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1. A n  i n t r o d u c t i o n  

We will study equations 
r 

Z f i ( m l c ~ ' ~  = 0  (1.1) 
i=l 

in the variable mEZ.  Here the fi are nonzero polynomials with complex coefficients of 

respective degrees ki (l~<i~<r) and we put  

kl +... +kr +r=q .  (1.2) 

We suppose that  the ai  are nonzero elements of a number field K with 

[ g :  Q] = d (1.3) 

and that  moreover for each pair i , j  with l<~i<j<.r, 

a i /a j  is not a root of unity. (1.4) 

We prove 

THEOREM 1.1. Assume that we have (1.2), (1.3), (1.4). Then equation (1.1) has 

not more than 
d6q2 222sq' (1.5) 

solutions mEZ.  

Results on equations (1.1) have been derived recently in [14] and shortly afterwards 

in [12]. However in both papers the bound for the number of solutions is only "semi- 

uniform", as it depends upon q, d and moreover upon w, which is defined as the number 
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of distinct prime ideal factors occurring in the decomposition of the fractional ideals ( ~ )  

in K.  The main feature in (1.5) is that  now we avoid this parameter w and thus we have 

a completely uniform upper bound for the number of solutions. 

As is well known, Theorem 1.1 has consequences for linear recurrence sequences: 

Let n be a natural number and consider the recurrence relation 

UmWn • V n - - l Um+n- -1  "~-Vn--2Um+n--2 -}- ... -}-l]OUm. (1.6) 

Here we assume that  v,~-l,...,v0 are algebraic numbers and that  v0~t0. We call n the 

order of relation (1.6). We assume moreover that  the initial values u0, ..., un-1 of our 

sequence have lu01+. . .+lun_ll>0.  Let 

G(z) = z ~ - v ~ _ , z  ~-1 - . . . -Vo  = H ( z - a i ) e ,  (1.7) 
i=1  

be the companion polynomial of the recurrence (1.6) with distinct zeros a l ,  . . . , a t  of 

respective multiplicities Q~ (l~i, ,<r).  It is well known that  if (Um)meZ is a linear recur- 

rence sequence, then there is a minimal n and there axe complex numbers u,~-l, ..., u0 

with u0~0 such that  the sequence satisfies (1.6), but no such relation of order <n .  Then 

we have a unique representation 

T 

u m = E g i ( m ) a  ~ ( m e Z )  (1.8) 
i=1  

where the gi are polynomials of degree 0 i - 1  (l~<i~<r). (The actual shape of the poly- 

nomials gi will depend also upon the initial values u0, ..., u,~-l. But this will be of no 

importance in the sequel.) 

For a complex number a, the a-multiplicity U(a) of the sequence (u,~)m~z is defined 

as the number of indices m such that  um =a. Moreover the multiplicity of (urn) is defined 

a s  

U = sup U(a). (1.9) 
a 

The Theorem of Skolem-Mahler-Lech says the following: If  (um),~ez is a recurrence 

sequence with infinite O-multiplicity, then those m for which u,~=O form a finite union 
! 

of arithmetic progressions plus possibly a finite set. A particular consequence of this 

theorem is: I f  a recurrence (1.6) with companion polynomial (1.7) generates a sequence 

(urn) with infinite O-multiplicity, then there exist indices i~t j such that the quotient (~i / aj 

is a root of unity. 

We therefore call the recurrence sequence {Um)meZ nondegenerate if for each pair 

i , j  with l<,.i<j<.r the ratio c~i/aj of the roots of the companion polynomial (1.7) is not 

a root of unity, i.e. if (1.4) is satisfied. 
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For nondegenerate binary sequences (i.e. sequences of order n=2 ) of rational integers 

M. Ward in the thirties conjectured that their multiplicity is bounded by 5. Kubota [6] 

succeeded in showing that in fact the multiplicity of such sequences does not exceed 4. 

Beukers [1] even proved that with five exceptions (which he gives explicitly) nondegen- 

erate binary sequences of rational integers have multiplicity at most 3. 

In the binary case, if the terms of the sequences {urn} belong to a number field K of 

degree d, Kubota [7] showed that the multiplicity is bounded by a constant that depends 

only upon d. Beukers and Tijdeman [3] here established the bound 

U ~ 100 max{d, 300}. (1.10) 

For ternary sequences of rational integers Beukers [2] proved that the 0-multiplicity 

does not exceed 6. 

As for general nondegenerate sequences of order n we first remark that there is one 

very simple case: If the sequence {urn} has a representation (1.8) where the ~i as well as 

the coefficients of the polynomials gi are real, an application of Rolle's Theorem implies 

that {urn} has multiplicity U<~2n (cf. Phlya-Szeg5 Ill, Aufgabe 75, p. 48]). 

Now assume that the roots of the companion polynomial are contained in a number 

field K of degree d. Then by the results of [12] and [14], the multiplicity of a sequence 

of order n has U<.c(n, d, w), where w denotes the number of prime ideal factors in the 

decomposition of the fractional ideals (~i) in K. On the other hand, the natural extension 

of Ward's conjecture says that a nondegenerate sequence of rational numbers of order n 

has multiplicity bounded by a constant that depends only upon n. Notice that the result 

of [12] and [14] in that case gives the semi-uniform bound c(n, ~v). 

Our Theorem 1.1 now implies the conjecture in general. We get: 

THEOREM 1.2. Let (um)mez be a nondegenerate linear recurrence sequence of or- 

der n. Assume that the characteristic roots ~ of the recurrence relation (as defined in 

(1.7)) are contained in a number field K of degree d. Then the zero-multiplicity of the 

sequence (Um )meZ satisfies 
v(o) d n22: sn'. (1.11) 

As for the multiplicity we have 

THEOREM 1.3. Let the hypotheses be the same as in Theorem 1.2. Assume moreover 

that the sequence (Um)meZ is not periodic. Then its multiplicity satisfies 

U ~ d6(n+l)2222s(~+1)!. (1.12) 

For rational sequences these results give: 
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COROLLARY 1.4. Let (urn) be a nondegenerate linear recurrence sequence of rational 

numbers of order n. Then (urn) has zero-multiplicity 

U(0) ~< 2229n'. (1.13) 

Moreover we have 

COROLLARY 1.5. Let (Urn) be as in Corollary 1.4. Assume moreover that it is 

nonperiodic. Then its multiplicity satisfies 

229(n-t-1)! 
V < 2 . (1.14) 

We remark that  Corollaries 1.4 and 1.5 remain true for sequences (urn), whose re- 

currence relation (1.6) has rational coefficients vn-1, ..., vo. 

The method of proof we apply, basically is the method developed in [14]. In [14], 

the main ingredient is my p-adic generalization [13] of W. M. Schmidt's Subspace Theo- 

rem [16] in its quantitative version. In [13], using an integral basis, the Subspace Theorem 

for number fields was reduced to the case, where the variables are taken in Z. If we ap- 

ply such a reduction process to equation (1.1), we loose the feature that  essentially the 

variables we have to consider are powers of the ~i- 

In this paper, implicitly we give a direct proof of the Subspace Theorem for number 

fields that  avoids this reduction. 

The second difference in our current approach is that  in [14], we apply a very general 

version of the Subspace Theorem, where for each absolute value we have linear forms that  

in principle have no link with each other. However in dealing with (1.1) the situation 

is much more special, and here we derive a version of the Subspace Theorem with very 

particular linear forms that  is more suitable in the context of (1.1) (Lemma 6.1). The 

third difference, and this is the crucial part  as far as the uniformity of our results is 

concerned, is that  our method now takes care of the fact that  in equation (1.1) the 

different absolute values we have to consider are connected with each other in an intrinsic 

way (w We derive a version of the Subspace Theorem that  allows it to exploit this 

connection in a much bet ter  way than in the previous version. It is at this point that  we 

get rid of the parameter w. 

2. M a i n  L e m m a  

In this section we give the Main Lemma from which the theorems may be derived. We 

remark that  in the Main Lemma we have a hypothesis that  is considerably weaker than 
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(1.4). We may assume that  r > l ,  as otherwise (1.1) trivially has not more than kl 

solutions mEZ.  Now for r~>2 we assume that  

1, a2/al, ..., a~/al generate a number field K with [K : Q] = d (2.1) 

and that  

there exists a pair i, j with 1 ~ i < j <~ r such that  a~/aj is not a root of unity. (2.2) 

In (1.1) we may suppose moreover, that  for r=2 we have k l + k 2 > 0 ,  since otherwise 

we have an equation of type 

aa~ = ba~. (2.3) 

But by (2.2), (2.3) has at most one solution m. For if (2.3) had two solutions minim2 
then we would get a I"~-m2 __a 2m~-m2 and alia2 would be a root of unity which contra- 

dicts (2.2). Thus in the sequel we may suppose that  

r=2 and k l + k 2 > 0  or r~>3. (2.4) 

We may suppose without loss of generality that  the polynomials f~ in (1.1) have all 

coefficients different from zero. In fact we may reach such a situation by shifting the 

variable m if necessary and considering an equation 

with f~(m)=am~ 
tion (1.1) becomes 

r 

~/;(m)~? = o  (2.~) 
i=1 

Therefore writing fi (X) =aoi +aliX +... +ak~iX k~, equa- 

ama'~ +...+ak~lm k~a~ +...+aora m +...+ak~rm k~a~ = O. (2.6) 

Put  

q=kl+. . .+kr+r and k=kl+.. .+kr.  

We read (2.6) as an equation 

a l  X l -~-. . . -~-aqXq -~ 0 

with nonzero complex coefficients ai and we are interested in solutions 

x(m) = (x~ m), ..., x~ ~))  = ( ~ ? ,  ..., ink1 ~ ? ,  ..., ~ ,  ..., mkr ~ ) .  

Notice that  our assumption (2.4) implies that  q~>3. 

(2.7) 

(2.8) 
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MAIN LEMMA 2.1. Suppose that (2.1), (2.2) and (2.4) ave satisfied. Let T be the 

(q -  1)-dimensional linear subspace of C q defined by (2.8). Then for any finite subset Jr4 

of the set of solutions m of equation (1.1), there exist proper subspaces T1, ...,Ttl of T 

with 
tl <<. q'd6q2 227q' (2.9) 

and with the following property. There is a subset fl41 of f14 of cardinality 

I~i[ ~ (2.10) 

such that the points x (m) with mEf141 lie in the union 0~1 Ti" 

This lemma seems to be weak, but it suffices to deduce Theorem 1.1. 

We proceed by induction on r and k. The cases r : l  and r=2 ,  k=0  are already 

settled. So assume that  either r : 2  and k>0  or that  r~>3. The induction hypothesis says 

that  Theorem 1.1 is true for parameters r ~, k ~ such that  either r~<r or r : r  ~ and k~(k. 

Now let f14 be any finite subset of the set of solutions of (1.1). By the Main Lemma, at 

least one third of the elements mEfl4 satisfy one out of t l  relations, each of the shape 

?. 

Lx--'h(J)'m~i ( )ai(m) (l~<j~<tl)  (2.11) 
i = 1  

where the h~ j) are polynomials with deg h~ j) ~<deg fi. However, since the Main Lemma 

gives proper subspaces of T, and since we had normalized such that  all coefficients in 

(2.6) (and hence also in (2.8)) are nonzero, we may suppose without loss of generality 

that  

degh (j) <deg f~  for e a c h j  ( l ~ < j ~ t l ) .  (2.12) 

But (2.12) implies that  either h (j)-O. Then (2.11) actually is a nontrivial equation 

r ! 

E h, (m)t~, 
i = 1  

with r '  < r. 

Or h(J)~O. Then equation (2.11) is a relation with r~=r but with k~<k. 

In either case, the induction hypothesis says that  each relation (2.11) has not more 

than 
d 6 ( q - 1 ) 2  222s(q-1)!  

solutions m. 
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Allowing a factor tl  for the number of relations (2.11), we see that  

~IMI ~< IM~I < t1d6<q-i)222~8r 

and therefore 

I.M I ~< ~q~2 2~8~' . (2.13) 

As (2.13) is true for any finite subset of the set of solutions of (1.1), Theorem 1.1 follows. 

Theorem 1.2 is a simple consequence of Theorem 1.1. The parameter q in Theo- 

rem 1.1, in view of (1.7), (1.8) now becomes Q l + . . . + p ~ = n  and thus the assertion follows 

at once from (1.5). 

As for the proof of Theorem 1.3, by Theorem 1.2 it suffices to consider equations 

U m : a  with a r  

Let us first t reat  the case r = l .  Then in view of (1.8) we ask for solutions m of an 

equation 

g(m)a m =a (2.14) 

where g is a polynomial of degree n - 1 .  Applying Rolle's Theorem to the function 

g(x)~(x)(aa)  x - a a  

of the real variable x, we see that  for n~>2, (2.14) has not more than 2 n - 1  solutions m. 

There remains the case n = l .  Then c~ is not a root of unity, as we suppose that  our 

sequence is not periodic. Since however for n=l  the polynomial g is constant, (2.14) 

cannot have more than 1 solution m. Thus for r=l  we have U(a)<~2n-1. 

Next suppose that  r >  1. Since (urn) is nongenerate, we may suppose without loss of 

generality that  ~ is not a root of unity. By (1.8), the equation um=a may be written 

a s  

g l ( m ) ~ F  +.. .  +g~ ( m ) ~  - ~ .  1 ~ = o. (2.15) 

The characteristic roots ~ and 1 in (2.15) guarantee that  we may apply the Main Lemma. 

The subspaces we get may be chosen such that  their defining equations do not contain 

the term a. 1 m. So they will be of the shape 

(J) m gi (m)ai  = 0  ( l ~ j ~ t l )  (2.16) 
i = 1  

with polynomials g}J) having deg g}J)~deg gi and not all identically zero. The number 

of solutions of (2.16) may be estimated with Theorem 1.2. So, similarly as in the proof 

of Theorem 1.1, we get for any finite subset J~4 of the set of solutions m of (2.15) the 

estimate 

�89 ~< iMxl ~<t~.~n=2 2=~"' 
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In the context of (2.15) we have 

tl ~< (n+l)d6('~+l)2227(n+~)'. 

So we obtain 

I.Mt ~ d6(n+1)2222s(n+l)! 

and Theorem 1.3 follows. 

For the proof of Corollaries 1.4 and 1.5, it suffices to remark that  a sequence of ratio- 

nal numbers Um satisfies a recurrence relation (1.6) with rational coefficients. Therefore 

the roots a l ,  ...,C~r of the companion polynomial (1.7) in that  case generate a number 

field K of degree [K: Q] ~<n!. Corollaries 1.4 and 1.5 follow at once from the assertions 

of Theorems 1.2 and 1.3 respectively with d replaced by n!. 

In the next section we will further reduce our assertions, to arrive at a formulation 

that  is more suitable for a direct application of the Subspace Theorem. 

3. Introducing determinants 

With the notation of w let x (m) be a solution of (2.6) (or what is the same of (2.8)). 

Recall the definition of q in (2.7). It is clear that  any q solutions x (m~), ..., x (m~) of (2.8) 

are linearly dependent. We conclude that  any q solutions ml ,  ...,mq of (1.1) yield a 

solution of the determinant equation 

x~ ml) 

x~ ml) 

1) 

x(q~) 

--0. (3.1) 

Expanding the determinant in (3.1) and writing 

N + l = q !  (3.2) 

we get an equation 

where z= (z l ,  ..., ZN+I) 
are the summands in 

x (ml), . . . ,x (mq) in (3.1). 

Z 1 -'~-... + Z N +  1 : -  O, (3.3) 

is the vector in (N-i-1)-dimensional space whose components 

the Laplace expansion of the (qxq)-determinant with rows 
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LEMMA 3.1. Suppose that q>~3. Let U be the N-dimensional linear subspace of 

C N+I defined by (3.3). There exist proper subspaces U1, ..., Ut2 of U with 

227N 
t2 ~< ~q2  (3.4) 

and with the following property. Any solution z=(z l ,  ..., ZN+I) of (3.3) arising from 
solutions x(ml),...,x(mq) of (2.8) such that 

m l < m 2 < . . . < m q ;  mir  m l < 0 ,  mq>O (3.5) 

holds true, is contained in the union 

t2 
Uvi. 

i = l  

Suppose for the moment Lemma 3.1 to be proved. We proceed to deduce the Main 

Lemma. 

So let .h4 be a finite subset of the set of solutions m of (1.1). We may suppose 

without loss of generality that  

I.A4t/> 3q 2 (3.6) 

as otherwise the Main Lemma is trivia]. 

Now there exists an integer mo such that the set Ad- ={mEA/[ I m<mo} and the set 

Ad+={mEfl41 m>mo} each have eardinality i> �89 By (3.6), using the transformation 

m~-~m-mo we may suppose that m0=0 and that J~+={mEfl4 Ira>0}, M- ={mE.A4 l 

m<0}. Moreover mo may be chosen such that in the shifted equation (1.1) as given 

by (2.5) all the coefficients of the polynomials f/* are nonzero. Using Lemma 3.1, we 

now may prove in exactly the same way, as was done in [14, Lemma 4.1] (cL also [15, 

Lemma 4] and [15, w that there are q.t2 vectors (a~ j), ..., a (2) (l<.j<.qt2) such that 

for each j the coefficient vector (al, . . . ,  aq) in (2.8) and (a~ j), ..., a (j)) are nonproportional 

and such that moreover the following is true: 

Either each solution x (m) of (2.8) with mE.A4- or each solution x (m) of (2.8) with 

mEA4 + satisfies one at least of the equations 

a(j)~(m)_~ _l_,( j )a . (m) = 0 (1 <~ j <. at2). (3.7) 1 ~i  - - ' " - - ~ q  ~q 

The equations (3.7) define the subspaces TI, ...,Ttl in the Main Lemma. We put 

t l=qt2  (3.8) 

and the Main Lemma follows. 
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The deduction of the Main Lemma from Lemma 3.1 is the same as in [14] the 

deduction of Lemma 4.1 from Theorem 1.4. As the corresponding considerations are 

given in detail in [14] and [15] we restrict ourselves here to a sketch of the proof. 

In fact each of the subspaces Ui of Lemma 3.1 is defined by a linear equation, say 

(0 (~) (3.9) b 1 Zl-[-...q-bN+iZN+l =0, 

where the coefficient vector (b~ i), ..., b~)+l) is not proportional to the coefficient vector 
(i, ..., i) of equation (3.3). 

Now as was shown in [14] and [15], (3.9) may be interpreted as a multi-linear form 

in the vectors x (ml), ...,x(mq ) of U making up the components of (zl, ...,zN+l). Write 

Fi (x(ml) , . . . ,x  (mq)) for this q-linear form. As was shown in [14] and [15], Fi does not 

vanish identically on the ( q -  1)-dimensional subspace T of K q defined by equation (2.8). 

Thus the solutions x of (2.8) for which Fi(x, y2, ...,yq) vanishes identically in 

y2 , . . . , yqEV are contained in a proper subspace of Ti of T. So we may distinguish 

two cases: either for each mEAd-  some Fi (x  (m), Y2, ...,Yq) vanishes identically. 

Then (taking into consideration all subspaces Ti) we may conclude that  in fact for 

each mEAd-  one at least out of t2 equations of type (3.7) is satisfied and we are done. 

Otherwise, we may pick rnl <0  such that  none of the t2 forms Fi vanishes identically in 

Y2, ...,yqET. Then the set of x E T  such that  for some i, Fi(x(mi),x, y3, . . . ,yq)  vanishes 

identically in Y3, ..., Yq ET again is contained in the union of proper subspaces Ti of T. 

Either there exists a solution m2 of our original equation such that  for each i, 

Fi(x(ml), x(m2), Ya, ..., Yq) is not identically zero, or we may conclude that  2t2 subspaces 

suffice to cover all solutions. 

Finally suppose that  ml ,  ..., mq_l are chosen. Then any solution m > 0  has 

Fi (x  (m~) , x ( ~ )  , ..., x "~-~) , x (m)) = 0 

and consequently qt2 proper subspaces of T suffice to cover the solutions of (2.8) with 

either m E A 4 -  or mEA/[ +. 

The remainder of the paper concentrates on the proof of Lemma 3.1. The main part 

will consist in adjusting the machinery of the quantitative p-adic Subspace Theorem. 

4. R e v i e w  o f  h e ig h t s  

Let K be a number field of degree d. Let M(K) be the set of places of K.  We write 

Moo(K) for the set ofirdlnite places and Mo(K) for the set of finite places of K.  Through- 

out the paper S will be a finite subset of M(K) containing Moo(K). We shall denote 



MULTIPLICITIES OF RECURRENCE SEQUENCES 181 

by S ~  the set of infinite places in S and by So the set of finite places. For every place 

vEM(K) we define an absolute value 0]-IIv as follows: 

If vic~ we put IIxilv=lXl d'/d, where I" iv denotes the standard absolute value on Kv, 

the completion of K with respect to v and where dv is the local degree [Kv:Qv] =dv. 
If vlp , where p is a rational prime number, we normalize II" IIv by [[Pllv =p-dv/d where 

again dv is the local degree. 

Given a vector x =  (Xl, ..., XN) E K N we put 

(]xll2+...+lXN]2) d'/2d if v l~ ,  

Ilxllv= max{llxl l lv, . . . , l iXNlIv} if rip, 
(4.1) 

and we define the height 

H ( x ) =  H IIxllv. (4.2) 
vEM(K) 

Moreover for a subset T of M(K) the T-height is defined as 

HT(X) = H IIx41v. (4.3) 
vcT 

Given an element xEK, we put 

h(x)=H((1,x)) (4.4) 

and we define hT(x) analogously. At some instances we will prefer another height, which 

takes the maximum norm also for the absolute values II" liv with vloc. For vEM(K) write 

IIxlll,v = m x{llxlllv, ..., tlxNilv} (4.5) 

and put 

H i ( x ) =  H Ilxlll,~. 
vcM(K) 

Define H1,T(X) and hi,T(X) similarly. 

It follows at once from (4.1), (4.2), (4.5), (4.6) that  

(4.6) 

N-1/2H(x)<~Hl(x)<~H(x) and N-1/2HT(X)<~H1,T(X)<~HT(X ). (4.7) 

Given a polynomial f with coefficients in K, we define the heights H ( f ) ,  Hi  (f)  etc. 

as the heights of the vector of coefficients of f .  
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LEMMA 4.1. Suppose that M ~ 2 .  Let X: (X l , . . . ,XM)EK M 

Then there exists i with 2 <~ i ~ M such that 

( Xi )M--1 
Hi(x) hl, j . 

be given with x150.  

(4.8) 

Proof. By the product formula, (4.5) and (4.6), 

H i ( x ) =  I I  max Hx~]t'= Y I  max llx~ll 
l~i~M I ~ i ~ M I I  X 1 IIv 

vEM(K) veM(g) 
M M M 

~ < H  H max{ l ,  ) 
/=2 vEM(K) i=2 i=2 

and (4.8) follows. 

LEMMA 4.2. Let f and g be polynomials in K[x] with d e g f  +degg=r.  Then 

H1 (f)H~ (g) <~ 4rH~ (fg). (4.9) 

This is a special instance of Proposition 2.4 of Lang [8, p. 57]. 

LEMMA 4.3. Let K be a number field of degree d. Suppose that aEK* is not a root 

of unity. Then 
h l (a )>l -~  1 

2 0 d 3 .  (4.10) 

This is a well known consequence of the result of Dobrowolski [5]. 

LEMMA 4.4. Let K be a number field of degree d> 1. Let DK be the absolute value of 

the discriminant of K.  Let al , ..., aN be elements in K such that 1, al , ..., aN generate K.  

Then we have 
r) 1/2a(d-1) (4.11) H((1,  a l ,  ..., aN)) >1 ~ g  

Proof. Assertion (4.11) essentially is a special case of Theorem 2 of Silverman [19]. 

Actually Silverman uses the height H1((1, a l ,  ..., aN))  and obtains the lower bound 

(r) l/2d/-/"~1/(d-1) (4.12) ~ K  /v~*] 

But a closer look at the proof in [19, pp. 397-398] shows that at one point Silverman 

estimates a determinant with Hadamard's  inequality, which involves the Euclidean norm 

of the row vectors of the matrix under consideration. He then replaces the Euclidean 

norm by the maximum norm. It is at this point, where the term x/d in (4.12) originates. 

If we use the height H instead o f / / 1 ,  it may be seen at once that  we can omit the 

term x/d. 
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5. Encore  heights  

Let  a l ,  ..., Olr be as in w Let K be the number field generated by 1, a2/OO, ..., a r / a l .  By 

homogeneity, we may in fact Suppose that  al, . . . ,arEg and that  a l ,  . . . ,a t  generate K.  

Assume that  

[ g :  q]  = d (5.1) 

and that  moreover at least one of the ratios ai/aj (l<~i<j<~r) is not a root of unity. 

Without toss of generality, we will suppose throughout that  

at~a1 is not a root of unity. 

Consider the determinant 

a ~  x ~ p  ... xlk~l ~ ... ~ 1  x ~  

~]gl t~ xq  Xq Xq O i l  q XqOL~ q . . . .  q ~ I  . . .  O~r XqOLr 

where we have 

(5.2) 

xkr  ~ x q q t~r 

(5.3) 

kl+...+k~+r=q and k= max ki, (5.4) 
l~<i4r 

x i e Z \ { 0 } ,  X l < O ,  Xq~>O, X l < X 2 < . . . < X q .  (5.5) 

Write 

= (71, 'C %' ?2, ..~, ~ ,  ..., 7~,  ..~, %) = (~1, ..., &) =/3. (5.6) 
kl-t-1 k2+l k~+l 

For a permutation a of the set {1, ..., q} we let/3~ be the vector with components 

(~(1), ~(2),  ..., Ha(q))- Moreover given x =  (xl,..., Xq) we write 

~x = ~ ... ~ q  (5.7) 

X __ ~I Xq (and accordingly/3~ -/32(t) ... fl~,(q)). 
written as 

With this notation the determinant (5.3) may be 

E M~ (x) f~  (5.8) 
a~6q  

where ~q is the symmetric group and where Ma(x) is a monomial in Xl,...,Xq with 

coefficient i l  and of total degree ~qk (cf. (5.4)). 

Throughout the remainder of the paper S will be the set of archimedean absolute 

values of K together with those nonarchimedean ones I1" IIv for which 

IIc~illvr for s o m e i ( l < i < r ) .  

An element a E K is called an S-integer if H ally ~ 1 for each v ~ S, it is called an S-unit 

if HaHv=l for each v~S. In particular the elements f~a x are S-units. 
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LEMMA 5.1. Suppose that X:(Xl, . . . ,Xq)EZ q has 

X 1 ...Xq #0,  X I < x  2 <...<Xq, 

Let 7>0 be given and assume that 

X 1 < 0, Xq > O. 

ma,x{Ix l, Ixql} > 625d6q4"Y -2. 

Then the point ( ~ x ) ~  satisfies 

Hl((fT~)~e6~) ~ i> max{Ix1], Ixd} 

(5.9) 

(5.10) 

(5.11) 

Therefore we get 

~ x  2 = ( aq ) x l - x q  

a-11/ " (5 .12 )  

Write X=max{Ixl  h Ixql}. Using Lemma 4.3 and (5.2), we see that (5.11) will be true if 

1 ~ x  2 
1 + 2-0--~) >iX q 

and this will certainly be satisfied if 

7X" 2-~d 3/> 
q2X1/2  ' 

i.e. for X ~625d6~t-2q a as asserted. 

But (5.6) and (5.7) imply that 

x x gi((flx)~eeq) ~. Hi ((fit~,, ft~2)) =H1 1, f7~1 ) ) .  

Proof. Let al be the permutation that in the Laplace expansion of the determinant 

(5.3) corresponds to the main diagonal. Let if2 be the permutation where again we go 

along the main diagonal, except that the element in the top left corner is replaced by the 

element in the bottom left corner and the element in the bottom right corner is replaced 

by the element in the top right corner. Then, we get 
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LEMMA 5.2. Let v be a permutation of {1,...,q}. Then for any i with l<~i<~q we 

have 

H1 ((f~,)~e~q)/> H1 ((1,/3~i~----!) ))'Xl-Xq'. (5.13) 

Proof. The assertion is clear for T(i)=i. Otherwise it may be proved with the same 
argument that led in the proof of the preceding lemma to (5.12). In fact (5.12) is the 

special case i=1, T(1)--q of our assertion. 

LEMMA 5.3. Suppose that X=(Xl,...,Xq)EZ q satisfies (5.9). Let ~ e { ] ~ l , . . . , ~ q }  be 

given. Let T be a subset of S. Suppose that for each vE T  we are given a subset Tv 

of | Then for any j with l <~j~q we have 

Ul ( (~x)aEGq )-q' <~v~r v - ~ -  v ~ u l  ( (~x)o'EGq) q'* 

Proof. Let II + be the product over terms [ lf l :~j) /~ IIv ~> 1. It is clear that all such 
xj xj  terms contribute to 1-Le~q H1((1, Z:(j)/Z )). Thus by Lemma 5.2 and by (5.9) 

H + ~< g l ( (~X)~es , )  q' 

and the right hand side of (5.14) follows. 
xj z j  Let II- be the product over terms H/~:(j)/Z H,<I. Since l lves  H/3:~j)//3zj Hv--1 and 

1 x9 xj Hi(( ,~:( j) /~ ))=Yivesmax{1, x~ ~ I[~(j)/f~ ]Iv}, it follows that 

H rain{l, II~:~j)//~ ~j llv} = H1 ((1, f~J /~x~ ~-1  
v6S 

and again by Lemma 5.2, we may infer that 

II- ~> H1 ((f~)~ee~)-q! 

and the left hand side of (5.14) follows as well. 

6. L inear  subspaces 

Suppose that N~>2. Consider the set of linear forms in X=(X1,  . . . ,  XN) given by 

L1 (X) = X1, 

LN (x)  ---- XN, 

LN+I (X) ---- Xl +...-~XN. 

(6.1) 
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Assume that  K is a number field of degree d. We suppose that  for each yES, we 

are given a fixed system of N different forms L~')(X), ..., L~)(X)  out of the N + l  forms 

in (6.1). As there are N + I  choices for such a system, we obtain a partition 

such that  we have 

S = S (1) U...US (N+I) 

L~v)(X).= L~J)(X), 

: (6 .2 )  

L (~) (X) .= L ~) (X), 
say, for each yES(J), i.e. elements v in a set S (j) give rise to the same set of linear forms. 

We suppose moreover that  for each yES we are given an N-tuple ely, ..., eNv of real 

numbers such that  the following conditions hold true: 

N 

Z =o, (6.3) 
yE S  i = l  

v~es, ei(,),~ 4 1 (6.4) 

for each subset S p of S and any tuple (i(v))~e5, with l<~i(v)<~N. Moreover we suppose 

that  0 < 5 < 1  and that  Q > I  has 

Q > max{N 2/5, D1K/2d}. (6.5) 

For vESo we define real numbers ~i. (i=1, ..., N) as follows. Let G~ be the subgroup 

of the multiplicative group of positive real numbers consisting of values taken by the 

absolute value II" IIv on K*, i.e. 

Gv={xl3yeK*, Ilyll~=x}. 
Given Q, let r be such that  

Q~*v is the largest element in Gv having Q6~. ~< Qe~.. (6.6) 

Put  
= 5 . 2  - 5 N  (6.7) 

and suppose that  

H Q ~ - ~  ~< Q" for i---- 1, ..., N. (6.8) 
vESo 

Now consider the simultaneous inequalities 

]IL~V)(x)iiv <~ Q ~v-~'d€ ( v e S t ,  i = l , . . . , N ) ,  (6.9) 

IIL~V)(x)l],<Q ~" (yeS0 ,  i - -1 ,  ..., N), (6.1o) 
Ilxllv ~< 1 (~ r 8). 
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LEMMA 6.1. Let S be given as above. Suppose that for each vES  we have linear 

forms L~v),...,L(~ ) as in (6.1), (6.2). Assume that the tuples (eiv)ves, l,<i,<~ satisfy 

(6.3), (6.4). Let 0 < 5 < 1  and suppose that ~ is as in (6.7). Then as Q ranges over values 

satisfying (6.5), (6.6), (6.8), the solutions x E K  g of the simultaneous inequalities (6.9), 

(6.10) are contained in the union of proper linear subspaces U1, ..., Uta of K N with 

t3 ~< 222~N6-2. (6.11) 

It is clear that  Lemma 6.1 is a disguised version of the p-adic generalization of 

W.M. Schmidt's Subspace Theorem in diophantine approximation. The main saving we 

get in (6.11) as compared with the earlier version in [13] relies on the fact that  our forms 

are taken from the set in (6.1). A considerable saving also comes from hypothesis (6.4), 

which at first glance might seem to be only of technical nature. 

We will give the proof of Lemma 6.1 in w167 7-13. 

7. Line  u p  of  fac ts  f r o m  t h e  g e o m e t r y  o f  n u m b e r s  

Given k with l<<.k<~N we denote by C(N, k) the set of k-tuples 

a = { 1  ~ i l  <i2  < ... < ik  ~<N}. 

Write 

For a={ i l< . . .< i k }eC(Y , k )  and yeS ,  we define for our linear forms L ? ) , . . . , L ~  ) in 

(6.2) new forms L(')(X(k))=L(~)(X1, ..., XM) by r ( ' ) - - r ( ' ) ^  ^ r ( ' )  

We remark that  in view of the special structure of the matrix of L~ "), ..., L ~  ) we 

have: 

det((n(v))aeC(N,k)) ---- +1. (7.2) 

The coefficient matrix of the forms L (v) (aeC(N,  k)) contains only entries +1 and so 

does the inverse matrix. In the sequel, to recall this fact, we will speak of a "special" 

system. To avoid heavy notation, in the sequel we will write L~ "), ..., L ~  ) instead of L (v) 

(aeC(N,  k)). Only in contexts where this origin is of importance we will refer to the 

notation L (') . 

Let KA be the addle ring of K.  Elements of KA will be written as x = ( x , ) =  

(xv)veM(K), such that  x ,  is the v-component of x. We define the Haar measure on KA 

in the same way as Bombieri and Vaaler [4]: 
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If vEMo(K) we let fly denote the Haar measure on Kv normalized so that  

f v(ov) = l179vl[v , (7.3) 

where Ov is the ring of integers of Kv and / )v  is the local different of K at v. 

If vEM~(K) and Kv=R we let ~v denote the ordinary Lebesgue measure on R. 

If vEM~(K) and Kv =(3 we let f~v denote the Lebesgue measure on the complex plane 

multiplied by 2. 

Write 

~ :  11  ~v. (7.4) 
vEM(K) 

Then given our subset S of M(K) , /~  determines a Haar measure on Ylvcs Kv • rivets ov  = 

/(:, say. We let V be the unique product measure o n  K~ M determined by/3. 

Suppose that  vEMo(K) is given with v/p. Write ev for the ramification index of v 

over p and fv for the residue class degree of v over p. Recall that  we have 

dv =evfv. (7.5) 

LEMMA 7.1. Suppose that Q > I  and that cER.  Assume that vEMo(K) has v/p. 
Let A={xEKvilixtiv<~QC}. Then we have 

f~.(A) --pl  gllz)vll / , 

where g is the largest integer such that pSvg <<Qcd. 

Proof. Recall that  ]l" ]iv is normalized such that  liPilv=p -dv/d. 
Choose a prime element 7r of Kv. Then in view of (7.5) our normalization implies 

that  

I1~11~ =p-yo/d. (7.7) 

Let R be a complete system of representatives of the residue class field. Then the elements 

y E Kv may be uniquely expressed in the form 

y= E a~,Tc~ (7.8) 
V ~ T  

where a~ER, r is an integer and a~r In view of (7.7), (7.8), it is clear that  A consists 

of the elements y, whose expansion (7.8) starts at an index r with 

p-rfv/d ~ QC. (7.9) 
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Let roEZ be the smallest value r for which (7.9) is satisfied. 
--1 

Suppose first that  ro~<0. Then A consists of the numbers x=~=roa,~r~+(~ with 

a~ E R, ~ E Or. Therefore A consists of the translates of (.9v of the shape ~ l r o  a~Tr" + Or. 

As R contains pf- elements, we get p-~Ofv such translates. As any two such translates 

axe disjoint, the assertion follows from (7.3) with g=-ro. 
K-~ro -- 1 

Next suppose that  ro > 0. Then the elements of Ov may be written as z_,v=o a~ 7r~-t-c~ 

v ' r ~  a~Ir~+A of A, where with a~ ER and c~EA. Thus Ov is the union of the translates z_,,=0 

the a ,  run through R. The number of translates is pro.f,. Therefore 

pr~ ) = & ( O , )  = II~. II~/2, 
and the assertion follows again with g=-ro. 

We now fix M as in (7.1) and consider for each yES our special system of linear 

forms L~' ) (X) , . . . ,L~)(X) in X=(X1,...,XM). 
For i with l<~i<~M and for yES, let C/v be real numbers with 

M 

Z :0, (7.10) 
yES i=l 

v~,c i ( . ) , ,  ~< 1 (7.11) 

for any subset S' of S and for each tuple (i(v)),Es, with 14i(v)~M. 
Given Q > I ,  we denote by II(Q) the subset of ] ( :U defined by the inequalities 

[[L}~)(x)I[~<Q c~" (vES,  I~<i~<M), (7.12) 
Ilxll~ 1 (v ~ S). 

We call I I=II(Q) a parallelepiped in/C M. 

We assume moreover that  for vESo and each i (I~<i~<M) there exists a real number 

~/iv~civ such that  Q~- lies in the value group Gv of ]]'Iiv and that  for some fixed y > 0  

we have 

I~  QC~,--~, <~QU for each i with l<~i~M. (7.13) 
vESo 

L E M M A  7.2. The volume V(H) of the parallelepiped defined by (7.12) satisfies 

(Q-d~?2rl+r27rr2DK1/2) M < Y(II) < (2r1+r27rr2DK1/2) M, (7.14) 

where rl and r2 respectively are the number of real and complex places of K and where 
DK is the absolute value of the discriminant of K. 

Proof. For vEM~(K) and K~---R we have 

t3v( {x E g ,  I IIxll, ~< Q~}) = 2Q dc. 
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For vEM~(K) and Kv=C we get 

~,( {x E K~ l ltxJJv ~<QC})=2rQdc. 

For vEMo(K), we get by Lemma 7.1, 

~ ( { z  �9 K~ I Ilxll~ -< QC}) =p~~ I1~/2 -< Qd~ll~ I1~/2. 

Combining these inequalities with (7.12) and (7.10) we obtain 

M 

V(II) <~ 2(r'+r=)M:cr2M H H Qdc'" H II vvllVd/2 
vESi=l vEMo(K) 

= 2(rl+r2)MTrv2MDK M/2. 

On the other hand (7.13) implies that  

M M 

vESc~ i = 1  i = 1  \ vESo 

= 2(rl+r2)M~rr2MDKM/2Q-Md~ 

and the assertion follows. 

Following Bombieri and Vaaler [4], we introduce a scalar multiplication by real num- 

bers on KA: Given x E K A  and (~ER we let a x  be the point y E K A  with components 

Yv = ~xv if v E Mr162 (K), 

yv=xv if vEMo(K). 

With this scalar multiplication, we define successive minima of H(Q). For each integer i 

(I~<i~<M) let 

Ai = min{A > O]AII(Q)MKMcontains i linearly independent vectors}. 

For each i, we associate with Ai a vector giEK M with giEAiH and such that  gl ,  ..-,gi 

are linearly independent. 

LEMMA 7.3. The successive minima of H satisfy the inequality 

2dM~rr2M 
( M!) rl ( (2M)!)r2 DM/2 <. (A1 ... AM )d V(II) • 2 dM. (7.15) 

This follows at once from Theorems 3 and 4 of Bombieri and Vaaler [4]. 
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LEMMA 7.4. Assume that we have (7.13). Then the successive minima of H in 

(7.12) satisfy 
M -dM • (A1 .-. AM) d < (Qd~D1K/2)M. (7.16) 

Proof. This follows from combination of Lemmata 7.2 and 7.3. 

LEMMA 7.5. Let (Cv)ves be a tuple of real numbers. Let Q > I  and suppose that for 

v E So we have real numbers % with 

~/v < co and Q ~  E Gv (the value group of [[. IIv). (7.17) 

Then there exists a nonzero element a E K  satisfying 

[[a[[~ <~ QCv-(E,.~s c~)d./d+(E~.~s c,.-'r,.)dv/d.-.dv/2d ~ o JJK for v E S~ ,  (7.18) 

[[a[[, ~< QCv for v E So, (7.19) 

[[a[[~ ~< 1 for v r S. (7.20) 

Proof. Consider the parallelepiped II in ]C defined by the inequalities 

tl ll. < Q  -(E  soo (veSo ), 

llall,, < 1 (v r s). 

It has volume V=2 ~1 (27r)~2DK 1/2. Thus by Lemma 7.3 it has first minimum A1 with 

~ LJ K . 

But by definition A1H contains a point different from 0. The lemma follows since Q~ 

(v SO). 

LEMMA 7.6. Let x E K  M, x~0 .  Define the real number c by 

( ) F}l/2d (7.21) C= 1--[ max llQ-~J~dldoL~')(x)ll,, --K �9 

yeMen(K) I~j~M 

Then there exists an algebraic integer gEK* satisfying for each v E M ~ ( K ) ,  

II~ll~ ~< ( max IlO -~'d/d~ L! ") (xlllvY~c d€ (7.22) \ I~j~M J ,] 

Proof. As we require x to be an algebraic integer, it has apart from (7.22) to satisfy 

the condition 

I1~11~ ~< 1 for v ~ M ~ ( K ) .  (7.23) 

Now (7.22), (7.23) define a parallelepiped in K of volume 2~+~2r ~2 , where rl and r2 de- 

note respectively the number of real and complex embeddings of K. Thus by Lemma 7.3 

our paraUelepiped has first minimum ~ (2/~r)~2/d<~ 1. The assertion follows. 
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LEMMA 7.7. Suppose that x E K  M is a point which satisfies inequalities (7.12) for 

each v@ Mcc( K). Let gl, ...,gM be linearly independent points in K M corresponding to 

the minima A1, ..., )~M of H(Q). Write S{ for the subspace of K M generated by gl, ..., g{. 

Then for i=l ,  ..., M and for x@S{_l we have 

H max tlQ-c~'d/d~L~V)(x)llv~DK1/2dAi (I~<i~<M). (7.24) 
vEM~(K) 

Proof. Suppose x~Si-1.  Choose the algebraic integer x according to Lemma 7.6. 

Then the point x x  again satisfies inequalities (7.12) for each v ~ M ~ ( K ) .  As x~Si-1,  

also ~x~  Si-1. Consequently there exists v0 E M~ (K) such that 

max [Q-CJ'o'd/dvo L~ v~ Ai. (7.25) 
I~j~M 

On the other hand our choice of x in (7.22) implies that for each v e M ~ ( K )  we have 

m a x  IQ -c~vd/d€ v)(xx)Iv - ~1/2d -cj~d/d~ (~) ~/-)g ]-[ max IIQ L~ (x)ll~. (7.26) 
I~j~M J'J" l~j~m 

wEM~(K) 

Combination of (7.25) and (7.26) yields the assertion. 

LEMMA 7.8 (Davenport's Lemma). Suppose that Q > I  and that ~>0. Let Q1, ..., QM 

be real numbers with 

~01 ~ ~0 2 ~ ... ~ ~0 M > 0 ,  (7.27) 

~iAi <~ Qr for i = 1, ..., M - l ,  (7.28) 

~01 ... ~0 M = 1. (7.29) 

Fix voEM~(K) .  Then there exists a permutation T O/the set (1, ..., M} with the follow- 

ing property: 

Let II'(Q) be the parallelepiped defined by 

-~ ~C~-o (1 ~<i ~< M) (7.30) 

and for vs~vo as in (7.12). Let )~i,..., )~'M be the successive minima of II'(Q). Then we 

have 
D-1/2d2-M Q-U~ ei)~ i ~ )~ ~ 4U2 QM2r D(~M-1)/2dei)~i. (7.31) 

Moreover, for veMo~(g)  define the linear forms G~V)(X) by 

= Q  L i (X) f o r v C v o  and l < . i ~ M  (7.32) 
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and by 
G~~ = "d/d'~176 ~ (1 ~< i ~< M). (7.33) 

~"r (i) "~ i ~, ] 

Then any point x E K M which satisfies inequalities (7.12) for v ~ Moo ( K) but does not 

lie in the subspace Si-1 spanned by the points gl,- . - ,gi-1 corresponding to A1, ..., Ai-1 

has 
max max {[G! v) (X)]v} ~ 2-MQ-Mr (7.34) 

veMoo(K) I<j<M a 

Proof. The proof goes along the same lines as in W.M.  Schmidt [16, w Theo- 

rem 3A]. For vESoo we define the absolute value [. [, by [x[~=[[x[[ d/dv. In the sequel, 

when we consider points x E K  M, we shall whenever necessary tacitly assume that  they 

satisfy inequalities (7.12) for v~Soo. 

For i with l~i<~M and for vESoo we write 

--ci~d/dv (v) ,~(v) ,~(v) (v) Q Li ( X ) = P i  X = P i l  X l + . . . - [ - ~ M X M .  

So, ,_/~(v)i is the coefficient vector of the linear form O-c"d/d'-~ L(~)--i �9 Write 

N ( x ) =  H ~m.<axM{[[~')x[['}" 
veMoo(K) "~J'~ 

By Lemma 7.7, any point x ~ S j _ l  satisfies 

N(x)/> Dgl/2dAj. (7.35) 

To determine the permutation % consider the fixed element voESoo. If x lies in 

Si,(1) then the point (~V~ f~(vo)_ ~ . . . ,  tJM aL) satisfies M - i  independent linear equations with 

coefficients in Kvo. In particular for XCSM_I we have 

(~o) (~o) 
a l ~ l  X + . . . + a M [ ~  M x = 0  (7.36) 

with certain fixed coefficients al , . . . ,  aM E gvo, not all equal to zero. Choosing a suitable 

permutation, we may assume that  

laMIvo = m a x { l a l l v o ,  ..., laMI.o}. 

But then (7.36) implies that  

al a -l (vo) 
].gM_lX- 

aM aM 

(7.37) 

(1) There should be no confusion between the subspaces Si and the subsets So and Soo of our set 
of places S. 
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Using (7.37), we obtain 

(vo) (vo) I~~ < I& xlvo+. . .+l~_lXl~o 

which in turn yields 

(vo) (vo) 1 (-o) (~o) [j31 xlvo+...+lf~M_lXl~o 7> ~(]j31 Xl~o+.--+]f~M Xlvo) (7.38) 

for each xESM-1. 
If x lies in SM-2, it satisfies a second relation which is independent of (7.36) and 

may be written as 
(vo) (~o) __ 

b l f ~ l  X § 2 4 7  x - O .  

Again, after choosing a suitable permutation we may suppose that  

ibM-1 I~o = max{ Ibt l-o, ..., ibM-1 Ivo }. 

And similarly as above we get 

If~ ('~ xl. ~ - 1  o < IfJ~'~ • +,~(.o) x - - " -  I t JM--2 vo �9 

Together with (7.38) this gives 

13~-O)xt,o+ + ~(,o) x l r l~( ,o) . ,  (,o) "'" ~ " M - 2  vo ~ ~klt- ' l  X l v o § 2 4 7  
(7.39) 

/> 2-2(If~~ +. . .+ I~~ 
for each xESM-2. Continuing in this way we obtain for each j with I<.j<~M-1 inequal- 

ities of type (7.38), (7.39). 

So after reordering j3~'~ ..., j3~ ~ we may suppose that  

(~o) (~o) 2- j  (l~VO)xl~o + . . .+  i~O)xl~o) (7.40) [f~l X[vo§247 

for each j (I~<j~<M-1) and for each xESM-j. 
Now suppose that x~Si -1 .  Then there exists j with i<~j<~M such that  xESj ,  

x r  so that  by (7.35) N(x)>~DK1/2dAj. 
On the other hand using (7.27), (7.40) we obtain 

r, d/dvo~(Vo) , d/dvo~(Vo) 1 
maxlIQ1 Pl X[vo '  " ' "  ~)M P M  X voJ" 

~>max"0d/d~~176 Pi I d/a'~176 ' " �9 .., e3 p~ Xl,o~ 

d/d.o max{]f~,O)xt~o, (~o) �9 ,IO~ xl~o} /> ej 
d/dvo 

~> ej (-o) (,o) (7.41) 
j {]f~ Xi,o+. . .+lf~ X[,o) 

>. ~/doo + .  

3 
--M ~d/d~o (vo) />2 ~j m a x { [ ~  (x)lvo}. 

l ~ i ~ M  
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Recall the definition of the forms G~ v)(x) in (7.32), (7.33). We infer from (7.41), 

(7.35) that 

II 
veM~(K) 

m a x  IlG~V)(x)llv)2-Moj H max. IIf~}V)Xllv 
veM~(K) 

= 2-MojN(x) ) DKU2d2-MojA j. 

Using (7.28), we may conclude that 

max max [G(V)(x)lv/> DK1/2d2-M oj)~ j >/DK1/2d2-MQ-MCQi)~ i. 
vEMoo(K) l<~k<~M 

This is true for each x~S i_  1 and thus (7.34) is established. 

However (7.34) implies in particular that 

)~ >>. 2-MDtcl/2dQ-M(oiAi (i = 1, ..., M), (7.42) 

and this is the left hand side of (7.31). 

As for the right hand side of (7.31), we first remark that by (7.29), V(H)=V(H'). 
According to Lemma 7.3 we have 

2dMTr r2M D_M/2 

and 

(hl ... h~)dv(n  ') < 2 du 

We may infer using (7.29) and (7.42) that 

,d h i <<. 
2dMv(II')-I 2dM+dM(M-1)QdM(M-1)r D(M-1)/2 

(:~i-.-h~_~;+~ ... h~)~ "< (0 -~  .-2. ~ ~ ~  Y(n ' ) - i  

riM odM2r ,~dyI(M--1)/2 
�9 ~ ~i  ~ :  y ( i i ) - i  

~< ( h i  . . .  ) , i - l h i + l  ... hu) d 

2 dM2Q dM2r r l  ((2M) I)r2 r ~ ( 2 M - - 1 ) / 2 /  . , d  

2dMTrr2M IJK ~OiAi) 

<~ 4 riM2 n(~ M- 1)/2QdM2r (Qihi) d 

and (7.31) follows. 

In analogy with what we said at the beginning of this section, given k with 1~< 

k ~< M we denote by C(M, k) the set of k-tuples a = { 1 ~< il < i2 <... < ik <. M). Put L-- (M) 
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and for a= (i l  < ... <ik} define the linear forms M (~) (x(k) )=M (v) (X1,..., XL) by M(~)= 
L!~)A AL! v) If H(Q) is  the parallelepiped (7.12), we define H(k)(Q) by 

~ I  "~  ~ k  " 

iiM(.)(x(k))ll.<~QC.~ (aeC(M,k), yeS), 
(7.43) 

IIx(~)ll. < 1 (~ r a). 

Here x (k) stands for a vector in K L and 

c~, = % v +.. .  + ci~ v, (7.44) 

where we suppose that  the ci, satisfy (7.10) and (7.11). We call II (k) the kth compound 

of H. Let )u, .-., AM be the successive minima of H. For TEC(M, k) write 

~- = H )~i. 

There is an ordering Vl, ..., TL of the elements of C(M, k) such that  

A~I ~< A~2 ~<-.. ~< A~L. (7.45) 

We denote the successive minima of H (k) by ~1, ..., VL. 

The following result was proved by Mahler [10] for convex bodies in R M. Here we 

give its extension to the space of addles of K.  

LEMMA 7.9 (Mahler [10]). Suppose that we have (7.10), (7.11) and (7.13). Then 

the successive minima of H (k) given by (7.43) satisfy 

Q-ik 'DKik/2d(k!)-( i -1)2-i2 A~ ~ <. vi <. k! ~ .  (7.46) 

Proof. Our proof follows the lines of Schmidt [16, w Theorem 7A]. Let gl,  ..., g i  

be independent points in K M with gi EAiYI. Thus 

IILlV)(gj)llv <~ )~dv/dQ c~ ( i , j=  l, ...,M; v E Soo), (7.47) 

IlL~)(gj)llv <QC~- (i, j = I, ..., M; vESo), (7.48) 

tlgj 1]~ ~< 1 (j = 1, ..., M; v ~ S). (7.49) 

For ~-={jl <.-. <jk} EC(M, k) write 

GT = g~, A... Ag~.  (7.50) 
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Then we may infer from (7.40) that for each vCSo and for any TEC(M, k), 

][M(V)(Gr)llv = ]](L~Vl) A...AL~Vk))(gj~ A...Agjk)liv 

= det (L! v) L!v)~l (gJl(gJl!)) "'" L! v)L(~')~l (gjk(gJki)) ]/ ~ ~< Qc"v 
\ ?'k """ ~'k 

for each aEC(M, k). Moreover, trivially we have 

(7.51) 

and 

As for the left hand side in (7.46), Lemma 7.3 says that 

,M--l", dM[M-I\ Y(ii)Lk/M2_dLk (Ar162 - (k-1)= 

(P l  --- PL) d ~ V ( X I ( k ) )  - I  2dLIF2L 
(L!)rl((2L)!)~2D L/2" 

Combining these two inequalities we get 

V(II(k)) ~ DK �9 

On the other hand, Lemma 7.2 yields 

V(II) Lk/M >~ Q-dLk'q2(rl+r2)LkTrr2nkDK Lk/2, 

and similarly we obtain 
V ( I I  (k))  ~< 2(rl+r~)LTvr2LDK L/2. 

Combining (7.55), (7.56), (7.57) we may infer that 

(7.55) 

(7.56) 

(7.57) 

]]G~iiv ~<1 for each TEC(M,k) and for each v~S .  (7.52) 

Now suppose that vES t .  Then by considering the determinant in (7.51) and using (7.47) 

we get 

IiM(V)(G~)iiv<~(k!)dv/dAdv/dQ c~v foreachaeC(M,k) .  (7.53) 

(7.51), (7.52), (7.53)imply that 

vi<<.k!A~ (1 ~<i ~<L), (7.54) 

which is the right hand side of (7.46). 
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Together with (7.54) this gives 

( ~i ~d 2_r2L(k_l)7~r~Lk . . . .  
f)-dLk~{h~-(L-1)d _ _  1")-~/z >- 

Q-dLkv(k!)-(L-1)d(L!)-d.2-r2LDKLk/2 

and (7.46) follows. 

Of particular interest in our applications will be the case k = M - 1 .  Then L-: 
(M) =M.  H (M-l) essentially is what Mahler calls polar to H. Then we have 

A~, - A1 ... AM (7.58) 
AM+I-i 

In this case Lemma 7.9 implies 

LEMMA 7.10. Let A1, ...,AM be the successive minima of H and A~, "',A*M be the 

successive minima of H (M-l) (cf. (7.12), (7.43)). Then 

Q-M2nDKM2/2d(2M) -M2 ~ AM+I-iA* ~ M! QM~DM/2d (i = 1, ..., M). (7.59) 

Proof. By Lemma 7.4 

M -M <~ AI'-.-"AM ~ QMnDM/2d. 

Combining this with (7.58) and Lemma 7.9 with L = M  and k = M - 1  we get 

Q-M(M-1)'IDKM(M-1)/2d((M--1)!)-(M-1)2-M2 M - M  ~ AM+I-/A* 

~< ( M -  1)! QM'DM/2d 

and (7.59) follows. 

LEMMA 7.11. Suppose l<~k~M. Define T1,...,TL and points Gr as in (7.45), 

(7.50) respectively. Once the span of G n ,  ..., G~L_ 1 in K L is determined, the span of 

gl , - . . ,  gM-k in g M is determined. 

This is Lemma 6.4 of Schmidt [17]. 

LEMMA 7.12. Let L1, ..., Lt be linear forms in M variables and with coefficients in 

the set ( -1 ,  0, 1}. Suppose that we know that there is a point h e 0  in QM with 

Li(h) = 0  (i-- 1, ...,t). (7.60) 

Then there is a point h e 0  in Z M with (7.60) and with 

H Ilhlli,v ~< M(M-i)/2" 
vE Scr 

This is a very special instance of Siegel's Lemma (cf. e.g. Schmidt [18, Lemma 4D, 

p. 11]. 
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8. A g a i n  g e o m e t r y  of  numbers  

Let L ~ ) , . . . , L ~  ) (vCS) be a special system of linear forms as introduced at the be- 

ginning of w Let c~v ( I ~ i ~ M ,  yeS)  be real numbers satisfying (7.10), (7.11). H is 

the parallelepiped given by (7.12) and gl, ..., gM are linearly independent points in K M 
having 

gi E A~II. (8.1) 

For i with l<.i<.M we write 

and 

] ~ ) - r ( ' ) ^  ^ r ( v ) ^ r ( ' ) A . . . A L ~ )  (l<~i<~M, v e S )  --~1 ~'"t~-~i--l~J-Ji+l 

LEMMA 8.1. 

gi=glA...Agi-lAgi+lA...AgM (I~<i~<M). 

The point gM defined in (8.2) has 

H1,S(gM ) <~ M! A1 ... AM-1Q. 

(8.2) 

(s.3) 

Proof. Notice that  gM is the same as the point G~ 1 in (7.50) with k = M - 1 .  We 
get from (7.53), 

][L~v)(~M)[[v ~< ((M--1)!)dv/d(A1 ... AU_l)d~/dQ c'€200 (8.4) 

for I<<.j<<.M, v E S t ,  and from (7.51), 

IIL~V)(~M)iiv<~Q ~++~-~,~+~+~'~++~~ for I<j<~M, vESo. (8.5) 

We may write the ith component giM of gM as 

^ (v) L(~) ^ (~) ^ (.) ^ 
giM=Uil 1 (gM)+'"+UiMLM(gM) (I<.i<~M, vES).  

Since we consider special systems, here the coefficients u~- ) are contained in the set 

{-1 ,0 ,1}.  

Thus (8.4) implies 

[]gMlll,v ~< (M!A1 ... AM-1)g'/dQ ma~<i<M c~,+...+ci-~,,+~i+~,,+,..+~M, (V e S~), (8.6) 

and we infer from (8.5) that 

]]gM][v ~ Qmaxl<~<~M Cl.+...+C~--I,.+C~+I,~+...+CM~ (V E SO). (8.7) 
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Combination of (8.6), (8.7) gives with (7.10), 

H1,S(gM) ~ M! ~1 ... )~M-1Q- ~ e s  c~(.),~ 

where for yES the subscript j(v) is such that 

e j (v ) ,~ ,=  rain eye. I<~j<~M 

The assertion follows, since by (7.11), 

~ cj(,),, ~ 1. 

(8.8) 

Then we have 

HI (gM) >1 M-2((A1 ... AM-1)-IQ E€ c'O')" ) 1/M(N+I). 

Proof. First, we obtain using (8.4), (8.5) together with (7.10), 

I I  -~(,) ~(~) (gM)Hv <~ (M-1)]A1...AM-1Q - E'esr162 (8.12) 
yES 

Now consider a set S (d). Given i with lKi<.M let S~ j) be the subset of S (y) consisting 

of those veS  (j) with i(v)=i. So, for veS} j) we may write L (~) =L~. i(,) 
We obtain (using again the fact that the forms are special) 

1 I I  IILi(gM)llv= H ^(v)^ = HLi(-) (gu)H" H I[Li(gu)[[- 
veM(K) .es}~) ,,~s}~) 

-<n ( n  ) IILi(.)(gM)ll~ Md~/d II IIgMlll,,, 
yeS}J) veMoo( K) v~i-~(J) 

= I I  L(V) U Mdv/d)( I I  HgMII~,,1) HI(~M)" 
-~(J) veMor (K) yeS,J) v~,~ 

(8.11) 

Recall that  with our conventions in w and by the discussion at the beginning of 

w the set of forms L~ v), ..., L(~ ) ( veS )  was partitioned into N + I  subsets, according to 

a partition S=S(1)U...OS (N+I) of our set of places. This partition was such that  for 

Vl, v2ES (j) we have 

n~vl) = L} v2) for each i (1 ~< i < M). (8.9) 

LEMMA 8.2. Let (i(v)),es be a tuple with 

1 ~  ^ (~) ^ IIni(,) (gM)II~ • o. (8.10) 
yES 
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Taking the product over i with l<~i<~M and over j with I<~j<~M we may infer that 

1 <1- [ ^ [[ i(,)(UM)[[,MM(N+I)-IHI,S(gM)-IHI(gM)M(N+I). (8.13) 
yes 

(8.12) and (8.13) entail 

H1 (gM) M(N+I) ~ HI,S(gM)M -M(N+I)+I ( ( i -  1)!)-1 (~1 -.. AM-1)-IQ ~'es c~(,),,. 

But gM has S-integral components. Thus 

Hi (gM) M(N+I) >1 M -M(N+I)+I ( (M-  1)! ) -1  (A1 .-. )~M-1)-IQ Eves c~(.),. 

and (8.11) follows. 

There is a nonzero linear form V=V(X)=vlX1 +...+VMXM with coefficients vi EK 
that vanishes on gl, .- . ,gu-1. This form is determined up to a nonzero factor in K, 

however its height H1 (V) is uniquely determined. 

Let S be the set of tuples (j(v))vEs such that 

E Ci(v),,>O. (8.14) 
yes 

LEMMA 8.3. Suppose that 5>0, that 

AM-1 ----- AM-I(Q) < Q-6 (8.15) 

and 
Q(M-1)~i > M4M(N+I). (8.16) 

t (v) o Assume that there exists a tuple (j(v))ve8 in S with lives [] i (v ) (gu) [ [~  , i.e. with 
(8.10). Then we have 

Q~/a(N+I) < Hi(V) < Q. (8.17) 

Proof. Clearly the vector gM=glA...AgM_I is orthogonal to gl, . . . ,gM-1. So it 

suffices to show that HI(~M) satisfies (8.17). 

Since gM has S-integral components, Lemma 8.1 implies that 

/-/1 (gM) ~ M! A1 ... AM-IQ 

and the right hand side of (8.17) follows from (8.15), (8.16). 

As for the lower bound in (8.17), we apply Lemma 8.2 and get for (j(v))~es in 3 

using (8.15), 
HI (gM ) ~ M-2Q (M-1)~/ M(N+I). 

In view of (8.16) this entails the lower bound in (8.17). 
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LEMMA 8.4. Suppose that we have (7.13) for some ~]>0. Assume that 

(2M)2M QM~I DM/2d )~M_ 1 ~ 1. 

Suppose that there is a point h?t0 in K M with integral components satisfying 

II L(v) h ]l j(.)( )ll  = 0  
yES 

for every tuple (j(v)),es with l <.j(v)<.M such that 

(2MQ,D1K/2d)2M2 QEvesc~(~),, H HhI[I'vAM-1/> 1 
vESoo 

is true. Then 

g i h = 0  f o r i = l , . . . , M - 1 .  

Proof. Let h be a point with (8.19), (8.20). For yES  we define the set 

Cv = { j [  1 <~j<M, L~)(h)  r  

Since ],~'), . . . ,L~  ) are linearly independent, we have C . ~ O .  

each yES  an element i(v)ECv by 

(8.18) 

(8.19) 

(8.20) 

(8.21) 

(8.22) 

Moreover, we define for 

ilal[v ~< QCv, (8.25) 

then, since h has integral components and by the special shape of our forms L~ ~), we see 

that  

II],~v)(ah)ll~<Q c~ for each i (I<~i~<M) and for each veSo .  

But now the definition of the sets C~ in (8.22) and the definition of i(v) in (8.23) together 

with c, ~<c (i) imply that  

[IL~V)(ah)ll.~<Q ~') f o r e a c h i  ( I < i ~ < M )  a n d f o r e a c h v E S o .  (8.26) 

Clv-[-...-~-Ci(v)_l,v-~-Ci(v)_bl,v-~-...-~-CMv ~- m i n  Clv-~-...-[-Cj-l,v-~-cj+l,v~-...-~CMv. (8.23) 
jECv 

For vESo let ~'~v be real numbers as in (7.13), so in particular we have for each pair (i, v), 

~/~v ~< c~. Write 
c (i) = clv+...+ci-l,v+Ci+l,v+...+CMv, 

%(i) = "fly +... +~ i -  1,v +~/i+l,v +... + ~/Mv, (8.24) 

~v =')'(i(v)) and c. = c (i(')) 

(l<.i<.M, vESo). If a is an S-integer in K with 
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Moreover a h  has g-integral components, i.e. we have 

[[ah[[~ <~ 1 for v ~ S. (8.27) 

But (8.26), (8.27) mean that for vr the point a h  satisfies the inequalities (7.43) 
defining the parallelepiped H (M-l) (Q). 

Next suppose that v E So~. Define Cv by 

Q~ = [IhI[~,~Q~'+'"+~(')-'.'+~'(')+~. v+'''+~'~'. (8.28) 

Write 

C(v i(v)) = Clv -~-...-~-Ci(v)_l, v -{-Ci(v)+l,v -~-... + C M v  (V E Sc~). (8.29) 

We now apply Lemma 7.5. Accordingly there exists a nonzero g-integer aEK sat- 
isfying (8.25) and 

]]aliv <~Q~'(D~2dQ-E~esc~)d'/a.Qd'/d(E~eSo (~-~)) for each v e s t .  (8.30) 

By (7.13) and (8.24) we have 

(cw-7~) < (M-1)y .  (8.31) 
w E So 

Let us study consequences of (8.30). The definition of Cv implies that 

I[t~v)(ah)llv = 0  for each jq~Cv. 

On the other hand, for jECv we get with (8.28), (8.29) and (8.30), (8.31), 

[[L~ ") (ah)][, ~< M d'/d ][a]]v IJh][, 

But by (7.10) this equals 

QC(~(v)) (M. (~es l,hi,l,v)Q~,~s ,d~/d c~('~),'~Q(M-1)'D1/2d) . (8.32) 

The definition of the sets Cv in (8.22) and of the tuple (i(w))~,E8 in (8.23) im- 

plies that (8.20) is violated with the exponent ~ e s  ci(~),.. We may conclude that the 
expression in the parenthesis in (8.32) is 

( o - M : ~ D - M 2 / 2 d [ 2 M ~ - M 2 ~ - I  ~dv/d (8.33) 
< ~'~ K k J " ' M - l ]  " 
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~ - - * d v / d  
We now apply Lemma 7.10. It follows that the term in (8.33) is Q'~2 . Altogether 

we get with (8.23) and (8.24), 

]]L~V)(c~h)]]v < 2 '~ ~< for veS~o  a n d j e C , .  (8.34) 

We infer from (8.34) and the definition of C~ that in fact 

IIL  (c~h) llv < "'2 ~ - for each v E S~r and for 1 ~< j ~< M. (8.35) 

In view of (8.26), (8.27), (8.35) we see that  the point c~h lies in the interior of A~II (M-l). 

We now study the point gM. It has S-integral components and moreover it satisfies 

(8.5). On the other hand, for vESoo we get from (8.4) and Lemma 7.10 for I<~j<~M, 

IIL  v) (gM)Ilv < ( ( M -  1)! AI -'- AM-1)d~ 

~< ( (M-1) !A1 ~ ~2 ~ * [ D M 2 ~ l l 3 M 2 / 2 d ( o h / f ~ M 2 ~ d v / d g } c  ( j )  
�9 . .  A M - - 2 A M _ l Z ~ 2 ~  ~L," K \ . . . .  ] ] "~ 

< 

By (8.18) this implies that  

Iff,~V)(gM)ll, < A2d'/gQ c(~j) for each v E Soo and for j with 1 < j  ~< M. 

Therefore gM also lies in the interior of )~II (M-l) . 

Since any two points in K M that  lie in the interior of )~1-I (M-l) are linearly de- 

pendent, it follows that a h  and gM are proportional, and hence also h and gM are 

proportional. As gM is orthogonal to gl,  ..., gM-1 the same holds true for h and (8.21) 

is proved. 

Suppose that there is a point h e 0  in K M with integral components LEMMA 8.5. 

such that 

1-[ L(v) h (8.36) tf j(v)( )][, = 0  for each tuple (j(v))ves in $. 
y E S  

In fact assume that h is a point with this property where moreover I-I~so~llhlll,~ is 

minimal. Suppose that 5>0  and assume that (7.13) is satisfied for a value ~>0 with 

71 <~ 6/4M 2. (8.37) 

Suppose moreover that 

and that 

~M-1 • Q-5 (8.38) 

Q~ > (2M)6M2 D2KM2/d. (8.39) 
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Then (8.21) is true, i.e. we have 

g lh  . . . . .  g M - l h - - - -  0. 

Proof. It will suffice to prove that with a minimal h the hypotheses (8.18), (8.19), 

(8.20) of Lemma 8.4 are satisfied. 

As for (8.18), we get with (8.37), (8.38), (8.39), 

(2M)2MQM'DM/2dAM_I <~ (2M)2MQS/4M DM/2dQ -~ <~ (2M)2M DM/2dQ -~/2 < 1 

So (8.18) holds true. 

We next check (8.19), (8.20). Lemma 7.12 says that if there is a point h e 0  with 

(8.19) at all, then in fact there exists such an h with components in Z and with 

I I  Ilhl l l ,  ~ <M(M-1)/2" 
vESzr 

With such h, tuples (j(v)),es having (8.20) in view of (8.38) satisfy 

M(M-1)/2(2MQUDIK/2d)2M2Q-~QE,es c~(.),./> 1. 

However we infer from (8.37) and (8.39) that 

M(M- 1)/2 (2MQVD~2d)2M2 Q-~ < (2M)3M 2. Q6/2DM2/dQ-~ 

= (2M)3M2DM2/dQ-~/2 < 1. 

Therefore (8.40) implies that 
QEoEs cj(v),. > 1, 

(8.40) 

i.e. that (j(v))~es lies in our set 8. But then (8.36) guarantees that (8.19) of Lemma 8.4 

is satisfied. The assertion follows from Lemma 8.4. 

LEMMA 8.6. Suppose that the numbers c~v (vES, l<.i<.M) satisfy (7.10) and 
(7.11). Let 1>5>0 be given. Consider the inequalities 

IIL~)(x)IIv <~ Q c~€ ( v e S t ,  l <~ i <~ M), (8.41) 

IIL~)(x)ll.~<Q c~" (VESo, l ~ i < . U ) ,  (8.42) 

IIX][v ~< 1 (v ~S).  (8.43) 

Let Qo be a quantity with 
Qo 5 ~> M 2. (8.44) 
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Suppose that E > 1. 

Then as Q runs through the range 

Qo < Q ~< Qo E (8.45) 

the solutions x E K  u of (8.41), (8.42), (8.43) are contained in the union of not more than 

4 1 + ~ log E (8.46) 

proper subspaces of K M. 

Proof. Consider an interval of type 

Q0 < Q ~< r)1+~/2 (8.47) ~r 

and let Q1, ..., QM be any values of Q in (8.47). For j = l ,  ..., M let xl ,  ..., XM be solutions 

of (8.41)-(8.43) with Q=Q1, ..., Q=QM respectively. So we have 

ilL~)(xj)ll. <Q;{.-hd~/d (veSoo, l <. i , j<.M),  

IIn~V)(xj)ll.-< n~'~ (yeS0, l<i,j<M), --~ , ~ j  

IIxr 1 (v ~ S). 

Since our forms are special, we get for vESo~, 

II det(xl ,  ..., XM)ll~ ----II det(L~') (xj)) IIv 
... O ~  _~d~/a (8.48) M! d~/d max  Q;:v--hd,/d "~JM 

jl,...,JM 

where the maximum is taken over permutations j l ,  ..., jM of 1, ..., M. Similarly for v E So 

we obtain 

II det(xl ,  ..., XM)ll~ < .  max. Qy~" ... Q~M. (8.49) 
3 1  , - .  - , J M  

and finally 

Ildet(xl,...,XM)llv~<l for v~S. (8.50) 

For vES  define the ordered tuple cl(v),v, ..., CM(v),v such that the maximum in (8.48) 

or (8.49) is 
tr)cl(v),v g')CM(v),v 

respectively. Combining (8.48), (8.49), (8.50) we get with (8.47) and (7.10), 

M 

YI Ildet(xl '" ' ,XM)llv ~< M! HQlCvesC~(')'~)-~ 
vEM(K) i=1  

<~ M! Q ~ v e s  ~"~iM~l c',v)--Mh+(E+) 6/2 (8.51) 

= M! Qo M$+(E+)~/2 



M U L T I P L I C I T I E S  O F  R E C U R R E N C E  S E Q U E N C E S  207 

where E+ is the sum over terms (~-~ves ci(v),v)-5 with (Eves  ci(~),~)-5>0. By (7.11) 

we see that E+ ~<M. Therefore we infer from (8.51) and (8.44) that 

1-[ II det(xl,-..,XM)ll~ <~ M! Qo M5/2 < 1. 
vEM(K) 

So in fact by the product formula det(xl, ..., XM)=0. We may conclude that solutions x 

corresponding to values Q in an interval of type (8.47) contribute only a single subspace 

of dimension M -  1. But the interval (8.45) may be covered by 

log E 4 
1-~ log(l+~/2) < 1+~ lodE 

intervals of type (8.47). This proves (8.46). 

COROLLARY 8.7. Let II(Q) be given by (7.12). Assume that the parameters ci, sat- 

isfy (7.10), (7.11). Let S(Q) be the subspace spanned by gl--gl(Q),  .-., gM-I=gM-I(Q) .  

Suppose that 5>0. Then the values Q with 

and lying in an interval 

where E > I  and where 

give rise to not more than 

)~M-1 ---- AM-I(Q) ~< Q-~ (8 .52)  

Qo < Q ~< Qo E (8.53) 

Q~o > M2 (8.54) 

1§ l o d e  

distinct subspaces S( Q ). 

Proof. This is an immediate consequence of Lemma 8.6. It suffices to remark that 

(8.52) implies that gl, ..., gM-1 satisfy inequalities (8.41). 

9. Bounds  for t he  index 

We denote by T~ the ring of polynomials 

P(Xll ,  ..., X1M; Z 2 1 ,  . . . ,  X2M; Xml,  ..., XmM ) 

in m M  variables and with coefficients in K. Given an m-tuple 

r = (r l ,  ..., rm)  (9.1)  
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of natural numbers, 7~' will denote the set of polynomials in ~ which are homogeneous of 

degree r h in the block of variables Xhl, ..., X h M  ( l ~ h ~ m ) .  We write Z for mM-tuples 

of nonnegative integers 

~"-- (i11, ..., ilM; ... iml,-.-, imM), 

and by (Z/r) we denote the expression 

We write 

ihl +...+ihM 
(Z/r)  = 

h = l  r h  

Given r as in (9.1), put 

--z 1 0 i l l  -{-' ..-kimM 
P - -  p .  

imM i11!-.-imM! O X ~ i  1 ... OXmM 

r = r l T . . . T r m .  

It is easily seen that  for P6T~' we have 

H I ( P  z) < 2r i l l (P) ,  

in fact we get 

(9.2) 

(9.3) 

HI,v(P z) • 2rdv/dHl,v(P) if v[oc , 
(9.4) 

HI,v(P z) <. HI, . (P)  if v{oc. 

Let L1, ..., Lm be nonzero linear forms with coefficients in K.  Assume that  Lh is a 

form in the variables Xm, . . . ,  ZhM ( h = l ,  ..., m), so that  

Lh =O~hlXhl--~...--~O~hMXhM ( h  = 1, ..., m ) .  

The index of a polynomial P 6  7~ with respect to (L1, ..., Lm ;r) is defined as follows: when 

P-O ,  set IndP- -co .  

When P~O, the index is the least value of c such that there is an Z with ( Z / r ) = c  and 

such that pZ  is not identically zero on the subspace T of K mM defined by the equations 

L1 . . . . .  Lm =0. 

Given a linear form 

L = O l l X  1 -~-... -}-O/.MX M 

w e  m a k e  m forms out of i t  by setting 

L[h ] =CqXhl'~-..."~C~MXhM (h= l,...,m). 

The index with respect to (L; r) is then defined as the index with respect to 

(L[I], ..., L[m]; r). 
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LEMMA 9.1 (Index Theorem). Suppose that L1, ...,Lt are nonzero linear forms in 

M variables and with coefficients in {-1 ,  0, 1}. Suppose that ~>0 and that 

m > 4~ -2 log(2t). (9.5) 

Then given r = ( r l ,  ..., rm ) , there exists a nonzero polynomial P 6 Tr ~, in fact with coeffi- 

cients in Z havin 9 

(i) IndP>~(1/M-e)m with respect to (L,;r)  ( i= l , . . . , t ) ,  
(ii) HI(P)<2mM(3M)r. 

This is a very special version of the Index Theorem as proved in Schmidt [17, w 

It suffices to remark that our forms L~ have rational coefficients and H(Li)<~M 1/2. 

Now suppose that we are given N + I  systems of linear forms 

L~J)(X),...,L(JM)(X ) (1 < j  ~<N+I)  

in X=(X1, . . . ,XM).  We assume that  for each j the system L~J),...,L~ ) is special as 

defined in w 

Remember that  this implies in particular that if we express the variables Xi in terms 

of L~J)(X),..., L(~)(X) as 

(5) (5) (J) (5) Xi=•il  L1 ( X ) W " ' T ? T i M L M  (X)  (9.6) 

~(J) lie in {-1 ,0 ,  1}. With this assumption, Schmidt's Polynomial Theorem then the 'lik 

([17, w may be quoted as follows. 

Let P be the polynomial of the Index Theorem, and suppose that  it holds with 
respect to the special forms L~ 1) (X), r(N+I) tY~ �9 ", ~M ~.~j, i.e. suppose that  we have 

t =  ( N + I ) / .  (9.7) 

Given an mM-tuple  Z, for each j (I~<j~<N+I) we may write pZ uniquely as 

pZ = E d(5)z (311,' : ~r(J)jxl ~M[111'(j)jxM L(5)5"~l[m] L(J)jmM (9.8) "'"JmMJLJl[1] . . . . . . . . .  M[m] ' 
511 ~...~5mM 

and here the summation may be restricted to jha +...+jhM ~rh ( h = l ,  ..., m). 

LEMMA 9.2 (Polynomial Theorem). Suppose that for each j ( l ~ j  <~ N + 1) the forms 

L~ 5), ..., L(JM ) are a special system. Then the following assertions hold true: 

(i) When (Z/r)~<2cm, then d~) ( jn , . . . , jmM)=0  for each j ( l ~ j ~ N - t - 1 )  unless 

_ rh M <~3mMe (l~<k~<M). 

(ii) Each coefficient d~) ( jn ,  ...,jmM) lies in Z and has standard absolute value 

]d~)( jn,  ..', jmM )l <<. 2mM ( 6M2)  r. 
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This follows at once from Schmidt's proof in [17, pp. 156-157] upon noting that with 

-(J) in (9.6) lie in {-1,0, 1} and upon using the bound for Hi(P) our special system the qik 

from Lemma 9.1. 

The polynomial constructed in Lemmata 9.1 and 9.2 fits well into our special systems 

from w167 6, 7 and 8. In fact recall that in w we study systems of forms, where in view of 

(8.9) we really do have just M ( N + I )  forms. So in the sequel we suppose that ~>0. We 

apply Lemma 9.1 with 

t = (N+ 1)M (9.9) 

and with 

m > 4r -2 log(2(N+l)M). (9.10) 

For vES, the system L~v),...,L~ ) will be just one out of the systems L~J),...,L(J M) 
we considered in the polynomial theorem. As in w civ will be real numbers satisfying 

(7.10) and (7.11), i.e. 

M 

E c v:0, (9.11) 
yES i=1  

~ ci(,),~ ~< 1 (9.12) 
yES 

for each subset S' of S and for any tuple (i(v)),es, with l<.i(v)<~M. Given Q>I ,  let 

H(Q) be the parallelepiped (7.12), i.e. 

IIL~)(x)llv~<Q c'v (veS,  l ~<i~< M), 
(9.13) 

Ilxll. < 1 (v s).  

We have minima AI=AI(Q), ..., AM=AM(Q) and we have certain points g l=gl (Q) ,  

...,gM=gM(Q) corresponding to the minima as in w167 and 8. Let V=V(Q) be the 

linear form with coefficients in K (determined up to a nonzero factor) that vanishes on 

g l ,  . . . ,  g M - 1 .  

If V=vlXI-~...-[-VMXM, w e  write 

Y[h ] = V 1 x h l - [ - . . . - [ - v M x h M  (h  = 1, ..., m) .  

LEMMA 9.3. Suppose that 0<6<1 and that 

0 < c ~< 6/15M 2. (9.14) 

Let Q1, ..., Qm be real numbers >1 satisfying 

rl log Q1 <<. rh log Qh <<. ( l+e)r l  log Q1 (h = 1, ..., m), (9.15) 

AM-1 (Qh) ~< Qh ~ (9.16) 
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Thus, it suffices to show that 

H [[PZ(ul' "'" u~)ll~ < 1. (9.20) 
yES 

To do so, we use the representation (9.8) of pZ, where we recall that  the superscript (j) 

stands for the numbering of the system L~J),..., L ~  ). Thus in the current context it will 

be convenient to replace it by v with v E S. 

As is shown in [17], the coefficients z - dr(311, ...,jmM) in (9.8) vanish unless 

jhk logQh - r l  log m <rl logQl~Mme. 

Q •  _ ~30M -5 (9.17) 
h ~ Z  E . 

Then P has index >~me with respect to (VIII(Q1), ..., V[m](Qm); r). 

Proof. We proceed similarly as Schmidt in [17, Lemma 10.1]. So let us go through 

the proof in [17] to check the appropriate changes to be made. 

It suffices to show that 

PZ(Ul,  ..., U m ) = 0  (9.18) 

whenever Z/r<2em and Uh (l~<h~<m) lies in the grid of points 

U=Ulgl(Qh)+...+UM-lgM-l(Qh) 

where the ui are rational integers having 

1 < u i  < [e-1]+l .  (9.19) 

To prove (9.18) we show that 

H [[PZ(Ul'""um)llv<l" 
vEM(K) 

As pZ has rational integral coefficients and since the points gl,-..,  gM-1 have S-integral 

components, we get at once 

II  IIPZ(ux,..., u~)ll v~<l. 
v$S 
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(It is at this stage that (9.15) is needed.) 

With our hypothesis (9.14) on c this implies that 

m m m logQl(l_�88 < r l ~  logQl(l+�88 (9.21) 
h= l  

for each k (l~<k~<M). Suppose first that  vEScr 
Consider a point Uh in the grid. Then (9.13), (9.16), (9.19) imply that  

2 M  dv/d ck . -hd. /d  "L(V)(uh)"v < (M(~-l+l)~M-l(Oh))d~/dOChkV <~ (--~-) Oh �9 

Therefore we get for exponents j11, ...,jmM with (9.21), 

II L(v)(ul) ilk ... L(')(Um) imk Ilv < - -  (9.22) 

X Qrll(m/M)(ck~--hd'ld)+rl (m/M)(~/a)lc~-~d,/dl.  

Combining (9.22) with the estimate for d~(j11, ..., jmM) of part (ii) of Lemma 9.2, we see 

that  for vES~ each nonzero summand in (9.8) has ll" II- -m~ 

< (2mM (6M 2) r (--~-112M r dV/dQrl(m/M)(clv+...+CMv_Mhd~/d)+rl(m/M)(~/4) ~.~M=l lCk 

The number of summands in (9.8) is ~<2 Mr, so that 

,,PZ (Ul, ..., Um)llv < (2mM+Mr (6M2)r ( 2--M )r)d~ld (9.23) 

x Q[' (mlM)(cl~T...+cMv-Mhdvld)Trl(mlM)(514) ~'~M= 1 Ick~-hd.ldl 

Next we consider vESo. Here we get for exponents j11, . . . , jmM such that the cor- 

responding coefficient in (9.8) does not vanish in analogy with (9.22), again using (9.13) 

and (9.21), 

IlL(k ~) (u~)J~ ... L (') (urn) j~k II~ -< QrllmCk'lM+(rlm'~/4M)Ick~ I. 

Since the coefficients of P~ lie in Z this implies 

M C IIPI(ul,  ..., urn)II. <<. Q~ (m/M)(~.+...+cM~)+~(m/M)(6/4) ~k=, I k. I. (9.24) 

Combination of (9.23) and (9.24) will give the desired estimate (9.20). 
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To do the details let us first consider the exponent of Q1 in this estimate. As for 

the main term we get 

r l - ~  Ckv--M~ E =--r lm~ 
-- v6Soo 

by (9.11). As for the error term, we obtain 

v -- v6So k = l  

Write E+ for the terms in the parenthesis where Ck,-Sdv/d or Ckv are nonnegative. 

By (9.12) the contribution of E+ to the parenthesis does not exceed M. 

Similarly, write E_ for the terms in the parenthesis where ck , -Sd , /d  or Ck~ are neg- 

ative. Again by (9.12) and since 6< 1 these terms give a contribution not exceeding 2M. 

Altogether, we see that  the error term in the exponent may be estimated by 

m 
r l - ~ . ~ ( M + 2 M )  • 3rim& 

Now combination of (9.23) and (9.24) gives with (9.15), 

2M r --rlm6/4 II,,P Iul,...,u IHo<2 M+M I6M I (T).QI 
yES 

< (26Ma-1)~Ql~W*~/4 <<. f i  (26ME--1)~hQh~h*/40+e) 
h = l  

m 

< II(26Mr rh < 1 
h = l  

by (9.15) and (9.17), and thus (9.20) follows. 

10. A v a r i a n t  o f  R o t h ' s  L e m m a  

In our application we need a version of Roth's Lemma for number fields and in homoge- 

nized form. Such a variant has been derived by W.M. Schmidt [16, w Theorem 10B] 

with respect to linear forms with rational integral coefficients. 

The classical Roth's Lemma has been extended to number fields by LeVeque [9] as 

well as by Lang [8], however they use slightly different normalizations. In our context we 

prefer the normalization as chosen in Schmidt [16]. 
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So we first give an extension to number fields of the classical Roth's  Lemma in the 

notation of Schmidt [16, w Theorem 10A]. 

Let P (XI ,  ..., Xm) be a polynomial with coefficients in K. Given nonnegative inte- 

gers il, ..., i,~ we write 

1 0 i~+'''+im 
PQ im ~ ..... il !... ira! OX~I... OXim m P" 

Let rl,  ...,rm be positive integers, and let (~1, ...,~m) be an arbitrary point in K m. 

We define the Roth Index of P with respect to (El,-.., ~m; rl ,  ..., rm) as follows: If P - O ,  

we put R - I n d P = + c ~ .  If P~O,  R - I n d P  is the smallest value of 

il im - - q - . . . §  
r l  rm  

for which Pi, ..... im (~1,..., ~m)r 

LEMMA 10.1 (Roth's Lemma for number fields). Suppose that 

0 < 0 <  1 .  

Let m be a fixed natural number. Put 

(10.1) 

= 12 2-m( s) 2 -1. (10.2) 

Let rl ,  ...,rm be positive integers with 

wrh >1 rh+l (1 ~< h < m). (10.3) 

Suppose that 0 < ' ~ 1  and let ~1, ...,~m be elements of K with 

hl(~h) rh ~>h1(~1) "~rl ( l < h < m ) ,  (10.4) 

hl(~h)W~2 3m (1 < h < m ) .  (10.5) 

Further, suppose that P (X1 , . . . ,Xm)~O is a polynomial of degree ~rh in Xh (1~< 

h<~m) with coefficients in K and with 

H i ( P )  ~< h1(~1) ~ r l  �9 (10.6) 

Then P has R-Ind ~<0 with respect to (~1, ...,~m; rl,  ..., rm). 

Proof. We proceed by induction on m. 
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If m--1, we may write 

P(X) = (X-~I)I M(X) (10.7) 

where M(X) has coefficients in K and M(~I)~0.  Write I ( X ) = X - ~ i .  Then our defini- 

tion of the height H1 in w implies that  

On the other hand we get 

H~(f) < Hl(fz). 

Ill(f) = h1((1). 

Therefore (10.7) in conjunction with Lemma 4.2 implies 

hl(~l)lHl(M) <~ 4rlHI(P) .  

Combining this with (10.5), (10.6) and using HI(M)~>I, we obtain 

h1( 1) 

and therefore 
l 

-- <~ 2w=~. 
r l  

But l/rl is the Roth Index of P with respect to (~1; r l )  and the lemma is true with m= 1. 
Next suppose that  m > l  and the lemma to be shown for m - 1 .  We follow closely 

the exposition in Schmidt [16, pp. 142-148]. We consider decompositions 

k 

P(X1, ..., Xm) = E Cj (Xl, ..., Xm-i)~)j(Xm) (10.8) 
j = l  

where r ..., Ck and r ..., Ck are polynomials with coefficients in K.  We choose such a 

decomposition with k minimal. Then 

k~rm+l ,  (10.9) 

and r .-., Ck as well as r ..., Ck are linearly independent over K.  Writing 

1 0 il~-'''-~im-1 
A'= 

il!...im-l! OX~ 1 ~.~_1 (l~<i<~k) 
"'" O X m -  1 

where il+...+im_i<.i-l<~k-l<~r~ (by (10.9)), it follows as in [16] that  there exist 

operators A~ such that  

oj_i Al.p~ 
W ( X 1 , . . . , X m ) = d e t  ( j - i ) !  j -1  / 

o m / l ~ i , j ~ k  
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satisfies 

W ( X 1 ,  ..., X m )  = V ( X 1 ,  ..., Xm--1)  U(Xm) ~i~ 0, 

where 

and 

V(Xm) =de t  (i 1)!'0Xim 1 Cj(Xm)/l<i,j<k 

V(X1,.. . ,  Xm-1) = det (A~r 

Notice that the entries in the determinant defining W are of the shape P~ ..... i~_l,j-1. It 

follows that the coefficients of the entries are sums of coefficients of P multiplied with 

certain binomial coefficients. In fact (9.4) implies that 

Hl,v(Pi~ ..... im_~,j-1) <~ 2(r~+'"+~'dd'/dHl,,(P) for v E M ~ ( K )  

and moreover 

HI,,(Pil ..... im_~d-1) <HI,~(P) 

The number of terms in Pi~,...,im_~,j-1 is 

for v E Mo(K). 

~< (rl +1)... ( rm+l)  ~<2 ~+'''+~m. 

The number of summands in the expansion of W is k!~k  k-1 ~k  rm ~2 kr'~ . We may infer 

that 
HI,v(W) <~ (2krm22(~+"+~)k)dv/dHl,v(P) k 

(10.10) 
(23mrldv/dHl,v(P)) k for v E M ~ ( K ) ,  

where we have used (10.2), (10.3). Moreover 

HI,v(W) ~< HI,v(P) k for v E Mo(K). (10.11) 

Combining (10.10), (10.11) with (10.6) and (10.5) we get 

Hi(W) ~< (23mr' hi (~l)WTrl)k <~ hi (~l)2~r' k. 

Now, since the variables in V and U are separated, we obtain 

HI (V)HI(U) --- Hi(W). 

We may infer that 
Hi(V) < h1(~1) 2~'yrlk, 

Hi(U) ~ hl(~l) 2w~rlk. 
(10.12) 
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To estimate the index of W with respect to  (El,-.-, ~m; r l ,  ..., rm) we apply the in- 

duction hypothesis to V. More precisely we apply the assertion of Lemma 10.1 with m 

replaced by m - l ,  with r l , . . . , rm replaced by krl,..., krm-1, with 0 replaced by ~ 2  

and with P(Xi,. . . ,Xm) replaced by V(X1,...,Xm-1). Notice that  w(m-1,  ~2~2)-  - 

2w(m,~). Now (10.3) and (10.5) are satisfied with w(m,~), hence they are also sat- 

isfied for w(m-1,  ~ 2 )  and with m replaced by m - 1  on the right hand side of (10.5). 

It is clear that  with our new parameters (10.1) and (10.4) are satisfied. The analogue of 

(10.6) holds by (10.12). The conclusion is that  V(X1, ..., Xm-1) has Roth-Index ~< ~2 v~2 

with respect to (~1, ...,~m-1; krl, ..., krm-1), hence it has Roth-Index ~<~2kt~ 2 with re- 

spect to (~1, ..., ~m-- 1 ; r l ,  ---, r,~_ 1)- It follows at once that  V (Xt, ..., X,~_ 1), considered as 

a polynomial in X1, ..., Xm, has Roth-Index ~< ~2k02 with respect to (~1, ..., ~m; r l ,  ..., rm). 

Since w(1, ~2 ~2) ~>2w(m, v~), it follows from (10.12) that  g satisfies the hypotheses 

of Roth's Lemma with m = l ,  ~ replaced by ~2 ~2 and with rm replaced by krm. Applying 

the case m = l ,  which was already established, we see that  U has Roth-Index <~lkvq2 

with respect to (~1, . . . ,~m;rl, ...,rm). Altogether we may conclude as in Schmidt [16, 

p. 146] that  W has Roth-Index ~< ~kt92 with respect to (~1, ..., ~,,~; r l ,  ..., rm). 

The remainder of the proof now is verbatim the same as in Schmidt [16, pp. 146- 

148]. We have only given the details of the first part to ensure that  the arguments in 

[16], where special properties of the rational integers are used, carry over to the more 

general situation of number fields. 

Using Lemma 10.1, we may derive an upper bound for the index of a polynomial 

P=P(X11, ..., X1M; ...; X m l ,  ..., X m M )  in our ring T~ as defined in w We obtain: 

LEMMA 10.2 (Roth's Linear Forms Lemma for number fields). Suppose that 

0 < 0 < ~ .  (10.13) 

Let m be a positive integer and put 

w=w(m,~)= 12.2-m (~2t9) 2"~-1 . (10.14) 

Let rl, ..., rm be positive integers with 

~arh >1 rh+l (1 ~< h < m). (10.15) 

Suppose that M >~2 is an integer. 

Let V1, ..., Vm be nonzero linear forms in M variables with coe3~icients in K. Suppose 

that 0 < F ~ < M - 1 ,  that 

HI(Vh) rh ~>HI(V1) Tit ( 2 < h < m )  (10.16) 
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and that 
HI(Vh) ~r >~ 23re(M-l)2 (1 ~ h <~ m). (10.17) 

of degree rh Let PET~ be a nonzero polynomial that is homogeneous in Xhl,...,XhM 
(1 ~ h ~ m). Suppose moreover that 

Hi(P) (M-1)2 ~ H1 (V1) wrlr. 

Then the index of P (in the sense of w with respect to (V1, ..., Vm; rl,  ..., rm) is 

(10.18) 

~<~. 

Proof. This may be derived in exactly the same way as Theorem 10B in Schmidt [16, 

p. 191] is deduced from Theorem 10A in [16, p. 141]. Schmidt studies a polynomial P with 

rational integral coefficients and uses the height [P-~, the maximum absolute value of the 

coefficients of P.  Now, if P has relatively prime coefficients (which we may assume), then 

=H1 (P). A similar remark applies to the linear forms V1, ..., Vm under consideration. 

In the proof in [16] the following fact is used: Given a linear form V=vlXI+ . . .+  

VMXM, a s s u m e  that  [vl[=[V-~. Then there exists an i with 2<~i<.M such that [-V~< 

hl(v i /v l )M_l~ [~M-1. The analogous inequality in our context is 

H i ( V )  ~ h l (V i /V l )  M-1  < H i ( V )  M - l ,  

and in view of Lemma 4.1 we can guarantee such an inequality. As otherwise the proof 

of [16] has not to be changed, we omit the details here. 

11. C a r i n g  for  the penult imate  m i n i m u m  

LEMMA 11.1. Suppose that 0 < 5 < 1  and that 

m > 900M45 -2 l o g ( 2 ( N + l ) M ) .  (11.1) 

Put 
1 m 2 m-1 E =  ~2 (180) . (11.2) 

Let H(Q) be the parallelepiped (7.12) with parameters C~v (vES, l <~ i<~ M) satisfying 

(7.10), (7.11). Suppose that there is no point h e 0  in K M with (8.36) for every tuple 

(j(v))ves in $ (cf. (8.14)). 

Then the numbers Q with 

AM-I(Q) < Q-5 (11.3) 
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and 
Q 5~ > 224MS(N+l) 2mE 

are contained in the union of m - 1  intervals of the type 

(11.4) 

Qh<Q<~Q E ( h =  1 , . . . , m - I ) .  (11.5) 

Proof. Suppose the lemma were false. 

Let Q1 be the infimum of values Q having (11.3) and (11.4). Then Q with (11.3), 

(11.4) have Q>Q1. 

If all the values Q with (11.3), (11.4) were in the interval Q:<Q<.Q E, the lemma 

would be true. So there are Q>QE with (11.3). Let Q2 be their infimum and so forth. 

We find in this way values Q1, ..., Qm with 

~M-I(Qh) • Qh 6 

and 

(h = 1, ..., m) (11.6) 

Qh+l >1 QE (h = 1, ..., m -  1). 

We want to apply Lemma 9.3. Put  ~=5/15M 2 and choose rl  so large that  

rl > : -1  logQm 
log Q: " 

For h=2,  ..., m we put 

Then we get 

(11.7) 

log Q 1 
rh = r l - - +  l. 

log Qh 

rl  log Q: <. rh log Qh <~ rl log Q1 +log Qh < (1 + : ) r l  log Q1 (11.s) 

and thus (9.15) is satisfied. Hypothesis (9.16) is the same as (11.6). 

With our value of e, hypothesis (9.17) is satisfied if Q~ > 23~ 155. M1~ but  this 

is amply guaranteed for by (11.4), (11.2), (11.1). We apply Lemma 9.3 to the polynomial 

of the Index and Polynomial Theorem (Lemmata 9.1, 9.2) with t = ( N + I ) M ,  i.e. (9.9). 

In Lemma 9.1 we need (9.5), i.e. 

m > 4e -2 l o g ( 2 ( N + l ) M ) .  

With our value of e this becomes 

m > 900M45 -2 l o g ( 2 ( N + l ) M )  
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and hypothesis (11.1) takes care of this condition. Thus all hypotheses of Lemma 9.3 are 

satisfied. We may conclude that P has index 

ind P ~> mc (11.9) 

with respect to (V[1 ] (Q1),-.-, Vim] (Qm); r). To get an upper bound for the index, we apply 

Lemma 10.2 with ~ - - ~ .  

Now, with w given by (10.14), the parameter E in (11.2) has E=2/w. 
We infer from (11.8) and (11.7) that 

rh+llogQh+l 2 rh+llOgQh+l (h=l,...,m-1). 
~Vrh >i W (1 +~) log Qh = E" (1 +~) log Qh /> rh+l 

So (10.15) is satisfied. 

As there is no h e 0  in K M with (8.36), we may apply Lemma 8.3. We get 

with 

Qr<HI(Vh)<Qh (h=  1,...,m) (11.10) 

5 
F -  - -  (11.11) 

4 (N+l )  

provided that (8.16) holds true, i.e. provided 

Q(M-1)5 ~ M4M(N+I). 

Again (11.4) takes care of this. 

Now we obtain with (11.10) and (11.8) 

Hl(Vh)rhl~h ~ 1  >Hi(V1) rlr  (h=  l, ..., m). 

Thus (10.16) is true. 

As for (10.17), we infer from (11.10), (11.11) and since E=2/oJ that 

Hl(Yh)WF >QhWF2 ='~ht'~2F2/E ='~htO52/8(N+l)2E > 22ra(M- 1)2 ' 

the last inequality by (11.4). So (10.17) is satisfied as well. 

We still have to check hypothesis (10.18). By Lemma 9.1, our polynomial P has 

Hi(P) < 2mM(3M) r < 23Mmrl. 

Combining this with (11.4), (11.10), (11.11) we get 

Hi(P)  (M-l)2 < 23Mmrl(M-1) 2 < 23M3mrz < Q~ 62/s(N+l)2E)rl 

r)(5~/1~(N+1)~)2~/E r)~rlr ~ <Hi(V1) ~ l r  ='r = ~ 1  
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which is the desired (10.18). 

The conclusion of Roth's Lemma 10.2 is that the index of P with respect to (VIi] (Q1), 

�9 .., Vim] (Qm); r) satisfies 
1 5 

i n d P  < ~ =  ~-~ < m 1--~-M- 5 = me  (11.12) 

(the last inequality by (11.1)). 

However (11.9) and (11.12) contradict each other and thus the lemma follows. 

LEMMA 11.2. Let 5, m, E be as in Lemma 11.1. 

Let H(Q) be the parallelepiped (7.12) with parameters c~ (vES, l <~ i<~ M) satisfying 

Given Q, let S(Q) be the subspace spanned by gl----gl(Q),...,gM_l= (7.10), (7.11). 

gM-I(Q). 
Let 

5 
0 ~ ~ ~ 4M 2 . (11.13) 

Then as Q ranges over values with (7.13), (11.3), (11.4) and moreover 

r)4M2/d (11.14) Q8 > ~ K  , 

S(Q) ranges over less than 

m ( l +  ~- l ogE)  (11.15) 

distinct ( M-1)-dimensional  subspaces of K M. 

Proof. We distinguish two alternatives. Suppose first that there exists a nonzero 
point h E K  M having (8.36) for each tuple (j(v))ves in the set ,.q defined by (8.14). We 
want to apply Lemma 8.5. 

So let h r  be a point with integral components in K satisfying (8.36) and having 

minimal 1-Iveso~ Ilhlll,~ �9 
Hypothesis (8.37) is (11.3), (8.38) is satisfied by (11.3). Moreover we infer from 

(11.4) that 
Q5/2 > Q52/2 > 212M 3 > (2M)6M ~ ' 

and from (11.14) we get 

Together this gives 

so hypothesis (8.39) holds true as well. 
hx--0, i.e. one single subspace suffices. 

r)2M2/d Q~/2 > ~ K  �9 

{9 A/f~ 6M2 II 2M2/d 

By Lemma 8.5, S(Q) consists of points x with 
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If there is no such point h, the hypotheses of Lamina 11.1 are satisfied. 

In fact, we may combine Lemma 11.1 with Corollary 8.7. Notice that  (11.4) amply 

guarantees (8.54). Therefore, as Q runs through an interval (11.5), S(Q) will run through 

a set of subspaces of cardinality ~<1+(4/5)logE.  Summation over h in l<~h<m gives 

the assertion. 

12. C o n n e c t i o n s  b e t w e e n  two adjacent  m i n i m a  

LEMMA 12.1. Suppose that 0 < 5 < 1 0 M  and that 

m > 90 000 M65 -2 l o g ( 2 ( g +  1)M). (12.1) 

Let E be given by (11.2). Let II(Q) be the parallelepiped (7.12) with parameters ci~ (vES, 
l <i<M) satisfying (7.10), (7.11). Suppose that 

5 
0 ~< ~ ~ 8M 3 . (12.2) 

Then for values Q with (7.13), 

and 

Q5 . . .  r)SM3/d 
1 ~"K 

Q52/20M2 > 224Ma(N+l) 2mE 

AM-I(Q) < Q-~AM(Q). 

S(Q) is among not more than 

26M2 5-M m(1+ ~---- log E) 

subspaces of K M. 

Proof. For v E S define 

cv ---- min(clv, ..., CMv}. 

(12.3) 

(12.4) 

(12.5) 

(12.6) 

For vESo let %=%(Q)~<c~ be largest such that Q ~  lies in the value group of H']]v. By 

(7.13) we have 

IX QCv--yv ~< Q, .  
vESo 

(12.7) 
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v6S 

In view of (12.4), this implies 

Define the parameter R by 

AI(Q)/> Q-2. (12.13) 

R = [16M36 -1] +1 (12.14) 

By Lemma 7.5, there exists a nonzero S-integer c~EK with 

II~liv < QCv (Q(- E,~e8 c~,)+,DiK/2d)d./d (V �9 So),  

I[~11~ ~< QC~ (v �9 So). 

Since our forms L~ "), ..., L ~  ) are a special system in the sense of w we obtain with the 
canonical basis vectors el, ..., eM in view of (12.7), 

IIL~ v) (aej)II~ <~ qcv (Q(- Ewes c~)+VDk/2d)d~/d (12.8) 

<~ QC~'(Q(-E'~esC~)+VD1K/2d) d'/d (vGSoo, l <~ i , j  <~ M), 

IIL~V)(c~ej)llv <~ Q ~ <~ Q~~ (veSo,  l <~ i , j  <<.M). (12.9) 

We infer from (12.8), (12.9) using (7.11), (12.2), (12.3) that 

AM(Q) <. Q(- E~e8 ~)+,n l /2d  < Q~. (12.10) " 'K 

Again, since we are considering special systems L~ v), . . . ,L~ ), any point x E K  u has a 

representation 

(v)~(v) . . . .  (v) T(.) 
Xi=l~i 1 1~ 1 (X)-i-...-ffI]iML M (X) ( y E S ,  l <~ i<.M) 

with coefficients ~?~y) in {-1, 0, 1}. It follows that any point x E K  M satisfies 

IIxllv ~< Md"/d max IILl v)(x)ll~ (v �9 So), (12.11) 

Ilxllv ~< max IlL} v)(x)l[~ (v �9 So). (12.12) 

Let gl be an S-integral point in K M corresponding to the first minimum A1 (Q) of 
II(Q) and assume that  (i(v))ves is a tuple where the maxima for gl in (12.11), (12.12) 
are assumed. Then we get with (12.11), (12.12) and (7.11), 

Ax (Q)/> Q-  Eves ~<.),. 1-[ I[L~ )) (gl)I1~/> Q- zoo, ~,<o),o M-~Hs(gl )  >/Q-1M-~" 
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and divide the interval [-2, 2] into 4R subintervals, each of length 1/R and of type 

_ / + 1  
- 2 +  / ~<x<-2+---R- (0~</<4R). (12.15) 

We partition the set of Q under consideration into 

~< (4R) M (12.16) 

subsets as follows: Q and Q' will belong to the same subset if for each i (I~<i~<M) the 

minima Ai(Q) and Ai(Q') satisfy 

Q-2+Li/R <~ Ai(Q) < Q-2+(I~+I)/R and (Q,)-2+ldR < Ai(Q') < (Q,)-2+(l i+l) /n ,  

i.e. if log Ai(Q)/log Q and log Ai(Q')/log Q' lie in the same subinterval (12.15). 

We now restrict ourselves to values Q that belong to the same subset. 

If Ai=Ai(Q) has 
Q - 2 + l d n  <~ Ai < Q-2+(I~+I)/R (12.17) 

write 

Put 

Ai = Ai(Q) = Q-2+h/R. 

Q0 = (A1 ... AM-2A2M_I) 1/M 

(12.18) 

and 

Q1 ----- p0/A1, . . . ,  Q M - 1  ---- ~ ) 0 / A M - 1  but QM : QM-1 : Qo/AM-1 �9 

It is clear that relations (7.27), (7.29) of Lemma 7.8 are satisfied. Moreover our construc- 

tion in (12.17), (12.18) is such that (7.28) is true with 

1 5 
---- ~ < 16M3. (12.19) 

We fix voEM~c(K). Then by Lemma 7.8, given Q, there is a permutation T of 

{1, ..., M} such that the successive minima A~ of the parallelepiped H'--II '(Q) given by 

-1 ~,C,vo (1 <i~< M) (12.20) 

and otherwise (i.e. for all other places v) as in (7.12) satisfy 

, I,M2,-,MUr . (1 ~< i ~< M). (12.21) DK1/2d2-MQ-MCQi) t i  <. )t i ~ a (,d IJK Qini 

Now the permutation still may depend upon Q. We therefore partition the set of Q 

under consideration into subsets, such that elements Q and Q, in the same subset give 
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rise to the same permutation T. As there are M! permutations of {1, ..., M}, the number 

of possible subsets does not exceed 

M!. (12.22) 

In the sequel we restrict ourselves moreover to elements Q in one such subset. Since 

we axe studying values Q with (7.13), we may apply Lemma 7.4. 

Accordingly we have 

1/2d M M -M ~ A1 ... )kU ~ (Q D K ) (12.23) 

and the same inequality is true for the product At... A~I. 

Now by (12.17), (12.18), (12.23), (12.5), 

2 1/M .~ 2 1/M LOo = (A1 ... A M - 1 A M _ I )  "~. ()~1 -.. ) ~ M - 2 ) ~ M - 1 )  

( AM ( A M - I ~ I / M / t ' ) ~ D 1 / 2 d f ) - 5 / M  

Therefore (12.21) entails with (12.17), (12.18), (12.19), 

AM2 y')M2~ y) (2M-1) /2d-  ARM-1 "r : ~ ~ K  U M - 1 A M - 1  

__ AM2t,-)M2~ y)(2M--1)/2d QO A M - 1  

- -  = "~  ~ K  A M - 1  (12.24) 
< ,~M2 f~M2~ r~(2M-1)/2d[-)~l r ) l / 2d ( ) -5 /M+~ 

,-i ~ 2J K "~ "" K "~ 

= 4M~Q(M2+I)r < Q-6/2M, 

the last inequality by (12.2), (12.3), (12.4), (12.19). 

Moreover we get using (12.10), (12.13) and the definition of the Ai in (12.18) that 

and thus we have 

Q I = A l l Q 0 ~ Q  4, L)M=AMI_100/>Q -4, 

Q-4 ~< L0 M ~ ~ M - 1  ~ .-. ~ L01 ~ Q4. (12.25) 

Notice that our construction is such that there exist fixed real numbers say fl ,  ..., fM 

such that for each Q in our subset we may write 

Qi = Qi(Q) =QA (i = 1, ..., M) .  (12.26) 

Therefore the parallelepiped H'(Q) we obtain in applying Davenport's Lemma 7.8 again 

is a parallelepiped of type (7.12), defined with fixed paxameters, say c~v (yES,  1 <.i<~M). 

Since Q1 -.- QM----1 we have 
M 

E E c;. =0.  (12.27) 
yES i=l 
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On the other hand (12.25) and (12.26) imply that 

' [ (12.28) 
I 

E ci(,,),,, <, 5. 
yES' I 

for any subset S' of S and for any tuple (i(v))ves, with l<~i(v)<~M. 
Therefore, we may apply Lemma 11.2 to be parallelepiped II' with Q replaced by Q5. 

Then (12.27), (12.28) are the analogues of (7.10), (7.11). As the parameters civ for vESo 
are the same in the definition of H and H', if we replace Q by Q5 the c/v (v~So) are 

! c . replaced by 5 ~" 
1 By (12.24), the analogue of (11.3) is Therefore (7.13) is true with ~? replaced by ~y. 

satisfied with 5 replaced by 5/10M. With these changes (11.13) becomes (12.2), (11.4) 

becomes (12.3), (11.1) becomes (12.1), (11.4) becomes (12.4). 
The conclusion is that for values Q in a fixed subset, we get less than 

m ( 1 + ~ -  log E )  (12.29) 

subspaces S'(Q) corresponding to the parallelepipeds H'(Q). By (12.16) and (12.22) 

together with (12.14) we see that the total number of subsets is bounded by 

(4R)M'(M!) < 25M2 5-M (M[) < 26M25 - M .  

Combining this with (12.29) we may infer that altogether we have less than 

26M2 5-Mm ( l + ~--- log E) 

subspaces S'(Q) corresponding to the parallelepipeds H'(Q). 
To prove Lemma 12.1, it therefore suffices to show that for each Q we have the 

identity S(Q)=S'(Q). Recall the definition of the forms G~)(X) in (7.32), (7.33). By 
(7.34) any point xEg M that satisfies inequalities (7.12) for v~S~ but does not lie in 

the subspace SM-I(Q) generated by gl(Q), .-., gM-I(Q) has 

max {max{IGOr)(x)[., ..., [G~ ) (x)[v}}/> 2-MQ-M~DK1/2dQMAM. 
vES~ 

But by (12.21) and the analogue of (12.23) for At,..., A~ we get using (12.19) and (7.31), 

2-M Q-M~ DK1/2dLoM AM >/2-MQ-M~4-M2Q-M2r M 
2 -M-2M2 Q-2M2r 1 ... AIM) 1/M 

>/2-3M2Q-2M~r > Q-,~/16M. Q-5/SM. Q-5/16M 

= Q-5/aM 

(the last inequality by (12.4), (12.19), (12.3)). 
It follows that such points x do not lie in Q-~/aMII'(Q). On the other hand by 

(12.24) we have A~-I  <Q-~/2M. Therefore the points g~(Q), ..., g ~ - l ( Q )  that generate 

S~4_1(Q ) cannot lie outside SM-I(Q) and thus StM_I(Q)=SM_I(Q) as desired. 
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LEMMA 12.2. Let II(Q) be the paraUelepiped (7.12) with parameters civ (yeS, 1<~ 
i<~M) satisfying (7.10), (7.11). Suppose that l<~l<M and let Sl=Sl(Q) be the subspace 
spanned by gl , . . . ,g t .  Put 

Suppose that 
0 < 5 < 20L (12.30) 

and that 

Let 

5 
0 ~< ~? ~< 16L4. (12.31) 

m > 360 000 L6M25 -2 log(2(N+ 1)L) 

and put 

Then for values Q having (7.13), 

(12.32) 

1 m 2 m-1  E---- ~2 (180) . (12.33) 

Q5 ~16La/d >/-)K , (12.34) 

Q 52 > 2 llLSM2(N+I)2mE ( 1 2 . 3 5 )  

and 

AL(Q) < Q-~At+I(Q), (12.36) 

the subspaces Sl(Q) run through a collection of not more than 

80LM 26L2 (2M)L ~-Lm( l  +-----~ log E)  (12.37) 

l-dimensional subspaccs of K M. 

Proof. Put  k = M - l .  Recall from w that C(M,k) is the set of k-tuples a =  

(il<...<ik} of integers in l<.i<.M and define L (v) and c~v as in w We apply Lemma 7.9 

to the parallelepiped II (k) (Q). 

Denote its successive minima by vl,...,VL. It is clear that in Lemma 7.9 we may 

take 

TL = { M - k + l ,  M - k + 2 ,  ..., M} = { l+ l ,  l+2,  ..., M}, 

TL-1 = { M - k ,  M - k + 2 ,  ..., M} = {1, l+2,  ..., M}. 
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By Lemma 7.9, we have 

and 

UL-1 ~ k! )~.rL_ 1 

A~- L <~ v iQiknDik/2d(k! ) i -12  i2. 

On the other hand we get from (12.36) 

(12.38) 

(12.39) 

A~-L_ 1 < Q-~A~. n . (12.4o) 

Combining (12.38), (12.39), (12.40) we may infer that 

VL-1 <~ vLDLk/2d(kI)LQLkn2L2Q -~ 

and therefore by (12.31), (12.34), (12.35), 

l /L -  1 < Q- ' 5 /2v  L. (12.41) 

Our new exponents c~v have by (7.11), 

c~.,v ~< k (12.42) 
yES' 

for any subset S' of S and any tuple (av)ves, with avEC(M,k) .  Our goal is to apply 

Lemma 12.1. To guarantee the analogue of (7.11), in view of (12.42) we have to replace 

Q by Qk. To get the analogue of (12.5), by (12.41), 6 has to be replaced by 5/2k, whereas 

in (7.13) remains unchanged. M becomes L. The hypotheses in Lemma 12.2 are the 

hypotheses of Lemma 12.1 with this change of parameters, where at several instances we 

have sharpened the hypotheses slightly to clean up the situation. 

The conclusion is that the subspaces s(k)(Q) spanned by the first L - 1  minimal 

points of H (k) (Q) are contained in the union of not more than (12.37) (L-1)-dimensional 

subspaces of K L. 

Let gl, .--,gM be independent points with giEAiH (i=1,..., M). By (7.51), (7.52), 

(7.53) the points G~I, ..., G~L_ 1 lie in kIA~-L_~II (k). But with the same argument that 

gave us (12.41) from (12.38), (12.39), (12.40) we obtain 

k! A~L_~ < Q-~/eV~-L. 

Therefore G~-I, ..., G~L_ 1 span S (k). Hence there are not more than (12.37) possibilities for 

the span of G~I, ..., G~L_ 1 . By Lemma 7.11 there are not more than (12.37) possibilities 

for the span of gl,-.-,gM-k, i.e. for the span of gl, ...,gl and hence for Sl. 
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13. Inning of  Lemma 6.1 

Consider the parallelepiped H(Q) given by 

IIL~V)(x)]]v~<Q e'" (yeS,  I~< i<N) ,  
(13.1) 

IIxllv 1 (v r s). 

By Lemma 7.4, using (6.3) and (6.8), we get for the successive minima A1, ..., AN the 

inequality 

N -N <~ A1 ... AN. (13.2) 

In particular this implies that 

AN >/N -1. (13.3) 

So by (6.5), the solutions x of (6.9), (6.10) are contained in the subspace SN-I(Q) 
spanned by gl(Q), ..., gN-1 (Q). 

Given a solution x of (6.9), (6.10) let s be minimal, such that x lies in the subspace 

Ss spanned by gl, .-.,gs. Then l<~s<~N-1 and by (6.9), As~<Q -5. By (13.3) there is an 

l with s<.l<~N-1 such that AI<~Q-~/(N-DN1/(~-I)AI+I. Suppose for the moment that 

Q6 > N N. (13.4) 

Then we get 

A1 < Q-5/N At+I. (13.5) 

N N--1 Our goal is to apply Lemma 12.2 with M, L, 5 respectively replaced by N, ( t ) ~<2 , 

5IN. Then by (13.5), the analogue of (12.36) is satisfied. As for (12.31), we need 

and this is certainly true if we require ~?~<~2 -SN, i.e. (6.7). 

We next choose m as in (12.32). It will suffice to pick m with 

m > 219.26N-6-N 2 .N25 -2 log((N+ 1)2 N) 

and this in turn will certainly be satisfied if 

m >/222+7N5-2. (13.6) 

Since 6<1, we may choose such an m with 

m < 223+7N5-2.  (13.7) 
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We next choose E according to (12.33), i.e. 

1 m 2 m-1 E =  ~2 (180) . 

From (13.7), (13.6) we get 

2224+7N~ -2 logE ~ m + 9 - 2  m < 

(13.8) 

(13.9) 

Suppose for the moment that  the analogues of (12.34) and (12.35) are satisfied. In 

fact suppose that  

Q~5/N ..~ r)24N/d 
i "  ~ g  ' 

Q62/N2 ~ 211"25N-SN2(N+l) 2mE. 
(13.10) 
(13.11) 

Then Lemma 12.2 is applicable. By (12.37) we may conclude that  the subspaces SI(Q) 
are contained in a collection of not more than 

26-22N-2 ( 2 N ) 2  " - 1 5 - 2  N-1223+TN(~-2272N-1.  N(~--12224+TN6 -~ 

subspaces of dimension l. Summing over I with 1 ~<l<~ N - 1 ,  we finally see that  for values 

Q with (13.4), (13.10), (13.11) the solutions x of (6.9), (6.10) are contained in a collection 

of not more than 

N. 26.22"-2 (2N)2N-~ ~-2;v-~223+TN ~-2272N-I .N~-I2224+TN~-2 

proper subspaces of K N. 
And so with a crude estimate we see that  

222~ (13.12) 

proper subspaces will suffice. 

There remains the range of Q, where (13.4), (13.10) or (13.11) is violated. We treat 

such small values of Q with Lemma 8.6. We apply Lemma 8.6 with M replaced by N. 

In Lemma 8.6 the hypothesis (8.44) then is 

Qo >1 N2/~ > 2, 

since 6<1. By (8.46), values Q with 

N2/~ < Q <~ 2ii'25N-~N=(N+l) 2mEN26-2 (13.13) 



MULTIPLICITIES OF RECURRENCE SEQUENCES 231 

give rise to not more than 

1+45 -1 log(ll.25N-S N2(N + l)2mEN25 -2) 

proper subspaces. But by (13.7), (13.9) this number is bounded by 

222~ (13.14) 

Moreover, the range 
max{N 2/a, Dig/2d } < Q <<. DK N'2"N/6"d (13.15) 

by (8.46) gives not more than 

4 2N.2 aN (13.16) 
l + ~ . l o g  5 

proper subspaces. Notice that  the ranges (13.13) and (13.15) take care of values Q, 

where one of (13.4), (13.10), (13.11) is violated. Combining (13.12), (13.14), (13.16), we 
2 t5 1 /2d  see that  the solutions x of (6.9), (6.10) with Q > m a x { N  / ,D K } are contained in the 

union of not more than 
2221N~ -2  

proper subspaces of K N, and this is the assertion of Lemma 6.1. 

14. N o t  yet  the  last sect ion  

We resume the notation of w167 2 and 3. Recall that  we want to study the equation 

(]~i XlOZ~i 

det : 

31 q xqal ~ 

As in w we write 

kir~ xi ... ~ xl XlOZr xi Xl '~I 

x k l  Xq Xq Xq 
q ~ 1  . . .  Olr XqOlr  

. x[~i ~ I 
k,. Xq ] 

. . .  Xq  Olr / 

=0.  (14.1) 

o, = ( 7 1 ,  "'5' % '  ~2 ,  "'5' o~2, ..., ~, . ,  "5' o,,;) = (~1, ..., ~,~) = ,~ 
kl-'l- 1 k2-t'-1 kr-I'- 1 

with q=kl +...+k~+r. Given x=(x l ,  ..., Xq) we had f~x=/~l  .../~q and for a permutation 

a from the symmetric group Gq we write x _  xl xq /33-j3~,(1 ) .../~ (q). Then equation (14.1) may 

be written as 

E Ma(x)f~x -- 0 (14.2) 
q E ~ q  

where Ma(x) is a monomial in xl ,  ..., Xq of degree ~q2. 
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Our goal is to manipulate equation (14.2) such that we are in a position to apply 

Lemma 6.1. The main difficulty consists in the problem to show that equation (14.1) 

leads to a finite number of systems of simultaneous inequalities of the type considered 

in w In principle such a reduction may be easily achieved, the point however is that  we 

want the number of such systems bounded independently of the cardinality of the set S. 

The following considerations are undertaken with this aim. 

Given vES, we define 

~j~ = log  IIf~jll~ (1 ~<j ~<q). (14.3) 

Then we get 

log I1~ x II. = Xl"Ytr (1),v -Jr'... "~t-Xq"~tr(q),v" 

Recall that  in Lemma 3.1 we are interested in solutions x = ( x l ,  ..., Xq) of (14.1) with 

xl < x2 < ... < Xq. (14.4) 

For each v 6 S  let (:rvE~ q be a permutation such that 

"~av(1),v ~ ")'av (2),v ~ "'" ~ "~a,~(q),v" 

In view of (14.4) and (14.5) we have for each vES and each permutation O ' E ~ q ,  

Xl') 'a(1) ,v -]-"" -'[-Xq")/a(q),v ~ Xl")'av (1),v -[- "'" -~-Xq"~av (q),v" 

(14.5) 

(14.6) 

Write 

N + l = q ! .  

Let o1, . . . ,  O'N+I be an ordering of the elements a6| Using the definition of our set S 

we obtain 

n . . .   xN+l = 1 ,  

v6S 

and thus dividing by I-[~es [[r I1~ we get by (14.6), 

I X X X n / 3~N+~I I~=HI( ( /3~ ,  x --1 . . . . . .  ,/3oN+~)) , (14.7) 
yES 

where the dash in (14.7) indicates that  for each v the fac tor /9x  is omitted. For technical 

reasons we prefer to write (14.7) as 

v~IIs ~xll/~Xl " /~x2 "/~Xl "'" . . . . / ~ X N + I / ~ x 1  v = H1 ( (  1'/~x2/~xl ' ' '"  /~O'XN+I ) )  - 1 " / ~ 1  (14.8) 
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As in w write S=SmUSo. For l<~j<~q we define sets T~j  and Toj as follows: 

Tccj = {(a,j,v) Ive S~, aE| a#a . } ,  

Toj = { (a , j , v ) I~  e so, ~ee~,  ~#~v}. 

We divide Toj into two disjoint subsets T~ and To~. 

The triple (a,j,v)EToj will be in T~ precisely if 

%(j),v -%~(i),v = Fo,j,v >~ 0, (14.9) 

i.e. if 

~"(J) /> 1. 

Similarly T0~ consists of the triples (a, j, v)EToj with 

%(j),~-%~(j),v = F~d,v < 0. (14.10) 

We partition T~j  into two disjoint subsets T+j  and T~j  as follows: 

The triple (a, j, v)6Tooj will be in T+j  precisely if 

1 d v ( E  ~ %(j,,~-%,(j,,~)=F.,j,~>~O , (14.11) 
%(j) ,v-%~(j) , ,  qN"--d ~es q 

0"~0" w 

i.e. if 

Similarly T~j  contains the triples (a, j, v)ETooj with 

1 - ~ ( E  E ) " "/,,(j),w -")',:'x (j)#o = F,,,j,~, < O. 
%(j),v-7,,~(j),v qN ~es ~e~ 

~T~Tw 

Given a solution x = ( x l ,  ..., xq) of (14.1) we write for j=l ,  ..., q, 

N~(x) = 

(~,a,v)eTo~ 

(~,j,-)eTo~ 
xj xj scj 

fl~,=(j) Ill II n' l l&(,> xj 11  x~ x~ "" 

(a,j,v)eT+~ 

: ( ~ / (  H t~O*l (J) " ~0"2 (J) - -  

o'~v Xj Xj "�9 
(~,j,~,)eTs 

(14.12) 

(14.13) 

- ,  

~..4 /3~1 (;) ~- 
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Notice that our definition (14.13) is such that 

q 

I I  Bos (x)Bos (x)B+s (x)B~os (x) = 1. (14.14) 
j = l  

Given x define Q by 

H x Q= 1 ( ( ~ , . . . , ~ + ~ ) )  16~N. (14.15) 

Write 

B~s(x)=Q"o-~ , Boj(x)=Q"~ , B+j(x)=Qn+~J, B~os(x)=QnJ~J. (14.16) 

Our definitions (14.9)-(14.13) imply that 

~s log Q = xs ~ r~,s,v = xsr~ s, 
O'~V 

(a,s,vleT~ 

'7oslogQ=xs ~ r~,s,v=xsr~ s, 

(~,,S,v)eT~ 

~/ooS + l~  E r~,s,v-~sr~j,- + 
O'~V 

(a,j,v)ET+.r 

rig, S log Q = x s E F~,,s,~ = xsF~s" 

(a,j,v)eTs162 

say, 

(14.17) 

(Relations (14.17) simultaneously define the quantities F~S, Fos, F+ s, F~S (l~<j~q).) 
Our definition of Q in (14.15) implies together with (14.13), (14.14) and Lemma 5.3 

that 
+ r , l 1,  11 (l~<j~<q). (14.18) 

Define the natural number v by 
v = 2 4.2 7N.d. (14.19) 

Moreover for j = 1,..., q we define integers l~s and los to be least such that 

, -8q + os~. S a y  

By (14.18) we have 0</~-S, los <~v/4q. 
Write 

1 1 
~o j -  8q ~los-. (14.20) 
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Then obviously by our definition we have 

~j_l<~j<<~j, u ~ ~  < Y~ <~ ~~ (14.21) 

Write 
~ j _  1 + 1,  ~ _ 1 ~_l~ 1 

8q ~-l~ u 8q u 

We claim that it is possible to pick integers loot, + l~j ,  ..., l+q, l~q such that 

l+j, l~jE -1 ,~qq+ l  (l~<j~<q), (14.22) 

+ + 2, 2 
[ ~ 3 - ~ [  < - [ ~ j - ~ [  < - (1 ~<j <q)  (14.23) 

/2 12 

and such that moreover 

+ - + 
I ( ~ o ~ + ~ o ~ + , ~ 1 + ~ 1 - ~  - + - -['- ~01 - - ~ o c l  - -  ~ o o l  ) - ] -  " '"  

+ _ + _ + _ + 1 
+ (~or + ~oj + n~j  + ~ j  - (o~ - ~o~ - ~ - ~ ) 1  < - 

12 
(l~<j~<q). 

(14.24) 

+ + + In fact, choose l~1 such that r l ~ l - ( ~ l ) O  and such that 

1 + + + + 
1'7Ol + , 7 ~  - ~ o ~  -~o~11 < - -  

V 

Such a choice is possible with 
1 + + 

I n ~ 1 - ~ 1 1  < - .  
/2 

+ + - + + - 
Now, if ~ o l + ~ ? ~ l + ~ o 1 - f m - f ~ 1 - f o 1  is ) 0  (or <0  respectively) pick 1~1 such that 

~ 1 - ~ 1 4 0  (or >/0 respectively) and such that moreover 

1 + + - _ + + 

V 

Such a choice is possible with l y ~ l - ~ l l < 2 / u .  And so forth. Then (14.22), (14.23), 

(14.24) are satisfied. We may infer from (14.14) and (14.17) that  

q 

( ~ j  +~oj +~+~, + , ; ~ ) = 0  
j = l  

Consequently (14.24) for j=q implies that  

q 

+ - + - 
(~0j +~0j + ~  +~ooj) = 0. 

j = l  

(14.25) 
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Our goal is to construct with the parameters (~j, ~oy, + ~ 3 "  ~ J  exponent systems e(,v 
(aEGq, o'TLav, yES) that are suitable for an application of Lemma 6.1. 

For this purpose let us first review the construction we have performed so far. We 

first discuss the somewhat special r61e played in our context by elements ~?~-j, ~/oj, + r/c~j, 

~ j  equal to zero. Then clearly all factors contributing to the corresponding term Bffy (x), 

Boy(X ), B+y(x)  or B;c3(x) in (14.13) axe equal to 1. 

If e.g. ~/~j =0, in the sequel we may therefore use the convention that then 

F~,~,v =~g_y = 0  for each triple (cr, j,v)eT~j, (14.26) 

and similarly for ~o~y- + Then in all cases, using (14.3), (14.9)-(14.12), (14.13), (14.17) we 

obtain 
ra,j,v r~j rl~176 ~ y l o g Q  ((a,j,v)eT~j) (14.27) 

and 
F,,yv,, F~,yv,, 1 

rot r~y r~y . 
We get similar formulas for To~. 

Moreover, for (a , j ,  v)eT+j we have 

Fa,j,v ~l+j log Q = xyF~,j,~, 
For 

(14.28) 
F~,j,~ + F~,j,v I 2 
--~j rl~j r+j ~+Jl <-u ((a'J'v)eT+J) 

and similarly for T~j. 
Given a 4q-tuple (~ l ,~m,  + + - + - ~o~1, ~ 1 ,  ---, ~q,  ~oq, ~o~q, ~ q )  we construct for each yES 

an N-tuple (e~) ,  where attar runs through ~q, as follows: 

For vESo and for aT~a,, we put 
q q 

F~j  

j=l r~y roy 5=1 
(a,j,v)eT~ (a,j,v)eT~ 

(14.29) 

Similarly for vES~ and attar we put 
q q 

e~v= ~ F~,j,v + (14.30) ,--, r ~  ~ + ~2 r~,~,v 
j= l  ~ ~:~j" 

(a,j,v)eT+~ (a,j,v)ETs 

As by (14.18)-(14.22) we have not more than 

124q ~ 229aNd 4q (14.31) 

tuples (~1, ...,~y), the numbers of tuples (e~.) (yeS, oe~q\{~.})  in (14.29), (14.30) 
does not exceed the bound in (14.31) either. 
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LEMMA 14.1. The tuples (e~,), where for each vES, a runs through | {av} satisfy 
the relations 

E E ear =0,  
yES ar 

v~es eT(v),v ~ 1 

for each subset S' of S and for each choice of elements T(v)E~q with T(V)#a,. 

Proof. Using (14.17), (14.29), (14.30), we see that 

(14.32) 

(14.33) 

v E S a E ~ q  j = l  1 ? 3 J 
o'~o" v 

q 

= + r  + r 1 6 3  = 0, 
j = l  

the last equation by (14.25). This proves (14.32). 

As for (14.33), we remark that our construction in (14.9)-(14.12), (14.17) and 
(14.29), (14.30) is such that e.g. the coefficients F~,j,v/F~j of ~ j  in (14.29) are all non- 

. + negative. Moreover we have ~-~-,~,v,(a,j,,,)eT~ Fa,3,~/F0j----1 by (14.17). 

Similar remarks apply to each of ~oj, ~+j, ~ j  (J = 1,..., q). 
We may infer that 

E er(v) ,v  q 

yES I j-~l 

In view of (14.18), (14.20), (14.21), (14.22) we have max{l~jl,  ]~oj], I~+j], ]~j i}~<l/4q 
and (14.33) follows. 

We now introduce linear forms 

LI (Y1, ..., YN ) = Y1, 

LN(YI,..., YN)= YN, 

LN+I (Yl, ..., YN) = Yl +... + YN. 

(14.34) 

Notice that any N among the linear forms in (14.34) are a special system in the sense 

of w We get with (14.2) for any solution x--(Xl, ...,xq) of (14.1), 

Li (Mal (x )~I , . . . ,M~N(x)~N)=M~(x)~I  ( i=l , . . . ,N)  (14.35) 
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and 
x x LN+I(M~I (x)j3xl, ..., MaN (x)f~a N) ---- --M~N+I (x)/3~N+I �9 (14.36) 

In view of (14.35), (14.36) there is a bijection between the linear forms L1, ..., LN+I and 

the permutations 41, ..., aN+l in | 

Given v 6 S, assume that under this bijection the form Li. corresponds to the per- 
mutation av. Relabel the remaining N forms from (14.34) as L (~) (O 'E~q ,  O'r Put 

1 
= - -  (14.37) 

32qN:" 

Given a solution x=(x l ,  ...,xq) of (14.1), define Q by (14.15). For veSo and given real 

numbers Q and e, we define the real number c ,=~, (Q,  e) by the following property: Q~ 

is the largest value ~Qe in the value group of the absolute value H'H-. 

LEMMA 14.2. For each solution x=(xl,. . . ,xq) of (14.1) satisfying 

Xl<X2< . . .<xq ,  x i # 0 ,  x l < 0 ,  xq>0 ,  (14.38) 

[xl -xq ] > 20 000 d6q4g 2, (14.39) 

there exists a tuple (e~v) from (14.29), (14.30) with the following properties: 

The point (1/f~x~)(M~ (x)f~x ,..., M~ N (x)f~xN)=y, say, satisfies the simultaneous 

inequalities 
IIL(V)(y)]]v<Q e~€ (v6Scc, a6~q ,  a~av) ,  

iin(~)(y)ll~ ~<Qe~ (v6S0, a6~q ,  a r  (14.40) 

HyH, ~< 1 (yeS)  

with 5 as in (14.37) and Q as in (14.15). Moreover points x with (14.38), (14.39) have 

Q > max{N=/ , (14.41) 

Finally, in (14.40) we have only to consider tuples (ear) and values Q such that 

E er(v),v-Cr(v),v ~<5 "2-5N (14.42) 
v6So 

for each tuple (T(V)),eSo with T(V)6~q where ~(v),v is defined in analogy with ~v above. 

Proof. If x is a solution (14.1), then by (14.16) it determines uniquely a tuple 

~-j, ~?oj, ~+j, ~ j "  Given ~-j, ~oj, ~+j, ~ j  we choose ~g-j, ~oj, ~+j, ~ j  (l~<j<q) 
satisfying (14.21), (14.23). 



MULTIPLICITIES OF RECURRENCE SEQUENCES 239 

Since the factors Fo.,j,v/F~j and Fo.,j,v/Foj in (14.29) are nonnegative and since by 
(14.17), 

Fo.,j,. 
E F~j - 1 and E Fo.,j,v = 1 

(o.,j,v)eT + (a,j,v)eT~ 

for j----l, ...,q, we may infer from (14.13), (14.29) and (14.21) that for any pair a,v with 

yES0, aEGq, aCav we have 

_ ~< Qe,,.  (14.43) 

Moreover, with (14.27) we see that for any tuple (~-(v)).e8o, where T(v)E| T(V)r 
we have 

I I  Q~'(')'~ <~ Q2q/v. (14.44) 
vESo f~o.1 v 

With v as in (14.19) assertion (14.42) follows from (14.37), (14.44). Moreover, since the 

monomial Mo.(x) is a rational integer, (14.43) implies that 

Ma(x) ~ < Q~"~. 

By (14.35), (14.36) and the definition of the forms L ('), this gives the inequalities 

ttL(~)(y)II~<~Q ~" (yES0, aE| ar  

in (14.40). The inequalities for vr  are trivially satisfied. 

Now suppose that v E So~. Write 

! X X X 7/~' 

A = I x  fl~ fl~l"'" tiP, w6S o'1 

where the dash at the product indicates that for each w, we leave out the term ~ / f ~ l  

with a=o%. Using (14.13), (14.23) and (14.30) we obtain with (14.28), 

f~  ~ < A(d'/d)(!/N)Q ~'€ (v E Soo, a E ~q, a ~ av). (14.45) 

However by (14.7) and (14.15) we have 

A 1 / N  : Q-1 /16q  N2. (14.46) 

On the other hand, the monomials Mo.(x) have total degree ~q2. Thus 

IIMo.(x)llv ~ max{Ix1 h Ixql} q=d~/d < ma~{lXll, Ixql} 2q2/d (v ~ s~).  
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With our value of Q from (14.15), we may apply Lemma 5.1 with "7=1/4N to conclude 

that for solutions x with (14.38) and (14.39) we have 

liMa(x) [Iv <~ Q (1/64qN2)(g'/d). 

Combining (14.45), (14.46), (14.47) and 

4q 
Y 

we get 

1 < - -  
64qdN 2 

f ~  Q e''-(1/32qN2)(d*'/d) (v E Soo, a E ~q, a # av) , M~(x) ~< 
V 

(14.47) 

(14.48) 

and with ~i defined in (14.37), this is assertion (14.40) for vESoo. 
As for (14.41), with our value Q in (14.15) and with 5 in (14.37), the first requirement 

is 

H1 ((~1, '" ,  ~N+,)) > g4Y" (14.49) 

Arguing as in the proof of Lemma 5.1 and using Lemma 4.3 we see that  

(( ( 1 
H1 ((f~x,, -'-, f~xN+,)) ~> Hi  1,-~1]] /> 1+ 2 - ~ ]  �9 

Consequently, (14.49) will be certainly true if 

1 
Ix1 -Xq [.2- ~ > 4 N  log N. (14.50) 

But in view of (14.39), this is amply satisfied. The second requirement in (14.41) is 

H x ~x ~ ~ 16qN 1/2d 
l ( ( f ~ a l ,  > O K . ( 1 4 . 5 1 )  �9 . . ,  r - ~ O - N q _ l  ] ]  

We distinguish two cases: 
r-~l/2d(d--1) __ I f / J g  <.q, then arguing as above, we see that  (14.51) will be true if 

H i ( (  x'~q~]xl-xq'16qN~l]] ~ qd-1 

and as above, this will be satisfied if ]Xl -Xq[16qN>25d3(d-1) logq .  

But (14.39) guarantees much more. 
,.,~. lD1/2d(d--1) So assume that u ' - ~ K  . Hypothesis (2.1) and Lemma 4.4 imply that 

,":l ~ ~. 131/2d(d-1) 
H ( / ~ I ,  ... ,  ~,qj ~ - - K  
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thus by (4.7), 

and therefore 

.> r)l/2d(d--1) ql/2Hz (t31,..., ~q) ~.- ~ g  

~. r)l/4(d--1) d 
HI (ill, .-., flq) / ~ K  

241 

(14.52) 

On the other hand, by Lemma 4.1 we may assume that  

-~z J] ~ HI (~1,---, ~q) 

and we get 

(( Hl((~Xal'""f~xN+l)16qN ~ H1 1' ~1], ] ) Hl(fll,'..,flq) Ixl-xqll6N. 

In conjunction with (14.39) and (14.52) this yields (14.51) and thus (14.41) is proved. 

15. Indeed  the  end of  the  proof  

Combining Lemmata 14.1, 14.2 with Lemma 6.1, we axe in a position, to prove Lem- 

ma 3.1. We first treat the small solutions: 

There axe less than 
( 216 d6 q4 N2) q (15.1) 

solutions (rex, ..., mq) of (3.1) with (3.5) and 

max{ Imz h I mq l} ~< 20 000 d6q4N 2. 

For all other solutions (14.38) and (14.39) are fulfilled. 

By Lemma 14.1 and by (14.42) of Lemma 14.2, we get with 

1 
6 =  

32qN 2 

(15.2) 

229qN d4q. (15.3) 

Hypothesis (6.5) of Lemma 6.1 is satisfied by (14.41). The conclusion is that  solu- 

tions (ml, ...,mq) where (15.2) is violated satisfy (6.9), (6.10) for a suitable set of our 

tuples (e~v). 

certain tuples (e~v) (yeS, i=1,  ..., N) that  satisfy hypotheses (6.3), (6.4) and (6.7), (6.8) 

of Lemma 6.1. By (14.31) the number of such tuples does not exceed 
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By Lemma 6.1, each single tuple (eiv) gives rise to not more than 

2221N 1024q2N 4 

proper subspaces of U. 

Introducing the factor from (15.3) for the number of tuples and the summand from 

(15.1) for the small solutions, we finally see that  the number of subspaces to cover all 

solutions of (3.1) and (3.5) does not exceed 

216qd6qq4q N2q-4- 229qN d4q2221N1024q2N4 < d 6q'22zTN ---- t2. 

This proves Lemma 3.1 and hence the theorems. 
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