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1. I n t r o d u c t i o n  

Let f~ be a bounded domain of R",  S 2 the unit sphere of R 3 and (E, h) a surface 

homeomorphic to S 2 with a metric h. We may assume, using the Nash-Moser theorem, 

that E is isometrically imbedded in some Euclidean space R k. We consider the Sobolev 

space 

Hl(f~, ]E) = {u E Hi (n ,  R~): u(x) E ~, a.e. x E f~}. 

Let E(u)=fn IVu[ 2 be the Dirichlet energy for any u in Hl(f~, Z). For a sufficiently small 

neighborhood V of ~ in R k the projection lr of a point x of V is well defined. Weakly 

harmonic maps from f~ into ~ are critical points in Hi (n ,  Z) of the Dirichlet energy in 

the following way: 

u is weakly harmonic if V~ E C~(12, Rn), E(r(u+t~)) t=o 

This is equivalent to the fact that u verifies the Euler-Lagrange equation 

-Au = A(u)(Vu, Vu) in D'(f~,Rm), u E ~ a.e., (2) 

where A(u) is the second fundamental form of ~ and where we have used the notation 

Ou Ou f Ou , Ou ~ 
A(u)(Vu, Vu) = A(u) (-~x , -~x ] + A(u) + A(u) ( ~--~ , ~zz ) " 

In this paper we are interested in the singular set of such maps. 

The system (2) is non-linear elliptic, and the non-linearity, produced by the fact that 

our map takes its values in a non-flat manifold, has a quadratic growth for the gradient: 

-Au=f(u, Vu) in D'(ft, R 'n) where If(x,p)l <~C(]zi'+ip]~). (3) 
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Systems of this kind are studied in [8] under the name of "systems verifying a natural 

growth condition". Under the only hypothesis that  u belongs to L~ 1'2, there are 

no general results concerning regularity, or partial regularity, of weak solutions of (3). 

However, the problem of the regularity of weakly harmonic maps represents an almost 

independent theory. 

Let u be in H I ( ~ ,  ~). By Singu we denote the complement of the largest open set 

where u is C ~176 In the case of weakly harmonic maps this set coincides with the set 

where u is discontinuous: this follows directly from a result of Hildebrandt, Kaul and 

Widman (see [13]) which asserts that  any weakly harmonic map from any open set with 

values in a sufficiently small part of ~ is C ~ 

In a previous paper [15] we presented most of the results obtained concerning the 

size of Sing u for u belonging to different subclasses of the weakly harmonic maps. It 

was already well-known that,  for n=3, contrary to dimension two (see the result of 

Helein [12]), we cannot expect Sing u to be the empty set in the general case: the map 

x/JxJ from B s into S 2 is a simple example of a non-regular weakly harmonic map. In 

the particular case where u is a weakly harmonic map which minimizes the Dirichlet 

energy, in dimension three for instance, a result of Schoen and Uhlenbeck [18] asserts 

that  this set cannot be larger than isolated points. In [15] we gave examples of weakly 

harmonic maps from B 3 into S 2 whose singular set is exactly a segment. This proved in 

particular that  ~1 (Sing u) (where 7./1 denotes the Hausdorff measure of dimension one) 

is not necessarily zero, which is valid for the subclass of the stationary weakly harmonic 

maps (see the results of Evans [7] and Bethuel [2]). We also conjectured that  we could 

obtain, in dimension three, larger singular sets. 

Our main result is the following (see Theorem 1): for any given non-constant bound- 

dry condition CEC~176 E) there exists a weakly harmonic map from B 3 into E taking 

the value r on the boundary and such that  Sing u coincides with the closed ball B 3. 

It is natural to conjecture that  any closed subset of B 3 can be the singular set 

of a weakly harmonic map with values in E. We can also ask ourself whether there 

exist non-constant weakly harmonic maps having a constant trace on OB 3. Since any 

regular weakly harmonic map having a constant trace on OB 3 is constant, this question 

is equivalent to the question of the existence of a weakly harmonic map having a constant 

boundary value and a non-empty singular set. 

One can point out that  our result clearly implies that,  for any integers n~>3 and 

p~>2, there exists an everywhere discontinuous harmonic map U from B '~ into SP: on 

each intersection of B n with the 3-dimensional subspaces having a fixed direction define 

our map U to be a fixed everywhere discontinuous harmonic map u from dimension three 

into S 2 (since Au is perpendicular to S 2 in R 3, Au is still perpendicular to S p in R p+I 
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and U is a harmonic map into SP). 

We may now ask the question whether harmonic maps can be so singular when the 

target surface is no more homeomorphic to the sphere. In [17] we prove that  weakly 

harmonic maps with values in any 2-dimensional torus of revolution are necessarily reg- 

ular. We conjecture that  this remains true in the general case of target surfaces with a 

non-null genus: the lack of topological obstruction (~r2(E)=0) could imply regularity for 

the weakly harmonic maps. This conjecture can also be extended to target manifolds of 

dimension greater than two which do not contain harmonic spheres, i.e. target manifolds 

for which there do not exist non-constant regular harmonic maps from S 2. 

The paper is organised as follows: In w we recall basic elements of the relaxed 

energy theory that  we extend to any metric on the sphere. Most of the tools presented 

in this section are introduced in [6], [3], [9] and [10]. w deals with the problem of the 

insertion of point singularities into regular maps in dimension 3 taking their values in E. 

Chapter 3 is devoted to the construction of singular maps and to the proof of our main 

theorem whose precise statement is given at the beginning of w In the Appendix we 

prove the technical lemmas of Chapter 2. 

2. Prel iminaries  

2.1. Minimal  connect ions  and relaxed energies 

As from now n = 3  and ~ : B  3. 

If E is diffeomophic to S 2, let g be the metric pullback of h on S 2 by this diffeo- 

morphism. By definition this diffeomorphism is an isometry between (S2,g) and (E, h), 

hence it is equivalent to take (S 2, g) or (E, h) as target surface. By S 2 we will denote the 

sphere with the induced metric in R 3 and by E the same sphere but with the metric g. 

Consider a point a in R 3 and uECCC(Be(a)\{a}, E) with Q>0. Let S be a sphere 

centered at a and included in Be(a ). Then u restricted to S has a topological degree 

in Z. By continuity this number is independent of the choice of S: this is the degree of 

u a t  a. 

Let (Pi)l<~i<~n be a sequence of points of B 3 (the same point can be repeated several 

times) and let (Ni)l<<.i<~n be another sequence of points of B 3. The minimal connection 

between the (Pi)l<~i<~n and the (Ni)l<<.i<~n is the number 

L( Pi, N~ ) = Pi - N,,(i) 

where ~qn is the set of the permutations in Nn={1,  ..., n}. 

(4) 

14-950852 Acta Mathematica 175. Imprim6 le 21 d~..embre 1995 



200 T. RIVIi~RE 

Suppose now that (Pi)l~i~p and (Yi)l<i<~n are two finite sequences of points of B 3 

with p~n (we may take p<n here). In such a case the additional points of the largest 

sequence are connected to the boundary OB 3. Thus the minimal connection between 

those two sequences becomes 

L(Pi,Ni)= rain ~-~IPi-N~(,)]+ Z d(N~'OB3)} (5) 
aezP'n t ~:l keNn\a(Np) 

where 2"v,n is the set of injections from Np into Nn. Let a0 e2"p,n realise the previous 

minimum. By minimal connection, we also call the following union of segments: 

U [P~, Nao(i)] U U [Yk,IIoB~(N~)] (6) 
i=l,...,p kEN,~\ao(Np) 

where IIaB3 (Nk) is the projection of Ark onto the boundary of B 3. We observe that the 

sum of the lengths of the previous segments is equal to L(Pi, Ni). In fact, we also call 

this number the length of the minimal connection. Since a0 is not necessarily unique, the 

minimal connection of two given sequences (Pi)l<.i<.p and (N~)I~<~<,, seen as a union of 

segments, is also not necessarily unique (what is unique is the length L(Pi, Ni)), but, in 

this paper, couples of finite sequences of points of B 3 having a unique minimal connection 

will play an important role (see w and w 

The maps of Ha(B 3, E) having a finite number of singularities will be useful for two 

reasons: their singular set is very simple, moreover a result of Bethuel and Zheng (see 

[4]) asserts that this set is dense in HI(B 3, E). Let R(B 3, E) be the subset of Hl(B 3, E) 
which consists of the maps having a finite number of singularities with degree :kl. We 

H 1 
also have the density result R(B 3, Z) =HI(B 3, E). 

Let u be in R(B3,E). By L(u) we denote the minimal connection between the 

singularities of u with degree +1 and the singularities of u with degree -1 .  Let ~ be in 

C~(OB 3, ]E). By R~(B 3, E) we denote the set of maps in R(B 3, E) with value ~b on the 

boundary. 

Let u and v be in Rv(B 3, ~). By L(u, v) we denote the minimal connection between 

the union of the singularities of u of degree +1 and the singularities of v of degree -1  

and the union of the singularities of u of degree -1  and the singularities of v of degree 

+1. 

Remark. For u and v in R~(B 3, E), u and v have the same singularities with the 

same degree if and only if L(u, v)=O. 

In [3], Bethuel, Brezis and Coron extend the notion of minimal connection to any 

map in HI(B 3, S 2) for ~b of degree zero. L(u) becomes: 

1 
sup . - -  -,, . ~[.3D(u).V~-~BsD(u).n,~ (7) L(u) = -~ r 

[[V~HLOO <1 
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where D(u)=(u.uyAuz, u.uzAux, u.uxAu~) and n is the exterior normal of OB 3. 
For u and v in H~(B 3, ~), L(u, v) becomes: 

1 sup { / B  (D(u)-D(v)).V~). (8) L(u,v)= ~-~ e:B 3--*1~ s 
IIVr 

For the convenience of the reader we give briefly, in the Appendix, the main arguments 

which show that  (7) coincides with the definition of the minimal connection given below 

for maps having a finite number of singularities. 

Remark. D(u) is the adjoint vector field to the 2-form u#w, the pullback by u of 

the volume form on S 2 (for the standard metric): w=xdyAdz+ydzAdx+zdxAdy. In 

fact, in the definitions of L(u) and L(u, v), D(u) can be replaced by the adjoint vector 

field of the pullback by u of any non-exact two form w ~ on S 2 such that  fs2 w~r 0: 

~:BS--,R k J B  s J O B  s 

IIVr <1 

This is a consequence of the fact that  the integral definition of the degree does not depend 

on the non-exact 2-form that  we choose on the sphere. 

This remark is useful for proving lower semi-continuity in the wealr HI-topology of 

the relaxed energies, defined below, in the case of any metric on the sphere: we will 

replace w by the volume form w ~ associated to the metric g. 

In [3] the authors also introduce the notion of relaxed energy which plays an essential 

role in our work. Let u be in fll(B 3, E). By F(u) we denote the relaxed energy of u: 

F ( u ) =  E ( u ) + 2  ( ~ ,  w')L(u). (10) 

Let r be in C~176 3, ~) and u, v in H~(B 3, ~). By F,(u) we denote the relaxed energy 

relative to v: 

F,(u) = E ( u ) + 2  (~s ,  w')L(u,v) (11) 

Let us denote by A(~)=fs2 w ~ the volume of E. 

We now present some properties of the minimal connections and the relaxed energies 

we will use in this paper. 

(a) L(u) and L(u, v) are continuous in the strong H L  and H I •  HI-topologies re- 

spectively. 
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(b) F(u) and Fv(u) (for a fixed v) are lower semi-continuous in the weak H 1o 

topology. 

(c) The critical points of the relaxed energies F(u) and Fv(u) are weakly harmonic 

maps. 

(d) If v is in Rr 3, ~) any minimizer u of Fv(u) satisfies 7"/l(Singu)<-{-oo. 

Properties (a), (b), (c) and (d) are proved in [3] and [9] in the case of S 2. (a) does 

not depend on the metric, (c) and (d) can be established exactly in the same way as in 

[3] and [9]. To prove (b) in the case of any metric it is easier to work with the pullback of 

the volume form associated to the metric than to work with D(u). For the convenience 

of the reader we give the complete proof of (b) in the Appendix. 

2.2. Construct ion of  dipoles  

The basic tool of this paper, which we present in this section, is the insertion of point 

singularities into regular maps. Most of the time the singularities we will add have the 

degree :t=l. For topological reasons such insertions must contain as many singularities 

of degree +1 as singularities of degree -1 .  Naturally the most elementary insertion is 

the insertion of a couple of singularities having degrees +1 and -1 :  such a singular 

configuration is called a "dipole". We will now deal with the problem of inserting a 

dipole into any regular map in dimension three taking its values in S 2 by using as little 

Dirichlet energy as possible. 

The first time the word dipole appeared in that  context was in [6] related to the 

fact that  the infimum of E(u) among the maps u in H I ( R  3, $2), which have two fixed 

isolated singularities of degrees +1 and -1 ,  is exactly 81r times the minimal connection 

of this singular configuration: that  is, 8~r times the length of the segment formed by the 

two singularities. This can be interpreted in the following way: if we want to insert a 

dipole into a constant map in dimension three, taking its values in S 2, it is necessary to 

spend strictly more than 8 r  times the length of the dipole. In the case where we want to 

insert a dipole into non-constant maps we can take advantage of the variations of those 

maps to make a construction which uses in all cases strictly less energy than 81r times 

the length of the dipole. This was suggested in [3], and proved in the axially symmetric 

case by Hardt, Lin and Pooh (see [11]). Let us mention also that  the idea of this strict 

inequality was first introduced, for the 2-dimensional case, by Brezis and Coron in [5]. 

As we will see in Chapter 3 that  is the key point of our proof of the existence of totally 

discontinuous harmonic maps. This was also the key point of our proof of the existence 

of infinitely many weakly harmonic maps for a given non-constant boundary condition 

from a domain in dimension three, into ~ (see [16]). We give now the precise statement 
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of this construction (~ is still the notation for (S 2, g)): 

LEMMA A1. Consider a regular map u from a ball Br(x) of center x and radius 

r taking its values into ~ and such that Vu(x)r  For any Q<r there exist a bipoint 

(P, N)  of center x included in S~(x) and a map ~ in g l ( B r ( x ) ,  Z) such that 

Sing ~ = {P, N} and deg(~2, P)  = - deg(~2, N) = +l ,  

=u in B~(x) C Be(x), (12) 

E(f~) < E(u)+ 2A(F.)IP- N ]. 

The proof of this lemma is given in the Appendix. 

We note that, in the previous construction, the dipole which we insert is not pre- 

scribed; we just know its existence. The following lemma will be useful. 

LEMMA A2 [1]. Let u be in C~176 S 2) and P, N be two distinct points of fl. For 

any C>2A(~)  and for any open set O c ~  which contains the segment [P, N], there exists 

~eHl(f~,  E )NC~( f i \ {P ,  g} ,  E) such that 

{ ~i=u in .f~\O, 

deg(~i, P )  = - deg(a,  N )  = - 1 ,  (13) 

fa IV(u(x) -a(x)) l  2 dx <~ C I P -  N[. 

We now have a construction of a prescribed dipole but the expense of energy is 

larger. 

2.3. Maps having a unique minimal connection 

Let 7~#(B 3, E) be the maps of R~(B 3, E) having a unique minimal connection. For any 

u in 7~r 3, E), each singularity is connected to another singularity having an opposite 

degree, or to a point of the boundary, in a unique way for realising L(u). The couple of 

points connected in that way are the dipoles of u. 

We are interested in the addition of point singularities to a map in 7 ~ ( B  3, E) in the 

way described in Lemmas A1 and A2, but we want to ensure that the new map is always 

in ~ # ( B  3, E). The following lemma, which will be proved in the Appendix, will be very 

useful. 

LEMMA A3. Let (Pi)l~<~<p and (Ni)l<~i<<.n be two finite sequences of points of B 3 

such that there exists a unique minimal connection C between those two sequences. Let 

x be a point of B3 \C.  Then there exists r > 0  such that, for any couple (P ,N)  o fBr(x)  2, 
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there exists a unique minimal connection between (Pi)I~<i~<pU{P} and (Ni)I~<i~<,U{N} 

and this connection is equal to CU [P, N]. 

We now introduce a last definition needed in w Consider u in R~,(B 3, E) and v 

in 7Q(B  3, E). A mixed chain u - v  is a union of segments 

C = [a, al] U LJ [ai+l, bi] u [bn, b] (14) 
i = l , . . . , n - - 1  

where (ai, bi) are dipoles of v, and (a, b) are two singularities of u with the degrees 

deg(a, u) = deg(ai, v) = - deg(bi, v) = - deg(b, u) = 1. (15) 

By definition the length of such a chain is the number 

n - - 1  

L(C) = [a-axl+~--~ lai+z-bil+lb,-b[.  (16) 
i = 1  

3. Exis tence  of  everywhere  singular harmonic maps from B s into 

3.1. Reduct ion of  the problem 

Chapter 3 is devoted to the proof of the following theorem. 

THEOREM 1. Let r be a non-constant map in C~(OB3,~) .  There exists v in 

H~(B 3, E) such that any minimizer u of Fv(u)=E(u)+2A(E)L(u,v)  is singular every- 

where, i.e. S i n g u = B  3. 

Let x ,  be a sequence of points in B 3 and ~n>0 such that  

lira ~, = 0, BQ.(Xn) C B 3, (Xn) is dense in B -~. (17) 
n--*-{-~ 

Bo.(Xn ) is denoted Bn. 
We show in w that Theorem 1 is a consequence of the following technical lemma. 

LEMMA 1. There exists a sequence of maps Vn in 7~r 3, E) such that: 

(1) Vn converges strongly to some vEH~(B 3, ~), 

(2) Singvn+l =S ingvnU{P ,+ l ,  N ,+I}  where P,+I ,  N,~+I EBn+I and {Pn+l, N,~+I} 

is a dipole o.f vn+l, 

(3) for any minimizer u of Fv, for any n E N  and for any dipole ~f={P,N} of vn 

which is not a dipole of vo, 

L(u, vn) < L(u, v~.)+IP-NI (18) 

where v~ is any map of 7~r 3, E) such that S ingv~=Singv , \  {P, N}.  
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Naturally, in the previous lemma, the strict inequality in (3) is the most difficult con- 

dition to establish. This strict inequality comes fundamentally from the strict inequality 

in the construction of the dipole presented above in Lemma A1. 

3.2. L e m m a  1 impl ies  T h e o r e m  1 

Let v~ be a sequence given by Lemma 1 and u be a minimizer of F~ where v is the strong 

Hi-limit of vn. 

Assume that  u is regular in a small ball B,.(x) included in 9 3. Our aim in this 

section is to derive a contradiction under this assumption. 

From the density result presented in w we know that  there exists a sequence Uq 

of maps in Rr 3, ~), regular in B,.(x), such that  uq converges strongly to u in H a. 

Let Uq(n) be a subsequence of Uq, denoted by un, chosen such that  for any dipole 

8=(P,N)  of vn which is not a dipole of v0, 

L(un, vn) < L(un, v ~ ) + I P - N  I (19) 

where v6n is any map of ~ r  a, Z) having exactly the same singularities as vn, without the 

dipole (P, N). We prove now that  the strict inequality (19) implies that  any singularity 

of vn, in any minimal connection between un and Vn, is connected to other singularities, 

necessarily by a mixed chain u n -  vn. More precisely we prove the following lemma. 

LEMMA 2. Let un and vn be two sequences as above, in R~(B 3, E) and ~ r  3, E) 

respectively. Let C be a minimal connection between un and vn, and a be a singular 

point of vn which is not a singular point of vo. Then there exist a mixed chain un-vn ,  

C I and a union of segments C" such that 

aEC'  and C=CqJC" .  (20) 

Proof of Lemma 2. Let a be a singular point of v~ which is not a singular point 

of Vo. Then a is one of the singularities of a dipole (P, N) of vn (we may suppose that  

a=P). Let C be a minimal connection between un and vn. There are three possibilities 

to connect P in C: 

(1) The dipole (P, N) is connected to itself. More precisely, there exists a union of 

segments C" such that 

C -- [P, N] tJ C".  (21) 

(2) The singularities P and N are connected to other singularities of vn in a closed 

chain which does not contain singularities of u. More precisely, there exist a sequence of 
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dipoles of v,~, (Pik, Nik)l<~k<~q, and a union of segments C" such that 

C=[P,N~]U U [Pi~,Ni~+I]U[Piq,N]UC". 
k=l,...,q-1 

(22) 

(3) P and N axe connected in a mixed chain: there exist a mixed chain un-v,~, C' 
and a union of segments C" such that 

P 6 C '  and c = c r u c  ". (23) 

We now prove that cases (1) and (2) do not occur. 

Suppose that (1) holds. C" is a connection between the singularities of un and the 

singularities of vn excluding P and N. This implies that 

L(C") >i L(un, v~) (24) 

where ~f denotes the dipole (P, N). Thus, using (21) and (24), we obtain 

L(un, vn) = L( C) = L(C")+[P-N[ >1 L(un, v~)+[P- N[. (25) 

This contradicts the strict inequality (19). 

Suppose now that (2) holds. We then have 

q--1 

L(u,~,vn)=L(C)=IP-Ni~[+Z[Pi~-Ni~+I[+[Pi,-NI+L(C" ). (26) 
k = l  

Since vn is in 7~r 3, E), it admits a unique minimal connection which is the union of 

the segments realised by the dipoles. Thus the following strict inequality holds: 

q--1 q 

[P-NiI[+E[P~h-NIk+~[+[Pi -N[>[P-N[+Z[Pik-Nik[.  (27) 
k = l  k----1 

Thus, if, in C, we replace the chain [P, Ni,] U uq-ll[Pi~, Nih+,] U [Pi,, N] by the original 

dipoles [P, N] q N, U Uk=l[Pih, ix], we strictly decrease the length of the connection C and 

this contradicts the fact that C is a minimal connection. 

Thus, possibility (2) never holds and Lemma 2 is proved. [] 

Consider now the dipoles of vn included in the ball Br/2(x). As we just proved, 

those singularities of vn are indirectly connected to singularities of un, out of Br(x), 

by mixed chains un-v,,. We are going to prove that the minimal length among all the 

connections between the singularities of v,~ in Br/2(x) and the singularities of un out of 
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Br(x) necessarily goes to infinity as n-*+oo. This will imply that L(un, vn)~+c~ and 
since un and vn converge strongly in H 1 this contradicts the continuity of L in H 1 • H 1 

presented above. 

Let Cn be a sequence of minimal connections between un and vn. Let ~n be the 

union of mixed chains un-Vn contained in Cn which connect singularities of vn in the 

ball Br/2(x). Finally let an be the number of elements of Cn. 

First case: an is uniformly bounded by an integer N. 

Cr/4(x)=l-Ii=l(Xi-lr, xi+ lr) w h e r e  X=(Xl,X2,X3). We L e t  Cr/4(x ) be the cube 3 

clearly have C~/4(x)cBr/2(x). Let p be an integer and divide C~/4(x) into p3 small 

disjoint cubes (C~)i=x ..... ps of length r/4p: 

c,/,(x)= U (28) 
i=l, . . . ,p s 

Consider C~, one of those cubes. We denote by 1 i ~C~ the cube homothetic to C~ with 

rate �89 having the same center as C~. For n sufficiently large there exists a dipole of Vn 

included in 1 ~C~. Since an<N, there exists a mixed chain un-vn which connects p3/N 
of those dipoles. Letting Dn be such a chain we easily verify that 

p3 r 
LiOn) >1 . . . .  L(vn). (29) Y 4 p  

This implies that 

r p2 L(vn) ' (30) V p e N 3 n e N :  L(Un,Vn)=L(Cn)>~L(Dn)>~-~ 

which contradicts the fact that L(un, Vn) and L(vn) are bounded. 

Second case: VNEN 3hEN such that an>N. 
Up to a subsequence, we may suppose that an>n. Cn has to "cross" the domain 

Br (x) \ Br/2 (x) from the complement of B~ (x) into B~/2 (x) at least 2n times. This implies 

that 

L(un, vn) >1 nr-L(vn),  (31) 

which also contradicts the fact that L(un, vn) and L(vn) are bounded. 

In any case, the assumption that u is regular in a small ball Br(x) yields a contra- 

diction. 

Thus Lemma 1 implies Theorem 1. [] 
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3.3. P r o o f  of  L e m m a  1 

Step 1: Construction of vn. 
We construct by induction several sequences simultaneously: 

I Pn and NneBn such that 6n [Pn-Nn[ ~min(6~_l, 2 : ~n - -1 ) ,  

vn �9 7~r 3, E) such that Sing vn = Singvn-lU{Pn, Nn}, 

wn a minimizer of Fv~, (32) 

~,~ a perturbation of wn, 

/~n+l = (E(wn)-E(~))/2A(E)-b[Pn+I- Nn+l [. 

Let v0 be any map in 7~v(B 3, ~), wo any minimizer of F.o, and 60=/z0=a where c~ 

will be chosen small enough later. 

Suppose v,~, wn, 6n and #n to be constructed. Let us now add to vn a dipole 

(P~+a, Nn+l) and construct wn, v,+l, 6n+1, #n+l and Wn+l. (P.+I, Nn+a) will be added 

in Bn+l but the exact insertion locus in Bn+l and the size of this new dipole will be 

determined from wn in the following way: wn is a minimizer of F~., since vn has only 

a finite number of singularities, ~/l(Sing wn)<-boy (see the preliminaries). Let yn+x be 

a point in Bn+l such that Yn+l � 9  wn and yn+l is not in the minimal connection 

of v~. Let rn+l be a small radius given by Lemma A3 which permits the assertion that 

for any couple of distinct points (P, N) in Br.+~(yn+l) there exists a unique minimal 

connection between {the positive singularities of vn } U {P} and {the negative singularities 

of vn}U{N}, and (P, N) realises a dipole of this minimal connection, rn+l is also taken 

small enough such that 

wnisregularinBr.+~(Yn+l), rn+l<min(6~,#~), Br.+~(Yn+l)cBn+l. (33) 

Suppose wn to be constant in Br.+,(yn+a). Since wn is regular and harmonic in 

the complement of Singwn, from [14] we know that wn is real analytic in this set, and 

since Sing wn is closed and 7-/1(Sing wn)<-boo, the complement of Sing wn is a connected 

dense open set, which implies that wn is constant up to the boundary, and this contradicts 

r  constant. 

Thus there exists Zn+lEBr.+a(Yn+l) such that VWn(Zn+I)~O. We Can apply 

Lemma A1 to wn at the point zn+l in B~.+a(zn+x) (where an+a is positive and such 

that Ban+, (Zn+l)CBr.+, (Yn+l)). Let wn be the perturbation of wn given by the lemma, 

and (Pn+l, Nn+x) the couple of singularities of wn in Ba.+a (Zn+l). We have 

E(~n) < E(wn)+ 2A(E)IPn+l -Nn+a I. (34) 
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Let 
E(w,)-E(~n) 

#~+1 = 2A(E) + [Pn+~- N~+I[. (35) 

As is proved in [1] it is possible to remove the two singularities Pn+l and Nn+l of 

w,~+l by using a quantity of Dirichlet energy as close to 2A(E)[Pn+l -Nn+l]  as we wish. 

Since such a transformation gives a map having the same singular set as wn and since 

wn minimizes Fv.,  we easily obtain that  

(36) 

We now insert the two fixed singularities Pn+l and Nn+ 1 into v,  as described in 

Lemma A2 for a constant C>2 A( ~ )  independent of n. Let Vn+l be this perturbation 

of vn. We have 

B8 IV(V.+ l -vn) l  2 dx <~ C [Pn+l - N n + l  I" (37) 

As we explained above, r . + l  has been taken sufficiently small such that  Vn+l is in 

7~r 3, E) and (P.+I ,  Nn+l) is a dipole of V.+l: this follows from Lemma A3. 

Finally let ~fn+l = IP.+I - Nn+l I. 

Step 2: vn satisfies the conditions of Lemma 1. 

It is clear that  (37) and the condition ~fn+l <~f~, for a=6o chosen sufficiently small, 

imply that  v,~ is a Cauchy sequence in H 1. Thus condition (1) of Lemma 1 is verified. 

By construction, condition (2) of the lemma is also fullfilled. 

We will prove now that  condition (3) of the lemma is fullfilled by vn. Let u be a 

minimizer of F~, let n > 0  and ~f=(P,N) be a dipole of vn which is not a dipole of v0. 

Then there exists l<.q<.n such that  (P, N)=(Pq, Nq). Since u is a minimizer of F~, 

E(u)+ 2A(E)L(u, v) <~ E(wq-1)+ 2A(~)L(wq-1, v). (38) 

Thus 

E(u)+2A(E)L(u, v) <~ E(Wq-1)+2A(Z)L(~q-1, v)+2A(E) IPq-Nql -2A(E)#q .  (39) 

We are going to use several times the following general inequality: 

L(Ul, u3) ~ L(Ul, u2)+L(u2, u3) VUl, u2, u3 E H~(B 3, ~). 

This inequality follows directly from the definition of L. 

By construction we have 

(40) 

L('~q_l, Vq) = L(Wq_l, Vq_l). (41) 
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Applying (40) t o  Wq-1,  Vq and v, and using (41), (39) implies 

E(u)+ 2A(~)i(u, v) <~ E(Wq_l)+ 2A(Z)i(Wq_l, %-1) 
(42) 

+ 2A(~)IP-  N I - 2A(~) (#q - L(vq, v)). 

Since Wq-1 minimizes Fvq_l, (42) implies 

S(u) + 2A(F,)L(u, v) <~ E(u)+ 2A(~)L(u, %-1) 
(43) 

+2A(E) IP-  N] - 2A(~)(~q - L(vq, v) ). 

This is equivalent to 

L(u, v) < L(u, Vq_ 1 ) + IP- NI-  ( ~ q  - -  L(vq, v)). (44) 

Applying (40) to u, v,, and v, we get 

L(u, v) >1 L(u, vn)- L(vn, v). (45) 

Using (45), (44) implies 

L(u, vn) <~ L(U, Vq_I ) + IP- NI -(lzq- L(vq, v ) -  L(vn, v) ). (46) 

Let v~ be any map of ~r  3, E) having exactly the same singularities as v,~ except the 
dipole ~f=(P, N). Applying (40) to u, v~ and %-1, we get 

6 6 L(u, vq-1) < L(u, vn) + L(v., Vq_l ) <~ L(u, v6n)-.}-L(vn, Vq). (47) 

Using (47), (46) implies 

L(u,v,~)<~L(u,v~)+]P-N[-(#q-L(vq,v)-L(v,~,v)-L(v,~,Vq)) (48) 

but 
J~oo 

L(vq,V) <. Z ~fk, 
k=q+l 

+~ +~ 

k----nT1 k=q+ l  

L(vq,Vn)~ ~k~ Z ek. 
k=q+l k--q+l 

Since 6k+t ~<5~ VkEN and ~fq+t ~<#q2, we get 

+oo +c~ -t-oo ,~(2 h) #(2k). 
k----q+l k=0 k= l  

(49) 

(50) 
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(36) implies easily that for 60=a chosen small enough, #n is decreasing and 

Y]+~ . (2~)<~2#q2. Combining (49), (50) and the previous remark we obtain k=l/~q 

].Iq-- L(Vq, v)-  L(vn, v)-  L(vq, vn) /> ~q--6~2q. (51) 

For ~=#0 chosen small enough, pq--6pq 2 ~>0 Vq~O. (48), (51) and the previous remark 

imply 

L(u, vn) < L(u, v~)+IP- N b (52) 

This concludes the proof of Lemma 1. [] 

A. Appendix  

A.1. Integral definition of  the minimal connection 

In this section we prove that, for any map u in Rr 3, E) whose singular points are 

(Pi)l<<.~<~n for the degree +1 and (N~)l~<~<n for the degree -1  (r is supposed here to have 

degree zero), 

L(Pi,Ni)= rain ~z...~ IPi-Na(i)[ (53) 
a68n ~ /=1 

where 8n is the set of the permutations in N,~={1, ..., n}, is equal to 

L(u)= ~ ~:Ba-~R D ( u ) . V f -  s s D ( u ) ' n f  (54) 

HV~[[LOO <I 

where 9(u)=(u.uuAuz, u.uzAu,, u.u, Au~) and n is the exterior normal of OB 3. 

Remark. If we only suppose that u has a finite number of singularities having non- 

zero degrees, without requiring those degrees to be equal to +1 or -1,  the previous 

result (i.e. L(u)=L(P~, Ni)) remains the same modulo the following notation: each sin- 

gular point of positive (or negative) degree is repeated, in the sequence (Pi)x~<i~<n (or 

(N~)x~<i~<n), according to the multiplicity of its degree. 

Let ~ be a regular function on B 3 such that I[V~]IL~ <~ 1. Applying Federer's coarea 

formula we get 

\Ju-'(s) i2u 

where w is the volume form of S 2, immersed in R 3, and J2u is the square root of the 

sum of the squares of the minors of order 2 of Vu. More precisely, 

J2u = r Auz) 2 "+" (Uz Auz)  2 4-(Ux Auy) 2 = ]D(u)[. (56) 
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Since D(u) is the adjoint vector to the pullback by u of w, for any regular image s by u on 

S 2 and for xeu-Z({s}), (D(u)/]D(u)])(x) is the tangent vector at x to the 1-dimensional 

manifold in Ba\Sing{u) realised by the coimage of s. Moreover u- l({s})  is the union of 

curves of two kinds, oriented by (D(u)/[D(u)[)(x): 
(1) closed curves FIUF2 U... UFk, 

(2) curves joining 0B 3 U {Pi} U {Ni}. 

For topological reasons the algebraic number of times the second class of curves of 

u-Z({s}), starting from Pi (or Ni), is the degree of u at Pi (or Ni). Thus, 
n 

j[ D(u----~) "V~=-Z~(P,)+~_,~(N~) 
-~({~}) fD(u)l i = I  i-----1 

and 

[ D(u) "~ 
+ Z ~(Y) sign t ~ ' n  ) 

zl~osanu-~({s}) 

(57) 

/B.D(u)'V~=4~r(- s ~(Pi)+ s ~(Ni)) 
i = 1  i=1  ( 5 8 )  

+/es ~w(s) Z ~(y) sign(D(u), n). 
yeOBaNu-l({s}) 

On the other hand, if a denotes the volume form of the boundary OB 3 of the domain 

B 3, we have 

(n. D(u) )a = (n.*u#w)a = (a, u#w)a, (59) 

where the restriction of u#w to OB 3 depends only on the restriction of u to OB 3. More 

precisely, this coincides with r  where u=r on OB 3, yielding 

fOBs(n.D(u)),a= faB3,r (60) 

Using one more time the coarea formula we have 

B s J s E S  2 veSBsnu-Z ({*}) (61) 

= f~es2W(s) ~ ~(y) sign(D(u), n). 
~EOBSnu-l({s}) 

Combining (58) and (61) we obtain 

L(u) = sup - ~(Pi) + ~(Ni) �9 (62) 
: B s ' ' * R  i =1  i = 1  IIV,'llnoo<~Z 

It is proved in [6], using theorems of Birkhoff and Kantorovich, that (62) coincides with 

the definition (53) given for L(Pi, Ni). 
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A.2. P r o o f  of  p r o p e r t y  (b) in w 

The outline of the proof is the same as the outline of the proof of Theorem 3 in [3]: 

Since a supremum of sequentially lower semi-continuous functions is also sequen- 

tially lower semi-continuous, it is sufficient to prove that, for any fixed ~: B3--*R with 

I]V~I]~ ~< 1, the function 

H (B3,r ) IVul + 2 ] (63) 

is lower semi-continuous in the weak HI-topology. 

Remark. Let v be in H$(B3,~).  We will often write f IVu] 2 and f , u # w ' . V ~  in 

the form 

"f  9~(v)Wv ~ 12 + 922(v)lVv 212 + 2g~2(v)Vv I .Vv 2 

and 

respectively. Generally this makes no sense because the g~j are metric coefficients defined 

for u in a subset of ~, but it can be understood as a sum of such quantities multiplied by 

regular cut-off functions on ~ adapted to the atlas. The multiplication by such functions 

will have no influence on the nature of the convergence of those quantities presented 

below. 

Let un--~u weakly in H~ ( B 3, ~,). By v[g] and v[g]n denote the following quantities: 

v[g] = ~/gllg22-g~2 (u) and v[g]n = ~/gllg22-g212 (un). 

We have 

fB3 *u#~"V~- f~3*u"~  ' .v~ 

= f~ v[9]W 1 • W 2 .v~_v[g] .w  I • W~.V~ (64) 

= An+Bn+Cn+Dn 

where we have used the notation 

An = /B3 (v[g]-v[g]n)Vu 1Avu  2.V~, 

Sn "~ - / B s  v[g]n Vul X ( V u 2 -  Vu 2) " V ~, 
(65) 

Cn = --/~V[g]n(VU~--VU 1) • VU 2"v~ dx, 

O.  = - f~ ~ [ g ] n ( V ~ - W  1) • ( W ~ - W  ~) "V~. 
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Since Un---~u weakly in H~(B 3, E), 

v[g]n :--'v[g] in weak* L ~176 

and the three first integrals An, Bn and Cn tend to zero. We cannot hope to have 

weak sequential continuity in H 1 of fBs *u#w"V~ dx, because topology properties are 

generally not invariant by weak convergence in H 1. Thus, in order to establish the 

lower semi-continuity of F~ we have to compare the fourth integral Dn with the Dirichlet 

energies of un and u. We use the following elementary lemma. 

LEMMA A4. Let gll, g22 and g12 be in R such that gll,g22,gllg22-g212>O. If 
a=(al,a2,a3) and b=(bl,b2,b3) are in R 3 we have 

~gllg22-g~2 Ilax bll ~< �89 (67) 

Proof of Lemma A4. If a'=v/~Ta and b'=x/ff~b we have to prove the inequality 

( g12 ~2 ~(i,all,2_~llbll[2~_2 g12 al.bl). (68) 
i -  \ ~ )  ila'xb'[l < v ~ g 2 2  

Let r be such that sinr and cosr and let ~=  

gl2/glV/~-~. Using these notations (68) becomes 

( lV/i-S~-~ 2 sinr <~ �89 +llb'll2). (69) 

Let/3 be such that sinj3=a and cos/~=v/i--Z~. Using this notation (70) becomes 

sin(C-~)lla'll ' l lb'll  ~< �89 (70) 

This is clearly true and Lemma A4 is proved. [] 

Using the previous lemma we may now compare the fourth integral Dn with the 

Dirichlet energies of u and u,:  

t ol = ] Lv[g]o(vul- vul  • (vu - dx 
0 ~ 

~< Lv[g]n II(Vul-vu 1) x (Vu~- vu~)ll 
(rl) 

fB 2 n 2 2 2 1 . .  ,,v.ul ul.,i +g2~llV(u~-u )li ~< s~tgll[] [ n-- )[ 

+2g~V(u 1-u  ~).v(u 2-us)) 
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where we have used the notation g~ and 9ij for gij(u,~) and 9ij(u). Let 

E . = / 1  n V u  1 u 1 2 '~ V u  2 u 2 2 ~(gl:III ("r' - )11 +92'~11 ( ~ - -  )11 

We have 
f J~n 1 n 2 n 2 2 +2912vunn 1 =./.~ ~(91~llW111 +922JlW.II .w~) 

-/s~ �89 [IVu1112 +g22[IVu2H2+2g12Vul "Vu2) 

+ F. +G. 

where Fn and Gn denote the quantities 

f 2((g111 n V U  1 2 +  n V U  2 2 F . - - . / . ~ - 9 1 1 ) 1 1  II (g22-92"~)11 .11 

+2(9~ 2 - g l 2 ) v u  I .VU2), 

G.=- f 9hV(uk-~i).w 1+9~v(~-~2) .w ~ 
J B a  

(72) 

(73) 

-{- g ~ 2 V ( U  1 --  u l ) .  V U  2 -~-9~2V(~2n --  U2) .  V72 1 . 

As before, in view of (66), the two last integrals of (73), F .  and G. ,  tend to zero. 

Using the previous remark, (71) may be written in the form 

I ol fZ o I'- IvuJ 2 (74) 

where e(n) goes to zero at infinity. Finally combining (64) and (74) we obtain 

where e'(n) goes to zero when n tends to infinity. 

Thus F~ is lower semi-continuous in the weak HLtopology for any ~ and property 

(b) in w is proved. H 

A.3. P r o o f  o f  Lemma A1 

A.3.1.  Presentat ion 

(a) Notations. We may always replace x0 by (0, 0, 0). Let r be a conformal diffeomor- 

phism from S a into E. We denote by fi the map 

fi = r  ou. (76) 

15o950852 Acta Mathematica 175. Imprim~ le 21 d~.,embre 1995 
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For p in S 2 we denote by p(p) the conformal coefficient of r at p: 

]Vr .v I = I~(p)lvl Vv E TpS 2. (77) 

We set #=#(fi(0, 0, 0)). 

Choose an orthonormal basis (~, f,/~) such that 

V=vf(0, 0, 0) # 0 (i.e. V=~u(0, 0, 0) # 0). (78) 

We may assume that f=(0, 0, 0).fv(0, 0, 0)=0. Indeed this can be obtained by a simple 

rotation (~,f) (see [5]). This implies in particular that u=(0, 0, 0).u~(0, 0, 0)=0. We may 

also suppose that f=(0, 0, 0)#0 (i.e. u=(0, 0, 0)#0). 

For ~ sufficiently small and z in [_~+$2, ~_32], let us consider the unit vector fields 

fix (0, O, z) g ( z )  = f(O, O, z). (?O) 
I(z)= Ilfx(0,0,z)ll' 

Since f takes its values in the unit sphere of R 3, it is clear that I(z) is in the tangent 

vector plane to the sphere at f(O, O, z) and that I and K are orthogonal. 

Let a=llfx(O,O,O)ll and b=llf (O,O,O)ll. 
If b#O, let J(z) he the unique regular vector field such that (I(z), J(z), K(z))  is an 

orthonormal basis having the same orientation as (f=(O, O, 0), f~(O, O, 0), f(O, O, 0)). 

If b=O, let J(z) he the unique regular vector field such that (I(z), J(z), K(z)) is a 

direct orthonormal basis. In this case the choice of the orientation is arbitrary but has 

to he the same for all z. 

We easily verify that, in the two cases, 
fix(0, 0, z) = (a+O(z))I(z),  

(80) 
f~(0, 0, z) = O(z)I(z) + (b+O(z))J(z). 

(b) Sketch of the construction. Letting 6 be sufficiently small, we transform u in the 

cylinder C6 centered at 0, with axis along the z-axis, of radius 2~ 2 and of length 2(~+$2). 

We denote by u 6 the transformed map. fi will be equal to u 6 for a $ chosen sufficiently 

small at the end of the proof. 

(1) f i=u outside C 6. 

(2) At each z between ~_~2 and -$+62 in C 6 (i.e. in the subcylinder of C 6 de- 

noted cS), we linearly interpolate u outside c s and a conformal map which maps the 

horizontal disk centered at the point (0, 0, z) and of radius ~2 onto a "big part" of 

exactly as it is made for ]C=S 2 by H. Brezis and J.-M. Coron in [5, Lemma 2]. 

(3) Let p=(0,0,6) and n=(0 ,0 , -~ ) ,  in the small cylinder ~ (or c~), centered at 

p (or n), with axis along the z-axis, of radius 2~ 2 and of length 2~ 2, if we denote by 

Ir + (or 7r-) the radial projection centered at p (or n) onto the boundary of ~ (or c~), 

the transformed map u s is the composition of ~r + (or lr-) and the value of u s on this 

boundary. 
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A.3.2.  The  cons truc t ion  of  

(a) Construction of u ~ for z in [-5+52, 5-52] and estimates for E(u 6) in c ~. Let (r, 8) 

be the polar coordinates corresponding to (x, y). For any z in [ -5+52 ,  5-52] we construct 

u 6 as follows: 
(1) If r>262: 

(2) If r<62: 

u 6 = u .  (81) 

u6 = r  ~22~+r2 (XI(z)+yJ(z)-AK(z))+ K(z) I 

where ,~-----r-C6 4, C will be fixed later. 
(3) If 62..<r..<262: 

u 6 =r 2 g(z)), 

where A~ and B~ only depend on 8, 6 and z as follows: 

262Ai + B i  = fii(262 cos 8, 262 sin 8, z) for i = 1, 2, 

2A62 
6 2 A 1 + B 1  = ~ cos  r 

2A62 62A2+B2 = ~ sinS. 

(ui is the i th coordinate of fi in (I(z), J(z), K(z)). Thus, 

252A,+B, = z)+252 cos8  )+252 sin 8 z)+O(6") 
u x  o y  

But fii (0, 0, z) = 0 for i = 1,2. Moreover, 

~ (o,o,z)=a+O(z),  

o~1 (o, o, z) = O(z), 
OV 

~(0 ,0 ,z )  =0, 

Off2 (0, O, z) = b+O(z). 
OV 

Thus, 
252A1 +B1 = 2a52 cos 0+O(53),  

252A2 +B2 = 2652 sin 8+0(53). 

Similarly the last two equations of (84) give 

52A1 +B1 = 2c52 cos 0+0(53), 

62 A2 + B~ = 2c62 sin 0 + O (53). 

(82) 

(83) 

(84) 

(85) 

(86) 

(87) 

(ss) 
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Finally we obtain 
At = 2(a-c) cos 0+O(6), 

Bt = 2(2c-a)62 cos 0+O(63), 

A2 = 2(b-c) sin 0+O(6), 

B2 = 2(2c-b)62 sin 0+O(63). 

Exactly in the same way we verify 

c0A1 
cOO = - 2 ( a - c )  sin 0-{-O(6), 

cOBt = _2(2c_a)62 sin 9+O(63), 
cOO 

cOA2 = 2(b-c) cos 0+O(6), 
cO0 

c9B2 = 2(2c-  b)62 cos 0-1- 0(63). 
O0 

For 62 ~ r ~ 262 we have 

Since (eI)2=1-(e~)2-(e~)2 we have 

,~3 6 = 1 - F 0 ( 6  4) 

and using (84), (89) and (90) we obtain 

f o r 6 2 ~ < r ~ < 2 6 2  , 

a,~ = o(~2) and I 0 ~  =o(6~). 
Or r O0 

We can now compute the energy of u 6 in c $ for 62~r~262: 

~2;:'~,<<. r~26, 'V~zlu6'2 dx dy dz 

= Vr + " Oy ] dxdydz 

J 6~-6 Oy ] j dx dy dz 

J62-~ J62~<r~<26 " [#2 OY \, 0x ) +O(6)] dxdy dz. 

(89) 

(90) 

(91) 

(92) 

(93) 

(94) 
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After some computat ions we find 

~ - 6 2 ~  iV=yu612 dx dy dz = 87r65 .2(a2 +b2_ 2c2 
2-6 2..<~..<262 (95) 

+ (a  2 +b 2 +8c  2 - 4 a c - 4 b c )  In 2) 40(66) .  

Concerning the third coordinate: 

OAi OBi 
(26  cosO, sin O, = O, (96) 262 ~ + Oz 

On the other hand, ~ (0 ,  0, z)=O for i=l, 2 and VzE[-6+52 ,  6-62] ,  and hence 

OB~ 
262 + - ~ z  -- 0(62)" 

Thus we easily obtain that  

0u16=O(62 ) and 0u26=O(52 ) for 62~<r~<262 . 
Oz Oz 

Once again, since (~263) 2 : 1  - (fi~)2 _ 0226)2 we deduce that  

0u36 = 0(64) for 62 ~< r ~< 262. 
Oz 

(97) 

(98) 

Using the estimates above we estimate the gradient of u 6 along the z-axis using 

(91), (92), (97) and (98), and obtain 

~_~6 (~, 2 ~ -6 0~6 2 
y,z) =~  (u (x,~,z)) 37z (x,~,~) 

=# (u (x,y,z)) -~-z I(Z)+--ff-z-z J(Z)+--~z g(Z) (99) 

.6 dI A6 dI ^6 dK [ 2 
+Ul -~z +U2 ~z +U3 -~Z �9 

This implies 

Moreover, 

Thus, 

o ~  .i 2 z))]_~KKJ:+o(6:). _.~_(~, y, z) l = ~2(e6(~, y, (lOO) 

fi6(z,y,z)=fi6(O,O,z)+O(62)=K(z)+O(52) for 52 ..< r ..< 262. (101) 

#2(~2a(x, y, z)) = ~u2(R6(0, 0, z))+O(62) for 62 ~< r ~< 262, (102) 
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and finally, combining (99) and (102) we obtain 

[ Ou6 ~ .12 
-~z(x,y,z) =.2(~6(0, 0, z))l ~Kz [2 +0(62) 

(xo3) 

and finally 

For any z in [-6+62,6-62] we have 

/r..<62 [V=uu6(x, y, z)[ dx dy = 2A(E) - 81r#2c264 +O(65), 

f 6 - 6 ~ f r  
2 2 2 5  6 [V~yu6(x,y,z)[dxdydz=2A(E)2(6-6 )-167rp c 6 +O(df ). 

J 62 -6  <~ 62 

(lO ) 

(108) 

Integrating this part of the energy in c 6 for 62 ~ r  ~< 262 we are led to 

10u j 
J6'-6 J6'<~r~<26'[ Oz [ dxdydz 

(lO4) I "6-621 Ou 2 
dz+O(e'). 

From now on, in this section, we evaluate the energy of u 6 in c 6 for r<~62. 
For r<~62 and for a fixed z, u 6 is a conformal diffeomorphism from the horizontal 

disk B2((0, 0, z), 62) into E. Thus ,  

IV~u6(x,y,z)ldxdy=2Area(u6(B2((O,O,z),62),z)). (105) 
..<62 

The image by fi6(., z) of B2((0, 0, z), 62) is all of the sphere S 2 without the geodesic ball 
Bs2 (fi(O, O, z),'7) in S 2 of center fi(0, 0, z) and of radius "y=2c62 +0(64). Thus, 

Area(u6 (B2((0, O, z), 62), z) ) = Area( r S2\ Bs2( fi(O, O, z), "~) ) ) 

= A ( E ) -  Area(r 2 (fi(O, O, z), ~/))) 

=A(r~)-�89162 (106) 
= A(E)-4~r#2 (fi(0, 0, z))c264 +0(66) 
----- A ( ~ )  - 47r]~2c264 - { - 0 ( 5 5 ) .  
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Concerning the third derivative, for any z in [_~+~2,6_62], we distinguish the case 
where r~<~ s and where 63 <~r~<~2: 

OU~(x ' 2 2 ~ ar 2 j~<<..3 az y,z) dxdy=jf<<..3 z)l dxdy 

This gives, in particular, 

which implies 

(109) 

f I 2,x [ dI dJ AdK'~+dK2 ~<~P~J,<~sl~-%-~+~kx~+u~ - dz ] dz dxdy. 

IOu~ x 2 
~<~sl-~z ( , y , z )  dxdy=O(68), (110) 

j/'_~-~' f io~(~, 6+6~ Jr.<6sl Oz y,z) 2dxdydz=O(~7) .  

In the other part, for ~3~<r~<~2, we have 

I~(z 'Y'z)-l l=l[  2,V = 2c2~ s 
A2+r2 c26S+r 2 = 0(,52). 

I~(z,y,z)-a(o,o,z)l=O(a) for ~3 ~ r ~ 2 .  

Let us now estimate the energy coming from the derivation in z for ~ 3 ~ r ~ 2 .  

f 6 - 6  ~ Ou 6 2 f I--(=,y,z)l dxdydz 
~-~+6~ &~<.,<.~l Oz I 

f-e [ a~,~ x z. i 2 
= #2(fi6(x'Y'Z)) "-~z( 'Y' )l dxdydz 

J--6+~ 3 J63~r~62 

aft6 x z) 2dxdy) dz+O(~S). 

Thus 

By definition 

Off6 x 2 2A (xdI d J)  r2 -A 2 dK 2. 
-~Z-Z ( ,y,z) = - ~ - ~ \  dz+y~z -t r2+A ~ dz 

(111) 

We notice that 

(112) 

(113) 

(114) 

2~-~+~ (x~  ~ d~ +y~zdJ) "< c-~ = ~  ~or ~3 .<r<.~2 (115) 



222 T. RIVI~RE 

Using this estimate, (114) becomes 

6+6 2 --~z (X,y,z) dxdydz 

f62{r2 A2~ f f  f-~f2 2 Off 
=27r I [ ~ l r d r  ! /.t2(~(O,O,z)) J ~  \ r  + ] J_~+~2 ~z  ('0,0,z) dz+O(66) 

I "6-62 I 2 
---- ~r64 / ~ ( 0 , 0 ,  z) dz-{-O(66). 

J - -6+8  2 

(116) 

(b) Estimates .for E(u ~) in c~ and c~. As we have said in w (b), u 6 is, in c~ 

(or c~), the composition of the radial projection ~r + (or ~r-) of center p (or n) and the 

value of u ~ on Oc~ (or Oct). Precisely, ~r + (or 7r-) sends any point x (different from p 

(or n)) in c~ (or c~) to the point lr+(x) (or Ir-(x)) of Oc~ (or Oc6n) such that  the segment 

[~r+(x),p] (or [~r-(x), n]) contains the point x. 

We divide c~ into two parts: 

�9 Let G be (~r+)-Z(Oc~NOc6), a small cone of vertex p. 

�9 Let H be the complement of G in c~, i.e. g=(~r+)-l(Oc~\Oc6). 
On OH\(OGNOH), u6=u. Since u is regular we easily conclude that  

/H IVu61 ~ dx dy dz =/H IV(U~ dx dy dz = 0(66). (117) 

OG\(OGnOH) is the horizontal disk D262 of centre (0 ,0 ,6-62)  and of radius 262. On 

this disk, u 6 is the "linear interpolation" on S 2 between u at the boundary 0D262 and 
a conformal map on the concentric disk D~2 (see part (a) of this section). All of this 

implies: 

�9 On D262\D62, IV=~u6(x,y, 6-62)l is bounded by a constant independent of 6. 

Thus, 

(~+)_l(D262\Os2) IVu612 dx dy dz -- 0(66). (118) 

�9 On D62, 

[VxljUS(X, y, 6--62)[ 2 = ~2(U6(X, ~, 6--62)) ~ sup ~lVxl$~6(X, y, 6--62)12 . 
$2 

Using the majoration in [5, p. 207] we obtain 

68 
IVzyu612 ~ C (68.~_r2)2 on D62. (119) 
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Let G ~ be the intersection of (r+) -1 (D~=) and the ball centered at p and of radius 62. 
By homogeneity we have 

f~, tw'j ~ ~x i~ ~ - -  6~ fo~,o j vT~'l~ d~ (120) 

Moreover, 7r + is a conformal map from aG r into D~=. Thus, 

foG,nolX7ru'l 2 da= fo,= Iv=~u'12 dxdy. (121) 

Using (120) and (107) we obtain 

a'  IVu~12 dx dy dz = 62(2A(E) + O(64)) = 2A(E)62 +0(66). (122) 

Finally we estimate fG\G' [Vu~l 2 dxdy dz: using Fubini and (119) we have 

fG ~6= 68 
\c, IVu~12 dxdydz<x C ( 64X/c~-+--r2-62) (6S+r2)2 rdr 

(123) 

~o $= r 3 <~ C 88 dr = 0(68 In(I/6)). (68q-r2) 2 

Combining (117), (118), (122) and (123) we obtain 

e IVu612 dx dy dz = 2A(E)62 +0(68 In(I/6)). 

(c) Choice of c and 6. Combining (95), (104), (108), (116) and (124) we obtain 

fc,  IVu612 dz dz dy 

= 2A(~)26-8~r#26S(4cZ-a2-b2-(a2 +b2 +8cZ-4ac-4bc) ln2) (125) 

r ~-6= I tgu 2 
+4~6']_,+,,ITz (0, 0, z) ez+O(681n(1/611. 

Moreover, since u is regular, 

\ l  Ox I (126) 
= 81r651z2 (a 2 +b 2) +0(66). 

Concerning the third coordinate, we have 

f c  60U 2 ?6-6" ~ZU(0,0, z ) 2 d z + 0 ( 6 6 ) "  Oz dx dy dz = 47r64 ] 
J -6+~2 

(127) 



224 T. RIVII~RE 

Finally, since we have 

~\c6'Vu6'2 =E(u)-/c~( ~x Ou 2§ ~yy 2§ Ou ] dxdydz. (128) 

Using (125), (126), (127) and (128) we get 

Ivu612 =E(u)+2A(~)2~-8~r#2~5(4c2-(a2+b2+8c2-4ae-4bc)ln2) (129) 

§ 8 ln(lfli)). 

Exactly as in [5], we can choose c such that 

4c 2- (a 2 +b 2 +8c 2 -4ac -4bc )  In 2 > 0, (130) 

for instance c= max (�89 a, �89 b}. 

For ~ sufficiently small we have the desired strict inequality and u 6 is a solution to 

the problem. [] 

A.4.  P r o o f  of  Lemma A3 

We may suppose that n>/p. Let k=n-p. Let L be the length of the unique minimal 

connection C between the Pi and the Ni, and L ~ the minimum of the lengths of the other 

connections. 

In C, the indexation is chosen such that, for i<.p, Ni is connected to Pi and for i>p, 
Ni is connected to OB 3. For i>p let us denote by Pi=IIoBs(Ni) the projection of Ni 

on OB 3. (It is necessarily unique (i.e. Ni~t0) because of the uniqueness of the minimal 

connection.) Thus we have C =  [.Jill [Pi, Ni]. 
Let xEB3\C and r>0  such that 

r<min(�88 �88 {IPi-xl+lNi-xl-IPi-N~l} ). (131) 

Let P and N be in Br(x) with P ~ N .  

Suppose that there exists a minimal connection C ~ between (Pi)l~<i~<pU{P} and 

(N~)I<i<~,,U{N} which does not contain the segment [P, N]. Thus, C ~ contains a union 

[P, Nk]U[P',N] where P~ is either a point/~, with l<~p, or the projection of N on OB a. 
Let P"-- /~  in the first case and P"--IIaBs(Nk ) in the second case. We remark that 

INk- P"l <.[Nk- P'[. 
Let C" be the following union of segments: 

C"= (C'U[Nk, P"]) \ ([P, Nk]U[P', N]). (132) 
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This is a connection between (Pi)l~<i~<p and ( Y i ) l ~ i ~  n. Of course we have 

L(C") = L(C')+ INk - P " [ -  ( [ P - N k  [ -  I F ' -  N[) 
(133) 

<. L(C')+[Nk-P'[-([P-Nk[+]P'-N[). 

Since CU[P, N] is a connection between (Pi)I~<i~<pU{P} and (Ni)I~<i~<nU{N} we have 

L(C ~) <. L(C)+[P-N[. (134) 

Combining (133) and (134) we obtain 

L(C") <~ L(C')+[Nk-P~[-([P-Nk[+[P'-N[) 
(135) 

<. L(C)+[N-P[+[Nk-P'[-([P-Nk[+[P'-N D. 

If P"=Pk then P'---Pk and (135) becomes 

[P-Nk[+[Pk-g[ <. [Y-P[+[Nk--Pk[. (136) 

But r has been chosen sufficiently small such that 

[P- NI + 2r < IPk --xI + INk --x[ -- [Pk -- NkI 

[Pk-PI+INk-NI-IPk-NkI+IP-xI+IN-x] (137) 
<~ [Pk - P[ + [Nk- N[ - [Pk- NkI + 2r. 

(137) implies 

[PNI + IPk-- Nkl < [Pk- PI + INk- N[ 

and this contradicts (136). Thus pl ,#p,  but in this case C" is necessarily different from 

C and we have L(C")>L+4r. Using (135) we obtain 

4r < [N-P[+[Nk-Pq-([P-Nk[+[P'-N[) .  (138) 

This implies 

IP'-  N[ + ]N- PI + IP- Nkl < IP'-  Nkl, (139) 

which is a contradiction. 

We conclude that any minimal connection between 

(P~)I~<i~<pu{P} and (N~)I~<i~<nU{N} 

necessarily contains the segment [P, N]. The other part of the connection is between 

(Pi)x~<i~<p and (Ni)l~<i~<,,: it has to be minimal, thus it is C. The lemma is proved. [] 
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