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0. Introduction

Singularities of systems of linear differential equations are usually classified into two
classes: the regular type and the irregular type. When only one variable is involved,
both types of singularities have been studied extensively in the literature. Some general
tools have been developed, e.g., asymptotic expansions [Wa], and there are abundant
families of examples, e.g., the confluent hypergeometric functions which include the clas-
sical Whittaker functions and Bessel functions [WW]. But no powerful general tools are
available to handle irregular singularities in several variables.

An example is the system of differential equations satisfied by Whittaker functions
on a semi-simple Lie group split over R, which has irregular singularities at oo in every
direction in the positive Weyl chamber. Since the Fourier coefficients of an automor-
phic form along the nilpotent radical of a parabolic subgroup are expressed in terms of
Whittaker functions, a better understanding of their growth in every direction would be
useful in the study of automorphic forms. In [MW], it was conjectured that the growth
condition in the definition of automorphic form is superfluous for real semi-simple Lie
groups with reduced real rank at least 2. In the same paper Miatello and Wallach [MW]
have given a family of examples and one of the key steps in the estimates follows from the
compactness of a certain set. This fails to be true in general, for example, SL(3,R). It
seems that this failure may be compensated for by a better understanding of Whittaker
functions. The present work is an initial probe to examine the phenomenon of irregular
singularities through specific examples and a preparation for an understanding of the
growth condition satisfied by automorphic forms.

The classical Whittaker functions have been studied in great detail in [WW]. In
that reference, a convergent series expansion near 0 (on the negative chamber) and an
asymptotic series expansion at co (on the positive chamber) are given. Motivated by
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the theory of automorphic forms a general theory of Whittaker functions (vectors) was
developed from the view point of representation theory. The C*-continuous Whittaker
vectors (Jacquet’s Whittaker vectors) first introduced by Jacquet in [J] are defined by
analytic continuation of certain integrals. The algebraic notion of Whittaker vector was
introduced by Kostant in [K1]. They are functionals on the algebraic dual of K-finite
vectors of a representation of a Lie group G. In the case of principal series representation,
he has proved that the dimension of the space of Whittaker vectors is the order of the
little Wey!l group and the dimension of the space of C> Whittaker vectors is at most one
(hence the C™-continuity characterizes Jacquet’s Whittaker vectors). Though Kostant’s
Whittaker vectors are defined on the K-finite vectors, in [GW1}, Goodman and Wallach
have shown that they extend to continuous functionals on a space of Gevrey vectors.

The work of Kostant [K1] and Goodman and Wallach [GW1] mentioned above is
intimately connected to the theory of the quantized system of generalized non-periodic
Toda lattice type. In [K2], Kostant integrated the quantized system of non-periodic Toda
lattices by representation theory. In [GW2], [GW3], [GW4], Goodman and Wallach stud-
ied both the periodic and non-periodic types under the same frame-work. In [GW?2], the
structure of the commutant of the Hamiltonian and in [GW4], the joint spectral decom-
position of those commutants were examined. The present dissertation is influenced by
their work.

A fully developed and powerful tool in dealing with irregular singularities in the
theory of ordinary differential equations are asymptotic series expansions (see [Wa).
This becomes one of our basic tools because following the procedure described in [GW2]
one may study the restriction of Whittaker functions on rays. Another inspiration is
Zuckerman’s conjecture that we will explain later. This led us to use a method similar
to the characteristic method in the theory of differential equations. The problem is
thereby reduced to the analysis of a problem in algebraic geometry which is related to a
deep theorem of Kostant on principal nilpotents [K2]. What follows are more details to
illustrate our approach and motivation.

Let G be a split semi-simple Lie group over R and let G=NAK be an Iwasawa
decomposition G. Let g, n, a and & be respectively the Lie algebras of G, N, A and K.
Let M={k€ K |kak~!=a,a€ A}. Then one has g=n®ad¥t. Let A=A(g,a) be the root
system of (g, a) and A* be the positive root system associated ton and set p=1 3" .1+ .
If I=rank g, then let {a;,...,a;}=II be the set of simple positive roots and for each i,
choose a root vector X;€gq,,\{0}. Let 7:n—C be a generic character, i.e. n(X;)#0,
i=1,...,l. For v€ag, (m,, H) will denote the corresponding spherical principal series.
m, is a representation of G on H=L?(M/K) and the action is defined by

m(@)(f)(u) = a(uz)" @ f (k(uz))
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for feH, z€G, ue K. Here g=n(g)a(g)k(g), n(g9)€N, a(g)€ A, k(g)€K. Let X denote
the space of all K-finite vectors in H and X* its algebraic dual. We have an action 7
of g on X* defined by 7} (2)¢p=—¢om,(2) for z€g, € X*. Then the space of Whittaker
vectors is Wh(v)={v* € X*|m2(Z)v*=n(Z)v* for Z€n}. It is a theorem of Kostant that
dim Wh(v)=|W(A)|, where W (A) is the Weyl group of (G, A) ([K1]). Though Whittaker
vectors are functionals on K-finite vectors, Goodman and Wallach [GW1] had shown that
they can be extended to continuous functionals on a space of Gevrey vectors. Therefore
do- (g)=v*(m,(g)1,), for v*€Wh(v) (1, €H is the constant function 1 on K), is an an-
alytic function on G. This function is called a Whittaker function and we use W(v) to
denote the space of all such functions. Observe that a Whittaker function is determined
by its restriction on A. When

0 11 . et’2 0
G=SL(2,R), n[o 0]:7,, A={at=[ 0 e‘t/2] teR},
if ¢ is a Whittaker function, then F=e~9¢|4 as a function of z=2¢® satisfies Whittaker’s
differential equation ([WW])

F'"(2)+[-1+(5-v*)z"%F(z)=0.

The singularities of this equation are at 0 and oo which are respectively regular and
irregular. For generic v, {My . (2), Mo,—,(2)} is a basis for the solution such that

[ 2]
Mo, (2)=2"+1/3cilw)s,
i=0
and converges uniformly on t<ty.
On the other hand, there is a basis for the solutions {I,,I_} such that

o0
I, ~et*/? Z di(v)z~*
i=0

as t—o00. The difference between these two types of results is due to the type of singu-
larities. Notice, also, that the growth of leading terms in I, does not depend on v.

The first expansion, that is, on the negative chamber has been generalized by Good-
man and Wallach [GW1] to the case that G is a split semi-simple Lie group.

THEOREM (cf. [GW1]). For generic veag, Wh(v) has a basis {@,(v)|s€W} such
that for ve X,
B, (v)(m(a)v) =a"*e Y~ atq, . (v)(v)

ueLt
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with q, ,€H},. Here L* is the positive weight lattice. The series converges uniformly on
the sets
A~(t)={expH |H €a,a(H) <t for a € A*}.

Furthermore, for all a€ A, a® large for each i,

l
la=* =€, (v)(m,(a)v)| < C1 exp (Cz Z aaa)

i=1
with Ch, C,>0.

But except for some special directions, the behavior of a Whittaker function on the
other chambers is more mysterious. The difficulty arises from the presence of irregular
singularities. We choose the positive Weyl chamber A* as our object of investigation since
on A* all singularities are irregular. Nevertheless, the last part of the above theorem
gives us a bound on how fast the Whittaker functions grow on A*.

When G=8L(n,R), Zuckerman has given the following conjecture: Consider the
tridiagonal matriz

(Pl —z2 1

1 po
Z(p,x)= T , Ti=e*.

2
n-1

L 1 Pn

—Z

Set fy=tr Z(p,z)*, k=1,...,n. Set S=—73 jp;. Then there is a branch of solutions p(z)
of the system of algebraic equations fi(p(z),)=0, k=1, ...,n, such that e~(e+5)¢| , is of
moderate growth on A*.

Let Lj be the quantization of f,. When G=SL(3,R), L, is the Hamiltonian H and
{L} generate the commutant of H. Suppose et* E,;“;O ukt ¥ is an asymptotic expansion
(if it exists) of a joint eigenfunction of the operators Ly, in the direction of Hj, a;(H;)=1,
then one can verify that

o0
s E: —deg L ~tS ) E; -3
tll'nolo - (—t) 8 Lke t T-,—H,LkT_.,-Haet ( O'U,J‘t J)
J=

BS/Bhl —2:% 0
=det 1 88/6hy —-z% |, t=e".
0 1 0S/0hs
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Here T, v€a, is the translation operator. This observation motivates us to use a method
similar to the characteristic method in the theory of differential equations.

The precise statement of our main result concerning the growth of Whittaker
functions on A* when G is split, semi-simple is given in §7. Roughly speaking, we have
shown that there exist functions (leading exponents) S, ..., () defined on a Zariski
open dense subset U of A and that there is a basis {¢(1,...,¢(®)} of W(v) such that
e‘(9+s(m))¢(m)|A is of moderate growth on each ray {zxo+7H;|7>0}, zo€logU. Here
gea* is given by (,a;)=1, i=1,...,I. The leading exponents S, ..., 8(*) can be deter-
mined by using an analogous construction as in Zuckerman'’s conjecture. Furthermore,
the growth rate of e=(¢+5™)¢(m)| 4 on each ray {zo+7H;|7>0}, as a function in o, is
a rational function of S, ..., §(¥),

One might also consider Toda lattices of periodic type and find asymptotic ex-
pansions along the same direction. In other words, one can define a similar system of
differential equations associated with an affine Lie algebra g which arises from a simple
Lie algebra go. For g of a certain type, the associated system has a Hamiltonian which is
the same as the Hamiltonian for the system associated to go except that it has one more
term which decays exponentially in the direction §. To see that one can “ignore” this
term, we regard the system go as the system for g associated to a non-generic character
7 of u which one may think of as the limit of a family of generic characters.

The organization of this paper is as follows. In §1 we describe the system of differ-
ential equations satisfied by a Whittaker function and set up an integrable connection
associated to this system. We then study the solutions of this system when restricted
to an irregular direction in the positive Weyl chamber. In §2, we follow the modified
procedures in the general theory of asymptotic expansions of solutions of an ordinary
differential equation at an irregular singularity to compute the leading exponents of as-
ymptotic expansions of a basis of Whittaker functions at a fixed direction when G is
SL(3,R). In §3, motivated by the calculation in §2, some specific shearing transforms
are used in the general case to reduce the problem of finding those leading exponents in
the asymptotic expansions to the problem of diagonalizing a certain matrix. §4 is then
devoted to diagonalizing this matrix by a method similar to the method of characteristics
which leads to a problem in algebraic geometry which we deal with in §5 and §6. Our
main theorem and its proof are given in §7. In the last section, we show how one can
apply the results in previous sections to affine Lie algebras. A very short tour of the
general theory of asymptotic expansions of ordinary differential equations at irregular
singularities is included as an appendix.

Finally, the author is indebted to Nolan Wallach for very useful conversations on
the subject of this paper.

16-950852 Acta Math, ica 175. Imprimé le 21 d bre 1995
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1. The system of differential equations satisfied by Whittaker functions

Let G be a split real reductive Lie group and G=NAK be an Iwasawa decomposition.
Let g, n, a and ¢ denote the Lie algebras of the G, N, A and K, respectively. Then one
has g=n@®adkt. Set s=a+n.

If X is a Lie algebra, then the universal enveloping algebra of X is denoted by U(X).
By the Poincaré-Birkhoff-Witt theorem (PBW), one has a direct sum decomposition

U(g)=U(s)aU(g)t. (1.1)

Let p: U(g)—U(s) be the canonical projection defined by (1.1). It is well-known that
Plu(g)t is an algebra homomorphism.

The derived algebra [n,n] of n is an ideal of 5. Set b=s/[n,n] and u=u/[u,u]. Let
m:U(s)—U(b) be the canonical quotient homomorphism. There is an algebra homomor-
phism 7:U(s)—U(s) that extends H—H+p(H)-1 on a and is the identity map on n.
Here o(H)=1% trad H|, for H€a. Define ¥: U(g)t—U(b) by setting y=morop. The re-
striction of the canonical projection of b to b/u induces an isomorphism a=b/u and
the inverse map induces a homomorphism p: U(b)—U(a). Then y=puo5: U(g)*—U(a) is
the usual Harish-Chandra homomorphism. It is well known that v: U(g)*—»U(a)¥ is a
surjective homomorphism. Here W is the Weyl group of (g, a).

Let 6 be the Cartan involution on g associated with € and g=t+p be the Cartan
decomposition. Let o be the corresponding projection onto p, then o(X )=%(X —-0X).
Let B be a G-invariant symmetric bilinear form on g such that —B(-,0(-)) is positive-
definite on p. We obtain a positive-definite inner product on s by setting

(X,Y) =-B(o(X),8(c7)), (1.2)

for X,Y €s.

Let II={ay,...,a;} be the simple root system of (g, a) defined by n, I=rankg. We
choose {Xq4}aen so that it forms an orthonormal basis for u (here we regard X, as an
element in u through the canonical quotient map). If {h;}i=1,... is an orthonormal basis
for a and C is the Casimir operator in U(g), then one has

]
F(C)=)_hi+Y_ Xi—(e0). (13)
i=1

aEcn

Set @=3"5_, h3+Y ,cr X2 and let U(b)?={zeU(b)|[z,2]=0}. Then F(U(b))*=U(b)"
since one has
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THEOREM 1.1 ([GW2)). w:U(b)?*—U(a)V is an algebra isomorphism. Moreover, if
{ui}i=1,...q1 is a set of homogeneous algebraic independent generators for U(a)¥,
then there exist unique elements wy,..,w;€U(b)? such that u(w;)=u; and U(b)%=

R[wl, ey wl].
Let v€ag and (m,, H) be the spherical principal series representation of G associated
with v. Let X" be the space of K-finite vectors and (X*)* its algebraic dual. Given

a unitary generic character n:n—C, i.e., 7(X,)#0 for all a€lIl. Then the space of all
Whittaker vectors associated with 7, and 7 is

Why(X¥) = {v* e (X" | mi{z)v* =n{z)v* for all z€n}.

Here () (z)v*)(w)=v*(m,(—z)w) for we X". Let 1, € H be the constant function on K.
Then the space of all Whittaker functions associated with 7, and 7 is

Wy(v)={¢€C*(G)| ¢(g) =v"(m.(g)1,) for some v* € Wh,(X*)}.

Though Whittaker vectors are functionals on K-finite vectors in [GW1], Goodman and
Wallach have shown that they extend to continuous functionals on a space of Grevey
vectors and as a consequence, v*(m,(g)1,) is a smooth function on G. Observe that a
Whittaker function ¢ is completely determined by its restriction on A. Set ¢¢=e"?¢|4.
We define a representation m, of b on C*(a) by

(ralB)f)(2) = | _ Sz +eH) (1.5)
and
(mn(Xa)f)(@) = ~n(Xa)e® f(2) (1.5b)
for z€a, Hea. Then ¢¢ is characterized by
o (F(0))8° = X, (u)¢? (16)

for all ueU(g)t, where x, =voy (cf. [GW2]). If wy,...,w; are chosen as in Theorem 1.1,
then
Tn(wi)d? =xu,:0%, i=1,..,1, (1.7)
with x,,:=x,(u;) and F(u;)=w;, an equivalent system with finitely many equations.
By using the representation 7,, we may regard elements in U (6) as differential
operators with coefficients in the ring of functions R=R[e*!, ...,e*]. For Hea, let 9(H)
be the differential operator defined by

OH)f (@)= 2| _ fle+tH).



234 T.-M. TO

We extend this map 9 to an isomorphism of S(a), the symmetric algebra of a, with
D(a), the differential operators with constant coefficients. We will therefore identify
S(a) with D(a).

Now it is well-known that the space of W-harmonics H in S(a) is of dimension
w=|W|. We choose a basis {€;}i=1,... .« of H such that e; =1 and each e; is homogeneous.
Set E;=0e;, i=1,...,w, and B=m,(U(b))". Let Q be the algebra of differential operators
generated by R and S(a). Then we have the following algebraic analogue of “separation
of variables” for operators in Q.

ProrosITiON 1.2 ([GW4]). If DeQ, then there exist w;;€B and f;€R such that

D=3 fiEjw;. (1.8)

Every element z of U(b)? can be written in the form Yem P XL X,
m=(my,...,my), n=(ny,...,n;) and it is said to be homogeneous of degree d if > m;+
Y- ni=d whenever c;, »#0. Let {w;} be a vector space basis of U(b)® which consists of

homogeneous elements. For H€a, one has
(PH)E; = Zufj(H)ijn(wk) (1.9)
for some ufj(H }JER by Proposition 1.2. Therefore
(OH)Ei¢® =) uf;(H)xu(wi)E;¢°. (1.10)

Set F=[E1¢0, ceey Ew¢0]t and FH=(FH,ij)i,j=l,...,w Wlth PH,‘U:ZI: ufj(H)xu(wk). Then
{1.10) can be rewritten as
(OH)F =TyF. (1.11)

If we define a connection V on the trivial vector bundle C* over ac by Vg=8H-T'y,
then it can be shown that it is integrable ((GW2]). The integrability of V is equivalent
to the following assertion: given any vo€C" and 2p€ac, there exists a solution F of
the system (1.11) such that F(zp)=vg. (The uniqueness of a solution with given initial
condition is a standard result.)

It is clear that any solution of the system (1.6) will be converted to a solution of the
system (1.11). Conversely, if F=[f1, ..., fu]’ satisfies (1.11), then it can be shown (|[GW2])
that f; is a solution of the system (1.6) and f;=EFE;fi, ¢=1,...,w. In other words, (1.6)
and (1.11) are equivalent systems.

Our concern is the behavior of Whittaker functions on the positive chamber and
the equivalent system (1.11) enables us to restrict our attention to a fixed direction. Let
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Zg€ac be a fixed point, v€ac a fixed direction. Set ®,{zo;7)=F(zo+7v). Then one

has
d®,

dr
which is a system of ordinary differential equations in 7.
Let g be such that (g, a;)=1, i=1,...,], and Ho=Hj; is defined by {(a, 8)=c(Hj).
Put v=Hj in (1.12), then one has

(zo; T) = (Ov)F(zo+7v) =Ty (20 +70) By (z0; 7), (1.12)

dd
E(:co;‘r)=I‘Ho(:vo+7'H0)<I>(zo;T). (1.13)

For simplicity, we drop Hp in the notation ®y,(zp,7) and 'y, (zo+7Hp).
Now (1.8) can be obtained from the linear isomorphism

Uu)@HRU(b)? — U(b)
given by 2®e®w+ zew (more precisely, for every j>0,

Ui®)= Y Unw)Ho Ui(®)° )

r+8+t=j

by applying the representation m,. In particular, if, as elements in U(b),
Hoe; =) vkejwn (1.14)
with v,l‘jGU % (u), 8; --dege,+1 dege; —degws, then
OHo-E; =Y _ my(vf) Ejmn(wi) (1.15)
and uf;=m, (v‘J) is homogeneous of degree s" Hence,
Tij(zo+7Ho) =Y uki(zo+THo)xu(wi) = es7uli(z0)xu (wh)-
We make the change of variable t=e” in (1.13), then
2 (w03 0) = Alzo; B (z; ) (116)
with A(zo;t)ij =Y el 1ok +i(Zo)xv(wk). The ordinary differential equation (1.16) has an

irregular singularity at {=+400. Such a system has a fundamental matrix of solutions
with an asymptotic expansion as t— oo (cf. the appendix).
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2. Example: SL(3,R)

In this section, we will follow the procedures given in the last section to get the linear
system of differential equations (1.14) and calculate the leading exponents in the asymp-
totic expansions of its solutions. For the rest of this section G will denote SL(3,R).
Nevertheless, most of the following calculations will be made in GL(3,R) or g{(3,R) for
the sake of simplicity and in order to match the notation used in Zuckerman’s conjecture
for GL(n,R) described in the introduction.

Let E;; be the elementary matrix with the (i,7)th entry 1 and all other entries
zero. Let hi=Fj;, 1=1,2,3. Let a be the R-span of hy —hy and hy—hg, and then U(a)"
is generated by 1, Y h;h; and hyhahs. For i=1,2, X;=FE;;; is a root vector for the
root a;, here a; (3" ¢jh;)=ci—cit1. Then Q=37 h?+2§=1X}’.

Following the recipe given in [GW2], we can obtain a set of generators for U(b)%
as an algebra, {L2—3" hih;— L Y X2, Ly=hihohg— 1 X3h1—3X7h3}. Then the partial
differential equations satisfied by a Whittaker function are

Di=¢°=xi¢°, i=23,

with
Dy =my(L2)=0( 3" hihs )+ 2%,
D3 = ”n(LS) = a(h1h2h3)+62°‘36h1 +62°“ Ohs

for some x;, i=2,3. Notice that here we assume without loss of generality that n(X;)=
++/~1, j=1,2, because we can conjugate n by an element in A. Also, we can drop the
factor } by a translation on a.

LEMMA. Let y;=hiy1, i=1,2, then

eo=1, ei=y, ex2=ya,
es=y1(11+2y2), ea=y2(y2+2y1),
es =y1y2(y1+y2)
form a basis of the space of harmonics in S(a).

Since S(a)~S(a)Y®H, H the space of all harmonics, we have Hoe;=3_ v;je; for
some v;; €S(a)”. In fact,

[ 0 1 1 0 0 0
1 2 1
3wz 0 3 3 O
1 1 2
[’U ]< _ 5(4)2 0 0 -3 3 0
1710<i, i< = | 1 2 1 3|
§w3 -§w2 30}2 0 0 3
1 1 2 3
—gWs 30)2 §w2 0 0 3
| 0 —jws iws 2 0 O]
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where

Wy = af—302,
w3z = 270’3-90’10’2-*-20':1"',

and o; is given by [[o_,(t—hi)=3>_o(—1)io:t*%. Let D; =Y 8h;. We use the identities
(as differential operators)

Owy = D? 3D, +30, G=Ze2°"‘,
Ows = (27D3—9D;D; 4+2D3)4+9(e%°! —2¢222) B, +9(2€%%! —e2*2) E,
to replace wz,ws in v;; by expressions with lower degree in the S(a) component. We

continue this procedure and eventually get expressions as in (1.8) or (1.9).
Following the procedure described in §1, we obtain the equation (cf. (1.16))

d®(xzo;t
98(20i) _ 4(m0; )8 (z0;1)
dt
with
A(zo;t) =t3(ap+ Azt 2+ Agt™*),
Ag=30’Eg,
[0 0 0 0 0 0]
o 0 0 0 0 0
T 0 0 0 0 0
2= 0 —82a2+-12-62°‘ _% 20y +462°“ 0 0 0 ’
0 4e2a2 _ %620“ %620" —620“ 0 0 0
| X20 0 0 feloa _fe2an  _de2oay B2
[0 1 1 0 0 0]
2 0 0 %3 -3 0
1 1 2
A= 0 0 -3 35 0
s ¥ ix2 0 o 3
Ixs 3x2 %ix2 0o o 3
0o -1 1 2 2 0
L 9X3 gX3 gX2 gX2 |

The constant term A is nilpotent and the tactic in the theory of asymptotic ex-
pansions at an irregular singularity is to use shearing transforms diag[1,t",...,t57] (cf.
the appendix) to “separate” the eigenvalues, that is, to lower the multiplicities of eigen-
values of the constant matrix; then to reduce the linear system of differential equations
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to smaller systems and then to repeat this procedure until the eigenvalues are distinct.
The type of shearing transform used in the general theory will take care of every possible
case, but it seems inefficient and we want to use the particular features of our equation.
Therefore we use a shearing transform of the form diag[t™, ..., t"¢] to gain more flexibility
and try to find n4, ..., such that the resulting constant matrix is most tractable. The
best and the only choice according to our judgement is ny =0, ng=n3=1, ng=ns=2 and
ng=3. Then the resulting constant matrix By is

[ 0 1 0 0 0 0
o 0 0 2 -1 0
o 0 0 -3 2 0
0 —_e2e +%620‘1 _%620:2 +4e2a1 0 0 %
0 4e2a2 _ % 20, %620‘2 —e2m 0 0 %

[ 302 0 0 SeZaa_gelm  felaag el

Set v=e2®2 —¢2*1, The characteristic polynomial is then
p(z) =z°—30z*+3(9v? —50°)z? - 0°.
With y=z2, it becomes
p(y) =y° -30y® + 3(9v* - 557 )y—o?,

a polynomial of degree 3, and can be handled by Cartan’s method. Thus the eigenvalues
of the constant matrix are

i(e201/3+Ae20m/3)3/2, A=1,<,<2,
where ¢ is a primitive 3rd root of unity. The eigenvalues are distinct whenever
v=e2%2 g2 £,

Now we look at the leading exponents predicted by Zuckerman’s conjecture for
GL(3, R) (see the introduction). They are S=—(p; +2p2+3p3), where (p;, p2, p3) satisfies
the algebraic equations

Zpi = 0’
> pipj+ai+al=0,
P1p2p3+Tips +x3p =0,
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or equivalently,

p -z 0

1 p, -—23 is nilpotent.

0 1 ps
(Notice that this system of algebraic equations, when quantized, is the system D;=0,
i=1,2,3.) There are six branches of such S and they are exactly the same as the eigen-
values of the constant matrix B.

We make two observations. Firstly, the powers of ¢ in the shearing transform we

used are the same as the degrees of the basis of harmonics we chose. Secondly, we obtain
A(to;t) by replacing w; by certain expressions in D; and it seems that those D; hidden

in A(zo;t) can be “unwound”.

3. Shearing transforms and the constant matrix

In the general theory of asymptotic expansions of solutions of a system of ordinary
differential equations at a singular point, the existence of an asymptotic expansion is
proved by reducing the rank of the system and the degree of irregularity using shearing
transforms. Motivated by calculations for GL(3,R) in the last section, we use a special
shearing transform namely Sh(t)=diag[t®,...,t%], d;=dege;, i=1,...,w, instead of the
shearing transforms suggested by the general theory.

Set W(zo;t)=Sh(t)"1®(zo;t). Then

d¥(zo;t) _ dSh~1(t) d®(zo; 1)

®(zo;t)+Sh™ 1 (t) ———=

dt dt dt
= [ﬂ%i(-t—) Sh(t)+Sh™}(t)A(zo; t) Sh(t)] ®(z0; t) (31)
= B(zo; t)®(zo; t).
Since
dS;t_l = [=6idit™ 45,
Blao; )y = 3 44~ (zo)x, () — gyt
= 3 4 dewont (o) x, (wh) Syt~ (3.28)
=ul;(z0)—6:jd;t ™' + lower order terms. (3.2b)

Thus the system (3.1) is regular at t=+o00 and the general theory of asymptotic expansion
tells us that if the constant term Bo(xo)=[u;(20)}i,; of Bo(zo;t) is diagonalizable and
has distinct eigenvalues then there exists a fundamental matrix of solutions

W(zp;t) = @(zo; t)thetQ(wo)
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with ¥(zo; )~ s Elr(xo)t", t—o0, det @o(xo)#o, A a constant diagonal matrix
(which may depend on zq), Q(zq)=diag[S1(zo), ..., Sw(zo)], where {S;(zo)} are eigenval-
ues of By(zo). We will diagonalize the constant matrix in the following section.

4. Diagonalization of the constant matrix

It is extremely difficult to calculate the constant matrix Bo(zo) explicitly. However, the
information we want to extract is that its eigenvalues are distinct and can de described
in a certain feasible way. Therefore we will approach this task using a method similar to
the characteristic method in the theory of differential equations.

Let {h1,...,lu} be a coordinate system on a. We use the standard multi-index
notation:

’7=('71’-'-"‘/l)’ vi €N,
gl
M=>"w & ik oy

For vea, denote T, the operator of translation on C®(a) by v, ie., (T,f)(z)=
f(z+v) for feC>(a), z€a. Since, for all multi-indices, 0°T,=T,8° and TyofoT-,=
T.(f),if D=3, £50° is a differential operator, then T, DT_, =Y, T, (f3)8".

Let D=3 ag,,e2-Pi%8" be a differential operator, we define deg D=max{|8|+|7|:

ap,y#0} and
v
vt 5w (T ()
[Bl+|v|=deg D ! !

Consider the expression
E(D)=¢ T, 4, DT g €'

where p€C>(a) and t=e". Then
E(D)= Z aptPleXPicigmtegrete

By
Il (4.1)
‘Zaﬂ {1815 Brey Et (ad )"9”’

where
(ad f)jL=[... (L, £, - f]
N——

j times
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for L a differential operator. We refer the reader to [GS] for the last equality. The highest
order term in E(D) is

tdegD Z aﬁ,-,eE Bjoy (ad Sa)l’”m i

1
|Bl+|v|=deg D |7|
Note that
ad o)187 8o \" 8o \"
o =(5) - (32) =@anr=owmiedo),

where y=(v1, ..., M)
Recall that Hoe;=Y vEe;wi and (OHo)E;=Y, uf; Ejmy(wi) ((1.14) and (1.15), re-
spectively). Let pr=degwy, d;=dege;. Then, by (4.1), we have

d;+1 ,
E(m,Hpe;) =t%+? (ad (’0)( di+(16)!l{°) Ei + lower order terms (4.2)
and
E(}ub Eymy(wr))
d; g
= Z £4% ufj (Z t" (_ad_:z_E,) (t9°8“k gy o (wi, dp) + lower order terms) (4.3)
n=0 )
4.
= E goiy+di+degwn ufj @'d—z)'-l-—?iatot(wk, dy)+ lower order terms.
j .

Since d;+1=s¥;+d;+degwy, and OHoE; =3 uf; E;m,(wk), we obtain

(BHOE:)(dp) =Y _ ul; E;(dp)oror(wk, dv) (4.9)

by comparing the highest order terms in (4.2) and (4.3). Since (4.4) is valid at any point,
we may replace dp by a 1-form. Thus we have almost proved the following proposition.

PROPOSITION 4.1. If 8 is a 1-form defined on an open subset O of a and it satisfies
Otot(w,8)=0 forwe U(b)?,

then for z€0, Ho(B): is an eigenvalue of Bo(z) and [E1(B)s, -..s Ew(B)z)t is the corre-
sponding eigenvector.

To finish the proof, we have to show that the algebra B generated by {wy| ufj #0 for
some 4,j} is in fact U(b)?. Before we prove this result, we will introduce some nota-
tion. As usual, take a basis of U(u), say {u,}52¢, with up=1, consisting of homogeneous
elements. Let {ex} be a basis of the harmonics H such that ep=1 and each e; is ho-
mogeneous. For any u€U(a), u can be written uniquely as the sum ) uperwpr with
wpr €U(B)? and we define Q(u) to be weo.
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LEMMA 4.2. U(b)%={Q(u)|ueS(a)}.

Proof. If w is a homogeneous element in U(b)%, then u(w)=ucU(a) and w—ueU(b),
ie., u=w+) z;v; for some X;€u and v;€U(b). Therefore w=Q(u).

LEMMA 4.3. If {H;} is a basis of a, then the algebra generated by {Q(H;e;)}i; is
U(b)?.

Proof. If u=)_ uperwpr and Hie; =" ure;wijre, then

Hu= Z Hugepwpr = Z[Hi’ up]e;cwpk+z upHepwpy
= Z [Hz ) up] exWwpk + Z UpUr€tWijrtWpk -

Thus if u=p(Hy,..., H;)e; for some peClzy, ..., z;] then Q(u) is in the algebra By
generated by {Q2(H;e;)}:; but every u€U(a) can be written as 3 vje; with v; polynomials
of Hy, ..., H;, so Q(u)€By and our assertion follows from Lemma 4.2.

LEmMMA 4.4. IfueU(a) and u is homogeneous, then Q(s-u)=Q(u) for any seW.

Proof. There are v;€S(a)” such that u=Y ejv;. Since v;€S5(a)¥, there exists
w? €U(b)? such that uw’ =v;. Therefore u=Y e;w’+Y e;(v;—w’) and v; —w’ €ul(b).
If seW, s-u=2(s-e,~)vj=vo+2#0(s-ej)vj. Since for j>0, s-ejespan{es,...,ep_1},
Qs u)=w'=0(u).

PROPOSITION 4.5. B=U(b)®.

Proof. Let C={Q)(Hze;)|j=0,...,w—1} and C'={Q(sH;-¢;)|seW, j=0,...,,w—-1}.
Since {s-H;} contains a basis of a, (C')=U(b)®. For se W, Q(sH;-e;)=Q(s(Hz s 1e;))=
Q(Hjz-s7e;). But since s~le;j€span{ep,...,eu—1}, UsH;€;)€(C). Therefore B=(C)2D
(€"Y=U(b)".

Let J:U(b)—S(b) be the inverse of the symmetrization map, then J(U(b)®)=
S(b)7® [GW2]. Let {h;} be the basis of a defined by (a;, h;)=6;;. For any weU(b)?,
there are gg€Clyr, ..., 91}, 8=(B1, -, B1) EN' such that

Jw)=Y ga(e®, ..., e™)hP € S(b), K =h" R
5

If J(w) is homogeneous, one has, for a 1-form 7,

oW, 1) = D ga(—c1e™, ..., —cie™)A(hP) (),
s

where ¢;=n(eq;), j=1,....1. If y=" p; do, a(h")('y):p‘f‘...pf‘. Without loss of gener-
ality, we may assume that c;=%+/-1 for j=1,..,, 1.
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J(w)€S(b)?® may be regarded as polynomial on b* and

I (X postd uie) =3 aalun, o m)pf . o,
B

where €} €b*, &;(eq, )=0ix and &}|a=0. Therefore finding a 1-form y=Y_ p; do; defined
on some open subset of a such that oy (w,y)=0 is equivalent to solving for (p1,...,p)
in the algebraic equations g4 qﬁ(iyl,...,iyz)pfl... plﬂ‘=0 for the given values y;=e%,
j=1,...,1. Since each gg in the expression J(w) is a polynomial of even degree in each
variable ((GW2]) it does not matter whether we take iy; or —iy;. Therefore we can
reformulate Proposition 4.1 as follows.

PROPOSITION 4.6. If there exist an open subset O of a and smooth functions defined
on O, say pr=px(y1,...y1), yj=€*, j,k=1,...,1, such that for any weU(b)%,

J(w) (Z prac+y V=1 ykéi) =0

on O and if y=) prdag, then for z€0, Ho(y); is an eigenvalue of Bo(z) and
[E1(Y)zs s Bw(7)z]? is the corresponding eigenvector.

5. Non-vanishing of Jacobians

Let G be a connected semi-simple Lie group split over R, with Lie algebra g and Iwasawa,
decomposition G=KAN (g=t®adn) as in §1. Let :g—g be the Cartan involution
associated with & Set fi=6(n). Since g is split, one has g=fi+a+n. If X€g, then
we write X=X, +X,+X_, where X, €n, X_cfi and X €a. Let p={Xeg|0X=-X}.
Let A* be the set of positive roots A*(g,a) associated with n, II={e,...,o1} be the
set of all positive simple roots and A*={a,...,aq}. Choose e;=e4, € ga, such that
—B(e;,0e;)=6;j. Put fi=—0e;, Xi=e;+ fi and Y;=e;— f;. Then

d d
t=Y"RY;, p=a0) RX;

=1 =1
B(Y;,Y;)=~26i5, B(Xi, X;)=26;;.
Recall that on b we put the inner product (-,-), defined by
<"')|axa=B|axa, (éi,éj>=%6ij,

where :s5—b is the canonical quotient homomorphism. Let b* be the real dual of b,
endowed with the dual inner product. For X eb, define X#€b* by X#(Y)=(X,Y),
Y eb. For Aeb*, define \€b* by (\*, X)=A(X), X €b.
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Let py =a®22=1 RX, Cp. Let & €b* be such that &} (H+22___1 ck€x)=c;, for Hea.
Now we introduce a linear map F:p—b* defined by

d l
F(H+Z ciXi) =H*+) ce].
i=1 i=1

Notice that F|,, is an isometry since (€},€})=26;;. If ¢ is a function on p, we define a
function wy on b* by
we(F(X))=¢(X), Xep:.

In [GW?2], it has been shown that if we take a set of algebraically independent generators
for S(p*)t, say {1,..., 41}, then S(b)7( is generated by {ws,, .y We, }. In particular,
{wg, wy} =0 whenever ¢,y € S(p*)t. Here {-,-} is the Poisson structure on S(b) defined
by

(i) {X,Y}=[X,Y] for X,Yeb;

(ii) {fg,h}={f h}g+f{g,h} for f g,heS(b).

Since Resg|p: P(g)¢ — S(p*)*, defined by Resg,(P)=P|;, is an algebra isomorphism,
we have that, if {¢1,...,4;} is a set of algebraically independent generators for P(g),
then {¢1]p,...,%p} is a set of algebraical generators for S(p*)t. For simplicity, we will
drop |, when the context is clear.

Let h;=a!, i=1,...,1. For ¢&P(g)?, define vy by

! :
V(P ooy PL Y15 ey Y1) = W (ZP&GH-Z yié:)

=1 i=1

! !
= ¢(Zpihi+z yi(ei+fi))-
i=1 i=1

Note that if we choose z€ac so that e* () =y;, i=1,...,1, then

! ! ! !
e“d’(ZPihi+Zyi(ei+fi)) =f+)_phit ) vie (5.2)
i=1 i=1 i=1

i=1
and . l
’U¢(p1, s DLYLy yl) = ¢(f+zp1hz+z Z/?ei) ) (53)
i=1 i=1
where f =Z§=1 fi. Therefore, through (5.1) or (5.3), vy is defined for p;,y;€C. Never-
theless, we always assume y; #0.

If FeP(g), the gradient of F, VF:g—g is defined by B(VF(X),Y)=dFx(Y) for
X,Ye€g. Since f is nilpotent, there exist e, h€g such that {e,h, f} forms a standard
basis of a T.D.S., say g;. Then g can be decomposed into a direct sum of irreducible
g1-modules, say g=®i=1 gi (see [K3)).
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LEMMA 5.1. If FEP(g)C, then [VF(X), X]=0 for X€g.
Proof. We have VF(Ad(g)X)=Ad(g)VF(X) for g€G. Let g(t)=exptX. Then
Ad(g(t) X =X.

Thus

(X, VF(X)| = di _ Adg()) VF(X)=Z| _vF(Ade@)x)=0.

dtls
. !

In particular, [VF(f),f]:O for FeP(g)®. In other words, VF(f)ng=®i=l g{.
Since dim span{VF!(f)|{F!} is a set of basic invariants}=I and dim g{ =1 for each i, we
can pick a set of basic invariants {¢1,..., ¢} such that V¢;(f)€g/\{0}, i=1,...,l. Set
fe(@,9)=v4, (D, ¥), p=(p1, -, 1), y=(¥1, .-, 1), ¥:#0. We may regard f; as a functlon
defined on b* or f+b via (5.1) or (5.3).

LEMMA 5.2. The Jacobians J,=||8f;/0p;|l and J,=|8f;/0y;|| are non-zero at zo=
ead ef_

Proof. For each j, there are d; €N, hj€a such that R(adf)dfhj=g§. Put z;=
(ade)(hj)en. Then {h;,Z;};=1,., forms a basis of b. Let h;.:F(hj):hf and z}=
F(z;—0x;). We also use {h},z’;} to denote the corresponding coordinate system on b*.
For Aeb*, A=Y pia;+)_ i€},

a0 = 55 0) = i S, (b))
= iy 2 [0:(F Ak shy)~gi(F ) (54
= (dgs) p-1a(hs) = B(V,(F~'X), hy)
and 85, Bw )
57 V)= g ) = 1, [, Ot 25)—wa, ()]
(5.5)

= lim S{gu(F~ At (25 —02;)) —6i(F~13)
=B(Vg,(F~\),z; —0z;).
For some z€a, e24%2,€p,, put )\0=F(e3‘d‘°zo). Therefore FI;II(A0)=ead"‘zo and
Ve, (F7 1) = e*®V 4, (20).
Since V¢,(f)€g{, one has

B(V4,(20), hs) = B(Vg,(f) €™ %h;) = B(v,,,(f) th)

_ (=)

T B(Va (1), (ade)h),

d;
BV ohadehy) = B(Ta, (e aden) = L BT, (1), (aa e)ny)
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and
B(V¢i (ea.def)’ Z; —02:]') = (V¢i(eadef)7xj) = <V¢i (f)’ e ade ade h]> =0.

So if we choose ¢; such that B(V,(f), (ad €)% h;)=6;;, we have

B(Vi,(20), ;) = ﬂ&j,

1)di-1
B(Vg,(20),2;)= ((d ) — 83, (5.6)

B(V¢.(20), ~0z;) =0.

Since e~ 242|, and e~ 42|y, are isomorphisms and B(V,(2), —62;)=0, (5.4) and (5.5)
imply the result.

Let by=f+b. We have identified b with a+3'_, Re;Cg. Set

)
0= {Z aie;

i=1

a; € C* = C\{0}, i=1,...,l}

and Z=f+a+09;Cbs. Now we introduce two algebraic varieties

U= {x f+Zp,h +Zx,e.ez|z(z) OforIG’P(g)g}
i=1 i=1

={ze€Z|¢(z)=0,k=1,..,1}

and

U= { Zp,a,+2y,e e(b* )C|w¢(A) 0 for € P(g)® and y; €C*,i=1 l}

i=1 i=1

={(p’ y) € Cl XC‘I | fk(p)y)=0’ k= 1, ’l}

Following our previous discussion, especially (5.1)-(5.3), we have a regular morphism
F: U'— U defined by

l ! i i
F(Spot Yuet) =1+ bt 3sden
i=1 i=1 =1 i=1

Recall that h;=a’. It is clear that, for A€b*,

S () = GE()
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and

8

dy;
Therefore Jp(fi)|» and Jy(fi)|»#0 if and only if Jp(¢x)| 7 and Jz(¢k)| £ #0. Let o€ U’
be as defined in the proof of Lemma 5.2. Then we have shown that J,(fx)|s, and
Jy(fx)r #0. Hence, J,(#x) and J;(¢x) are non-zero at the point FAo€ U which has
been shown to be irreducible in [K2, Theorem 2.4, pp. 224-225]. Since both J,(¢x) and
Jz(¢x) are non-zero polynomials on U, the irreducibilty of I implies that J,(¢%) and

= g%?m)ayj.

Jz(¢x) are non-vanishing on a Zariski dense open subset U of Y. It is clear that F is
a two-fold covering map and F~!(U) is a Zariski open dense subset of U’. Therefore,
Jo(fr) and Jy(fx) are non-vanishing on U’=F"1(U). Summing up, we have:

PROPOSITION 5.3. There ezists a Zariski open dense subset U’ of U' such that
Jp(fi) and Jy(fr) are non-vanishing on U’.

6. The order of the fibres

We use the notation from the end of the previous section. We now consider the projec-
tion m: U—(C*)! (or 7}: U'—(C*)!) from U (or U') to the z-plane (or y-plane), i.e.,
w2(p, z)=z (or m4(p,y)=y). By results of Kostant concerning principal nilpotents ([K2,
Proposition 2.5.1)), 7 is surjective and 1< |m; ! (z0)|Sw=|W]| for 20€(C*)'. We now
give a finer result concerning the order of fibres.

PROPOSITION 6.1. There ezists a Zariski open dense subset UC(C*)! (or U’) such
that |75 (z)|=w for zeU (or |7, (y)|=w for yeU’).

Proof. Since myoF=m}, the result for w2 follows from that for 75, so we focus on the
variety U’. Since we will use Bezout’s theorem which applies only to projective varieties,
we introduce the following projective variety

W' ={[p,y] e PC*7?| fi(p,y) =0}.

Though the choice of fi in the last section may not be homogeneous, here f can be
chosen to be homogeneous if we set fr(p,y)=0x(>_w:fi+3, pihi+2_ yiei), where {¢x}
forms a set of homogeneous basic invariants of P(g)9, and the non-vanishing of the
Jacobians is true for any set of basic invariants.

Let D; be the divisor corresponding to f; and D} be the hypersurface in PC?-!
given by the equations

voy’ = vty

17-950852 Acta Mathematica 175. Imprimé le 21 décembre 1995



248 T.-M. TO

where yo=(13, .., %), y=(¥',...,4')€C'. We shall use (D1, ..., D), to denote the inter-
section index of the effective divisors Dy, ..., D, at z€(\;_, supp D; (cf. [S]). We now
make an assertion which we will prove later: There exists a Zariski open dense set U’
such that, for yo€U’, one has

(1) {Di, D }i=1,...1,j=1,....1,i#; are in general position, that is,

ﬂsuppD n ﬂ supp D = 4™ (o)
z#J

consists of isolated points;
(ii) If (po,yo)EW’, then
(a) (pe,yo) is a simple point in each D; and each D;{),
(b) M; Ttpo,) Di N ni,j,i;ej T(po,yo)D;% ={(po, y0)}, where T, D denotes the tangent
space of supp D at z.

Assume this is true. We then have

(iii) (D1,..., D1, D32,..., Di-1) 10y =1 for (p,yo) €W’ and yo€U’;

(iv) Z:(p,yo)éﬂé"(uo)(Dl’ ey Dty Dyl oo Dl "N oo = Hi:l deg D; for yo€U’.

The statement (iv) follows from Bezout’s theorem. For (iii) we refer to the result
of Chapter IV, §1, Example 2 in [S]: if Dy, ..., D, are prime divisors and z&€D;N...ND,,,
then (Dy,...,Dy)z=1if Dy, ..., D, intersect at z transversally, so that z is a simple point
on all the D; and T, p,=z. The condition that Dy,..., D, are prime is unnecessary
in our case. Suppose that for each i, D; has local equation f; in some neighborhood
of z. Then what we really need is that the germs of those polynomials f; generate the
maximal ideal at z, i.e., (f1,z,..., fa,z)=mz. Those points being considered in our case
are simple on all the D;. Therefore, if p;(z)=0, p;|f; and p; is prime, then g;(z)#0,
where g;=fi/pi. Thus (f1,2,..., fn,z)=(P1,5) .-+, Pn,z) and then we can apply the result in
that reference to py,...,Pn.

From (iii), (iv) we obtain |7}~ '(yo)|=[Ti_, deg D; for yo€U’. But [I._, deg D;=
[I._, deg fi=]T:_, deg wy,=w. The last equality is due to the facts that {wg, }i=1, .
forms a set of generators of S(b)?(®) as a polynomial ring and that S(b)7 is isomorphic
to S(a)" [GW2] and standard facts about finite Coxeter groups [B].

Now it suffices then to prove our assertion. (i) follows from |75 (yo)|<|W|. (ii) is
equivalent to

)

(a) <3fk _0fx Ofk i Ok
op1’ " Op By’ By

(b) J=[Jp(()f) Jyéf)] has rank 21— 1, where J,(f)= (af)’;)k J,(f)= (g-;’;)

);éo for yo€C', vyl #0;
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and

B = (b(i j),k)i=1,..l, 5=1,..1, i, k=1,....]

is a $I(I—1) x! matrix with b(i,j),k=6ikyg—5jky3.

By Proposition 5.3, J,(f) and J,(f) have full rank on some Zariski open dense
subset of W', say W{}. Let Zo=W'\Wj;. Then Z; is Zariski closed and dim Z;<!-2
(dim W=dim U —1=[—-1). By Chevalley’s theorem ([CC], [M]), the closure of 72(Z)
in Zariski topology has dimension less than [—2. Then the set U'=CP!~1\7,(Z,) is a
Zariski open dense set for dimension reasons, and for yoeU’, 75~ (yo)€W). This U’ is
what we want. For yo €U, Jp(f)(po,y0) 70 and Jy(f)(po,40) #0 for any (po, yo)Ew{,_l(yo),
50 (0fk/Op1, ..., 0f/Op1, Ofr /Oy, ..., Ofk/Oy1) #0 for k=1,...,1.

Since the first ! column vectors and the last ! column vectors of J are linearly
independent, to prove (ii), it suffices to show that if there are ¢;, j=1,...,I, ¢; not all
zero, and d;, j=1,...,1, such that

T Ofx
7 dy;

=24,

(po,wo)

for k=1,...,1,

(Po,vo)
and
b= forits,

then d;=\p}, i=1,...,1, for some non-zero A€ C. Suppose that such ¢; exist, by multi-
plying by a constant A€ C*, we may assume c;=y]. As f; is chosen to be homogeneous,

we have af af

Ok L

2 vigy, T2 Pigy, = (degf)fi.
Therefore a5 of
yg_k +Y pb k = (deg fi) fe(Po,y0) =0
Z Y5 | (po.o) Z Op: (po,¥0)

and then of

E(di +P(i))a—’f =0.

* (po,¥o)

But J,(f)|(po,y0) #0, hence di+ph=0 for i=1,...,1.

PROPOSITION 6.2. Let {¢r}k=1,..1 be a set of homogeneous basic invariants
of P(g). Set fi(P1y+ Pl Y1s o Y1) =Yg, (P1, s D1 YL, s 1), DiEC, i €C*. Then there
exists a Zariski open dense subset O C(C*)! such that for any connected, simply connected
open subset VCO, there erist w differentiable functions p{™):V »C!, m=1,...,w, such
that for yeV,

(i) fe(@™(y),y)=0 for all k;
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(i) {™(@),y)Im=1,...,w}|=w;
(iii) 2f S (y) X41(8, 8;)p{™ (u), where B; is defined by (o, B;)=6i;, then

{S™ ()| m=1,..,w} =w.

Proof. Let U’ be the Zariski open dense set in the previous proposition. Let yo€U’.
Then Jp(fr)l(po,yo)> Jy(f&)l(po,yo) are non-zer0, so by the implicit-function theorem, there
exists an open neighborhood V} of yo and p: Vo—C' a differentiable function such that
fe(p(y),y)=0, k=1, ...,1, whenever y€V; and p(yo)=po. For any yelU’, |7r"1(y)|=w,
therefore there exists an open neighborhood VCU’ of yo such that there are w differen-
tiable functions p{™):V —»C}, m=1, ..., w, so that, for ycV,

(i) {(»"™(y),y)} consists of w distinct points;

(ii) fx(P™(y),y)=0.

On V, the sums S(™(y)=3"(5, 8;)p (m)(y) are defined. Set h;=a’. Regard y; as a
function defined on ac through y;=e®. Let {q;} be the coordinates associated with the
basis {h;} of ac. Since {wy, }r=1,...; are mutually Poisson commutative [GW2], we have

Eafm afn Zafm afn
j=1 9p; an dg; 61’1

OnV, p] ) is a smooth function of yj, hence of g;. So

O0fn Ofn Opi a,,a,.a,
Z Zf fn Op.

ap] Op; Og;

Arranging the indices we obta.in

Ofn Ofn (apz ap])
R L B < N R 6.1
Z apg dpi a‘b 0g; ( )
Set \;;=0p;/0q;—0p;/0q; and A=(Xij)ij. Let M=(0f;j/0pi)i;. Then (6.1) can be
written as M*AM=0. But det M =Jp#0 on V. Therefore M is invertible and then
A=0, that is, 5 5
Pi Dj
hd L 5 2
O0q; 0Og; (6 )
Then
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But since fi are homogeneous, pgm) is homogeneous of degree one in y. Hence

(m)
Z =™, (6.3)
Therefore suppose for some u,v, S =5 on V, then 05/ 0g;=08")/dg;, that is,
p§“)= pﬁ”), i=1,...,l. But then we must have u=v. Consequently, we conclude that for
yeV, S(™(y), m=1, ..., w, are distinct.

Since each fi is a polynomial, hence holomorphic, p{™)(y) is holomorphic on a
small neighborhood of y5. So locally there are w holomorphic functions satisfying
(@™ (y),y)=0, k=1,...,I. Therefore on any connected, simply-connected open sub-
set V of U’, there exist holomorphic continuations of p(™(y), m=1,...,w, which are
only defined on some neighborhood of y5€V. Hence the proposition follows if we take O
to be U’.

We now set Z(pi, ...,p;,yl,...,y,)=f+25=1 p,-hi—2£=1 y?e;. We make the choice
that F~1(Z(p,y))=2"r-1 pioi+ Y _, V=Ty&. It will be clear later that this choice
makes no real difference since any polynomial J(w), w€U(b)?, has even degree in each
variable y;.

PROPOSITION 6.3. There exists a Zariski open dense subset O of A such that for
any connected, simply-connected open subset V of O, there ezxist differentiable functions
p™):VC!, m=1,...,w, such that, for z€V,

(i) for all weU(b)®, JW)(F 1 (Z(P'™,y)))=0, where p™ =(p{™(z),...,n{™(x))
and y=(z,...,z™);

(ii) S™)(z)=Y_(a, ,Bj)pg.m)(z), m=1,...,w, is the set of all eigenvalues of the con-
stant matriz By(log ) and they are distinct. Furthermore, [E1(dS™), ..., E,,(dS(™))] is
an eigenvector corresponding to the eigenvalue S(™).

Proof. We extend the domain of By to ac in the usual manner. By Propositions 4.6
and 6.2, {S{™)(z)|m=1,...,w} is a complete set of eigenvalues for By(log z) on a Zariski
open dense set. The characteristic polynomial Q(z; A} of By(log z) has real coeflicients
when regarded as a polynomial in z, =e**(log ) and A. So the resultant R(z) of Q(z; \)
and (dQ/dA)(z; ) is a polynomial in z; with real coefficients. But R(x)#0 on a Zariski
open dense set, therefore, R(x)7#0 on a Zariski open dense subset of A.

7. The main theorem

Let G be a semi-simple Lie group split over R. G=NAK is an Iwasawa decomposition.
For veag,, (m,, H) denotes the associated spherical principal series representation of G.
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As in §1, W(v) is the space of all Whittaker functions associated to m,. Let {uy,...,u}
be a set of algebraically independent generators of P(g)? consisting of homogeneous
elements. As in §5 and §6 we define Z(p,y) and f, k=1,...,1, by

l )
Z(p,y)=f+)_pihi—)_vlei€g,
i=1 $=1

fk(p, y) =uk(Z(pv y))’

where h;=a’. Let w be the order of the Weyl group W=W (G, A).

Before we give the statement of our main result, we establish some notation and
definitions. If ¢ is a vector-valued function from A into C", for v€a, one defines ¢,:
AxR, —C" by ¢(z;t)=d(zexp(logt)v) for z€ A, t>0. Then ¢ is said to be homo-
geneous of degree k in the direction ve€a if for all z€ A, ¢,(z;t) is homogeneous of
degree k in t, i.e., ¢,(x; \t)=A*¢,(z;t) for A>0, t>0. If QC A and for any z€Q, t>0,
zexp(log t)v€Q and if ¢ is a function defined on Q then we define ¢, by the same formula.
We call such a subset §2 of A v-conical.

Definition. Let 2 be a v-conical set and let ¢ be a function defined on . A series
q(x) S5 _, dr(z)t%~#(=) on Q is said to be an asymptotic expansion of ¢ with a shift
of order p=p(z) in the direction v, if

(i) ¢ is homogeneous of degree —k in the direction v;

(i) g(zexp(logt)r)=t"q(z);

(iii) for all z€Q,

$o(z;t) ~q(x) Y Sr(z)t™* 7, ast—oo.

k=-1

We write ¢éq2::_1 Pk
v

MAIN THEOREM. Let G be a semi-simple Lie group split over R. Then there exists
a Zariski open dense set O of A such that for any connected simply connected open subset
Q of O, there erist differentiable functions p(™:Q—C!, m=1,...,w, so that

() fr(@"™(z), y(x))=0, y(z)=(z*,...,z™), for z€Q, k=1,...,1;

(i) S={S™N(z)=3 (s, ﬂj)pgm)(z),m=1,...,w} has w distinct elements for z€Q.

(iii) Suppose further that Q is Hq-conical and there is an ordering of S such that
Re S(W)...<ReSW. Then there exists a basis {¢(m)}m=1,,,,,w of W(v) such that for
each m, there exist functions i, gm and ¢£m), k=-1,0,..., such that

)

_ (m) m

e—(e+S )¢(M)‘;70qm Z ¢§cm)
k=-1

on Q with gm#£0, 3™ #£0.
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Remark 1. The functions p,, in the main theorem are homogeneous of degree 0
in the direction H;. In fact, we will see from (7.3) that they are rational functions
of SM, ..., 8 g1  z with denominator Hi#j(S(i)—S(j)). Since gm(zo+7Hj)=
e~ THm(2o)g (24), ZoElog Q, e~ (e+5™) g(m) hag growth of order t#m,

Remark 2. Suppose that  is an open subset of ac such that Qy=Na is non-
empty and there exist w holomorphic branches S, ..., (™) of eigenvalues of the constant
matrix By(zo) on Q. Since §) is holomorphic, S(*)|q, is a real analytic function. For
i#£j, set

Pr={zeQo|Re 5®)(z) >Re $V(z)},
Pr={z€|Re 8% (z) <Re SY ()},
Ki; ={z€Q|Re S (z) =Re SV (z)}.

Let P =Int K;; be the interior subset of K;;. Since S®|q, is real analytic, if P
is empty, then K;; is of dimension less than {—1. If Pg- is non-empty, the boundary
of Kij, 8K;j, is of lower dimension. We have Qo\aK,-j=Pi;UP%UPi;. Set ()=
Q0\U;»; 0Kij=;5;(P5UPSUP;). Z(Q) is a union of open subsets Pn=/);5, Pi; ",
m=(mj)icj, mij=+, 0 or —. If P,#@, let £€P,,. One has some permutation ¢ €S,
so that Re $(°¥)(z)<...<Re §(°V)(z). By the definition of Py, if Re S(")(a:)%Re SU)(z),
then Re S(‘)(y)ERe SU)(y) for all y€ P,,,. Therefore, Re S(7*)(y)<...<Re $°V)(y) for all
y€P,,. In other words, for any z€X(f2), there exists a sufficiently small neighborhood
V, such that there is an ordering of those eigenvalues so that Re $(*)(y)<...<Re SM)(y)
for all yeV,. The closed set Ui>j OK;; is of lower dimension. Therefore, if we throw
away a certain closed subset of lower dimension, any sufficiently small open subset and
the smallest Hp-conical set containing it will satisfy the condition in the statement (iii)

of our main theorem.

The statement (i) and (ii) in the main theorem has been proved and stated in
Proposition 6.3. Let OCA be the Zariski open dense set described in that proposi-
tion. For €O, the constant matrix By(logz) of the system (1.16), i.e., the constant
term in the expansion of B(logz;t) in t is diagonalizable and has distinct eigenvalues.
On an open subset Q of O, if we have an ordering of those eigenvalues of By(z), say
{$M)(z),..., S®)(z)}, such that S{)(z) are differentiable, then, by Proposition 6.3 (iii)
there is a matrix-valued function E=E(z) on Q such that E~! By E=diag[S(V, ..., SW)].

Now we recall the linear system of differential equations (1.16),

dv

E(xo;t) = B(zo; t)¥(z0; t),
B(zo;t) = Bo(zo) — Dt~ + lower order terms, (7.1)
®(xo; t) =t0¥(z0;t),
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where zg=logz, D=diag[d,, ...,dy], di=dege;, i=1,...,w. For €0, Theorem A.4 in
the appendix asserts that there exists a fundamental matrix solution

U(zo;t) = E(x0) T (wo; ¢)t A0 etS(@0) (7.2)

such that -
\f(xo; t) ~ Z Uy (zo)t™*, ast— oo,
k=0

with ¥o(zo)=1. Here
S(z0) = diag[S™M (o), ..., S™(20)]

and

A(zo) = diagonal part of E(zo) * DE(zo)
= diag[/\l(xg), cery Aw(l‘o)].

Remark 3. We give here a description of A in terms of By and its eigenvalues S,
i=1,...,w. Since, for zeU, B=By(z) has w distinct eigenvalues, B is a regular element
in gl(w). Let h be the centralizer of B. Then b is a Cartan subalgebra and is spanned
by {B};=1,...u-1- Let {B;} be the dual basis with respect to the trace form on gi(w).
Then the h-component Dy of D in the root decomposition of gl(w) with respect to b
is 33—y tr(DB?)B;. One also has B/ =Y}y tr(B*¥)By. Let M=(tr B/**=2); and
M~1=(m’*). Then

w
Bj=) mi* Bk j=0,.,w-1,
k=0

-

and
w-1

Dy= > tr(DBY)m/*14+1B*,
k,j=0

Observe that

w
tr BIHE-2 =3 "(8W)itk=2 and M =H(SW,..,5®),

i=1

where H(.’Bl, veey xn)=($;—l)i,j=1,...,n-
Motivated by the above considerations, we set v;=tr DB{. Then

~i =tr(E~' DE)(diag[S™, ..., ™)) =) " A;(SD)".
Write 7 =[71, ..., Yol X:[Al, vy Aw]t. Then

5 =H(SW, ..., 5@)x
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or
A=H(SWD, ..., )17, (7.3)

det H(SW, ..., S('”))=]'[,.>j(S(‘)—S(")), so each ); is a rational function of S, ..., §(*)
and z*1, ..., £ with denominator [, ;(S® —S§@). Note also that A;(zo+7Ho)=Ai(xo)-

Let {1, ..., 6} be a basis of W(v). Set ¢2=e9¢;|4 and 5:[6.:(,55-’, cory € 7], where
€1,...,€y form a basis of the space of all the harmonics in S(a), e;=1 and e; are ho-
mogeneous. From the discussion in §1, ®;(z;t) is a solution of (7.1) and 5(3:; t)=
[51(:& t), ...,5w(w; t)] is a fundamental matrix solution. By (7.2), for z€O, there ex-
ists C(z), det C(x)#0, such that

&(z;t) = tPE(z)®(x; 1)t 2@t 0 (). (7.4)

For a fixed z€O, there is a sufficiently small neighborhood V of = such that E(z) is
defined on V and ¥(z’;t)—1I as t—oo uniformly for 2/€V (see Lemma 7.3). Therefore
T (x;) is invertible for large t and C(z') can be written as a product of matrix-valued
functions smooth in z’. Thus on any open subset Q of O, if there is a unified ordering
of eigenvalues of By(z), z€y, then there exists a smooth C(z) on Qg such that (7.4) is
satisfied.

Before we examine C(z), we want to know more about the dependence on the
parameter xg of the asymptotic expansion of (I;(zo; t). Though the differential equation
(7.1) is defined for zo€a, we may extend it to ac and B(zo;t) is then holomorphic in
both variables x¢ and ¢ whenever it is defined. We will need the following theorem later.

THEOREM 7.1 [Wa]. Let S be the closed sector {xeC|la<argz<p, |z|>c} and T
a compact domain in C. Let f(x,y) be holomorphic in both variables in SxT and

f(z,y) NZar(y)w_’ as T — 00 in S,

r=0

uniformly for yeT, i.e., for each k,

@, y)—zk:a,w)x"] ~0

r=0

uniformly with respect to y. Then all of the a.(y) are holomorphic in T and

0f(e,y) | dorly)

in S
By dy as r— oo in S,

r=0

uniformly in every proper compact subset of T'.



256 T.-M. TO

LEMMA 7.2. For 2' €U, there exists an open neighborhood V of &' such that @(a:, t)
possesses a uniformly valid asymptotic series expansion as t—oo, for V.

Proof. 1t suffices to show that the analytic simplification described in the appendix
can be done in a uniform manner once we know that B(z;t) in (7.1) possesses a uni-
formly valid asymptotic expansion as t—o0o0. The first step in the analytic simplification
is to reduce the problem to the case where the given formal power series solution is zero.
Therefore, we need to show that, given a formal power series Y -2 w,(x)t™", where
wy(z) are holomorphic, there exists ¢(z;t) holomorphic in both variables = and ¢ such
that @¢(z;t)~> oo wr(z)t™" as t—oo is uniformly valid. In fact, ¢(x;t) can be chosen to
be 322, wr(z)ar(z,t)t ", where a,(z, t)=exp(—|w,(z)|1t?), 0<B<1. The verification
of this is standard. The existence of such a ¢ enables us to conclude that every asymp-
totic expansion involved in the expression of p(z;¢,u) in (a.8) is uniformly valid for .
Since A(z) in (a.9) is continuous where it is defined, we have that in a sufficiently small
neighborhood V of z’, T'(x;€) in (a.9) does not depend on z€V. The equation (a.8) can
be solved by successive approximations using the integral operator P(z) which is defined
by the right hand side of (a.9). The following estimation (cf. [Wa]) is used to show that
the successive approximations converge to the solution: if ||x(£)||<c|él~™, there exists
K which depends on m but not on ¢ or x such that

/ e<f-t>Ax(t)dtH<Kc|er'"-
r'e)

The constant might depend on A, but this dependence on A may be eliminated by
shrinking V. Another estimation needed is that for ||Z()||<co, co small, i=1,2, there
exists v such that

(B~ M) 2 D)+ h(t; 2) ~ hit; 20 <712 =2V,

(Recall that p(t,2)=b(t)+(B(t)—A)z+h(t,z).) Since B(t)—A uniformly in ¢ and as a
polynomial in z the coefficients of h(t; z) have uniformly valid asymptotic expansions,
~ can be chosen to be independent of z€V. Therefore the successive approximations can
be carried out in a uniform manner.

LEMMA 7.3. Let A, S€C and h(t)~t™ 3 72, d;t™7 as t—oo with do#0. Suppose
that lim;_, o t*e'Sh(t) ezists and is finite, then it is zero except when S=0 and A=—m,
and in this case the limit is d.

Proof. Tt is clear that if Re §>0, t*e!Sh(t)— 0o as t— 0o and if Re $<0, t*e*Sh(t)—0

as t—o00. Therefore, we may assume that Re S=0. If Re A\+m>0, then t*e*Sh(t)— o0
as t—o00, and if Re A+m <0, then the limit is zero. So we may assume that Re A=—m.
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If lim; o, t**™etS (t~™h(t)) exists and is finite, then
lim t**™e!S = lim expi[lm Alogt+¢Im S]
t—oo t—o00

exists, i.e., lim; oo (Im Alog t4+£tIm S) {mod 2n) exists. This happens only when Im A=
Im §=0, and in this case lim;_,o t*e!Sh(t)=do.

Remark 4. If Re $=0, h(t)~0 as t—o0, take m>0 such that Re A—m<0. Then
tr~metS(t™H(t))—0 as t—oo. Therefore the condition that h£0 is superfluous when
Re §=0.

LEMMA 7.4. Suppose that on an open convex set of C" or R", D: (0H)F(z)=
Un(z)F(z), HeC™, with Uy(z) an upper triangular nxn matriz, defines an integrable
system. Then there is an upper triangular fundamental matriz solution.

Remark 5. If all of the Uy in the lemma are block upper triangular and all their
diagonal blocks are diagonal matrices, then there exists a fundamental matrix of solutions
of the same form.

Proof. Let F=(f1,..., fa)t and F;=(f;, ..., fa)%, j=1,..,n. Observe that F; is a
solution of a similar system. Therefore we can prove the lemma by induction on j. But
we first consider the case when all the Uy are diagonal. D can then be rewritten as

ﬁ = u,-,jfj, i,j = 1, eeey Ty
%
where {z1,...,z,} is the standard coordinate system on C™ or R". Then d(In f;)=
> ui; dzi, if f;70, the integrability of the system implies that 3~ u; j dz; is closed, hence
there exists a unique function g; such that f;=c,e% for some constants ¢;€C. Hence
in this case, the system has a fundamental matrix of solutions diag[e?,...,e?"]. In the
general case, let Ay = the diagonal part of Uy. Since [Uy,,Uy,|=0H1Un, —0H,Uy,,
0=[An,,An,]=0H, Ay, —0H; Ay, . Therefore the system

(0H)G =AnG

is integrable. Let diag[e,...,e9"]=M be a fundamental matrix of solutions of this
system.
(OH) M *F)=-M"YOHMYM *F+MUyMM™'F
=M} Uyg—-Ag)M-M~1F.

Therefore, we may assume Ay is zero, i.e., Uy is nilpotent. Let D,,, be the subsystem

df;
B:ci

= E Ui,j,kflc, i=1,...,n,j=m,...,n,
k2j+1
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of D. Then D=D,;. We prove the lemma by induction on m. When m=n, it is clear.
Suppose D,,, has a fundamental matrix of solutions G,, which is upper triangular. Now

we consider the system
v
Dz = [ui,m+l,m1 ey ui,m+l,n]Gm
(]

with v a row vector. This system is integrable. Let g,,—1 be the unique solution (up to

scalar). Set
1 gm-
Gpe1= .
m—1 [0 Gm J
Then oG

and the column vectors of G,,—; are linearly independent, i.e., G,,_; is a fundamen-
tal matrix solution of Dp,—j. Therefore the subsystem D,,_; has an upper triangular
fundamental matrix solution and the lemma follows.

LEMMA 7.5. If V i3 an open convexz subset of O such that there is an ordering of the
eigenvalues of By(z) so that Re SU)KRe S® if i<j, then there exists a constant matriz
C such that C(z)C ! is upper triangular. Furthermore, the (i,j)-th entry of C(z)C ™}
is zero whenever Re S()=Re SU).

Proof. For H€a, one has
(0H)®(z;t) =T (z; t)B(x; t).
Since d(z; t)=tP&(z; t)t~A@)etSE@ C(z) with &(z;t)=FE(z)¥(x;t), we have

(8H)®(x; t) = tP{(8H)®(x; t)—log t &(x; t)(OH ) A(z) +1®(x; t)(OH)S(z)}
x t =M@t O(2) +P B(z; t)t M=)t (OH)C(2)
=Ty(z; t)tDEI;(:v; )~ 2D etS@ (g,

Therefore

(8H)C(z)-C(z) ! = Ad(tA @ e~ t5(=))
x {log t(8H)A(z) —t(dH)S(z) — ®(z; £) " (OH)®(x;t)  (7.5)
+®(z;t) 1t PTy (z; )P B(z; 1)}
&(z; t) is invertible for large ¢ because lim;_,oo ®(z;t)=FE(z). The left hand side does

not depend on t, so as t— o0, the right hand side has a limit. By Lemma 7.3 each off
diagonal entry of the term inside the bracket in (7.5) has an asymptotic expansion as
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t—o0. Since we have Re $() <Re S®, for i<j, by Lemma 7.4 and the remark following
it, (OH)C(z)-C(z)~! is upper triangular. Furthermore, when Re S¢)=Re §®), i#j, the
(4,7)th entry of (8H)C(z)-C(z)~! is zero. Therefore, C(z) forms a fundamental matrix
of solutions of the system of differential equations

(0H))u(z) = Uy (z)v(z),

where Ug(z) is the limit of the right hand side of equality (7.5) as t—o0o. Therefore,
there exists a constant matrix C such that C(z)C~! is upper triangular.

LEMMA 7.6. Suppose E(z), C(x) and :I;(a:, t) are defined on some open Hy-conical
subset Qg of O. Then, for z€Q,

(i) C(zexpTHp)=e"AC(x);

(i) ®(z;t)(xexprHo;t)=3(x;emt).

Proof. Let t=1t=PTy, (z;)tP =32, /L(a:)t“’ (in fact, the sum is finite). Let
Ar(2)=E(z) 1A, (z)E(z). Then

B(z;t) = P(;t) exp(—D(z; 1))

with
d o Dyt
P(z;t)~ Z P.(z)t™" and D(z;t)~ Z % as t — oo,
=0 r=1

where P.(z), D,(z) are determined by procedures described in the appendix, especially,
by equations (a.3) and (a.4). But here we use the notation D, instead of B,. Notice that
B, are diagonal matrices and P,(z) have zero diagonal entries. Since S)(zexpTHy)=
e™ S (z), by Proposition 6.3 (iii), one has

E(zexpTHy)=e"PE(z). (7.6)

It is easy to see that A.(2)=(Cyeguwn=r ufjx(wk))i,j, deguf,=d;—d;—r+1. Hence

/ir(x expTHp) = (e(d““f"“)f Z uf; (a:)x(wk)) = e("‘“)'e"Dfir(w)e"d,

degwp=r i,J

and then

Ap(zexpTHy) =~ " V7 A (). (7.1
From (a.3), (a.4), (7.7), we have

P.(zexpTHy)=e""" P (z),

7.8
B, (zexpTHy) =e " V7B (2). (78
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Thus :I;(x exp 7Hp; t) and El;(m; e7t) have the same asymptotic expansion as t—o00. Since
they, as functions in ¢, satisfy the same differential equation,

6(1; expTHp;t)= 5(:1:, e"t)Cy (1)
for some Cy(7), det C1(7)#0. Then
®(z;e"t)(Co(r)—I)~0 ast— oo,

and Cy(7)—I=lim; o @(z;e"'t)(Cl(T)—I)=0, i.e,, Ci{(r)=I. Thus (ii) follows. To
prove (i), note that

B(z;e"t) = eTDtDE(x);I;(a:; e"t)t A e @) O ()
and
&(z exp THo; t) = t? E(z exp 7 Ho)®(x exp 7 Ho; t)t A2 € @) O (g exp 7 H).

Therefore, by (7.6) and (ii), C(z exp THp)=e A C(z).

Proof of the main theorem. Since E1=1, [¢, ..., 2] is the first row of the fundamen-
tal matrix solution ®(z;t). As tP is diagonal and its first diagonal entry is 1, [¢2, ..., $2]
is the first Tow of &(x;t)t~A®)etS(@)C(z) with &(z;t)=E(x)®(x; t)=(¢ij(z;t))i,;. Let
E(z)=(eij(z));;. By Lemma 7.5, we may assume that C(z)=(g;;(z));, is an upper
triangular matrix with g;;(z)=0 whenever Re S)=Re §U) and i#j. Then

b -y &)
Bz t) =Y dus(as it~ N et @y, ()
i2j

. 0) s (S g
=th()et” (’){dm(:v; £)gii(@)+ Y _ $15(x; t)gji(x)r iS5 )}-
i>j

But if RJeS(j)SReS(")‘, eipher g;:=0 or expt(S(j)—S(i))~0 as t—00, 50 Pi=¢1.¢ii+
Yis; ¢1jqj,~t““’\fe‘(s(”‘s(')) and ¢;;g;; have the same asymptotic expansion as t— oo.
If ¢1(z;t)~Y oo @jr(z)t™", by Lemma 7.6, ¢;» is homogeneous of degree —(r—1) in
the direction Hy and gi;(zexp 7Ho)=e *(®)7g;(x). Note that djo=e1;Z0 on 2. This
completes the proof.

8. The affine case

In this section, we show how one can generalize the main theorem in the last section
to the affine Lie algebras. Let go be a simple Lie algebra of type A, B, C, D or Eg,
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go=FtoDaodny is an Iwasawa decomposition. Let IIp={ay,...,;} be the simple root
system for the pair (ng,ap). Let 3 be the longest positive root. Set a;j1=—08. By
adjoining o4+ to the Dynkin diagram associated to IIy, we get an extended Dynkin
diagram IIz. Then there is an affine Lie algebra g associated to IlIg. If X,, (or X3) is
a non-zero root vector of go for the root a; (or 3), then g is generated by H®1, Hen,
Xa,®1, i=1,...,l, X,,,,®t and Xg®t~1. (For details, see, for example, [Ka].) For the
Dynkin diagram associated to Ily, one an define lo, ag, ng, 5o and ug as in §1. For the
extended Dynkin diagram IIg, we associate to it a finite-dimensional real Lie algebra b
equipped with a positive definite inner product (-,-), such that

(i) b is the orthogonal direct sum of two abelian Lie algebras a=ao and u such that
[a,u]Cu;

(ii) for Hea, ad(H) is symmetric relative to (-,-). Hence, there exists an orthonor-
mal basis {¥3,...,Yi+1} of u and a; €a* such that

[H,Y;]=a;(H)Y;, He€a, i=1,..,1+1,

and
(iit) the o’s are exactly those in the extended Dynkin diagram Ilg.

Remark 1. We may assume that (-,-)|p,xb, i8 the same inner product for by we
used earlier, and one might identify those X; in the previous sections with Y;, i=1,...,1,
since we have an obvious injection from by into b which sends the a; root space in bg to
the a; root space in b. In fact, ¥; can be taken to be X,,®1, i=1,...,/, and Y;4; to be
Xay,, ®t.

Let {Z;} be a basis for b and {W'} another basis that is dual to {Z;}, that is,
(W%, Z;)=6;;. Then the Laplacian associated to b is

Q=) zZW'eU(b).
It does not depend on our choice of basis. Let {h;} be any orthonormal basis for a and
{Y:} be the basis of u given in (iii). Then

i+1

i
Q=) rI+> ¥
i=1 i=1

The structure of U(b)? has been studied in [GW4]; here we quote a result from this
paper.
THEOREM. Let uy,...,u; be a set of homogeneous algebraically independent genera-

tors of U(a)W. Then there exist elements Q, ..., in U(b)? such that
(1) the elements Qy, ..., mutually commute and are algebraically independent;
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(if) pQ=u; and deg Q;=degu;;

(iii) € is in the subalgebra of U(b) generated by a and YZ,.., Y2, Y72 ;

(iv) U(b)? is generated as an algebra by Q,...,SY and £.

Here u is the projection from b onto n and £ is Y43 Hi=1 Y™ if ﬂ:Zi.:l n;Q;.

Remark. This theorem is also true when Il is a Dynkin diagram of type B, C, and
0 is the short dominant root.

Let J be the subalgebra of U(b) generated by €, ..., ;. The map

Um)@H®J — U(b)

zQ@eQw s zew
is a linear isomorphism. More precisely, if {U;(b)} is the usual filtration,
U;(u) =U)nU;(b), H;=HNU;(6) and J;=TNU;(b),

one has
Ui(e)= Y Ur(u)He T (8.1)
r+att=j
Let n be a generic character on u, 79=7|y,. One can define a representation II, of U(b) on
C*(a) using (1.5a) and (1.5b). Also we have I, , a representation of U(bg) on C'°(a).
If x is a homomorphism from J into C, analogous to (1.6), one might consider the
following system of differential equations:

I,(u)¢=x(u)¢, ueg. (8.2)

We will relate this system with the one associated with bg that we studied in the previous
sections. To this end, we introduce a family of Lie algebra homomorphisms o, of b. o,
when restricted to bg is the identity and o,(Y;+1)=8Y141. It is clear that they are Lie
algebra homomorphisms and they can be extended to homomorphisms of enveloping
algebras. Furthermore, they are isomorphisms except when s=0. Note also that o,
preserves the standard filtration Uj(b), that is,

05(Uj(b)) C U;(b).
U;(b) is finite-dimensional and the map
- A d U,luj(b)

is continuous.
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Let p:b—a and po: bg—ag be the canonical projections. Then it is clear that

po(oo(z)) = p(z)

and
p(os(2)) = pu(2), z€U(b). (83)

Set Q,=0,8). Let {,...,€; be those invariants in the above theorem. Since o, is a
Lie algebra homomorphism, 0,8y, ...,0,8; are in U(b)?, they mutually commute, and
they are algebraically independent since u(o,€;)=p(Q;)=u;. If s#0, together with &,
they generate U(b)® as an algebra. Let .J, be the subalgebra of U(b)? generated
by 0sQ4,...,0.84. For m=(m,,...,m;)€N', set wm=07"... Q™. Then as vector spaces
{wm} is a basis for J and {o,wn} is a basis for J,. One can identify Jp with U(b)%
and the basis for U(by)™ in previous sections can be taken to be {opwm }. Note that

}i_r% 0s(wm) = go{wm)- (8.4)
If u is a homogeneous element in U(b), then one has the decomposition by using (8.1),
u=Zujmejwm, (8.5)

where u;m €U(u) and {e;} is a basis of H which consists of homogeneous elements. If
u€U(a), apply o, to both sides of (8.5). Since o,u=u, we have

u=Y 0s(Ujm)e;os(wm). (8.6)
One may assume that u;,, is homogeneous and that it can be written as
deg uim
Uim= Y Ujmi(Y1,, Y)Y, (8.7)
k=0

where u;m r is a polynomial of degree degujm, —k. Then
Osljm = Z FUjm k (Y1, YI)YE (8.8)

and
slig(l) OsUjm = Ujm,0(Y1, ..., V7). (8.9)

Therefore, letting s approach 0 in (8.6), it follows from (8.4) and (8.9) that
U=Z’U,J'm,oej0'0(wm). (810)

18-950852 Acta Mathematica 175. Imprimé le 21 décembre 1995
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Let g, H; be as in previous sections, that is, (g, ;)=1, i=1,...,I. One may assume

7(Y1)=2+/—1 and n(Y111)=—c by conjugating an element in A.
Applying the above discussion to Hze;, one has

Hgze, = E Uijm€jWm,
k
Uijm = E Uijm (Y1, -, Y)Y

and

H‘;ei = E Uijm,0€;00W.

(8.11)
(8.12)

(8.13)

Set vijm=mp(uijm)ER[e*,...,e*,e*+1] and identify Hgze;,e; with m,(Hpze;), m,(e;).

Suppose ¢ is a solution to (8.2), then

(Hgei)p= Z VijmX(wm)e;@.

(8.14)

Set F=[e19, ..., ex¢|* and ¥(z;7)=F(z+7H;) for z€a, TER. From (8.14), one has

H;F =TF,
where I' is a wxw matrix and
L= Z VigmX(Wm)-

Applying 7, to both sides of (8.12) one has

Vijm = Z Vijm g ek
where Vijm k =7n(Uijm) =T, (Uijm) ER[e™, ..., e*]. Then

Tij(x+7Hz) = Z Vijm b (T) X (i )cF eb1+1(2) gT(deB Viim & —kIBI)
where |3|=3"n; if B=)_ nia;. Note that
dijmkx =degVijmr =di+1—d;—lm—k,

where d;=dege;, |,, =degw,,. Therefore,

d¥

—(X;7)=(HsF)(x+1Hg) =T (z+7H;)F(x+71H;) =T(z+zH)¥(x; 7).

dr

(8.15)
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Set t=e", (8.15) becomes

dv
— =AY, (8.16)

where
A= Vijm k(@) x(wm ) cFeForr1 (@) liama—klBi=1,

Use the shearing transform Sh(t)=diag[t?, ..., t%] to get a new linear system as we did
in §3,
dv

— =BY, (8.17)

where
Bij = Vijmk(2)X(wm)crerarrs (). giiamn—HBI1=(di~ds) _ 5,471
— Z Uﬂjm,k(iE)X(wm)Ckeka‘“(z) L lm k(1180 —5ijdjt_1

= —v,-jo,o(:c)—éijdjt_1+ lower order terms,

because I, >2 when m#(0,0,...,0) and k(1+|8|)>2k>2 when k>1. Now we compare
(8.17) with the system (3.1). The (,7)th entry in the constant matrix B(z;t) of the

system (3.1) is v;(z) =TIy, (ul;), where uf; is defined by

Hge; = Z U7 €;00wm (8.18)

(cf. (1.14)-(1.16)). Compare (8.18) with (8.13). Since the decomposition is unique
(for (8.1) is an isomorphism), ]} =u:;m,0, in particular, g?j =u,j0,0 and g?j =vjj9,0. There-
fore, the linear systems (3.1) and (8.17) are essentially the same, since the major terms
in the asymptotic expansions of their solutions depend only on the constant term and
the ¢~} term. As a consequence, the main theorem is valid for the affine Lie algebras we
considered here.

Appendix: Asymptotic expansions of solutions of
ordinary differential equations at irregular singularities

Al

In this appendix, we will give a brief and selective tour to the general theory of as-
ymptotic expansions of solutions of an ordinary differential equation at an irregular
singularity [Wa)]. Since our primary interest is the linear system

x_q% =A{z2)Y (a.1)

with ¢ a non-negative integer and A(z) having an asymptotic expansion as £— o0, we
will formulate those results only in the case when the singular point is co.
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Definition. Let SCC be a point-set having co as as accumulation point. Let f(x)
be a function defined on S. Then the formal power series Y -2, a,z™" is said to be an
asymptotic expansion of f(z) or to represent f(x) asymptotically, as z—o0 in S, if for

all m>0,
Jim xm{f(m)—z ar:c"} =0.

€S r=0
And we will write

f(x)erara:", zeS, z—o0.

r=0

Also we write

f(x)"g(w)iarw"', Tz —o00in S,

r=0

if f(z)/g9(z)~> parz™", z—00 in S.

A.2. Formal simplification
We will assume that A(z) in (a.1) is holomorphic and A(z)~) .o, Arz™", —00, On an
open sector S={z€C||z|>zo, g <argz<6;}. We consider the case when
A 0
AO = [ 0 22] ’
0 A}
where A}! is a pxp matrix, A3? an (n—p)x (n—p) matrix and A}!, A3? have different
sets of eigenvalues. Our goal here is to find a formal power series P(z)=} oo, Prz™"

with det Py#0, such that the formal substitution
Y= (Z P,z—') Z
r=0

changes the differential equation (a.1) into the formal differential equation

oo
792 = (Z B,z-') z,
r=0

where all B, are of the same block-diagonal form as Aq. Let B(x)=3 .o, Brz~". Then
one has

B(z) =P (z)A(z)P(z)—z 9P~ (z)P'(z), (a.2)
and more explicitly

AoPo—PyBy =0, (23)
a.
AoP.—P,Bo=Y""0(PsBr_s—Ar_oPs)—(r—q—1)Pr_g-1, 7>0.
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We choose By=Ag, Py=1. Then we have
AoP,-—P,-A0=BT+Hr, r>0, (a.4)

where H, is a polynomial in P;, B; with j<r. For r>0, if we confine P, to be of the

0 P2
[PZI 0 ]

Bl o
B,=[0 sz],

form
and let

then (a.4) becomes

Bf.i — '—Hii»
{ (a.5)

APY-PPAY =HY, i#j,

where H,” H2
H,2.1 H22]'

Therefore B, and P, can be found successively in light of the following result in linear

H,=[

algebra which is standard.

LEMMA A.1. Suppose that A€ M,,, B€ M, have different sets of eigenvalues. Then
for any C€ My, xm, the equation AX — XB=C has a unique solution X € My, xm.

A.3. Analytic simplification

The formal simplification described above can be made rigorous by the following con-
siderations. We introduce new unknowns P(z), B(z) by relations P(z)=I+P(z) and
B(:L')=Ao+§(a7) and both matrices are of the same form as P, and B,, respectively.
Then (a.2) becomes

_qdP¥

2715 — = A (2)+ A% (@) P - PV (o) - PUAF(2)PY, i#] (2.6)

Regard P as a vector in CP("~P), then (a.6) takes the form
™' = f(z,w), (a.7)

where f(z,w)=fo(z)+F(z)w+) fij(x)wiw; and fo, F, f;; are holomorphic on S and
have asymptotic expansions as z—oo in S. Furthermore, lim;_ ., F(z) is non-sigular
because 43! and A3% have no common eigenvalues. We may also assume that (a.7) has a
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formal power series solution w=3y .-, w,z~". Then on any subsector S’ of S which has
a positive central angle not exceeding 7/(g+1), there exists a solution w=¢(z) of (a.7)
such that ¢(z)~Y 22, wrz™", 2—00 in §'. The proof of this result is lengthy and we
will only give a sketch of it.

The first step is to reduce the problem to the case when the given formal power series
solution is zero. This can be done because there always exists a holomorphic function
o(x) with ¢(z)~Y oo, wez™". If we set u=w—¢(z), then

7% = Au+p(z, u), (a.8)

where p(z,u)=b(z)+(B(z)—A)u+h(z,u) with b(z)~0, lim; . B(z)=A and h(z,u) is
a polynomial in u without constant or linear terms.
The second step is to transform (a.8) into an equivalent integral equation which is

+1_ g+l
u(€) = /r o exp[ﬁq—quf—zx] £9p(t, u(t)) dt, (2.9)

where I'(£) is a path toward £. The detailed description of I'(£) will not be discussed here.
Consider the right hand side of (a.9) to be a non-linear operator P on u. Then (a.9) is
equivalent to u=Pu. As usual, we solve (a.9) by successive approximations: A sequence
of functions (u,(z)), r=0,1, ..., is defined by

u =0, Upyy=Pu, forr=0,

and the limit of this sequence will be the solution of (a.9) provided that we can get a
nice estimation of the differences u,4 —u,=Pu, —Pu,_1. The details of the estimation
can be found in [Wa).

A4

So far we have given a reduction to the case when Ay has a single eigenvalue and we also
have the following theorem.

THEOREM A.4. Let A(x) be an nxn matriz function holomorphic in S={z€C]|
|z| >0, G <argz<6:}, 61~6o<m/(g+1) with an asymptotic expansion

A(x)~ZArz", z—o00 in S,

r=0
such that Ao is diagonalizable and has distinct eigenvalues. Then the differential equation

dY
1 = >
e A(z)Y, ¢=0,
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possesses a fundamental matriz solution of the form
Y(z) =Y (z)zPe?®.

Here Q(z) is a diagonal matriz whose entries are polynomials of degree q+1 and its
leading term is
29t diag[)y, ..., An]/(g+1)

if Ag conjugates to diag[\i, ..., \p]. D i3 a constant diagonal matriz and
ke ~
Y(z)~ z Y,z7", z-—o00,
=0

with det Y5 7#0.

Remark. After applying the formal simplification to the differential equation, we
obtain a new equation
z79Z'=B(z)Z,
where B(z)=Y .-, B-z~" and B, are diagonal matrices. Then
zq—j+l
g—-j+1

Q(z)=)_ B;

=0
and D=B,;;. When ¢=0, Q(z)=Bo=A¢ and D is the diagonal part of A,.

A.5. The nilpotent case

Assume that Ao has only one eigenvalue, say A. If we set Y =Z exp[Az?t1/(g+1)], then
(a.1) becomes z79Z'=(A(z)—AI)Z. Therefore without loss of generality, we may assume
that Ag is nilpotent. In fact, we can further reduce to the case when Ag is a direct sum
of shift matrices H,®...®H, and A,, r>0, are block diagonal matrices with non-zero
entries occurring in the last rows of blocks corresponding to Hy, k=1, ..., s.

Assume this is the case, then a further reduction of the problem is possible by
using shearing transforms. That is, we transform the equation (a.1) by Y=5(z)Z with
S(z)=diag[l,z79,2729,...,z~("~1)9] and g is a positive number to be determined. The
resulting equation is

z79Z'=B(z)Z

with B(z)=5"1(z)A(z)S(z)—z~9S~1(z)S’(z). A rational number g can be chosen such
that lim,_, o 29B(z)=B§ exists and such that it equals Ag above the main diagonal but
has at least one non-zero entry on or below the main diagonal. The resulting equation is

=797 = 29B(x)Z.
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By the change of variable z=0t?, a=p!/(9=9-1) where p is the smallest positive integer
such that gp is a whole number, it becomes

ndZ _

- =C()2

with h=p(g+1—g)—1, C(t)~> o, Crt™", t—o00. (Notice that the sector S will change
accordingly.) Cp may have only a single eigenvalue, but then g is an integer or Cp is
nilpotent. If g is an integer, then the problem has been reduced to one of lower rank. If
Cy is nilpotent, then one compares the invariant factors of Cy and Ag and it happens that
successive application of shearing transforms will lower the degrees of invariant factors
and finally arrive at the case when Cp has only one Jordan block and, after applying one
more shearing transform, we can always choose g in the shearing transform to be integer.
Therefore we can lower either the rank or the order of the system and finally reduce to
the regular singularity case or the one-dimensional case. Hence

THEOREM A.5. In a sufficiently small subsector of S, the differential equation
z7Y' = A(z)Y
has a fundamental matriz solution of the form
Y(z) =Y (z)zC2).

Here Q(z) is a diagonal matriz whose diagonal entries are polynomials in /P, p a
positive integer, C a constant matriz and Y (z)~Y22  V,z~"/?, z—00.
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