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1. I n t r o d u c t i o n  

Let Tg denote the Teichmiiller space comprising compact marked Pdemann surfaces of 

genus g. Let DETn--*Tg be the determinant (of cohomology) line bundle on Tg arising 

from the nth tensor power of the relative cotangent bundle on the universal family Cg 
over Tg. The bundle DETo is called the Hodge line bundle. The bundle DETn is 

equipped with a Hermitian structure which is obtained from the construction of Quillen 

metrics on determinant bundles using the Poincar~ metric on the relative tangent bundle 

of c~, [q]. 
These natural line bundles over Tg carry liftings of the standaxd action of the map- 

ping class group, MCg, on Tg. We shall think of them as MCg-equivariant line bundles, 

and the isomorphisms we talk about will be MCg-equivariant isomorphisms. By applying 

the Grothendieck-Riemann-Roch theorem, Mumford [Mu] had shown that DETn is a 

certain fixed (genus-independent) tensor power of the Hodge bundle. More precisely, 

DET,~ = DETo ~(6n2-6n+l) ( i . i )  

this isomorphism of equivariant line bundles being ambiguous only up to multiplication 
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by a non-zero scalar. (Any choice of such an isomorphism will be called a Mumford 

isomorphism in what follows.) 

There is a remarkable connection, discovered by Belavin and Knizhnik [BK], be- 

tween the Mumford isomorphism above for the case n=2  (i.e., that DET2 is the 13th 

tensor power of Hodge) and the existence of the Polyakov string measure on the moduli 

space Adg. (See the discussion after Theorem 5.5 for more details.) This suggests the 

question of finding a genus-independent formulation of the Mumford isomorphisms over 

some "universal" parameter space of Riemann surfaces (of varying topology). 

In this paper we combine a Grothendieck-Riemann-Roch lemma (Lemma 2.9) with a 

new concept of C*| bundles (w to construct a universal version of the determinant 

bundles and Mumford's isomorphism. Our objects exist over a universal base space 

Too=To~(X), which is the infinite directed union of the complex manifolds that are 

the Teichmiiller spaces of higher genus surfaces that are unbranched coverings of any 

(pointed) reference surface X. The bundles and the relating isomorphisms are equivariant 

with respect to the natural action of the universal commensurability group C M ~ - -  

which is defined (up to isomorphism) as the group of isotopy classes of unbranched self 

correspondences of the surface X arising from pairs of non-isotopic pointed covering maps 

X':=:$X (see below and in w 

In more detail, our universal objects are obtained by taking the direct limits using 

the following category 8: for each integer g~>2, there is one object in 8, an oriented closed 

pointed surface Xg of genus g, and one morphism X~---~Xg for each based isotopy class 

of finite unbranched pointed covering map. For each morphism of S (say of degree d) 

we have an induced holomorphic injection of Teichmiiller spaces arising from pullback of 

complex structure: 

~r(~): ~ - ~ .  (1.2) 

D~T| ~,- The GRR lemma provides a natural isomorphism of the line bundle ~ ~,g on lg with 

the pullback line bundle T(~r)*DET~ 2. We may view this isomorphism, equivalently, as 

a degree d homomorphism covering the injection q-(Tr) between the principal C* bundles 

associated to DET,~,g and DETn,~, respectively. Each commutative triangle in S yields 

a commutative triangular prism whose top face is the following triangle of total spaces 

of principal C* bundles: 

DET 12 --n,g �9 DET| n,~ 

DET | 
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and whose bottom face is the commuting triangle of base spaces for these bundles: 

J (1.3) 

Moreover, the canonical mappings above relating these DETn bundles over the various 

Teichmiiller spaces preserve the Quillen Hermitian structure of these bundles in the sense 

that unit circles are carried to unit circles. 

We explain in brief the commensurability Teichmfiller space T~ and the large map- 

ping class group CM~ acting thereon. For each object X in S, consider the directed set 

{a} of all morphisms in S with range X. Then we form 

T~ (X) := dir lim Tg(~), (1.4) 

where the limit is taken over {c~}, and g(c~) is the genus for the domain of morphism c~. 

Each morphism Xg,--~X 9 induces a holomorphic bijection of the corresponding direct 

limits, and we denote any of these isomorphic "ind-spaces" (inductive limit of finite- 

dimensional complex spaces---see [Sh]) by T~-- the  universal commensurability Teich- 

miiller space. (Compare w and Example 4 on p. 547 of [Su].) Notice that a pair of mor- 

phisms X ' ~ X  determines an automorphism of T~; we call the group of automorphisms 

of Too obtained in this way the commensurability modular group CMoo. 
] - ) ~ T  | We now take the direct limit of the C* principal bundles associated to ___~,g 

over Tg to obtain a new object--a C*| bundle over T~--denoted DET(n, Q). As sets 

the total space with action of the group C*| is defined by the direct limit construc- 

tion. Continuity and complex analyticity for maps into these sets are defined by the 

corresponding properties for factorings through the strata of the direct system (w 

There axe the natural isomorphisms of Mumford, as stated in (1.1), at the finite- 

dimensional stratum levels. By our construction these isomorphisms are rigidified to be 

natural over the category S. Therefore we have natural Mumford isomorphisms between 

the following C*| bundles over the universal commensurability TeichmiiUer space T~: 

DET(n,Q) and DET(0, Q) | (1.5) 

We also show that the natural Quillen metrics of the DET bundles fit together to define 

a natural analogue of Hermitian structure on these C*@Q bundles; in fact, for all our 

canonical mappings in the direct system the unit circles axe preserved. Note Theorem 5.5. 

Indeed, the existence of the canonical relating morphism between determinant bun- 

dles (fixed n) in the fixed covering r:X~--~Xg situation was first conjectured and de- 

duced by us utilizing the differential geometry of these Quillen metrics. Recall that the 
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Teichmtiller spaces Tg and T~ carry natural symplectic forms (defined using the Poincar@ 

metrics on the Pdemann surfaces)--the Weil-Petersson K/ihler forms--which are in fact 

the curvature forms of the natural Quillen metrics of these DET bundles ([Wo], [ZT], 

[BGS]). If the covering Ir is unbranched of degree d, a direct calculation shows that this 

natural WP form on T~ (appropriately renormalized by the degree) pulls back to the WP 

form of Tg by 7"(7r) (the embedding of Teichm/iller spaces induced by 7r). One expects 

therefore that if one raises the DETn bundle on Tg by the tensor power d, then it extends 

over the larger Teichmiiller space T~ as the DETn bundle thereon. This intuition is, of 

course, what is fundamentally behind our direct limit constructions. Since it turns out 

to be technically somewhat difficult to actually prove that the relevant bundles are iso- 

morphic using this differential geometric method, we have separated that aspect of our 

work into a different article [BN]. 

Can objects on Too that are equivariant by the commensurability modular group 

CMoo be viewed as objects on the quotient Too/CMoo? This quotient is problematical 

and interesting, so we work with the equivariant statement. 

We end the Introduction by mentioning some problems. The universal commensura- 

bility Teichm/iller space, Too, is made up from embeddings 7"(r) that are isometric with 

respect to the natural Teichmiiller metrics, so it carries a natural Teichmtiller metric. 

Our theorems give us genus independent determinant line bundles DET(n, Q), Quillen 

metrics and Mumford isomorphisms over Too, all compatible with each other and the 

commensurability group CMoo. Are the above structures uniformly continuous for this 
metric? Then they would pass to the completion T~ of Too for the Teichmtiller metric. 

One knows that Too is a separable complex Banach manifold which is the Teichm/iller 

space of complex structures on the universal solenoidal surface Hoo=li_mX, where .~ 

ranges, as above, over all finite covering surfaces of X. (See [Su], [NS] for the Teichm/iller 

theory of H~.)  We would conjecture that this continuity is true and that the C*| 

bundles DET(n, Q), Quillen metrics and Mumford isomorphisms can be defined over 

T(Hoo)=Too directly by looking at compact solenoidal Riemann surfaces themselves. 

Now we may consider square integrable holomorphic forms on the leaves of H ~  (which 

are uniformly distributed copies of the hyperbolic plane in Hoo) regarded as modules 

over the C*-algebra of H~  with chosen transversal. The measure of this transversal 

would become a real parameter extending the genus above. One expects that A. Connes' 

version of Grothendieck-Riemann-Roch would replace Deligne's functorial version which 

we are using here. 

Finally one would hope that the Polyakov measure (w on Teichmtiller space, when 

viewed as a metric on the canonical bundle, would also make sense at infinity in the direct 

limit because this measure can be constructed by applying the 13th power Mumford 
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isomorphism ((1.1) for n=2 )  to the L 2 inner product on the Hodge line bundle. That  

issue remains open. 

Acknowledgements. We would like to express our gratitude to several mathemati-  

clans for their interest and discussions. In particular, we thank M.S. Narasimhan and 

E. Looijenga for helpful discussions in early stages of this work. Lanrent Moret-Bailly 

deserves a very special place in our acknowledgements. In fact, he brought to our at- 

tention the Delight pairing version of the Grothendieck-Riemann-Roch theorem that  we 

use crucially here, and showed us Lemma 2.9, after seeing an earlier (less strong version) 

of the main theorem based on topology and the curvature calculations mentioned above. 

2. A l e m m a  on  d e t e r m i n a n t  b u n d l e s  

Let X be a compact Riemann surface, equivalently, an irreducible smooth projective 

curve over C. Let L be a holomorphic line bundle on X. The determinant of L is then de- 

fined to be the 1-dimensional complex vector space (A top H ~ (X, L)) | (A top H 1 (X, L)*), 

and will be denoted by det(L). Take a Riemannian metric g on X compatible with the 

conformal structure of X. Fix a Hermitian metric h on L. Using g and h, a Hermitian 

structure can be constructed on ~ti(X, L), the space of / - forms on X with values in L. 

Moreover the vector space H 1 (X, L) is isomorphic, in a natural way, with the space of har- 

monic 1-forms with values in L. Consequently the vector spaces H ~ (X, L) and H 1 (X, L) 

are equipped with Hermitian structures which in turn induce a Hermitian structure on 

de t (L)- - th is  metric on det(L) is usually called the L 2 metric. Let A:=O*O be the Lapla- 

cian acting on the space of smooth sections of L. Let {Ai}i~>l be the set of non-zero 

eigenvalues of A; let ~ denote the analytic cbntinuation of the function s~-*)--] i 1 / ~ .  The 

Quillen metric on det(L) is defined to be the Hermitian structure on det(L) obtained by 

multiplying the L 2 metric with exp(~'(0)), [Q]. 

To bet ter  suit our purposes, we will modify the above (usual) definition of the Quillen 

metric by a certain factor. Consider the real number a(X) appearing in Th@or~me 11.4 

of [D]. This number a(X) depends only on the genus of X. The statement in Remark 11.5 

of [D]--to the effect that  there is a constant c such that  a(X)=c.x(X), where x (X)  is 

the Euler characteristic of X - - h a s  been established in [GS]. (The constant c is related 

to the derivative at ( - 1 )  of the zeta function for the trivial I-Iermitian line bundle on 

C P  1 (4.1.7 of [GS]).) Let HQ(L; g, h) denote the Quillen metric on det(L) defined above. 

Henceforth, by Quillen metric on det(L) we will mean the I-Iermitian metric 

exp(~a(X))HQ(L; g, h). (2.1) 
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Next we will describe briefly some key properties of the determinant line and the 

Quillen metric. 

Let r :  2d--*S be a family of compact Riemann surfaces parametrized by a base S. We 

can work with either holomorphic (Kodaira-Spencer) families over a complex-analytic 

variety S, or with algebraic families over complex algebraic varieties (or, more generally, 

over a scheme) S. In the algebraic category one means that  zr is a proper smooth 

morphism of relative dimension one with geometrically connected fibers. In the analytic 

category, r is a holomorphic submersion again with compact and connected fibers. Take 

a Hermitian line bundle L s ~ X  with Hermitian metric hs. Fix a Hermitian metric gs 

on the relative tangent bundle Tx/s .  

For any point sES,  the above construction gives a Hermitian line det(Ls) (the 

Hermitian structure is given by the Quillen metric). The basic fact is that  these lines fit 

together to give a line bundle on S, [KM], which is called the determinant bundle of Ls, 

and is denoted by det(Ls) .  Moreover the function on the total  space of det (Ls)  given by 

the norm with respect to the Quillen metric on each fiber is a C ~162 function, and hence 

it induces a Hermitian metric on det (Ls) ,  [Q]. This bundle will be denoted by det(Ls) .  

We shall make clear in Remark 2.13 below that  this "determinant of cohomology" line 

bundle is also an algebraic or analytic bundle---according to the category within which 

we work. 

The determinant bundle de t (Ls)  is functorial with respect to base change. We 

describe what this means. For a morphism 7: S'--* S consider the bundle, p~ L s--* S' • s 2d, 

on the fiber product, where P2: S ~ • is the projection onto the second factor. The 
. _ _  r  . Hermitian structure hs pulls back to a Hermitian structure on Ls, . -P2Ls,  and, similarly, 

the metric gs induces a Hermitian structure on the relative tangent bundle of S' X s2d. 

"Functorial with respect to base change" now means that  in the above situation there is 

a canonical isometric isomorphism 

~s',s: det(Ls,)  ~ 7* det (Ls)  

such that  if 

S" ~')S' ~ ) S  

are two morphisms then the following diagram is commutative: 

det(Ls,,) ~s,,,s, > 7 '*(det(Ls,))  

(7~ det(/~s) ~a (7~ det(Ls) 

(2.2) 
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The determinant of cohomology construction det(Ls) produces a bundle over the 

parameter space S induced by the bundle over the total space X; now, the Grothendieck- 

Riemann-Roch (GRR) theorem gives a canonical isomorphism of det(Ls) with a combi- 

nation of certain bundles obtained (on S) from the direct images of the bundle Ls and 

the relative tangent bundle Tx/s.  In order to relate canonically the determinant bundle 

obtained from a given family 2d--,S (fibers of genus g, say) with the determinant arising 

from a covering family X (having fibers of some higher genus ~), we shall utilize the GRR 

theorem in a formulation due to Deligne, [D, Theorem 9.9 (iii)]. 

In fact, Deligne introduces a "bilinear pairing" that associates a line bundle, denoted 

by (Ls, Msl, over S from any pair of line bundles Ls and Ms over the total space of the 

fibration X-*S.  If Ls and Ms carry Hermitian metrics then a canonically determined 

Hermitian structure gets induced on the Deligne pairing bundle (Ls, Msl as well. Denot- 

ing by s the given line bundle over X', the GRR theorem in Deligne's formulation 

reads: 

det (l:) | -- (T~r , T~/s)| (•, s174 | (2.3) 

Here T~/s denotes the relative cotangent bundle over X', and the equality asserts that 

there is a canonical isomorphism, functorial with respect to base change, between the 

bundles on the two sides. Furthermore, Th~or~me 11.4 of [D] says that the canonical 

identification in (2.3) is actually an isometry with the QuiUen metric on the left side and 

the Deligne pairing metrics on the right. (The constant exp(a(X)) in the statement of 

Th~or~me 11.4 of [D] has been absorbed in the definition (2.1).) We proceed to explain 

the Deligne pairing and the metric thereon in brief; details are to be found in w167 1.4 

and 1.5 of [D]. 

Let L and M be two line bundles on a compact Riemann surface X. For a pair of 

meromorphic sections 1 and m of L and M, respectively, with the divisor of l being dis- 

joint from the divisor of m, let C(l, m) be the 1-dimensional vector space with the symbol 

(l, m / as the generator. For two meromorphic functions f and g on X such that div(f) 

is disjoint from div(m) and div(g) is disjoint from div(/), the following identifications of 

complex lines are to be made: 

(fl, m) = f(div(m))(l, m), 

(l, gin) = g(div(l))(l, m). (2.4) 

The Weil reciprocity law says that for any two meromorphic functions fl  and f2 on X 

with disjoint divisors, f l(div(f2))=f2(div(fl)),  [GH, p. 242]. So we have 

(fl, gm) = f (div(gm) ).g(div(/) )(l, m) = g(div( fl) ). f (div(m))(l, m). 
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From the above equality it follows that  the identifications in (2.4) produce a complex 

1-dimensional vector space, denoted by (L, M), from the padr of line bundles L and M. 

If L and M are both equipped with Hermitian metrics then the Hermitian metric on 

C(1, m) defined by 

1 
Ix 0cg(log ItlII. log Hmll)+log ]1/]1 (div(m))+log log ][ (l, m)H := ~ /  [[ml] (div(l)) (2.5) 

is compatible with the relations in (2.4)--hence it gives a Hermitian structure on (L, M),  

see [D, 1.5.1]. 

Consider now a family of Riemann surfaces 2(~S; let Ls and Ms  be two line bundles 

on 2(, equipped with Hermitian structures. Over an open subset UcS, let 1v, mv be 

two meromorphic sections of Ls  and Ms, respectively, with finite supports over U such 

that  the support of Iv is disjoint from the support of mg. (Support of a section is the 

divisor of the section.) For another open set V and two such sections 1y and my, the 

relations in (2.4) give a function 

Cv, v �9 Obnv. 

Using the Weil reciprocity law it can be shown that  {Cu, v} forms a 1-cocycle on S. In 

other words, we get a line bundle on S, which we will denote by (Ls, Ms). The Hermitian 

structure on (L, M),  described earlier, makes (Ls, Ms) into a Hermitian bundle. 

Given a meromorphic section m of Ms,  let m | be the meromorphic section of M~ 

obtained by taking the n th  tensor power of m. Note that  div(m| The 

map (/, m | (/, m) | can be checked to be compatible with the relations (2.4), and 

hence it induces an isomorphism 

(Ls, M~) --* (Ls, MS) n. (2.6) 

From the definition (2.5) we see that  (2.6) is an isometry for the metric on M~ induced 

by the metric on Ms. 
We shall now see how the critical formula (2.3) follows from the general GRR theorem 

of [D]. Indeed, let s denote any rank n vector bundle on the total space of the family X; 

we reproduce below the statement of Theorem 9.9 (iii) of [D]: 

det(s  | = (T~ls,T~/s)|163 An(s174174174163 -12. (GRR-D) 

Now, from the definition of Ix/s C2 in [D, 9.7.2] it follows that  for a line bundle s the 

bundle Ix/s C 2 (s is the trivial bundle on S, and the metric on it is the constant metric, 

[D, Theorem 10.2 (i)]. From Th4or~me 11.4 of [D] we conclude that  that  the canonical 

identification in the statement above is actually an isometric identification. (The factor 
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exp(a(X)) in Th~or~me 11.4 of [D] is taken care of by the definition (2.1).) Thus we have 

obtained the isometric isomorphism stated in (2.3). 

With this background behind us we can formulate our main lemma. Let X and 2 be 

two families of Riemann surfaces over S (say with fibers of genus g and ~, respectively), 

and p: 2 ~ 2 r  be an ~tale (i.e. unramified) covering of degree d, commuting with the 

In other words, the map p fits into the following commutative projections onto S. 

diagram: 
2 P > X  

S 

The situation implies that each fiber of the family 2 is a degree d=(~- l ) / ( g -1 )  holo- 

morphie covering over the corresponding fiber of the family X. Fix also a Hermitian 

metric g on Tx/s.  Since p is ~tale, p*Tx/s=T2/s ,  and hence g induces a Hermitian 

metric p*g on T2/s.  Let ,~---~S be a third family of Pdemann surfaces which is again an 

~tale cover of 2 and fits into the following commutative diagram: 

X ~ q " 2  P ' X  

S 

We want to prove the following: 

LEMMA 2.9. (i) Let s be a Itermitian gne bundle on X and let p * s  be the 

pullback of s equipped with the pullback metric. Then there is a canonical isometric 

isomorphism 
det (p* (s174 _ det (s174 

Of bundles on S. This isomorphism is functorial with respect to base change. 

(ii) Denoting the isometric isomorphism obtained in (i) by F(p), and similarly defin- 

ing F(q) and F(poq), the following diagram commutes: 

det((poq)*(s174 r(q)> det(p* (s174 

lr(poq) lr(p)| 

det(s174 id > det(s174 

where F(p) @deg(q) is the isomorphism on appropriate bundles, obtained by taking the 

deg(q)-th tensor product of the isomorphism F(p). 

(The terminology "functorial with respect to base change" was explained earlier. 

We will use "canonical" to mean functorial with respect to base change.) 
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Proof of Lemma 2.9. The idea of the proof is to relate---utilizing GRR in form 

(2.3)--the determinant bundles, which are difficult to understand, with the more trac- 

table "Deligne pairings". 

Let A4 be any line bundle on 2d equipped with a Hermitian structure. First we want 

to show that  there is a canonical isometric isomorphism 

(p*s .A4> ~ (L:, N(.M)), (2.10) 

where N(A/I)--.X is the norm of Js We recall the definition of N(A/[). The direct 

image R~ is locally free on X, and the bundle R~ admits a natural reduc- 

tion of structure group to the monomial group GcGL(deg(p), C). (The group G is the 

semi-direct product of permutation group, Pdeg(p), with the invertible diagonal matrices, 

defined using the permutation action of Pdeg(p)-) Mapping gEG to the permanent of g 

(on G it is simply the product of all non-zero entries) we get a homomorphism to C*, 

which is denoted by #. Using this homomorphism # we have a holomorphic line bundle 

on X, associated to R~ which is defined to be N(Ad). Clearly the fiber of N(~4) 

over a point x E X' is the tensor product 

N(Ad)~ = ~)  My.  (2.11) 
yep-1 (x) 

The Hermitian metric on JVi gives a reduction of the structure group of R~ (A/I) to the 

maximal compact subgroup Gu cG. Since #(Gu)=U(1), we have a Hermitian metric on 

N(J~) .  Note that  the Hermitian metric on N(Ad) is such that  the above equality (2.11) 

is actually an isometry. 

For a meromorphic section m of M, the above identification of fibers gives a mero- 

morphic section of N(M) which is denoted by N(m). Given sections l and m of s and 

AA, respectively, with finite support over UcS  (the support of p*l and m being assumed 

disjoint) we map (p*l,m) to (l,N(m)). It can be checked that  this map is compatible 

with the relations in (2.4). Hence we get a homomorphism from the bundle (p*s A/l) to 

(s this is our candidate for (2.10). To check that  it is an isometry, we evaluate 

the (logarithms of) norms of the sections <p*l,m> and </,  N ( m ) >  given by definition 

(2.5). It is easy enough to see from (2.5) that  the norms of these two sections coincide. 

Therefore for a Hermitian line bundle •t on X, the isomorphism (2.10) implies that  

(p*~C,p*/:' / -- (JC, N(p*JC')). 

But N(p*s163 'd, where d:=deg(p), and moreover the Hermitian metric on N(p*fJ) 
coincides with that  of L td . Hence from the isometric isomorphism obtained in (2.6) we 
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get the following identification of Hermitian line bundles (the isomorphism so created 

being again functorial with respect to change of base space): 

(p*L,p*s = (s s (2.12) 

To prove part (i) of the lemma we apply the GRR isomorphism (2.3) to both s and 

p*s and compare the Deligne pairing bundles appearing on the right hand sides using 

the result (2.12). To simplify notation set w=T~e/s. By applying (2.3) to p*s and noting 

that since the map p is 6tale, the relative tangent bundle T2/s=P*Tx/s , we deduce that 

det(p*s | is canonically isometrically isomorphic to (p*s p* (s174174 p'w). 
Taking s to be s in (2.12) we have (s163174163163174 Substituting 

02 in place on s and ffi in (2.12) we have (02,02)d=(p*02,p*w). Therefore the bundle 

(p.s p. (s | @ (p.02, p'w) is isometrically isomorphic to (s s )64 | (02, 02) d. 

But now applying (2.3) to s itself we see that this last bundle is isometrically isomorphic 

to det(s | That completes the proof. Notice that since all isomorphisms used in the 

above proof were canonical (functorial with base change), the final isomorphism asserted 

in part (i) is also canonical in the same sense. 

In order to prove part (ii) of the lemma, we first note that the isometric isomorphisms 

in (2.10) and (2.12) actually fit into the following commutative diagram: 

((;oq)*L, M) , (p*s N(M)q) 

(s N(M))  (s N(M))  

where s is a Hermitian line bundle on X, and A/I is a Hermitian line bundle on k", 

N(.M)--.2d is the norm of M for the covering poq, and N(.A,4)q---~X. is the norm of .At[ 

for the covering q. Indeed, the commutativity of the above diagram is straightforward to 

deduce from the fact that the following two bundles on 2d: namely, N(A4) and the norm 

of N(A,4)q, are isometrically isomorphic. The isomorphism can be defined, for example, 

using (2.11). Now using (2.3), and repeatedly using the above commutative diagram, we 

obtain part (ii). [] 

We will have occasion to use this general lemma in concrete situations. 

Remark 2.13. In [KM] and in [D] the basic context is the algebraic families category, 

and the determinant of cohomology bundle as well as the Deligne pairing bundles are 

constructed in this category. However, since the constructions of the determinant bundles 

and of the Deligne pairing are canonical and local, they work equally well for holomorphic 

families of Riemann surfaces also. The point is that if X ~ S is a holomorphic family of 
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Riemann surfaces parametrized by a complex manifold S, and •--.A' is a holomorphic line 

bundle, then det(JE)--*S is a holomorphic line bundle which is functorial with respect to 

holomorphic base changes. And if/ :  and .h4 are two holomorphic line bundles on A' then 

(/:, ~4) is a holomorphic line bundle on S--again functorial with respect to holomorphic 

base changes. In fact, an analytic construction of the determinant bundle and the Quillen 

metric is to be found in [BGS]. 

Since the constructions of the Quillen metric and the metric on the Deligne pairing, 

(using (2.5)), also hold true for holomorphic families, consequently, Lemma 2.9 holds in 

the holomorphic category as well as in the algebraic category. 

Remark 2.14. The statement that det(p*(Z:))| | as line bundles 

actually holds for curves over any field. The statement about isometry makes sense only 

when we have Riemann surfaces. 

3. D e t e r m i n a n t  b u n d l e s  o v e r  T e i c h m f i l l e r  s p a c e s  

Our aim in this section is to apply Lemma 2.9 to the universal family of marked Rie- 

mann surfaces of genus g over the Teichmiiller space Tg. The situation of Lemma 2.9 is 

precipitated by choosing any finite covering space over a topological surface of genus g. 

Let 7r: )~--*X be an unramified covering map between two compact connected ori- 

ented surfaces )( and X of genera 9 and g, respectively. Assume that g~>2. The degree 

of the covering 7r, which will play an important role, is the ratio of the respective Euler 

characteristics; namely, deg(zr) - - (9-1) / (g-I ) .  

We recall the basic deformation spaces of complex (conformal) structures on smooth 

closed oriented surfaces--the Teichmfiller spaces. Let Conf(X) (or Conf(.~)) denote the 

space of all smooth conformal structures on X (or .~). Define Diff+(X) (or Diff+()~)) 

to be the group of all orientation preserving diffeomorphisms of X (or)~), and denote 

by Diff+(X) (or Diff + ()()) the subgroup of those that are homotopic to the identity. 

The group Diff + (X) acts naturally on Conf(X) by pullback of conformal structure. 

We define 

T ( X )  = Tg := Conf(X)/Diff+ (X) (3.1) 

to be the Teichmfiller space of genus g (marked) Pdemann surfaces. Similarly obtain T~ := 

Conf()r +()( ) - - the  Teichmiiller space for genus .~. The Teichmfiller space Tg carries 

naturally the structure of a (3g-3)-dimensional complex manifold which is embeddable 

as a contractible domain of holomorphy in the affine space C 3g-3. The mapping class 

group of the genus g surface, namely the discrete group MCg :=Diff + ( X ) / D i f f  + (X), acts 
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properly discontinuously on Tg by holomorphic automorphisms, the quotient being the 

moduli space A4g. For these basic facts see, for example, INcl. 

The Teichmiiller spaces are fine moduli spaces. In fact, the total space X • T 9 admits 

a natural complex structure such that the projection to the second factor 

(3.2) 

gives the universal Riemann surface over T 9. This means that for any 7/Efg, the sub- 

manifold X • ~ is a complex submanifold of Ca, and the complex structure on X induced 

by this embedding is represented by 7. As is well-known ([Na, Chapter 5]), the family 

Cg--.Tg is the universal object in the category of holomorphic families of genus g marked 

Riemann surfaces. 

Given a complex structure on X, using 7r we may pull back this to a complex 

structure on X. This gives an injective map Conf(X)-*Conf(.~). Given an element 

fEDiff+(X), from the homotopy lifting property, there is a unique diffeomorphism ]E 

Diff + (X) such that ] is a lift of f .  Mapping f to ] defines an injective homomorphism 

of Diff + (X) into Diff0 + ()(). We therefore obtain an injection 

T(Ir): ~ -~ ~. (3.3) 

It is known that this map T(Tr) is a proper holomorphic embedding between these finite- 

dimensional complex manifolds; T(~r) respects the quasiconformal-distortion (--Teich- 

mfiller) metrics. From the definitions it is evident that this embedding between the 

Teichmiiller spaces depends only on the (unbased) isotopy class of the covering 7r. 

Remark 3.4. In fact, we see that T is thus a contravariant functor from the category 

of closed oriented topological surfaces, morphisms being covering maps, to the category 

of finite-dimensional complex manifolds and holomorphic embeddings. We shall have 

more to say about this in w 

Over each genus Teichmfiller space we have a sequence of natural determinant bun- 

dles arising from the powers of the relative (co-)tangent bundles along the fibers of the 

universal curve. Indeed, let ~g--~Cg be the relative cotangent bundle for the projection 

Cg in (3.2). The determinant line bundle over T 9 arising from its nth tensor power is 

fundamental, and we shall denote it by 

DETn,g :-- det(Wg) --* T~, n e Z. (3.5) 

Applying Serre duality shows that there is a canonical isomorphism DET~,g=DETI-n,g, 

for all n. DET0,g =DETI,g is called the Hodge line bundle over ~ .  
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These holomorphic line bundles carry natural QuiUen Hermitian structure arising 
from the Poincar6 metrics on the fibers of the universal curve. Recall that any Rie- 

mann surface Y of genus g ~> 2 admits a unique conformal Pdemannian metric of constant 

curvature -1,  called the Poincar6 metric of Y. This metric depends smoothly on the 

conformal structure (because of the uniformization theorem with moduli parameters), 

and hence, for a family of Riemann surfaces of genus at least two, the Poincar4 metric 

induces a Hermitian metric on the relative tangent/cotangent bundle. We thus obtain 

Quillen metrics on each DETn,g. The metric functorially assigned by the Quillen metric 

on any tensor power of DET,~,g will also be referred to as the Quillen metric on that 

tensor power. 

Observe that by the naturality of the above constructions it follows that the action 

of MCg on Tg has a natural lifting as unitary automorphisms of these DET bundles. 

We invoke back into play the unramified finite covering It: )~--~X. Let 

T(1r)*C9 ---~ T 9 (3.6) 

be the pull-back to Tg of the universal family C~-~T~ using the map T(Tr). Given the 

topological covering space ~r we therefore obtain the following 6tale covering map between 

families of Pdemann surfaces parametrized by Tg: 

~r x id: T(~r)*C~ --*C a := X x Tg. 

This is clearly a holomorphic map. In fact, we have the following commutative diagram: 

T(Tr)*C~ ~'• ) Cg 

% 

exactly as in the general situation (2.7) above Lemma 2.9. 

Now let 

id x 5r(~r): T(~-)*C o --, e 0 

denote the tautological lift of the map T(Tr). From the definition of the Poincar4 metric it 

is clear that for an unramified covering of Pdemann surfaces, Y'--+Y, the Poincar6 metric 

on Y is the pull-back of the Poinear6 metric on Y. If co~ is the relative cotangent bundle on 

C~ then this compatibility between Poinear6 metrics implies that the two Hermitian line 

bundles on T(~r)*Co, namely, (~r x id)*wg and (id x T(r))*c@, are canonically isometric. 

But since the determinant bundle of a pullback family is the pullback of the deter- 

minant bundle, the holomorphic Hermitian bundle T(~r)*(det(w~))--~Tg is canonically 
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isometrically isomorphic to the determinant bundle of (id • T(Ir))*w~--~T(zO*C ~. Using 

this and simply applying Lellmaa 2.9 to the commutative diagram (3.7) we obtain the 

following theorem. (All the Quillen metrics axe with respect to the Poincax~ metric on 

fibers.) 

THEOREM 3.8a. The two holomorphic Hermitian line bundles det(w~) 12"deg(n) and 

T(Tr)* (det(wg)) 12 on Tg are canonically isometrically isomorphic for every integer n. In 

other words, there is a canonical isometrical line bundle morphism F(~r) lifting T(r )  and 

making the following diagram commute: 

DET| r(r) DET| 
- - - - n , g  > n , ~  

Remark 3.9. The bundle morphism F(Ir) has been obtained from Riemalm-Roch 

isomorphisms--as evinced by the proof of Lemma 2.9. We shall therefore, in the sequel, 

refer to these canonical mappings as GRR morphisms. Tensor powers of the GRR mor- 

phisms will also be referred to as GRR morphisms. The functoriality of these morphisms 

is explained below in Theorem 3.8b. 

�9 Let -~ 0 ))~ ~ >X be two unramified coverings between closed surfaces of respective 

genera ~, ~ and g. By applying the Teichmiiller functor we have the corresponding 

commuting triangle of embeddings between the Teichmiiller spaces: 

Tg TOO :, T~ 

(3.10) 

Here the two slanting embeddings axe, of course, T(ro0) and T(Q). Applying Lemma 

2.9 (ii) we have 

THEOREM 3.8b. The following triangle of GRR line bundle morphisms commutes: 

DET~,~'Heg(r~ , DET~,~ "deg(e) 

~ /  (3.11) 

DET | n ~  
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All three maps in the diagram are obtained by applications of Theorem 3.8a, and raising 

to the appropriate tensor powers. The triangle above sits over the triangle of Teichmiiller 

spaces (3.10), and the entire triangular prism is a commutative diagram. 

Remark 3.12. The nagging factor of 12 in Theorems 3.8a and 3.8b can be dealt 

with as follows. The Teichmiiller space being a contractible Stein domain, any two 

line bundles on ~ are isomorphic. Choose an isomorphism between ~: det(w~) deg(~)-, 

T(Tr)* (det(w~)). Hence 

~| det(w~)12.deg(Ir) _..+ T(Tr)* (det(wg)) 12 

is an isomorphism. Let 

T: det (w~) 12'deg(Tr) ---+ T(~r)* (det(w~)) 12 

be the isomorphism given by Theorem 3.8a. So f:----To((~| -1 is a nowhere zero func- 

tion on Tg. Since T 9 is simply connected, there is a function h on Tg such that h 12 =f .  

Any two such choices of h will differ by a 12th root of unity. Consider the homomor- 

phism ~:=h.~. Clearly "~ |  It is easy to see that for two different choices of the 

isomorphism 5, the two ~'s differ by multiplication with a 12th root of unity. Moreover, 

if we consider a similar diagram to that in Theorem 3.8b with the factor 12 removed and 

all the homomorphisms being replaced by the corresponding analogues of ~, then the 

diagram commutes up to multiplication with a 12th root of unity. 

Remark 3.13. Recall from above that the action of MCg in Tg lifts to the total space 

of det(w~) as bundle automorphisms preserving the Quillen metric. There is no action, 

a priori, of MCg on the total space of the the pullback bundle T(Tr)*(det(w~)). However, 

from Theorem 3.8a the bundle T(Tr)*(det(wg)) 12 gets an action of MCg which preserves 

the pulled back QniUen metric. Theorem 3.8b ensures the identity between the MCg 

actions obtained by different pullbacks. 

In [BN] we will consider two special classes of coverings, namely characteristic covers 

and cyclic covers. In such situations the map between Teichmiiller spaces, induced by 

the covering, actually descends to a map between moduli spaces (possibly with level 

structure). As mentioned in the Introduction, in that context we were able to give 

a proof of the existence of the GtLR morphism of Theorem 3.8a using Weil-Petersson 

geometry and topology. 

4. P o w e r  law (pr inc ipa l )  b u n d l e  m o r p h i s m s  over  Te ichmfi l l er  spaces  

We desire to obtain certain canonical geometric objects over the inductive limits of the 

finite-dimensional Teichmfiller spaces by coherently fitting together the determinant line 
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bundles DETn,g thereon; the limit is taken as g increases by running through a universal 

tower of covering maps. To this end it is necessary to find canonical mappings relating 

DET~,g to DETn,~ where genus ~ covers genus g. 

Now, given any complex line bundle A--~T over any base T, there is a certain canon- 

ical mapping of A to any positive integral (dth) tensor power of itself, given by 

~dd: ,~ _....> ,,~| (4.1) 

where Wd on any fiber of A is the map z~-*z d. Observe that Wd maps )~ minus its zero 

section to ~| minus its zero section by a map which is of degree d on the {D* fibers. We 

record the following properties of these maps: 

(4.1a) The map Wd is defined independent of any choices of basis, and it is evidently 

compatible with base change. (Namely, if we pull back both A and ,~d over some base 

T1--*T, then the connecting map Wd Cover T) also pulls back to the corresponding Wd 

over T1.) 

(4.1b) The map Wd is a homomorphism of the corresponding C* principal bundles. 

When T is a complex manifold, and A is a line bundle in that category, then the map Wd 

is a holomorphic morphism between the total spaces of the source and target bundles. 

(4.1c) If A is equipped with a Hermitian fiber metric, and its tensor powers are 

assigned the corresponding Hermitian structures, the map ~d carries the unit circles to 

unit circles. (The choice of a unit circle amongst the natural family of zero-centered 

circles in any complex line is clearly equivalent to specifying a Hermitian norm. In this 

section we will think of Hermitian structure on a line bundle as the choice of a smoothly 

varying family of unit circles in the fibers.) 

Thus, given a topological covering ~r: X ~ X ,  as in the situation of Theorem 3.8a, 

we may define a canonical map 

~(Tr) :~-~ r(Tr)OWdeg(lr): DETn~,~ 2 --* DEW | (4.2) 

where F(~r) is the canonical GRR line bundle morphism found in Theorem 3.8a. Translat- 

ing Theorems 3.8a and 3.8b in terms of these holomorphic maps ~(~r) of positive integral 

fiber degree, we get: 

THEOREM 4.3a. For each integer n, there is a canonical isometrical holomorphic 

bundle morphism f~(~r) lifting T(~r) and making the following diagram commute: 

DET@12 f~(~)~ DET| --n,g n,~ 

1 1 
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By "isometrical" we mean that the unit circles of the QuiUen Hermitian structures are 

preserved by the ft( lr). 

THEOREM 4.3b. Let ~ and ~ denote two composable covering spaces between sur- 

faces, as in the situation of Theorem 3.8b. The following triangle of non-linear isomet- 

rical holomorphic bundle morphisms commutes: 

DET | , DET ~12 
--n,g n,~ 

DET | n,~ 

The horizontal map is f~(~r), and the two slanting maps are (reading from left to right) 

f~(~roo) and ~(Q). The triangle above sits over the triangle of Teichmiiller spaces (3.10), 

and the entire triangular prism is a commutative diagram. 

The canonical and functorial nature of these connecting maps, f~(~r), will now allow 

us to produce direct systems of line/principal bundles over direct systems of Teichmtiller 

spaces. 

5. Commensurab i l i t y  Teichmiiller space and  its a u t o m o r p h i s m  group 

We construct a category S of certain topological objects and morphisms: the objects, 

Ob(3), are a set of compact oriented topological surfaces each equipped with a base 

point (*), there being exactly one surface of each genus g~>0; let the object of genus g be 

denoted by Xg. The morphisms are based isotopy classes of pointed covering mappings 

,) (xg, ,), 

there being one arrow for each such isotopy class. Note that the monomorphism of 

fundamental groups induced by (any representative of the based isotopy class) 7r, is 

unambiguously defined. 

Fix a genus g and let X = X g .  Observe that all the morphisms with the fixed tar- 

get Xg: 

Mg = {a �9 Mor(8): Range(a) =Xg}  

constitute a directed set under the partial ordering given by factorisation of covering 

maps. Thus if a and/3 are two morphisms from the above set, then/~>-a if and only 
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if the image of the monomorphism ~rl(j3) is contained within the image of ~rl(a); that 

happens if and only if there is a commuting triangle of morphisms of $ as follows: 

Xg(~) - ~ > Xg(~) 

--... f 
x ,  

Here Xg(~) denotes the domain surface for a (similarly Xg(Z)), and the two slanting 

arrows are (reading from left to right), j3 and a. It is important to note that the factoring 

morphism t? is uniquely determined because we are working with base points. The directed 

property of Mg follows by a simple fiber-product argument. (Remark: Notice that the 

object of genus 1 in S only has morphisms to itself--so that this object together with all 

its morphisms (to and from) form a subcategory.) 

Recall from w that each morphism of S induces a proper, holomorphic, Teichmiiller- 

metric preserving embedding between the corresponding finite-dimensional Teichmiiller 

spaces. We can thus create the natural direct system of TeichmiiUer spaces over the above 

directed set Mg, by associating to each c~EM 9 the Teichm/iller space T(Xg(a)), and for 

each ~ - a  the corresponding holomorphic embedding T(t~) (with ~ as in the diagram 

above). Consequently, we may form the direct limit TeichmiiUer space over X=Xg:  

Too (Xg) --- T~ (X) := ind lim T(Xg(,~)), (5.1) 

the inductive limit being taken over all a in the directed set Mg. This is our commensu- 

rability Teichmiiller space. 

Remark. Over the same directed set Mg we may also define a natural inverse system 

of surfaces, by associating to aEMg a certain copy, S~ of the pointed surface Xg(~). (Fix 

a universal covering over X=Xg .  Sa can be taken to be the universal covering quotiented 

by the action of the subgroup Im(~rl(a))C~h(X, *).) If g~>2, then the inverse limit of 

this system is the universal solenoidal surface Hoo whose Teichmfiller theory was studied 

in [Su], [NS]. The completion of Too(X) in the Teichmiiller metric is T(Hoo). 

A remarkable but obvious fact about this construction is that every morphism 

lr: Y--*X of S induces a natural Teichmiiller metric preserving homeomorphism, 

Too(~r): Too(Y) -* Too(X). (5.2) 

Too (It) is invertible simply because the morphisms of $ with target Y are cofinal with 

those having target X. If we consider objects and maps to be continuous/holomorphic on 
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the inductive limit spaces when they are continuons/holomorphic when restricted to the 

finite-dimensional strata, then it is clear that T~(r) is a biholomorphic identification. 

(Note that q-~ acts covariantly, since it is defined by a morphism of direct systems, 

although the Teichmfiller functor T of (3.3) was contravariant.) 

It follows that each Too(X) (and its completion T(Hoo)) is equipped with a large 

automorphism group--one from each (undirected) cycle of morphisms of S starting from 

X and returning to X. By repeatedly using pull-back diagrams (i.e., by choosing the 

appropriate connected component of the fiber product of covering maps), it is easy to 

see that the automorphism arising from any (many-arrows) cycle can be obtained simply 

from a two-arrow cycle ) ~ X .  Namely, whenever we have (the isotopy class of) a "self- 

correspondence" of X given by two non-isotopic coverings, say a and/3, 

s  (5.3) 

we can create an automorphism of Too (X) defined as the composition: Too (~)o (Too (a)) - l .  

Therefore each of these automorphisms--arising from any arbitrarily complicated cycle 

of coverings (starting and ending at X)-- is  obtained as one of these simple "two-arrow" 

compositions. These automorphisms form a group that we shall call the commensurability 
modular group, CMOO(X), acting on the universal commensurability Teichmfiller space 

~'oo(X). 

We make some further remarks regarding this large new mapping class group. Con- 

sider the abstract graph (1-complex), F(S), obtained from the category S by looking at 

the objects as vertices and the (undirected) arrows as edges. It is clear from the definition 

above that the fundamental group of this graph, viz. 1rl(F(S),X), is acting on Too(X) 
as these automorphisms. In fact, we may fill in all the "commuting triangles"--i.e., fill 

in the 2-cells in this abstract graph whenever two morphisms (edges) compose to give a 

third edge; the thereby-reduced fundamental group of this 2-complex produces on Too (X) 

the action of CMOO(X). 

It is interesting to observe that this new modular group CMOO(X) of automor- 

phisms on Too(X) corresponds exactly to "virtual automorphisms" of the fundamental 

group ~rl(X), generalizing the classical situation where the usual automorphism group 

Aut(~rl (X)) appears as the action via modular automorphisms on T(X). 
Indeed, given any group G, one may define its associated group of "virtual" auto- 

morphisms; as opposed to usual automorphisms, for virtual automorphisms we demand 

that they be defined only on some finite index subgroup of G. To be precise, consider 

isomorphisms Q: H---~K where H and K are subgroups of finite index in G. Two such 

isomorphisms (say, QI and Q2) are considered equivalent if there is a finite index subgroup 

(sitting in the intersection of the two domain groups) on which they coincide. The equiv- 

alence class [Q]--which is like the germ of the isomorphism ~--is called a virtual auto- 
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morphism of G; clearly the virtual automorphisms of G constitute a group, Vaut(G), 

under the obvious law of composition (namely, compose after passing to deeper finite 

index subgroups, if necessary). 

We shall apply this concept to the fundamental group of a surface of genus g (g>l) .  

It is clear from definition that the group Vaut(~rl(Xg)) is genus independent, as is to be 

expected in our constructions. 

In fact, Vaut presents us a neat way of formalizing the "two-arrow cycles" which we 

introduced to represent elements of CMoo. Letting G=rcl (X) (recall that X is already 

equipped with a base point), the two-arrow diagram (5.3) above corresponds to the 

following well-defined virtual automorphism of G: 

[Q] = [~,o O~,1: O~, (71" 1 (.X)) --~ ~ ,  (71" 1 (.X))]. 

Here a .  denotes the monomorphism of the fundamental group 1r1(-~) into ~rl(X)=G, 

and similarly ~.. We let Vaut+(~rl(X)) denote the subgroup of Vaut arising from 

pairs of orientation preserving coverings. The final upshot is that CMOO(X) is iso- 

morphic to Vaut + (lrl (X)) and there is a natural surjective homomorphism 71"1 (F(S) ,  X )  

Vaut + (7c1(X)) whose kernel is obtained by filling in all commuting triangles in F(,~). 

Acknowledgement. The concept of Vaut has arisen in group theory papers--for ex- 

ample [Ma], [MT]. We are grateful to Chris Odden for pointing out these references. 

Remark 5.4. For the genus one object X1 in S, we know that the Teichmiiller spaces 

for all unramified coverings are each a copy of the upper half-plane H. The maps T(~r) are 

MSbius identifications of copies of the half-plane with itself, and we easily see that the pair 

(T~(X1),CMo~(Xi)) is identifiable as (H, PGL(2, Q)). In fact, GL(2, Q)~Vaut (Z~Z) ,  

and Vaut + is precisely the subgroup of index 2 therein, as expected. Notice that the 

action has dense orbits in the genus one case. 

On the other hand, if XEOb(S)  is of any genus g~>2, then we get an infinite- 

dimensional "ind-space" as Too (X) with the action of CMoo (X) on it as described. Since 

the tower of coverings over X and Y (both of genus higher than 1) eventually become 

cofinal, it is clear that for any choice of genus higher than one we get one isomorphism 

class of pairs (Too, CMoo). (It is not known whether the action has dense orbits in this 

situation; this matter is related to some old queries on coverings of Riemann surfaces.) 

We work now over the direct system of the higher genus example (Too, CMoo) and 

obtain the main theorem. We will first explain some preliminary material on direct limits 

of holomorphic line bundles over a direct system of complex manifolds. 

Given a direct system Ta of complex manifolds, and line bundles ~a over these, 

suppose that there are power law maps as the ~(~r) above, between the corresponding 

principal C* bundles covering the mappings in the direct system of base manifolds. 
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Let N denote the directed set of positive integers ordered by divisibility. For each 

hEN take a copy of C*, call it (C*,~) and form the direct system {(C*,~)}, where 

(C*,A)--+(C*,A') is given by the power law map: z--*z d when A'=d~. These maps axe 

homomorphisms of groups, and the direct limit over N is canonically isomorphic to the 

group C*|174 Q. (The isomorphism maps the equivalence class of the element 

(z, A) E (C*, A) to z @ 1/A E C*| Q.) The direct limit object obtained from the power 

law connecting maps between the principal bundles associated to the DET~ 2 system 

over the Teichmiiller spaces will give us a C*| principal bundle over the universal 

commensurability Teichmfiller space T~, at least at the level of sets. The topological 

and holomorphic structure on these sets is defined for maps into these objects which 

factor through the direct system by imposing these properties on the factorizations. 

Let us consider the direct limit bundles obtained from a family of such bundles 

~a, and from the family obtained by raising each ~ to the tensor power d. These are 

two C*| bundles over the direct limit of the bases which may be thought to have 

the same total spaces (as sets) but the C*| action on the second one is obtained 

by precomposing the original action by the automorphism of C*| obtained from the 

homomorphism z~-.z d on C*. 

THEOREM 5.5. Fix any integer n. Starting from any base surface XEOb(8) ,  we 

obtain a direct system of principal C* bundles f~n(Y)'-DET| . -  ,~,g(y) over the Teichmiiller 

spaces T (Y )  with holomorphic homomorphisms f~(~r) (see Theorem 4.3) between the total 

spaces; here Y-~  X is an arbitrary morphism of 8 with target X .  

By passing to the direct limit, one therefore obtains over the universal commensura- 

bility Teichmiiller space, T~(X) ,  a principal C*@Q bundle: 

s (X) -- indlim s 

Since the maps f~(Ir) preserved the Quillen unit circles, the limit object also inherits such 

a Quillen "Hermitian" structure. 

The construction is functorial with respect to change of the base X in the obvious 

sense that the directed systems and their limits are compatible with the biholomorphic 

identifications Too(It) of equation (5.2). In particular, the commensurability modular 

group action CM~(X)  on Too(X) has a natural lifting to f .n,~(X)--acting by unitary 

automorphisms. 

Finally, the Mumford isomorphisms persist: 

s (X) = s (X) ~(6n2-6n+l). 

Namely, if we change the action of C*| on the "Hodge" bundle f~o,~ by the "raising to 

the (6n2-6n+ l)-th power" automorphism of C*| then the principal C*| bundles 

are canonically isomorphic. 
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Remark 5.6. In other words, the Mumford isomorphism in the above theorem means 

that L:n,~ and L:0,cr are equivariantly isomorphic relative to the automorphism of C*| 

induced by the homomorphism of C* that raises to the power exhibited. Also, we could 

have used the Quillen Hermitian structure to reduce the structure group from C* to U(1), 

and thus obtain direct systems of U(1) bundles over the Teichmiiller spaces. Passing to 

the direct limit would then produce U(1) |  '2iny circle" bundles over T~, which can 

be tested for maps into these objects as above. 

Rational line bundles on ind-spaces. A line bundle on the inductive limit of an 

inductive system of varieties or spaces, is, by definition ([Sh]), a collection of line bundles 

on each stratum (i.e., each member of the inductive system of spaces) together with 

compatible line bundle (linear on fibers) morphisms. Such a direct system of line bundles 

determines an element of the inverse limit of the Picard groups of the stratifying spaces. 

See [KNR], [Sh]. (Recall: For any complex space T, Pie(T):= the group (under | of 

isomorphism classes of line bundles on T. In the case of the Teichmiiller spaces, we refer 

to the modular-group invariant bundles as constituting the relevant Picard group--see 

[BN] .) 

Now, utilising the GRR morphisms F(r)  themselves (without involving the power 

law maps), we know from w that the "dth root" of the bundle DETn,~ fits together 

with the bundle DET~,g ( d = ( ~ - 1 ) / ( g - 1 ) ) .  A "rational" line bundle over the inductive 

limit is defined to be an element of the inverse limit of the PicQ=Pic|  Therefore 

we may also state a result about the existence of canonical elements of the inverse limit, 

li+_m Pic(Tg~)Q, by our construction. Indeed, in the notation of w by using the morphisms 

F(lr)| between DETn,g and DETn,~| to create a directed system, 

we obtain canonical elements representing the Hodge and higher DETn bundles, with 

respective Quillen metrics: 

Am E li+__m Pic(Tg~)Q, m = 0 , 1 , 2 , . . . .  (5.7) 

The pullback (i.e., restriction) of Am to each of the stratifying Teichmiiller spaces Tg~ 

is (hi) -1 times the corresponding DET,~ bundle (with (hi) -1 times its Quillen metric) 

over Tg~. Here ni is the degree of the covering of the surface of genus gi over the base 

surface. As rational Hermitian line bundles the Mumford isomorphisms persist: 

A@(6m2--6m-{-1) (5.8) Am = "'0 

as desired. This statement is different from that of the theorem. For further details see 

[BN]. 

Polyakov measure on fl4g and our constructions. In his study of bosonic string the- 

ory, Polyakov constructed a measure on the moduli space fl4g of curves of genus g (/>2). 
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Details can be found, for example, in [A], [Ne]. Subsequently, Belavin and Knizhnik, 

[BK], showed that  the Polyakov measure has the following elegant mathematical  descrip- 

tion. First note that  a Hermitian metric on the canonical bundle of a complex space 

gives a measure on that  space. Fixing a volume form (up to scale) on a space there- 

fore amounts to fixing a fiber metric (up to scale) on the canonical line bundle, K,  over 

that  space. But the Hodge bundle A has its natural Hodge metric (arising from the L 2 

pairing of holomorphic 1-forms on Riemann surfaces). Therefore we may transport  the 

corresponding metric on ~13 to K by Mumford's isomorphism (as we know the choice 

of this isomorphism is unique up to scalar)-- thereby obtaining a volume form on A~tg. 

[BK] showed that  this is none other than the Polyakov volume. Therefore, the presence 

of Mumford isomorphisms over the moduli space of genus g Riemann surfaces describes 

the Polyakov measure structure thereon. 

Above we have succeeded in fitting together the Hodge and higher DET bundles 

over the ind-space Tcr together with the relating Mumford isomorphisms. We thus have 

from our results a structure on To~ that  suggests a genus-independent, universal, version 

of the Polyakov structure. 

We remark that  since the genus is considered the perturbation parameter in the 

above formulation of the standard perturbative bosonic Polyakov string theory, our work 

can be considered as a contribution towards a non-perturbative formulation of that  theory. 
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