMA 3.5. Put S(~, k ) W = { r  I Dp(k)r162 VpES(I~)W}, the local solution 

space of the system of hypergeometric differential equations. Then 

~'1 (f): S W ~ S w with inverse p~. 

Hence generically in the parameters (A, k) we have that dim S(A, k ) W >~ [WI. 

Proof. Clear using Theorem 2.12 (2). The statement about the dimension of the 

local solution space of the hypergeometric system is a basic feature of this system and is 

proved by substitution of formal power series as in [11, Chapter IV, w (Of course we 

even know that this dimension equals ]WI for all parameter values but we do not need 

this here (see [10, Corollary 3.9]).) [] 

COROLLARY 3.6. Suppose that A(av)~o, +(k~+�89 VaER ~ Then 

wl 

Proof. Put d=d imS  a. By Corollary 3.4 d~<lWl=rank(V). Note that the inte- 

grability of V is equivalent to d=IW[. Prom the conditions on (A,k) we deduce us- 

ing Proposition 1.2 (4), (5) that VeeS(A, k)W\{0}: H - r  Hence S(A, k)~-I d' where 

d~=dim S(A, k) w (using Proposition 1.2). Hence by Lemma 3.5, s  generically. 

Thus W is integrable and d=lW I for all (A, k). [] 

COROLLARY 3.7. The KZ-connection is integrable. 

Finally we study the projection 7rl (f): S x --*S W in detail. 
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Definition 3.8. Let 7-/ denote the harmonic polynomials on b*, and define qE 

C(b* • ]C)| the condition that VA~[~* and k~K: such that A(av)~0, •189 
q()L k ) ~ / i s  the unique harmonic element such that 

~(av) Vw ~ W. I I  
~n?~ 2 ~/~ 

LEMMA 3.9. (1) The function (~, k, #)--*l-I.en~ (~( a v ) -  (ka + �89 k, #) is 
a polynomial. 

(2) Suppose that ~(av)~O, •189 Then q(w)~, k): IW--*I~ ~ is the inverse 
off:  I ~ ; ~ I  w VwEW. 

Proof. (1) follows from [26, Chapter 4, Exercise 71 (f)] and (2) is immediate using 

Proposition 1.4. [] 

Definition 3.10. We define D()~, k)=Dq(~,~)(k), i.e. D()L k) is the differential oper- 

ator that coincides with q(s k, D(k)) on W-invariant functions. 

COROLLARY 3.11. I] A(av)~0, •189 VaER ~ then D()~, k): S()~, k)W-~ 
S ( )~, k) ~ is an isomorphism, with inverse 7r i ( f ) . 

Proof. Clear by Corollary 3.6 and Lemma 3.9. [] 

COROLLARY 3.12 ([19, Theorem 5.4.1] and [3, Theorem 4.7]). /]  )~(aV)~ka+�89 
VaeR ~ then Per2(f): V~v(~'k)--~ S()~, k) W is an isomorphism. Its inverse is given by 
r k ) r  Dw(A, k)r174 

Proof. Since dimS(A,k)W=dimV~V(~'k)=lW I V()~,k) (so now we use [10, Corol- 

lary 3.9]) it is sufficient to show that p~Ir2(f) maps Vx v(~'~) to S(A, k) W and that 

D(A,k)p~r2(f)=id on V v(~'k). Since D(A, k) is holomorphic outside the hyperplanes 

~(aV)=k,+�89 ( h e r  ~ (aemma 3.9 (1)) and V v(~'k) depends holomorphically on 

the parameters (A, k) it suffices to show this for generic parameters. But then it is 

clear from the previous results and the observation that pe~r~(f)=px~rl(f)pe~r(f) and 

D(A, k)=px~r(f)D(~, k)rl(f).  [] 

Now we are in the position to give a precise statement about the relation between 

eigenfunctions of the D~ which are analytic on a and hypergeometric functions. 

Definition 3.13. For each irreducible representation 5 of W, let d6 be the lowest 

embedding degree of ~f in C[b], and let r  + k~(1-xc(r~)/xc(e)) .  (Here X de- 

notes the character.) Let ~+={kE~lRe(ec(k))+d~>O VCEW,6~triv}. Note that K:+ 

is an open neighbourhood of {kE~ ] Re(k~)/>0 VaER}. 
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LEMMA 3.14. If kEIC+ and r is holomorphic in a neighbourhood of a and a nonzero 
solution of the eigenfunction equations D~(k)r162 V~ then r  

Proof. Let {~i} denote an orthonormal basis of a and let {~'} be the dual basis. The 

lowest homogeneous part of the operator ~-~=1 ~*D~, (k) at the origin is equal to E(k)= 

~-~-~=1 ~*0~ + ~ c R +  ka(1 - r~) .  The element :)-'~-~eR+ k~(1-r~)  of the group algebra of W 

is central. Hence it acts on an irreducible representation 5 of W by scalar multiplication, 

and it is easy to see that this scalar is in fact equal to e6(k). By the definition of ]C+ the 

operator E(k) has no polynomials in its kernel other than the constants when kEIC+. [] 

THEOREM 3.15. There exists an open neighbourhood U of OGa such that there exists 
a holomorphic function G on f}* xIC+ x (a+iU) with the following properties: 

(1) G(~,k,O)=l, 
(2) V~E[~: D~(k)G(),, k)=)~(~)G()~, k). 
These properties determine G completely. G can be continued meromorphicaUy to 

f)* x ]C • ( a + iU). It can be expressed in terms of the hypergeometric function F as follows: 
G(A, k)= IWlO(A, k)f()~, k). 

Proof. We will use the following two properties of the hypergeometric function F. 

First of all, F(A, k ,0 )= l  (cf. [22, Theorem 6.1]). Secondly, there exists an entire func- 

tion f on ]C such that the function (A, k, x)-*f(k)F(A, k, x) is holomorphic in (A, k, x)6 

b* x/Cx (a+iU) (cf. [22, Proposition 3.8]). Define G by G(A, k)=IW]D(A, k)F(A, k). Let 

us show that G has the asserted properties. By Corollary 3.11 we know that (2) is sat- 

isfied and that ]W] -1 ~--]-wew Gw =F .  Hence G(A, k, 0)=F(A, k, 0)=1, which proves that 

property (1) holds. Let us now prove that G is holomorphic in t~*x ]C+ x (a+iU). From 

Lemma 3.9 and the second property of F mentioned above we see that the function G 

is meromorphic and that its singular set is the zero set of a function that depends on 

(A,k) only. Let Sx(a+iU) denote this singular set. Suppose that SA([~*x]C+)#o. 

Choose a regular element (A0, k0) of S, and let r be an irreducible holomorphic function 

in a neighbourhood V of (A0,k0) such that VAS={r Let 16N be the smallest 

integer such that G=r extends holomorphically to V x (a+iU). Then G(A, k, 0)=0 

V(A, k) 6 VMS, and hence also G(A, k, x) =0 V(A, k, x) 6 (VA S) x (a+iU) by Lemma 3.14. 

This contradicts the minimality of I. The uniqueness assertion is a consequence of the 

fact that F is the unique holomorphic solution of the hypergeometric equations in a 

neighbourhood of 0 with F(0)=  1, combined with Corollary 3.11. [] 

Let us consider the general rank one case now, i.e. the case where R is of type BC1. 

If a denotes the linear functional on a ~ R  that plays the role of the simple root of R 

then R+---{a, 2a} and R={=l=a,-t-2a}. The lattice QV is the Z-span of the vector (2a) v. 

The equation on [~-~C for the hypergeometric function associated with BC1 is symmetric 
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with respect to translations in the lattice 2~:iQ v and with respect to multiplication by 

- 1  (cf. [10, w The quotient of b with respect to these symmetries is isomorphic to C, 

and we can take z = � 8 9 1 8 8  -a)  as a coordinate on this quotient space. In this way 

we find that the hypergeometric function FBc1 that is associated with BC1 compares to 

the classical hypergeometric function in the following way: 

FBcl (~, k, x) = F(a, b, c; z(x)), 

where the relations between the parameters (a, b, c) and ()~, k) are given by 

a = 

b =  

c =  l+k~+k2~.  

It is not difficult to see that 

q(~,k,~)= § 
2A(c~V)-2k~-4k2a 2A(av)-2k~-4k2~" 

Hence the operator D()~, k) is given by the formula 

1 1 1 1 d 
D()~,k): ~+ 2()~(aV)_k _2k2a )Oar=2  2b d~" 

Now we can find the function G(A, k) by application of 2D(A, k) to Fsc ,  (A, k). If we use 

the above relation as well we obtain the following formula: 

G(~, k, x) -- F(a, b, c; z(x)) + 1 sinh((~(z))f'(a, b, c; z(x)). 
L O  

4. I n v a r i a n t  H e r m i t e a n  s t r u c t u r e s  

In this section we study two different ,-structures for the graded Hecke algebra and a 

family of irreducible unitary modules for each of these. 

Let R be a reduced integral root system and let k E ~  be a real multiplicity function. 

Fix a positive system R+CR. The first .-structure "+" that we consider on H(R+,  k) 

is simply defined by ~+ =~ and w+=w -1. One easily checks that this extends uniquely 

to an anti-linear anti-involution of H.  Let ),Ea~_. Recall the notations of Definition 2.4. 

Let P ~ c H  denote the "parabolic subalgebra" generated by ~E[J and wEW~. Hence 

P~=S(I})| (as a vector space). Denote by Cs the 1-dimensional PA-module 

defined by (see Proposition 2.10 for the definition of ~) 

ri. 1 = 1 Vr~ E W~. 
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(One easily checks that this defines a P~-module.) Finally we define an H-module V~, by 

Vs = IndH~(c~)---- H|163 

Clearly V~=C[W/W~ 1 as a W-module. 

THEOREM 4.1. Let k~>~O VaER, and AEa~_. 

(1) V~t{0} r 3 w e W  ~ such that #--wA (=(wA)-). / fweW ~ then d i m c ( V ~ ) = l .  
(2) Vs is irreducible. 

(3) There exists a unique basis {v~}~ew~ of Vs such that 

(i) v~=1| 

w~,(a~')+k~ k~ 
(ii) rive= v ~  - - v ~  V i : l ,  2,...,n, ~(~) ~(~) 
(iii) ~vw=wA(~)v~ V~Gb. 

(Here we tacitly used the notation vw = 0 if w ~ W~.) 

(4) There exists a positive definite Hermitean form ( .,. ) on Vs such that ~*---~ and 

w* =w -1 in V~. This form is unique up to scaling. In terms of the basis {v~}~ew~ one 

has (a=a(A, k)eR+ is a scaling factor): 

(vw,v~,)= a(~,k)~,~, 
l'LeR§ (1-k./ws 

(5) Define Vw'EWX: r  ~wewWV~, .  
w' E W ~ and spans V ~ .  Moreover, 

where 

r  Z bwvw 
wEW x 

Then r =r  is independent of 

bw=[W1-1 H 1 w~(av) . 
a E R +  

(6) (wv~,w'woV~o,o~)=lW~J-~a(A,k)5~w~,~,w~ Vw, w'eW. 
(7) 11r 
(8) If  A is regular then 

(4.1) 

~(aV)+k~ 11~;ll2=lwl-la(~,k) I] ~ "  
c~E R+ 

(r was defined in Proposition 1.4(4) as an element olin,  and I~--V~ ira is regular.) 
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Proof. (1) Let wA denote the longest element in WA. Recall that  A=wA(A+Q) 

(cf. Proposition 2.10). Hence 

A(a v) > ks if a E R+\RA,+, 

A(a v ) x < - k s  i f aERA,+ .  
(4.2) 

Note that  in particular A(c~V)=-k~ ~ (~ERA,+ and simple. Let wEW ~, and choose r 4 

such that  l(r4w)<l(w ). Thus w-1((~4)<0, implying that  w(a)r Vt~ERA,+. Hence 
r i l  W~ ~ T ~ri 1 W~ r 4 w e W  A. Now suppose that  V~ ~{0}, and choose u~:v~,~evs . Observe tha t  

~ V _- --1 V r4wA(a4)-A(-w c%)>k4 since-w-Ia4eR+nw-~R_cR+\RA,+ (use (4.2)). This 
implies that  the element vw defined by 

ril wA(a v ) (ril -t kh = w (4.3) 

is nonzero and it follows from Proposition 1.2 (2) that  vwEV~ '~. By induction on the 

length of w we conclude that  V[Ar VwEW ~. On the other hand we know that  the 

dimension of Vs equals IWAI . This proves (1). In order to prove (3) we first of all note 

that  the uniqueness of such a basis is immediately clear from (3)(i) and (3)(ii). Next we 

define the basis elements vw (wEW A) by induction on the length of w using (4.3) and 

the initial value v~=l| We have to show that  this basis satisfies (3)(ii). If r i w > w  

and riw, wEW A then (3)(ii) is a restatement of (4.3). If riw, wEW ~ but riw<w, (3)(ii) 

follows by applying ri to both sides of the first case. Finally, if wEW A but riw~W ~ 
then a~=w(aj) for a certain c~j ERA simple, so that  (ri§ or 

equivalently, rive, =vw, in accordance with (3)(ii). This proves (3). As to (2), observe that  

any nontrivial submodule of Vs must contain at least one of the elements v~ (wEWx). 
Using (3)(ii) we see that  this immediately implies that  the submodule coincides with V~,, 

proving (2). 

(4) Take a()~, k) = 1. Define a Hermitean form by 

ks )-1. 
I ]  1 

t~ER+ 

Clearly ~* = ~  with respect to this form. In order to prove r$ =rj Vj= 1, 2, ..., n we restrict 
w~ rjw~ our attention to the 2-dimensional subspace V-] ~V~ i fw , r jwEW A, and to V~ 5' if 

wEWA,rjwq~W A. The second case is trivial since rjIV~A=-I-1 in this situation. Let us 

consider the first case. It is sufficient to show t h a t  the +1 and - 1  eigenspaces of rj in 
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,05, --~wX V~ @V~ are perpendicular: 

93 

Hence 

In the last equality we used the well-known identity 

k, 
]W~'= I I  ( lq  p(k~-av)). 

aERx,+ 

k~ 
wve= H I+ K~.v~ ~V'0"4- Y'~ C'0'v'0'" 

~ m ~ ' 0 _ ~ n  - ),(c~ ) ]  "0,<~, 

(wv~, V'0o~) = a G , w o ~  I-L~R+\n~,+ (1 +k./3,(av)) 
I-[.e R. (1 -- kc,/wow~(a V)) 
a~'0,'0ow~. 

I-ien~,+ (l+ka/o(k)(av)) 
a ~ )  "0o'0~ 

(4.4) 

(vw +rjvw, v'0 - rjv'0) 

= ( ( 1 +  kj / + ( 1  kj ) v w , - ( l q  k j  ~v~'0+(lqw~_.~j))v'0) 

= - ( I  rjw~(a~))211vrj'0112+(1 - kj O. rjw (a~) ) (1  kj = IIv'ol12 

(5) Similar to Proposition 1.4 (3), except for the determination of the coefficients b'0. 
We argue as follows. Using (3) one easily checks that ~_,'0ew ~ b'0v'0 EV~. Observe that 
(3)(ii) implies that application of wEW does not alter the sum of the coefficients with 
respect to the basis {v'0}'0ew~. Thus because V W has dimension 1 all we need to show 
is that ~wew~ bw=l. Indeed, 

E b'o=iWl-1 E H 1 w~(,v ) =lWl-1 E H 1 W~(OJ) 
"0E W :~ wE W ;~ r R+ wE W aE R+ 

(since we have w~W ~ =~ 3a~eR~ such that -wc~eR+ ~ Sc~eR+ such that w~(c~V)= 
-~(aV)=ka). Hence 

E b'o=iWl-1 YI ~(av)-I E ( - ' ) ' ( ' 0 )  f l  (w~(aV)-k~)=l" 
w E W  ), aER+ w E W  oLER+ 

(6) We show that (wv~,V'0o'0~)=lW~l-ta6"0w~,,~o'0~wx (note that wow),EW ~ is the 
longest element). We may assume that wE W ~', and repeated application of (3) shows 
that if w E W x then 
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(This formula simply follows from identity 2.8 of Macdonald's paper [16] when we take 

ua=e k" and evaluate at 0(k).) 

(7) (r r E~,~,ew(WV~, w'wov~o~)=lWl-la. 
(8) Similar to the proof of (7) we have (02,r Now use Proposi- 

tion 1.4 (4). [] 

The second *-structure on H we will investigate is given by w* = w  -1 (VwEW) and 

~*=-wo.wo(() .wo (V~E0). Again it is easy to check that  this can be extended to H as 

an anti-linear anti-involution (provided k ER). 

THEOREM 4.2. Let k a E R  and ~Eia*. 

(1) Define a positive definite Hermitean form ( . , . )  on I~ by means of 

(WlVe, W2Ve) = ~wl ,w2" 

Then ( . , . )  is invariant with respect to *. 

(2) If  CEIx w is the spherical vector r -x E~w wv~ then 11r -x. 
(3) If  )~Eia *'~g then (wlvws, w2vws)=5~,~2 Vwl, w2, w3 E W. 
(4) l f  ,k E ia *,r~g then 

~Wl IW2 
(v~,, w0V~o~)= 17~R, (1-k~/~1~(~))"  

Proof. 

to show that 

(~w~v~, w~v~) = (wav~, ~*w2v~) VWl, w~ e w, ~ e . .  

By the conjugation formula Proposition 1.1 (1) we have 

fwl = wl"wx-l(~)+ E k~Wla(~)wlr~ 
{aER+ ]wtra<wl } 

and 

(1) The unitarity of w E W  is immediate from the definition. Thus we need 

(4.5) 

(4.6) 

~*w2 = -wo.wo(O.~ow~ = -~2.w;1(~) - ~ k.w2,~(~)w~r~. 
{ctER+ I w2r,~ >w2} 

(4.7) 

By these formulas it follows immediately that  (4.5) holds if wl =w2 or if wl ~w2 and 

w t r ~ w 2  V~ER. So let us assume that  3~ER+: wtro=w2. In this case (4.5) reduces to 

(using (4.6) and (4.7)) 

k . w l . ( r  ro,~ = - ~ k . w ~ ( r  
{a~R+ I wlro <wl } {a~R+ I w~r~ >w~ } 

(4.8) 
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But wlr~=w2 ~:>a=~ and also Wl=W2r~ ~=> a = ~ .  Therefore, ifwlr~>wt, then W2rB<~W 2 

and we see that  both sides of (4.8) are equal to 0. If on the other hand wlr~<wl then 

w2rz>w2. Since w2~=wlrz~=-wl~ both sides of (4.8) reduce to kzWl~3(~) in this case. 

This proves (1). 

(2) Immediate from the definitions. 

(3) By the universal property of I~ we may define a morphism m:I~--~I,~3~ by 

m(v~)=v~,~l. By Proposition 1.4 we see that  then m(v~)=vw~ ~, VwE W, so in particular 

m(v~3)=ve. Hence (wlv,~3, w 2 v w 3 ) = ~ , ~  also defines a ,-invariant form on I~, which 

must be equal to the form defined in (1) up to multiplication by a constant c since IA 

is irreducible (Proposition 1.2). But by Proposition 1.4 we have r  -1 ~-~ew wve= 
[W[ -1 ~,~ew wv~3, so that  the norm of r is the same with respect to both forms. Hence 

c= 1 and (3) is proved. 

(4) If Wl~W2 then we see that  (v~, WoV~,ow2)=O using the fact that  

= 

By repeated application of (1.8) we see that  

ko ) - t  
1-[ w0v ,+ 

aER+ w~wo 

for certain constants bw. 
proving (4). 

(4.9) 

Hence we can evaluate (v~,~, WoV~ow ~ ) using (3) and (4.9), 
[] 

5. H a r m o n i c  a n a l y s i s  o n  T 

Let T be the torus T=ia/2rciQ v. Let kE/C be such that  0 1 ka=ka+~ka/2>/O VaER ~ 
Clearly, we obtain an action of H = H ( R  ~  k ~ (the graded Hecke algebra associated with 

R ~ CR and multiplicity k ~ on C[P] via the operators D~(k) and the action of W. By 

Proposition 2.3 we know that  the inner product 

JT ,I"1" 
~ER 

is invariant with respect to the +-structure on H. 

LEMMA 5.1. (1) Let ,~eP+. The subspace (E(wA, k))~ewCC[P] is an H-sub- 
module. 

(2) In fact, (E(w)~, k))wew~_V~ as an H-module. Fix an H-module morphism 

j: Vi ~ (E(w~, k ))wew 
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by j(ve)=E()~, k). Then j is an isomorphism. 

(3) E(wA, k)= ]1 (~(av)+Ik~/2+k~j(vw) (VweW~). 
J - J .  ~ v 1 

~eR+n~_lR_\ )~(a )+2k~/2 ] 

(4) P(A, k)=lWXlj(r 

Proof. (1) and (2). It is clear that (E(wA, k))~ew is an H-submodule, since the 

center of H acts on this space by means of the homomorphism X~:p(D~(k))--*p(A) and 

X~ =X, r )~EW.#. We showed that E(A, k) is W~ invariant in Theorem 2.12 (1). Hence 

j: Vs k) defined by h.v~h.E()~,k) is a well-defined homomorphism. But Vi, 

is irreducible and has dimension IW~I so (2) follows. 

(3) It is easy to verify that 

( ' ) ka~+gk~/2 E(w~) if r~w1>wl and wEW ~, E(riw~)= riq (w~)-(c~) 

Comparing this to Theorem 4.1 (3) and using the trivial formula 

= 
o t E  RO+ n w -  I R 0 - 

gives the result. 

a E R + n w - l R _  

(4) Note that P(A,k)=IW~1-1E~eww.E(A,k) (see Theorem 2.12(1)). [] 

Lemma 5.1 makes it possible to use the results of the previous section for the purpose 

of solving the spectral problem for the operators D~(k) on T. The formulation of the re- 

sults is short and elegant when one uses the following generalizations of Harish-Chandra's 

c-function. Let 
6w(a) = ~ 0 if w(c~) > 0, 

( 1 i f w ( a ) < 0 ( a E R + , w E W ) .  

Define 

and 

YI 
aER+ 

aER+ 

So 5(,~, k)=Se(A, k) and c*()~, k)=C*o()~, k). 

Let us make some general remarks about the solution of the spectral problem to 

be presented here, before we go into details. By Lemma 5.1 we already see that C[P] 
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decomposes into an orthogonal direct sum of the mutually inequivalent irreducible W- 

spherical H-submodules j(Vs, ) (AeP+). This reduces our task to the determination of 

the normalization constant a(A,k) that was introduced in Theorem 4.1(4), in such a 

way that j becomes an isometry. This problem will be solved by a simple inductive 

procedure. Although we could have determined this constant also by referring to the 

results of [20] for the W-invariant polynomials, we preferred to include this inductive 

procedure because it results in nicer proofs and a better understanding of the nature 

of Macdonald's conjectures [17]. More precisely, the inductive procedure describes how 

the closed formulas for the L2-norms and the values at the identity of the orthogonal 

polynomials E(A, k) arise from a repeated use of the structure of VS, as an irreducible 

W-spherical unitary (H, +)-module. The formulas describing these stuctures for V i were 

given in Theorem 4.1. 

The next lemma plays a pivotal role in the induction step. 

LEMMA 5.2. Recall the definition of Ce EI~ from Proposition 1.4 (4). We have 

j(r k)) = IW~I-1Aj(C(A, k+l ) )  (5.1) 

(where A denotes the Weyl denominator (1.3) and 1 is the multiplicity defined by l a = l  

i f  a e  R ~ and 1Q=0 else). Consequently, 

(~+ ~+~)(~v) + ko + �89 ko/~ 
a(~,k+l)--IW~l~a(~+~,k) I I  (~+~+6)(~v)_k _ , k  

Proof. The first assertion follows directly from the divisibility of skew polynomials 

by A and the definition of the E(A, k) using orthogonality. The second assertion follows 

from the first by Theorem 4.1 (7) and (8)i [] 

THEOREM 5.3. Let wEW :~ and let w~ denote the longest element of W~. Let 

heR+. 
* A 

(1) IIE(wA, k)ll~-C~. -~ (-( +0),k) 
c ~  (~+ 8, k) 

(2) E(wA, k,e)= c~~ e~(~+~,k)"  

Proof. (1). We may assume that R is connected. It is sufficient to prove the state- 

ment when kaEZ+ VaER. First of all we claim that (1) is equivalent to the statement 

that the embedding of Vs in L2(T, ]6k] dr) via j is an isometry if we take 

,x, ,~ c*(-(~+e),k) 

7-950414 Acta Mathematica 175. |mprim~ le 1 septembre 1995 
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in Theorem 4.1 (4). Namely, given this value of a we calculate the value of []E(wA, k)ll~k 
by means of Theorem 4.1 (4) and Lemma 5.1 (3) as follows: 

I IE(w~,  k)ll~ = IW~l ~ c*(-(A+~), k) r [  ( 5'('~v)+�89 
5(A+Q,k) "eR+n~-ln- \ ),(a )+2k, /2  

( 
• I-I \,~(<~v)- �89 

~eR+rlw-lR+ 

Now use the well-known formula (cf. (4.4)) 

(~("v)+�89 +ko 
IW~l=<,~+t o(---~vS+�89 ~ ) (5.2/ 

and ~=w~(.~-k~) (implying that ~(av)=-~(c~ v) if ~eR~) in combination with 

w~,(R+ nw- l  R_ )IIR~,+ = R+ n (ww~)-l R_ 

and 

w:~(R+nw-l R+ ) = (R+N(ww~)-I R+ )IIR~,_. 

This leads to (1), proving the claim. It is easy to check that this value of a(A, k) satisfies 

the relation asserted in Lemma 5.2. Applying this relation sufficiently many times we 

may assume that one of the root multiplicities is 0. Let R1 be a root subsystem of R 

such that k=O on R\R1 and such that the rank of R1 equals the rank of R. Then 

D~(R+, k)=D~(RI,+, k) and it follows that E(R+, A, k)=E(RI,+, A, k). But this means 

that we may now omit the roots in R\R1 altogether and proceed with R1. Repeating 

this we end up with the situation where k=O, and here (1) is obviously true. 

(2) This is proved by a similar induction process. Put j(~b()~, k))(e)--b(~, k) V)~eP+. 
First of all we note that the assertion is equivalent to 

b(A,k)= Cwo(O,k) 
e~(:~+e,k) 

since IW1-1 ~-~,ew E(A, k)~(e)=E(A, k, e). Next we observe that this is true if k=O and 

that omission of conjugacy classes of roots having multiplicity 0 does not change either 

side of this formula. To do the induction step proceed as follows. From Theorem 1.4 (4) 

we obtain 

( ko+�89 J(r H 1 + ( ~ - + ~ ) )  Z (-1)'(~)J(v~'(i+6'k))" (5.3) 
hER~ wEW 
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If we apply the operator D=l-[,~eRO + Day (k) to (5.3) this becomes 

DJ(r H (('~+~+O(k))(v~V)+k~+�89 ~ j(vw()~+6, k)). 
aE R~ wE W 

(5.4) 
It is clear from the definition of v~ and of r (see Theorem 4.1) that  j(vw()~+6, k))(e)= 
j ( r247 k))(e)=b(A+6, k). This results in the following formula when we evaluate (5.4) 

at e: 

Dj(r k))(e)---b()~+6, k) H (()~+6+o(k))(aV)+k'~+�89 �9 (5.5) 
a E R ~ 

A moment's thought shows that this formula can be generalized as follows. Let f be an 

arbitrary W-invariant holomorphic germ at e. Then 

D(fj(r k)))(e)=f(e)b(.~+6, k) 1~ ((A+6+o(k))(wV)+k'~+�89 (5.6) 
aER~ 

Now take A--0 in (5.6) and put f--j(r k + l ) ) .  Observe that  j(r k))=A. We thus 

obtain 

D(Aj(r k) H ((6+o(k))(~v)§189 �9 (5.7) 
a E R ~ 

Finally use Lemma 5.2 to compare the right hand sides of (5.5) and (5.7). This leads to 

the recurrence formula 

b(~, k + l )  = ' b(~+6, k) ( ~ + 6 +  0(k))(~v) +ko  + �89 
I] 

~ER~ 

for b(A, k). Using (5.2) one easily verifies that the asserted value for b(/k, k) satisfies this 

recurrence relation. By the above remarks and the induction procedure as in the proof 

of (1) this proves (2). [] 

6. Asymptotic expansions and growth estimates 

In this section we develop two types of growth estimates for the eigenfunctions G()~, k; x). 

First of all we give a majorizing function for IG()~, k)l, and closely related locally uni- 

form bounds for IO~,G()~, k)l on A. This part was inspired by the analogous results of 

de Jeu [13] in the case of Dunkl operators. The methods we use are also completely sim- 

ilar, although there are some complications that cause the results here to be a bit weaker 

than those in the Dunkl case. The second part of this section deals with asymptotic 

expansions of G()~, k; x) in Weyl chambers, in the spirit of Harish-Chandra 's  treatment 

of asymptotic behaviour of spherical functions [11]. 
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PROPOSITION 6.1. Let k~>.O Vs. Then 
(1) ]G(A,k;x)l<<.lWI1/2emax~R~(toa(*)) if xEa. 

In fact, we have more generally: 
(2) IG(A,k; z)l<<.lW]l/2e -mln~Im(tox(y))+max~toe(u)+max~R~(w~(~)) if z=x+iy with 

x, yEa and la(y)l~<Tr VaeR. 

Proof. Put Cto(z)=G(A, k; w-lz); from Lemma 3.2 we see that )--]to Cto| is V(A, k)- 
flat. By Definition 3.1 this means that 

O~r k~a(~) l_e_~(z)(r162162 to +(wA,~)r 

Assume k~/>0 Va, and take complex conjugates: 

- 1 . - ,  { l + e  -~(e) ) O(r = ---~ Z k c ~ o t ( ~ ) ~ ~  (~w-~r,,to)-sgn(w-lol)r + ( w ) ~ , r 1 6 2  w .  

a > o  

Hence 

o~ ~ iotol: = ~((o:oto)$to +r 
t o  ~ 3  

=-l~>o(kaa(')(l+e-a(~)(r162162176 -e-~( �9 ) 

+e~a(()  ~ , ~  (r - r162 - sgn(w- ~ c~)r +2 ~ ae(w~(~))lCto I ~. 
t o  

For each fixed a we first add the terms with index w and raw. We obtain 

( , . , l+e  -a(z) l+e-~(e) \ 
o, ~ i~l~: ~ ~ ~o ~o,~ ~ - ~  § i ~ )  ~o~ ~o~l ~ 

to/) 

+ ~ ka sgn(w-la)  Im(a(r Im(hto~b~, to) +2 Z Re(wA(~))lCto 12. 
a > O  w 

w 

Using z=x+iy we rewrite this as follows: 

1 ~ (Re(a(~))(1-e-2~(~))+2Im(c~(~))e-'~(~)sinc~(y)) 

w 
' to  

+ Z  ka sgn(w-Xa)Im(a(~))Im(r w)+2 Z Re(wA(5))lr (6.1) 
~ > 0  w 

t o  



GRADED HECKE ALGEBRAS AND HARMONIC ANALYSIS 101 

First we take xEa reg and ~Ea reg such that x and ~ belong to the same Weyl chamber. 
Let #E {w Re A}wew such that #(~)=max`" ae(wA(~)). Formula (6.1) implies 

0 r  ) - - - ~ Z  ~ {l_e_~(~)12 {~`"-~b~,`"{ 2e-2~(z) El~w(z) l  2 1 >ok a(~)(1-e-2~(x)) 

+2 ~-'-:~(w Re A-~)(r162 -2t'(~) ~< 0. 

Hence e--2max~Re(~X(~>)~w 1r Ir 2 if xEa r~s, and by continuity this 
estimate holds VxEa. Now ICe(z)l~ (~-~w ICw(z)12) 1/2, hence the above formula shows 
that 

{G()~, k; x--}-iy){ ~ e maxwRe(̀ "A(x)) -(~w Ir "/2" (6.2) 

if la(y)] <~r VaER (thus avoiding problems of multivaluedness of G(A, k;x+iy)). Note 
that this estimate already proves (1) when we substitute y--O and use Theorem 3.15 (1). 

In order to prove (2) we take yea reg such that ]a(y)i4~r VaER, and r}Ea r~g belong- 
ing to the same chamber, and let ~=i~7. Note that Re(wA(r and take 
#E {w Im A}wey such that - Im(wA(7})) ~ -#(7/) Vw E W. Observe that 

Z k~, sgn(w-la) Im(c~(~)) Im(r162 I ~ Z kola(,7)l" lO~l. lr 
a>O c~>O 

vJ) `" 

.< 2 m~(wo, '11 ~ Ir 2. 

Choose ye {w#}`"ew such that (u, ~})=max`"(w0, ~1). Using (6.1) we obtain (with F(iy)= 
e2("-")(~) E`" lr ~) 

( O~ F)( iy) = - Z kc, [ a07) sin a(y) ~ I~ -r 
.>0 \ ll-e-"'~12 )"~`" 

+ ( Z  ka sgn(w-lo~)Im(~(~))Im((~wCro`")-2(u, 7})~  'r e 2("-~)(u) 
"o~>0 

( `" ImA)(~}){r 2(~-~)(u) ~<0 

(since a(r/)sina(9)>0 (if 7?, 9 belong to the same chamber and moreover la(y)[ <~Tr Va)). 
Hence we see that F(iy)< F(0). Together with (6.2) and Theorem 3.15 (1) this proves (2). 
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COROLLARY 6.2 (cf. [13]). Let k~>~O Va, and let T denote a multi-index. Then 
V6>0 3C~>0 such that VxEa, AEia*, [A[>~: 

IO~.G(A, k; x)l .< C~ I~11~. 

In particular, if K C a is compact ~CK ~>O such that VxE K, hE/a*: 

IO . a(),, k; x)l CK(I+ IN1"1). 

Proof. Choose 5>0 such that T~--{zllz, l=5/e}c{z--x+iylla(y)l<~w WeR}. By 
Cauchy's formula, 

G(A, k, z) dz 

+TIll 

If zEx+Tix I then Iz-xl'=61"llAI -I~l and by Proposition 6.1 (2) we have Ia(a, k; z)l <C 
(independent of A6ia* and x6a).  This proves the result. [] 

Next we consider the asymptotic behaviour of G(A,k;x) when xEa_,  x--*oo. We 
study this behaviour simply by means of the relation between G(A, k; x) and the hyper- 
geometric function F(A, k; x) and the existing knowledge on the asymptotic behaviour 
of F. Let us first recall what is known about the behaviour of F: 

THEOREM 6.3 ([10]; the different sign in the argument of the c-function is due to 
a change of sign in the definition of ~). Assume that Re(k~)~>0 (Ya), that A is regular 
and that A(xV)+l r  (VxEQ\{0}). If xea_  then 

F(A, k, x) = Z c(-wA, k)r k; x) 
w E W  

where r is of the following form: 

r k; x) = e (~+~ Z A,,(A, k)e "(~). 
gEQ+ 

The coe~cients A satisfy the following properties: 

(1) A0(A, k )= l .  

(2) A,,(A, k) is a rational function, with poles only at hyperplanes of the form 

A(gV)+l = 0 (g e Q+\{0}). 

(3) Let xoEa+. Then 3K~oER + such that VgEQ+ VAE~++ia*: 

[A,,(A, k)[ ~< K~o e'(x~ 

Proof. (1) By definition. 
(2) See [10, formula (3.15)]. 
(3) See [11, Lemma 5.6]. 

We need a preparatory lemma: 

[] 
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LEMMA 6.4. Choose an orthonormal basis (~l,...,~n) of coordinates on a. We use 
the multi-index notation 0~ =(0/0~1) a~ ... (0/0(n) ~". Let pES([}), then Dp has an as- 
ymptotic expansion of the following form on a: 

Dp=O(p(.-Q(k)))+ E C~,"eXOc" 

~,eq+\{0} 

Here Ca,xEC, and there are only finitely many aEZ~_ such that 3xEQ+ such that 
Ca,x~O. Moreover, there exists a N=N,,eZ+ and a C e R +  such that IC~,,~I<<, 

c(1+1~t) ~. 

Proof. Dp is a differential operator with coefficients in the ring of functions generated 

by 1 / ( 1 - e  ~) (aER), and thus we have an asymptotic expansion with the properties 

stated above. The only thing that remains to be shown is the precise form of the leading 

term. It is sufficient to prove this statement when p is a monomial. We use induction on 

the degree of p. Assume that p is of the form ~p'. Then 

Dcn'=(O~-(P(k)'~))OP'+ E k~a(~)l_-~-~(Dp'-r~~176 
aER+ 

(since the right hand side is a differential operator which has the same restriction to 

W-invariant functions as the operator p(D)). Now take the leading term and use the 

induction hypothesis. [] 

COROLLARY 6.5. Assume that Re(k~)>~0 VaER+, that )~ is regular and that 

~(xv)+l #0 w e  Q\{0}. 

Define 
G(~ ,k ;x )=  1-[ (~(aV)-k~189 a(~ 'k;x)"  

If xEa_, G has an asymptotic expansion as follows: 

with 

0(~, k; x) = ~ c(-w~, k)~(w; x+o(k), k; x) 
wEW 

iI~(w, A+Q(k), k; x) = E A,,(w; A, k)e (w)~+~ 
JcEQ+ 

The coe~cients A satisfy the following properties: 

(1) Ao(w;~,k)=~w,,lWl l-L~.o+ ~(~v). 



104 E.M. OPDAM 

(2) 

(3) 

Proof. 

where 

with 

A,~(w; A, k) is a rational function, with poles only at hyperplanes of the form 

(wA, xV)+l  = 0 ( x e  Q+\{o}). 

Let xoEa+. Then 3K~0ER + and an MEZ+ such that VxEQ+: 

IA~,(w;A,k)I < g~o(l+iAi)Me ~(~~ if wAea~++ia *. 

By Theorem 3.15 we see that 

G(~, k; x) = ~ c(-wA, k)~(w; A+~(k), k; x) 
wEW 

kO(w; )~+Q(k), k; x) = D(A, k)r k; x) 

/9(A,k)= IWI 1-I ((A, aV)-k'~-�89 �9 
aER~_ 

By Lamina 3.9 and Definition 3.10 we conclude that/)(A, k) is polynomial in A, and from 
Lemma 6.4 we may conclude that/)(A, k) has the following asymptotic expansion on a _ :  

D(~'kl=IW1 I f  (~(~Vl-k~189 O(q(A''-O(kll)+ ~ C",,,"e"a~O~" 
ae R~ fl,-~ ,~ 

(~eQ+\{o}) 

~,~,~ 
(~eQ+) 

Moreover, 3CAR+, NeZ+ such that IC~,~,xl<~C(l+lxl) N. From these observations 
(1) and (2) follow easily. As for (3), let x0ea+. The above expression for �9 leads to 

IA"(w;A'k)l ~< E IC'~,~," A~(wA+o(k)+u)'yA'~(wA'k)l" 
~,7 

~,uEQ+ 
~+y----Jr 

Use that I#I, Iui~<c, ixI if #,yeQ+ and #+u---x. Also use that I(wA+Q(k)+u)~I<~ 
C2(I+[A[)I~I(1wlu[)171. Finally we may choose C3eR+ such that (since wAe~++ia*) 

IA~(w)~, k)l ~ C3 eu(x~ ~ C3e-U(xo)/4e x(x~ 

Inserting all these upper bounds, we obtain 

IA,,(w; A, k)l <~ C4 ~ (I+IAIII~I+I'~I(I+IxIIN(I+IHII')Ie -'(=~ "(~~ 

(~eQ+: ~<,),} 
<~ Kxo(I +I),I)M e "(~o). 

This proves (3). [] 
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7. T h e  C h e r e d n i k  transform 

In this and subsequent sections we will examine the decomposition of C~(a) as an H- 

module, and some related results (Paley-Wiener theorem, inversion formulas, Plancherel 

formula). The methods that  we use are based on the work of van den Ban and Schlicht- 

krull on the most continuous part of the Plancherel formula for semisimple symmetric 

spaces [1]. The relevance of these methods to the case of hypergeometric functions was 

observed by Heckman in [9]. 

Let AEb*. By the universal property of Ix, there exists a unique H-module mor- 

phism fix: Ix--*C~176 such that  ffx(e| k; x). In the next proposition we have 

included (2) because it elucidates the situation, but formally this property will not be 

used in what follows. 

PROPOSITION 7.1. (1) ffx(w| .). 
(2) If A(c~V)r ~ (VaER ~ then ,]x is a monomorphism. 
(3) If A(aV)r ~ (VaER ~ and )~eD *'reg then ffx(vw)=G(wA, k,. ). 

Proof. (2) is a consequence of the irreducibility criterion Theorem 1.3, and the rest 

is trivial. [] 

Definition 7.2. Fix a nondegenerate sesquilineax 

means of (w|  wr@l)=~w,w,. 

PROPOSITION 7.3. (1) ( . , . )  is ,-invariant. 
(2) If A(av)~0,  +k ~ V a e R  ~ then 

pairing ( - , - ) : I x x I _ ~ - - * C  by 

~W~W I 
(v~o( A), woVwow,(-A) ) = i-[,~eno (l_(k,~ + �89 ). 

Proof. Analogous to Theorem 4.2. [] 

Definition 7.4. Let X be the vector bundle I_Ixei,; Ix and X c  be the vector bundle 

]-Ixeia:~+~. Ix. Denote by Y]. (Ec)  the space of sections of X (Xc) .  

The fibres of X c  axe H-modules. Consequently, ~ c  and E are also H-modules in 

a natural way. Moreover, the fibres of X carry *-invaxiant positive definite Hermitean 

forms. If vEIx we denote [vi=(v,v) 1/2. In the next definition we will identify some 

H-submodules of ~ and ~ c  which will be useful later on. 

Definition 7.5. We use the notation ~k to indicate the space of k times continuously 

differentiable sections (k=O, 1, ..., co). By ~b we mean the bounded sections, and by ~c 

we indicate the compactly supported sections. The notation ~ is used for the space 
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of holomorphic sections. Let w denote the completion of the Borel measure on ia* that 

corresponds to the volume form (-i)  n dA. We define a measure v on ia* by 

dr(A) = (2~r)-'~52o (p(k), k) dw(A). 
5(~, k)~(wo~, k) 

(This is the well-known spherical Plancherel measure from the theory of Riemannian 

symmetric spaces when k is associated to the multiplicity function of a Riemannian 

symmetric pair.) If pE [1, oc) we define the p-norm [la[[p of a measurable section a E ~ as 

follows: 

,,a,,, = ( f /o ,  ,1/, la(A)IPd~'(A)) . 

We also define [la[[oo" as usual. This gives rise to the Banach spaces Ep and a pairing of 

Ep and Eq i f p - l+q- l= l .  

Remark 7.6. Observe that E~CEp is dense VpE(1, oo). 

Definition 7.7. Let #=#k denote the measure on a (kEIC fixed) given by 

d#(x)--[Sk(z)[dx= 1-~ [2sinh(�89 2k"dx" 
otE R+ 

LEMMA 7.8. Let f, g E C ~ (a), and let one of these functions be compactly supported. 
Then V~Et} and kEIC such that k~ VaER~ 

f(D,S/g d. = S(D_wo(,)gw~176 d.. 

Consequently, the Hermitean inner product ( f ,g)k=f.  f~d#k on C~(a) is .-invariant 

when C~(a) is considered as H-module via the action of W and the operators D e. 

Proof. We calculate the formal transpose of D~ with respect to d#: 

P~ =~fkl~176 E k~a(~)(1-r~)'l_le-~ P(e) 
aER+ 

e~/2+ e-~/~ k~(~) 1_1 (_l_r~)+ 0(~) =0_~- ~_, ko.(~)e-~_~_~/~+ ~_, 
o~ER+ oeER+ 

=0_r  E k'~a(~)l_~-a(1-r~)-(-O'-~)=w~176176176 
~ER-  

This proves the result. [] 

Now we come to the definition of the Cherednik transform and the associated wave 

packet operator. Given AEia* and vEI~, we know from Proposition 6.1 (1) that J~(v)E 

C~(a) (provided that ka >10 VaER). Hence the following definition makes sense: 
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Definition 7.9. Let fELx(a,#) and let k~>~0 Vc~ER. We define the Cherednik 

transform 7 - ( f )EE  as follows: 7"(f)()~) is the unique element of I~ such that VvEIx: 
(.T'(f)()~), v)= fa f(x) ff;~(v)(x) d#(x). 

In the rank one case this transform is closely related to the Jacobi transform. Let 

us use the notations that were introduced at the end of Section 3, where we expressed 

the function G in terms of the classical hypergeometric function. We use a as coordinate 

on a. The orthogonality measure # is given by the formula 

d/~(a) = (2 cosh c~- 2) k~ +k2~ (2 cosh c~+ 2) k2~ dc~ 

= (2 cosh a -  2) c-1/2 (2 cosh a +  2) a+b-c+l/~ da. 

In I~ ()~Eia*) we have the basis (e |  r |  and the spherical vector r 1 8 9 1 7 4 1 7 4  

If we write ( f E L l ( R , # ) )  

7-/(~)=7-ef(~)e|174 

then 

7"ef(~) = f R  f ( ~ ) G ( - ~ ,  k, c~) d/~(c~) 

and 

7-r f()~) ---- JR f ( c ~ ) a ( - x ,  k, -c~) d#(c~). 

If f happens to be symmetric, i.e. f ( a )= f ( -a ) ,  we may use the expression of G in terms 

of the classical hypergeometric function (see the end of Section 3) in order to obtain 

7-f(A)= {/~t f(~)F(a,b,c; l ( 1 - c o s h ~ ) )  d # ( ~ ) } 2 r  

= 

where ]~,~ denotes the Jacobi transform (in the notation of [14]). The results that we 

will derive for the Cherednik transform in general in the next sections were long known 

in the case of the Jacobi transform (cf. [14] and the references given therein). 

Let us proceed now with the general theory. 

P R O P O S I T I O N  7.10. (1) If fEC~(a)  then 7-(f) extends to ~ .  
(2) V feLl(a,#):  ]7-(f)()~)i<~[Wi.lifl[1 (V~eia*+). 
(3) 7- maps Ll(a, #) to the Banach space ~o and is continuous with operator norm 

117-11<lWl. 
(4) 7": C ~ E  ~ is a morphism of H-modules. 
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Proof. (1) We extend the definition of ~ ' ( f )  as follows: 9r(f)(,~) is the unique ele- 

ment of I,x such that  VveI_~: (.~'(f)()~), v)=fa f(x)3"_y~(v)(x) d#(x). Clearly, 9c(f)(A)= 

)--~o 9rw(f)( '~) '(w| with 

~'w (f)(,~) = fa f(x)G(-)~, k, w-ix)  d#(x) 

and this is obviously holomorphic in ,~EI~* if fEC~(a). 
(2) Note that by Proposition 6.1 (1) one has (V,~Eia*, vEI~,xEa) 

I&(v)(~)l < IWl.lvl. 

Hence I(~(f)(A),  v)l ~< IWI �9 Ivl �9 Iiflll, implying that 

I~(f)()~)l < IWl.llYlll. 

(3) Immediate from (1) and (2). 

(4) Use Lemma 7.8 and the fact that  3"~ is a morphism of H-modules. [] 

In the proof we used that IJ~(a(.k))(x)l<.iWi.la()~)l if )~Eia*, xEa and a()~)eIx. 
Prom this we see that the following makes sense: 

Definition 7.11. Let orE]El. We define 

J(a)(x) = [ Jx(a()~))(x) dv()~). 
Jia "+ 

PROPOSITION 7.12. (1) If aPE ~ then J(a)  is real analytic on a. 

(2) ]s(~)(x)i~<iwi.ll~l]l voer~l.  
(3) 3" maps ~1 to the Banach space C~(a) and is continuous with norm iI3"II,,<IW]. 

(4) 3": E~ is a morphism of H-modules. 

(5) 3"=y'lr~. 

Proof. (1), (2), (3): similar to Proposition 7.10. 

i * .  (4) If hEN ~ we may interchange D~ and the integral over a+ 

(5) Let feLl(a,#)  and let CEE1. Then 

fo (s(s)(),).ex),))e.(),)=J~ f 
Since I&(r <~ IWI" Ir (Vzea) we may apply Fubini's theorem: 

(y(f), r Jo f(x)J~(r 3"(r [] 
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8. The  P a l e y - W i e n e r  t h e o r e m  

Definition 8.1. Given xEa, let C, denote the convex hull of Wx. Define the support 

function H~ on a* as follows: H~(A)=supyec ~ A(y). An entire function r on ~* is said 

to have Paley-Wiener type x if V N � 9  3 C � 9  such that 

Ir c(I+IAI) 

The space of functions of Paley-Wiener type x is denoted by PW(x). We also use the 

notation PW=(.J~ea PW(x). 

We will now give PW(x) the structure of an H-module. Let Z=C[o*]WcH denote 

the center of H, and let M=(~I, ...,~n)cC[a*] be the maximal ideal corresponding to 

0Et)*, and put m=M•Z. Denote by Z the m-adic completion of Z and by C[O*~-"] the 

M-adic completion of C[t}*]. Since C[O*] is a free Z-module of finite rank, we have that 

~ = C [ t ] * ] |  Following the construction in [15] we define the completion of H by 
I _ _  

H = Z |  As a C[b*]-module, H-~ |  Its algebra structure is determined 

by the following rules: 

(1) 
(2) lvC[W]_ c[w], 
(3) (l|174174 
(4) (l|174174 +2k2~,)Ai( f), 

where A i ( f ) = l / a  v ( l - I  ~) (1 e C[~*]). It is an elementary exercise (using for example 

the classical Paley-Wiener theorem) to show that Ai (f)  e PW(x) if f �9 PW(x). Therefore 

we see that 

gpw(~) = PW(x) |  C 

is a subalgebra, and also an H-module. 

H v w ( x )  �9 Definition 8.2. For all x�9 we define the H-module Mx by Mx=Indc[wi (tnv) 
Hpw riv (and of course we also define M=Indc[w](t )). 

Via the identification PW(x)~-PW(x)| we have equipped PW(x) with the 

structure of an H-module. 

Definition 8.3. 7r: M--*~ ~ is the map such that VAEia*+: 

7 r ( ] |  ~ R  ~  (1 k~+lk~/2)wA(av) v~. 
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PROPOSITION 8.4. (1) Ir is a monomorphism of H-modules. 
~1) t 

(2) Define functions g~ on ia~ by means of the equation (Ar 

~'(f| 1)(~) -- E gW'()Qww~ 
w 

~M p w ! Then gw()~)=(w-l-f)(w')~). In particular, g~ extends to an element of PW(z) /f 
fePW(x). 

Proof. (1) Let ~r and f |  Then 

ko+�89 
r(~fQ1)(s y 'ws  1-I 1 ~ )v~=~.Tr(f| 

w aERO+ 

Now let r=r~ be a simple reflection. Then 

, ( r .  (f  | 1))(~) = ~ ((f~r - (ko + �89 ko/2) Ao (f)) | 1)(~) 

= ~ ( ( f -  (ko + �89 ~1)(~) 

k~+~ a12., . ____ w~ ((1_.t. kc,+�89 lk 

• II (1 

k.+�89 +�89 
x((1-~ w A ( a v ) ) v ~  - k~  w~(a~) v~) 

=r'Tr(f@l)() O. 

(The last equality holds because of the definition of vw, see Proposition 1.4.) 
(2) By the W-equivariance of ~r if suffices to show this for g~ ; as in the proof of 

Proposition 1.4 one easily checks that indeed Yet )~-Jt )" [] 

COROLLARY 8.5. (1) We can define a ,-invariant Herraitean inner product on M 
by means of (f|174174 Then 

(f|174 f(A)wo'g(woA) I-I (1 k~+�89 
" ~eRo+ ~(~) 

= EewL,,: .  w'f()Qw'g(s 

(The last equality holds for any choice of w'EW.) 
(2) J is well-defined on r(M). 
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Proof. Notice that 

II (: ko+ ko/  dr(A) n = ~ ,  ~ . v ~  dr(A) 

= (2V)-'~52 o (Q(k), k) dA. 
k) 

The function (21r)-nS~o (~(k), k)/5(A, k)cwo (WoA, k) is regular on ia* (if ka >/0 Va). More- 
over, we have the following well-known elementary estimates of the c-functions (see 
[11, Proposition 7.2]): 

(a) iS(A,k)l-:<<,cl+e2iAIE"e'+ k" (Ae~++ia*), 

(b) lewo(A,k)]-:<<,c:+c2[A]E'eR+ ~ (Ae~++ia*). 
From these estimates (1) and (2) easily follow (using Theorem 4.2, Definition 8.3 and 
Proposition 8.4 (2)). [] 

THEOREM 8.6 (Paley-Wiener theorem). Let k~>0 VaER. 
(1) jc maps C~(C~) to lr(M~:) VxEa, 
(2) fl maps 7r(M~) to C~(C~) Vxea. 

(We use the notation C~(C=) for the space of C ~r functions on a having support in- 
side C=.) 

Proof. (1) Let f eC~(C=) ,  and let (VAEb *,~g) 

Using Proposition 7.3 and the definition of ~ we get 

dw(f)( ~ ) = (~'(f)(A), wov,,o~) = ~, f (y)G(-wow~, k, woy) d~(y) = de(f)(ws ). 

Hence we need to show that d~(f)EPW(x).  It is clear that de(f) is entire and from 
Proposition 6.1 (1) we conclude that 

]de(f)(A)I <~ CoeH.( - Re ;~) 

(where Co~IWiW2HfiI:). IfpGS(b) arbitrary then, using Lemma 7.8: 

Ip(A)[" Ide(f)(A)l = Ide(p(D)(f))(A)[ < Vie H~(- Re ~). 

This implies the result. 
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(2) If CEM~ then 

3(~(r  = f &(~(r  du(~) 

du( ,k ). 

From the estimates in the proof of Corollary 8.5 and Corollary 6.2 we see that J(~r(r E 

Ca(a). Next we need to prove that J(Tr(r if y~Cx. By the W-equivariance of 

J~r it suffices to show this when yea_. We can now almost copy Helgason's proof of the 

Paley-Wiener theorem for Riemannian symmetric spaces [11]. Assume y E a_ and y ~ Cx. 

Using now that ka >0 VaER we have the following estimate (similar to the ones in the 

proof of Corollary 8.5): 

1 
~<CI+C2[~[E~eR* k~ if ~Ea-~+ia *. (8.1) + I l-l.eR~ ~(aV)c(~, k)l 

Using Corollary 6.5 (3) we obtain 

y(~(r = .r k, y) I ]~ .~  ~(~v) 

= ~ ~ f~o.O(~)h~(w; 
(27r)-ntWl-l(-i)'~dA 

A, k )e(~+o(k)+x)(y) 

(where we used that c()~, k)c(wo)~, k)=c(w)~, k)c(-w)~, k) VwE W and that c~ o (Q(k), k)--- 

IWi-lc(y(k), k)). Hence it suffices to show that Vw, x: 

u~ ,, = jQ r A, k)e w~(u) d)~ ' �9 IL~.~ ~(a~)c(~, k) =0. 

Choose Oea~_. We know that A~,(w; A, k) and c(w)~, k) -1 1-LeRo+ A(av) -1 are holomor- 

phic for w)~Ea*++ia*. Using the Paley-Wiener estimates for r Corollary 6.5(3) and 

(8.1) we see that 

Ir ~, k)e~(~)l 
I I-I.~R~ A(~)~(~ ,  k)l 

if wAEa*++ia*. Thus we may apply Cauchy's theorem to u~,k, changing the contour of 

integration from ia* to ia* +tw-Y~? (t~l:t+). By the above estimate for the integrand of 

uw,x we get 
lu~,,,I ~< C'e t(o(~)+H~(-~)). 

We may assume that x~a_. Then U~(-~l)=-~l(x). Hence t(~l(y)+Sx(-~l))=t~l(y-x ). 
If y~C~ and x,y~a_ then y~x+R+R~. Thus we can choose ~?Ea~_ in such a way that 

~7(y-x)<0. Now let t---*c~ and we conclude that u~,, ,=0 Vw, ~. [] 
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9. I n v e r s i o n  f o r m u l a s  a n d  t h e  P l a n c h e r e l  f o r m u l a  

In this section we will assume that  ks > 0 Va E R unless stated otherwise. We will treat the 

inversion formulas and the Plancherel formula for the Cherednik transform. Our proof 

is similar to Rosenberg's proof [25] of the spherical Plancherel formula for a noncompact 

symmetric space. However, in our more general situation there is no underlying group 

structure and therefore it is not enough to prove the inversion formula at the origin only 

(as is the case in Rosenberg's proof). This is the reason why we have to use the argument 

of van den Ban and Schlichtkrull [1] at this point. 

By Theorem 8.6 we may define: 

Definition 9.1. Let g=J.~: C~(a)---,e~(a). 

PROPOSITION 9.2. (1) K is symmetric with respect to the inner product (f,g)= 

f fOd~. 
(2) K is an H-module morphism. 
(3) K(C~(Cx))cC~(C~) VxEa. 

Proof. (1) Immediate from Proposition 7.12 (5). (2) Immediate from Proposition 

7.10 (4) and Proposition 7.12 (4). (3) Clear by Theorem 8.6. [] 

LEMMA 9.3. If feC~(a) then s u p p ( g f ) c  Uwew w(supp(f))- 

Proof. First we construct a basis B for the Euclidean topology on a with the property 

that  if BeB and fEC~(B) then supp(Kf)cUwewwB. We introduce the following 

notations. If xEa we define + -  v +a - ax--~-~{~enl~(x)>o}R+a and x-~-']~(~enl~(x)~>olR+a v. 
The interior of the convex hull of Wx is denoted by Fx, and one easily checks that  

Fx=Nwew w(x-a+) �9 Now let ~F=Uwew w(x++a~). We claim that  these sets satisfy 

the following property: y ~ F  ~ F~M~F=O. Let us prove this claim. Assume that  y~xF 
and 3zEFyMxF. Since F~=wFy=Fw~ and xF=w~F=w~F VwEW we may also assume 

that  zEx++ax, and that  a+C+ax. But then ze(x++ax)M~C(x++ax)M(y-~) 
y E x + + ax + a + = x  + + a~ C ~ F,  in contradiction to the assumptions. This proves the claim. 

Next we prove 

f e C~(xF) ==~ s u p p ( g f )  c ~ F .  (9.1) 

Namely, assume that  3 y ~ F  such that  Kf(y)~O. Then 3geC~(F~) with (g, K f ) r  

But by the symmetry of K (Proposition 9.2(1)) this means that  (Kg, f)r Since 

supp(Kg) C ~ (by the Paley-Wiener theorem 8.6) and s u p p ( f ) c ~ F  and ~ M~F= ~ (by 

the above claim) this is a contradiction, proving (9.1). We now come to the definition 

of B. Define B={B~,~}~,~ea with B~,~=FxM{y++a~}. Since U~ew wBx,y= U~, Bx,w~= 
F~M~F we see that  if fEC~(B~,~) then supp(Kf)cF~M~F=UwwBx,y. B contains 

8-950414 Acta Mathematica 175. lmprim~ le I seplembre 1995 
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arbitrarily small neighbourhoods of x (VxEa\{0}) of the form B(I+r x (0<e<l ) ,  

and the sets B~,o=Fx form a basis of neighbourhoods for 0Ea. All in all the collection B 

fulfils the description from the beginning of this proof. 

The rest of the proof is a standard application of partitions of unity. Given 

rEck (a )  and y~ U~ w(supp(f)), we can find a finite covering of supp(f) with elements 

from B ,  supp(f)cU~ Bi say, such that VwEW: wy~U i B~. By partition of unity there 

exists a decomposition f = ~ i  r with r EC~(Bi),  so that 

supp(gf)=supp g r  C Usupp(gr  UUwB~ ~y. [] 
i i w 

COROLLARY 9.4. There exist differential operators Dw (wEW) on a ~eg, locally of 
finite order and with coefficients in C~162 res) such that VfEC~(a):  

(gf)lare  = D w(fta eg) �9 
w E W  

Proof. If rECk(a) ,  xEa reg and Ugx is a ball in areg such that V ( ~ a  reg w e  conclude 

from Lemma 9.3 that KfIU=K]IU if ]EC~(a reg) is such that ] - - f  on WU. Hence 

it suffices to show that K = ~  D~w on C~(areg). From Lemma 9.3 it is clear that 

on C~(a  reg) we have a decomposition K=~'~ w Kww such that Kw: C~(areg)--~C~(a reg) 
is support preserving. By Peetre's theorem [23], K~ is a differential operator with the 

asserted properties. [] 

LEMMA 9.5. With the notation of the previous corollary, D,v has finite order 
(VwEW), the order of De is strictly larger than the order of D~ (w#e) and the highest 
order part of D, has locally constant coefficients on a reg. 

Proof. We first study the restriction of K to the H-submodule c~(U,~wU ) of 

C~(a) where U C areg is some open ball such that U C ares. The differential operators Dw 

have finite order on U, and K = ~ - ~  D~w: c ~ ( U ~  wU)--~c~(u, ~ wU) is an H-module 

morphism (Proposition 9.2 (2)). Let 

a ( K ) - - Z a d ( D w ) w =  Z Z a~,~O(~)w 
w {~:l~l=d} wew 

denote the highest order part of K on U. Note that K, and thus a(K), is W-invaxiant. 

Hence modulo terms of order <. d we have (V~ e a) 

O=[Dr Z k~a(')[l_--~-~'a(K)](1-r~) 
c~E R+ 

= [a~, a(K)] + Z  aw,~O(~)(O~-O~)w. 
f~,w 



GRADED HECKE ALGEBRAS AND HARMONIC ANALYSIS 115 

Hence a(D~) is W-invariant and a~,t~=O Yw~e. In particular, the symbol ad- l (Dw) is 

well-defined if wr Now, modulo terms of order <.d-1 we have (V~Ea) 

0 = [D~, g ]  

L wee aER+ 

=[O"ad(D~)]+ Ead-l(D~)(Cgr E k~a(')[l_T'ad(D~)](1--ra) 
w~e aER+ 

-~ E O~(ae,/3)O(~13)-~ E crd-l(Dw)(O~-Ow~)w" 
{~:l/31=d} wee 

Hence a~,~ is locally constant on U, and apparently we also have ad - l (D~)=O Vw~e 
(but we will not need this fact in the sequel). [] 

LEMMA 9.6. Let ~r-lC~C(a) denote the ring of functions generated by I-LeRo+ a -1 
and C~176 Let D~ be a differential operator of finite order on a rag with coe~cients 
in Coo(fl rag) (VweW). If g=~-~D~w has the property that g(flareg)E~r-lC~(a) 
Vf EC~(a) then the coefficients of Dw are in 7r- lC~(a)  (VweW). 

Proof. By induction on the maximal order d of D~(wEW). Let d=O, and write 

K = ~  a~w with aw eC~c(ar~g). Let (hw)~ew be a basis of harmonic polynomials on a. 
W t Clearly, if xeO ~eg then det(x)=det((h~ )w,w,)(x)r so that  det- leTr- lCoo(a) .  Since 

K(h~)=~'~, a~,h~'eTr-~C~(a) we see that  a~e~r- lC~176 by Cramer's rule. Let us 

now consider the induction step. Let (Pi)~=I ..... ~ be a set of generators for C[O] W, Then 

[g, Pi]=E[D~,pi]w 
~3  

and if Dw ~"~'Et~:[fl[~d} aw,~O(~ ~) then 

ad-l[Dw,pi]---- {ad(Dw),pi) -~ E E ~ 

(by using the standard formula for the Poisson bracket in coordinates). Thus by the 

induction hypothesis we obtain V~ E Z~. with 1/31 -- d -  1 and Vi E { 1, ..., n): 

cOpi 
= + 

j = l  

Using Cramer's rule and the fact that  det(Op~/Oxj)=cl-LenO + a (cr we see that  

aw,~+e~ 6 r - l C ~ ( a )  (Vw, j and/3 with 1/31=d-1). We may now subtract ad(K) and ap- 

ply the induction hypothesis once more to finish the proof. [] 
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COROLLARY 9.7. There exists a pES(b) W such that VIEC~(a), K(f)=p(D)f .  

Proof. It is sufficient to prove that  3pES(I~) w such that  K(f)lareg=p(D)(f)la reg 
vyeC (a). By Corollary 9.4 and Lemma 9.5, K(f)lareg=Ew Dww(Yla reg) with D~, 
differential operators in a ,eg with Ca-coefficients, ord(Dw)<ord(D~) Vw#e and such 

that  the coefficients of a(D~) are locally constant. Clearly the condition of Lemma 

9.6 is satisfied. (Using Lemma 9.3 we extend the action of K to C~(a ~eg) by defining 

Kf(x)=Kg(x) where gEC~(a) and g=f  in a neighbourhood of Wx.) Hence we know 

that  the coefficients of D~ are in 7r-lC~176 In particular we see that  cr(D~) has constant 

coefficients. On the other hand we know that  a(De) is W-invariant, hence we can find 

a homogeneous p'ES([~) W such that  ord(K-p'(D))<ord(K) on C~(areg). Define K '  

by K'=K-p ' (D) .  This is an operator on C~(a) of the form K'=~'~.we W D~w with 

D~E~r-IC~(a), which commutes with the action of I-I. Hence we may again apply 

Lemma 9.5 to conclude that  ord(D~)<ord(D~) Vw~e and that  the coefficients of a(D~) 
are constant. Replacing K by K '  and induction on the order completes the proof. [] 

Our next task is to prove that  actually p-- 1. Obviously it is sufficient to only consider 

the restriction of K to C~(a) W. In this situation we can simply refer to [1], since the 

only information that  is used in their proof is information on the asymptotic behaviour 

of Eisenstein integrals. The analogous asymptotic results for F(A, k, x) are well-known 

(and in fact much simpler than in their situation) (cf. Theorem 6.3). Needless to say, 

the fact that  p=l is a reflection of the relation between the asymptotic behaviour of F 

(cf. Theorem 6.3) and the measure v (cf. Definition 7.5). 

In order to give precise references, let us introduce a notation. Given CeC~(a~eS) W, 
we define (tER+,)~Eia*): Ct,x(x)=t-"/2lSk(x)l-1/2eX(~)r ). Then 

LEMMA 9.8 ([1, Lemma 12.15]). If r162 w then (recall the inner product 
('," )k that was defined in Lemma 7.8) 

lim (p(D)r Ct,X)k = P(,~)(r r 
$--* OO 

LEMMA 9.9 ([1, Corollary 13.3]). / f  r162 W then 

= (r r 
t ---~ OC 

THEOREM 9.10. On C~(a) we have K=f f  ~--id. 

Proof. By Corollary 9.T we have K=p(D). Choose dp,r W such that  
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Then by Lemma 9.8 and Lemma 9.9 we have 

p(A)(r r = t~m(p(D)r Ct,~)k 

= lira (J~'r  r 
t ----* OO 

= lim (SrCt,~, ~'r = (r r 
t ----* c~ 

Hence p =  1. [] 

Let us now consider the operator K~=r-l~ ' ,7"lr :  M ~ M .  

LEMMA 9.11. There exists an entire function f on b* such that K~=mf (multipli- 

cation by f) on M. Moreover, f is W-invariant. 

Proof. This is analogous to the well-known treatment of the Fourier inversion for- 

mula on the Schwartz space due to Gs (cf. [12, Vol. I, Lemma 7.1.4]). We note 

that  K ~ is an H-module morphism, so in particular that  m~KP--Ktm~ V~Eb. It fol- 

lows that  VAEb*, K ~ maps the maximal ideal i~ associated to ,~ into itself. Hence we 

define f(A)EC"~-End(C) as the value of the quotient map of K' on M/i~_C.  Since 

fq)EM VCEM it is clear that  f is entire. It is also clear that  f is invariant for the action 
H P w  "V of W on M=Indc[w](tn ), and it is an easy exercise to see that  this coincides with 

invariance with respect to the ordinary W-action on PW. [] 

LEMMA 9.12. K~ =id on M. 

Proof. Since G(A, k, 0 )=1  V,~ we have V,~eia*+ and CEMW: 

n 

(see Definition 8.3; in the second equality we used identity (4.4)). Hence VCEM W we 

have 

o. ~ ( ~ ) d . ( ~ )  = S ( ~ ( ~ ) ) ( 0 )  = S ~ S ( ~ ( r  = S ( ~ ( S ~ ) ) ( 0 )  = fo. f ( ~ ) r  d . ( ~ ) .  

Since f is W-invariant and entire this implies that  f - 1 .  [] 

In the next theorem we summarize our results: 

THEOREM 9.13. Let ks >0 VaER. Recall the definitions of Sections 7 and 8. 
(1) YxoEa, 7c-lJ z is an isomorphism of the H-module C~(C~o) onto M~ o. Its 

inverse is ,]~r. We have the following explicit formulas: Y f  EC~(a) we have 

~r-l~f()~) = f f(x)G(-wo)~, k, wox) d#(x) (V,~ E [~*) 
da 
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and V~EM we have 

dr(A). 

(2) Define 2r~' f ( w , w' E W , rECk(a) )  as the function on iw' a *+ such that V A E ia *+ : 

s:(~) =~'S(~'~)wvw,. 

,tUt .Tr~ f is the restriction to iw'a~_ of the analytic continuation of J:~f. Moreover, V~E 

iw'a~_: 

' f f( I(A) = ((wow-1).~r-l.~f)(woA) = x)G(-)~, k, w - i x )  dp(x). 

The inversion formula now takes the following form (w peW arbitrary): 

(3) Equip C~(a) with the inner product ( / , g ) = f o / ~ d #  and 7r(M) with the inner 
product (~r, r)-~f~,:~(a()~), v()Q)1~ dv()Q. Then :7= is an isometry. Explicitly we have the 

following Parseval-type formulas (.f , g E C ~  (a)): 

t p W I l " 

= L .  ~r-ly:f()Q(w~176 (1 k.+�89 ,I dr(A). 

(4) / ] ]EC~(a)  W then 

,:-Lrf(,~) = f~/(x)F(-~, k, z) d~(z). 

Clearly r-12r f EMW = p w  W. Conversely, if CEPW W, then 

y~r(r = IWl : r k, x) d~,(2). 
Jia 

We can rewrite the Parseval identity/or W-invariant /unctions as follows. Let f ,  gE 

C~(a) w. Then 

(5) : extends in a unique way to an isometric isomorphism of L2(a,#) onto ~2~ 



G R A D E D  H E C K E  A L G E B R A S  AND H A R M O N I C  ANALYSIS  119 

Proof. (1) The explicit formulas follow directly from the definitions of ~" and ff  

and 7r. The stated results follow from Theorem 8.6, Theorem 9.10 and Lemma 9.12. 

(2) According to (1) we know that ff~ '=id.  The explicit formulas follow directly 

from the definitions of 9 r and ft. 

(3) Use Proposition 7.12 (5) and the inversion formula ff~'=id.  The explicit formula 

in terms of 1r9 v is a consequence of Corollary 8.5. 

(4) Use the following formulas (see Proposition 1.4): 

1 
F(A, k, x) = J~(r -- ~-~ ~ G(A, k, wx) 

~ 9  

1 
= iWl H 1 c(w ,k,x) 

w c~E R~. 

(and IL R: �9 

(5) We need to show that 7r(M) is dense in E2. Since ~ C~2 is dense, it suffices 

to show that VaEE~, there exists a sequence {ak} in ~r(M) such that ak-*a in E2. 

Extend r in the obvious way to C~ and give C~(ia *,reg) the structure of an 

H-module with .-invariant inner product via 7r: C~(ia *,r~) ~ ~ o  C~2. Hence (~b, ~b) = 

~,~ fi~:w.r162 Vr162 We know that MDMW=pw w, and it is easy 

to see (using the ordinary Fourier transform) that PW W is dense in the Schwartz space 

S(ia*) W. Thus, if CEC~(ia*'r~g) w then we can find a sequence r162 (in the Schwartz 

topology) with Ck E PW W. This implies that Pq~k-'-*PC in L2 (ia*, v) for all polynomials p. 

Using the relations in H, we see that for any W-invariant function r and wEW there 

exists a polynomial p~ such that 

w.PC = P~r 

Hence w.PCk ~ w.pr in L2 (ia*, v) (Vp, polynomial and w E W). It follows that PCk ~ P r  

with respect to the inner product (~b, ~b). Next we observe that if {hw}wew is a basis 

of harmonic polynomials on b* and q)EC~(ia*'reg), there exist CweC~(ia*'~eg) W such 

that r  hwCw (use that det(h~(w'x))~tO if xeb*'reg). Combined with the above 

remarks this implies that ~r(C~(ia*'reg)) is in the closure of 7r(M) in Z2. But clearly, 

r(C~(ia*'reg))=~ and we are done. [] 
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