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1. An introduction

We will study equations
r
> film)al =0 (L1)
i=1

in the variable m€Z. Here the f; are nonzero polynomials with complex coefficients of
respective degrees k; (1<i<r) and we put

ki+..+k-+r=4q. (1.2)
We suppose that the o; are nonzero elements of a number field K with
[K:Q]=d (1.3)
and that moreover for each pair ¢, j with 1<i<j<r,
a;/o; is not a root of unity. ’ (1.4)

We prove

THEOREM 1.1. Assume that we have (1.2), (1.3), (1.4). Then equation (1.1) has
not more than
e 92" (1.5)

solutions meZ.

Results on equations (1.1) have been derived recently in [14] and shortly afterwards
in [12]. However in both papers the bound for the number of solutions is only “semi-
uniform”, as it depends upon ¢, d and moreover upon w, which is defined as the number
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of distinct prime ideal factors occurring in the decomposition of the fractional ideals (a;)
in K. The main feature in (1.5) is that now we avoid this parameter w and thus we have
a completely uniform upper bound for the number of solutions.

As is well known, Theorem 1.1 has consequences for linear recurrence sequences:
Let n be a natural number and consider the recurrence relation

Um+n = Vn—1Um+n—1TVn—2Um+n-2F... +VoUm. (1.6)

Here we assume that v, _1,..., g are algebraic numbers and that vy#0. We call n the
order of relation (1.6). We assume moreover that the initial values uo, ..., Un—1 of our
sequence have |ug|+...+|tun—1|>0. Let
-
G(z)=z"—un_1z"_1—...—uo=H(z—ai)9" 1.7
i=1
be the companion polynomial of the recurrence (1.6) with distinct zeros ag,...,on of
respective multiplicities g; (1<i<r). It is well known that if (um)mez is a linear recur-
rence sequence, then there is a minimal n and there are complex numbers v,_1, ...,
with 1970 such that the sequence satisfies (1.6), but no such relation of order <n. Then
we have a unique representation

r
um=Zgi(m)a£” (meZ) (1.8)
i=1
where the g; are polynomials of degree o;—1 (1<i<r). (The actual shape of the poly-
nomials g; will depend also upon the initial values ug, ..., u,—1. But this will be of no
importance in the sequel.)

For a complex number a, the a-multiplicity U(a) of the sequence (tUm)mez is defined
as the number of indices m such that u,,=a. Moreover the multiplicity of (u,) is defined
as

U =sup U(a). (1.9)
a

The Theorem of Skolem—Mahler-Lech says the following: If (4., )mez s a recurrence
sequence with infinite 0-multiplicity, then those m for which u, =0 form a finite union
of arithmetic progr'essions plus possibly a finite set. A particular consequence of this
theorem is: If a recurrence (1.6) with companion polynomial (1.7) generates a sequence
(um) with infinite 0-multiplicity, then there exist indices i#j such that the quotient o;/a;
is a root of unity.

We therefore call the recurrence sequence {um, }mez nondegenerate if for each pair
1,7 with 1<é<j<r the ratio a;/a; of the roots of the companion polynomial (1.7) is not
a root of unity, i.e. if (1.4) is satisfied.
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For nondegenerate binary sequences (i.e. sequences of order n=2) of rational integers
M. Ward in the thirties conjectured that their multiplicity is bounded by 5. Kubota [6]
succeeded in showing that in fact the multiplicity of such sequences does not exceed 4.
Beukers [1] even proved that with five exceptions (which he gives explicitly) nondegen-
erate binary sequences of rational integers have multiplicity at most 3.

In the binary case, if the terms of the sequences {u., } belong to a number field K of
degree d, Kubota [7] showed that the multiplicity is bounded by a constant that depends
only upon d. Beukers and Tijdeman [3] here established the bound

U < 100 max{d, 300}. (1.10)

For ternary sequences of rational integers Beukers (2] proved that the 0-multiplicity
does not exceed 6.

As for general nondegenerate sequences of order n we first remark that there is one
very simple case: If the sequence {u,,} has a representation (1.8) where the o; as well as
the coefficients of the polynomials g; are real, an application of Rolle’s Theorem implies
that {u.,} has multiplicity U< 2n (cf. Pélya—-Szegé {11, Aufgabe 75, p. 48]).

Now assume that the roots of the companion polynomial are contained in a number
field K of degree d. Then by the results of [12] and [14], the multiplicity of a sequence
of order n has U<c¢(n,d,w), where w denotes the number of prime ideal factors in the
decomposition of the fractional ideals («;) in K. On the other hand, the natural extension
of Ward’s conjecture says that o nondegenerate sequence of rational numbers of order n
has multiplicity bounded by a constant that depends only upon n. Notice that the result
of [12] and {14] in that case gives the semi-uniform bound c(n,w).

Our Theorem 1.1 now implies the conjecture in general. We get:

THEOREM 1.2. Let (um)mez be a nondegenerate linear recurrence sequence of or-
der n. Assume that the characteristic roots oy of the recurrence relation (as defined in
(1.7)) are contained in a number field K of degree d. Then the zero-multiplicity of the
sequence (Upm)mez Satisfies

U(0) < s 92", (1.11)

As for the multiplicity we have

THEOREM 1.3. Let the hypotheses be the same as in Theorem 1.2. Assume moreover
that the sequence (Um )mez i not periodic. Then its multiplicity satisfies

U < @Bt g2 ! (1.12)

For rational sequences these results give:
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COROLLARY 1.4. Let (un,) be a nondegenerate linear recurrence sequence of rational
numbers of order n. Then (up) has zero-multiplicity

229n!

U0)<2 (1.13)

Moreover we have

COROLLARY 1.5. Let (u,) be as in Corollary 1.4. Assume moreover that it is
nonperiodic. Then its multiplicity satisfies

929(n+1)!

U<2 (1.14)

We remark that Corollaries 1.4 and 1.5 remain true for sequences (u,,), whose re-
currence relation (1.6) has rational coefficients vp,—1, ..., 1.

The method of proof we apply, basically is the method developed in [14]. In [14],
the main ingredient is my p-adic generalization [13] of W. M. Schmidt’s Subspace Theo-
rem [16] in its quantitative version. In [13], using an integral basis, the Subspace Theorem
for number fields was reduced to the case, where the variables are taken in Z. If we ap-
ply such a reduction process to equation (1.1), we loose the feature that essentially the
variables we have to consider are powers of the ;.

In this paper, implicitly we give a direct proof of the Subspace Theorem for number
fields that avoids this reduction.

The second difference in our current approach is that in [14], we apply a very general
version of the Subspace Theorem, where for each absolute value we have linear forms that
in principle have no link with each other. However in dealing with (1.1) the situation
is much more special, and here we derive a version of the Subspace Theorem with very
particular linear forms that is more suitable in the context of (1.1) (Lemma 6.1). The
third difference, and this is the crucial part as far as the uniformity of our results is
concerned, is that our method now takes care of the fact that in equation (1.1) the
different absolute values we have to consider are connected with each other in an intrinsic
way (§14). We derive a version of the Subspace Theorem that allows it to exploit this
connection in a much better way than in the previous version. It is at this point that we
get rid of the parameter w.

2. Main Lemma

In this section we give the Main Lemma from which the theorems may be derived. We
remark that in the Main Lemma we have a hypothesis that is considerably weaker than
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(1.4). We may assume that r>1, as otherwise (1.1) trivially has not more than k;
solutions meZ. Now for r >2 we assume that

1,a2/a,...,a, /a1 generate a number field K with [K:Q]=d (2.1)
and that
there exists a pair 4,7 with 1<¢ < j <r such that o;/a; is not a root of unity. (2.2)

In (1.1) we may suppose moreover, that for r=2 we have k; +ko >0, since otherwise
we have an equation of type
aal* =bad. (2.3)

But by (2.2), (2.3) has at most one solution m. For if (2.3) had two solutions mj#mg

m1—msa m1—mse

then we would get of =0y and a1 /az would be a root of unity which contra-

dicts (2.2). Thus in the sequel we may suppose that
r=2 and ki+k2>0 or r>3. (2.4)

We may suppose without loss of generality that the polynomials f; in (1.1) have all
coefficients different from zero. In fact we may reach such a situation by shifting the
variable m if necessary and considering an equation

> fim)ar=0 (2:5)
=1

with ff(m)=a[™ fi(m+my). Therefore writing f;(X)=ag;+0a1;X+...+a,: X", equa-
tion (1.1) becomes

a01a§”+...+ak11mk1a§"+...+a0ra;"+...+akr,mk'a;" =0. (2.6)
Put
g=ki+..+k.+r and k=k+...+k-. (27)
We read (2.6) as an equation
121 +...+aqTg =0 (2.8)

with nonzero complex coefficients a; and we are interested in solutions
m) _ (,.(m) m)\ __ (T ki .m m kr .m
x(™) = (x} ,...,a:,(] N=(of,....,m"af, ..., a",...,mb ™).

Notice that our assumption (2.4) implies that ¢>3.
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MAIN LEMMA 2.1. Suppose that (2.1), (2.2) ond (2.4) are satisfied. Let T be the
(g—1)-dimensional linear subspace of C? defined by (2.8). Then for any finite subset M
of the set of solutions m of equation (1.1), there exist proper subspaces 11, ..., Ty, of T
with

t, < g-d%922" (2.9)

and with the following property. There is a subset My of M of cardinality
M| > 3 M| (2.10)

such that the points x(™) with me M, lie in the union Uf}__l T..

This lemma seems to be weak, but it suffices to deduce Theorem 1.1.

We proceed by induction on r and k. The cases r=1 and r=2, k=0 are already
settled. So assume that either r=2 and k>0 or that »>3. The induction hypothesis says
that Theorem 1.1 is true for parameters r’, k' such that either v’ <r or r=7r' and %' <k.
Now let M be any finite subset of the set of solutions of (1.1). By the Main Lemma, at
least one third of the elements me M satisfy one out of ¢; relations, each of the shape

T
Z hz(j)(m)az(m) (1<j<t) (2.11)

i=1

where the hgj ) are polynomials with deg hz(-j ) <deg f;. However, since the Main Lemma
gives proper subspaces of T, and since we had normalized such that all coeflicients in
(2.6) (and hence also in (2.8)) are nonzero, we may suppose without loss of generality
that

deg h{) < deg f. for each j (1<j<t1). (2.12)

But (2.12) implies that either h?)=0. Then (2.11) actually is a nontrivial equation

3" P (m)ap
=1

with ' <r.
Or hY );‘éO. Then equation (2.11) is a relation with 7'=r but with k¥’ <k.
In either case, the induction hypothesis says that each relation (2.11) has not more

than
d6(q_1)2 2228(q—1)!

solutions m.
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Allowing a factor ¢, for the number of relations (2.11), we see that
%!M| <M<ty .d6(q~1)22228(q—1)!

and therefore
|M| < d87 22" (2.13)

As (2.13) is true for any finite subset of the set of solutions of (1.1), Theorem 1.1 follows.

Theorem 1.2 is a simple consequence of Theorem 1.1. The parameter g in Theo-
rem 1.1, in view of (1.7), (1.8) now becomes g1 +...+o,=n and thus the assertion follows
at once from (1.5).

As for the proof of Theorem 1.3, by Theorem 1.2 it suffices to consider equations
Uy, =a with a#0.

Let us first treat the case r=1. Then in view of (1.8) we ask for solutions m of an
equation

gim)a™=a (2.14)

where g is a polynomial of degree n—1. Applying Rolle’s Theorem to the function

9(x)g(x)(aa)® —aa

of the real variable z, we see that for n>>2, (2.14) has not more than 2n—1 solutions m.
There remains the case n=1. Then « is not a root of unity, as we suppose that our
sequence is not periodic. Since however for n=1 the polynomial g is constant, (2.14)
cannot have more than 1 solution m. Thus for r=1 we have U(a)<2n—1.

Next suppose that r>1. Since (u,,) is nongenerate, we may suppose without loss of
generality that o, is not a root of unity. By (1.8), the equation u,,=a may be written
as

gi(m)a +...4+g-(m)a —a-1™ =0. (2.15)

The characteristic roots o, and 1 in (2.15) guarantee that we may apply the Main Lemma.
The subspaces we get may be chosen such that their defining equations do not contain
the term a-1™. So they will be of the shape

Z 9P (m)a" =0 (1<j<t) (2.16)

(

7

with polynomials g’ ) having deg gzJ )<deg g; and not all identically zero. The number
of solutions of (2.16) may be estimated with Theorem 1.2. So, similarly as in the proof
of Theorem 1.1, we get for any finite subset M of the set of solutions m of (2.15) the
estimate

2 28n!
M| M| <ty -d® 22
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In the context of (2.15) we have

927(n+1)!

t1 < (n+1)dé™+12

So we obtain
2228('n+1)!

IM' < dti(n+1)2
and Theorem 1.3 follows.

For the proof of Corollaries 1.4 and 1.5, it suffices to remark that a sequence of ratio-
nal numbers u,, satisfies a recurrence relation (1.6) with rational coefficients. Therefore
the roots aj, ..., a, of the companion polynomial (1.7) in that case generate a number
field K of degree [K:Q]<n!. Corollaries 1.4 and 1.5 follow at once from the assertions
of Theorems 1.2 and 1.3 respectively with d replaced by n!.

In the next section we will further reduce our assertions, to arrive at a formulation
that is more suitable for a direct application of the Subspace Theorem.

3. Introducing determinants

With the notation of §2, let x(™ be a solution of (2.6) (or what is the same of (2.8)).
Recall the definition of g in (2.7). It is clear that any g solutions x(™), ..., x(™¢) of (2.8)
are linearly dependent. We conclude that any g solutions my,...,mg of (1.1) yield a
solution of the determinant equation

S L )
=0. (3.1)
™) z{me)
Expanding the determinant in (3.1) and writing
N+1l=g¢! (3:2)
we get an equation
z1+..+2ny4+1=0, (3.3)

where z=(z1,...,2N+1) is the vector in (N+1)-dimensional space whose components
are the summands in the Laplace expansion of the (gXxg)-determinant with rows
x(m1) | x(me) in (3.1).
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LEMMA 3.1. Suppose that g=3. Let U be the N-dimensional linear subspace of
CN+1 defined by (3.3). There exist proper subspaces Uy, ..., Uy, of U with

to < d922" (3.4)

and with the following property. Any solution z=(z1,...,2n+1) of (3.3) arising from
solutions x(™1) ... x(ma) of (2.8) such that

my<ma<..<my; m;#0; m1<0,mg>0 (3.5)

holds true, is contained in the union

Suppose for the moment Lemma 3.1 to be proved. We proceed to deduce the Main
Lemma.
So let M be a finite subset of the set of solutions m of (1.1). We may suppose
without loss of generality that
M| >3¢° (3.6)

as otherwise the Main Lemma is trivial.

Now there exists an integer mq such that the set M~={meM|m<my} and the set
Mt ={meM|m>mo} each have cardinality >%|M|. By (3.6), using the transformation
m—m—mg we may suppose that mo=0 and that M*={meM|m>0}, M~={meM|
m<0}. Moreover my may be chosen such that in the shifted equation (1.1) as given
by (2.5) all the coefficients of the polynomials f} are nonzero. Using Lemma 3.1, we
now may prove in exactly the same way, as was done in [14, Lemma 4.1} (cf. also [15,
Lemma 4] and [15, §11]), that there are g-t, vectors (agj),...,a,(lj)) (1<j<gt2) such that
for each j the coefficient vector (a4, ..., aq) in (2.8) and (agj ) agj )) are nonproportional
and such that moreover the following is true:

Either each solution x(™ of (2.8) with me M~ or each solution x(™) of (2.8) with
meM satisfies one at least of the equations

aPe{™ 4. +af)zl™ =0 (1<j<qta). (3.7)
The equations (3.7) define the subspaces 71, ..., T3, in the Main Lemma. We put
t1 =gtz (38)

and the Main Lemma, follows.
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The deduction of the Main Lemma from Lemma 3.1 is the same as in [14] the
deduction of Lemma 4.1 from Theorem 1.4. As the corresponding considerations are
given in detail in [14] and [15] we restrict ourselves here to a sketch of the proof.

In fact each of the subspaces U; of Lemma 3.1 is defined by a linear equation, say

0z 4. AP, 21 =0, (3.9)

where the coefficient vector (bgi), ey b%)ﬂ) is not proportional to the coefficient vector
(1,...,1) of equation (3.3).

Now as was shown in [14] and [15], (3.9) may be interpreted as a multi-linear form
in the vectors x(™1) ... x(™a) of U making up the components of (21, .., ZN41). Write
Fi(x(™), .. x(m) for this g-linear form. As was shown in [14] and [15], F; does not
vanish identically on the (g—1)-dimensional subspace T of K? defined by equation (2.8).

Thus the solutions x of (2.8) for which F;(x,y2,...,y,) vanishes identically in
¥2,--,Yq€V are contained in a proper subspace of T; of T. So we may distinguish
two cases: either for each me M~ some F;(x(™)ys, ..., y,) vanishes identically.

Then (taking into consideration all subspaces T;) we may conclude that in fact for
each meM~ one at least out of ¢» equations of type (3.7) is satisfied and we are done.
Otherwise, we may pick m; <0 such that none of the ¢ forms F; vanishes identically in
¥2,-.,¥¢€T. Then the set of xeT such that for some 3, Fi(x(ml),x,yg, .., ¥q) vanishes
identically in ys, ...,y,€T again is contained in the union of proper subspaces T; of T.

Either there exists a solution my of our original equation such that for each i,
Fi(x(ml), x(m2) ya ¥q) is not identically zero, or we may conclude that 2{; subspaces
suffice to cover all solutions.

Finally suppose that my, ...,mq_; are chosen. Then any solution m>0 has

Fi(x(ml)’ X(m2), .__,xmq—l), x(m)) =0

and consequently qto proper subspaces of T suffice to cover the solutions of (2.8) with
either me M~ or me M*.

The remainder of the paper concentrates on the proof of Lemma 3.1. The main part
will consist in adjusting the machinery of the quantitative p-adic Subspace Theorem.

4. Review of heights

Let K be a number field of degree d. Let M(K) be the set of places of K. We write
My (K) for the set of infinite places and Mp(K) for the set of finite places of K. Through-
out the paper .S will be a finite subset of M(K) containing My, (K). We shall denote
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by S the set of infinite places in S and by Sy the set of finite places. For every place
vEM(K) we define an absolute value ||-]|, as follows:
If v]|oo we put ||x||v=|x|g”/ 4 where |]» denotes the standard absolute value on K,

the completion of K with respect to v and where d, is the local degree [K,:Q,]=d,.

If v|p, where p is a rational prime number, we normalize |- ||, by ||p|l,=p~%/? where
again d, is the local degree.
Given a vector x=(z1, ...,zy) €K we put
(Jz1)2+...+|zn[2)%/24  if v)oo,
Il = { Y _ (4.1)
max{””"l”v’ ) “xN“v} if 'Ulpa
and we define the height
Hx)= [ Il (4.2)
veEM(K)
Moreover for a subset T of M (K) the T-height is defined as
Hr(x)= [ Il (4.3)
veT
Given an element z€ K, we put
hz) =H((1,z)) (44)

and we define hr(z) analogously. At some instances we will prefer another height, which
takes the maximum norm also for the absolute values ||-||, with v|co. For ve M(K) write

[1%[l1,0 = max{[|z1]lo, ..., | Zn I} (4.5)
and put
Hx)= [] Il (4.6)
vEM(K)

Define Hy 7(x) and hy r(z) similarly.
It follows at once from (4.1), (4.2), (4.5), (4.6) that

NY2H(x)<Hi(x)<H(x) and N~Y2Hp(x) < Hy7(x) < Hp(x). (4.7)

Given a polynomial f with coefficients in K, we define the heights H(f), H1(f) etc.
as the heights of the vector of coefficients of f.



182 H.P. SCHLICKEWEI

LEMMA 4.1. Suppose that M>2. Let x=(z1,...,zp)EKM be given with x,7#0.
Then there exists i with 2<i<M such that

Hi(x) shl(j—j) : (4.8)

Proof. By the product formula, (4.5) and (4.6),

Hx)= ][] 12?M”xi””= 11 1$?M”z_; v
veM(K) veEM(K)
<TT T me{n |2} =TT (0 2)) =TT (2)

=2 vEM(K)
and (4.8) follows.
LEMMA 4.2. Let f and g be polynomials in K|z| with deg f+degg=r. Then

H1(f)H1(g9) <4 Hi(fg)- (4.9)

This is a special instance of Proposition 2.4 of Lang [8, p. 57).

LEMMA 4.3. Let K be a number field of degree d. Suppose that a€ K™ is not a root
of unity. Then

hi(0) > 14— (4.10)

1
2043
This is a well known consequence of the result of Dobrowolski [5].
LEMMA 4.4. Let K be a number field of degree d>1. Let Dk be the absolute value of
the discriminant of K. Let ay, ..., an be elements in K such that 1,0, ..., o5 generate K.
Then we have
H((1,01,...,ay)) > D}/244D), (4.11)

Proof. Assertion (4.11) essentially is a special case of Theorem 2 of Silverman [19].
Actually Silverman uses the height Hy((1, 1, ...,an)) and obtains the lower bound

(DY24)/ay b, (4.12)

But a closer look at the proof in [19, pp. 397-398] shows that at one point Silverman
estimates a determinant with Hadamard’s inequality, which involves the Euclidean norm
of the row vectors of the matrix under consideration. He then replaces the Euclidean
norm by the maximum norm. It is at this point, where the term v/d in (4.12) originates.
If we use the height H instead of Hj, it may be seen at once that we can omit the

term \/E .
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5. Encore heights

Let aj, ..., o, be as in §1. Let K be the number field generated by 1, a2/, ..., ¢y /1. By
homogeneity, we may in fact suppose that ay,...,a,€ K and that aq,..., o, generate K.
Assume that

[K:Q]=d (6.1)

and that moreover at least one of the ratios a;/o; (1<i<j<r) is not a root of unity.
Without loss of generality, we will suppose throughout that

o/ is not a root of unity. (5.2)

Consider the determinant

o e .. ™ L a® pa® .. zhrom
(5.3)
o]" zgot .. TRl . o' mealt .. zhralt
where we have
ki+...+k+r=¢ and k= maxk, (5.4)
1<igr
z; €Z\{0}, 1<0,2,>0, z1<z2<...<zq. (5.5)
Write
a=(al,...,a1,a2,...,a2,...,ar,...,a,)=(ﬂl,...,ﬁq)=ﬁ. (56)
et N e N !
k1+1 ka+1 kr+1

For a permutation o of the set {1, ...,q} we let 3, be the vector with components
(Bo(1) Ba(2)s -+ Bo(q))- Moreover given x=(z1, ..., Z4) We write

B*=p ... B (5.7)

(and accordingly 8= 521) ﬂ:gq)). With this notation the determinant (5.3) may be

written as

> M,(x)8F (5.8)

c€S,
where &, is the symmetric group and where M,(x) is a monomial in z,...,z, with
coeflicient +1 and of total degree <gk (cf. (5.4)).
Throughout the remainder of the paper S will be the set of archimedean absolute
values of K together with those nonarchimedean ones ||-||,, for which

llos|lw#1  for some i (1<i<r).

An element a€ K is called an S-integer if ||a||, <1 for each v¢ S, it is called an S-unit
if |||, =1 for each v¢S. In particular the elements 8% are S-units.
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LEMMA 5.1. Suppose that x=(z1,...,24)E€Z? has
Z1..Tq#0, 21<22<...<Zg, x1<0,z>0. (5.9)
Let v>0 be given and assume that
max{|z, |, |z} > 625d8¢*y 2. (5.10)

Then the point (87),ce, Sotisfies

H1((Bs)oes,)” > max{|z1], |zq|}7". (5.11)

Proof. Let g, be the permutation that in the Laplace expansion of the determinant
(5.3) corresponds to the main diagonal. Let o, be the permutation where again we go
along the main diagonal, except that the element in the top left corner is replaced by the
element in the bottom left corner and the element in the bottom right corner is replaced
by the element in the top right corner. Then, we get

H(B)ucs)> Hul(85 850 =11 ((1.52 ).
g1
But (5.6) and (5.7) imply that
Bor _ (Gay .
7 ol
Therefore we get

|z1—xq
Hy((B)oes,) > Hr(151) (5.12)

Write X =max{|z1], |z,|}. Using Lemma 4.3 and (5.2), we see that (5.11) will be true if

1V >
> q
<1+20d3) >X

and this will certainly be satisfied if

L >q2X1/2,

X B

i.e. for X >625d%y2¢* as asserted.
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LEMMA 5.2. Let 7 be a permutation of {1,...,q}. Then for any i with 1<i<q we

H1((BF)oes,) = Ha (( A ;) ))lxl_m. (5.13)

Proof. The assertion is clear for 7(¢)=4. Otherwise it may be proved with the same

have

argument that led in the proof of the preceding lemma to (5.12). In fact (5.12) is the
special case i=1, 7(1)=g of our assertion.

LEMMA 5.3. Suppose that x=(z1, ...,zq)EZI satisfies (5.9). Let BE€{B1,..., 04} be
given. Let T be a subset of S. Suppose that for each v€T we are given a subset T,
of &4. Then for any j with 1<j<q we have

Hy(BD0es,) " <] H\

veT €T,

"'(J)

<H((B)oes,)"

Proof. Let II* be the product over terms Hﬁ:g /8% |lo=1. Tt is clear that all such
terms contribute to [, Hi((1, 1,(])/ﬂ””f)). Thus by Lemma 5.2 and by (5.9)
I* < Hi((BY)oes, )"

and the right hand side of (5.14) follows.
Let II~ be the product over terms |37, {iy/B% llv<1. Since [[,¢5 1183 (J)/ﬁwﬂ' lv=1 and

Hy((1, (J)/ﬁz’)) =]T,es max{l, “ﬂf(j)/ﬁ“”’ llo}, it follows that

I min{1,187,/8% |l,} = Hy((1, B,,/8% ),

vES
and again by Lemma 5.2, we may infer that
I~ > Hi((B)oes,) ™

and the left hand side of (5.14) follows as well.

6. Linear subspaces

Suppose that N >2. Consider the set of linear forms in X=(Xj,..., Xn) given by
Li(X)=Xy,

(6.1)
Ln(X)=Xn,

LN+1(X) =Xi1+..+Xn.
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Assume that K is a number field of degree d. We suppose that for each veS, we
are given a fixed system of N different forms Lg”)(X), e L%’)(X) out of the N+1 forms
in (6.1). As there are N+1 choices for such a system, we obtain a partition

§=8Wy. .usW+1
such that we have )
L (X) = L7 (X),
(6.2)

LY (X) =LY (X),
say, for each v€S(), i.e. elements v in a set §U) give rise to the same set of linear forms.
We suppose moreover that for each v€ S we are given an N-tuple ey, ..., en, of real
numbers such that the following conditions hold true:

N
> ew=0, (6.3)

vES i=1

Z €i(v),v

veS’
for each subset S’ of S and any tuple (i(v))yes With 1<i(v)<N. Moreover we suppose
that 0<6<1 and that Q>1 has

Q > max{N?/%, D}/*%}. (6.5)
For v€ Sy we define real numbers ¢, (i=1, ..., N) as follows. Let G,, be the subgroup

<1 (6.4)

of the multiplicative group of positive real numbers consisting of values taken by the
absolute value {|-]|, on K™, i.e.

Gy={z|3ye K", |lyl., ==}
Given @, let &;,=¢4,(Q) be such that

Q% is the largest element in G, having Q% < Q%~. (6.6)
Put
n=4§.275N (6.7)
and suppose that
Il @~—=~<@Q fori=1,..,N. (6.8)
vESy
Now consider the simultaneous inequalities
“Lz(v)(x)”v < Qeiu—s.d.,/d (V€ Suo, i=1,..., N), (6.9)

IOl <@ (veSo, i=1,..,N),

6.10
Ixllo<1 (vgS). (6.10)
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LEMMA 6.1. Let S be given as above. Suppose that for each v€S we have linear
forms L§”),...,L§:;) as in (6.1), (6.2). Assume that the tuples (eiv)ves,1<i<nN Satisfy
(6.3), (6.4). Let 0<é6<1 and suppose that n is as in (6.7). Then as Q ranges over values
satisfying (6.5), (6.6), (6.8), the solutions x€ K™ of the simultaneous inequalities (6.9),
(6.10) are contained in the union of proper linear subspaces Uy, ..., Ui, of K~ with

ts <2887 (6.11)

It is clear that Lemma 6.1 is a disguised version of the p-adic generalization of
W. M. Schmidt’s Subspace Theorem in diophantine approximation. The main saving we
get in (6.11) as compared with the earlier version in [13] relies on the fact that our forms
are taken from the set in (6.1). A considerable saving also comes from hypothesis (6.4),
which at first glance might seem to be only of technical nature.

We will give the proof of Lemma 6.1 in §§ 7-13.

7. Line up of facts from the geometry of numbers

Given k with 1<k<N we denote by C'(N, k) the set of k-tuples

o={1<i1<izg<...<ix <N}.

M=(]Z). (7.1)

For 0={i1<...<ix}€C(N,k) and veS, we define for our linear forms Lgv),...,Lgf,’) in
(6.2) new forms L.(,”) (X(k))‘—:L:(yv) (X1,...,Xpm) by Lt(rv)sz(f)/\"-/\ng)'
We remark that in view of the special structure of the matrix of Lg"), ey Lg\’,’) we

Write

have:
det (L&) peo i) = £1. (7.2)

The coefficient matrix of the forms L& (c€C(N,k)) contains only entries 1 and so
does the inverse matrix. In the sequel, to recall this fact, we will speak of a “special”
system. To avoid heavy notation, in the sequel we will write Lg"), - Lg\’,}) instead of Lf,”)
(c€C(N,k)). Only in contexts where this origin is of importance we will refer to the
notation LS,") . )

Let Ka be the adéle ring of K. Elements of K5 will be written as x=(z,)=
(Tv)veM(k), Such that , is the v-component of x. We define the Haar measure on Ka
in the same way as Bombieri and Vaaler [4]:
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If ve My(K) we let 8, denote the Haar measure on K, normalized so that

Bu(Ov) =Dy “5/2’ (7.3)

where O, is the ring of integers of K, and D, is the local different of K at v.

If ve My (K) and K,=R we let 8, denote the ordinary Lebesgue measure on R.
If vE Moo (K) and K, =C we let (3, denote the Lebesgue measure on the complex plane
multiplied by 2.

Write

=TI 6. (7.4)

vEM(K)

Then given our subset S of M(K), 3 determines a Haar measure on [, 5 Ko X[ g5 Ov=
K, say. We let V be the unique product measure on K™ determined by 8.

Suppose that ve My(K) is given with v/p. Write e, for the ramification index of v
over p and f, for the residue class degree of v over p. Recall that we have

dv =eva- (75)

LEMMA 7.1. Suppose that @>1 and that c€R. Assume that ve My(K) has v/p.
Let A={zeK,||z||,<Q°}. Then we have

Bu(A)=pfv9|iD,||2/2, (7.6)

where g is the largest integer such that p»9 <Q°%.

Proof. Recall that |-||, is normalized such that ||p||,=p~%/9.
Choose a prime element m of K,. Then in view of (7.5) our normalization implies
that
i}y =p= 7o/, (.7)

Let R be a complete system of representatives of the residue class field. Then the elements
y€ K, may be uniquely expressed in the form

y= i a, (7.8)

where a, €R, r is an integer and a,#0. In view of (7.7), (7.8), it is clear that A consists
of the elements y, whose expansion (7.8) starts at an index r with

p i@l (7.9)
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Let 79 €Z be the smallest value r for which (7.9) is satisfied.

Suppose first that 7g<0. Then A consists of the numbers x:Z;iTO a, ™’ +o with
a,€R, ac@,. Therefore A consists of the translates of O, of the shape Z;:lrg a7+ Oy
As R contains p’v elements, we get p~™7/* such translates. As any two such translates
are disjoint, the assertion follows from (7.3) with g=—rg.

Next suppose that r9>0. Then the elements of O, may be written as Z:[:ol a, ™+
with a, € R and a€ A. Thus O, is the union of the translates ZZ°=_01 a,m™ + A of A, where
the a, run through R. The number of translates is p"ofo. Therefore

7% Bu(A) = Bu(O) = [ Du]I52,
and the assertion follows again with g=—r¢.
We now fix M as in (7.1) and consider for each v€S our special system of linear
forms L{”(X), ..., L\Y(X) in X=(X1, ..., Xu).
For ¢ with 1<i<M and for v&S, let ¢;, be real numbers with

M
> ew=0, (7.10)

veS i=1
Z Ci(v),v
vesS’
for any subset S’ of S and for each tuple (i(v))yes With 1<i(v)<M.

Given Q>1, we denote by II1(Q) the subset of KM defined by the inequalities

<1 (7.11)

1L @l <@ (ves, 1<i<M),
%l <1 (vgS).
We call TI=II(Q) a parallelepiped in M.
We assume moreover that for v€Sy and each i (1<i< M) there exists a real number

~iv < cCiy such that @7~ lies in the value group G, of ||-||, and that for some fixed >0
we have

(7.12)

H QM L Q" for each ¢ with 1<i< M. (7.13)
vE€ Sy

LEMMA 7.2. The volume V(I1) of the parallelepiped defined by (7.12) satisfies
(Q n2ri+ragm2 DLMM Ly (1) < (27 D )M, (7.14)

where r1 and ro respectively are the number of real and complex places of K and where
Dy is the absolute value of the discriminant of K.

Proof. For vé Moo (K) and K,=R we have
Bo({z € Ko | |lzllo <Q°}) =2Q%.
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For ve M (K) and K,=C we get

Bo({z € K, | lzllo <Q°Y) = 2mQ%.

For ve My(K), we get by Lemma, 7.1,
Bu({z € Ky | lllo < QY =p*9|IDu|/% < Q¥|IDy |13/

Combining these inequalities with (7.12) and (7.10) we obtain

M
V(1) < Q(r+r2)M praM H HQdcw H ||Dv||ll)\4d/2
veSi=1 vEMo(K)

— 2(r1+r2)M7rr2MDI—{M/2_

On the other hand (7.13) implies that

V(H) > 2(1‘1+1‘2)Mﬂ.'r2M H ﬁ Qdcw ﬁ (Q—d’n H Qdciv) DI_{M/z

’UESN i=1 i=1 ’UGS()
27‘ +ra)M_roM _M/2 —Md'l]
-_ ( 1 2) s 2 DF( Q

Following Bombieri and Vaaler [4], we introduce a scalar multiplication by real num-
bers on Ka: Given x€K, and a€R we let ax be the point y€ Ka with components

Yp=az, if veéMy(K),
W=z, ifveMyK).

With this scalar multiplication, we define successive minima of II{@). For each integer ¢
(1<i<M) let

A; =min{A > 0| ATI(Q)N K™ contains i linearly independent vectors}.
For each i, we associate with \; a vector g;€ KM with g; €11 and such that g, ..., g;
are linearly independent.

LEMMA 7.3. The successive minima of Il satisfy the inequality
2dM 71.1"2M

(MY ((2M))r= DY/

5 < (A1 Ap)dV(IT) <29V, (7.15)

This follows at once from Theorems 3 and 4 of Bombieri and Vaaler [4].
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LEMMA 7.4. Assume that we have (7.13). Then the successive minima of Il in
(7.12) satisfy
M= M (A Ap)e < (QU DM, (7.16)

Proof. This follows from combination of Lemmata 7.2 and 7.3.

LEMMA 7.5. Let (cy)ves be a tuple of real numbers. Let Q>1 and suppose that for
vESy we have real numbers v, with

Yw<e, and QT™EG, (the value group of ||-||v). (7.17)
Then there exists a nonzero element o€ K satisfying
lells < ch—(zwes cw)dy /EH(Xues, cw——yw)d,,/dD}d;/Zdz for v € Soo, (7.18)
lall. <@  for ve Sy, (7.19)
lell, <1 forvésS. {(7.20)

Proof. Consider the parallelepiped II in K defined by the inequalities
ollo < Q% ™ Eweses ot Luese /e () e 5,
el <@™  (veS),
el <1 (véS).
It has volume V=2"(27)"2 D,—{l/ %, Thus by Lemma 7.3 it has first minimum ); with
A < DY
But by definition A;II contains a point different from 0. The lemma follows since Q7 <
Q% (veSp)-
LEMMA 7.6. Let x€ KM, x#0. Define the real number c by

= —cjud/dy 7 (V) 1/2d
e=( TI ,mas,IQooerP Gl ) Dy (721)
VEM o (K)

Then there exists an algebraic integer x€ K* satisfying for each v€ My (K),
-1
< —c‘vd/dv ('U) dv/d. .
[|3¢]|» < (121ng |Q~¢ L)) ¢ (7.22)

Proof. As we require » to be an algebraic integer, it has apart from (7.22) to satisfy
the condition
|5)lo <1 for v¢ Mo (K). (7.23)

Now (7.22), (7.23) define a parallelepiped in K of volume 2™ 7272, where r; and r; de-
note respectively the number of real and complex embeddings of K. Thus by Lemma 7.3
our parallelepiped has first minimum <(2/7)"2/4<1. The assertion follows.
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LEMMA 7.7. Suppose that x€ KM is a point which satisfies inequalities (7.12) for
each v¢ Myo(K). Let gy, ...,gnm be linearly independent points in KM corresponding to
the minima Ay, ..., Ay of TI(Q). Write S; for the subspace of K™ generated by gi, ..., 8.
Then for i=1,..., M and for x¢S;_1 we have

H max Q¥4 L (x)|l, > Dg/* N (1<i<M). (7.24)

1<isM
VEMoo (K)

Proof. Suppose x¢S5;_;. Choose the algebraic integer » according to Lemma 7.6.
Then the point »x again satisfies inequalities (7.12) for each v¢ M (K). As x¢S;_,,
also »#x¢S;_1. Consequently there exists vo€ My (K) such that

Ciug-d/duy T (V0) S
1£rﬁxM|Q 3vor@/%vo L2707 (5% )|wg 2 i (7.25)

On the other hand our choice of s in (7.22) implies that for each ve M (K) we have

cjvd/dy (V) < 1/2d Cswd/dw 7 (W)
B Ll <D T e 107 L0 (20

Combination of (7.25) and (7.26) yields the assertion.

LEMMA 7.8 (Davenport’s Lemma). Suppose that @>1 and that (>0. Let g1, ...,0m
be real numbers with

012022 .. > 0m >0, (7.27)
0idi <Q%0iy1hip1 fori=1,..,M-1, (7.28)
01...0m=1. (7.29)

Fiz vo€E Mo (K). Then there exists a permutation T of the set {1,..., M} with the follow-
ing property:
Let II'(Q) be the parallelepiped defined by

LS (%) o < 075, @%%  (1<i< M) (7.30)
and for v#vy as in (7.12). Let A}, ..., \j; be the successive minima of II'(Q). Then we
have

D_1/2d2_MQ_MCQi)‘i < )\: < 4M2QM2(D§?M—1)/2in)\i. (731)

Moreover, for vE Mo (K) define the linear forms va)(X) by

CM(X)=Q WL (X) forv#ve and 1<i< M (7.32)
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and by
G1(:U0) (X) = g%gvo QCivod/du, L,ng) (X) (1<i<M). (7.33)

Then any point x€ KM which satisfies inequalities (7.12) for v¢ Moo (K) but does not
lie in the subspace S;_1 spanned by the points g1, ...,8;_1 corresponding to Ay, ..., Ai—1
has

(v) S o—M-M¢ p—1/2d
Jcma | max {161 (x)],} > 2MQMD 1 g, , (7.34)

Proof. The proof goes along the same lines as in W.M. Schmidt [16, §IV, Theo-
rem 3A|. For v€Sy we define the absolute value |- |, by |w]v=||x||g/d”
when we consider points x€ K™ we shall whenever necessary tacitly assume that they
satisfy inequalities (7.12) for v¢ So.

For i with 1<i<M and for veS,, we write

. In the sequel,

QY4 LY (x) = B x =BT w1+ + Bz
So, B is the coefficient vector of the linear form Q~¢~%/dv L{*), Write

Ne= JI - max (18"x].}.

veMu(K)
By Lemma 7.7, any point x¢S;_, satisfies
N(x)>D?\,. (7.35)

To determine the permutation 7, consider the fixed element vo€S. If x lies in
S;,(1) then the point (ﬂ(”") oy g’,}")x) satisfies M —i independent linear equations with
coefficients in K,,. In particular for x€Sy;_1 we have

a15§v0)x+...+aMﬂ§\;°)x=0 (7.36)

with certain fixed coefficients ay, ..., apr € Ky, not all equal to zero. Choosing a suitable
permutation, we may assume that

|ar|ve =max{|a1 vy s |@nt|wo }- (7.37)
But then (7.36) implies that

,35\1,;0))( = —ﬂﬂgv")x—... M1 ,3(”0)
apM ap

(1) There should be no confusion between the subspaces S; and the subsets Sp and Seo of our set
of places S.
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Using (7.37), we obtain
1B g < 1B Kl +-+ 1B XL
which in turn yields
8L g+ -+ B Ko > 181l + 1B Xl00) (7.38)

for each xeSr_1.
If x lies in Sps_2, it satisfies a second relation which is independent of (7.36) and
may be written as
b ﬂ(”°)x+ Abar-1859) x=0.

Again, after choosing a suitable permutation we may suppose that

|Bar—1lvo = max{|b1lvgs -y [bAr-1]vo }-
And similarly as above we get
IBA 1 Xlop <185 Xy .+ B2 X -
Together with (7.38) this gives
BT Xy 1B Xl > %<|ﬂ§”°)x|vo+ 1837 1%Xlwo)

272(181" %y -+ 1857 %)
for each x€S3s_». Continuing in this way we obtain for each j with 1<j<M —1 inequal-
ities of type (7.38), (7.39).

So after reordering ﬂ§”°), vy ,3(”"), we may suppose that

1B Xy oo 1B X g 2 277 (18 K + oo+ B Xluo) (7.40)

for each j (1<j<M —1) and for each x€Sp_;.

Now suppose that x¢S;_;. Then there exists j with ¢<j<M such that x€Sj,
x¢8S;-1, so that by (7.35) N(x);D,_{I/M)\j.

On the other hand using (7.27), (7.40) we obtain

d/d, v d/dy v
/80 B X g, oy |01 B X }
d dv v d du Ui
>max{|o}/ * B °)leo,m,|9j/ ° 8" x|y, }

> 07740 max{|B Xlug, -+ B x 0o}
g%/ %0

> (1B Xy 1B X }
2i-M
I
>27M ¥ max {|B8)(x)]u,}-

1< <M

(7.39)

max{|o;

(7.41)

vV

d dv K3/ Vi
0¥/ 10 {18 Ky + ..+ 1B x| }
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Recall the definition of the forms G{*(X) in (7.32), (7.33). We infer from (7.41),
(7.35) that

(v) - (v)
II e 16 ®>2Me [[  max 187 xl
VEMoo (K) vEMoo(K)

=2"MyN(x) > D /%42 M, \;.
Using (7.28), we may conclude that

('v) > —1/2dg—M > —1/2dg—-M MC
veﬁi‘}((K)lgllc%xM[ (Ol > D27 ;5 > Dy 27 Q™

This is true for each x¢S;_; and thus (7.34) is established.
However (7.34) implies in particular that

X, 22" Mprg-MC, . (i=1,.., M), (7.42)

and this is the left hand side of (7.31).
As for the right hand side of (7.31), we first remark that by (7.29), V(II)=V(II').
According to Lemma 7.3 we have

2dM 7rrgM

RN SRR

and
(V] .. X8V (T < 24M,

We may infer using (7.29) and (7.42) that

_ _ - M-
i < 2de(H/) 1 - 2dM+dM(M—1)dM (M ”CD%, 1)/2 V(H’)‘l
T N AL M) T (01 e i1 M 10641 i1 - @M M)

2dM2QdM2(Q¢i1D%V-’—1)/2
S (A Aichigr - Am)?

2dM2QdM2C(Ml)’"1 ((2M)') (@M-1)/2
\ 2dMﬂ-’I‘2M DK

v

(Q’i/\i)d
L 49m? Dﬁ?M‘””QM‘ (0:0)?

and (7.31) follows.

In analogy with what we said at the beginning of this section, given k with 1<
k<M we denote by C(M, k) the set of k-tuples o={1<%; <i2<...<ix <M}. Put L=(A,;I)
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and for o={i; <...<iy} define the linear forms MY (X(k))=M§”) (X1,...,XL) by M =
LY AALY. I TI(Q) is the parallelepiped (7.12), we define II*)(Q) by

1M (x|, Q%> (o€ C(M,k),veES),

(7.43)
x®, <1 (vgSs).
Here x(®) stands for a vector in K~ and
Cop = Ciyp+...F+Cipv, (7.44)

where we suppose that the ¢;, satisfy (7.10) and (7.11). We call TI®) the kth compound
of IL. Let Ay, ..., Apr be the successive minima of II. For e C(M, k) write

Ar =H,\i.
i€T

There is an ordering 71, ..., 71, of the elements of C(M, k) such that
Ar KA S KA (7.45)

We denote the successive minima of II*) by 14, ..., vL.
The following result was proved by Mahler [10] for convex bodies in RM. Here we
give its extension to the space of adéles of K.

LEMMA 7.9 (Mahler [10]). Suppose that we have (7.10), (7.11) and (7.13). Then
the successive minima of TI*) given by (7.43) satisfy

Q LR DI oy =(L=9=L% <y KKl Ay, (7.46)

Proof. Our proof follows the lines of Schmidt [16, §IV, Theorem 7A]. Let g1,...,8nm
be independent points in K™ with g; € )\,I1. Thus

LS (85) o < AL/2Q5 (5,5 =1, ..., M; v € Sec), (7.47)
1L @)l Q% (6,5 =1,..., M; v € Sp), (7.48)
lgillo<1 (i=1,... M; v¢S). (7.49)

For 7={j1 <...<ji} €C(M, k) write

G, =8 N ABjy. - (750)
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Then we may infer from (7.40) that for each v€Sy and for any 7€ C(M, k),

1M (Gl = I A AL ) (g5, A NG o

(v) (v)
Li1 (gjl) o Lzl (gjk) (7‘51)
=||det : : < QFe
L) - L3 @)/ N,
for each o€ C(M, k). Moreover, trivially we have
|G-l <1 for each 7€ C(M, k) and for each v¢ S. (7.52)

Now suppose that v€S,,. Then by considering the determinant in (7.51) and using (7.47)
we get
MGl < (B)37/4X%/2QC  for each o € C(M, k). (7.53)

(7.51), (7.52), (7.53) imply that
v <k, (1<i<D), (7.54)

which is the right hand side of (7.46).
As for the left hand side in (7.46), Lemma 7.3 says that

Oy o ey ) "% V(D () 9-aM (D) — (1) Lh/M g —dLk
and
2dLHr2L
(LYym (L) D/*

(1 ..vp)? > VI®)-L.

Combining these two inequalities we get

L \¢ Lk/M o—dL(k—1),_r2L
H( Vi > S Y= 2 T p L (7.55)
i1 \ A V(@) (Lhm((2L))
On the other hand, Lemma, 7.2 yields
V(H)Lk/M > Q_'”’knz(”+r2)Lk7rT2LkDI_{Lk/2, (7.56)
and similarly we obtain
V(H(k)) < 2(r1+r2)L7rr2LD;{L/2‘ (7.57)

Combining (7.55), (7.56), (7.57) we may infer that

L ¢ —dL(k—1), 2L
Vi —dLkn o(ritra)_rs y~1/2\L(k—1) 2 ™ —L)2
I I > .2\ TT2 D e 5 | .
(/\n ) N ( D) (L) (@Ly= ¥

=1
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Together with (7.54) this gives

d _
Vi —dLkn (1= (L—1)d 2 ~Lk/2
(A) > QR @y (@D DK

> Q—defg(k!)—(L—l)d(L!)—d.2—T2LD;<L1¢/2

rgL(k—l)ﬂ.'rsz

and (7.46) follows.

Of particular interest in our applications will be the case k=M —1. Then L=
(*)=M. I™M-D essentially is what Mahler calls polar to II. Then we have

A
A, = 2 AM

= . 7.58
Y AM1— (7.58)

In this case Lemma 7.9 implies

LEMMA 7.10. Let Ay,...,Aps be the successive minima of I and A}, ..., A}, be the
successive minima of TKM=Y (cf. (7.12), (7.43)). Then

QM DM 2N M N NESMIQMIDM/Z (=1 M), (7.59)

Proof. By Lemma 7.4
MMy Ay < QMDY
Combining this with (7.58) and Lemma 7.9 with L=M and k=M —1 we get
Q—M(M—l)nDI—(M(M—l)/zd((M__1)!)—(M—1)2—M2M—M SAM41-iNT
< (M-1)1 QM D
and (7.59) follows.

LEMMA 7.11. Suppose 1<k<M. Define m,...,7r and points G, as in (7.45),
(7.50) respectively. Once the span of G,,,...,Gr,_, in KL is determined, the span of
g1, BM—k i KM is determined.

This is Lemma 6.4 of Schmidt [17].
LEMMA 7.12. Let Ly,...,L; be linear forms in M variables and with coefficients in
the set {—1,0,1}. Suppose that we know that there is a point h#0 in QM with
Li(h)=0 (i=1,..,t). (7.60)
Then there is a point h#0 in ZM with (7.60) and with
IT Infly, < =072,

VES
This is a very special instance of Siegel’s Lemma (cf. e.g. Schmidt [18, Lemma 4D,
p- 11}.
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8. Again geometry of numbers

Let Lg”),...,LSC}) (veS) be a special system of linear forms as introduced at the be-
ginning of §7. Let ¢;, (1<i<M, v€S) be real numbers satisfying (7.10), (7.11). I is
the parallelepiped given by (7.12) and gy, ..., ga are linearly independent points in K™
having

g € MIL (8.1)

For i with 1<i< M we write
L = LA AL AL A ALY (1<i<M, veS)

and
gi=g1N. Agi—1Agin A Agy (1<i<M). (8:2)

LEMMA 8.1. The point gpr defined in (8.2) has

Hy s(gm) <My dn—1Q. (8.3)

Proof. Notice that g is the same as the point G, in (7.50) with k=M —-1. We
get from (7.53),

1S @)l < (M= D))/Ah  Apg g/ AQER ¥ msbesmisvtotems (8.4)
for 1<j<M, v€Sx, and from (7.51),
IS @an) o S QErvt-Fermatesmmtotoms for 1< <M, vESe.  (85)
We may write the ith component §;5s of &) as
Gine =u L (@n) +o+uD P @ar) (1< <M, vES).

(@)

Since we consider special systems, here the coefficients u;; are contained in the set

{(-1,0,1}.
Thus (8.4) implies
”gM“Lv < (Ml AL )\M_l)dv/deaJhgng crot.tCi—1,0+Ci 1,0+ Femo (’U c Soo), (86)

and we infer from (8.5) that

|&ar]le < QM1<isM Clot..-+Ci—1,0+Ci+1,0F - FCMy (ve Sp). (8.7)
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Combination of (8.6), (8.7) gives with (7.10),
Hys(r) S MM .. Apg—1Q oves st
where for v€ S the subscript j(v) is such that
i = BB

The assertion follows, since by (7.11),

> ity

veS

<L

(8.8)

Recall that with our conventions in §6 and by the discussion at the beginning of
87, the set of forms Lg”), - Lx}) (veS) was partitioned into N+1 subsets, according to
a partition S=SMU..UST+D of our set of places. This partition was such that for

v1,v2€8Y) we have
Lz(.vl) :L,(-W) for each i (1<i< M).

LEMMA 8.2. Let (i(v))ves be a tuple with

TT 1), @)l #0.

veS

Then we have
Hl(gM) 2 M_z(()\l ves )\M_l)_levGS Ci(v),v)

Proof. First, we obtain using (8.4), (8.5) together with (7.10),

TT 1) @a0)lle < (M =1)!Aq oo Agg—1 Q™ Tves s

vES

1/M(N+1)

(8.9)

(8.10)

(8.11)

(8.12)

Now consider a set S . Given i with 1<i<M let Szgj ) be the subset of S¢) consisting

of those v€SY) with i(v)=i. So, for veSﬁj ) we may write ﬁ£?3)=i/i-
We obtain (using again the fact that the forms are special)

1= [I Iemllo=TT 1E5) @)l TT 1£:i@s)lo

’UEM(K) ’UES;J) v¢$’§j)

< T 12, @) uv( I Mdv/d) TT leallne
’UES(J) VEMoo (K) ,Uesgj)

2 vis"g]‘) k3

VEMoo (K)

ves
€} *
v¢S;

ves

= TT 0ol (T 2e) (T et ) (e
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Taking the product over ¢ with 1<i<M and over j with 1<j<M we may infer that

1< [T LS, @) lo MMP D=1 E, g(@a)  Hy (@0 4D, (8.13)
veES

(8.12) and (8.13) entail
Hi(@m) N > Hy () MMV (M -1))7 (A Apgog) 71 Q%ves S,
But g5, has S-integral components. Thus
Hy(ga) MO > pp= MOV ((Af 1)) 72Ny . Apgog) L Q2ves S
and (8.11) follows.

There is a nonzero linear form V=V (X)=v; X1 +...+vp X with coefficients v, K
that vanishes on gi,...,gym—1. This form is determined up to a nonzero factor in K,
however its height H7(V) is uniquely determined.

Let S be the set of tuples (j(v))yes such that

> iy >0 (8.14)
ves
LEMMA 8.3. Suppose that 6>0, that

Av—1=Am1(Q)<Q™° (8.15)

and
Q(M—1)6 >M4M(N+1). (816)

Assume that there ezists a tuple (j(v))ves in S with [[,cg IIIA/E.Q(’i)(gM)HﬂyéO, i.e. with
(8.10). Then we have
QAN+ « H (V)< Q. (8.17)

Proof. Clearly the vector gyr=giA...Agap_1 is orthogonal to g1,...,gm-1- So it
suffices to show that Hy(gxs) satisfies (8.17).
Since g)s has S-integral components, Lemma 8.1 implies that

H](QM) <M\ Ap1@

and the right hand side of (8.17) follows from (8.15), (8.16).
As for the lower bound in (8.17), we apply Lemma 8.2 and get for (j(v))yes in S
using (8.15),
Hi(8um)> M—2Q(M—1)6/M(N+1)_

In view of (8.16) this entails the lower bound in (8.17).
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LEMMA 8.4. Suppose that we have (7.13) for some 1>0. Assume that
@M)2MQMnpM/2dy <1 (8.18)
Suppose that there is a point h#0 in KM with integral components satisfying

[THES, @, (8.19)
veS

for every tuple (j(v))ves with 1<j(v)<M such that

(2MQ,,D}(/2d)2M2QZ.,es Cj(w),w H Ih|1oAar—1>1 (8.20)
vE€Se0
is true. Then
gh=0 fori=1,..,M-1. (8.21)

Proof. Let h be a point with (8.19), (8.20). For veS we define the set
Cy={j|1<i<M, L (h) #£0}. (8.22)

Since Jig”), ...,ﬁx}) are linearly independent, we have C,#@. Moreover, we define for
each v€.S an element i(v)€C, by

€1yt FCi(v)—1,0 T Ci(v)+1,0 - FCMw =]rgg1 Clot .- +Cj—1,0+Cip1p+ . (8.23)

For v€ Sy let 7;,, be real numbers as in (7.13), so in particular we have for each pair (¢,v),
Yiv K Ciy. Write
c$}') =cyt--+Ci—1,0+Cit1,0+... +CM,
WD = Yo+ A Vi 1,0 F Vit Lo+ VMo, (8.24)
Yo =) and ¢, =)
(1<i<M, veSp). If a is an S-integer in K with

el <@, (8.25)

then, since h has integral components and by the special shape of our forms Egv), we see
that
][ﬂg”)(ah)||v <Q® for each i (1<i< M) and for each v € Sp.

But now the definition of the sets C, in (8.22) and the definition of i(v) in (8.23) together

(9

with ¢, <c¢y’ imply that

£ (o), < Q°’  for each i (1<i< M) and for each v € Sp. (8.26)
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Moreover oh has S-integral components, i.e. we have
llah|, <1 forv¢S. (8.27)

But (8.26), (8.27) mean that for v¢ S, the point ah satisfies the inequalities (7.43)
defining the parallelepiped M ~1)(Q).
Next suppose that v€S,,. Define ¢, by

Q= I ThQest ettt (528)

Write
c,(,i(”)) =cly+.FCiw) 1,0+ Ciw)4 10T FCMy  (VESeo). (8:29)

We now apply Lemma 7.5. Accordingly there exists a nonzero S-integer a€ K sat-
isfying (8.25) and

ol <@Q* (D%ZdQ— Lowes o )d”/d- Qh/HXweso(ew=10))  for each vE Soo.  (8.30)

By (7.13) and (8.24) we have

> (cw—rw) < (M—1)n. (8.31)
wE Sy

Let us study consequences of (8.30). The definition of C, implies that
Hﬁgv) (eh)|l, =0 for each j ¢ C,.
On the other hand, for j€C, we get with (8.28), (8.29) and (8.30), (8.31),
125" ()l < M/ o] |,

dy/d

i) - i) —nd, dy/d

< Mi/aQet (( 1 ||h|h,w>Q Sl ) QU1 /4 1/ e/,
wWESoo

But by (7.10) this equals

‘ dy/d
@ (ur:(( T s )@Bwessomquempiae)™. (s

WES oo

The definition of the sets C, in (8.22) and of the tuple (i(w))wes in (8.23) im-
plies that (8.20) is violated with the exponent }_ ¢ ¢i(v),»» We may conclude that the
expression in the parenthesis in (8.32) is

<(QMIDRM R gp)MEN e/, (8:33)
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We now apply Lemma 7.10. It follows that the term in (8.33) is S)\;d” /e, Altogether
we get with (8.23) and (8.24),

1(v))

LS ()]l < A3%74Q4” < 33%/4Q™ for v Spo and j€C. (8.34)

We infer from (8.34) and the definition of C, that in fact
||L(U) (ah)]l, < AS® /4Q°”  for each v € So and for 1< j < M. (8.35)

In view of (8.26), (8.27), (8.35) we see that the point ah lies in the interior of A3TI(M 1.
We now study the point g5s. It has S-integral components and moreover it satisfies
(8.5). On the other hand, for v€S,, we get from (8.4) and Lemma 7.10 for 1<j<M,

IZS (@ar) o < (M =1)1 A1 oo Apgog) 2 /4QY
S(M-1)1A1 - Anaa Xy QMDY T @b 4G
<( 1(2M)2M QMZWD%Z/zd)d”/d~)\;d”/dQCv

By (8.18) this implies that
IES @ar)llo < 25%7°QY”  for each v € Seo and for j with 1<j < M.

Therefore &»s also lies in the interior of ASIT(M—1).

Since any two points in K™ that lie in the interior of A3II™~1) are linearly de-
pendent, it follows that ah and g;; are proportional, and hence also h and &as are
proportional. As g is orthogonal to g, ..., ga7—1 the same holds true for h and (8.21)
is proved.

LEMMA 8.5. Suppose that there is a point h#0 in KM with integral components
such that

H j[L§1('3))(h)llv =0 for each tuple (j(v))yes in S. (8.36)
veS

In fact assume that h s a point with this property where moreover [],c Ses Ihll1, s
minimal. Suppose that §>0 and assume that (7.13) is satisfied for a value n>0 with

n<6/4M2. (8.37)

Suppose moreover that
Ar-1<Q78 (8.38)

and that
2
Q° > (2M)sM* pIM/e, (8.39)



MULTIPLICITIES OF RECURRENCE SEQUENCES 205

Then (8.21) is true, i.e. we have

g1h= e = gM_1h= 0.

Proof. It will suffice to prove that with a minimal h the hypotheses (8.18), (8.19),
(8.20) of Lemma 8.4 are satisfied.
As for (8.18), we get with (8.37), (8.38), (8.39),

(2M)2MQMnD%/2dAM_1 < (2M)2MQ6/4MD?(’I/2dQ—6 < (2M)2MD§\</1/2¢1Q—6/2 <1

So (8.18) holds true.
We next check (8.19), (8.20). Lemma 7.12 says that if there is a point h#0 with
(8.19) at all, then in fact there exists such an h with components in Z and with

IT Il < M7

V€S

With such h, tuples (j(v))yes having (8.20) in view of (8.38) satisfy
M(M—l)/?(QMQnD}(sz)WVFQ—EQZves Cim > 1. (8.40)
However we infer from (8.37) and (8.39) that
M(M—l)/2(2MQ7;D}</2d)2M2 Q< (2M)3M2. Q&/zpbxlz/dQ-a
= (2M)*M* DM /iQ=6/2 < 1.

Therefore (8.40) implies that
QEVES G > 1,

i.e. that (j(v))ves lies in our set S. But then (8.36) guarantees that (8.19) of Lemma 8.4
is satisfied. The assertion follows from Lemma 8.4.

LEMMA 8.6. Suppose that the numbers c;,, (vVE€S, 1<i<M) satisfy (7.10) and
(7.11). Let 1>6>0 be given. Consider the inequalities

1L @)l Qe —0/4 (€ S, 1<i< M), (8.41)
I &)l < Q% (ve So, 1<i< M), (8.42)
Ixllo <1 (vgS). (8.43)

Let Qo be a quantity with
Q> M2 (8.44)
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Suppose that E>1.
Then as Q runs through the range

Qo<Q<Qy (8.45)
the solutions x€ KM of (8.41), (8.42), (8.43) are contained in the union of not more than
1+§ log E (8.46)

proper subspaces of KM,

Proof. Consider an interval of type

Qo< Q< Qy? (8.47)
and let @1, ..., @ar be any values of Q in (8.47). For j=1,..., M let x3, ...,xps be solutions
of (8.41)—(8.43) with @=Q1, ..., Q=Q s respectively. So we have

1L )l < Q5! (v€ Sew, 1<, < M),
1L ()l < Q5 (vE So, 1<, 5 < M),
I%5llo <1 (vgS).
Since our forms are special, we get for v€S,,
I det (1, ..., Xar)llo = | det (L (x;) o

v—6dv d 1,—6du d
<M1/ may QGeTt/d | Qouvmid/
J15ee0IM

(8.48)

where the maximum is taken over permutations jy, ..., jar of 1,..., M. Similarly for v€S,

we obtain
| det(x1, ..., Xar) || <j1{?€.;§M Qe (8.49)

and finally
|| det(x1, ..., xpm)llo <1 for vé S. (8.50)

For v€ S define the ordered tuple c;(y) v, ---, Cas(v),0 Such that the maximum in (8.48)

or (8.49) is
Qil(v),v“sdv/d . Qiﬁ\ld(u),v—édv/d or Q‘il('u),v N Q;}/I(u),v

respectively. Combining (8.48), (8.49), (8.50) we get with (8.47) and (7.10),

M
H | det(x1, ..., Xar )| <M!HQ§Euesca(u),v)—6
vEM(K) i=1

8.51
< M! Q(()Eves Zfil ci,v)_M6+(2+)6/2 ( )

=M1y B



MULTIPLICITIES OF RECURRENCE SEQUENCES 207

where X, is the sum over terms (3 g Ci(v),0)—8 With (3, g Ci(v),0) —6>0. By (7.11)
we see that X, <M. Therefore we infer from (8.51) and (8.44) that

IT ldet(x, ... xan)llo < M1Qy ™% < 1.
vEM(K)

So in fact by the product formula det(x;, ...,xa7)=0. We may conclude that solutions x
corresponding to values () in an interval of type (8.47) contribute only a single subspace
of dimension M —1. But the interval (8.45) may be covered by

log E

4
82 14llgE
Toa(1+6/2) <1158

intervals of type (8.47). This proves (8.46).

COROLLARY 8.7. Let II(Q) be given by (7.12). Assume that the parameters c;, sat-

isfy (7.10), (7.11). Let S(Q) be the subspace spanned by g1=g1(Q), ..., EMm-1=8m-1(Q)-
Suppose that 6>0. Then the values Q with

Am-1=Ar-1(Q)<Q7° (8.52)
and lying in an interval
Qo<Q<Qgy (8.53)
where E>1 and where
Q5> M? (8.54)
give rise to not more than
4
1+ 5 log E

distinct subspaces S(Q).

Proof. This is an immediate consequence of Lemma 8.6. It suffices to remark that
(8.52) implies that g1, ..., gp—1 satisfy inequalities (8.41).

9. Bounds for the index

We denote by R the ring of polynomials
P(X11, -y X1m;3 Xo1, ooy Xoar; Xy ooy Xt
in mM variables and with coefficients in K. Given an m-tuple

r=(ry,..,Tm) (9.1)
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of natural numbers, R’ will denote the set of polynomials in R which are homogeneous of
degree 1, in the block of variables Xp1, ..., Xans (1<h<m). We write Z for mM-tuples
of nonnegative integers

I= (illa sey ilM; 7:mla ey /LmM)a

and by (Z/r) we denote the expression
= th1t.Finm
(z/r) =y e ien,
h=1 h

We write ) ]
1 Gt Fimm

PT=

111! .o ! ' 6X;:111 8X:,’l"1\%
Given r as in (9.1), put
r=n +...+T'm. (92)

It is easily seen that for PER’ we have
Hy(PT)<2"Hy(P), (9.3)

in fact we get
Hyo(PT)<2"%/¢H, ,(P) if v]oo,
H; o(PTY< Hy o(P) if voo.

Let L4,..., L,, be nonzero linear forms with coeflicients in K. Assume that Lj is a

(9.4)

form in the variables Xp1, ..., Xpn (h=1,...,m), so that
Ly=0opmXp+...ropm Xy (R=1,...,m).

The index of a polynomial P€R with respect to (L1, ..., Lim; ) is defined as follows: when
P=0, set Ind P=c0.

When P#£0, the index is the least value of ¢ such that there is an T with (Z/r)=c and
such that PT is not identically zero on the subspace T of K™M defined by the equations
Ly=..=L,=0.

Given a linear form

L=a Xi+..4+au X

we make m forms out of it by setting
Lipy=a1Xp+...tapmXnm (h=1,...,m).
The index with respect to (L;r) is then defined as the index with respect to

(L[l]a 7L[m]7r)
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LEMMA 9.1 (Index Theorem). Suppose that L1, ..., Ly are nonzero linear forms in
M wvariables and with coefficients in {—1,0,1}. Suppose that e>0 and that

m >4 2 log(2t). (9.5)

Then given v=(r1,...,Tm), there exists a nonzero polynomial PER’, in fact with coeffi-
cients in Z having

(i) Ind P> (1/M —¢e)m with respect to (L;;r) (i=1,...,t),

(ii) Hi(P)<2m™M(3M)".

This is a very special version of the Index Theorem as proved in Schmidt [17, §9].
It suffices to remark that our forms L; have rational coefficients and H(L;)<M /2,

Now suppose that we are given N +1 systems of linear forms
LX), .. LX) (1<j<N+1)

in X=(Xy,...,X)). We assume that for each j the system ng), ...,Lg]) is special as
defined in §7.

Remember that this implies in particular that if we express the variables X; in terms
of LY (X), ..., LY (X) as

Xi = LO (X)+.. 401 L (X) 96)
then the 771%) lie in {-1,0,1}. With this assumption, Schmidt’s Polynomial Theorem
([17, §9]) may be quoted as follows.

Let P be the polynomial of the Index Theorem, and suppose that it holds with

respect to the special forms Lgl)(X), oy L%}’H)(X), i.e. suppose that we have
t=(N+1)M. (9.7)
Given an mM-tuple Z, for each j (1<j<N+1) we may write PZ uniquely as
I _ I (s : (4)3 ()i (1)im ()dm
Pi= Z A3 Gty oo mar) LY LM LD LM, (9.8)
J1tseedmM

and here the summation may be restricted to jp1+...+irpr <71 (A=1,...,m).

LEMMA 9.2 (Polynomial Theorem). Suppose that for each j (1<j<N+1) the forms
Lg’ ), ...,Lgﬁ,) are a special system. Then the following assertions hold true:
(i) When (Z/r)<2em, then d(Ij)(jll, ey Jmm)=0 for each j (1<j<N+1) unless

m .
Jhk ™

<3mMe (L<k<M).

(ii} Each coefficient di[j)(ju, ey JmM) lies in Z and has standard absolute value

(7 (115 -ons rn)| < 27M (6M3).
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This follows at once from Schmidt’s proof in [17, pp. 156-157] upon noting that with
our special system the ng) in (9.6) lie in {—1,0, 1} and upon using the bound for H;(P)
from Lemma 9.1.

The polynomial constructed in Lemmata 9.1 and 9.2 fits well into our special systems
from §§6, 7 and 8. In fact recall that in §8, we study systems of forms, where in view of
(8.9) we really do have just M(N+1) forms. So in the sequel we suppose that ¢>0. We
apply Lemma 9.1 with

t=(N+1)M (9.9)
and with
m >4 2 log(2(N+1)M). (9.10)

For veS, the system L§”), ...,Lg&}) will be just one out of the systems ng), ...,ngl)
we considered in the polynomial theorem. As in §7, ¢;, will be real numbers satisfying
(7.10) and (7.11), i.e.

M
> ew=0, (9.11)
vES i=1
D ciwy| <1 (9.12)

for each subset S’ of S and for any tuple (i(v))pes’ with 1<i(v)<M. Given @>1, let
II(Q) be the parallelepiped (7.12), i.e.

I ), <Q% (veS, 1<i< M),
Ixlle <1 (v€S).
We have minima A; =A1(Q), ..., Ay =An(Q) and we have certain points g1 =g1(Q),

., 8 =gMm(Q) corresponding to the minima as in §§7 and 8. Let V=V(Q) be the
linear form with coefficients in K (determined up to a nonzero factor) that vanishes on

g1, 8M-1-
If V=1 X1+...+vp Xu, we write

(9.13)

Vin=viXp+...+vmXnm (h=1,...,m).
LEMMA 9.3. Suppose that 0<6<1 and that
0<e<8/15M2. (9.14)
Let QQq, ..., Qm be real numbers >1 satisfying

rilog Q1 <rplogQn < (1+€)rilog@r  (h=1,...,m), (9.15)
Av-1(Qn) <Q5° (9.16)
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and

Q4 > 230M—5, (9.17)

Then P has index >me with respect to (Viy)(Q1); -+, Vim)(@m); T)-

Proof. We proceed similarly as Schmidt in [17, Lemma 10.1]. So let us go through
the proof in [17] to check the appropriate changes to be made.
It suffices to show that
PZ(uy,...,u,)=0 (9.18)

whenever Z/r<2em and up, (1<h<m) lies in the grid of points

u=u181(Qn)+..+upm—18m-1(Qr)
where the u; are rational integers having
1<u; <e7)+1. (9.19)
To prove (9.18) we show that

II 1P (uy, . um)llo <1
vEM(K)

As P7 has rational integral coefficients and since the points g3, ..., gax—1 have S-integral
components, we get at once

IT1P*(as, s um)llo < 1.
vgS

Thus, it suffices to show that

T 1PF(us, .y wm)llo < 1. (9.20)
veS

To do so, we use the representation (9.8) of PZ, where we recall that the superscript (j)
stands for the numbering of the system ng ), - L%I). Thus in the current context it will
be convenient to replace it by v with v€S.

As is shown in [17], the coefficients dZ(ji1, ..., jmas) in (9.8) vanish unless

ey m
(Z Jnk IOth> ~r1 log Qlﬂl <rylog@Q1EMme.
h=1
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(It is at this stage that (9.15) is needed.)
With our hypothesis (9.14) on ¢ this implies that

m Ui m
Yy log Q1 (1— %6) < ; JrklogQn < i log (1 (1+ %6) (9.21)
for each k (1<k<M). Suppose first that v€S.

Consider a point up, in the grid. Then (9.13), (9.16), (9.19) imply that

v - o 2M do/d Cry—08d, /d
12 an)llo < (M + 1)1 (Qn)*/4Q5 < (——) Qg

Therefore we get for exponents ji1, ..., jmar Wwith (9.21),

: . 1kt timi)dy /d
I e 2y < (221

ri(m/M)(ery—8dy /d)+r1(m/M)(8/4)|Cv—bdy /d]
x Q1 .

(9.22)

Combining (9.22) with the estimate for dZ (ji1, .., jmar) of part (i) of Lemma 9.2, we see
that for v€ Sy each nonzero summand in (9.8) has ||-||,-modulus

dy/d
< <2mM(6M2)T<2M)T> / r1(m/M)(cro+...A-Cro—Mbdy /d)+r1 (m/M)(6/4) M |ck,,—6d,,/d|.

1

g

The number of summands in (9.8) is <2M", so that

1P (w1, -y )0 < (QmM+Mr(6 M2y (%)TYM (9.23)

9 er (m/M)(cro+...+Caro—Méd, /d)+71(m/M)(6/4) T | leky—6dy /d|
1 .

Next we consider v€Sy. Here we get for exponents ji1, ..., jma such that the cor-
responding coefficient in (9.8) does not vanish in analogy with (9.22), again using (9.13)
and (9.21),

”LI(:) (u ) .. Liv) (W )7 || < qukav/M+(T1m5/4M)|0kul‘

Since the coefficients of PZ lie in Z this implies

HPI(ul, . um)”u < Q;l (m/M){(c1o+...+emv)+r1(m/M)(6/4) ZkM=1 |c;m,|‘ (924)

Combination of (9.23) and (9.24) will give the desired estimate (9.20).
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To do the details let us first consider the exponent of (); in this estimate. As for
the main term we get

M
r1%<Zchv—-M6 Z %”):—rlmé

vES k=1 vES %

by (9.11). As for the error term, we obtain

(%

vES k=1

d M
ckv“é\gvl‘k Z ZICk?Jl)'

v€ESp k=1

Write ¥ for the terms in the parenthesis where ¢y, —8d,/d or cg, are nonnegative.
By (9.12) the contribution of X, to the parenthesis does not exceed M.

Similarly, write X _ for the terms in the parenthesis where ¢z, —éd,,/d or ¢k, are neg-
ative. Again by (9.12) and since §<1 these terms give a contribution not exceeding 2M.

Altogether, we see that the error term in the exponent may be estimated by

m 6
rl—M—-Z(M-i-ZM) < %rlmé.

Now combination of (9.23) and (9.24) gives with (9.15),

H HPI(ulv - um)”v < 2mM+Mr(6M2)r (gsﬁ) _Qi—r1m5/4
veS

< (26M8—1)7'Q1—T1m5/4 < H (26M5—1)7'h Q;Th6/4(1+€)
h=1

m
< H(26Ma‘1Q,:5/5)”‘ <1
h=1

by (9.15) and (9.17), and thus (9.20) follows.

10. A variant of Roth’s Lemma

In our application we need a version of Roth’s Lemma for number fields and in homoge-
nized form. Such a variant has been derived by W. M. Schmidt [16, §VI, Theorem 10B]
with respect to linear forms with rational integral coefficients.

The classical Roth’s Lemma has been extended to number fields by LeVeque [9] as
well as by Lang [8], however they use slightly different normalizations. In our context we
prefer the normalization as chosen in Schmidt [16].
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So we first give an extension to number fields of the classical Roth’s Lemma in the
notation of Schmidt [16, §VI, Theorem 10A].

Let P(X1,...,X,,) be a polynomial with coefficients in K. Given nonnegative inte-
gers iy, ..., iy, We write

B i == — T ;
Brostm g U] X ...oxXwy

Let 71,..., 7, be positive integers, and let (£y,...,&) be an arbitrary point in K™.
We define the Roth Index of P with respect to (£1,...,&m; 1, .., T'm) as follows: If P=0,
we put R-Ind P=+o00. If P#0, R-Ind P is the smallest value of

1 )
_1+ +

o
for which Pil,...,im (61, veey £m)7é0
LeMMA 10.1 (Roth’s Lemma, for number fields). Suppose that
0<d< L. (10.1)

Let m be a fized natural number. Put

2m—1

w=w(m,d) =12-2""(%9) (10.2)
Let r1,...,m be positive integers with
wrpzrp (1<h<m). (10.3)
Suppose that 0<y<1 and let &, ...,&, be elements of K with
hi(€n)™ 2 ha (&)™ (1<h<m), (10.4)
hi(€n)*7 2 2°™  (1<h<m). (10.5)

Further, suppose that P(Xy, ..., Xm)#Z0 is a polynomial of degree <7y in Xp (1<
h<m) with coefficients in K and with

Hy(P)<hy (&) (10.6 )

Then P has R-Ind <9 with respect to (€1, ..., &m;T1s oy Tm)-

Proof. We proceed by induction on m.
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If m=1, we may write
P(X)=(X—£)'M(X) (10.7)

where M(X) has coefficients in K and M (£;)#0. Write f(X)=X—¢&;. Then our defini-
tion of the height H; in §4 implies that

Hi(f) <Hi(fY).

On the other hand we get
Hi(f)=h1(&)

Therefore (10.7) in conjunction with Lemma 4.2 implies
hy (&) Hy (M) <4™ Hy(P).

Combining this with (10.5), (10.6) and using H,(M)>1, we obtain

hy (&) Ry (&)™
and therefore :
— {2w=1.
T

But //r; is the Roth Index of P with respect to (£;;71) and the lemma is true with m=1.
Next suppose that m>1 and the lemma to be shown for m—1. We follow closely
the exposition in Schmidt [16, pp. 142-148]. We consider decompositions

k
P(Xy, ...,Xm)=Z¢j(X1, ooy X 1) (X)) (10.8)

where ¢4, ..., ¢ and ¢y, ..., ¢ are polynomials with coefficients in K. We choose such a
decomposition with k& minimal. Then

E<r,+1, (10.9)

and @1, ..., ¢x as well as 91, ..., ¥ are linearly independent over K. Writing
1 ot tim—1

AI= . i
il ima! 9x8 L 9ximd

7

(1<i<k)

where i1 +...4ipm1 <i—1<k—-1<ry, (by (10.9)), it follows as in [16] that there exist
operators A’ such that

1 -t
-1 axi, 1<i,j<k
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satisfies
W(X1, .o, Xm) =V (X1, ooy Ximn—1)U(Xm) #0,
where )
U(Xm)=det (‘L : i"pJ(Xm))
(-1 axt 1<i i<k
and

V(Xl, . Xm—l) = det(qu&j)l@,jgk.

Notice that the entries in the determinant defining W are of the shape P ;. , j-1- It
follows that the coefficients of the entries are sums of coefficients of P multiplied with
certain binomial coefficients. In fact (9.4) implies that

‘[{171}(]%.1 im_l,j—l) < 2(T1+-..+Tm)du/dH1”U(P) for v € Moo (K)

.....

and moreover

Hl,v(Pil im_l,j—l)ng,u(P) for ’UGM()(K).

~~~~~

The number of terms in P, ;. _, 1 is

L (r141) o (P 1) g2r1H 0 tm,

The number of summands in the expansion of W is kKI<kF—1<k™ <2%™m  We may infer

that
Hl,v(W) < (2krm22(r1+...+rm)k)d,,/dH1’v(P)k

(10.10)
< (28mndo/d, L (P)F for ve My (K),
where we have used (10.2), (10.3). Moreover
Hy (W) < Hyo(P)*  for ve My(K). (10.11)
Combining (10.10), (10.11) with (10.6) and (10.5) we get
Hy (W) < (2% by (60)7)F S ha (§0) 275,
Now, since the variables in V and U are separated, we obtain
We may infer that
H(V < h 2u’yr1k,
1(V) <hi(6) (10.12)

Hy(U) < ha ()27,
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To estimate the index of W with respect to (£1,...,&m; 71, -, Tm) We apply the in-
duction hypothesis to V. More precisely we apply the assertion of Lemma 10.1 with m
replaced by m—1, with 7y, ...,y replaced by kry,...,kr,—1, with J replaced by 11—2192
and with P(X3,..., Xp) teplaced by V(Xy,...,X;m_1). Notice that w(m—1, {59%)=
2w(m,d¥). Now (10.3) and (10.5) are satisfied with w(m, ), hence they are also sat-
isfied for w(m—1, 59?) and with m replaced by m—1 on the right hand side of (10.5).
It is clear that with our new parameters (10.1) and (10.4) are satisfied. The analogue of
(10.6) holds by (10.12). The conclusion is that V (X, ..., Xm—1) has Roth-Index <592
with respect to (£1,...,&m—1;kr1, ..., kTm—1), hence it has Roth-Index <ﬁk192 with re-
spect t0 (€1, ooy Em—1;T1, s Tm—1)- It follows at once that V(Xj, ..., X;m—1), considered as
a polynomial in X, ..., X,,,, has Roth-Index < %kﬁz with respect to (&1, ...,&m; 71y -y Tm)-

Since w(1, 592) >2w(m, V), it follows from (10.12) that U satisfies the hypotheses

1

of Roth’s Lemma with m=1, ¥ replaced by ﬁﬁZ and with r,, replaced by kr,,. Applying

the case m=1, which was already established, we see that U has Roth-Index <%k192

with respect to (&1,...,&m;71, .., Tm). Altogether we may conclude as in Schmidt [16,
p. 146] that W has Roth-Index < 3k9? with respect to ({1, ..., &m;i 1, o0 'm)-

The remainder of the proof now is verbatim the same as in Schmidt {16, pp. 146—
148]. We have only given the details of the first part to ensure that the arguments in
[16], where special properties of the rational integers are used, carry over to the more
general situation of number fields.

Using Lemma 10.1, we may derive an upper bound for the index of a polynomial
P=P(X11,...; X1pm5--; Xm1, -+, Xmp) in our ring R as defined in §8. We obtain:

LEMMA 10.2 (Roth’s Linear Forms Lemma for number fields). Suppose that
0<9< 35 (10.13)
Let m be a positive integer and put
w=w(m,9)=12.2"" (L9 . (10.14)
Let r1,...,7m be positive integers with
wrp 2rhe1 (1<h<m). (10.15)

Suppose that M >2 is an integer.
Let V1, ..., Vi, be nonzero linear forms in M variables with coefficients in K. Suppose
that 0<I'S M ~1, that

H (V)™ >H (W)™ (2<h<m) (10.16)
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and that
Hi(Vi)*F > 28mM-1° (1 < h<m). (10.17)

Let PeR be a nonzero polynomial that is homogeneous in Xp,..., Xnnm of degree vy,
(1<h<m). Suppose moreover that

Hy(P)M=D"  Hy(V;)“n T (10.18)
Then the index of P (in the sense of §8) with respect to (Vi,...,ViniT1,...;Tm) @8

<.

Proof. This may be derived in exactly the same way as Theorem 10B in Schmidt [16,
p. 191] is deduced from Theorem 10A in [16, p. 141]. Schmidt studies a polynomial P with
rationa) integral coefficients and uses the height [P|, the maximum absolute value of the
coefficients of P. Now, if P has relatively prime coefficients (which we may assume), then
[Pl=H,(P). A similar remark applies to the linear forms V1, ..., V;,, under consideration.

In the proof in [16] the following fact is used: Given a linear form V=uv,X;+...4+
vpu X, assume that |v1[=|7|. Then there exists an i with 2<i<M such that [V]<
ha(vi/v1)M=1<[VI™ ', The analogous inequality in our context is

Hy (V) < by (vifo))M L <H (V)M

and in view of Lemma 4.1 we can guarantee such an inequality. As otherwise the proof
of [16] has not to be changed, we omit the details here.

11. Caring for the penultimate minimum

LEMMA 11.1. Suppose that 0<é<1 and that
m>900M*6~? log(2(N+1)M). (11.1)

Put
2m—1

E=$2™(180) (11.2)

Let TI(Q) be the parallelepiped (7.12) with parameters c;, (vES, 1<i<M) satisfying
(7.10), (7.11). Suppose that there is no point h#0 in KM with (8.36) for every tuple
(7 (v))ves in S (cf. (8.14)).
Then the numbers @ with
A-1(Q)<Q™° - (11.3)
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and
2 3 2
QIS >224M (N+1)*mE (114)

are contained in the union of m—1 intervals of the type
QL<Q<QF (h=1,.,m-1). (11.5)

Proof. Suppose the lemma were false.

Let @1 be the infimum of values @ having (11.3) and (11.4). Then @ with (11.3),
(11.4) have Q@>Q;.

If all the values @ with (11.3), (11.4) were in the interval @; <Q<Q¥, the lemma
would be true. So there are @>QF with (11.3). Let Q2 be their infimum and so forth.
We find in this way values @1, ..., Q. with

A—1(@Qr) Q5 (h=1,...,m) (11.6)

and
Qh+1>QE (h=1,’m_1) (117)

We want to apply Lemma 9.3. Put e=§/15M? and choose r; so large that

—1log@
1 m
rN>€ —-—long .
For h=2, ..., m we put
og (1
= 1.

Th=T1 log O, +

Then we get
r1log Q1 <rplog Qn <71log Q1+log Qn < (1+¢€)r1 log Qs (11.8)

and thus (9.15) is satisfied. Hypothesis (9.16) is the same as (11.6).

With our value of &, hypothesis (9.17) is satisfied if Q¢ >23%M.155. M19/6°, but this
is amply guaranteed for by (11.4), (11.2), (11.1). We apply Lemma 9.3 to the polynomial
of the Index and Polynomial Theorem (Lemmata 9.1, 9.2) with t=(N+1)M, i.e. (9.9).
In Lemma 9.1 we need (9.5), i.e.

m>4e 2log(2(N+1)M).
With our value of ¢ this becomes

m>900 M6~ 2 log(2(N+1) M)
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and hypothesis (11.1) takes care of this condition. Thus all hypotheses of Lemma 9.3 are
satisfied. We may conclude that P has index

ind P > me (11.9)

with respect to (V;1)(Q1), .., Vim](@m); t). To get an upper bound for the index, we apply
Lemma 10.2 with 9=£.

Now, with w given by (10.14), the parameter E in (11.2) has E=2/w.

We infer from (11.8) and (11.7) that

Th+1108Qht1 _ 2 7hy1log Qi1 -
(1+e)logQn  E (1+e)logQn =~ F

So (10.15) is satisfied.
As there is no h#0 in K™ with (8.36), we may apply Lemma 8.3. We get

WrE 2w (h=1,...,m-1).

QL <Hi(Vh)<Qn (h=1,..,m) (11.10)

with
)

I=1m+)
provided that (8.16) holds true, i.e. provided

(11.11)

QM—1)8 5 JAM(N+1),

Again (11.4) takes care of this.
Now we obtain with (11.10) and (11.8)

Hi(V)™>Qnr >t > Hi (Vi)™ (h=1,..,m).

Thus (10.16) is true.
As for (10.17), we infer from (11.10), (11.11) and since E=2/w that

H, (Vh)wl" N Q«;:I‘z _ lezr2/E — Qiz/s(N+l)2E > 22m(M—-1)2 ,

the last inequality by (11.4). So (10.17) is satisfied as well.
We still have to check hypothesis (10.18). By Lemma 9.1, our polynomial P has

H;(P) <2™M(3M)" < 23Mm1,
Combining this with (11.4), (11.10), (11.11) we get
H; (13)(M—l)2 < 23M7n’r'1(M—l)2 < 23M3m7'1 < Qgéz/S(N-{—l)zE)n

_ Q562/16(N+1)2)2r1/E _ QriJrlI‘z < Hl(Vl)wrll"



MULTIPLICITIES OF RECURRENCE SEQUENCES 221

which is the desired (10.18).
The conclusion of Roth’s Lemma 10.2 is that the index of P with respect to (V{3)(Q1),
<+ Vim)(@m); ) satisfies

1 ]
ind P9 5 <MipapE = ™e ( )
(the last inequality by (11.1)).

However (11.9) and (11.12) contradict each other and thus the lemma follows.

LEMMA 11.2. Let §, m, E be as in Lemma 11.1.

Let TI(Q) be the parallelepiped (7.12) with parameters ci, (vES, 1<i< M) satisfying
(7.10), (7.11). Given Q, let S(Q) be the subspace spanned by g1=g1(Q),...,Em-1=
gm-1(Q).

Let P

0<n< ;550 (11.13)

Then as Q ranges over values with (7.13), (11.3), (11.4) and moreover
Q> DiM/d (11.14)

S(Q) ranges over less than

m<1+%logE) (11.15)

distinct (M —1)-dimensional subspaces of KM.

Proof. We distinguish two alternatives. Suppose first that there exists a nonzero
point h€e K™ having (8.36) for each tuple (j(v))yes in the set S defined by (8.14). We
want to apply Lemma, 8.5.

So let h#0 be a point with integral components in K satisfying (8.36) and having
minimal [T cq_IIhll1,0-

Hypothesis (8.37) is (11.3), (8.38) is satisfied by (11.3). Moreover we infer from
(11.4) that

Q6/2 > Q52/2 > 212M3 > (2M)6M2,

and from (11.14) we get
Q%2> p2M/d,
Together this gives
Q° > (2M)*M* DR/,

so hypothesis (8.39) holds true as well. By Lemma 8.5, S(Q) consists of points x with
hx=0, i.e. one single subspace suffices.
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If there is no such point h, the hypotheses of Lemma 11.1 are satisfied.

In fact, we may combine Lemma 11.1 with Corollary 8.7. Notice that (11.4) amply
guarantees (8.54). Therefore, as @ runs through an interval (11.5), S(Q) will run through
a set of subspaces of cardinality <1+(4/6)log E. Summation over A in 1<h<m gives
the assertion.

12. Connections between two adjacent minima

LEMMA 12.1. Suppose that 0<6<10M and that
m > 90000 M56~2log(2(N+1)M). (12.1)

Let E be given by (11.2). Let TI(Q) be the parallelepiped (7.12) with parameters c;,, (vES,
1<i< M) satisfying (7.10), (7.11). Suppose that

6
N oo 12.2
0SS 5373 (12:2)
Then for values @ with (7.13),
Q%> D¥M/d (12.3)
Q62/20M2 > 224M3(N+1)2mE (124)
and
A-1(Q) < Q7 Am(Q). (12.5)
S(Q) is among not more than
26M26_Mm(1+f1%]‘—/[- log E) (12.6 )
subspaces of KM,
Proof. For veS define
cy =min{ciy, ..., Cprv }- (12.7)

For ve Sy let v,=7,(Q)<c, be largest such that Q7 lies in the value group of ||-||,. By
(7.13) we have
H Q" < QM.

vESy
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By Lemma 7.5, there exists a nonzero S-integer a€ K with

lafly < Qe (Q(- Twes cwltnpl/2hydu/d (e gy
“a”ngc” (UESQ).

Since our forms L§“), vees L%}) are a special system in the sense of §7, we obtain with the

canonical basis vectors ey, ..., ey in view of (12.7),

IL{” (@)l < Q¢ (Q Twes )ty /24

(12.8)
<Qw(QU Tuwes Wt DIPd/d (4 50, 1<0,j < M),
||L§v)(ae.7)”v<ch chw (UESO’ lglv.] SM) (129)
We infer from (12.8), (12.9) using (7.11), (12.2), (12.3) that
M (Q) QU Twes )t Di/2d < Q2. (12.10)

Again, since we are considering special systems L(”), ...,L(v), any point x€ K™ has a
g sp Y 1 M
representation

2= LY )+ 4L (x) (veS, 1<i<M)
with coefficients ng-’) in {—1,0,1}. It follows that any point x€ K satisfies

¢l < M%/4 max L (x) 1o (v € Seo), (12.11)
Ixllo <max | L ()}l (v € So). (12.12)
Let g; be an S-integral point in K™ corresponding to the first minimum A;(Q) of

II(Q) and assume that (i(v))yes is a tuple where the maxima for g; in (12.11), (12.12)
are assumed. Then we get with (12.11), (12.12) and (7.11),

M(Q) > Q Tves o TT LY ()l > @ Toes e M~ Hy(ga) > Q1M .
veS

In view of (12.4), this implies
M@ > (12.13)

Define the parameter R by

R=[16M3"1]+1 (12.14)
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and divide the interval [—2,2] into 4R subintervals, each of length 1/R and of type

——2+é <x<—2+l+71 (0<I<4R). (12.15)

We partition the set of @ under consideration into
<(4RM (12.16)

subsets as follows: @ and @’ will belong to the same subset if for each i (1<i< M) the
minima A;(Q) and X;(Q’) satisfy

Q—2+li/R < )\’L(Q) < Q—2+(l¢+1)/R and (Ql)—2+li/R < Az(QI) < (Ql)—2+(li+1)/R’

i.e. if log A;(Q)/log Q and log \;(Q’)/ log @’ lie in the same subinterval (12.15).
We now restrict ourselves to values @) that belong to the same subset.

Q—2+li/R < Ai < Q“2+(li+1)/R (1217)
write
Ai=A(Q)= Q—2+li/R' (12.18)
Put
0= (A1 ... Ap—2A3 )M
and

o1=00/A1, ..., oM-1=00/AM-1 but opm=om-1=00/AMm-1.

It is clear that relations (7.27), (7.29) of Lemma 7.8 are satisfied. Moreover our construc-
tion in (12.17), (12.18) is such that (7.28) is true with
1 6
S ATV
We fix v9€ My (K). Then by Lemma 7.8, given @, there is a permutation 7 of
{1, ..., M} such that the successive minima A} of the parallelepiped II'=II'(Q) given by

(12.19)

IS (%)l < 075 @%%  (1<i< M) (12.20)
and otherwise (i.e. for all other places v) as in (7.12) satisfy
D22 MQ Mg\ <N <AMIQMHUDEM TV Mg (1<i<M).  (12.21)

Now the permutation still may depend upon Q). We therefore partition the set of @
under consideration into subsets, such that elements  and Q' in the same subset give
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rise to the same permutation 7. As there are M! permutations of {1, ..., M}, the number
of possible subsets does not exceed
M!. (12.22)

In the sequel we restrict ourselves moreover to elements @ in one such subset. Since
we are studying values @ with (7.13), we may apply Lemma, 7.4.
Accordingly we have

MM . A < (QUDYPHM (12.23)

and the same inequality is true for the product Aj ... \},.
Now by (12.17), (12.18), (12.23), (12.5),

00= (A1 AM_lA?W_l)l/M < (/\1 )\M_2)\%4_1)1/M

_ M- \ VM n pl/2d —6/M
={A1...A\m Nt <Q"D¢Z™Q .

Therefore (12.21) entails with (12.17), (12.18), (12.19),

<4’ QMzCDgM_I)/deM—lAM—l

=4M2QMZCD§?M_1)/2‘1“£Q“")\M )
Ay 7
2 2 2M—1)/2d 1/2d ~— (12'24)
<4M QM CDg{ )Y/ Q"IDK/ Q 6/M+¢

’
M-—1

=4M2Q(M2+1)<+nD;\{4/dQ—6/M < Q—6/2M’

the last inequality by (12.2), (12.3), (12.4), (12.19).
Moreover we get using (12.10), (12.13) and the definition of the A; in (12.18) that

91=A1_190<Q41 QM=A1_\-/[1_190>Q—47
and thus we have
Q*<om<om-1<..<01 <Q* (12.25)

Notice that our construction is such that there exist fized real numbers say f1, ..., fi
such that for each @ in our subset we may write

ei=0:(Q)=Qf (i=1,.,M). (12.26)
Therefore the parallelepiped II'(Q) we obtain in applying Davenport’s Lemma, 7.8 again
is a parallelepiped of type (7.12), defined with fixed parameters, say ¢, (veS, 1<i<M).
Since g1 ... oar=1 we have

M
> d, =0 (12.27)

veS i=1
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On the other hand (12.25) and (12.26) imply that

!
Z ci(v),'u
veS’
for any subset S’ of S and for any tuple (i(v))yes With 1<i(v)<M.

<5. (12.28)

Therefore, we may apply Lemma. 11.2 to be parallelepiped IT’ with Q replaced by Q°.
Then (12.27), (12.28) are the analogues of (7.10), (7.11). As the parameters c;,, for v€Sp
are the same in the definition of II and IT, if we replace @ by @Q° the ¢;, (vESy) are
replaced by Ec;y.

Therefore (7.13) is true with 7 replaced by 7. By (12.24), the analogue of (11.3) is
satisfied with § replaced by §/10M. With these changes (11.13) becomes (12.2), (11.4)
becomes (12.3), (11.1) becomes (12.1), (11.4) becomes (12.4).

The conclusion is that for values ) in a fixed subset, we get less than

m(1+ oM log E) (12.29)
subspaces S'(Q) corresponding to the parallelepipeds I1'(Q). By (12.16) and (12.22)
together with (12.14) we see that the total number of subsets is bounded by
(AR)M. (M) < M =M (71 < 26M §—M
Combining this with (12.29) we may infer that altogether we have less than

26M26_Mm<1+@6M IOg E)

subspaces S’(Q) corresponding to the parallelepipeds II'(Q).

To prove Lemma 12.1, it therefore suffices to show that for each Q) we have the
identity S(Q)=5"(Q). Recall the definition of the forms GE”) (X) in (7.32), (7.33). By
(7.34) any point x€ K™ that satisfies inequalities (7.12) for v¢ S but does not lie in
the subspace Spr—1(Q) generated by g1(Q), ..., gm—1(Q) has

max {max{|G{” (x)|s, ., |G (u}} > 27M Q™MD *orrd.
But by (12.21) and the analogue of (12.23) for A, ..., X}, we get using (12.19) and (7.31),
2_MQ_MCDI_{1/2dQMAM > 2-‘MQ_MC4_M2Q_M2CDI_{1/2dDI}(2M_1)/2d}\;\4
2 _
>2—M-2M Q—zMZcDKM/d(Xl _._XM)1/M
> 2—3M2Q—2MZCDI—<M/d > Q—6/16M_ Q—6/8M. Q—6/16M
— Q—6/4M
(the last inequality by (12.4), (12.19), (12.3)).
It follows that such points x do not lie in @ %/*MII'(Q). On the other hand by

(12.24) we have X}, _, <Q~%/2M_ Therefore the points g}(Q), ..., g);_1(Q) that generate
Shs_1(Q) cannot lie outside Spr—1(Q) and thus Sy, (Q)=Sm-1(Q) as desired.
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LEMMA 12.2. Let II(Q) be the parallelepiped (7.12) with parameters ¢;, (VES, 1<

i< M) satisfying (7.10), (7.11). Suppose that 1<I<M and let $;=51(Q) be the subspace
spanned by g1, ...,g. Put
e=(7)
=1, )

Suppose that

0<6<20L (12.30)
and that 5
<n< . 2.
0<n 64 (12.31)
Let
m > 360000 L6 M26~2log(2(N+1)L) (12.32)
and put
E=12m(180""". (12.33)
Then for values Q having (7.13),
Q° > pier/e, (12.34)
Q52 > 211L5M2(N+1)2mE (12.35)
and
M(Q) < Q™ N\41(Q), (12.36)

the subspaces Si(Q) run through a collection of not more than

goL? (2M)L5-Lm<1+80‘§M logE) (12.37)

I-dimensional subspaces of KM.

Proof. Put k=M—Il. Recall from §7 that C(M,k) is the set of k-tuples o=
{i1<...<ig} of integers in 1 <i< M and define LY and Cov a8 in §7. We apply Lemma 7.9
to the parallelepiped TT(*)(Q).

Denote its successive minima by v4,...,vp. It is clear that in Lemma 7.9 we may
take

1= {M—k+1,M—k+2,..,M}={l+1,1+2,.., M},
Tooy={M—k,M—k+2,..,M}={L,1+2, ..., M}.
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By Lemma 7.9, we have

vi—1 <klA,_, (12.38)
and
Arp SypQUFTDER2d(pyL-19L7 (12.39)

On the other hand we get from (12.36)
Arp_ <Q70N,. (12.40)
Combining (12.38), (12.39), (12.40) we may infer that
vp 1< VLDIL{k/M(k!)LQLkQL?Q—a
and therefore by (12.31), (12.34), (12.35),
vi_1<Q 2y, (12.41)

Our new exponents ¢, have by (7.11),

E Coyv

vES’!

<k (12.42)

for any subset S’ of S and any tuple (0,)yes: with ,€C(M, k). Our goal is to apply
Lemma 12.1. To guarantee the analogue of (7.11), in view of (12.42) we have to replace
@ by Q*. To get the analogue of (12.5), by (12.41), 6§ has to be replaced by 6/2k, whereas
n in (7.13) remains unchanged. M becomes L. The hypotheses in Lemma 12.2 are the
hypotheses of Lemma 12.1 with this change of parameters, where at several instances we
have sharpened the hypotheses slightly to clean up the situation.

The conclusion is that the subspaces S®*)(Q) spanned by the first L—1 minimal
points of I1*)(Q) are contained in the union of not more than (12.37) (L—1)-dimensional
subspaces of K.

Let g1, ...,gm be independent points with g,e A1 (i=1, ..., M). By (7.51), (7.52),
(7.53) the points G, ...,Gr,_, lie in k! )\TL_IH(’“). But with the same argument that
gave us (12.41) from (12.38), (12.39), (12.40) we obtain

k', <Q %2y,

Therefore G, ..., G, _, span S*). Hence there are not more than (12.37) possibilities for
the span of G.,,...,G;,_,. By Lemma 7.11 there are not more than (12.37) possibilities
for the span of g1, ..., 8rp—«k, i.e. for the span of gy, ..., g and hence for 5.
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13. Inning of Lemma 6.1
Consider the parallelepiped II(Q) given by
1L (%) <@ (ve S, 1<I<N), 151)
Ixllo<1 (v¢S).

By Lemma 7.4, using (6.3) and (6.8), we get for the successive minima Aq, ..., An the
inequality
NNV L. (13.2)

In particular this implies that
AN N7 (13.3)

So by (6.5), the solutions x of (6.9), (6.10) are contained in the subspace Sny_1(Q)

spanned by g1(Q), ...,gn-1(Q)-

Given a solution x of (6.9), (6.10) let s be minimal, such that x lies in the subspace
S, spanned by g, ...,g;- Then 1<s<N~1 and by (6.9), A;<Q~%. By (13.3) there is an
I with s<I<N—1 such that ;3 <Q~¥WV-DNV(N-1)),. ;. Suppose for the moment that

Q° >NV, (13.4)

Then we get
N<Q NN . (13.5)

Our goal is to apply Lemma 12.2 with M, L, § respectively replaced by N, (1;[ ) <2V
6/N. Then by (13.5), the analogue of (12.36) is satisfied. As for (12.31), we need

5
ns ———
16N (%)*

and this is certainly true if we require n<627%", i.e. (6.7).
We next choose m as in (12.32). It will suffice to pick m with

m>219.26N-6. N2. N2§5-21og((N+1)27)
and this in turn will certainly be satisfied if
m> 22+ TN g2, (13.6)
Since 6 <1, we may choose such an m with

m < 2B+™N 52, (13.7)
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We next choose E according to (12.33), i.e.
E=12m(180)*""". (13.8)

From (13.7), (13.6) we get

224+7N6—2

logE<m+2.2™ <2 (13.9)

Suppose for the moment that the analogues of (12.34) and (12.35) are satisfied. In
fact suppose that

4N
Q62/N2 > 211.25N'5N2(N+1)2mE. (1311)

Then Lemma 12.2 is applicable. By (12.37) we may conclude that the subspaces S;(Q)
are contained in a collection of not more than

96-22N 2 (2N)2N_1 6‘2N_1 923+7N g—29T9N—1 ,N5-12224+7N6—2
subspaces of dimension !. Summing over ! with 1<I<N -1, we finally see that for values

Q with (13.4), (13.10), (13.11) the solutions x of (6.9), (6.10) are contained in a collection
of not more than

N-26'22N_2 (2N)2N—1 (5_2N—1 223+7N6_2272N_1 -N5_12224+7N6_2

proper subspaces of K%,
And so with a crude estimate we see that

220N§—2

(13.12)

proper subspaces will suffice.
There remains the range of @, where (13.4), (13.10) or (13.11) is violated. We treat
such small values of @ with Lemma 8.6. We apply Lemma 8.6 with M replaced by N.
In Lemma 8.6 the hypothesis (8.44) then is

QO 2 N2/6 > 29
since §<1. By (8.46), values @ with

N2/6 Q< 211-25N-5N2(N+1)2mEN25-’~’ (13.13)
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give rise to not more than
1446 log(11-2°V 5 N2(N +1)2mEN?§"2)

proper subspaces. But by (13.7), (13.9) this number is bounded by

9262, (13.14)
Moreover, the range
4N
max{N?? D}/*} <Q< DN /% (13.15)
by (8.46) gives not more than
94N
1+ %-log —2N62 (13.16)

proper subspaces. Notice that the ranges (13.13) and (13.15) take care of values @,
where one of (13.4), (13.10), (13.11) is violated. Combining (13.12), (13.14), (13.16), we
see that the solutions x of (6.9), (6.10) with @>max{N?%%, D}{/zd} are contained in the
union of not more than

221N6—2

2

proper subspaces of K, and this is the assertion of Lemma 6.1.

14. Not yet the last section

‘We resume the notation of §§2 and 3. Recall that we want to study the equation

k
oft zpa® L. 2P L af ma® .. zied
det | : : | =o. (14.1)
T €z T xz T T
of? mgal® .. zFalt L o zgort .. zhrart

As in §5 we write

o= ( Qg eeey X102y 0eny Dy evey Qpy oney Qe ) = (,81, veey ,Bq) =ﬂ
N N——~ SN——

k1+1 k241 kr+1

with g=k; +...+ky+7. Given x=(z1,...,z,) we had B*=07* ... 3;¢ and for a permutation
o from the symmetric group &, we write 85 = ;‘%1) ﬁ:‘(’q). Then equation (14.1) may
be written as

3 M, (x)B%=0 (14.2)

ceS,

where M, (x) is 8 monomial in z, ..., z4 of degree <¢°.
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Our goal is to manipulate equation (14.2) such that we are in a position to apply
Lemma 6.1. The main difficulty consists in the problem to show that equation (14.1)
leads to a finite number of systems of simultaneous inequalities of the type considered
in §6. In principle such a reduction may be easily achieved, the point however is that we
want the number of such systems bounded independently of the cardinality of the set S.
The following considerations are undertaken with this aim.

Given v€S, we define

Yiv=log||Bill. (1<ji<q). (14.3)
Then we get
]'Og ”1337‘“1) = $17a(1),u+---+$q’)’a(q),v-

Recall that in Lemma 3.1 we are interested in solutions x=(z1, ..., Z4) of (14.1) with
1 <22<...<Zq. (14.4)

For each v€S let 0,€6, be a permutation such that

Yoo (1),v < Yo, (2),v <. You(q),v- (145)

In view of (14.4) and (14.5) we have for each v€S and each permutation c€&,,

$170(1),v+---+xq70(q),v < xl'}’av(l),v+~~~+xq7av(q),v- (146)

Write
N+1=g¢!.

Let 01, ...,0n+1 be an ordering of the elements 0€&,. Using the definition of our set S
we obtain

H “ﬂc’;l b t)J'cN+1||v = 17

vES
and thus dividing by [[,cs 87, |, we get by (14.6),

I
T8, B2yl =Hi((BE - By )7 (14.7)
vES

where the dash in (14.7) indicates that for each v the factor 8%, is omitted. For technical
reasons we prefer to write (14.7) as

’ X X 23 >'d X —1
I l o1 o2 ON+1 _ g2 ON+1
X '—x"...'_’c“" —Hl ((1, T,..., _T‘)) . (14.8)
veES o1 o1 o1 v a1 o1
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As in §4 write S=5,,USp. For 1<j<q we define sets T; and Tp; as follows:

Tooj={(0,7,v) |v €S, 0 €6y, 0 #0,},
Toj ={(0,4,v) |veE Sy, 0 €6y, 0 F#0y}.
We divide Tp; into two disjoint subsets Tp; and Tj;.
The triple (o, j,v)€Ty; will be in T; precisely if
Yo(g),0 ~Yor(i)w =Loj0 20,
ie. if
Botg)

Boy I~
Similarly Tj; consists of the triples (o, j,v)€To; with

=1

Vo) = Vo (v = Fa,j v <0.
We partition To; into two disjoint subsets Ty, ; and T ; as follows:
The triple (o, 7, )eTooJ will be in T}, j prec1sely if

Yo (§)yv ~ Vo1 (30— qN d (Z Z Yo(3)w — 701(]),11;) =Fa,j,v>0;
wWES 0€G,

TH Oy
ie. if (do/d)(1/aN)
’ Bati) /(H' Borg) Bos(g) Pownt) ) L
Bor(i) o/ \yig 1Bor(s) Bon)  Boni) llw

Similarly T ; contains the triples (0,7,v) €T, with

Yo(i),o ~Yor ()0~ (Z Z Yo (5),w 701(3),10) =Fa,j,v <0.

weS o€G,
a;éaw
Given a solution x=(zy, ...,z4) of (14.1) we write for j=1,...,q,
B
meo= I |72
o,v o1(j) v
(0,3,0)ETS;
B
By= 11 |2
o, o1 (j) Hv
(0,50)€Ty;
B (x) = Pols) i) Py Ponin
ooj(x)— H ,ij H ﬂ ,@ ,ij
o a1(3) v/ Nyes Wai(3) Pou(d) a1(4)

(G',j,’l))ETotj

z; T
By,0= ] (’ Pots) /(H i) Py P
= i . o

ov Nz o/ \oesll By Blay — Polii

(‘77.7'{”) ET;,J'

(14.9)

(14.10)

(14.11)

(14.12)

(14.13)

)(du/d)(l/qN)>
w ?
>(dv/d)(1/qN)>
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Notice that our definition (14.13) is such that

H Bg;(%)Bg; (x)BL,; (%) B,;(x) =1. (14.14)

Given x define Q by

Q=H((B3,, B3y, (14.15)
Write
Bii(x)=Q™s, Bg;(x)=Q", BL,(x)=Q"i, Bg,(x)=Q"=s.  (14.16)
Our definitions (14.9)-(14.13) imply that

+ — . — . Tt
Tlo; logQ=1z; § : Lojow= xJFOj’ say,
oV
(o,4)€ET;

n(;j log Q =x; Z FU,j,v = .’I)jF&ja

(28T, (14.17)
MiilogQ=z; Y  To,=z;TL,,

(0,3 w)ET;
Nooj 108 Q =1; Z Lo jo=2;T;

(o‘,J'U)GT

(Relations (14.17) simultaneously define the quantities I'y;, I';, I's.sy oo (1<5<9).)
Our definition of Q in (14.15) implies together with (14.13), (14.14) and Lemma 5.3

that L1
77(_)"3" 7)6]', n:op 77;0; € I:_éaa '83] (1 <J <Q) (1418)
Define the natural number v by
v=242"4. (14.19)

Moreover for j=1, ...,q we define integers lgj and lg; to be least such that

1 _ 1
770]\ 8 +l 770] 8 +l0]V

By (14.18) we have 0<lg;, l5; <v/4q.

Write
1 1 1

&= ~%4 =+lg;=> " o = +l5] (14.20)
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Then obviously by our definition we have

I O
501_; <770] <§gja €0j_; <ng; <&gj- (14.21)
Write . . . .
;j~—55+l+ iy Soei = 8q+l‘;°’ v’
We claim that it is possible to pick integers I3, IS ;, .-y ldqs loq SUCh that
- 4 .
loojs looj € [—L :@H] (1<i<9), (14.22)
+ + 2 - _ 2 . 5
M50 =853l < 3»  IMooj—€ccsl < - (1< <q) (14.23)

and such that moreover
(M0 +101 +1d01 11001 =€y Héo1 —Edo1 —Eoo1) +---
o _ e e ey ~ 1 . (14.24)
+(770j+"10j R/ +"7°oj—£oj_§oj_ 0] —£ooj)| < > (1<ji<9).

In fact, choose I7; such that n% ; —£% ;>0 and such that

1
701 +Mao1 = &1 — €11 < o

Such a choice is possible with
: 1
o1 — €31l < o

Now, if 0, +nl,+n51 =& —&51—&51 is =0 (or <O respectively) pick I ; such that
1—€501 <0 (or >0 respectively) and such that moreover

B _ _ _ 1
761 + M1 +701 F 1001 —&G1 —€d01 —€01 — 1] < s

Such a choice is possible with |75 ; —£5,|<2/v. And so forth. Then (14.22), (14.23),
(14.24) are satisfied. We may infer from (14.14) and (14.17) that

D (g +ng; + 1 +1507) =0.

.
=

Consequently (14.24) for j=g¢ impiies that

D (& +E5 ki HEn) =0. (14.25)

.
—
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Our goal is to construct with the parameters £g;, §y,5 £30js éoo;j

exponent systems e,,
(0€6,, 0#£0,, vES) that are suitable for an application of Lemma 6.1.

For this purpose let us first review the construction we have performed so far. We
first discuss the somewhat special réle played in our context by elements 7g;, 7;, Mao>
N €qual to zero. Then clearly all factors contributing to the corresponding term Bg;(x),
By;(x), BL,;(x) or B ;(x) in (14.13) are equal to 1.

Ifeg. ngj =0, in the sequel we may therefore use the convention that then

I's;
and similarly for n7;. Then in all cases, using (14.3), (14.9)-(14.12), (14.13), (14.17) we
obtain

={5; =0 for each triple (o, j,v) € Ty, (14.26)

1o.5v

I‘ .
R l0g Q=2 T TG Q. (i ET) (1420

and
7.7a g x]: F 1.7'“

0j ~ F+ Ty S T:

j

S

We get similar formulas for To_j-
Moreover, for (o, j,v)€TY,; we have

!Jv

Ty
1-\+ noo‘g log Q 1'] 0,3,v1

(14.28)
Fo‘,j,v + Fa,j,'u +

+ coj T T+ o0}
Fooj Fooj

2 .
< - ((0,5,v) €T5;)

and similarly for T
Given a 4g-tuple (§51, 8015 €501 Eoots -+ Eoqr Eogr Edogr Eoq) We comstruct for each ve S
an N-tuple (eyy), where %0, runs through &,, as follows:

For v€Sy and for o#0, we put
q q

| I,
Cop = Z %5&- + Z ,a v Eog (14.29)
j=1 0y j=1
(0.:)ET; (0,3:0)€T;

Similarly for v€Sy, and o#a, we put

q r.. q r. .
—_ 9,7,V T,J U —
Cov — Z T :o]+ Z T 00j" (1430)
j=1 00] J=1 0]
(U,j,'U)ET;j (Uvj7v)€T;j
As by (14.18)—(14.22) we have not more than
v4e < 929N gdq (14.31)

tuples (§g;, .., €5,;), the numbers of tuples (e,») (v€S, 0€6,\{0,}) in (14.29), (14.30)
does not exceed the bound in (14.31) either.
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LEMMA 14.1. The tuples (eqv), where for each ve S, o runs through G4\ {0} satisfy
the relations

>N eqn=0, (14.32)

<1 (14.33)

for each subset S’ of S and for each choice of elements T(v)€S, with T(v)#0,.

Proof. Using (14.17), (14.29), (14.30), we see that

rs |
)PP z( L G TG 1 )

veES 0€G,
CHO,

q
= (& +E5 b HEny) =0,
7=1

the last equation by (14.25). This proves (14.32).

As for (14.33), we remark that our construction in (14.9)-(14.12), (14.17) and
(14.29), (14.30) is such that e.g. the coefficients I'; ;, /T'g; of &; in (14.29) are all non-
negative. Moreover we have >°_ J)ETs Lojw/T§;=1 by (14.17).

Similar remarks apply to each of {y;, £3.;, &5,; (7=1,...,9)-

We may infer that

Z €r(v),v

veSs’

q
< (I€g 11851+ 1651+ 165,

=1
In view of (14.18), (14.20), (14.21), (14.22) we have max{|{g;|, |£o;; 165051 [€co; |} <1/49

and (14.33) follows.

We now introduce linear forms

LiYi,....Yn)=N1,

(14.34)
Ln(Yi,..,Yn) =Y,

LN+1(Y1, . YN) =Y +..+YyN.

Notice that any N among the linear forms in (14.34) are a special system in the sense
of §7. We get with (14.2) for any solution x=(z1, ..., z4) of (14.1),

L; (MUI (x)ﬁ%‘l ) ( ) ) M., (X),B (7' =1, N) (14'35)
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and
Lyt (Mcrl (x) 37‘1 yeeny MO‘N (X),B:N) = —MUN+1 (x)ﬂ:,-(N+1 . (14'36)

In view of (14.35), (14.36) there is a bijection between the linear forms Ly, ..., Ly and
the permutations oy, ...,0n41 in &,.

Given v€S, assume that under this bijection the form L;, corresponds to the per-
mutation o,. Relabel the remaining N forms from (14.34) as LY (0€6y,0%#0y). Put

1

- 14.
e (14.37)

Given a solution x=(21,...,z,) of (14.1), define @ by (14.15). For v€S, and given real
numbers @ and e, we define the real number &,=¢,(Q, e) by the following property: Q°
is the largest value <Q° in the value group of the absolute value ||-||..

LEMMA 14.2. For each solution x=(z1, ...,x4) of (14.1) satisfying

T1<Z<...<Tg, ;7#0, 1<0,z4>0, (14.38)
|z1 — 24| > 20000 d8¢* N?, (14.39)
there ezists a tuple (esy) from (14.29), (14.30) with the following properties:
The point (1/B8%,) (M, (X)B%,, ..., Mgy (X)B3, )=Y, say, satisfies the simultaneous
inequalities
ILP @)l Q%> ~*%/%  (vE Seo, 0 € By, 0 #04),
ILY (¥))lo Q%+ (vE So, 7E€G,, c#£0y), (14.40)
Iyll. <1 (vg¢S)
with § as in (14.37) and Q as in (14.15). Moreover points x with (14.38), (14.39) have

Q >max{N?/% DY/}, (14.41)

Finally, in (14.40) we have only to consider tuples (e,y) and values Q such that

Z €r(v),v ~Er(v),w

vE€Sp

<6273 (14.42)

for each tuple (7(v))ves, with T(v)€S, where e,(,),,, is defined in analogy with &, above.

Proof. If x is a solution (14.1), then by (14.16) it determines uniquely a tuple
77(-)'_]‘, 7o 77:03', Nooj* Given 773]-, Mo;» n;'o,-, Nooj We choose ES-J, &0 :oj’ €ooj (1<5<q)
satisfying (14.21), (14.23).
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Since the factors I',;,/I'g; and I'sj./Tg; in (14.29) are nonnegative and since by

(14.17),
F J v Fa’ J\v
> — _&hY 1
; I‘+ =1 and ; T,
(0.d)eT; (0,J.v)ETy;

for j=1,...,q, we may infer from (14.13), (14.29) and (14.21) that for any pair ¢, v with
vESy, 0€G,, o#0, we have

Moreover, with (14.27) we see that for any tuple (7(v))yes,, Where T(v)€6,, T(v)#0y,

H Qe‘r(v) R

v€Sp
With v as in (14.19) assertion (14.42) follows from (14.37), (14.44). Moreover, since the
monomial M, (x) is a rational integer, (14.43) implies that

ﬂx
Bz,

ﬂx

01

<Qr. (14.43)

v

we have
1'(v)

l

< QY. (14.44)

v

<Q%.

v

s

By (14.35), (14.36) and the definition of the forms LY, this gives the inequalities
IO W) <Q% (veSy, o€ Sy, 0 F£0y)

in (14.40). The inequalities for v¢S are trivially satisfied.
Now suppose that vES,,. Write

A=TT

weS

X
ON+1

X
o1 o1

b
w

where the dash at the product indicates that for each w, we leave out the term 33 /85,
with 0=0,,. Using (14.13), (14.23) and (14.30) we obtain with (14.28),

Bz

|%

o1

S AG/DAN)Qeovtda/v (e S €6, 0#0y). (14.45)

v

However by (14.7) and (14.15) we have
AN — @-1/16aN? (14.46)
On the other hand, the monomials M, (x) have total degree <q?. Thus

1Mo (x) |0 < max{[z1, |zq [} ®/4 < max{|z1], |£g|}247¢ (v € Soo)-
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With our value of @ from (14.15), we may apply Lemma 5.1 with y=1/4N to conclude
that for solutions x with (14.38) and (14.39) we have

1M ()l < QU/64N /D), (14.47)

Combining (14.45), (14.46), (14.47) and

q__1
v  64qdN?
we get
X
‘ MG(X)%’_ ngau_(l/-?lquz)(dv/d) (/UE SOO? g & 6(17 0‘#0‘,”), (1448)
oy llv

and with § defined in (14.37), this is assertion (14.40) for v€Sq.
As for (14.41), with our value @ in (14.15) and with é in (14.37), the first requirement
is
Hi (B3, By ) > NN, (14.49)

Arguing as in the proof of Lemma 5.1 and using Lemma 4.3 we see that

,6 |z1—z4| 1 |z1—zq
5 B> ((L ) (1)

Consequently, (14.49) will be certainly true if

|1 — 24| >4Nlog N. (14.50)

25 d3
But in view of (14.39), this is amply satisfied. The second requirement in (14.41) is

Hi (B, B, )1 > D% (14.51)

We distinguish two cases:
If D%zd(d"l) <g, then arguing as above, we see that (14.51) will be true if

|1 —x4|16gN
m((g) e

and as above, this will be satisfied if |z —z4|16gN >25d%(d—1)logg.
But (14.39) guarantees much more.
So assume that q<D}</2d(d_1). Hypothesis (2.1) and Lemma 4.4 imply that

H(B1, ..., By) = D244
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thus by (4.7),
¢/?Hy(B, ..., B;) > D24

and therefore
Hi(Br, ..., Bg) > DY@~ 14, (14.52)

On the other hand, by Lemma 4.1 we may assume that

B\
Hl (( 3ﬂ—q>> >H1(;81)~~~918q)
1

and we get

|1 —xq|16Ng
Hy (8%, B5,, )N > H, ((1 g‘f)) > Hy(Br, o By) 2 =5al1ON

In conjunction with (14.39) and (14.52) this yields (14.51) and thus (14.41) is proved.

15. Indeed the end of the proof

Combining Lemmata 14.1, 14.2 with Lemma 6.1, we are in a position, to prove Lem-
ma 3.1. We first treat the small solutions:

There are less than
(218d8¢*N%)2 (15.1)

solutions (my, ..., my) of (3.1) with (3.5) and
max{|my|, [mg|} <200004°¢* N2 (15.2)

For all other solutions (14.38) and (14.39) are fulfilled.
By Lemma 14.1 and by (14.42) of Lemma, 14.2, we get with

1
6= 32gN?2

certain tuples (e;,) (veS, i=1, ..., N) that satisfy hypotheses (6.3), (6.4) and (6.7), (6.8)
of Lemma 6.1. By (14.31) the number of such tuples does not exceed

2294N gda (15.3)

Hypothesis (6.5) of Lemma 6.1 is satisfied by (14.41). The conclusion is that solu-
tions (ma,...,mq) where (15.2) is violated satisfy (6.9), (6.10) for a suitable set of our
tuples (ey).
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By Lemma 6.1, each single tuple (e;,) gives rise to not more than

222”" 10244%N*

proper subspaces of U.

Introducing the factor from (15.3) for the number of tuples and the summand from
(15.1) for the small solutions, we finally see that the number of subspaces to cover all
solutions of (3.1) and (3.5) does not exceed

916q 469 q4q N244929N d4q2221N 1024¢°N* < dﬁq'2227N =ts.

This proves Lemma, 3.1 and hence the theorems.
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