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I. I n t r o d u c t i o n  

A central line of research in convexity theory and local theory of Banach spaces is the 

problem, given a balanced convex set, to find sections of large dimension that are well 

behaved. The basic theorem in this direction is Dvoretzky's theorem that asserts that 

an n-dimensional balanced convex set U has sections of dimension at least log n that 

are nearly ellipsoids. This is optimal in general. When more regularity is assumed 

(in the form of cotype hypothesis on the jauge of C) much larger nearly Euclidean 

sections can be found, as was demonstrated in the landmark paper [FLM]. In a somewhat 

different direction but in the same spirit is Milman's theorem [M] asserting the existence 

of subspaces of quotients of finite-dimensional Banach spaces that are nearly Euclidean 

and of dimension proportional to the dimension of the space. The nearly Euclidean 

sections constructed in [FLM] are obtained by a random construction, that provides 

no information on the "direction" of the section. There are however situations where 

this information is essential. A typical case arises from harmonic analysis, when one 

considers a finite family of characters (~/i)iel on (say) a compact group, and the space E 

they generate. In that case, not all the subspaces of E are equally interesting; those that 

are generated by a subset of the characters (~/i)ie1 are translation invariant and of special 

interest. The starting point of this research is a theorem of Bourgain that asserts that 

one can find a subset J of I, with card J=(card  I) 2/p, such that on the space generated 

by the characters (~/i)ieJ, the Lp and L2 norms are equivalent. (The basic measure is of 

course the normalised Haar measure.) Roughly speaking, what Bourgain proved is the 

following. 
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THEOREM 1.1 [B]. Consider a sequence (~i)i<<.n of functions on [0, 1] that is ortho- 

gonal in L 2 and satisfies II~illoo<l for each i<n.  Considerp>2. Then, for most of the 

subsets I of {1, ..., n) with cardI=[n2/p], we have, for all numbers (•i)iex, 

(11  
iEI  i E l  

where K(p) depends on p only. 

It should be observed that the orthogonality in L 2 of the sequence (~i) shows that 

�9 , , 1 / 2  

so that, when the numbers n~0il]2 are bounded below (independently of n) the Lp and L2 

norms are equivalent on the span of (~i)iel. 
Bourgain's proof of (1.1) is an extraordinary achievement and a masterpiece of tech- 

nique. It however does not clearly show what is the role of the various hypotheses, in 

particular the orthogonality and the uniform boundedness of the sequence (~i). More- 

over, it makes strong use of the special properties of the function x ~ x  n, and Bourgaln 

has to distinguish the cases 2<p<3, 3<p<4,  p>4. The desire to clarify these intriguing 

features, and to produce a proof with a more transparent scheme, was at the origin of this 

paper. As could be expected, the special properties of the function x--*x p are inessential, 

and their seeming relevance in Bourgain's proof is an artifact of his approach. It turns 

out that the essential fact is simply that the L n norm is 2-smooth (see the definition in 

(1.2) below). It is however considerably more surprising that the conditions of orthogo- 

nality and uniform boundedness of the sequence (~i)i<<.n, that seem absolutely essential, 

play in fact only a very limited role, and that Bourgain's theorem is a simple consequence 

of a general principle. Let us recall that a norm H" H on a Banach space X is 0-smooth 

(1<842) if for all vectors x ,y  in X, with HxH=I, Hyn<l, we have 

Hx§ H < 2§ ~ (1.2) 

where C is independent of x, y. Our main result is as follows: 

THEOREM 1.2. Consider vectors (xi)i<<.n in a Banach space X ,  and set 

v - = s u p I Z  x*(x,)'  : x* E X*, ,,x*H < l } .  
" i ~ n  

Assume that there is another norm I]'[[~ on X ,  larger than [I'll, and such that I[xill~<l 

for each i<n.  Assume that 

the norm [[.[[~ is 2-smooth. (1.3) 
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Consider e>0  and m=[nl-e/r].  Then, for most of the subsets I of cardinal m, we have, 
for all numbers (ai)ies, 

f \11~ 

where K depends only on e and on the constant implicit in (1.3). 

At first glance, the relationship between the two norms I1" II and I[" I1~ is curious. 

A natural situation is where I]" I[~ is the original norm, and I1" II is the new norm such 

that  its dual ball is 

{x*EX*  : iix*ii~<~ l, Z x*(xi)2 <<. T}.  
i<<. n 

Let us first explain the key point of Theorem 1.2. The definition of T shows that  

there is x* in X~ = {x* e X* : i Ix* I I ~< 1 } with T = Y]~i~<n X* (Xi)2. For most of the subsets I 

of {1, ...,n} of cardinal m, a l = ~ i e l  x*(xi) 2 will be of order mT/n. Now 

Thus, in order for (1.4) to hold, we must have as<~K 2 for most I ,  i.e. m<.Kln/~ -. The 

size of r is thus a natural obstacle to how large I can be in (1.4). The rather unexpected 

content of Theorem 1.2 is that  this is the only obstacle under (1.3), and that  within 

the small loss n -e we can achieve the optimal size. In geometrical terms, what (1.4) 

means is that  the intersection of the unit ball of C of H" [I with most of the subspaces 

generated by m vectors xi contains large Euclidean balls (for the Euclidean structure 

generated by the vectors xi). It is of interest to note that,  in contrast with Dvoretsky's 

theorem, the Euclidean structure plays no special role here, and that  if the norm ll" l[~ 

is simply assumed to be 0-smooth rather than 2-smooth, a suitably modified version of 

Theorem 1.2 remains true (Theorem 1.3 below). 

The significant generality of Theorem 1.2 possibly indicates that  an entire line of 

investigation has remained unexplored. Immediate questions raised by this result are 

whether (1.3) could be weakened (a natural assumption would be to assume that  l[. [l~ 

is of type 2) and under which circumstances inequality (1.4) can be reversed. We have 

no answers to offer at this point. 

Let us now explain the relationship between Theorem 1.2 and Bourgain's theorem. 

Let us take X=Lp,  and for ll'll = ll'll~ the norm of Lp, that  is known to be 2-smooth. 

Taking xi=~i, where II~iH~<I, and (~oi) is orthogonal in L 2, it is simple to see that  

T<~n 1-2/p (Lemma 2.2). This is where and only where these two hypotheses really come 

in. Since, however, we cannot take e=0  in Theorem 1.2, we cannot directly deduce Bour- 

gain's theorem from Theorem 1.2. But in w we will show how to decompose naturally 
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the L v norm in the sum of two pieces. For one of these, the conclusion follows easily 

from a beautiful technique of Gin6 and Zinn. For the other, it follows from Theorem 1.2. 

This approach actually yields new information, and would allow to extend Bourgain's 

result to norm much more general than the Lp norm. But doing this would be routine 

and would make things appear more complicated than what they really are. To make 

the point that new information is obtained, we will simply show that (1.1) remains true 

when the Lp norm is replaced by the larger Lp,1 norm. 

Before we discuss the methods and the contents of the paper, let us give a precise 

formulation of Theorem 1.2. 

THEOREM 1.3. Consider a number 1 < 0 <. 2 and its conjugate ~= 01(0-1).  Consider 
vectors (xi)i<~n in a Banach space X ,  and the subset jr  of R n given by 

Y =  ((Ix*(x~)l~)~<n : IIx*ll ~< 1, x*eX'}. 

Set 

r = s u p I  y ~ f i  : f E jr  1. 

Assume that there is another norm I1" I1~ on x ,  larger than I1" II, such that IIx~ll~ ~< 1 for 
each i<.n. Assume that 

the norm I1"11~ is O-smooth. (1.5) 

Consider 6>0, and consider an independent sequence (~i)i~n of random variables 

with ~iE{O, 1}, E$i=6=l/(r( logn)Kne) .  Then 

E sup y ~  6ifi <. --.K (1.6) 
f e Y ~  e 

In the above (and the rest of the introduction), K is a number that depends only on the 
constant implicit in (1.5). 

Remark. For n ) ( K / e )  g/~, we have 6)n-2~ / r .  

To relate (1.4) and (1.6), we simply observe that for x* e X [  we have 

( ~ )  ( ~ .  ,~ /o /  - , es  - ,x/,  z* a , z i  = y~. a iz*(z , )  <. I~d ~ 
i~l 

Taking the supremum over x*, we get that 

\xle / \I/Q 
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and (1.6) implies that this last term is controlled for I={i<~n:6i=l} for most of the 

choices of (6i). 
The point of this formulation of Theorem 1.3 is to bring out its true nature: we have 

to bound the supremum of a large collection of random variables. Sharp probabilistic 

methods have been developed to do this. At some point, however, one has to prove a 

suitable smallness condition on the class ~', and this is where the link with the geometry 

of the situation will come in. 

The proof of a statement such as (1.6) must start by a correct understanding of the 

tails of the random variables ~"~.i<n 6if~, or, after recentering, Y]i<n(&-6)fi. The key 

point here is that writing ]lf[]~--supi<~n Is [If]l~=~"~i<<.,~ f~, we have 

Vu>O, P(i~<.n(61-6)f>~u)~<exp(-4]lfH ' u,,f,,oo u mg 61[fll ~ ) .  (1.7) 

In the range where this inequality (that goes back at least to Prokhorov) will be crucial, 

the log term will be of order log n and the inequality will look like 

U P(Z(6i-~)fi~u) ~ 2exp(-HfHo ~ logn) .  (1.8) 

The logn factor plays a central role. What (1.8) also brings to light is the essential 

role of the supremum norm. The key steps of the proof are to gain a control of the size 

of jr  with respect to this norm. The most common way to gain such a control is via 

the growth of the covering numbers N(~', I[" Har r where N(Y, I1" []oo, e) is the smallest 

number of balls of R n for the supremum norm of radius ~<e needed to cover ~'. This 

is indeed essentially how the proof will start and in w we will prove the following weak 

version of (1.6): 

sup ~ 6is ~< ~-- log n. (1.9) E 

It is in the nature of the problem that the use of covering numbers does not allow 

one to go beyond (1.9). To improve upon (1.9) we need the sharper tool of majoriz- 

ing measures, as a way to measure the size of ~ with respect to the supremum norm. 

Majorizing measures were first invented to provide upper bounds on the supremum of 

Gaussian processes [F], and later proved to be the correct way to characterise continuity 

and boundedness of these processes [T1] and of certain natural extensions [T5]. Majoriz- 

ing measures bring, in principle, geometric information about the sets on which they live. 

In practice, however, the link with geometry is poorly understood, and is a reason why 

the construction of majorizing measures remains so difficult. The key point of our success 
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in the present situation is that,  in this situation, we have been able to establish a clear 

link with geometry. This link will allow in w to show that  under the extra information 

sup y ~  fi ~< B l o g n  (1.10) 

(where B is a parameter), the restriction of ~" to I is small in the appropriate majorizing 

measure sense, the smallness depending of course on the value of B. Once this key 

estimate is obtained, we consider independent random variables 6~ valued in {0, 1} with 

E6~=n -~, and we prove in w (through general bounds on certain processes that  are of 

independent interest) that,  under (1.10), we have 

S sup Z 6~fi <. K ( I + B ) / e  (1.11) 
,r iEI 

which, when combining with (1.9), yield Theorem 1.3 (with a worse dependence on e). 

The crucial part of the argument can be stated as a result on operators that  seems 

worthy to state in its own right. 

THEOREM 1.4. Consider 1<0~<2 and a norm one operator T from l'J into a Banach 

space X .  Assume that 

the norm of X is O-smooth. (1.12) 

Consider 0<6~<1 and independent random variables (6i)i~<,, with 6iE{0, 1}, E6i=6, and 

denote by (ei)i~<n the canonical basis of l~. Denote by Z the norm of the restriction of 

T to the random subspace of l'~ generated by the vectors ei for which 6i = 1. Then 

K 1/~ 
EZ<~ "l "1 . . . .  1/o ( l + s u p l l T ( e i ) l l ( l o g n ) )  (1.13) 

t ogt /o)) i<~n 

where O is the conjugate of 0 and where K depends only on the constant implicit in (1.12). 

Comments. (1) We will show that  (1.13) is sharp. 

(2) Theorem 1.4 is of special interest when HT(ei)H <~K(logn) -1/o for all i<<.n. 

A last comment is in order. We have claimed that  Theorem 1.3 cannot be proved 

using only covering numbers. Yet Bourgain did prove Theorem 1.1 using only covering 

numbers. He however uses in an essential way the fact that ,  as far as covering numbers 

are concerned, the slices of a certain ball are genuinely smaller than the ball itself, a fact 

that  can also be seen as the ultimate foundation of our arguments. 

Acknowledgement. The paper would not have been written without the insight and 

the generosity of Professor Gluskin, who suggested to the author that  the methods of IT6] 

could possibly provide a new approach to Bourgain's theorem. 
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2. Gind and Zinn 

In this section we will use tools from probability in Banach spaces to deduce Theorem 1.1 

from Theorem 1.3. In order to make the point that  Theorem 1.3 improves upon Theo- 

rem 1.1, we will prove Theorem 1.1 for the Lp,a norm rather than the Lp norm (a fact that  

apparently cannot be obtained by Bourgain's approach that  relies on special properties 

of the Lp norm). We fix p>2,  and we denote by q its conjugate exponent. Throughout 

the section, we denote by K(p) a constant that  depends on p only, but may vary at each 

occurence. We denote by A the Lebesgue measure on [0, 1], and we recall that  the Lp,1 

norm is (equivalent to) 

Ilfllp,x =/o -A({Ifl/> t } )  1 /p  dt 

and its dual the Lq,oo norm is given by 

II/llq,~ = sup{tA({I/I/> t}  )~/q : t >10}. 

LEMMA 2.1. Consider a function h with Ilhllq,~r 

If [Ih]l~o <~ A then Ilk]J2 <~ K(p)A x-q/2. (2.1) 

/f A({[hl r <~ A -q then I[hl[, <. K(p)A a-q. (2.2) 

and 

Proof. We have 

'[hH~ = fo2tA( {]h[ >/ t} ) dt <~ 2 foatl-q dt <. 2--~qA 2-q 

Iihlli= foo~({ihl>~t})dt<~ai-q+ fAt-qdt<~ q al-q ~ - 1  " [] 

We consider functions qoi as in Theorem 1.1. 

LZMMA 2.2. IfheLq,o~, lihllq,oo<.l, then 

Z ( / h~~ dA) 2 <<" K(p)nl-2/P" (2.3) 

i<~n " 

Proof. Write h'=hl{ihl<<.nl/q}, h"=hl{ihl>na/q }. It suffices to prove (2.3) when either 

h=h' or h=h". If h=h', this follows from (2.1) with A=n 1/q and the orthogonality of 

(~oi)i~<n since 2/q- 1 = 1 - 2/p. If h = h", we simply observe that  

/ h" ~oi d), IIh"llxllVll~ K(p)n l/q-1 <~ <~ 

19-950852 Acta Mathematica 175. Imprimt! le 21 d~mbre 1995 
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by (2.2), taking again A=n 1/q and since A({lhl>nl/q})<<.n -1. [] 

We now show how to decompose the norm I1" lip,1 in two pieces. Consider a number  
2 /3 such tha t  1/2q<~<l/q, fixed once for all (e.g. =~q) .  We set A=n ~ and 

llfL--sup{ f fh dA:llhllq,~ <~ l, llhllcc <.A }, 

Ilfllb=sup{fShd : Ilhll ,  < 1, A({h ~ 0})~ A-q}, 

so tha t  clearly 

Ilfllp,1 ~< Ilfl l ,+llfl lb.  (2.4) 

We denote again by I1"11, and Jl'llb the dual norms of II'lls and II'llb. 
We now show how to use Theorem 1.3. 

PROPOSlTmN 2.3. Consider i.i.d, random variables (Si)i<.n with 6iE{0, 1}, E6~= 
6 = n  2/p-x. Then 

E sup 6iai~i 

Proof. Since 1/p+ l/q=l, fl< 1/q, we observe tha t  

2 - 1 + ~ ( 2 - q )  < 2 - 1 +  ( ~ -  1) = 0, 
P P 

so that  we can find q~ <q (depending on p only) such that  

e = -  ( ~ - 1 + / 3 ( 2 - q ' ) ) > 0 .  

We denote by p~ the conjugate exponent of q~ so that  pt > 1. 

We will apply Theorem 1.3 with I1" II = I1" IIs, I1" I1~ = I1" lip' (which is 2-smooth by clas- 
sical results [LiTz]). It follows from (2.1) and the orthogonality of (qoi)i~<n that  

7 =supI~-~ x*(~)2 : JJx*ll~ <<. l } <~ K(p)A2-4. 
"i<~ n 

Thus 
8r <<. K(p)n 2/p-a+a(2-q') = K(p)n -~ 

and Theorem 1.3 indeed applies. 

The rest of this section is devoted to the proof that  

Esup{[l~<~n'iai~i[lb: i~<~nVt2<<'X} <<'K(p)" 

[] 

(2.6) 
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Combining with (2.4) we will then get 

Esup{  i~<.n,iaiqai ,.1: i<.n~a2i<~l)<<.K~p), (2.7) 

an improved version of Bourgain's theorem. 

The proof of (2.6) is comparatively easy. It will follow a very beautiful scheme 

of proof invented by Gin~ and Zinn in [GZ]. While a posteriori simple, this scheme is 

extremely efficient, and has proved to be of considerable importance. It was first applied 

in Banach space theory in [T2], where it was unfortunately not clearly attributed to 

its authors. The method is also a key ingredient in the papers [BT] (upon seeing [T2]) 

and [T3]. 

LEMMA 2.4. 

Then 

Consider a subset ,~ of R n, and set 

v =supl E fi : f = (fi)i<<.n E.~ 1. 
"i<~n 

E sup ~ ~i.fi ~ ~T+E sup ~'~(~i-~)fi.  

Proof. Write 

i<<. n i ~ n  i<~ n 

and take the supremum over f and expectation. [] 

We now consider an independent sequence of Bernoulli r.v., i.e. 

P(ei = 1) = P ( ~  = -1)  = ! 2 '  

that is independent of all other sequences considered. 

LEMMA 2.5. Esupf   I. 
Proof. Consider an independent sequence (~)i~<n distributed llke (Si)i~<,, and inde- 

pendent of all other sequences. Then 

E sup ~-~($,-8)f, ~< E sup ]~'~(6, ~' = - i)fi E sup ~ ei(6i-8~)fi 

by symmetry. Now, by the triangle inequality, this last term is bounded by 

E sup E ~i~ifi + E  sup E ~i~;fi = 2E sup ~ ~i~ifi �9 [] 
fE.~ i<.n lef t :  i<.n fear  ~ n  
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To prove (2.6) we have to prove that 

E sup ~ ~ifi < g(p) 

where 

. r =  {((=*(~,,)~),.<n: I1~*11, ~< 1}. 

It follows from Lemma 2.2 that 

T = sup ~ fi ~ K(p)n 1-2/p. 

Thus combining Lemmas 2.4 and 2.5 we are reduced to prove that 

sup < g (p )  
f~Y 

To prove this, we will work conditionally on (~i)i~<n. 

LEMMA 2.6. For a subset I of {1, ..., n}, we have 

Esup ~-~eifi <~K(p)AI-qE Y~ei~i b" 
f e z  ~ ~el 

Proof. Consider the subset g of R"  given by 

so that 

x* IIx*llb ~ 1} g = {( (~) ) ' .<- :  

(2.8) 

(2.9) 

But IM~IIb<~K(p)A 1-q by (2.2). [] 

We now turn to the estimation of EH)-~ielei~oill b. We recall the norm 11"11~2 given 

by 

"f"r = inf { c > O : / exp( ~ )2 d~ <<. 2 ) �9 

f E ~  iC=l i E l  i E I  

~ .  e~oi = E sup ~ 6ifi �9 E 
II z ' ' '~  l ib  ~ E ~ l :  

i E I  J i E l  

Now, we go from G to ~" by taking the square of each component, and it follows 

from the comparison theorem for Bernoulli processes IT4, Theorem 2.1] that 
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LEMMA 2.7. E[[E,e;r162 
Proof. The key is the subgaussian inequality 

t 2 
P( i~e1r >~ t) ~ 2exp(-2 ~']~ieia2 ) 

for all numbers (ai)iel, (see [LT, p. 90]). By Fubini's theorem, this implies that 

E exp 3cardI  d ~ < K .  

The conclusion now follows from the fact that, since for u>~l we have eX2/u<<.l+eX2/u, 
we have IJfJlr ~< f exp f2 dX. [] 

L E M M A  2 . 8 .  JlfHb<~K(p)Al-q~llflJr 
This amounts to prove by duality that if Ilhllq,l <X, the norm of 

h in the Orlicz space LIv~L is at most K(p)Al-qv/~gA, an elementary fact. [] 

Combining Lemmas 2.7 and 2.8, we see that 

so that by Lemma 2.6 

E sup y ~  r <~ g(p)A 20-q) ~ 
fe~ 7~ 

and thus, since for I={i<.n:~i=l}, we have Ev/c--~d-I~< ~ ~ <  Vr~, we get 

S sup ~ ~,r163 <~ g(p)A 2(x-q) ~ x/-~. 
feY 

The right-hand side is 

g(p) V/~ n 2~(1-q)+l/n ~ n  

so that (2.6) is proved since ~> 1/2q and hence 2;3(1-q)+l /p<0.  

The proof of (2.7) is complete. 

It should be pointed out that our approach to Theorem 1.1 does bring more in- 

formation than (2.7) actually shows. If q' is such that for some 2/q<;3<l/q we have 

; 3 ( 2 - q ' ) < l - 2 / p  (so that ;3 can be found whenever q'>(3p-2)/2(p-1)) then for most 

subsets I of {1, ...,n} of cardinal n 2/p, we have, if Ilhllq,,oo<.l, Ilhll~A, that 

x i E  I - -  x i E  I - -  

or equivalently, by duality, that if ~ i ~ i  a~ ~ 1, then ~ i e i  ai~ol is the sum of a function 
of II'll ',l norm at most K(p,q') and of a function of L1 norm at most K(p,q')A -1. 

It would be interesting to know how far one can go in this direction. 



284 M. TALAGRAND 

3. W i t h i n  log n 

In the rest of the paper we are in the setting of Theorem 1.3. We fix 1<8~<2, and we 

assume that  the norm I1" I1~ is 8-smooth, so that,  for some constant C, 

w ,  y e x ,  I lxl l , , ,=l, Ilyll~~<l =:* I I~+yl I~+I Ix-y l I~~<2+CIMIL.  (3.1) 

Throughout the rest of the paper, we make the following convention. We denote by K a 

universal constant, that  may vary at each occurence, and by K(C) a constant depending 

only on 8, C, and that  may vary at each occurence. We will denote by Q the conjugate 

exponent of 8. 

We consider the subset j r  of R n given by 

and we keep the notation 

~'-- { ( Ix* (~) l%<n : IIx*ll ~< 1}, 

The aim of this section is the following. 

Consider e>0  and an i.i.d, sequence (~i)i<~n of {0, 1} valued r.v., THEOREM 3.1. 

with ES~=5=n-~/r. 
Then 

K(C) log n. E sup ~ 6J i  ~< 

We now consider the norm I1"11oo on X* given by I I x * l loo=ma~.  Ix*(x~)l. The key 

to Theorem 3.1 is to gain control of the covering numbers N(XT, I1" I[or e). This will be 

done by duality. We denote by U the balanced convex hull of the vectors (xi)~<n. 

3.2. logN(V, 11.112,e)~< K(--~ logn. LEMMA 

Proof. It is a great pleasure to reproduce this argument of Maurey. Consider xEU, 
so that  x=~-~'~i~<n aixi  with ~-~i~<n la i l~  <1. Consider the X-valued r.v. Y given by 

P ( Y  = (sign ai)x~) = ]a~ I, 

P ( Y = 0 )  = 1-~--~ ]ail, 

so that  E(Y)=x .  Since (X, ][.ll~) is 8-smooth it is of type 8, with a type 8 constant 

depending only on C, so that,  if (Yj)j~<k denotes an independent sequence distributed 

like Y, we have ).0 E( k -1Z(Yj-x) )~K(C)(k -OZEHYj-xH 0 ~K(C)k -1/0 (3.2) 
j<~k j<~k 

1" = sup Z ]i. 
fE.~ i~n 
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since IIY~-xll~~<2. Thus, if k>~(K(C)/c) ~, the right-hand side of (3.2) is ~<e. In par- 
ticular there is one realisation of the variables Yj for which I lx-k  -1 ~'~j<~k YJlI~ <.e. But 
there are at most (n+ 1) k such realisations, so that 

N(U, II'lh, ~) < ( n+ l )  k. [] 

LEMMA 3.3. logN(X~, logn. 

Proof. Since I1" I1~/> ll'll, the unit ball B of X* for the dual norm of I1" I1~ contains 
X~, so it suffices to show that 

log n 
log N(B,  II'1lr162 e) <~ K(C) -~  . (3.3) 

Since the norm ]1" ]1~ is 0-smooth, the dual norm is uniformly convex [LiTz]. Then (3.3) 
follows from Lemma 3.2 and Proposition 2 (ii) of [BPST] (combined with iteration). [] 

For k~>l, and x*eX~, we define 

* Q 
fi,k(x*) = Ix (xi)l 1{2-~<1~.(~,)i<~2-(,-~) }. 

We note that, in order to prove Theorem 3.1, it suffices to prove that  for each k, 

E sup Z l f ,  fi,k(x*)<. K(C------2) (3.4) 
x*EX~ i~n s 

(indeed,)]~i.<,~ tfifi,k(x*)~ <2-(~-1)~ so only about 0 -I logn values of k matter). 
An essential ingredient in the proof of (3.4) is a special case of the Prokhorov-Benett 

inequality. The inequalities to be found in the literature are more precise than what we 
need, and the extra precision is confusing. For the convenience of the reader, we prove 
what we need. 

PROPOSITION 3.4. Consider a r.v. Z with ]Z]<~I, EZ=O, EZ2<.& Consider inde- 
pendent copies (Zi)i<~n of Z, and a sequence a=(ai)i<n of numbers. Then for all t>0,  

if IlaHzc <<. a~, Uall~ <x a~, we have 

/ t ta~ \ 
P(i~<~n Z i ~ t ) ~ <  exp ~ -  4--~ log ~--~a22 ) �9 (3.5) 

Proof. We start with the elementary inequality 
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(that is obvious on power series expansion) to obtain, for ~>0, 

E exp AZi ~ 1 + �89 A2$e A ~ exp 1A2~e A. 

Thus if Y=Y~i<~,~ aiZ~, by independence we have 

Aa~5 2~a EexpAY <. exP�89 As~176 <exp 2a---~e o~ 

using the inequality x<~e z for x=Aaoo. Thus for any A~>0, 

_ a2~ 2Aaoo P(Y>~t)'~exp( At+A2a e ) ,  

and we take 
A= 1 logta~176 

2aoo 6a~ 
if ~/>0 (there is nothing to prove otherwise). [] 

Comments. (1) When tHalloo/6HaH~2 , the bound (3.5) is inefficient (the correct 

exponent is then -t2/(K611all 2) but we will never use it in that range. 

(2) We will use (3.5) only for Z~=6i-6. 

COROLLARY 3.5 .  For u~>2$cardI, 

E u)<~exp(--~l~ (3.6) i e l  5i >i u u P 

Proof. Take Zi=bi-5; observe that the left-hand side is 

and use (3.5) with aoo=l,  a2=cardI ,  t=�89 [] 

We now turn to the proof of (3.4). We fix k, and given x*EX~, we set 

I(x*) = {i .<  n :  I z * ( x d l / >  2-k- l} .  

Thus 

and 

2 -(k+l)~ card I(x*) <~ r 

6 card I(x*) <. ~T2 (k+l)O ~ 2(k+l)~ -e, 
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so that by (3.6), for t~>l we have for any x* in X*, 

P E I> 2t2(k+l)o) <'exp(--let2(k+l)~176 
iel(z*) 54 

(3.7) 

We fix t~> 1, and we set 

a= P (  sup E 6ifi,k(X*)> 21+2~t~. (3.8) 
\x*EX~ i~n / 

Consider the largest integer jo such that 

jo exp(- �88 (k+l)~ log n) < a. (3.9) 

The main step is the construction, for j<~jo, of points x~EX~ with the following 
property: 

X* i f / < j ,  3i<~n, I j(xi)]>2 -k, [x~(xl)]<2 -k-1. (3.10) 

This shows that Hx~-x[lloo/>2 -k - l ,  so that 

jo ~ N(X~, I1" Iic0,2-k-l) <~ exP(g(c )2  k~ log n), 

and thus 
a ~< 2 exp(-( �88 (k+z)~ g (c )2ko) log  n). 

Combined with (3.8), this proves (3.4) by a routine computation. 
The construction of the vectors (x~) is by induction as follows. Having constructed 

x~,...,x~ for j<jo, we combine (3.7) with (3.9) to see that we can find a realisation 

(6i)i<~n such that 
s u p  E 61s > 21+2~ (3.11) 

x*EX~ i~<n 

while, for l<.j, 
E 6i ~ 2t2 (k+l)~ (3.12) 

iet(xT) 
Consider then x~+ 1 such that 

> 21+2 t. 

Since fl,k(x*)<2 -o(k-1), and since fi,k(x*)#0 =~ Ix*(xi)]>2 -k, we see that 

card{/~< n:$~ = 1, ]x;+i (xi)l > 2 -k } > 2t2 ~ 

On the other hand, by (3.12), we have, for l<~j, 

card{/~< n:  • = 1, ]x~(x~){ >1 2 -k-1 } ~< 2t2 ~ 

so that (3.10) is obvious. [] 
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4. M a j o r i z i n g  m e a s u r e s  

Let us recall the traditional definition of majorizing measures. Given a metric space 

(T, d), a number a~>l, and an (atomic) probability measure # on T, we set 

7a(T'd'p)=sUP]o , e T  t l~  # ( B ( t , e ) ) )  de (4.1) 

where B(t, e) denotes the ball of radius e centered at t. It is good to observe that the 

integral is in fact only between 0 and the diameter of T. We set 

% (T, d) = inf 7~ (T, d, #) 

where the infimum is taken over all probability measures. 

The aim of this section is to prove the following. 

THEOREM 4.1. Assume that the norm H'II~ of the Banach space X satisfies (3.1). 

Consider vectors ( xi )i<~m of X ,  such that IlxiH~~l for each i <~m. Consider a number A, 
and the subset TA of R m given by 

TA = { (,x'(xi)[')i<<.,~ : [[x*H~<. l, ~-~ [x*(xi)[" <<. A } .  
i~rn 

Consider, on TA, the distance d~ induced by the norm I['H~. Then 

7t (TA, d~r <~ K(C) (A +log m). (4.2) 

The most powerful idea about  majorizing measures is that  the "size" of a metric 

space with respect to the existence of majorizing measures can be measured by the "size" 

of the well separated subsets it contains IT1]. Successive elaborations of this idea have 

led to an abstract principle where the idea of separation is somewhat hidden. We state 

here the case of the principle we need. This result follows from [T5, w167 1 and 2]. 

THEOREM 4.2. Consider a metric space (T, d) and a number r ~8. Assume that for 
u E T, k E Z we are given a number ~k (u) >10 with the following properties: 

k'1>k ==* ~ok,(u) >1~ok(u). (4.3) 

Given k E Z, u E T, N >t 1 points ul, ..., UN o f  T such that (4.4) 

Vl <. N, d(u, ul) <~ r -k, (4.4a) 

Vl, l', l<~l<l'<.N, d(UhUv)>~r - k - l ,  (4.4b) 
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we have, for some number M, 

r-k 
max ~Ok+2(Ut) >1 ~Ok(U)+ ~ log N. (4.4c) 
I~N 

Denote by ko the largest integer such that r -k~  Then we can find an 
increasing sequence of partitions (Ak)k>>.ko of T, and a probability measure # on T with 
the following properties: 

The diameter of each set A E .Ak is at most 2r -k. (4.5) 

If Ak(U) denotes the unique element Of Ak that contains u, we have (4.6) 

Vu E T, ~ r -k log 1 k>~ko #(Ak(u)--"'--) <~ K ( r ) M S  (4.6a) 

where S=sup{~ok(u):keZ, ueT}  and where K(r) depends on r only. 

Comments. (1) A crucial point is the subscript k+2 rather than k + l  in (4.4c). 

(2) The reader will note the main drawback of Theorem 4.2: it does not say how to 

find the functionals ~Ok! 

Consider the function h e on R given by 

ho(x ) = (sign x)lxl Q. 

Thus h e increases. 

Consider the map h from X[ into R 'n given by 

h(x*) = (he(x'(xi)))~<..m. 

Given a number A>0, we will apply Theorem 4.2 to the set 

JzA = {h(x ' ) :  x ' E X ~ ,  E ,he(x'(x,)), ~ A } 
i~rn 

provided with the distance induced by the norm H" IIor (Thus ko=O.) The reason why 

we consider the sequence (ho(x*(xi)))i<<.m rather than (]x*(xi)]~ is the following 

technical fact. Given Ue~A, k>~O, define 

= {x* e x ; :  h(x*) e J:A, 2r-k}" (4.7) 

Then 

Ck(u) is convex. (4.8) 
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In (4.7) and the rest of the section, r-:8. It is however clearer to keep the notation r, 

and see in due time why r=8  works. 

We observe that 

This follows from the triangle inequality, and the fact that r - k + 2 r - k - 2 ~ 2 r  -k.  

purpose of the factor 2 in (4.7) is to create this condition. 

We now define, for u�9 

and 

IIv-ull~ ~<r -k ~ Ck+2(v) CCk(u). (4.9) 

The 

~(~) = ~ (1~,1-min(lu, I, 2r-k)), 
i~<m 

~ ( u )  -- inf{llx* I1~: x* �9 Ck(u)} 

~k (u) = ~ (u) + (log m)~o~ (u). 

It is obvious that (4.3) holds, and that 

~k(u) <~ A+logm. (4.10) 

PROPOSITION 4.3. The ]unctions ~k satisfy (4.4), where M = K ( C ) .  

Before we start the proof, we state a geometrical lemma. 

LEMMA 4.4. For all x*,y* in X* we have 

1 . . 
I1~'11~~<1,11u'11~<~1 ~ 11�89 (4.11) 

Proof. This is the classical fact that the dual of a 0-smooth Banach space is ~-convex. 

See [LiTz]. 

LEMMA 4.5. I f  s>~2r -k ,  we have 

I s - t l  <~ r -k  ~ s - - m i n ( s , 2 r - k ) +  l r - k  <<. t - -m in ( t , 2 r - k -2 ) .  

Proof. Since t>~r -~, this reduces to 

s - - t  ~ 3 r - k - - 2 r  - k - 2  

which holds since s - t<~r  -k.  

(4.12) 

[] 
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We start the proof of (4.4c). Since, for each i<.n, we have I luil-luz,i[ I<r -k, Lemma 

4.5 shows that 
u lr-k  ~o~+2(~) t> ~ ( u ) + -  card{/< m: lull i> 2r-k}. (4.13) 

We now consider a parameter K1, to be determined later. 

Case 1. We have 
log N 

card{/< m: luil >1 2r -k} >1 g-----~ 

In this case, by (4.13), we have 

r - k  
log N. 

it ~ II By (4.9) we have Ck+2(ut)CCk(u), so that ~k+2(uz)~.~ok(u ) by definition of ~o~. Thus 

(4.4c) holds as soon as M>~8K1. 

Case 2. Case 1 does not occur, that is, if we set 

I=  {i<m:lui[>~2r -~} 

then 
log N 

card/<<` g----~ (4.14) 

The purpose of the functional ~ was to create this condition. The main argument 

s t a r t s  n o w .  

It  Step 1. Consider t>maxt<<.N ~+~(ul).  By definition of " g%+~, for each i<N we can 

X* " find z ECk+2(uz) with IIx~ll~<<.t. By (4.9) we have x~eCk(u). We set vz=h(x~). 
We also note, by (4.4b), and since r=8,  

I Ilvz-v.lloo >~r-k- l -4r  -k-2 >>- �89 r-k-1.  (4.15) 

Step 2. We claim that if K1 has been chosen appropriately, we can find a subset L 

of {1, ..., N} such that card L~  v/'N and with the following property: 

VI, I 'EL, l ~ l  I ~ 3i<m, i~ I ,  [vt,i-vz,,il>~�89 -k-1. (4.16) 

To see this, consider the following subset of R'n: 

B = {(ti)i..<m : Vi E I, It~l < 1}. 

By simple volume arguments, the set u+2r-kB can be covered by a family of sets 
1r-k-1B (Wj)j<<.N1, such that each set Wj is a translate of g , and where N l < g  cardI 
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Thus if K1/> 2 log K,  we see by (4.14) that  N1 ~< vrN. Thus for a certain choice of j ,  the 

set Wj contains at least vfN points vl, and we set L = {l <. N: vz E Wj }. Now, if l, l' E Wj, 

lr then for some i<~m we have Ivl,i-vv,i[>~�89 -~-1 by (4.15). But i~I  by definition 

of Wj, so that  (4.16) holds. 

Step 3. We observe that  for l<~N, i~I,  then Ivt,il<~4r -k. 
If l, I~EL, (4.16) implies that  we can find i<~m such that  

>1 �89 -k-i, 

Iho(x?(xi))l ~<4r -k, Ih (xf,(xi))l <. 4r -k. 

Thus, by definition of h0, 

1 r_k/o 

i.e. IIx~--x~,ll~ >t (IIK(C))r-k/~ 

Step 4. We fix lo in L, and we set 

R = sup  IIx;'-Xlo I1 . 
IEL 

Step 5. The ball centered at Xto of radius R contains card L/> v/N points (namely 

the points x~-Xto for IEL) that  are at mutual distance at least K(C)- lr  -k/~ Thus 

Lemma 3.3 implies 
[r-~/e~-o 

log ~ ~< log L ~ K(C) log m ~ , T )  ' 

i.e. 
1 r -k 

R Q > / - -  - -  log N. 
K(C) logm 

This means that  there exists ll ~<N such that  

1 r -k 
]]x,*~ -x,* o ]]Q/> K(C----~ log-m log N. (4.17) 

We now appeal to (4.11), for x*=t-lx~l , y*=t-lx~o and we get, using (4.17), 

r-k  ]ix . . 1 ti_ Q logN. 
logm 

1 IX* •  ~ Now, since Ck(u) is convex, it contains ~ ti T ~oJ' so that ,  by definition of ~0~, we 

have 
1 r -k 

~o'~(u) <~ t -  n ~  ]~-Yv-~tl-elogm log g .  
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_ I I  l" u We let t--*maxl<<.g ~k+2[ t}, and keep in mind that this number is ~<1; we get 

1 r -k  
~ ~+2(u~)/> ~ ( u ) ~  g ( c )  log----~ logg.  

We now observe that 

I s - t  I <~ r -k  ==~ s -m i n i s  ,2r -k) ~<t--min(t, 2r-k-2). 

Indeed it suffices to consider the case s>~2r -k,  for otherwise the left-hand side is zero; 

but then more is true by Lemma 4.5. Thus 

i> 

This completes the proof of (4.4c) provided M>~K(C). [] 

We now complete the proof of Theorem 4.1. We apply Theorem 4.2 (with r=8) to 

the space (~'A,doo). This is permitted by Proposition 4.3. It follows from (4.6a) and 

comparison of the integral (4.1) with the series on the left-hand side of (4.6a) that 

71 (.~'A, doo) <. g ( C ) ( A + l o g m ) .  

Now TA is the image of ~'A under the map (ti)~<,n~(It~l)~<,n, that is a contraction 

for doo. The definition of ~/1 makes it obvious that 

~/I(TA, do~) <~ ~/I(YA, doo). 

This concludes the proof. [] 

5. S e l e c t o r  p r o c e s s e s  

In order to apply Lemma 2.4, we now need useful bounds for the quantity 

E sup ~'-~(~i-~)f,. 

Since the interest of these bounds goes somewhat beyond the present application we will 

make the (minimal) extra effort to present a sufficiently general result. 
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THEOREM 5.1. Consider a set T provided with two distances d2, d~. Consider a 
family of centered r.v. (Zt)teT and 5>0. Assume that given any s, tET, u>0,  we have 

( u uaec Sa  d2(s,t)<<.a2, dec(s,t)<~a~ =~ P(Z,-Zt>~u)<~exp - 4 - - ~ l o g  ] .  (5.1) 

Then for each number U >>. 2 we have 

lo--~71(T, dec)+ ~ 72(T, d2) (5.2) 

where K is universal. 

Comment. The most striking choices of U in (5.2) are U=2 and U=5 -1/2. In our 

situation we will make the second choice. 

Proof. Consider, for i=2, c~, the largest integer ki such that r -k' is larger than the 

diameter of T for di. For simplicity we set ~/1 =~/1 (T, d~),  72 =72 (T, d~). First we claim 

that there is an increasing sequence of partitions (.Ak)k~>k.o, a probability measure #ec 

on T such that if Ak(u) denotes the element of .4k containing u, we have 

Vt 6 T, E r-~ log 1 <~ KT1. (5.3) 
k)k. #~(Ak(t)) 

This fact, which has been known for a long time, is also a consequence of Theorem 4.2 

by using the functions 

= --r (Bec (u, 2r-k)) (5.4) 

that are easily seen to satisfy (4.4). We could also construct a similar sequence of 

partitions for the distance d2 (with a term ~ rather than log). But this partition would 

not be appropriate for our purposes, and a "change of variable" is needed. Tools have 

been developed to perform this in an efficient manner. We appeal to IT4, Theorem 3.2] 

(in the case where the functions ~j are given by ~oj(s,t)=r2Jd2(s,t)) to see that there 

is an increasing sequence (Bk)k~>k2 of partitions of T, and a probability measure P2 on 

T such that, if d2(B) denotes the diameter of B for d2, and Bk(u) denotes the unique 

element of Bk that contains u, we have 

1 
VtET, k~>~ ~ (r~d2(Bk(t))+r-~log #2(/~k(t))) ~<K~'2. (5.5) 

Consider an integer kl that will be determined later. For k>~k2+kx we write Bk = B k - k  1 , 

B~(t)=nk-k,(t). 
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It follows from (5.5) that 

1 
Vt E T, E r -k  log 

k~k~-{-k, #2(S~(t)) < Kr-k"Y2' (5.6) 

YteT, ~ rkd22(Slk(t))<~grk'~/2. (5.7) 
k>/k2+kt 

We set ko=min(koo,k2+kl). For ko<.k<koo, we set Ak={T}. For ko<~k<k2+kl, 
we set B~={T}. 

We consider the increasing sequence of partitions (Ck)k>~ko where Ca is generated by 

Ak and B~. 

For CECk, we consider an arbitrary point tc  in C. For k>ko, tET, we set 

2 k - k o  

ak(t) = #~(Ak(t))tt2(B~(t))' 

and we observe that, combining (5.3) and (5.6), we have 

E r -k  log ak(t) <~ K(r  -k~ + 'h  +r-kt72).  
k~ko 

(5.8) 

For CECk, k>ko, we set 

4 
log U 

r 1-k logak(to)+rk-lUSd~(BIk_l(to)). 

Consider the quantity 

S = s u p  E Uc~(t). 
tET k>ko 

We observe that B~(tc~(t))=B~(t) (and similarly for Ak). Thus, combining (5.8) and 

(5.7) we see that 

S ~< & (r - ko + 71 + r - k, 72) + Kr k~ U572. 

We see from this formula that it is a good idea to take for kl the smallest integer 

such that r -kl ~< (US log U) x/~. Moreover, since r -k2 ~< K'y2, r - ~  ~< K~/x, we have 

r-kO ~< r -k.. +r-~2-k~ ~< K(71+r-k~/2) 

so that 

S <~ K / 71 + /  U6 ~1/2 \ (5.9) 

20-950852 Acre Mathematica 175. lmprim~ le 21 d6cembre 1995 
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Consider now v i> 1. For C E Ck, k > ko, we denote by C' the unique element of Ck_ i 

that contains C. We claim that 

P(sup(Zt-Z,a)>/vS)<<. ~ ~ P(Z,c-Ztc,>/vuc).  (5.10) 
tET k>ko CECk 

Indeed, if Ztc -Ztc,  <.vuc for all k>ko, all C in C~, we have by definition of S that for 
all C in Ck, 

LC -- LT <<- vS 

so that supteT(Z~ --Ztr)<<.vS. (There the supremum is as usual the essential supremum.) 

To evaluate the right-hand side of (5.10), we observe that 

doo(tc,tv,) ~<r -k+l, d2(tv,tc,)  <.d2(Bk-l(tv)). 

Thus, by (5.1) we have 

( vuv vuvr-k+' ~ 
P(Ztc -Ztc,  >1 vuc) <. exp 4r_k+l log 6 ~ ~ ) ) ]  ~< a~(te)-~' (5.11) 

where we have used the fact that the logarithmic term in (5.11) is at least logU by the 

choice of uv. Since ak(tc)~>2, we have ak(tv)-~<,.21-'(ak(tc)) -1. Now 

ale(to) -1 = 2-(~-~~ ) 

so that the sum of these quantities over all choices of k and C is at most 1. Thus the 

right-hand side of (5.11) is at most 21-~. The conclusion follows easily. [] 

THEOREM 5.2. Assume that the norm [[.[[~ satisfies (1.3), and consider vectors 
(x~)i<~rn such that I[xi[[~~<l. Consider 

A=sup{~< ,x*(x,)[':z*eX~}. 
Consider i.i.d, random variables (&)i<<.,, with •6{0, 1} and E~i=6. Then 

g ( c )  (A+log m). (5.12) E sup ~ ~,lx*(xi)] ~ <<. log(1/~) 

Proof. Using Lemma 2.4, it suffices to prove that 

E sup < KCC) 
log(l/6) (A +log m) (5.13) 

=* eX~' i~<,n 
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(indeed, 6 log(l/6) ~< K). 

To prove (5.13) we will appeal to Theorem 5.1 with U=6 -1/2, 

T = {([x*(xi)[~ x* e X;}  

and Zt=~i<~m(6i-6)ti. We observe that (5.1) holds by Proposition 2.3, and we observe 

that 

71(T, doo) <~ g(V)(A+log m) (5.14) 

by Theorem 4.1. We also have that 

"/2(T, d~) <~ K( C)( A +log m). (5.15) 

This is an immediate consequence of the definition of A, (5.14) and [Th, Theorem 1.2]. 

Now, (5.12) follows from (5.2), (5.14), (5.15). [] 

Proof of Theorem 1.4. We will use Theorem 5.2 with [[. [[~ = [[. [[. We set 

a = s u p  IlT(e,)ll, 
i~<n 

and, for i<~n, we set xi=a-lT(ei) ,  so that HxiJl<~l. 
Consider a subset I of {1, ..., n}, and denote by Z(I) the norm of the restriction of 

T to the space generated by the vectors (ei)iei. Then we have 

Z([)=o~( sup ZJX*(Xi)JO) 1/0. 
\x*EX~ iEl 

We also note that, since HTIJ <~ 1, the number A defined in Theorem 5.2 satisfies A<.a -o. 
Use of (5.12) and Hhlder's inequality thus complete the proof. [] 

THEOREM 5.3. Under the hypothesis of Theorem 5.2, there exists a number a= 
a(C)>0,  depending on C only, such that 

E sup Z 6iJx*(xi)]~ <~ 2A6a+l~ (5.16) 
x*EX~ i~rn 

P r o o / .  

also set 

A(6)= E sup Z 6dx*(xi)J~ 
x*EX~ i~m 

The key to Theorem 5.3 is the fact that 

We set j3=exp(-2Ko(C)), where Ko(C) denotes the constant of (5.12). We 

A(6~) <~ �89 (5.17) 
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Indeed, once this is proved one sees by induction over k that 

A(B k) ~< 2-kA+logm.  (5.18) 

I f a i s  such that ~ 1 B =~,  then (5.18) implies 

A(B k) ~< (Bk)aA+logm 

so that for each 6<1, using the above for the largest k with Bk/>6, we get, since B~<~6/B, 
that 

" 1  

A(6) <~ -~3g, (6~'A)+logm = 26'~A+logm. 

To prove (5.17), consider i.i.d, random variables (6i)i<,m, 6iE{O, 1}, E6i=6, and i.i.d. 
random variables (Bi)i.<m, BiE{0, 1), EBi=B. We observe that the sequence (6d3i)i.<,~ 

is i.i.d., 6iBiE{O, 1}, E(6iBi)=6B, and thus 

A(6B)=E sup ~ 6,B,I~*(~,)I ~ 
x 'ex t  i~.~ 

Let us denote by E,  the expectation given the sequence (6i)i<<.m. We appeal to 
Theorem 5.2, for the sequence (Bi) rather than the sequence (6i), and the set {i~<m: 

6i=1) rather than {1, ...,m} to get 

E,  sup Z 6iBilx*(xi)l~ <- Ko(C._......~) (A'+logm) (5.19) 
x'ex~ i.<m log(l/B) 

where 

A'= sup 6,1x'(x,)l' 
x* EX~ i6m 

Recalling the value of B and taking expectations in (5.19) finishes the proof. [~ 

Proof of Theorem 1.3. The proof is based on three successive reductions following 
the scheme of proof of (5.16) (that will not be repeated) and based successively on 

Theorems 3.1, 5.3 and 5.2. We set again 

A(6)=E sup Z6,]x*(xi)]~ 
x* EX~ i~<n 

where E6/=6, 6iE{0, 1}, (6i)i.<,~ is independent. We first appeal to Theorem 3.1, taking 
the value of e there equal to (logn) -1, to get 

A( ),K(C)(logo)2 
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Next, we appeal to Theorem 5.3 to get that  for 6<1 we have 

A ( 6 )  <. K(C)(6'~(logn)2 +logn), 

so that  

Finally, we appeal to Theorem 5.2 to see that  for any e>0,  we have 

A( 1 ~< 
eT(log n)l/'~n ~ / 

This is the statement of Theorem 1.3. 

K(C) 

[] 

To conclude, we describe a simple example borrowed from [BT] that  will show how 

sharp Theorems 3.1 and 5.2 axe. We consider two integers k<~m and n=km. We divide 

{1, ...,n} into m sets (It)t<m of cardinal k. We denote by (et)~<~m the canonical basis of 

l~ n, and for iEIl we set xi----et. It is clear that,  with the notations of Theorem 1, we have 

~'=k. Consider 5< 1, and an integer r such that  $ r/> 1/m. Consider i.i.d, random variables 

5iE{0, 1}, with ESi=& Then, with probability ~ > 1 - ( 1 - 1 / m )  m, there exists t<.m such 

that  )"]~iezz 5i>lr. It follows, with the notations of the proof above, that  A(6)>~r/K, so 

that  
A(6) i> log ra (5.20) 

Klog(1/6)" 

Taking ra=2 k, we then see that Theorem 5.2 is optimal when A(--r)~logn (it is not 

optimal when A>>log n, by Theorem 5.3). Consider now e > 0 with n-~ 1/log n. When 

6=n-~/(logn)Kr, then log 1/6<..K6, so that (5.20) becomes 

1 A(5)/> 

and this shows that,  in this range, Theorem 1.3 is optimal. 
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