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1. I n t r o d u c t i o n  

Despite the fact that  spectral and inverse spectral properties of one-dimensional SchrS- 

dinger operators H=-d2/dx2§ have been extensively studied for seventy-five years, 

there remain large areas where our knowledge is limited. For example, while the inverse 

theory for operators on L2( ( -co ,  co)) is well understood in case V is periodic [12], [24], 

[25], [35], [39]-[42], [49], it is not understood in case limjx]-.o~ V(x)=-co and H has 

discrete spectrum. 

Our goal here is to introduce a special function ~(x,A) on R •  associated to H 

which we believe will be a valuable tool in the spectral and inverse spectral theory. In a 

sense we will make precise, it complements the Weyl m-functions, m+ (x, A). 

A main application of ~ which we will make here concerns a generalization of the 

trace formula for SchrSdinger operators to general V's. 

Recall the well-known trace formula for periodic potentials: Let V(x)=V(x-t-1). 
Then, by Floquet theory (see, e.g., [10], [37], [44]), 

spec(H) = leo, E1]U[E2, E3]U ... ,  

a set of bands. If V is C 1, one can show that  the sum of the gap sizes is finite, that  is, 

IE2,~-E2,~-ll < co. (1.1) 
n=l 

For a fixed y, let H v be the operator -d2/dx2+V on L2([y,y+l]) with u (y )=  

u ( y + l ) - - 0  boundary conditions. Its spectrum is discrete, that  is, there are eigenval- 

ues {#~(Y)}~=I with 

E2n-1 ~/~n (Y) ~ E2n. (1.2) 

This material is based upon work supported by the National Science Foundation under Grant 
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The trace formula says 

By (1.2), 

O 0  

rim1 

IE2n + E2n-1-2#~(y)l ~< IE2~-E2~-l[ 

(1.3) 

so (1.1) implies the convergence of the sum in (1.3). 

The earliest trace formula for Schrhdinger operators was found on a finite interval 

in 1953 by Gel'fand and Levitan [15] with later contributions by Dikii [8], Gel'fand [13], 

Halberg-Kramer [23], and Gilbert-Kramer [22]. The first trace formula for periodic V 

was obtained in 1965 by Hochstadt [24], who showed that for finite-gap potentials 

g 

= 2 y ]  
n = l  

Dubrovin [9] then proved (1.3) for finite-gap potentials. The general formula (1.3) under 

the hypothesis that  V is periodic and C ~ was proven in 1975 by McKean-van Moerbeke 

[41], and Flaschka [12], and later for general C 3 potentials by Trubowitz [49]. Formula 

(1.3) is a key element of the solution of inverse spectral problems for periodic potentials 

[9], [12], [24], [35], [39], [41], [42], [49]. 

There have been two classes of potentials for which (1.3) has been extended. Certain 

almost-periodic potentials are studied in Levitan [34], [35], Kotani-Krishna [31], and 

Craig [51. 
In 1979, Deift-Trubowitz [7] proved that if V(x) decays sufficiently rapidly at infinity 

and -d2/dx2+V has no negative eigenvalues, then 

�9 ~ in 1 '  ~'~k ~f+(x'k)] V(x)= /_dkk (1.4) 

(where fi(x, k) are the Jest  functions at energy E=k 2 and R(k) is a reflection coefficient) 

which, as we will see, is an analog of (1.3). Recently, Venakides [50] studied a trace 

formula for V, a positive smooth potential of compact support, by writing (1.3) for the 

periodic potential 
OO 

VL(X)= E V(x+nL) 

and then taking L to cr He found an integral formula which, although he didn't realize 

it, is precisely (1.4)! 

The basic definition of ~ depends on the theory of the Krein spectral shift [32]. If 

A and B are self-adjoint operators with A~>U, B~>7/ for some real ~/ and so that 
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[(A+i)-l-(B+i) -1] is trace class, then there exists a measurable function ~(A) as- 

sociated with the pair (B, A) so that  

T r [ f ( A ) -  f (B)]  = - / R  f'(A)~(A ) dA (1.5) 

for f ' s  which are sufficiently smooth and which decay sufficiently rapidly at infinity, and, 

in particular for f(A)=e -t~ for any t>0;  and so that  

~(A) = 0 if A < ~/. (1.6) 

Moreover, (1.5), (1.6) uniquely determine ~(A) for a.e. A, and if [(A+i) - 1 -  ( B + i )  -1] 

is rank n, then 

< n 

and if B>~A, then ~(A)~>0. 

For the rank one case of importance in this paper, an extensive study of ~ can be 

found in [48] and a brief discussion in the appendix to this paper. 

Let V be a continuous function on R which is bounded from below. Let H =  

-d2/dx2+Y which is essentially self-adjoint on C ~ ( R )  (see, e.g., [43]) and let HD;z be 

the operator on L2((-c~,x))GL2((x, c~)) with u ( x ) = 0  Dirichlet boundary conditions. 

Then [(HD;x+i)-l-(H+i) -1] is rank one, so there results a Krein spectral shift ~(x, A) 

for the pair (HD;x, H) which in particular obeys: 

// Tr (e  - t H  - -e  -tHD;~ ) -~- t e - tAG(x ,  A) dA. (1.7) 

While ~ is defined in terms of H and HD;x, there is a formula that  only involves H,  

or more precisely, the Green's function G(x, y; z) defined by 

( ( H -  z)-l f)(x) =/RG(x, y, z) f (y) dy (1.8) 

for I m z r  Then by general principles, lime10 G(x, y; A+i~) exists for a.e. AER, and 

THEOREM 1.1. 

1 Arg(limG(x,x,A+ir r  = 

This is formally equivalent to formulae that  Krein [32] has for ~ but  in a singular 

setting (i.e., corresponding to an infinite coupling constant). It follows from equations 

(A.8)-(A.10) in the appendix. With this definition out of the way, we can state the 

general trace formula: 

[ / 3  ] V(x) = lira Eo +  [1-2~(x, A)] dA (1.9) 
~J.O 
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where E0 ~inf  spec(H). In particular, if fE~ I 1 -  2~ (x, A) l d)~ < ~c, then 

V(x) = Eo+  [1-2((x,  t)] d,~. (1.10) 

For certain almost-periodic potentials, Craig [5] used a regularization similar to the 

c~-regularization in (1.9). 

We will prove (1.9) in w if V is continuous, bounded below, and obeys a bound 

]r(x) l  ~ Cle  C2x2 . (1.11) 

In a subsequent paper [17], we allowed any V which is bounded below and even dropped 

the continuity property ((1.9) then holds at points, x, of Lebesgue continuity for V). 

That  paper also discusses "higher order trace formulae", familiar from the context of the 

Korteweg-de Vries hierarchy, that  is, formulae where the left side has suitable polynomials 

in derivatives of V at x. Basically, (1.9) will follow from (1.7) and an asymptotic formula, 

(e = � 8 9  (1.12) 

Examples of the trace formula can be found in w including the case V(x)--~oc as 
Ixl-*cc. In [16], we proved that  (1.4) is a special case of (1.9). 

The proof in w depends on technical preliminaries in w We discuss the case of 

Jacobi matrices (discrete Schr6dinger operators) in w including a result for Z n. A general 

R n result that  is a kind of analog of (1.12) can be found in [18]. 

In w we turn to some continuity properties of ~(x, A) in the potential V and use 

them to find a new proof (and generalization) of a recent striking result of Last [33]. In 

particular, we establish ~(x, A) as a new tool in spectral theory and derive a novel crite- 

rion for the essential support of the absolutely continuous spectrum of one-dimensional 

Schr6dinger operators and (multi-dimensional) Jacobi matrices. In w we discuss an 

overview of the connection of the function ~ to inverse problems, including a generalized 

trace formula that  shows how to recover the diagonal Green's function g(x, z):=G(x, x, z) 

(a Herglotz function with respect to z) from ~(x, ~). 

2. First order asymptot ics  of  the h e a t  ke rne l  trace 

As we have seen, a basic role is played by the asymptotics of 

Tr(e - tH- -e  -tHD;~ ) as t,~ O. 

In this section we will prove: 
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THEOREM 2.1. Let V be a continuous function which is bounded from below and 
which obeys 

IV(x)l <~ Cle C2~2. (2.1) 

Then 
Tr(e -tH - e -ruDe*) = �89 [1 - tV(x) +o(t)]. (2.2) 

Under hypothesis (2.1), one can prove this result using the method of images and a 

DuHamel expansion of e -*H in terms of e -*Ho , Ho = - d 2 / d x  2. We will instead use a path 

integral expansion. The advantage of this approach is that  by a more detailed analysis 

of the path space measure, one can automate higher order expansions in t as t l 0  and 

can drop the growth condition (2.1). This is described in a subsequent paper [17]. By 

translation invariance, we henceforth set the point x in (2.2) to a=0 .  

So, our first step in proving Theorem 2.1 is to define a process we will call the xi 

process, that  is, a probablity measure on paths w: [0, 1]-*R. Recall [46] that  the Brownian 

bridge is the Gaussian process {a(s)lO<~s<~l } with E(a ( s ) )=0 ,  E(a(s)a(t))=s(1-t)  if 

O~s~ t~ l .  The Brownian bridge is of interest because of the following Feynman-Kac 

formula [46]: 

e- tH(x ,x )=(4~r t ) - l /2E(exp(- t  f o l V ( x + v ~ a ( s ) )  d s ) ) ,  (2.3) 

e-t'- o = 

x E ( e x p ( _ t j o l V ( x + v ~ a ( s ) ) d s ) x ( a ] x + v ~ a ( s ) r  (2.4) 

where X(alx+vf~  ~(s)r for all s) is the characteristic function of those a for which 

x + x / ~  a(s) is non-vanishing for all s in [0, 1], so since paths are continuous, those a with 

x + v / ~ a ( s ) > 0  for all s if x>0.  There is a v ~  in (2.3), (2.4) rather than the v~ in [46] 

because [46] considers 1 2 2 -~  (d /dx ) where we consider -d2/dx 2. 
Consider the measure dx  on f~=RxC([0 ,  1]) given by (4~r) -1/2 dx| where dx 

is Lebesgue measure, and define w on fl by w(s)=x+a(s).  Since a(0)=a(1)~_0, we 

have ~v(0)=w(1)=z. w defines a natural map of • to C([0, 1]) and we henceforth view 

everything on that  space. Let fl0={w IT(s)=0 for some s in [0, 1]}. 

PROPOSITION 2.2. The x measure of f~o is �89 

Proof. Let A=d2/dx 2 and AD be the corresponding operator with a Dirichlet bound- 

ary condition at x=O. By (2.3), (2.4) with V=O, 

~C(f~O) = /Rdx [eA/2(X,X)--eAD/2(X,X)] =- fRdx eA/2(X, --X ) 

1 dx e ~/2 (0, x) = 2'  = dx e AI2 (2x, 0) = 
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where the second equality is by the method of images. [] 

We will call the probability measure 2Xno d~ on C([0, 1]) the xi process and denote 

its expectations as Eo~. (2.3), (2.4) and the regularity of the integral kernel immediately 

imply that 

PROPOSITION 2.3. For any V which is bounded from below: 

Tr(e- tH-e- tHD;~ 

We note that the t -1/2 in front of (2.3), (2.4) is absorbed in the change of variables 

from to 

LEMMA 2.4. / fC< �89  then E~(eC~(s)2)<oc for each s with a bound uniform in s. 

Proof. Let f be a bounded even function on R. Then 

E~(f(w(s)) =2 f [eO-S)~/2(x,y)f(y) e*h/2(y,x) 
, i  

x > 0 , y > 0  

--eO-~)AD/2(x, y) f (y) eS~D/2 (y, x)] dx dy 

and it is easy to see using the method of images that for f(y)=min(R, e Cy2) the integral 

remains finite as R--*c~. [] 

Proof of Theorem 2.1. It is easy to see if we prove the formula for V(x), it follows 

for V replaced by V(x)+C. Thus, without loss we suppose V/>0. Let a~<0. Then by 

Taylor's theorem with remainder: 

l e a - l - a l  ~< �89 u. 

Thus, with a=-t  f l  V(v~w(s)) ds, 

]�89189189 ~ 1Ew(a2). 

Using (2.1) and Lemma 2.4, it is easy to see that 

E (a 2) =O(t 2) 

so it suffices to show that 

Eco(~lg(gl~co(8))ds) = g ( 0 )  ~ - o ( 1 ) .  

This follows from Lemma 2.4, (2.1), continuity of V at x=O, and dominated conver- 

gence. [] 

Remark. This is crude analysis compared with the detailed path space argument in 

[17] but it is elementary and beyond the argument of previous authors who supposed 

that V is bounded. 
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3. T h e  t race  formula:  Schrhd inger  case 

Our main goal in this section is to prove: 

THEOREM 3.1. Suppose V is a continuous function bounded from below on R. 
Let ~(x, A) be the Krein spectral shift for the pair (HD;x, H) with HD;~ the operator 
on L 2 ( (-oo, x ) ) O L 2 ( ( x, oo ) ) obtained from H=-d2  / dx2 + V with a Dirichlet boundary 
condition at x. Let E0~inf  spec(H). Then 

V(x) =l im [Eo+ [~e-~;~[1-2~(x,A)] dA]. (3.1) 
,~o L JEo 

Proof. Let El =inf spec(H). Then for Eo <. E1, 

Eo + /~o e-~a (1-  2~) dA = EO + /EE~e-~X dA + /E~e-C~ (1-- 2~ ) dA 

and 

lim e -~x dA = E1 - Eo 
~I0 o 

so the formula for El implies it for E0; that is, without loss we suppose Eo=EI. By 

Theorem 2.1 and equation (1.7), 

~(x,A) dA= 1-c~V(x)+o(~)]. 

Moreover, 

SO 

and hence 

fo ~ dA 
1 -(~A 1 

e 2 

/? �89 e -~: '  d)~ = �89 [1-c~Eo +o(a ) l  
o 

f ? e  �89 d;, = 
o 

(3.2) 

which is (3.1). [] 

Example 3.2. V=0. Then g(x,A)=�89 -1/2 and so argg(x,A)=0 (or 17r)if A<0 

(or A>0). Thus, by Theorem 1.1, ~(x, A)~�89 on [0, co) and (3.2) is just Theorem 2.1 for 
1 V=0. When ~=~ on a subset of spec(H), that set drops out of (3.1). 
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Example 3.3. Suppose that  V(x)---* oo as Ix[--~co. Then H has eigenvalues E0 < E1 < 

E2 <.. .  and H D has eigenvalues {#j (x) }~=1 with Ej_ 1 <~ #j (x) <~ Ej. We have 

1, Ej - I<A<#j (x ) ,  

~(x,A)= O, A < E o o r # j ( x ) < A < E j .  

Thus (3.1) becomes: 

V(x) = E0 + lim [ ~ 2e-a"J(z)--e-aE~ --e-aE~-I . (3.3) 

If we could take a to zero inside the sum, we would get 

o c  

V(x) = E 0 +  E [ E j + E j _ I - 2 # j ( x ) ]  (formal) (3.4) 
j=l 

which is just  a limit of the periodic formula (1.3) in the limit of vanishing band widths. 

(3.3) is just a kind of abelianized summation procedure applied to (3.4). 

As a special ease of this example, consider V(x)=x 2 - 1 .  Then Ej=2j and {/zj(0)} 

is the set {2, 2, 6, 6, 10, 10, 14, 14, ...} of j odd eigenvalues, each doubled. Thus (3.4) is 

the formal sum 

- 1 - - - - 2 + 2 - 2 + 2  ... (formal) 

with (3.3), 

l - -e  -2a 1--e -2~ 1 
--1 =lira ~ { 1 - e - 2 a + e  -4'~ ...} =lira  - -  1+e_2,~, 

~10  oz o~10 oL 

its abelian summation. 

Example 3.4. Suppose V(x)=V(x+l) .  Let Ej, #j(x) be the band edges and Dirich- 

let eigenvalues as in (1.2), (1.3). Then it follows from results in Kotani [30] (see also Deift 

and Simon [6]) and the fact that  g(x, A):=G(x, x, A+iO)=-[m+(x, A)+m_(x ,  A)] -1 in 

terms of the Weyl m-functions, that  g(x, A) is purely imaginary on spec(H); that  is, 

~(x, A) = �89 there, so 
�89 E2~ < A < E2~+I, 

~(x ,A)=  1, E 2 n - l < A < # n ( x ) ,  

0, ~n(x) < ~ < E2~. 

It follows that 

E [1--2~(x, A)I dx -- ]E2n -- E2n-1 ] 
o n = l  

is finite if (1.1) holds. In that  case one can take the limit inside the integral in (3.1) and 

so recover (1.3). 
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Example 3.5. In [16] we showed that if V is short-range, that is, VEH2'I(R), then 

leo I 1-2((x 'A)ldA<cc and we can take the limit in (3.1) inside the integral. This 

recovers Venakides' result [50] with an explicit form for ~ in terms of the Green's function 

(see Theorem 1.1). Similarly, one can treat short-range perturbations W of periodic 

background potentials V (modeling scattering off defects or impurities, described by W, 

in one-dimensional solids) and "cascading" potentials, that is, potentials approaching 

different spatial asymptotes sufficiently fast [16]. 

4. The  t race  formula: Jacobi  case 

Our goal here is the proof of an analog for Theorem 3.1 for Jacobi matrices. It will be a 

special case of the following: 

THEOREM 4.1. Let A be a bounded self-adjoint operator in some complex separable 

Hilbert space Tl with a=infspec(A), /~--supspec(A). Let ~ETI be an arbitrary unit 

vector and let ~(A) be the Zrein spectral shift for the pair (Ao~, A), A ~  :=A+cc(~, .  )~ 

(where the infinite coupling perturbation is discussed in the appendix). Then for any 
E_<<. c~ and E+~>~: 

f+ (~, A~) = E_ + [1-~(A)] dA (4.1) 
J E _  

= �89 +E_)+�89 (4.3) 
J E _  

Proof. (4.1) follows from (4.2) by integrating 1 from E_ to E+ and (4.3) is the 

average of (4.1) and (4.2). Moreover, since ~()0----1 for A~>/~ and ~(~)--0 for )~<~, it 

is easy to see that it suffices to prove the result for E _ - - a  and E+--ft. Thus, we are 

reduced to proving (4.2) for E+=~,  E_--a .  

Let f E C ~ ( R )  with f = x  on [a,~]. Then f (A)=A,  f ( A ~ ) = Q A Q  and with Q= 

1 -  (~,.)~, Tr [ f (A) -  I (A~)]--(~,  A~) (see the appendix). Thus 

f f ( : ,  A~) -- o (-f'()~))~(A) dA § (-f'(A))~(A) dA + (-f/(A))~(A) dA. 

Since ~(A)--0 on (-co,  a), the first integral is zero. Since f ' (A)=l  on [a,/3], the second 

integral is - f f  ((),) dA. Since f~-0 near infinity and ~(A)-I  on (/~, c~), the third integral 

is f (Z)=Z. [] 
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COROLLARY 4.2. Let H be a Jacobi matrix on/2(Z'), that is, for a bounded function 

V on Z~: 

(Hu)(n)= ~ u(m)+Y(n)u(n),  n e Z  ~. (4.4) 
In--ml:l 

For r e Z ' ,  let H D be the operator on L2(Z~\{r}) given by (4.4) with u(r)=0 boundary 

conditions. Let ~(r, )~) be the spectral shift for the pair (H D, H). Then 

f§ V(r) = E_ + [1 -~(r,  )~)] d)~ (4.5) 
JE_ 

/? = E + -  ~(r, A) dA (4.6) 

= �89 (E+ + E _ )  + ! l E+ [1-2~(r, A)] dA (4.7) 
2 d E  - 

for any E_ ~<inf spec(H), E+ ~>sup spec(H). 

Remark. Only when v = 1 does this have an interpretation as a formula using Dirich- 

let problems on the half-line. 

5. Abso lu te ly  cont inuous  s p e c t r u m  

We will also show that the ~(x, A) function for a single fixed x E R  determines the abso- 

lutely continuous spectrum of a one-dimensional Schrhdinger operator or Jacobi matrix. 

We begin with a result that holds for a higher-dimensional Jacobi matrix as well: 

PROPOSITION 5.1. (i) For an arbitrary Jacobi matrix, H, on Z ~, [,Jjczv{)~ERI 

0<~(j, A)<I} is an essential support for the absolutely continuous spectrum of H. 

(ii) For a one-dimensional Schrhdinger operator, H=-d2 /dx  2 + V (with V continu- 

ous and bounded from below), Uxeq{AeR I 0<~(x, A) < 1} is an essential support for the 

absolutely continuous spectrum of H. 

Remark. Recall that every absolutely continuous measure, d#, has the form f (E)  dE. 

S=-{EI f (E)~O} is called an essential support of d#. Any Borel set which differs from S 

by sets of zero Lebesgue measure is also called an essential support of dp. If A is a self- 

adjoint operator on 7-/and ~n an orthonormal basis for 7-/, and d#n the spectral measure 

for the pair, A,~n (i.e., ( ~ , e i s A ~ n ) = f R  eisE d#~(E)), and if dp~ c is the absolutely 

continuous component of d#~ with Sn its essential support, then [J,~ Sn is an essential 

support of the absolutely continuous spectrum for A. 

Proof. (i) Let g(j, z) be the diagonal Green's function (~j, ( A - z ) - l ~ j )  for Imz~0.  

Thus g (j, z) = fR d#j ( E ) ( E -  z)- l .  By general properties of Borel transforms of measures 
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(see, e.g., [28], [48]), for a.e. AER, lim~10g(j, A+ir exists and is non-zero; and Sj, the 
essential support of d#j,~c, is given by 

Sj = {A �9 R I Img( j  , A+i0) • 0}. 

But  if g(j, A+i0)7~0, then Img(j ,  A+i0)T&0 is equivalent to 0<Arg(g( j ,  A+i0))<~r, so, 

up to sets of measure 0, 

Sj = { h e R [  0 < ~(j, A) < 1}. 

Since {hj}jEZ~ are an orthonormal basis for Z ~, the result is proven. 

(ii) Let 7-/-1 be the minus one space in the scale of spaces associated to H (see, e.g., 

[43]). Then, 5~, the delta function supported at x is in 7-/-1 and the diagonal Green's 

function g(x, z) is just (6~, (H-z)-15~). Since {6x}~eq are total in 7-/-1, the argument 

is essentially the same as in (i). [] 

In one dimension though, a single x suffices: 

THEOaEM 5.2. For one-dimensional Schrhdinger operators or Jacobi matrices, re- 
spectively, { ~ E R I 0 < ~ ( x  ,~ )<1}  is an essential support for the absolutely continuous 
measure for any fixed x E R  or Z, respectively. 

Proof. Consider the Schrhdinger case first. Let m~=(x, z) be the Weyl m-functions 

(see, e.g., [48]) for -d2 /dx2+y and let H+,~ be the Dirichlet operators on L2((x, +oo)). 
Then 

1 
g(x,z)= m+(x,z)+m_(x,z) (5.1) 

and H+,x is unitarily equivalent to multiplication by A on L 2 (R; d#x,+), where d#z,+ is 

a limit of the measures (1/7r)Imm+(x,  A+ir as e~0. Thus, up to sets of measure 
zero: 

eal0<r < 1} = { eRlImg(x, +i0) r  

---- {)~ E R I Im m+ (x, A+i0) • 0}U{)~ �9 R lIm m_ (x,)~+i0) ~ 0} 

with Sx,+ the essential support of the a.c. part of d#+,x. Thus, { A � 9  is 

an essential support for the a.c. spectrum of H+,xGH_,x. But H and H+,~|  have 

resolvents differing by a rank one perturbation and so equivalent absolutely continuous 

spectrum by the theory of trace class perturbations [27], [47]. 

The Jacobi case is similar but requires (5.1) to be replaced by 

1 
g(j, z) = [] 

m+ (j, z) + m _  (j, z) + z -  V(j)" 
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These results are of particular interest because of their implications for a special 

kind of semi-continuity of the spectrum. We begin by noting a lemma (that requires a 

preliminary definition). 

Definition. Let {Vn}, V be continuous potentials on R (or Z). We say that V~ 

converges to V locally as n--+co if and only if 

(i) inf(mx)cN• V~(x)>-co (R case) or suP(n,j)eNxZ [Vn(j)] <co (Z case), 

(ii) for each R<co,  supf~l~< R IVn(x)-Y(x)l--+O as n--+co. 

LEMMA 5.3. I f  Yn---+V locally as n--+co and Hn, H are the corresponding Schrh- 

dinger operators (or Jacobi matrices), then ( Hn - z ) -  l -+ ( H -  z ) -1 strongly for I m z # 0  

as n --+ co . 

Proof. Let ~ocC~~ or a finite sequence in 12(Z). Then 

[ ( H n - z ) - I - ( H - z ) - I ] ( H - z ) ~ =  ( H , ~ - z ) - ~ ( V - V n ) ~ - + O  as n -+co .  

But { (H-z )~o}  is a dense set (since H is essentially self-adjoint on C~~ or on finite 

sequences, respectively). [] 

THEOREM 5.4. I f  Yn --+ V locally as n--+ co and ~n (x, )~ ), ~ ( x, ~ ) are the corresponding 

xi functions for fixed x, then ~n ( x, )~ ) d)~ converges to ~(x, )~ ) d)~ weakly in the sense that 

as  co  (5 .2 )  

for any f E L 1 (R; d)~). 

Proof. By a simple density argument (using ]~(x, ~)[~< 1), it suffices to prove this for 

f()~)=(A-z) -2 and all z e C \ R .  But by (A.7'): 

p. d F~(x, z), (A-z)-2~n(x, A) dA -- ~zz 

where Fn(x,  z )= ln  gn(x, z). Since the F 's  are analytic and uniformly bounded, pointwise 

convergence of the F 's  implies convergence of the derivatives dFn/dz .  Thus we need only 

show 

asn- co. 

This follows from Lemma 5.3 (and, in the Schrhdinger case, some elliptic estimates to 

turn convergence of the operators to pointwise convergence of the integral kernels). [] 

Definition. For any H, let ISar I denote the Lebesgue measure of the essential 

support of the absolutely continuous spectrum of H. 
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THEOREM 5.5 (for one-dimensional SchrSdinger operators or Jacobi matrices). 

Suppose Vn--~ V locally as n --* co and each V~ is periodic. Then for any interval (a, b) C R: 

I(a, b)nS~l/> l im  I(a, b)nS~(Hn)l. 

Remark. The periods of V, need not be fixed; indeed, almost-periodic V's are al- 

lowed. 

Proof. By periodicity, ~,(x,A) is 0, �89 1 for a.e. ) ,ER. Let 

An = {A e (a, b) [ ~n(x, A) = 0} and A = {A C (a, b) l ~(x, A) = 0}. 

Then, ~n(x,A)~>�89 on A\An, so for any a,b: 

/A~n( X, ~) d)~ >~ �89 

But by Theorem 5.4, fA~(x,A)dA--~fA~(X,A)dA=O as n--*c~. Thus, �89 so 

Inl ~<limn__.~ IAnl. Similarly, using 1 -~ ,  we get an inequality on 

I{A e (a, b) l r A) = 1}1 < lira I{A e (a, b) l r A) = 1}1. 
n - - - +  o o  

This implies the result. [] 

Example 5.6. Let C~n be a sequence of rationals and (~=limn--,oo c~n. Let Hn be 

the Jacobi matrix with potential Acos(27rc~,~+0) for ~, 0 fixed. Then [2] have shown for 

I)~l~<2, IS~l/>4-21~ l. It follows from the last theorem that ISI~>4-21AI. This provides a 

new proof (and a strengthening) of an important result of Last [33]. 

Example 5.7. Let {am}meN be a sequence with s=~=12mlaml<2. Let Y(n)--  

)-~,~--I am cos(2~rn/2m), a limit periodic potential on Z. Let h be the corresponding 

Jacobi matrix. We claim that 

laac(h)l >~ 2 ( 2 - @  (5.31) 

For let VM(n)=~M=I a,~ cos(27rn/2 m) with hM the associated Jacobi matrix. Then the 
M external edges of the spectrum move in at most by IIYM]lo~<<.~m=l laml. VM-1 has at 

most 2M-l - -1  gaps. They increase in size in going from VM-1 to VM by 21aM I. In ad- 

dition, VM has 2 M-1 new gaps. Thus, a(hM)>/4--211Yllo~--y~Mm=l(2m--1)laml>~4--2S, 
which yields (5.31) on account of Theorem 5.5. Knill-Last [29] have shown how to use our 

Theorem 5.5 to treat more general limit periodic potentials, including Schrhdinger opera- 

tors of the form studied by Chulaevsky [4], and have also treated quasi-periodic potentials 
oc ~ oo 

of the form V(n)=~,~=1 Am cos([2~rc~n+O]m) where they show laacl ~ -4-6  ~m=l miami" 
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spectral and 
scattering 

information for H 

definition of 

the xi function, 
 (x0, 

equation (6.3) and (~) 

the diagonal 
Green's function, 

g(x0, ~) and dg(xo, ~)/dx 

equations (6.1) and (6.2) 

the Weyl functions, 
m+ (x0,)~) and m_ (x0,)0 

the Gel'fand-Levitan equations 

the potential, V(x) ] 

Fig. 1. An inverse spectral philosophy 

6. Inverse  p rob lems  

We want to give an overview of how we believe ~(x,/~) can be an important tool in the 

study of inverse problems and apply the philosophy in a few cases. Roles are played 

by ~(x0, A), the diagonal Green's function g(xo, A), and the Weyl m-functions m• z) 
(corresponding to the Dirichlet boundary condition at x=x0). The relationship is that 

is closest to spectral and scattering information and, under proper circumstances, it 

determines g(xo, )~) and the derivative g'(xo, .~). They determine m• ~), which in turn 

determine Y(x) for a.e: x e R  by the Gel'fand-Levitan method [14], [36]. The scheme 

underlying our philosophy is illustrated in Figure 1. 
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That  m+(y, A) for all A and a single y determine V(x) on (-o0,  y) and (y, cxD) is well 

known [38]. That  g(x, ~) and dg(x, ~)/dx at a single point x determine m+(x, ~) follows 

from the pair of formulae, 

g(x, A) = -[m+ (x, A)+m_(x, A)] -1, 

g'(x,~) = ~n+(x,),)-.~_(x,),) 
m+(x,~)+.~_(x,~)" 

(6.2) follows from (6.1) and the Riccati equations 

~'~ (~:, a) = ~[ .~=(~,  ,~)-  v ( z ) + a ] .  

(6.1) 

(6.2) 

(6.2) is not new; it can be found, for example, in Johnson-Moser [26]. 

Thus, to recover V(x) for all x E R  from ~(x0, A) for a fixed x0 and all A, we only 

need a method to compute g(xo, A) and g'(xo, A) from ~(Xo, A). One can get g in general 

from the following formula which follows from Theorem A.2 in the appendix and the 

proposition below: 

g(x,z)=(EO-Z) -1/2 lim e x p ( f  ~~ ~/ d)~) 
" ~  \JEo A--z ~/+A ' (6.3) 

Eo = inf spec(H). 

The proposition we need is 

PROPOSITION 6.1. Let V be continuous and bounded from below and let g(x, z)= 
G(x, x, z) be the diagonal Green's function for H=-d2/dx2 + V. Then 

l i m  /~l/2g(x,-/~) = 1. (6.4) 
)~--+~ 

Proof. Let p(x, t) be the diagonal heat kernel for H. By the Feynman-Kac formula 

[46], 

p(x,t) = (47rt)-l/2E(exp(-t fo:V(x+ x/~ a(s)) ds) ) ,  

where a is the Brownian bridge. It follows by the dominated convergence theorem that  

(4~rt)l/2p(x,t) --~ 1 as t $ O. (6.5) 

Since 

g(x, -)~) = e-~tp(x, t) dt 

we obtain (6.4). [] 
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Remarks. (i) (6.4) can also be read off of asymptotics of m• found in [1], [11]. 

(ii) (6.5) can be used to prove the following stronger version of (6.3): 

1 ) 
g(x, z) = (Eo-z) -1/2 lim exp ~(x, A) -  ~ e _ ~  dA . 

c~J.O \ J E o  /~--Z 

Thus, the solution of the inverse problem for going from ~(x0," ) at a single x0 to V(x) 
for all x E R  is connected to finding 9'(Xo, z) from ~(x0, A). In absolute generality, we 

are unsure how to proceed with this because we have no general theory for a differential 

equation that ~(x, A) obeys for A in the essential spectrum of H. Indeed, for random V's 

where typically spec(H)=[a ,  co) for some a, ~(x, A)=I  or 0 on R and 

{~ e a l  ~(x,~)= 1} = [~,~), {XeRI~(~,~)=0}=R 

and the x dependence must be very complex. However, one class of potentials does allow 

some progress: 

Definition. We say that V is discretely dominated if for all x E R ,  ~(x, A)=�89 for 

a.e. AEcress (H). 

Examples include reflectionless (soliton) potentials in the short-range case, the pe- 

riodic case, algebro-geometric finite-gap potentials and limiting cases thereof (such as 

solitons relative to finite-gap backgrounds), certain almost-periodic potentials, and po- 

tentials with Y(x)~oc  as [z[--+oc. In this case if E0=inf spec (H) ,  [E0, c~)\spec(g)---- 
N Un=l(an,13n) where N is finite or infinite. For each x, there is at most one eigenvalue 

for HD;x in each (an,/3n); call it IZn(X). If there is no eigenvalue in (a,~, t3n), then ~(x, ),) 

is either 1 on (an,/3n) or 0, and then we set #,~(x) equal to/3n or to an. Thus 

1 { ~, AEspec(H) ,  

~(x, ~) = 0, ~n(~) < ~ < 9n, 

1, an <A <#~(x) ,  

and the inverse formulae at a fixed x say that  

N 2e_tt~.(Z)_e_ta~_e_tl3~ 
V(x) = fi~o Z t , (6.6) 

N 

g(x,z)=(Eo_z)-l/21im[nl~_l{ [z-#"(x)]2  ('/+ a~ (")' +,3.,) / ] 1/2 
~--*~ _ (z-a~)(z-/3n) [7+#,~(x)] 2 j j  . (6.7) 

If ~ [ /3n-a~l<co,  then 

N 

( z -~ ) ( z -~ )  (6.8) 
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(with an absolutely convergent product if N=co) .  

The #'s obey a differential equation essentially that was found by Dubrovin [9] 

in 1975 for the finite-gap periodic case and extended later by McKean-Trubowitz [42], 

Trubowitz [49], Levitan [34], [35], Kotani-Krishna [31], and Craig [5]. The form we 

give is the one in Kotani-Krishna [31]. Previous authors only considered the periodic 

or almost-periodic case, so, in particular, our result is new in the case IV(x)l--*co where 

the regularization (6.6) is needed since ~,~eN I~n--a~l=c~: 

THEOREM 6.2. Let an<#n(Xo)<13n. Then #n is C 1 near Xo and 

~1 , (6.9) 
Og(xo, 

where g is given by (6.7) or (6.8). In (6.9), the • is +1 (or -1)  /f/~n(xo) is an eigen- 

value of H,o;D on (xo, co) (or (--co, Xo)). 

Proof. The number/~,~(x) obeys 

= o .  

It is easy to see that g is strictly monotone; indeed, Og/OA>O on each (an,fin) and so 

by the implicit function theorem,/~n(x) is C 1 and 

d#~ _ Og/Ox 
dx Og/OA 

so (6.9) is equivalent to Og/Ox=~=l if the eigenvalue corresponds to the half-line (x, c~) 

(or (-co,  x)). But the associated eigenvector lies in L2((x0, co)) (or L2((-c~,x0))) if 

and only if m+(x,A) (or m_(x,•))is co at x=xo, A=#n(xo). By (6.2), Og/Ox=~=l if 
m •  [ ]  

The simple example of the unique discretely dominated potential with a(H)= ( -1}  U 

[0, co) (the one-soliton potential) is discussed in [48]. (6.8) and (6.9) become an elemen- 

tary differential equation and V is then given by (6.6). This is further explored in [20] 

and [21]. 

Analogs of ~ in the related inverse cases are also useful. For example, we have shown 

that the ~ function relating to half-line problems on [0, co) with different boundary con- 

ditions at 0 determines the potential uniquely a.e. This result was previously obtained 

independently by Borg [3] and Marchenko [38] in 1952 under the strong additional hy- 

pothesis that the corresponding spectra were purely discrete. Our approach allows us to 

dispense with the discrete spectrum hypothesis and applies to arbitrary spectra. 
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Appendix :  R a n k  o n e  p e r t u r b a t i o n s  a n d  t h e  Kre in  spec t ra l  shift 

In this appendix, we will give a self-contained approach to the Krein spectral shift in a 

slightly more general setting than usual and using more streamlined calculations. The 

lecture notes [48] contain more about this approach. Let A~>0 be a positive self-adjoint 

operator in some complex separable Hilbert space ~ and let 7/k(A) ( - o c < k  < cx)) be the 

usual scale of spaces associated to A [43]. Let ~E7-/_1 (A). 

Then (~ , . )~  defines a form bounded perturbation of A with relative bound zero, so 

for any a E R ,  we can define 

As = A + a ( % .  )~o (A.1) 

as a closed form on 7-/+1 (A) with an associated self-adjoint operator also denoted by As. 

For Im z r  define 

F(z) = (% (A-z ) - a~ ) ,  Fs(z) = (~, (As-z)- l~p) .  (A.2) 

By the second resolvent formula 

( A s - z )  -a = ( A - z )  - 1 - a ( ( A s - 2 ) - l ~ ,  �9 ) ( A - z ) - l ~  (A.3) 

so taking expectations in ~ and solving for Fs, we find 

Fs(z) = F(z) 
l+c~F(z) 

and then applying (A.3) to ~: 

(A.4) 

(As - z ) - l ~  = [l+aF(z)]--1 ( A _ z ) - l ~  (A.5) 

so by (A.3) again, 

og 
( A s - z ) - a  = ( A - z ) - 1  l+aF( z )  ( ( A - 2 ) - I ~ o " ) ( A - z ) - I ~ "  (A.6) 

In particular, 

Tr [(A_z)_ 1 _ ( A s _ z ) _ l ]  _ ol l + a F ( z )  (~' ( A - z ) - 2 ~ )  

= d ln( l+aF(z)) .  
(A.7) 

By (A.6), lims-,r162 ( A s - z )  -1 exists in norm. Since As is a monotone increasing 

sequence of forms we can identify the limit, which we will call AM, explicitly [27], [45]. If 

~7- / ,  then A~r is the self-adjoint operator associated to the densely defined closed form 
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A restricted to {~]E?-/+I (A)I (~, , ) = 0 }  and lim(Aa - z )  -1 =(Am - z )  -1. If ~ E ~ ,  then one 

looks at the self-adjoint operator A ~  on 7-/(A~o)= {~/E 7-/1(9, ~?)= 0} whose quadratic form 

is A restricted to 7-t(A~o). Extend ( A ~ - z )  -1 to all o f / - /by  setting it to 0 on/-/(Aoo) •  

{ c~v I c E C }. Then lima--. ~ (Aa - z ) -  1 = (Aor - z ) -  1 still holds. Convergence properties of 

d#a, the spectral measure for 9~ associated to Aa (i.e., F~(z)=fR(x-z)  -1 d#,~(x)) are 

studied in detail in [19]. 

Taking a to infinity in (A.6) and repeating the proof of (A.7), we get 

d In F(z).  (A.7') Tr [ (A-  z) -~ -(A~o - z )  -~] = dzz 

F(z) is the Borel transform of a measure, so by general principles ([28], [48]), there 

exist boundary values F(,~+i0) for a.e. ,~ER and F(,~+iO) takes any given value - 1 / f l  

on a set of measure zero. Thus we can define 

{(1/~r) Arg(l+c~F()~+i0)), c~ finite, (A.8) 

~a($) = (1/Tr)Arg(F()~+iO)), a = o o ,  (A.8') 

for each h E R  and a.e. )~ER. For a > 0  we have 0KArg(.  )~<Tr (and I m F ( z )  >0 if I m z > 0 )  

and thus 

0 ,<~(A)  ~< 1 

in this case. 

Since Arg(F()t+iO))=Imln(F()~+iO)), an elementary contour integral argument 

([48]) shows that (A.7) becomes 

Tr[(A_ z)_ 1 _ (Aa_z)_ l ]  = / E  :~ ~a (,k) dA 
( ) , - z )  2 '  

(A.9) is a special case of 

Ea = inf spec(A~). (A.9) 

T r [ f ( A ) -  f(A~)] = - f'(A)~a ()~) d)~ (A.10) 
ct 

for the functions fz()~)=()~-z) -1. By analyticity in z, one sees immediately that  

[ (A-  z) -'~ - (Aa - z) -'~] is trace class and (A. 10) holds for fz,,~ (A) = ()~- z) -n.  A straight- 

forward limiting argument lets one prove ([48]) that if f is C 2 on R with 

(1+ [x[)2 ~ j  e L2 ((0, oc)) for j = 1,2, 

then [f(A)-f(Aa)] is trace class and (A.10) holds. In particular, 

/? Tr(e -At - e  -tA~) = t e - t ) ' ~  ()~) d,~. (A.11) 
c~ 

For the ease where a = e e  and ~pE~, f(Aa) is interpreted as the operator on ~ ( A ~ )  

extended to 7-/by setting it equal to zero on ~ ( A ~ )  • This follows from the approxi- 

mation argument since that  is the meaning of ( A ~ - z )  -1. In particular, 
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THEOREM A.1. Let A be a bounded operator and ~o a unit vector in ?-l. Let Q= 

I - (%.)qo.  Then A - Q A Q  is finite rank and 

/ ~ ( A - Q A Q )  = - I ' ( a ) ~ ( a )  d)~, 
o o  

where ~(,~)=(1/~r)Arg(~, (A- )~- i0 ) - I~ )  and f is any function in C~  with f ( x )=x  

for z~[-IIAIl~, IIAII~I. 

One cannot recover F(z) from (~(A) without some additional information. For 

by (A.7'), ( ~  determines dlnF(z)/dz.  There is then a constant needed to get F by 

integration. However, asymptotics of F at -o0 are often enough to recover F from ~ .  

This is what is needed in w For generalizations, see [48]. 

THEOREM A.2. Let A>.O. Suppose (-z)l/2F(z)--*l as z--*-ec along the real axis. 

Then 

F ( z ) = ( - z )  -1/2 lim e x p [ f  ~176176189 ~ d~] D 

Proof. Let F(~ -1/2. Then 

1 f0 ~ d)~ d ln = ~ ( z - ~ ) ~  F(~ 

so by (A.7'): 

hence integrating, 

By hypothesis, 

d (F(z) 
~z ~ F(-~(z) ] = fo ~ dA, 

C ~ ~ o J A ) - !  In F(z) F(-',/) _ I " j 2 
F<~ l n F - ~ - ~ )  Jo ( ~ _ ~ ) ( , y + z ) d ) , .  

lim In F ( - ~ )  =0  
~ - ~  F(0) (--y) 

and by dominated convergence for any fixed z, 

oo 1 
,. f ~ ( ~ ) - ~  um - - - -  dA=O, Jo 

proving the theorem. [] 

As an example of the abstract theory, fix V, a continuous function on R which is 

bounded from below, and x0ER. Let A=-d2 /dx2+y .  Let ~: Q(A)--+C by O(f)=f(xo).  
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By a Sobolev estimate and using 7-/1 (A)CTll ( -d2/dx2) ,  (~ is a functional in ~ - 1 ,  so we 

write ~( f )=(~ ,  f )  with ~(x)=~(X-Xo). The form domain of A ~  is thus feT"ll(A) with 

f(xo)=O; thus A ~  is exactly the operator Hxo;D with a Dirichlet boundary condition at 

x0 that  we discuss in the body of the paper. 
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