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O. I n t r o d u c t i o n  

Singularities of systems of linear differential equations are usually classified into two 

classes: the regular type and the irregular type. When only one variable is involved, 

both types of singularities have been studied extensively in the literature. Some general 

tools have been developed, e.g., asymptotic expansions [Wa], and there are abundant 

families of examples, e.g., the confluent hypergeometric functions which include the clas- 

sical Whittaker functions and Bessel functions [WW]. But no powerful general tools are 

available to handle irregular singularities in several variables. 

An example is the system of differential equations satisfied by Whittaker functions 

on a semi-simple Lie group split over It, which has irregular singularities at cr in every 

direction in the positive Weyl chamber. Since the Fourier coefficients of an automor- 

phic form along the nilpotent radical of a parabolic subgroup are expressed in terms of 

Whittaker functions, a better understanding of their growth in every direction would be 

useful in the study of automorphic forms. In [MW], it was conjectured that the growth 

condition in the definition of automorphic form is superfluous for real semi-simple Lie 

groups with reduced real rank at least 2. In the same paper MiateUo and Wallach [MW] 

have given a family of examples and one of the key steps in the estimates follows from the 

compactness of a certain set. This fails to be true in general, for example, SL(3, R). It 

seems that this failure may be compensated for by a better understanding of Whittaker 

functions. The present work is an initial probe to examine the phenomenon of irregular 

singularities through specific examples and a preparation for an understanding of the 

growth condition satisfied by automorphic forms. 

The classical Whittaker functions have been studied in great detail in [WW]. In 

that reference, a convergent series expansion near 0 (on the negative chamber) and an 

asymptotic series expansion at c~ (on the positive chamber) are given. Motivated by 
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the theory of automorphic forms a general theory of Whittaker functions (vectors) was 

developed from the view point of representation theory. The C~~ Whittaker 

vectors (Jacquet's Whittaker vectors) first introduced by Jacquet in [J] are defined by 

analytic continuation of certain integrals. The algebraic notion of Whittaker vector was 

introduced by Kostant in [K1]. They are functionals on the algebraic dual of K-finite 

vectors of a representation of a Lie group G. In the case of principal series representation, 

he has proved that the dimension of the space of Whittaker vectors is the order of the 

little Weyl group and the dimension of the space of C c~ Whittaker vectors is at most one 

(hence the C~176 characterizes Jacquet's Whittaker vectors). Though Kostant's 

Whittaker vectors are defined on the K-finite vectors, in [GWl], Goodman and Wallach 

have shown that they extend to continuous functionals on a space of Gevrey vectors. 

The work of Kostant [K1] and Goodman and Wallach [GWl] mentioned above is 

intimately connected to the theory of the quantized system of generalized non-periodic 

Toda lattice type. In [K2], Kostant integrated the quantized system of non-periodic Toda 

lattices by representation theory. In [GW2], [GW3], [GW4], Goodman and Wallach stud- 

ied both the periodic and non-periodic types under the same frame-work. In [GW2], the 

structure of the commutant of the Hamiltonian and in [GW4], the joint spectral decom- 

position of those commntants were examined. The present dissertation is influenced by 

their work. 

A fully developed and powerful tool in dealing with irregular singularities in the 

theory of ordinary differential equations are asymptotic series expansions (see [Wa D . 

This becomes one of our basic tools because following the procedure described in [GW2] 

one may study the restriction of Whittaker functions on rays. Another inspiration is 

Zuckerman's conjecture that we will explain later. This led us to use a method similar 

to the characteristic method in the theory of differential equations. The problem is 

thereby reduced to the analysis of a problem in algebraic geometry which is related to a 

deep theorem of Kostant on principal nilpotents [K2]. What follows are more details to 

illustrate our approach and motivation. 

Let G be a split semi-simple Lie group over R and let G=NAK be an Iwasawa 

decomposition G. Let 0, n, a and ~ be respectively the Lie algebras of G, N, A and K. 

Let M={kEK[ kak -1 =a, aEA}. Then one has 0=n(ga(9~. Let A=A($,  a) be the root 

system of (9, a) and A+ be the positive root system associated to n and set ~ -  1_ 2 ~"~aEA+ Or. 

If l=rankt~, then let {al,...,al}=H be the set of simple positive roots and for each i, 

choose a root vector X~e0~,\{0}. Let y:n--*C be a generic character, i.e. y(Xi)~0,  

i=l, ...,1. For uEa~, (~rv,H) will denote the corresponding spherical principal series. 

r~ is a representation of G on H=L2(M/K) and the action is defined by 

~rv(x)(f)(u) = a(ux)v+Qf(k(ux)) 
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for fEH, xEG, ueK. Here g=n(g)a(g)k(g), n(g)eN, a(g)EA, k(g)EK. Let X denote 

the space of all K-finite vectors in H and X* its algebraic dual. We have an action r* 

of g on X* defined by ~r~(z)r162 for zeg,  CeX*. Then the space of Whittaker 

vectors is Wh(v)={v* EX*Ir*(Z)v* =y(Z)v* for Zen}.  It is a theorem of Kostant that 

dim Wh(v) = ]W(A)], where W (A) is the Weyl group of (G, A) ([K 1]). Though Whittaker 

vectors are functionals on K-finite vectors, Goodman and Wallach [GWl] had shown that 

they can be extended to continuous functionals on a space of Gevrey vectors. Therefore 

Cv.(g)--v*(~rv(g)l~), for v*eWh(v) (I~EH is the constant function 1 on K), is an an- 

alytic function on G. This function is called a Whittaker function and we use W(u) to 

denote the space of all such functions. Observe that a Whittaker function is determined 

by its restriction on A. When 

~ ;]__,, ), 

if r is a Whittaker function, then F=e-er as a function of z=2e t satisfies Whittaker's 

differential equation ([WW]) 

tt 1 1 F (z)+[-Z+(Z-va)z-2]F(z)=O. 

The singularities of this equation are at 0 and cr which are respectively regular and 

irregular. For generic u, {Mo,v(z), M0,-v(z)} is a basis for the solution such that 

co 

MO,~,(z) - - .  z ~'+I/a Z c((u)zi' 
i = 0  

and converges uniformly on t ~< to. 

On the other hand, there is a basis for the solutions {I+, I_} such that 

oo 

( = 0  

as t-*oo. The difference between these two types of results is due to the type of singu- 

larities. Notice, also, that the growth of leading terms in I t  does not depend on v. 

The first expansion, that is, on the negative chamber has been generalized by Good- 

man and Wallach [GW1] to the case that G is a split semi-simple Lie group. 

THEOREM (cf. [GW1]). For generic vEa~, Wh(v) has a basis {~, (v) l seW } such 
that ]or vEX, 

~ E L +  
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H t L + with q~,, ~ ~ .  Here is the positive weight lattice�9 The series converges uniformly on 
the sets 

A-( t )  = {expH I H ~ a, a(H) <<. t for a ~ A+}. 

Furthermore, for all aEA, a '~' large for each i, 

[a-'U-~ <. Ca e x p f  C2 ~ aa')  
" i = l  

with C1, C2 > O. 

But except for some special directions, the behavior of a Whittaker function on the 

other chambers is more mysterious�9 The difficulty arises from the presence of irregular 

singularities. We choose the positive Weyl chamber A + as our object of investigation since 

on A + all singularities are irregular. Nevertheless, the last part of the above theorem 

gives us a bound on how fast the Whittaker functions grow on A +. 

When G=SL(n ,R) ,  Zuckerman has given the following conjecture: Consider the 

"Pl -x~ 

1 P2 

Z ( p , x )  = 

tridiagonal matrix 

~ 1 4 9  

�9 o 
�9 ~ 

�9 ~ 

�9 o 
�9 o 

1 

- - X  2 
n - - 1  

Pn 

Set fk = t r  Z(p, x) k, k= 1,..., n. Set S = -  ~ jpj .  Then there is a branch of solutions p(x) 

of the system of algebraic equations fk ~(x) ,  x)=0, k= 1, ..., n, such that e-(o+s)r is of 
moderate growth on A +. 

Let Lt, be the quantization of fk. When G=SL(3, R),  L2 is the Hamiltonian H and 

{Lk} generate the commutant of H. Suppose e ts Y']~=o uk t -k  is an asymptotic expansion 

(if it exists) of a joint eigenfunction of the operators Lk, in the direction of H#, a i (H~)= 1, 

then one can verify that 

lim ~'~(--t)-degL~e-tSTrtt~LkT_.H~etS ujt  - j  
k 

= det OS/Oh2 -x~ , t = e ~'. 

1 OS/Oh3 
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Here Tv, v E a, is the translation operator. This observation motivates us to use a method 

similar to the characteristic method in the theory of differential equations. 

The precise statement of our main result concerning the growth of Whittaker 

functions on A + when G is split, semi-simple is given in w Roughly speaking, we have 

shown that there exist functions (leading exponents) S (1), ..., S (w) defined on a Zariski 

open dense subset U of A and that there is a basis {r r of W(u) such that 

e-(~ is of moderate growth on each ray {xo+rH~lr>~O}, x0Elog U. Here 

~Ea* is given by (~, a i ) = l ,  i=l,  ..., I. The leading exponents S (1), ..., S (w) can be deter- 

mined by using an analogous construction as in Zuckerman's conjecture. Furthermore, 

the growth rate of e-(o+s('~))r on each ray {xo+r as a function in xo, is 

a rational function of S (1), ..., S (w). 

One might also consider Toda lattices of periodic type and find asymptotic ex- 

pansions along the same direction. In other words, one can define a similar system of 

differential equations associated with an affine Lie algebra g which arises from a simple 

Lie algebra go. For g of a certain type, the associated system has a Hamiltonian which is 

the same as the Hamiltonian for the system associated to go except that it has one more 

term which decays exponentially in the direction ~. To see that one can "ignore" this 

term, we regard the system go as the system for g associated to a non-generic character 

of u which one may think of as the limit of a family of generic characters. 

The organization of this paper is as follows. In w we describe the system of differ- 

ential equations satisfied by a Whittaker function and set up an integrable connection 

associated to this system. We then study the solutions of this system when restricted 

to an irregular direction in the positive Weyl chamber. In w we follow the modified 

procedures in the general theory of asymptotic expansions of solutions of an ordinary 

differential equation at an irregular singularity to compute the leading exponents of as- 

ymptotic expansions of a basis of Whittaker functions at a fixed direction when G is 

SL(3, R). In w motivated by the calculation in w some specific shearing transforms 

are used in the general case to reduce the problem of finding those leading exponents in 

the asymptotic expansions to the problem of diagonalizing a certain matrix. w is then 

devoted to diagonalizing this matrix by a method similar to the method of characteristics 

which leads to a problem in algebraic geometry which we deal with in w and w Our 

main theorem and its proof are given in w In the last section, we show how one can 

apply the results in previous sections to affine Lie algebras. A very short tour of the 

general theory of asymptotic expansions of ordinary differential equations at irregular 

singularities is included as an appendix. 

Finally, the author is indebted to Nolan Wallach for very useful conversations on 

the subject of this paper. 

16-950852 Acta Mathematica 175. Impnm~ le 21 d~embre 1995 
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1. The system of  differential equations satisfied by Whittaker functions 

Let G be a split real reductive Lie group and G=NAK be an Iwasawa decomposition. 

Let g, n, a and t denote the Lie algebras of the G, N, A and K, respectively. Then one 

has g=n@a@t. Set s = a + a .  

If X is a Lie algebra, then the universal enveloping algebra of X is denoted by U(X). 
By the Poincar6-Birkhoff-Witt theorem (PBW), one has a direct sum decomposition 

u ( g )  = (I.i) 

Let p: U(O)--+U(s) be the canonical projection defined by (1.1). It is well-known that 

Pig(0)' is an algebra homomorphism. 

The derived algebra [n, n] of n is an ideal of 8. Set b--a/[n, n] and u=u/[u, u]. Let 

r: U ( s ) ~  U(b) be the canonical quotient homomorphism. There is an algebra homomor- 

phism r: U(s)---*U(~) that extends H~--*H+o(H).I on a and is the identity map on n. 

Here ~(H)=�89 t r a d H I ,  for HEa. Define ~: U(g)e~U(b)  by setting "~=IroTop. The re- 

striction of the canonical projection of b to b/u induces an isomorphism a--%b/u and 

the inverse map induces a homomorphism #: U(b)---+U(a). Then ~=#o~: U(g) e---*U(a) is 

the usual Harish-Chandra homomorphism. It is well known that "y: U(g)e---+U(a) W is a 

surjective homomorphism. Here W is the Weyl group of (g, a). 

Let 0 be the Cartan involution on g associated with ~ and g- - t+p  be the Cartan 

decomposition. Let a be the corresponding projection onto p, then a(X)=�89 
Let B be a G-invariant symmetric bilinear form on g such that - B ( . ,  8(. )) is positive- 

definite on p. We obtain a positive-definite inner product on s by setting 

(X, Y) = -B(a(X), O(aY)), (1.2) 

for X, YEs. 

Let II={c~t, ...,at} be the simple root system of (g, a) defined by n , /=rank0 .  We 

choose {Xo}oen so that it forms an orthonormal basis for u (here we regard Xa as an 

element in u through the canonical quotient map). If {hi}i=t ..... l is an orthonormal basis 

for a and C is the Casimir operator in U(g), then one has 

! 

~(C) : ~--~ h2 + ~"~ X 2 -  (0, ~}. (1.3) 
/ = I  c~Glr 

I 2 2 Set a = E , = l  h, + E a e ~  Xo and let U(b)a={xeU(b)l Ix, a]=0}. Then ~(U(b))e=U(b) a 
since one has 
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THEOREM 1.1 ([GW2]). #: U(b)a--+U(a) W is an algebra isomorphism. Moreover, if 
{ui}~=l ..... l is a set of homogeneous algebraic independent generators for U(a) W, 
then there exist unique elements wl, . . . ,w/eU(b) a such that #(wi)=ui  and U(5)~= 

R[~dl ,  ... ,  Wl]. 

Let v E a~ and (~r~, H) be the spherical principal series representation of G associated 

with v. Let X v be the space of K-finite vectors and (X~) * its algebraic dual. Given 

a unitary generic character ~: a -*C,  i.e., y ( X a ) r  for all aEH.  Then the space of all 

Whittaker vectors associated with lr~ and y is 

W h , ( X  ~) = { :  �9 (X~)  * I ~ * ( ~ ) :  = ~ ( ~ ) :  for all ~ �9 n).  

Here (r*(x)v*)(w)=v*(Ir~(-x)w) for w � 9  ~. Let I ~ � 9  be the constant function on K.  

Then the space of all Whittaker functions associated with ~r~ and ~/is 

W,(v) = {r �9 C~176 r = v*(rv(g)l~) for some v* e Whu(X~)}. 

Though Whittaker vectors are functionals on K-finite vectors in [GW1], Goodman and 

Wallach have shown that  they extend to continuous functionals on a space of Grevey 

vectors and as a consequence, v*(rv(g)l~) is a smooth function on G. Observe that  a 

Whittaker function r is completely determined by its restriction on A. Set r162 
We define a representation I% of 5 on Coo(a) by 

(Ir,1(H)f)(x) = ~ ,=of(X.-l-tH) (l.5a) 

and 

( ~ , ( x . ) l ) ( x )  = - , ( X . ) e ~  

for xEa, HEa. Then ~b ~ is characterized by 

~, (~(u) )r  = x~(u)r 

(1.5b) 

(1.6) 

for all uEU(g) e, where Xv=vo 7 (cf. [GW2]). If Wl, ...,wl are chosen as in Theorem 1.1, 

then 

~r~(wl)r ~ = Xv,~r ~, i = 1, ..., l, (1.7) 

with Xu,~=X~(Ui) and ~(ui)=wi, an equivalent system with finitely many equations. 

By using the representation ~r,7, we may regard elements in U(b) fl as differential 

operators with coefficients in the ring of functions R = R [ e  a~, ..., e ~].  For H e a, let O(H) 
be the differential operator defined by 

d ! 

O(H)f(x) = -~ ,l,=of(x+tH)" 
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We extend this map 0 to an isomorphism of S(a), the symmetric algebra of a, with 

D(a), the differential operators with constant coefficients. We will therefore identify 

S(a) with D(a). 
Now it is well-known that  the space of W-harmonics 7-/ in S(a) is of dimension 

w=lW ]. We choose a basis {el}i=t ..... ~ ofT/such  that  el=l  and each ej is homogeneous. 

Set Ei =Oei, i= 1, ..., w, and B=r,7(U(b)) a. Let Q be the algebra of differential operators 

generated by 7~ and S(a). Then we have the following algebraic analogue of "separation 

of variables" for operators in Q. 

PROPOSITION 1.2 ([GW4]). If D e Q, then there exist wit �9 B and fi �9 ~ such that 

D = Z fiEjwij. (1.8) 

Every element x of U(b) ~ can be written in the form Y~c,~., h~l ...h zm,X~l...X~,,.1 n, 
rn=(rnl, ...,mr), n=(nl, ...,nz) and it is said to be homogeneous of degree d if Y~mi+ 
~ n i = d  whenever cm,nr Let {wi} be a vector space basis of U(b) n which consists of 

homogeneous elements. For HEn, one has 

(OH)Ei = Z u~j(H)Ejr,~(Wk) (1.9) 

for some u~j (H)ET~ by Proposition 1.2. Therefore 

(OH)E'r176 = Z ukJ (H)X~(wk)Ejr (1.10) 

Set F=[EIr ~ ..., E~r t and r . = ( r  . , , j  . . . . .  ~ with F H,ij = ~ k  u~j( H)xv(wk ). Then 

(1.10) can be rewritten as 

(OH)F = F s F .  (1.11) 

If we define a connection V on the trivial vector bundle C w over ac  by VH=OH--FH, 
then it can be shown that  it is integrable ([GW2]). The integrability of V is equivalent 

to the following assertion: given any v06C w and z06ac ,  there exists a solution F of 

the system (1.11) such that  F(zo)=Vo. (The uniqueness of a solution with given initial 

condition is a standard result.) 

It is clear that  any solution of the system (1.6) will be converted to a solution of the 

system (1.11). Conversely, if F =  [fl, ..., fw] t satisfies (1.11), then it can be shown ([GW2]) 

that  f l  is a solution of the system (1.6) and fi=E~fl, i=l,  ...,w. In other words, (1.6) 

and (1.11) are equivalent systems. 

Our concern is the behavior of Whittaker functions on the positive chamber and 

the equivalent system (1.11) enables us to restrict our attention to a fixed direction. Let 
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xoEac be a fixed point, vEac a fixed direction. Set @v(xo;7)=F(xo+rv).  Then one 

has 
d@~ 
d~. (Xo; T) = (Ov)F(xo+rv) = rv(xo+rv)Ov(Xo; T), (1.12) 

which is a system of ordinary differential equations in ~-. 

Let ~ be such that (~ ,a i )= l ,  i=l,. . . , l ,  and Ho=H~ is defined by (a,~)=c~(H~). 

Put v=Ho in (1.12), then one has 

~-~ (xo; T) = rHo(Xo+ rgo)@(xo; r). (1.13) 

For simplicity, we drop H0 in the notation (I>Ho(Xo, T) and FHo(xo+vHo). 
Now (1.8) can be obtained from the linear isomorphism 

~ ( u ) ~ u ~ v ( b )  n -~ u(b) 

given by z|174 (more precisely, for every j~>0, 

vj(b)= ~ u,(,l.n,.u,(b) ~) 
r+s+t=j  

by applying the representation ~r,~. In particular, if, as elements in U(b), 

Hoei = ~ vk ejwk (1.14) 

with v~ E Us~ ~ (u), s~j = deg ei + 1 - deg ej - deg wk, then 

OHo.Ei = ~ r ,(v~ )Ej~r,(wk ) (1.15) 

and u~=~,(,5) is homogeneous of degree ~,~. Hence, 

u,~(~o+~go)x~(~) = ~ e",'u~(~o)X~(~). 

We make the change of variable t=e r in (1.13), then 

~ ( x o ;  t) = A(xo; t)r t) (1.16) 

with A(xo; t)ij ,~.-1 k -=~t  ~ Uij(Xo)Xv(Wk ). The ordinary differential equation (1.16) has an 

irregular singularity at t=+oo. Such a system has a fundamental matrix of solutions 

with an asymptotic expansion as t--*oo (cf. the appendix). 
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2. E x a m p l e :  SL(3, R)  

In this section, we will follow the procedures given in the last section to get the linear 

system of differential equations (1.14) and calculate the leading exponents in the asymp- 

totic expansions of its solutions. For the rest of this section G will denote SL(3, R).  

Nevertheless, most of the following calculations will be made in GL(3, R) or ~[(3, R) for 

the sake of simplicity and in order to match the notation used in Zuckerman's conjecture 

for GL(n, R) described in the introduction. 

Let E# be the elementary matrix with the ( i , j ) th  entry 1 and all other entries 

zero. Let hi=Eii, i=1,  2, 3. Let a be the R-span of hi -h2 and h2-h3,  and then U(a) W 
is generated by 1, ~'~hihj and hlh2h3. For i=1,2,  Xi=E~,i+l is a root vector for the 

root ai, here a,(~-']~ cjhj)=c,-cr Then ~'~:E3=l h 2 +Z~=I x2. 
Following the recipe given in [GW2], we can obtain a set of generators for U(b) n 

1 2 1 2 as an algebra, { L 2 - ~  h i h j - {  ~ X~, L z = h l h 2 h z - ~ X 2 h l - ~ X  1 h3}. Then the partial 

differential equations satisfied by a Whittaker function are 

D i=r  i = 2 , 3 ,  

with 

h2 ~-. TrTl( L2) : O(~-~ hihj ) -~ ~ e 2ai , 

D3 = 7r,7( Lz ) = O( hl h2h3 ) + e2a2 Ohl + e 2at Oh3 

for some Xi, i=2, 3. Notice that here we assume without loss of generality that 7/(Xj)= 

+v/L-i, j = l ,  2, because we can conjugate ~/by an element in A. Also, we can drop the 

factor 1 by a translation on a. 

LEMMA. Let yi=hi+l, i=1,2,  then 

e o = l ,  e l  = y l ,  e2 =y2, 

e3 = Yl(Yl + 2 y 2 ) ,  e4 = Y2(V2+2yl ) ,  

es = YlY2(Yl +Y2) 

form a basis of the space of harmonics in S(a). 

Since S(a)"S(a)W| 7-l the space of all harmonics, we have Hoei=~v#e j  for 

some v# ES(a) w. In fact, 

[v#]o.<ij.<5 = 

0 1 1 

�89 0 0 

�89 0 0 
~w3 2w2 �89 

-~w3 �89 2w2 

o 

0 0 0 
-2 _ !  0 
3 3 

_ 1  _2 0 
3 3 

0 0 2 3- 

0 0 3 

2 0 0 



ASYMPTOTIC EXPANSIONS OF MATRIX COEFFICIENTS OF WHITTAKER VECTORS 237 

where 

o J2 = 0 .2 - -  30"2, 

w3 = 27o'3 --9ala2+2a31, 

and a, is given by 1-I3=l( t -h i )=~,~=o(-1) 'aJ  3-' .  Let D1 = ~  Oh,. We use the identities 

(as differential operators) 

e2ai 0o;2 = D ~  - 3D2 +3a,  o" = ~ , 

Cqw3 = (2733 -- 9D2D1 + 2D13) + 9(e 2al - 2e 2a= )El +9(2e 2al - e 2a?)E2 

to replace o)2,w 3 in v,j by expressions with lower degree in the S(a) component. 

continue this procedure and eventually get expressions as in (1.8) or (1.9). 

Following the procedure described in w we obtain the equation (cf. (1.16)) 

dO(xo; t) = A(xo; t)~(Xo; t) 
dt 

with 

We 

A2 = 

A(Xo; t) = t3(ao +A2t -2 +A4t-4) ,  

Ao = 30"2E61, 

0 0 

a 0 

a 0 

0 0 0 

0 0 0 

X2a --~eS~2 +'~e 2~1 0 

0 

0 

0 
2a2 1 2al - e  +~e 

4e2a2 _ �89 

0 

0 

�89 
1 

A4 = gX2 

0 

0 

0 

0 
I 2a~ + 4 e 2 a l  - - ~ e  

e2a2 _ e2al  

0 

1 1 

0 0 

0 0 

~X3 1 
~X2 2 ~X2 

--1X3 1X3 

0 

0 

0 

0 

0 

0 0 0' 
2 1 0 

1 2 0 

0 0 

o, 

. 

0 

0 

The constant term Ao is nilpotent and the tactic in the theory of asymptotic ex- 

pansions at an irregular singularity is to use shearing transforms diag[1,t r, . . . ,t  5r] (cf. 

the appendix) to "separate" the eigenvalues, that  is, to lower the multiplicities of eigen- 

values of the constant matrix; then to reduce the linear system of differential equations 
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to  smaller systems and  then  to  repeat  this procedure  until  the eigenvaiues are distinct.  

The  type  of shearing t ransform used in the general theory  will take care of every possible 

case, bu t  it seems inefficient and we want  to use the  par t icular  features of our  equation.  

Therefore we use a shearing t ransform of the form diag[t"*, ..., t n~ ] to  gain more  flexibility 

and t ry  to  find n l , . . . ,  n6 such t h a t  the  resulting cons tant  mat r ix  is most  t ractable.  The  

best  and the only choice according to  our  judgement  is n l  = 0, n2 = n3 = 1, n4 = n s = 2 and  

n6=3.  Then  the  result ing constant  matr ix  B0 is 

0 1 0 0 0 0 '  
2 1 0 a 0 0 ~ - ~  
1 2 0 a 0 0 --3 

0 --e2~2+le2a~ - l e2a2+4e2a~  0 0 

0 4e 2a2 -- le2a* ~e 2a2 --e 2a* 0 0 3 
2 

3a 2 0 0 5e2a2--4 -~e 2al ~ 4 ~2a2 -1- 5 '~2al - - ~  0 

Set v = e  2a2 - e  2al . T he  characterist ic  polynomial  is then  

p(x )  = x 8 - 3ax4 + ~(9v 2 - 5a2)x  2 - a  s. 

W i t h  y = x  2, it becomes 

p(y)  = y3 _ 3ay2 + 3 (gv 2 _ 5 a 2 ) y _  03, 

a polynomial of degree 3, and can be handled by Cartan's method. Thus the eigenvaiues 

of the constant matrix are 

-i-(e 2a~/s +Ae2a2/3) 312, A = 1, ~, ~2, 

where ~ is a primitive 3rd root of unity. The eigenvalues are distinct whenever 

v = e 2a2 --e 2a* ~ O. 

Now we look at the leading exponents predicted by Zuckerman's conjecture for 

GL(3, R) (see the introduction). They are S=-(pI+2p,~+3p3), where (PR,P2,P3) satisfies 

the algebraic equations 

~-~ Pi = O, 

~-~p, pj+x2 +x2 =O, 

2 2 
PlP2P3 +XlPS + X2Pl ---- O, 
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or equivalently, 

P2 -x2  is nilpotent. 

1 P3 J 

(Notice that this system of algebraic equations, when quantized, is the system D~=0, 

i=l,  2, 3.) There are six branches of such S and they are exactly the same as the eigen- 

values of the constant matrix B. 

We make two observations. Firstly, the powers of t in the shearing transform we 

used are the same as the degrees of the basis of harmonics we chose. Secondly, we obtain 

A(t0; t) by replacing w~ by certain expressions in Di and it seems that those Di hidden 

in A(x0; t) can be "unwound". 

3. Shear ing t rans forms  and  the  cons tan t  m a t r i x  

In the general theory of asymptotic expansions of solutions of a system of ordinary 

differential equations at a singular point, the existence of an asymptotic expansion is 

proved by reducing the rank of the system and the degree of irregularity using shearing 

transforms. Motivated by calculations for GL(3, R)  in the last section, we use a special 

shearing transform namely Sh(t) = diag[tdl,..., t dw ], d i = deg ei, i = 1, ..., w, instead of the 

shearing transforms suggested by the general theory. 

Set ~(xo; t )=Sh(t) - l~(x0;  t). Then 

dCY(xo;t)dt - dSht l ( t )  r176 dr ;t) 

_ [dSh~__1(t)Sh(t)+Sh_1(t)A(xo;t)Sh(t)]r (3.1) 

= B(xo;  t),I,(zo; t). 

Since 

dSh -1 - d ~ - I  
dt = [-6ijdd ]ij, 

S ( x o ; ~ ) i j  = ~-~ s~.-{-dj-di-1 k --I t ' uij(Xo)Xu(Wk)-~ijdjt 

= ~ t -  deg ~al'~kj (X0)Xv(Wk)-~ijdjt -1 (3.2a) 

= u~ (xo) - 6~j dj t -  1 + lower order terms. (3.2b) 

Thus the system (3.1) is regular at t = +oo and the general theory of asymptotic expansion 

tells us that if the constant term B0(x0)=[u~ of Bo(x0;t) is cliagonalizable and 

has distinct eigenvalues then there exists a fundamental matrix of solutions 

~(Xo; t) ---- ~(xo; t)tAe tQ(z~ 
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A O O  

with ~2(xo;t)~)-~= o ~ ( x o ) t  -~, t--*oo, det~0(Xo)~0, A a constant diagonal matrix 

(which may depend on x0), Q(xo)=diag[Sl(xo), ..., S~(xo)], where {Si(xo)} are eigenval- 

ues of Bo(xo). We will diagonalize the constant matrix in the following section. 

4. Diagonalization o f  the constant matrix  

It is extremely difficult to calculate the constant matrix Bo(xo) explicitly. However, the 

information we want to extract is that its eigenvalues are distinct and can de described 

in a certain feasible way. Therefore we will approach this task using a method similar to 

the characteristic method in the theory of differential equations. 

Let {hi, ...,hi) be a coordinate system on a. We use the standard multi-index 

notation: 

"/=( '71,- ' - ,  "/l), "/i 6 N ,  

1'71 = ~ ' 7 , ,  0r = ohm' ...oh? 

For v6a, denote Tv the operator of translation on C~176 by v, i.e., (Tvf)(x)= 
f(x+v) for fEC~~ xEa. Since, for all multi-indices, a~T~=T~a ~ and T~ofoT_~= 
T~(f), if D=)-~'~ f~O ~ is a differential operator, then TvDT_~=~ T~(f~)O ~. 

Let D = ~  a~.yeE ~r162 be a differential operator, we define deg D=max{l~l + hi: 
a~,, # O} and 

atot(D,d~)= Z a~'~e~'a' \-~x ] "'" k-~l / " 
I/3[+[7[=deg D 

Consider the expression 

E( D ) = e-'~Tr Ho DT_~ Ho eta, 

where ~6C~(a )  and t=e ~. Then 

E(D) = Z a~,~tl~l eE: ~ ~ e-t~O~et~ 

/%3' j=O 

where 

(ad S)JL =!... [L, S],-.-, S! 
j times 

(4.1) 



ASYMPTOTIC EXPANSIONS OF MATRIX COEFFICIENTS OF WHITTAKER VECTORS 241 

for L a differential operator. We refer the reader to [GS] for the last equality. The highest 

order term in E(D) is 

tdeg D 

Note that 

I~l+l~l=degD 

Cad )l  O  

where ~/= (~/1 .... , ~/l). 

= (OT)(dta) = atot (0 ~, d~), 

Recall that  Hoei=Ev~ejwk and (OHo)Ei=~']~u~jEjlr,(Wk) ((1.14) and (1.15), re- 

spectively). Let pk=degwk, dj=degej. Then, by (4.1), we have 

E(~r~Hoei) = t d'+ l Cad ~)d,+l ( OHo)Ei (d i§  4-lower order terms (4.2) 

and 

= E t . ~ u i 5  t n ( ad~)nEj  n! (tdeg wk O.to t (Wk, d~) + lower order terms) (4.3) 

=z..~" -ij dj! atot(wk,d~o)+ lower order terms. 

Since dj + 1 = s~j + dj + deg Wk and cOHo Ei = r ,  u~j Ej It, 7 (w~), we obtain 

(OHoE,)(d~) = E ukJ Ej (d~a)atot (wk, d~) (4.4) 

by comparing the highest order terms in (4.2) and (4.3). Since (4.4) is valid at any point, 

we may replace d~ by a 1-form. Thus we have almost proved the following proposition. 

PROPOSITION 4.1. If  f~ is a 1-form defined on an open subset 0 of a and it satisfies 

 tot(W, ) = 0  /orweV(b)?, 
then for x 6 0 ,  Ho(~)z is an eigenvalue of Bo(x) and [El(f~)~, ...,Ew(f~)z] t /s the corre- 

sponding eigenvector. 

To finish the proof, we have to show that the algebra B generated by {wklu~j ~0 for 

some i , j}  is in fact U(b) a. Before we prove this result, we will introduce some nota- 

tion. As usual, take a basis of U(u), say {up}p~176 with u o = l ,  consisting of homogeneous 

elements. Let {ek} be a basis of the harmonics 7"/such that eo=l and each ek is ho- 

mogeneous. For any ueU(a), u can be written uniquely as the sum ~"~upekwnk with 

wnkEU(b) a and we define n(u)  to be woo. 
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LEMMA 4.2. U(b)a={f~(u)]ueS(a)}. 

Proof. If w is a homogeneous element in U(D) a , then I~(W) = u e U(a) and w - u e U(b), 

i.e., u=w+)'~.xjvj for some X j e u  and vjeU(b). Therefore w=~(u). 

LEMMA 4.3. / f  {Hi} is a basis of a, then the algebra generated by {n(Hiej)}ij is 
v(b) n 

Proof. If u=~'~, une~wpk and Hiej = ~  ure~ij~, then 

= Z[Hi ,  up]e,wpk + Z upure,wij).,wpk. 

Thus if u=p(Ht,...,Ht)ej for some pEC[Xl, ...,x,] then ~(u) is in the algebra B0 

generated by {f~ (Hie j)  }ij but every u E U(a) can be written as ~ vj ej with vi polynomials 

of/-/1, ..., Hi, so f~(u)EBo and our assertion follows from Lemma 4.2. 

LEMMA 4.4. If ueU(a) and u is homogeneous, then f~(s.u)=f~(u) for any seW.  

Proof. There are vieS(a) W such that  u=~e jv j .  Since vieS(a) W, there exists 

wJ e U(b) a such that  tzw j =vj. Therefore u = ~  ejw j + ~ ej(vj -wJ) and vj - w  j euU(b).  

If seW,  s.u-=~-~(s.ej)vj=vo+~-~j#o(S.ej)vj. Since for j > 0 ,  s.ejespan{el,...,ew_l}, 
~ =a(u).  

PROPOSITION 4.5. B=U(b) n. 

Proof. Let C={i2(H~ej)[j=O, . . . ,w- l} .  and C'={n(sH~.ej)[seW, j = 0 ,  . . . , w - l } .  

Since {s.H~} contains a basis of a, (C')=U(b) ~ For seW,  n(sH~.ej)=g~(s(H~.s-lej))= 
fl(H~.s-lej). But since s-lej  espan(e0, ..., ew-1 }, fl(sHo.ej) e (C). Therefore B=  (C) _~ 
<c') = v ( b )  n. 

Let J : U ( b ) ~ S ( b )  be the inverse of the symmetrization map, then J ( U ( b ) n ) -  - 

S(b) J(n) [GW2]. Let {hi} be the basis of a defined by (ai, hj)-=$ij. For any weU(b) n, 

there are q~eC[yl, ...,y~],/3=(f~1, ...,/3~)eN ! such that  

J(w)=Zq~(ea',...,eCn)h~ eS(b), h~=h~'...h~ '. 

If J(w) is homogeneous, one has, for a 1-form % 

= 
f~ 

where c~ =~/(ea~), j - l ,  ...,1. If "y=~-~p~ dai, 0(h~)('~)=p~l ' ""P~t'. Without loss of gener- 

ality, we may assume that  c3=-l-vfL-1 for j - l ,  ...,l. 
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J(w)ES(b) J(~) may be regarded as polynomial on b* and 

where ~* �9 b*, e* (e~ k ) =~ik and e*]a =0. Therefore finding a 1-form ~f= ~ pi dai defined 

on some open subset of a such that atot(W,7)=O is equivalent to solving for (Pl, ...,Pl) 

in the algebraic equations ~'~q~(iyl, ...,iyz)P~l' ...P~z'--O for the given values yj=ea~, 

j = l ,  ...,l. Since each q~ in the expression J(w) is a polynomial of even degree in each 

variable ([GW2]) it does not matter whether we take iyj or -iyi .  Therefore we can 

reformulate Proposition 4.1 as follows. 

PROPOSITION 4.6. If  there exist an open subset 0 of a and smooth f~nctions defined 
on O, say p~ =p~(y~,..., y~), yj =e a~ , j, k--l ,  ..., l, such that for any weU(b)+ ~, 

on 0 and if 7=)-~Pk da}, then for xeO ,  H0('7)~ is an eigenvalue of Bo(x) and 
[E~(7)~, ..., E~(7)~] t is the corresponding eigenvector. 

5. Non-vanishing of  Jacobians 

Let G be a connected semi-simple Lie group split over R, with Lie algebra 0 and Iwasawa 

decomposition G = K A N  (g - - t~a~n)  as in w Let 0:g-*g be the Caftan involution 

associated with t. Set fi=8(n). Since g is split, one has g=f i+a+n .  If XEg,  then 

we write X = X + + X a + X _ ,  where X+En, X_Eft and XaEa. Let p = { X E g I O X = - X ) .  
Let A+ be the set of positive roots A+(g, a) associated with n, I I={a l ,  . . . ,al) be the 

set of all positive simple roots and A+=(al , . . . ,ad) .  Choose e~=ea, Eg~, such that 

-B(ei,Oei)=6~j. Put f i=-Oei,  Xi=e~+ fi and Y~=e~-fi. Then 

d d 

i----1 i----1 

B(Yi, Yj)=-2~ij, B(X~,Xj)=2~ij. 

Recall that on b we put the inner product <.,. ), defined by 

<..)la•215 ' 2 ~3~ 

where -:s--,b is the canonical quotient homomorphism. Let b* be the real dual of b, 

endowed with the dual inner product. For XEb, define X#Eb * by X # ( Y ) = ( X , Y ) ,  
YEb. For AEb*, define A~Eb * by (A~,X)--A(X), XEb. 
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Let Pl = ae~J]~=l l:tXk C p. Let g~ E b* be such that $ ~ ( H + E ~ = I  cke,)=c,, for H E  a. 

Now we introduce a linear map F:  p--*b* defined by 

d l ( z )  z .  F H+ ciXi =H #+ c~e~. 
i : 1  i : 1  

Notice that  FIp 1 is an isometry since (e*,e$)=25~j. If r is a function on p, we define a 

function we on b* by 

wr162 Xepl .  

In [GW2], it has been shown that if we take a set of algebraically independent generators 

for S(p*) ~, say {r ..., Ct}, then S(b) J(n) is generated by {we,,.. . ,  we,}. In particular, 

{we, w e } = 0  whenever r CES(p*) t. Here { . , .  } is the Poisson structure on S(b) defined 

by 
(i) {X,Y}=[X,Y] for X, Yeb; 
(ii) {fg, h}={f, h}g+f{g, h} for f ,  g, hES(b).  

Since Resolp: p(g)a ~ S(p*)e, defined by Resglp (P) = PIP, is an algebra isomorphism, 

we have that,  if {r ..., r is a set of algebraically independent generators for :p(g)a, 
then {r ..., Clip} is a set of algebraical generators for S(p*) e. For simplicity, we will 

drop Ip when the context is clear. 

Let hi=a~, i=1 ,  ...,l. For CeP(0)o, define vr by 

l l 

(5.1) 
l ! 

= 

" i = 1  i = 1  z 

Note that  if we choose xEac so that e~'(~)=y~, i=1 ,  ..., l, then 

1 l 1 l 

" i = 1  i = 1  " i = 1  i = 1  

and 

where f=Et~=1/~. 

l l 

( z  z ) v~(pl,...,Pz,Yl,...,y~)=r .f+ pihi+ yiei , 
i----1 i = l  

(5.3) 

Therefore, through (5.1) or (5.3), v~ is defined for pi, y iEC.  Never- 

theless, we always assume yi ~0.  

If FETe(g), the gradient of F ,  VF:  g--*g is defined by B(VF(X), Y)--dFx(Y) for 

X, YEg. Since f is nilpotent, there exist e, hEg such that {e ,h , ] }  forms a standard 

basis of a T.D.S., say 91. Then g can be decomposed into a direct sum of irreducible 

gl-modules, say g=(~[~ti= 1 gi (see [K3]). 
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LEMMA 5.1. If Feb(g) G, then [VF(X),X]=O for XEg. 

Proof. We have VF(Ad(g)X)=Ad(g)VF(X) for gEG. Let g(t)=exptX. Then 

Ad(g(t))X = X. 

Thus 
d 

[X, VF(X)]  = -~ t=o Adg(t) .VF(X)= d t=oVF(Ad(g(t))X)= O. 

In particular, [ V f ( f ) ,  f]=O for FeT~({~) G. In other words, VF(f)eg]=~)l,=l ~{. 
Since dimspan{VF'(f)l{F" } is a set of basic invariants}--I and d i m g { = l  for each i, we 

can pick a set of basic invariants {r r such that Vr \{0}, i =  1, ..., I. Set 

fk(p,y)=vr p=(pl,...,Pt), y--(Yl, ...,Yl), y i~0.  We may regard fk as a function 
defined on b* or f + b  via (5.1) or (5.3). 

LEMMA 5.2. The Jacobians Jp=llOfi/Opj H and J~=llOfi/OyjH are non-zero at Zo= 
ead e f .  

Proof. For each j ,  there are d j e N ,  hjea such that R(adf)d~hj=g~. Put xj= 
(ade)(hj)ea. Then {hj,~j}j=l ..... z forms a basis of b. Let h~=f(hj)=h~ and x~= 

F(xj-Oxj). We also use {h;, x)} to denote the corresponding coordinate system on b*. 

For Aeb*, A=~'~p, ai+ ~-~y,~, 
of, �9 

Ohm(a) = ~-~-~ (~) = 

= nm ! [ r 1 6 2  (5.4) 
a--*O s 

= (dr = B(Vr (F-1A), hi) 

and 
Of, Ow~, 

= h~m ~ I[r162 (5.5) 

= B ( V , ,  ( F -  1 ~),  z j  - Oz j ) .  

For some xea, eadxzoEPl, put Ao=F(eadxzo). Therefore Fl~ll(Ao)=eadxzo and 

v~,  (F -x ~0) = e ~d'v~,(zo).  

Since Vr (f)  Eg{, one has 

B(Vr (zo), hi) = B(Vr (f) ,  e -  ad ehj ) = S ( r e ,  ( f) ,  
(- ade)d'h D ~ 

dfl 3] 

- (--1)d' S(Vo,(f),  (ad e)d~hj), 
dj~ 

B(V~, (Zo), ad e hi) = B(Vr (f) ,  e -  ad ead e hi) = ( -  1)dj-1 B(V, ,  ( f) ,  (ad e) d~ hi) (dj-1)! 
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and 

B(Vr (e ad e f ) ,  xj  - Oxj) = (Vr (ead e f ) ,  x j) = (Vr (f) ,  e -  ad ead  e hi) -- 0. 

So if we choose r such that B(V~, ( f ) ,  (ade)d#hj)=6ij,  we have 

S(Vr hi) = (--l)d# 
dj! ~' 

( _  1)d.~--I ~ij, ( 5 . 6 )  
B(Vr  ( d j -  1)! 

B(v , =0. 

Since e -  ad x lu and e -  ad x ISu are isomorphisms and B(Vr (Zo), -Oxj )  = O, (5.4) and (5.5) 

imply the result. 

Let b l = f + b .  We have identified b with a+~li=l  ReiCg .  Set 

l 

Ol=(i~__laiei[aiEC*:C\{O}, i=l,...,l) 

and Z=f+a+OlC_b  I. Now we introduce two algebraic varieties 

l l 

e, ezlI( )=Oforle (,)' } 
i=1 i=1 

= { x e Z I C k ( x ) = O ,  k =  l , . . . , l }  

and 

l ! 

i=1  i=1 

= {(p,y) e Cl • l f k (p ,y )=O,  k =  l , . . . , l } .  

Following our previous discussion, especially (5.1)-(5.3), we have a regular morphism 

~': L / ' ~ / 2  defined by 

l l l l 

"--- Yi ei. 
X i = l  i : 1  i=1 i=1 

Recall that hi=a~. It is clear that, for AEb*, 
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and 

= 

Therefore J (A)l  and J y ( f ~ ) l ~ 0  if and only if Jp(r and J x ( r  Let A0e// '  

be as defined in the proof of Lemma 5.2. Then we have shown that Jp(fk)l~o and 

Jy(fk)l~or Hence, Jp(r and Jx(r are non-zero at the point ~-A0~// which has 

been shown to be irreducible in [K2, Theorem 2.4, pp. 224-225]. Since both Jp(r and 

J~(~b~) are non-zero polynomials on //, the irreducibilty o f / / imp l i e s  that Jp(r and 

J~(r are non-vanishing on a Zariski dense open subset U o f / / .  It is clear that 9 v is 

a two-fold covering map and ~'-~(U) is a Zariski open dense subset o f / / ' .  Therefore, 

J~(fk) and Ju(fk) are non-vanishing on U'=~-~(U).  Summing up, we have: 

PROPOSITION 5.3. There exists a Zariski open dense subset U' of 11' such that 
a n d  are  non-,anish ng on V ' .  

6. The order  of  the fibres 

We use the notation from the end of the previous section. We now consider the projec- 

tion 7r2: L/--~(C*) t (or ~r~: L/'---,(C*) z) from /4 (or ~/') to the x-plane (or y-plane), i.e., 

7r2(p, x)--x (or ~r~(p, y)--y). By results of Kostant concerning principal nilpotents ([K2, 
Proposition 2.5.1]), ~2 is surjective and l ~ l ~ l ( x 0 ) l ~ w - - I W I  for x0E(C*) z. We now 

give a finer result concerning the order of fibres. 

PROPOSITION 6.1. There exists a Zaviski open dense subset UC_(C*) t (or U') such 

that llr~-1(x)l=w for xeU (or 17r~-1(y)]=w for yEU'). 

Proof. Since ~r2o~'=~r~, the result for r2 follows from that for ~r~., so we focus on the 
variety/~'. Since we will use Bezout's theorem which applies only to projective varieties, 

we introduce the following projective variety 

W' = {[p, y] ePC21-11fk(p ,y  ) =0}. 

Though the choice of fk in the last section may not be homogeneous, here fk can be 

chosen to be homogeneous if we set h(p ,y )=r  where {r 

forms a set of homogeneous basic invariants of P(g)g, and the non-vanishing of the 

Jacobians is true for any set of basic invariants. 

Let Di be the divisor corresponding to fi and D ~  be the hypersurface in P C  21-1 

given by the equations 

17-950852 Acta Mathematica 175. lml~imd le 21 dc~cembre 1995 
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where y0=(Yo 1, ..., Y~o), Y=(Yt, ..., Yt) �9 C~. We shall use (D1, ..., Dn)~= to denote the inter- 

section index of the effective divisors D1,...,D,, at x � 9  (cf. IS]). We now 

make an assertion which we will prove later: There exists a Zariski open dense set U' 

such that, for yo �9  ~, one has 

(i) {Di, D~J}i=I ..... l,j=l ..... l,i~j are in general position, that  is, 

71. l - l t  , NsuppDi~'l  ~ suppD~ = 2 (Yo) 
i i,j 

consists of isolated points; 

(ii) If (po,yo)eW', then 

(a) (Po,yo) is a simple point in each Di and each D ~ ;  

(b) Ni T(po,yo)Di N Ai,j,i#j T(no,~o)D~ ={(Po, Yo)), where T~D denotes the tangent 

space of supp D at x. 

Assume this is true. We then have 
(iii) (D1, D D 12 n~-l,t~ �9 .., t, ~o,...,u~o )(p,~o)=l for (p, yo)El~ ~ and yoEU~; 

D D 12 nt-l,l~ r'Tl d e - D  for yoEU ~. (iv) Y]~(p,~o)~=;-,(yo)(D1,..., t, ~o,.-.,U~o ] ( p , y o ) : l l i = l  S i 

The statement (iv) follows from Bezout's theorem. For (iii) we refer to the result 

of Chapter IV, w Example 2 in [S]: if D1, ..., Dn are prime divisors and x E D1 N... N Dn, 

then (D1, ..., Dn)x = 1 if D1, ..., Dn intersect at x transversally, so that  x is a simple point 

on all the Di and N Tx,D~=X. The condition that  DI, ..., Dn are prime is unnecessary 

in our case. Suppose that  for each i, D~ has local equation fi in some neighborhood 

of x. Then what we really need is that  the germs of those polynomials fi generate the 

maximal ideal at x, i.e., (fl,x, ..., fn,x)=mx. Those points being considered in our case 

are simple on all the Di. Therefore, if p~(x)=O, Pilf~ and Pi is prime, then g~(x)r 

where g~=fJPi. Thus (fl,x, ..., fn,x)=(pLx, ...,Pn,x) and then we can apply the result in 

that  reference to Pl, ...,pn. 

From (iii), (iv) we obtain [lr~-l(yo)l=l-Ili=tdegDi for yoeU'. But l'Iti=ldegDi= 

l'It~=~ degf~=IT~=l degw,,=w. The last equality is due to the facts that  {wv,}i=l ..... l 
forms a set of generators of S(b) J(a) as a polynomial ring and that  S(b) J(n) is isomorphic 

to S(a) W [GW2] and standard facts about finite Coxeter groups [B]. 

Now it suffices then to prove our assertion. (i) follows from Ir~-l(y0)l~<lWI. (ii) is 

equivalent to 

(v) 
(of  oh 

(a) ~ Opl,..., Opl , 0 ~ / 1 ' " "  ~Yl / for yo�9  Y~YJor 
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and 

B = ( b ( i , j ) , k ) i = l  . . . . .  l , j = l  ..... I , i ~ j , k = l  . . . . .  l 

is a � 8 9 2 1 5  l matrix with b(i,j),~=5ik~--hjky~. 

By Proposition 5.3, J~(f)  and Jr ( f )  have full rank on some Zaxiski open dense 

subset of )4; I, say 142~. Let Zo=-YV'\)/V~. Then Zo is Zariski closed and d imZo~</ -2  

(dim lN '=d im L / - l = / - 1 ) .  By Chevalley's theorem ([CC], [M]), the closure of 7r2(Zo) 

in Zaxiski topology has dimension less than ! - 2 .  Then the set U~=CP l-1\Tr2(Zo) is a 

Zaxiski open dense set for dimension reasons, and for yo�9  7r~-l(yo)�9 This U' is 

what we want. For yoeU',  Jp(f)(po,~o)~0 and J~(f)(po,~o)~0 for any (po, Yo)�9 

so (Ofk/Opl, ..., Ofk/Opt, Ofk/Oyl, ..., Ofk/Oyt)~O for k = l  .... , I. 

Since the first l column vectors and the last 1 column vectors of J axe linearly 

independent, to prove (ii), it suffices to show that if there are cj, j = l ,  ..., l, cj not all 

zero, and dj, j = l ,  ..., l, such that 

and 

E dj O~pf3k " (po,uo) for k = 1, ..., l, 

m c " c jY0-  ~0 f o r i C j ,  

then di=)~p~, i=1 ,  ...,l, for some non-zero )~�9 Suppose that  such cj exist, by multi- 

plying by a constant ~EC*, we may assume cj=yg. As fk is chosen to be homogeneous, 

we have 
Ofk + ~-~ Ofk 

E yj ~ y j  ~ . ,  pi ~ p  = (deg fk)fk. 

Therefore 

Ofk ~ i Ofk = (degfk) fk(po,Yo)=0 

and then 
~, OYk 

(po, o) 

But Jp ( f ) l  (po,uo) # O, hence di +p~ = 0 for i = 1, ..., I. 

=0. 

PROPOSITION 6.2. Let {r ..... l be a set of homogeneous basic invariants 

of 79(g)~. Set fk (Pl,..., pt, yl, . . . ,  Yl) = vck (pl,..., pi, yl,. . . ,  yl), p~ �9 C, yi �9 C*. Then there 

exists a Zariski open dense subset 0 C (C*)t such that for any connected, simply connected 

open subset V CO, there exist w differentiable functions p(m): V._.C z, m = l ,  ..., w, such 

that for y e V ,  

(i) h(p(m)(y) ,y)=O for all k; 
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(ii) I{(p(m)(y),y)lm=l,...,w}]=w; 
(iii) / f  S(m)(y) ~ - ~=~(~,~j)p~m)(y), where ~ is defined by (ai , f~j)=5,j ,  then 

I{S(m)(y)lm= 1, ..., w}l = w .  

Proof. Let U t be the Zariski open dense set in the previous proposition. Let Y0 E U t. 

Then Jp(fk)](po,uo), Ju(fk)l(po,uo) are non-zero, so by the implicit-function theorem, there 

exists an open neighborhood V0 of Y0 and p: V 0 ~ C  z a differentiable function such that  

fk(p(y),y)=O, k=l,...,l, whenever yEVo and p(yo)=Po. For any yEU', I~r~-1(y)l--w, 
therefore there exists an open neighborhood V C U ~ of Y0 such that  there are w differen- 

tiable functions p(m): V__,C l, m=l,  ..., w, so that,  for yE V, 
(i) {(p(m)(y),y)} consists of w distinct points; 

(ii) fk(p(m)(y),y)=O. 
On V, the sums S('~)(y)=~(~,~j)p~.m)(y) are defined. Set h i=a~.  Regard yj as a 

function defined on ac  through yj =ear Let {qj} be the coordinates associated with the 

basis {hi} of ac .  Since {wr }k=l ..... z are mutually Poisson commutative [GW2], we have 

t (g fro Ofn K-~t O fro Ofn Z op~ Oqj = ~  Oq~ op/ 
5=1 '= 

On V, p~m) is a smooth function of yj, hence of qj. So 

Ofn Ofn Opi =~-~ Ofn Ofn Opi 
. . . .  op~ op, Oq, ~ opj op, Oq/ 

Arranging the indices we obtain 

Z 
Set ,k~j=ap~/cgqj-Opj/Oq~ and 

written as MtAM=O. But det 

A=0,  that is, 

Then 

ofn ofn ( o,, opt) 
Op/ Op, \ Y~qj ~ =o. 

A=(Aij)i j .  Let M=(Ofj/Op~)i,j. 
M=Jpr on V. 

Op~ _ Op3 

Oqi Oq~ 

(6.1) 

Then (6.1) can be 

Therefore M is invertible and then 

(6.2) 

os(~) ~ . . . .  op~m)(y) op~m)(y) 
Oqi --]'r~. lO'PJ) ~q~ --E(O'~J) Oqj 

3 i 

= ~(o, ,~,  op~")(y) oy~ = ~(O,~j)(.~,hj) OPlm)(Y)-. 
j,k j,k 



ASYMPTOTIC EXPANSIONS OF MATRIX COEFFICIENTS OF WHITTAKER VECTORS 251 

But since fk are homogeneous, p~m) is homogeneous of degree one in y. Hence 

~ (6.3) 
Oq~ 

Therefore suppose for some u,v,  S(~)=S (v) on V, then OS(~)/Oqi=OS(V)/Oqi, that  is, 

p~)=p~V), i = l ,  ...,1. But then we must have u=v.  Consequently, we conclude that  for 

ye V, S(~)(y), m =  l, ..., w, are distinct. 

Since each fk is a polynomial, hence holomorphic, p(m)(y) is holomorphic on a 

small neighborhood of Yo. So locally there are w holomorphic functions satisfying 

fk(p(m)(y),y)=O, k=l , . . . , l .  Therefore on any connected, simply-connected open sub- 

set V of U', there exist holomorphic continuations of p(m)(y), m = l , . . . , w ,  which are 

only defined on some neighborhood of Y0 E V. Hence the proposition follows if we take O 

to be U'. 

We now set Z(pl, . . . ,pt ,y l , . . . ,y t )=f+~"~=lpihi-~-~t i=l  y~ei. We make the choice 

that  Jr-l(Z(p,y))=~-~Ji=lpia,+~'~Ji= 1 x/'ZTyig~. It will be clear later that  this choice 

makes no real difference since any polynomial J(w), w6U(b) n, has even degree in each 

variable Yi. 

PROPOSITION 6.3. There exists a Zariski open dense subset 0 of A such that for 

any connected, simply-connected open subset V of O, there exist differentiable functions 
p(m): V_.4C t, m =  l, ..., w, such that, for  x 6  V, 

(i) for all w e V(b) ~, J(w)(Jr-X(Z(p (m), y))) =0, where pCm) = (p~m)(x),..., p[m)(x)) 

and y = ( x ~ ,  ..., x a' ); 

(ii) S( 'n)(x)--~(~,~j lp~m)(x) ,  m = l , . . . , w ,  is the set of all eigenvalues of the con- 
stant matrix Bo (log x) and they are distinct. Furthermore, [El ( dS ( m ) ) , . .. , E,~ ( dS  ( "~ ) ) ] is 
an eigenvector corresponding to the eigenvalue S(m). 

Proof. We extend the domain of B0 to ac  in the usual manner. By Propositions 4.6 

and 6.2, {S (m) (x) l m =  1, ..., w} is a complete set of eigenvalues for B0(log x) on a Zariski 

open dense set. The characteristic polynomial Q(x; A) of Bo(log x) has real coefficients 

when regarded as a polynomial in xk =e ~ (log x) and A. So the resultant R(x)  of Q(x; A) 

and (dQ/dA)(x; A) is a polynomial in xk with real coefficients. But R(x)r  on a Zariski 

open dense set, therefore, R(x)~O on a Zariski open dense subset of A. 

7. T h e  m a i n  t h e o r e m  

Let G be a semi-simple Lie group split over R.  G = N A K  is an Iwasawa decomposition. 

For vEa~,  (lr~, H) denotes the associated spherical principal series representation of G. 
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As in w W(v)  is the space of all Whittaker functions associated to ~r~. Let {ul, ..., ut} 

be a set of algebraically independent generators of :P(g)g consisting of homogeneous 

elements. As in w and w we define Z(p,y) and fk, k=l ,  ...,l, by 

l l 

z(p, y)= I + p ,h , -  y, e, �9 g, 
i = 1  i = 1  

Sk(p, u) = uk(Z(p,  u)), 

where hi=a~. Let w be the order of the Weyl group W = W ( G ,  A). 

Before we give the statement of our main result, we establish some notation and 

definitions. If r is a vector-valued function from A into C n, for yea,  one defines Cv: 

A x R + ~ O  n by r162 for xEA, t>0 .  Then r is said to be homo- 

geneous of degree k in the direction yea  if for all xEA, Cv(x;t) is homogeneous of 

degree k in t, i.e., r162 for A>0, t>0 .  If f~C_A and for any xEf~, t>0 ,  

x exp(log t)v E f~ and if r is a function defined on fl then we define Cv by the same formula. 

We call such a subset f~ of A v-conical. 

Definition. Let I2 be a v-conical set and let r be a function defined on 12. A series 

q(x) ~']~=-1 Ck(x) t-k-u(x) on f~ is said to be an asymptotic expansion of r with a shift 

of order #=#(x) in the direction v, if 

(i) Ck is homogeneous of degree - k  in the direction v; 

(ii) q(x exp(log t)v)=t-~q(x); 

(iii) for all xEf~, 

Cv(x; t)..~ q(x) E dPk(x)t-k-t" as t ~ oo. 
k = - I  

We write a E L - I * k .  

MAIN THEOREM. Let G be a semi-simple Lie group split over R.  Then there exists 

a Zariski open dense set 0 of A such that for any connected simply connected open subset 

ft of 0,  there exist differentiable functions p(m): f~__.,O~ r e = l ,  ..., w, so that 

(i) fk(p('~)(x),y(x))=O, y(x)=(x~', . . . ,x~') ,  for xef~, k = l ,  ...,l; 

(ii) S={S(m)(x)=~-~(~,Bj)p~m)(x),m=l, ...,w} has w distinct elements .for x e f L  

(iii) Suppose further that f~ is Ho-conical and there is an ordering of S such that 

ReS(W)<....<.ReS (x). Then there exists a basis {r ..... w of W(u) such that for 

each m, there exist functions pro, qra and r k= - l ,O ,  ..., such that 
o o  

e-(Q+s (',) r ~ qm E r 
Ho 

k-----1 

on n with q,~#O, *(__~)#0. 
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Remark 1. The functions #m in the main theorem are homogeneous of degree 0 

in the direction H~. In fact, we will see from (7.3) that  they are rational functions 

of S(1),..., S (w),x~l, . . . ,x ~' with denominator I-L#j(S (0-S( j ) ) .  Since qm(XO+TH~)= 
e-~t"~(~~ x0Elog f/, e-(~162162 (m) has growth of order t ~''~. 

Remark 2. Suppose that  f~ is an open subset of ac  such that  ~20=~f3a is non- 

empty and there exist w holomorphic branches S(U, ..., S (m) of eigenvalues of the constant 

matrix Bo(xo) on f/. Since S (0 is holomorphic, S(01n o is a real analytic function. For 

i# j ,  set 

P~ = {x e f/0 IRe S(~)(x) > Re S(J)(x)}, 

P~ = {x e ~01 Re S (0 (x) < Re S (j) (x)}, 

K~r = {z �9 ~0 IRe S(O(x) = Re S(J)(x)}. 

Let P ~  K~j be the interior subset of K~j. Since S(~)la o is real analytic,  if pO 

is empty, then Kij is of dimension less than l - 1 .  If pO is non-empty, the boundary 

of K~j, OKij, is of lower dimension. We have flo\OK~=P~juP~ Set r.(f~)= 

120\Ui>j OKij=Ni>j(P~uP~ ~(f~) is a union of open subsets Pm=Ni>j Pi~. '~, 
m=(mlj)i<j, mij=+, 0 or - .  If Pro#O, let X�9 One has some permutation a�9 
so that  Re S (~w) (x) <~... <~ Re S (~1) (x). By the definition of Pro, if Re S (i) (x) > Re S (j) (x), 
then Re S(O(y) >Re S(J)(y) for all y e P ,  n. Therefore, Re S ( ~ )  (y) <~... ~<Re S(al)(y) for all 

y�9 In other words, for any x � 9  there exists a sufficiently small neighborhood 

Vx such that  there is an ordering of those eigenvaiues so that  Re S(W)(y)<~ ... <~Re S (1) (y) 
for all y�9 The closed set [,Ji>j OKij is of lower dimension. Therefore, if we throw 

away a certain closed subset of lower dimension, any sufficiently small open subset and 

the smallest Ho-conical set containing it will satisfy the condition in the statement (iii) 

of our main theorem. 

The statement (i) and (ii) in the main theorem has been proved and stated in 

Proposition 6.3. Let OC_A be the Zariski open dense set described in that  proposi- 

tion. For x �9  the constant matrix B0(logx) of the system (1.16), i.e., the constant 

term in the expansion of B(log x; t) in t is diagonalizable and has distinct eigenvalues. 

On an open subset f/0 of O, if we have an ordering of those eigenvalues of Bo(x), say 

{S(1)(x), ..., S(W)(x)}, such that  S(O(x) axe differentiable, then, by Proposition 6.3 (iii) 

there is a matrix-valued function E=E(x) on rio such that  E-1BoE=diag[S (1), ..., S(W)]. 

Now we recall the linear system of differential equations (1.16), 

(xo; t) = B(xo; t )r  t), 

B(xo; t) = Bo(xo)-Dt- l+ lower order terms, (7.1) 

q,(zo; t) = tDq,(zo; t), 
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where xo=logx,  D=diag[dl,...,d~], di=degei, i = l , . . . , w .  For xEO, Theorem A.4 in 

the appendix asserts that  there exists a fundamental matrix solution 

~(xo; t) = E(xo)~(Xo; t)t-A(~~ ts(~~ (7.2) 

such that  

with kOo(Xo)=I. Here 

and 

oo  

ast- oo, 
k=O 

S(xo) = diag[S(1)(xo), ..., S(w) (Xo)] 

A(xo) = diagonal part of E(xo)-lDE(xo) 

- diag [A1 (xo), ..., A~ (xo)]. 

Remark 3. We give here a description of h in terms of Bo and its eigenvalues S (i), 

i=l ,  ..., w. Since, for xEU, B=Bo(x) has w distinct eigenvalues, B is a regular element 

in gI(w). Let b be the centralizer of B. Then b is a Cartan subalgebra and is spanned 

by {sJ}j=l ..... w-1. Let {Bj} be the dual basis with respect to the trace form on gI(w). 

Then the b-component D e of D in the root decomposition of g[(w) with respect to [) 
W - - 1  is ~-~j=o tr(DBJ)Bj. One also has B J = y ~ - ~  tr(BJ+k)Bk. Let M=(trBJ+k-2)j,k and 

M-l=(mJk) .  Then 

and 

w-1 
S j  = Z mJ+l 'k+lBk '  

k=O 
j - - 0 ,  . . . , w - l ,  

w-1 
D b = ~ tr(DBJ)mJ+l'k+lBk. 

Observe that  

k,j=O 

tr B j+k-2 -- Z ( S ( i ) )  j+k-2 and M = H(S(1),...,S(W)) t, 
i=l 

where H(xl,  x I-1 ...,xn)=( . . . . .  

Motivated by the above considerations, we set ~ i= t r  DB~. Then 

~i = tr(S-lnE)(diag[S(1),.. . ,  S(W)]) i = Z AJ(S(J))~" 

Write ~ = [~/1, ..., ~/~]t, A = [A1, ..., Awl t. Then 

-~ -- H( S(1), ..., S(w)) A 
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o r  

= H (  S( ' ) ,  ..., (7.3) 

det H(S (1), ..., S(~))=I-[I>j(S (i) -S(J)), so each Ai is a rational function of S (1), ..., S (w) 
and x~',  ..., x ~' with denominator ]-Ii >j (S(i) - S(j)). Note also that  Ai (x0 + vH0) = ),~ (Xo). 

Let {~,, .--,r be a basis of W(u). Set (p~=e-e(bilA and ~=[eir ...,eweS], where 
el, ...,e~ form a basis of the space of all the harmonics in S(a), e l = l  and ei are ho- 

mogeneous. From the discussion in w ~i (x ; t )  is a solution of (7.1) and ~(x;t)= 

[~l(x; t), ..., ~w(x; t)] is a fundamental matrix solution. By (7.2), for xEO, there ex- 

ists C(x), det C(x)r such that  

t) = (7 .4)  

For a fixed xEO, there is a sufficiently small neighborhood V of x such that  E(x) is 

defined on V and ~(x~; t ) -*I  as t--*oo uniformly for x~EV (see Lemma 7.3). Therefore 

~(x;  t) is invertible for large t and C(x ~) can be written as a product of matrix-valued 

functions smooth in x'. Thus on any open subset 12 of O, if there is a unified ordering 

of eigenvalues of Bo(x), xE•o, then there exists a smooth C(x) on 120 such that  (7.4) is 

satisfied. 

Before we examine C(x), we want to know more about the dependence on the 

parameter xo of the asymptotic expansion of ~2(x0; t). Though the differential equation 

(7.1) is defined for xoEa, we may extend it to ac  and B(xo;t) is then holomorphic in 

both variables x0 and t whenever it is defined. We will need the following theorem later. 

THEOREM 7.1 [Wa]. Let S be the closed sector {xEC[a<~argx~;3, [x[~>c} and T 

a compact domain in C. Let f(x, y) be holomorphie in both variables in S x T and 

o o  

f (x ,  y) '~ Z ar(y)x-r  as x ~ oo in S, 
r=O 

uniformly for yET, i.e., for each k, 

k 

uniformly with respect to y. Then all of the at(y) are holomorphic in T and 

o o  

Of(x, y) ,,~ Z dar(y) x_ r 
Oy r=o dy as x --* oo in S, 

uniformly in every proper compact subset of T. 
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LEMMA 7.2. For x'EU, there exists an open neighborhood V o] x' such that ~(x; t) 

possesses a uniformly valid asymptotic series expansion as t-*co, for x E V. 

Proo]. It suffices to show that  the analytic simplification described in the appendix 

can be done in a uniform manner once we know that  B(x; t) in (7.1) possesses a uni- 

formly valid asymptotic expansion as t-*co. The first step in the analytic simplification 

is to reduce the problem to the case where the given formal power series solution is zero. 
OO - - r  

Therefore, we need to show that,  given a formal power series ~ r = l  wr(x)t , where 

wr(x) are holomorphic, there exists r t) holomorphic in both variables x and t such 

t ~ ,  V '~  w~(x)t -~ as t-*co is uniformly valid. In fact, r t) can be chosen to that  r j z.,~=0 

be ~-~=o w~(x)a~(x, t)t -~, where a t (x ,  t)--exp(-Iw~(x)l-lt~),  0<]3< 1. The verification 

of this is standard. The existence of such a r enables us to conclude that  every asymp- 

totic expansion involved in the expression of p(x; t, u) in (a.8) is uniformly valid for x. 

Since A(x) in (a.9) is continuous where it is defined, we have that  in a sufficiently small 

neighborhood V of x', F(x;~) in (a.9) does not depend on x e V .  The equation (a.8) can 

be solved by successive approximations using the integral operator P(x)  which is defined 

by the right hand side of (a.9). The following estimation (cf. [Wa D is used to show that  

the successive approximations converge to the solution: if IIX(~)II ~<cl~l -m, there exists 

K which depends on m but not on c or X such that  

r(~)e(r dt <~ gc l~F  m. 

The constant might depend on A, but this dependence on A may be eliminated by 

shrinking V. Another estimation needed is that  for IIZ(~)II~<CO, Co small, i= l ,  2, there 

exists ~/such that  

II ( B ( t )  - A ) ( z  (2) - z (1 ) )  + h ( t ;  z - h ( t ;  z(l ) II z (2) - z II. 

(Recall that  p(t, z )=b( t )+(B( t ) -A)z+h( t ,  z).) Since B(t)-*A uniformly in t and as a 

polynomial in z the coefficients of hit; z) have uniformly valid asymptotic expansions, 

can be chosen to be independent of xEV.  Therefore the successive approximations can 

be carried out in a uniform manner. 

LEMMA 7.3. Let A, S e C  and h(t).~t m ~'~j~=odjt - j  as t-*co with do•O. Suppose 

that limt--.~ t~etSh(t) exists and is finite, then it is zero except when S=O and 1 = - m ,  

and in this case the limit is do. 

Proof. It is clear that  if Re S>0,  t~etSh(t)-*co as t-*c~ and if Re S<0,  t~etSh(t)-*O 
as t-*co. Therefore, we may assume that  ReS=O. If R e A + m > 0 ,  then t~etSh(t)-*co 

as t-*co, and if R e ~ + m < 0 ,  then the limit is zero. So we may assume that  R e 1 = - m .  
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If l imt- .~ t~+metS(t-mh(t)) exists and is finite, then 

lira t~+me ts = lim exp i[Im A log t+t  Im S] 
t ---*~ t ---*OC 

exists, i.e., limt__.~c(Im A l o g t + t I m  S) (rood 2~r) exists. This happens only when Im A= 

Im S=O, and in this case lim,__,~ t~etSh(t) =do. 

Remark 4. If R e S = 0 ,  h(t),vO as t--*oo, take m > 0  such that  R e A - m < 0 .  Then 

tx-mets(tmH(t))'-*O as t--*oo. Therefore the condition that  hf i0 is superfluous when 

Re S=O. 

LEMMA 7.4. Suppose that on an open convex set of C "~ or R n, Z): (OH)F(x)= 

Ug(x)F(x),  H E C  n, with UH(X) an upper trian#ular n x  n matrix, defines an integrable 

system. Then there is an upper triangular fundamental matrix solution. 

Remark 5. If all of the UH in the lemma are block upper triangular and all their 

diagonal blocks are diagonal matrices, then there exists a fundamental matrix of solutions 

of the same form. 

Proof. Let F=(fx , . . . , fn)  t and Fj=(f j , . . . , fn)  t, j=l , . . . ,n .  Observe that  Fj is a 

solution of a similar system. Therefore we can prove the lemma by induction on j .  But 

we first consider the case when all the UH are diagonal. :D can then be rewritten as 

dfJ =u~,jfj, i , j =  l, . . . ,n, 
dxi 

where {xl , . . . ,xn} is the standard coordinate system on C n or R n. Then d(lnf j )= 

ui,j dxi, if f j  50 ,  the integrability of the system implies that  ~ ui,j dx~ is dosed, hence 

there exists a unique function g3 such that  f j=cje  gj for some constants c jEC.  Hence 

in this case, the system has a fundamental matrix of solutions diag[egl,..., eZ"]. In the 

general case, let A H = the diagonal part of UH. Since [UHI, UH2] =OH1UH2 --0112 U~II, 

0= [AH~, AH,] =OH1 AH 2 -OH2 AH,. Therefore the system 

(OH)G-- AHG 

Let diag[egl,...,eg"]=M be a fundamental matrix of solutions of this is integrable. 

system. 

(OH)(M-1F) = - M - I ( O H M ) M - X  F + M - I U H M M - 1 F  

= M - I ( U H - A H ) M . M - 1 F .  

Therefore, we may assume A/~ is zero, i.e., UH is nilpotent. Let Z)m be the subsystem 

O l i =  Z Ui,j,kfk, i = 1, ..., n, j = m, ..., n, 
axi k>~j+l 



258 T.-M. TO 

o f / ) .  Then ~----~I- We prove the lemma by induction on m. When m=n,  it is clear. 

Suppose ~,~ has a fundamental matrix of solutions G,~ which is upper triangular. Now 

we consider the system 
Ov 
OXi = [Ui'm+ l'm' "'" ui,m+ l,n]Gm 

with v a row vector. This system is integrable. Let gin-1 be the unique solution (up to 

scalar). Set 

G i n - l =  Gm J" 

Then 
~Vm-I 
Oxi - [ui,j,~]m-1~<~,~<nGm-1, 

and the column vectors of Gm-I are linearly independent, i.e., Gm-I is a fundamen- 

tal matrix solution of/:)m-b Therefore the subsystem :Dm-I has an upper triangular 

fundamental matrix solution and the lemma follows. 

LEMMA 7.5. If V is an open convex subset of 0 such that there is an ordering of the 
eigenvalues of Bo ( x) so that Re S (j) ~ Re S (0 if i <~j, then there exists a constant matrix 
C such that C(x)C -1 is upper triangular. Furthermore, the (i,j)-th entry of C(x)C -I  
is zero whenever Re S(i)=Re S (j). 

Pro@ For H6 a, one has 

( OH)$(x; t) = r . (x ;  t)$(x; t). 

Since $(x; t )= tD~(x ;  t)t-A(=)ets(=)C(x) with $(x; t )=E(x)~(x;  t), we have 

( OH)$(x; t) = tD { ( OH)~(x; t)--log t $(x; t)( OH)A(x) +t~(x; t)((OH)S(x) } 

x t-A(Z)etS(=)C(x)+tD~(x; t)t-x(=)etS(x)(og)C(x) 

= r (z; t) t~ 

Therefore 

(OH)C(x).C(x) -1 = Ad(tA(z)e -ts(x) ) 

x {log t (OH)h(x) - t (OH)S(x) -  ~(x; t) -1 (OH)~(x; t) 

+%(=; t)-lt- 'r n(=; t)t~ t)}. 
(7.5) 

~(x; t) is invertible for large t because limt--.oo ~(x; t )=E(x).  The left hand side does 

not depend on t, so as t--*oo, the right hand side has a limit. By Lemma 7.3 each off 

diagonal entry of the term inside the bracket in (7.5) has an asymptotic expansion as 
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t--*oo. Since we have Re S (j) ~<Re S (i), for i ~ j ,  by Lemma 7.4 and the remark following 

it, (OH)C(x).C(x) -1 is upper triangular. Furthermore, when Re S(J )=ReS (0, ir the 

( i , j ) th entry of (OH)C(x).C(x) -1 is zero. Therefore, C(x) forms a fundamental matrix 

of solutions of the system of differential equations 

(OH)v(x)=UH(x)v(x), 

where UH(x) is the limit of the right hand side of equality (7.5) as t ~ c o .  Therefore, 

there exists a constant matrix C such that C(x)C -1 is upper triangular. 

LEMMA 7.6. Suppose E(x), C(x) and ~(x; t) are defined on some open Ho-conical 
subset no of O. Then, ]or xE~, 

(i) C(x exp rH0)=e~hC(x); 

(ii) ~(x; t)(x exp THo; t)=~(x; eft). 
o 

Proof. Let t-lt-DFHo(x;t)tD----~-~.~=oAr(x)t -r (in fact, the sum is finite). Let 

Ar(x)=E(x)-l ~ir(x)E(x). Then 

~(x; t) = P(x; t) exp(-D(x;  t)) 

with 
oo oo D r + l t _  r 

E E ast--*c~, P(x;t),~ Pr(x)t -r and D(x;t),~ r 
r----O r = l  

where Pr(x), Dr(x) are determined by procedures described in the appendix, especially, 

by equations (a.3) and (a.4). But here we use the notation Dr instead of Br. Notice that 

Br are diagonal matrices and Pr(x) have zero diagonal entries. Since S(O(xexprHo)= 
e~S(O(x), by Proposition 6.3 (iii), one has 

E(x exp vHo) = erDE(x). (7.6) 

It is easy to see that Ar(x)=(~deg~h=r U~jX(Wk))i,j, degu~j--d~-dj-r-}-1. Hence 

Ar(xexp,Ho)=(e(d'-dJ-r+D" E u~j(x)x(wk))i =e(-r+')'e'DAr(x)e -rd, 
degw~=r ,J 

and then 

Ar(x exp rHo) = e-(r-1)~Ar(x). 

From (a.3), (a.4), (7.7), we have 

(7.7) 

Pr(x exp vHo) = e-r~Pr(x), 

Br(x exp T Ho) = e-(r-1)r Br(x). 
(7.8) 
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Thus ~ (xexprH0;  t) and ~(x; e~t) have the same asymptotic expansion as t-*co.  Since 

they, as functions in t, satisfy the same differential equation, 

%(x exp THo; t) = %(x; e't)C1 (~') 

for some el(T), det e l (T )#0 .  Then 

as t - , c o ,  

and Ca(r)-I=limt_~o~@(x;e~t)(Cl(r)-l)=O, i.e., CI(T)=I. Thus (ii) follows. To 

prove (i), note that 

and 

@(x; e~t) = e~DtOE(x)@(x; e~t)t-h(=)e~'ts(x)C(x) 

~(x exp rHo; t) = tDE(x exp vHo)$(x exp ~'Ho; t)t -a(=) ee'tS(=)C(x exp ~'Ho). 

Therefore, by (7.6) and (ii), C(x exp vHo)=e-rA(=)C(x). 

Proof of the main theorem. Since E1 = 1, [r ..., r is the first row of the fundamen- 

tal matrix solution ~(x; t). As t D is diagonal and its first diagonal entry is 1, [r ..., r 

is the first row of ~(x; t)t-h(Z)etS(=)C(x) with ~(x; t)=E(x)~(x; t)=(r t))id. Let 

E(x)=(eij(x))id. By Lemma 7.5, we may assume that C(x)=(qij(x))~d is an upper 

triangular matrix with qi j(x)=0 whenever Re S( i )=Re S (j) and ir Then 

t) = r  t)t 
i~>j 

= t~,(=) etS(')(=) { r t)q,,(x) q- ~> j r t)qfi(x)v)q-', et(S(')-$(')) }. 

But if ReS(J)~<ReS (i), either qji=O or expt(S(J)-S(i))~O as t-*co, so r162 

~ > j  r and r have the same asymptotic expansion as t-*co. 

If r -r, by Lemma 7.6, Cjr is homogeneous of degree - ( r - l )  in 

the direction Ho and q~i(xexprHo)=e-X'(X)~qi(x). Note that  C j o = e u ~ 0  on fL This 

completes the proof. 

8. T h e  af l ine  c a s e  

In this section, we show how one can generalize the main theorem in the last section 

to the afline Lie algebras. Let go be a simple Lie algebra of type A, B, C, D or Es, 
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go=$o(~ao~no is an Iwasawa decomposition. Let Ho={at , . . . , a~} be the simple root 

system for the pair (no, ao). Let /3 be the longest positive root. Set aZ+l=-/3. By 

adjoining c~+1 to the Dynkin diagram associated to Ho, we get an extended Dynkin 

diagram H E. Then there is an affine Lie algebra 9 associated to H E. If X ~  (or XE) is 

a non-zero root vector of 9o for the root ai  (or f~), then 9 is generated by H |  HEn ,  

X~,|  i=l, . . . , l ,  Xa~+~| and XE| -1. (For details, see, for example, [Ka].) For the 

Dynkin diagram associated to IIo, one an define Do, ao, no, ~o and Uo as in w For the 

extended Dynkin diagram IIE, we associate to it a finite-dimensional real Lie algebra b 

equipped with a positive definite inner product (. ,. ), such that  

(i) b is the orthogonal direct sum of two abelian Lie algebras a=ao and u such that  
[a, u] _c u; 

(ii) for HEa, ad(H) is symmetric relative to (. ,- ). Hence, there exists an orthonor- 

real basis {Y1, ..., l~+a} of u and c~iEa* such that  

and 

[H, Yi]=ai(H)Yi, H e a ,  i = 1 , . . . , l + 1 ,  

(iii) the a 's  are exactly those in the extended Dynkin diagram IIE. 

Remark 1. We may assume that  ( . , . ) lbo • bo is the same inner product for D0 we 

used earlier, and one might identify those Xi in the previous sections with Yi, i=1 ,  ..., l, 

since we have an obvious injection from b0 into b which sends the a~ root space in D0 to 

the ai  root space in b. In fact, I / /can be taken to be X ~ |  i=l , . . . , l ,  and 1~+1 to be 

Xol+ 1 | 

Let {Zi} be a basis for b and {W i} another basis that  is dual to {Z~}, that  is, 

(W i, Zj)=6i j .  Then the Laplacian associated to b is 

= z , w  e U(b). 

It does not depend on our choice of basis. Let {hi} be any orthonormal basis for a and 

{Yi} be the basis of u given in (iii). Then 

1 l + l  

j = l  i=1  

The structure of U(D) n has been studied in [GW4]; here we quote a result from this 

paper. 

THEOREM. Let ul, ..., uz be a set of homogeneous algebraically independent genera- 

tors of U(a) w. Then there exist elements fit, ..., f~ in U(b) n such that 

(i) the elements ~x, ..., ~ mutually commute and are algebraically independent; 
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(ii) #f~i =ui and deg f~i =deg ui; 

(iii) f~i is in the subalgebra of U(b) generated by a and Y~, y2 y2 . " ' "  I ' l + l '  

(iv) U(b) a is generated as an algebra by f~l,..., ~t and ~. 

Here p is the projection from b onto n and ~ is Yz+l I'I~i=1 Yi "~ if ~=~li= 1 niai. 

Remark. This theorem is also true when Ho is a Dynkin diagram of type B, C, and 

/~ is the short dominant root. 

Let ,:7" be the subalgebra of U(b) generated by f~l, ..., f~. The map 

U(u)|174 
z|174 ~ zew 

is a finear isomorphism. More precisely, if {Us(b)} is the usual filtration, 

Uj(u)=V(u)NUj(b) ,  T/j=7-/NUj(b) and , ~ = J N U j ( b ) ,  

one has 

Us(b)-- ~ Ur(u)-ns.St.  (8.1) 
r-t-s+t=j 

Let 71 be a generic character on u, ~70 =~?luo. One can define a representation II~ of U(b) on 

C~r using (1.5a) and (1.5b). Also we have H~o , a representation of U(b0) on C~(a).  

If X is a homomorphism from ff  into C, analogous to (1.6), one might consider the 

following system of differential equations: 

x(-)r ueg. (8.2) 

We will relate this system with the one associated with bo that we studied in the previous 

sections. To this end, we introduce a family of Lie algebra homomorphisms as of b. a~ 

when restricted to b0 is the identity and as(Yz+l)=sYt+l. It is clear that they are Lie 

algebra homomorphisms and they can be extended to homomorphisms of enveloping 

algebras. Furthermore, they are isomorphisms except when s=O. Note also that as 

preserves the standard filtration Us(b), that is, 

as(Vj(b)) Vj(b). 

Us(b ) is finite-dimensional and the map 

is continuous. 
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Let p: b ~ a  and #o: bo~ao be the canonical projections. Then it is clear that 

,o(oo(z))=,(z) 

u ( o , ( z ) )  = u(z ) ,  z e u (b ) .  (8.3) 

Set ~28=a~. Let ~1,...,121 be those invariants in the above theorem. Since a~ is a 

Lie algebra homomorphism, asfh,  ..., atilt are in U(O) n" , they mutually commute, and 

they are algebraically independent since #(as~)=p(f~i)=u~. If sr  together with ~, 

they generate U(O) ~~ as an algebra. Let Js be the subalgebra of U(O) n" generated 

by asfh,  .... asf~. For m=(ma, ..., mt)eN t, set w m = ~ l . . ,  f~z.  Then as vector spaces 

{win} is a basis for ff  and {a~w,~} is a basis for Js. One can identify/To with U(b) ~~ 

and the basis for U(bo) no in previous sections can be taken to be {aOWm}. Note that 

lim a~(Wm) = aO(Wm). (8.4) 
8"--*0 

If u is a homogeneous element in U(b), then one has the decomposition by using (8.1), 

where Ujm6U(u) and {ej} is a basis of ~/which consists of homogeneous elements. If 

u6U(a), apply a, to both sides of (8.5). Since asu=u, we have 

One may assume that ujm is homogeneous and that it can be written as 

deg u j m  

~ =  ~ ~,~(Y~,-..,~)Y,L, (8n) 
k=O 

where uj,n,k is a polynomial of degree deg u j m -  k. Then 

a.Ujm = Z SkUjm,k(Yl' ""' Yl)Ytk+ x (8.8) 

and 

lira a,u~m = u~ ,o (Y1 ,  ..., Yl ). 
8--.*0 

Therefore, letting s approach 0 in (8.6), it follows from (8.4) and (8.9) that 

(8.9) 

(8.10) 

18-950852 Acta Mathematica 175. Imprim~ le 21 d~cerabre 1995 
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Let ~, H~ be as in previous sections, that is, (~,(~i)=1, i=l, . . . , l .  

y(Y1)==l:x/~f and y(Yl+l)=-c  by conjugating an element in A. 

Applying the above discussion to H~ei, one has 

Hsei = ~ ~ijmejOJm, 

Uijm = ~ Uijm,k(Y', "", Y~)~I  

and 

One may assume 

(8.11) 

(8.12) 

H~e~ = ~ u~jm,oejaow. (8.13) 

v i ~ . ~ = r , ( u i 3 . ~ ) e R [ e  ~' . . . .  ,e a ' ,e  a'+'] and identify Hsei,ej with r~(H~ei),Tr~(ej). Set 

Suppose r is a solution to (8.2), then 

(g#ei)r = ~ vijmX(wm)ejr (8.14) 

Set F=[elr ...,ewdp] t and ~(x ; r )=F(x+rH~)  for x6a, r e R .  From (8.14), one has 

H~F = F F, 

where F is a w • w matrix and 

r,j  = ~ vijmX(wm). 

Applying ~rn to both sides of (8.12) one has 

Vii m ----- ~ Vijm,k Ck ekaz+ l , 

where vii,~,k =lr, (uijm) = r,o ( uijm ) �9 R [ e " ' ,  . . . ,  e ~' ]. Then 

F~i (x+rH~) = ~ vi~,k(x)x(flm)c~e k~'+'(x).e ~(deg ~,j-.~-~l~t), 

where I~1=~ ni if ~ = ~  niai. Note that 

d~jm,k = deg vij,%k = d~ + 1 - d r - Im-  k, 

where di =deg ei, I m--deg win. Therefore, 

d_~ (X; T) = (H~F)(x+rH~) = F(x+TH~)F(x+rH~) = r(z+xH~)~(z;  r). (8.15) 
dr 
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Set t=e ~, (8.15) becomes 
dq~ 

= A~,  (8.16) 

where 
Aij = ~ Vijm,k(X)X(~drn)ck e kat+l(x) " t d'j''k-kl~l-1. 

Use the shearing transform Sh(t)=diag[tdl,..., t d~] to get a new linear system as we did 

in w 
d~ 
d--t- = B ~ ,  (8.17) 

where 

Bij = ~ Vijm,k(x)X(Wm)Ck e ka'+~(x)" t d'r _~ijdjt-1 

= ~ Vijm,k(X)X(~gm) ckeka'+l(x)" t - / , ~ - k ( l + l # l ) - ~ i j d j t  -1 

= -vijo,o(X)-&jdjt -1+ lower order terms, 

because lm>~2 when m e ( 0 , 0 ,  ..., 0) and k(l+l~l)~>2k~>2 when k~> 1. Now we compare 

(8.17) with the system (3.1). The ( i , j ) th  entry in the constant matrix B(x;t) of the 

system (3.1) is o _ 0 0 is defined by _vii (x) - Hno (uij), where u~j 

g#ei = ~-~ u~ejaowm (8.18) 

(cf. (1.14)-(1.16)). Compare (8.18) with (8.13). Since the decomposition is unique 

(for (8.1)is an isomorphism), _u~ =u,jm,o, in particular, _u~j =uijo,o and _v~~ =V,jo,o. There- 

fore, the linear systems (3.1) and (8.17) are essentially the same, since the major terms 

in the asymptotic expansions of their solutions depend only on the constant term and 

the t -1 term. As a consequence, the main theorem is valid for the affine Lie algebras we 

considered here. 

Appendix: Asymptotic expansions of solutions of 
ordinary differential equations at irregular singularities 

A.1 

In this appendix, we will give a brief and selective tour to the general theory of as- 

ymptotic expansions of solutions of an ordinary differential equation at an irregular 

singularity [Wa]. Since our primary interest is the linear system 

x -  q dY  ~x = A(x)Y  (a.1) 

with q a non-negative integer and A(x) having an asymptotic expansion as x ~ c c ,  we 

will formulate those results only in the case when the singular point is oo. 
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Definition. Let SC_C be a point-set having c~ as as accumulation point. Let f ( x )  

be a function defined on S. Then the formal power series ~'~=o arx is said to be an 

asymptotic expansion of f ( x )  or to represent f ( x )  asymptotically, as x ~ c ~  in S, if for 

all m~>0, 

And we will write 

} lim x m x ) "  a~x -~ =0.  
xES r=O 

S(z)~ a x xes, 
r : O  

Also we write 
m 

f ( x ) , ~ g ( x ) ~ - ~ a ~ x  -~, 
r ~ O  

if ~ f (x)/g(x) ,~- '~r= o a~x -~, x--*c~ in S. 

x ~ c ~  in S, 

A.2.  Formal s implif icat ion 
OO _ ~ .  

We will assume that  A(x)  in (a.1) is holomorphic and A(x),,~']~r= o Arx  , x---~ov, on an 

open sector S--  {x E C [ Ix[ 1> xo, t9o < arg x < 01 }. We consider the case when 

Ao = Ao22 , 

where A~ x is a p x p  matrix, A~ 2 an ( n - p ) x  ( n - p )  matrix and "~oa11, -oa22 have different 
p sets of eigenvalues. Our goal here is to find a formal power series ( x ) = ~ r = o  Prx -~ 

with det P0#0 ,  such that  the formal substitution 

Y = x -r  
Xr= 0 

chknges the differential equation (a.1) into the formal differential equation 

x - q  z I=  B r x  - r  Z ,  

\ r ~ O  i 

B where all Br are of the same block-diagonal form as Ao. Let (x)=~']~r= o Brx  -~. Then 

one has 

S ( x )  = P - X ( x ) A ( x ) P ( x ) - x - q P - x ( x ) P ' ( x ) ,  (a.2) 

and more explicitly 

AoPo - PoBo = O, 
(a3) 

A o P r - P r B o  : ~ ' ~ r s - ~ ( P s B r - s - A r - s P s ) - ( r - q - 1 ) P r - q - 1 ,  r > O. 
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We choose B0-- A0, P0 = I. Then we have 

AoP~-PrAo=B~+Hr, r > 0 ,  (a.4) 

where Hr is a polynomial in Pj,Bj with j<r. For r>0,  if we confine Pr to be of the 

form 

and let 

then (a.4) becomes 

where 

rB~l B02 ] 
S, '= [  0 2 ,  

{ B;~= -H;~' (a.S) 
Aii lDij p i j  Aij  i j  "~o'~-'~"o---H~, i # j ,  

H~= LH~ 1 H ~ j .  

Therefore Br and Pr can be found successively in light of the following result in linear 

algebra which is standard. 

LEMMA A.1. Suppose that AEMn, BEM, n have different sets of eigenvalues. Then 
for any CEMn• the equation A X - X B = C  has a unique solution X EMn• 

A.3. Analytic simplification 

The formal simplification described above can be made rigorous by the following con- 

siderations. We introduce new unknowns P(x), /~(x) by relations P(x)=I+P(x) and 

B(x)=Ao+B(x) and both matrices are of the same form as Pr and Br, respectively. 

Then (a.2) becomes 

x-qdPiJ=Aii(x)+Aii(x)P~J-P~JAJJ(x)-P~JAJi(x)PiJ, i~ j .  (a.6) 
dx 

Regard fiij as a vector in C p(n-p), then (a.6) takes the form 

x-q~'=/(x,w), (a.7) 

where f(x,w)=/o(x)+F(x)w+~fij(x)wiwj and fo,F,f~j are holomorphic on S and 

have asymptotic expansions as x ~ c o  in S. Furthermore, lim=-.oo F(x) is non-sigular 

because A~ 1 and A022 have no common eigenvalues. We may also assume that (a.7) has a 
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O 0  --7" formal power series solution w=~-~= 1 w~x . Then on any subsector S' of S which has 

a positive central angle not exceeding ~r/(q+l), there exists a solution w=r of (a.7) 

such that r176162 1 w~x -~, x---,oo in S'. The proof of this result is lengthy and we 

will only give a sketch of it. 

The first step is to reduce the problem to the case when the given formal power series 

solution is zero. This can be done because there always exists a holomorphic function 

r with ~) (x) ,~__l  w~x -~. If we set u=w-~p(x), then 

x-qu ' = Au+p(x, u), (a.8) 

where p(x, u)=b(x)+(B(x)-A)u+h(x, u) with b(x)~O, limx-.cr B(x)=A and h(x, u) is 

a polynomial in u without constant or linear terms. 

The second step is to transform (a.8) into an equivalent integral equation which is 

[~q+l ~q+l I 
u(~) = fr( , )exp [ q ~ -  AJtqp(t,u(t))dt, (a.9) 

where F(~) is a path toward ~. The detailed description of F(~) will not be discussed here. 

Consider the right hand side of (a.9) to be a non-linear operator T' on u. Then (a.9) is 

equivalent to u=7~u. As usual, we solve (a.9) by successive approximations: A sequence 

of functions (ur(x)), r=O, 1, ..., is defined by 

u o - 0 ,  u r + l = P u r  forr>~0, 

and the limit of this sequence will be the solution of (a.9) provided that we can get a 

nice estimation of the differences Ur+l -u~=:Pur-7)ur - l .  The details of the estimation 

can be found in [Wa]. 

A.4 

So far we have given a reduction to the case when A0 has a single eigenvalue and we also 

have the following theorem. 

THEOREM A.4. Let A(x) be an n x n  matrix function holomorphic in S={x6C] 

Ixl>~xo, Oo<argx<01}, 01-Oo<~r/(q+ l) with an asymptotic expansion 

OQ 

A ( x )  ~ A r x  - r ,  x --* in S, 
r=0 

such that Ao is diagonalizable and has distinct eigenvalues. Then the differential equation 

x -  q dY 
-~x =A(x)Y' q>lO, 
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possesses a fundamental matrix solution of the form 

Y(x) = P(x)x%Q(x). 

Here Q(x) is a diagonal matrix whose entries are polynomials of degree q + l  and its 

leading term is 

x q+l diag[A1, ..., An]/(q+ 1) 

if Ao conjugates to diag[A1, ..., An]. D is a constant diagonal matrix and 

o o  

P(x)~  rx 
r----O 

with det Y0 ~0.  

Remark. After applying the formal simplification to the differential equation, we 

obtain a new equation 

x - q Z  ' = B(x)Z,  

O 0  - - r  where B(x)=~_,,.=o B,.x and B~ are diagonal matrices. Then 

q B xq- j+l  

j=O 

and D=Bq+l. When q=0, Q(x)=Bo=Ao and D is the diagonal part of A1. 

A.5.  The  n i lpotent  case 

Assume that  A0 has only one eigenvalue, say A. If we set Y=Zexp[Axq+l/(q+l)],  then 

(a.1) becomes z-qZ~= ( A ( x ) -  AI)Z. Therefore without loss of generality, we may assume 

that  A0 is nilpotent. In fact, we can further reduce to the case when Ao is a direct sum 

of shift matrices H I ~ . . . ~ H ,  and At, r > 0 ,  are block diagonal matrices with non-zero 

entries occurring in the last rows of blocks corresponding to Hk, k=  1, ..., s. 

Assume this is the case, then a further reduction of the problem is possible by 

using shearing transforms. That  is, we transform the equation (a.1) by Y = S ( x ) Z  with 

S(x)=diag[1, x -g, x -2g, ..., z -(n-1)g] and g is a positive number to be determined. The 

resulting equation is 

z - q z  ' = B(z)Z 

with B ( x ) = S  -1 ( x ) A ( x ) S ( x ) - x - q S  -1 (x)S'(x).  A rational number g can be chosen such 

that  limx-.or xgB(x)=B~) exists and such that  it equals A0 above the main diagonal but 

has at least one non-zero entry on or below the main diagonal. The resulting equation is 

x - (q -g ) z  ~ = xgB(x)Z.  
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By the change of variable X=O~t p, ot=p 1~(g-q-I), where p is the smallest positive integer 

such that  gp is a whole number, it becomes 

t - dz =c ( t ) z  
dt 

with h = p ( q + l - g ) - l ,  ~ -~ C ( t ) ~ = o  C~t , t--*oo. (Notice that  the sector S will change 

accordingly.) Co may have only a single eigenvalue, but then g is an integer or Co is 

nilpotent. If g is an integer, then the problem has been reduced to one of lower rank. If 

Co is nilpotent, then one compares the invariant factors of Co and Ao and it happens that  

successive application of shearing transforms will lower the degrees of invariant factors 

and finally arrive at the case when Co has only one Jordan block and, after applying one 

more shearing transform, we can always choose g in the shearing transform to be integer. 

Therefore we can lower either the rank or the order of the system and finally reduce to 

the regular singularity case or the one-dimensional case. Hence 

THEOREM A.5. In a sufficiently small subsector of S, the differential equation 

x - q Y  ' = A ( x ) Y  

has a fundamental matrix solution of the form 

Y(x )  -- Y(x )xVe  Q(x). 

Here Q(x) is a diagonal matrix whose diagonal entries are polynomials in X l/p, p a 

positive integer, C a constant matrix and Y ( x ) ~ E T = o  Yrx -r/p,  x---,oo. 
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