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1. I n t r o d u c t i o n  

In the 1934 paper [Le] Leray raised the question of the existence of self-similar solutions 

of the Navier-Stokes equations 

ut-uAu+(u'V)u+VPdiv u == 00 } in R 3 x (tl, t2), (1.1) 

where, as usual, u>0.  These are the solutions of the form 

1 ( x ) (1.2) u(x~ t)  

where TER,  a>0,  and U=(U1, U2, Ua) is defined in R 3. (Hence u is defined in N a x 

(-e~, T).) One also requires that certain natural energy norms of u are finite. If U~O, 
then u given by (1.2) develops a singularity at time t=T. The Navier-Stokes equations 

for u give the system 

-uAU+aU+a(y.V)U+(U.V)U+VP=Odiv U = 0 } in R 3 (1.3) 

for U (where we use y to denote a generic point in R3). The main result of this paper is 
that the only solution of (1.3) belonging to L3(R 3) is U - 0 .  

We make a few remarks regarding the integrability condition UEL3(R3). If one 

requires that u defined by (1.2) has finite kinetic energy and satisfies the natural energy 

equality 

/Ra�89 tl)12dx=/R3�89 t2)12dx+fti2/RaUlVu(x,t)12dxdt (1.4) 
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for each t 1 < t  2 <T,  one obtains fR3 IU[ 2 dy<+oc and fR3 IV/I  2 dy<+c~, which implies 

U E L a ( R  3) by standard imbedding theorems. (We remark that Leray suggests to seek for 

bounded solutions of (1.3) satisfying fi~3 ]U[ 2 dy<+oc, see [Le, p. 225]. Such solutions 

obviously belong to L3(R3).) 

On the other hand, if one only requires that  for some ball B=BR(O) and some to < T  

we have (for u given by (1.2)) 

ess sup f lu(x, t)12 dx < +r  and IVu(x, t)12 dx dt < +c~, 
t o < t < T  J B 

(1.5) 

one gets conditions which do not imply UcL3(R3) .  Therefore our result does not exclude 

the possibility of self-similar singularities which satisfy the natural energy estimates only 

locally. Finally, we remark that our method is also applicable in higher dimensions 

(specifically 3~<n~7), but we will not pursue the case n~>4 in this paper. 

2. P r e l i m i n a r i e s  

We shall use the following notation for balls. For x E R  '~ we denote BR(x)={yER'~: 
[y--x[ <R},  and for (x, t) ERn x R we denote QR(x, t) =BR(x) x ( t - R  2, t). If there is no 

danger of confusion, we will skip the center of the ball from the notation and write simply 

BR or QR. We will use the following result. 

PROPOSITION 2.1. For each v > 0  there exists s0>0  and C0, C1, . . .>0 such that the 

following statement is true: let u=(ul, u2,u3) and p be smooth functions satisfying the 
Navier-Stokes equations (1.1) in QR=BR x ( - R  2, 0), and assume that 

R-2~ (tu(x, t)13+ Ip(x, t)J 3/2) dx dt < so. 
QR 

Then, for each k--0, 1, ..., 

sup IVkul <~ CkR - l -k ,  
QR/2 

where V means, as usual, the gradient with respect to the space variables Xl,X2,X3. 

Proof. The statement can be deduced from [CKN, Proposition 1, p. 775] (see also 

[Sch]), and from [Sell (see also [Oh]) in the following way. (We remark that one could 

also use other results on the regularity of the Navier-Stokes equations, such as [Gi], [So], 

[Strl], [Ta] and [vW].) We see from the scaling properties of the Navier-Stokes equations 

(see, for example, [CKN, p. 774]) that it is enough to consider the case R = I .  Using the 
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local energy equality 

/B lu(x't)12~(x't)dx+2~' ft /B IVul2~dxds 
R J --R2 R 

f / B  t /Ba(lu[2-~2p)u'V~~ ---- lul2((flt +uA~o) dx ds + f 
R 2 R J --R2 

where ~o is a suitable "cut-off" function, we can estimate supte(_R~,0 ) fBRllU(X, t)l 2 dx 
and foR11Vul2 dx dt in terms if fQ~(]ul3+lpl 3/2) dx dt for a suitable RI <R,  for example 

R1 = ~R. Now we can apply [CKN, Proposition 1, p. 775], to obtain the required estimate 

for k = 0  in Q3R/4. (Strictly speaking, this proposition is proved only ibr v = l ,  but  it is 

easy to see that  it holds for any u>0.  The constants in the estimates depend on u, of 

course. Also, the proposition as stated in [CKN] gives the estimates on the ball whose 

radius is the half of the original radius, but  it is easily seen that  the factor �89 can be 

replaced by any factor strictly less than 1. Of course, the constants in the estimates 

depend on the factor we choose.) To prove the estimates for k=l,2,..., we use the 

estimates we have obtained for k=O together with the estimate for fQRI 1~TuI2 dx dt, and 

follow the proof of higher regularity in Serrin's paper [Sell. Serrin does not write explicit 

estimates, but we can follow his proof line-by-line and replace the statements about 

smoothness properties of the functions which appear in the proof by the corresponding 

estimates. The elliptic and parabolic estimates needed to execute this procedure are 

listed in the appendix. Since this works without any additional tricks, we feel that  it is 

not necessary to reproduce this purely mechanical procedure here in detail. [] 

We recall some well-known facts about the equation for the pressure 

--AP=OjOkUjUk in R n. (2.2) 

(Here and in what follows we use the usual convention and sum over the repeated indices.) 

If UEL2q(R n) for some q> 1, we can use the classical Riesz transformation to solve (2.2). 

Let us recall, that  for j=l , . . . ,n  the Riesz transformation Rj is the singular integral 

operator given by the Fourier multiplier -i~j/l~l , see [St] for details. 

From the classical results regarding the operators Rj (see e.g. [CZ] or [St]) we infer 

that  P defined by 

P= RjRk(UjUk) 

satisfies IIPIILq(R~)<~CqlIUII2L2q(R~) and solves (2.2) in the sense of distributions. If more- 

over U is smooth, then P is smooth by the classical regularity theory for the Laplace 

operator. 
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Of course, for a given U, the equation (2.2) determines P only up to a harmonic func- 

tion, and we have to specify the behavior of P at infinity to get uniqueness. For example 

the requirement PELq(R n) obviously guarantees uniqueness since the only harmonic 

function belonging to Lq(R '~) is the identical zero. 

LEMMA 2.2. For j=l ,  ..., n let Rj denote the Riesz transform given by the Fourier 
multiplyer -i~j/l~l. For j ,k=l , . . . ,n  let FjkeLI(R'~)NL2(Rn). Finally, let r be a 
smooth, compactly supported function on R n depending only on Ixl and satisfying r 

Then 

Proof. Let r162 Denoting by A the Fourier transformation (with the kernel 

given by e 2"ix'r we have from the Parseval formula 

By using the substitution ~/e~-~, the last integral can be rewritten as 

R, , - - -~  Fjk(e~) r d,~. 

Since Fjk is bounded and continuous, and r is rapidly decreasing, this integral converges 

to 
~jk(0) f ~j~k j~-~r 

as ~-~0+. Using the fact that r is radial and integrating first over the spheres and then 

over the radii, we see that 

i,< ( ) - - I -~  d4 --~-~Jk r 0 - ~skn, 

where 5jk is the usual gronecker symbol. Since 5jkFjk=Fjj and Fjk(o)=fR~ Fjk(X)dx, 
the result follows. [] 

3. T h e  m a i n  t h e o r e m  

By a weak solution of (1.3) we mean a function U=(U1, U2, V3) on a 3 which belongs 

locally to W 1,2, is divergence-free, and satisfies 

iRa( UVV. V~+aV.~+a(y. V)U.~+(g. v)V.~) dy = 0  



ON LERAY'S SELF-SIMILAR SOLUTIONS OF THE NAVIER-STOKES EQUATIONS 287 

for each smooth, compactly supported, divergence-free vector field ~--(~1, ~2, ~3) in R 3. 

Using the regularity theory for the linear Stokes operator (see e.g. [Ca]), standard imbed- 

dings and the bootstrapping argument, we see that every weak solution U of (1.3) is 

smooth. (The proof is more or less the same as the proof of regularity for steady solu- 

tions of the Navier-Stokes equations in three dimensions, cf. [La] or [Ga].) 

We note that the pressure does not explicitly appear in the definition of the weak 

solution. Therefore the following lemma will be useful. 

LEMMA 3.1. Let U=(U1, U2, U3)EL3(R 3) be a weak solution of (1.3). Assume that 
P is defined by P=RjRk(UjUk), where we use the notation introduced in w Then both 
U and P are smooth, P belongs to L3/2(R3), and moreover 

-vAU+aU+a(y.V)U+(U.V)U+VP=O in R 3. (3.1) 

Proof. Above we have proved all the statements of the lemma except for the equation 

(3.1). To prove (3.1), we let 

F = - AU +aU +a(y. V )U + (U. V)U + V P. 

We must prove that F - 0 .  Our assumptions imply that curlF--0 and d ivF--0  in R 3, 

hence AF=O in R 3. Let r be a radial (i.e. depending only on Ix[), smooth, compactly 

supported function in R 3 with fR3r Since AF=O, we have for each ~>0 (cf. 

[St, p. 275]) 

F(O) = / F(x) ~3r dx. 
JR 3 

For each multiindex a=(al, a2, a3) we have A(D~F)=O, and hence, for each c>0, 

D~F(O)=/R3D~F(x)e3r /RaF(x)e3+l~l(D~r (3.2) 

Since F is analytic (see e.g. [Mo, p. 166]), it is enough to prove that D~F(O)=O for each 

a with tail>0. From formula (3.2) we see that this will follow if we prove that for each 

smooth, compactly supported function r in R 3 we have 

lim g3 f F(x)r dx = O. 
e--+O+ JR3 

Using the definition of F,  we see that we must prove 

lim ~3 f (-vAU+aU+a(y.V)U+(U.V)U+VP)r dy = O. 
e--+0+ JRa 
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This can be done term-by-term, by using integration by parts and the assumption UE 
L3(R3), together with the fact pEL3/2(R3). For example, we have 

/R3(Y" V)U(Y)r dy = - /R33U(y)r dY-- /R3U(Y)(r )( Okr )(6y) dy 

= -  /R33U(y)r dy-/R3U (Y)r162 dy, 

where (b(y)=ykOkr Using the HSlder inequality, we can write 

~2/3 

Hence 

lim r f U(y)r162 dy = O. 
e-"*0+ J R  3 

The other terms can be dealt with in the same way, and the proof is easily finished. [] 

LEMMA 3.2. Let U=(U1, U2, U3) and P be as in Lemma 3.1. Then, for each k= 
0, 1,2, ..., we have 

and 

IvkU(Y)I=O(lyV3-k), lYI-~ 

IVkP(y)l=O(lyl-~-k), lYl ~ .  

Proof. Let TER.  For x E R  3 and t<T we let 

x 1 
u(x,t) v/2a(r-t) (3.3) 

and 

2 a ( T -  t ) l  p ( x ) (3.4) p ( x , t ) -  ~ . 

The equation (3.1) implies that u and p satisfy the Navier-Stokes equations (1.1) in 
R 3 • (-r T). We have UEL3(R 3) and pEL3/2(R3), and hence 

!im [ (IUl3+lpI3/2)dy=O. 

Using this, we check easily by an elementary change of variables that for each x0 E R3\  {0} 
there exists R>0  such that 

sup [ (lu(x, t)13+lp(x, t)l 3/2) dx < co, (3.5) 
T - R 2 < t < T  J BR(xo) 
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where ~0 has the same meaning as in Proposition 2.1. Since (3.5) obviously implies 

R-2~ (lu(x,t)13+lp(x,t)13/2)dxdt <eo, 
QR(xo,T) 

we see from Proposition 2.1 that  

sup IVku(x, t)] ~< CkR -1-k 
QR/2(xo,T) 

(3.6) 

for each k=O, 1,2, .... Let 0<0~<~l<Q2<Q[  and let tl<T. Since u is smooth in R3 •  

( - c o ,  T) and x0 was an arbitrary point of R3\{0},  we see from (3.6) and the obvious 

compactness argument that  the functions Vku(x, t) are bounded in ~el,e~ • (tl, T), where 

~ ,e~ = {x �9 R3: L)~ < I xl < L)~ }. Let also fte~,~2 = {x �9 < I xi < ~)2 }- We claim that ,  for 

k=O, 1, ..., the space derivatives Vkp are bounded in ~e~,e2 x (tl, T). To see this, we note 

that  for each t<T we have 

/R3 Ip(x' t)13/2 dx =/R3 IP(y) I a/2 dy. 

Since for each t<T we have 

(3.7) 

-Ap(x,t)=OiOj(ui(x,t)uj(x,t)) in R 3 (3.8) 

we see from the classical elliptic estimates (cf. [Br]) that  

IIp(,t) llcA,o(,ol,o2) < ck 
i,j 

where we use the usual notation for the H51der norms. Since, as we have seen above, we 

control the terms on the right-hand side, we see that  Vkp is bounded in ftel,e 2 x (tl,  T) 

for each k, as claimed. 

We can now take the space derivatives of the Navier-Stokes equations to see that  

for each k=O, 1, 2 ... the derivatives VkOu/Ot=O(Vku)/Ot are bounded in ~el,e2 x (tl, T). 

Since 

lu(x,t)13 dx- O t-*T_ as 
Ql~2 

(which can be seen for (3.3) and the assumption UeL3(R3)) ,  we see from the above 

estimates and the Arzela-Ascoli theorem that  Vku(., t)--*O as t~T_ uniformly in ftQl,e 2 

for each k=0,  1, .... Therefore we can write, for xEfte~,Q2, 

t)  r / T v k  O u(x, s) ds, Vku(x, 
Jt 
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and by the estimates for VkOu(x, t)/Ot above we have, for k=0, 1, ..., 

IVku(x,t)l < .Mk(T- t )  in f~1,~2 x ( t l ,T ) ,  (3.9) 

where Mk are suitable constants. We have seen above that we also have, for k=O, 1, ..., 

IVkp(x,t)l <<.Mk in ~ , ~  x ( t l ,T ) .  (3.10) 

It is now a matter of an elementary calculation to verify that (3.9) together with (3.3) 

implies ]VkU(y)] =O(ty1-3-k) as ]y]--*oc, and that (3.10) together with (3.4) implies that 

IVkP(y)l=O(lY] -2-k) as lyl--.co. The proof is finished. [] 

LEMMA 3.3. Assume that U=(U1, U2, U3) and P are smooth functions satisfying 

(1.3) in R 3. Then the quantity 

H(y) = l lV(Y)12+p(y)+ay.V(y ) 

satisfies the maximum principle, i.e. for each bounded domain f~cR 3 we have 

sup H(y) <~ sup H(y). 
yEf~ yEOf~ 

l a 2  ~ 12 Proof. We let ~r(y)=U(y)+ay and P ( y ) = P ( y ) -  5 lyl �9 An easy calculation shows 

that (1.3) is equivalent to 

- ~  ZXU + (U. V)U + V P =O I 
div D" = 3a f 

Multiplying the first equation by U we get 

Hence 

in R 3. 

-~AU.U+(U.V)(�89 =0. 

-~a  (�89 L~I 2 + ~) + (~. v)(�89 + ~) = - , Iv~ /~  - . ~x~  

= -v IVU+aI I  2 - u A P + 3 u a  2 

= -~lVUl~+~(O, Vj)(O~V~) <<. O, 

where we denote by I the identity matrix. Since �89 we see that 

-vAH+(U.V)H~<0 in R 3, 

and the result follows from the standard maximum principle for elliptic equations (see 

e.g. [GT]). [] 

Remark. The fact that the quantity �89 ]ul2+p satisfies a maximum principle for the 

steady Navier-Stokes equations is well-known (see e.g. [Se2, p. 261], or [GW]), and has 

played an important role in recent results ([FR1], [FR2] and [Str2]) regarding the regu- 

larity of solutions of the steady Navier-Stokes equations in higher dimensions. 
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THEOREM 1. Let U be a weak solution of (1.3) belonging to La(R3). Then U-O 
in R 3. 

Proof. Let P=RjRk(UjUk), where we use the notation introduced in w By Lemma 

3.1 the functions U and P are smooth and satisfy (1.3). Hence H(Y)=�89 
ay.U(y) satisfies the maximum principle by Lemma 3.3. Since II(y)=O(ly1-2) as lYl--~c~ 

by Lemma 3.2, the maximum principle (applied to large balls) implies that H~<0 in R 3. 

Let r be as in Lemma 2.2 and assume moreover that r in R 3. For ~>0 let r 

r Since H~<0 in R 3, we have froliC, dy<~O for each e>0. Since r is radial and 

divV=0, we have frt3a(y.V)r for each c>0. Since UjUkELI(R3)NL2(R 3) by 

~frt31UI dy. We infer Lemma 3.2, we see from Lemma 2.2 that lime--.0+ frt3Pr dy=-1 2 
that 

fm�89 dy- fmllUI2 dy<~ O, 
and hence U-0 .  The proof is finished. [] 

An alternative proof of Theorem 1. We feel that the following alternative way of 

proving Theorem 1 is of interest. We let Q(y)=P(y)+ay.U(y). The system (1.3) can 

be rewritten as 
. OUj OQj_au (aU j 

yk yj \ Oyk 

After multiplying the first equation by yj/[y], we obtain 

Y~ OQ=~AujYJ U OUt 
lyl Oyj  lyl - k Oy--~ 

OUk ) =0, 
Oy~ 
div U = 0. 

Yj 

(3.11) 

Denoting Q=[y[ and using Lemma 3.2, we see that DQ/Oo=O(o -5) as o---~co. Since also 

Q(y)=O([y1-2) as ly[--*c~ by Lemma 3.2, we see (by integrating along the rays through 

the origin) that 

Q(Y) = o o y r ' ) ,  lyl--, c~. 

Multiplying (3.11) by yj and integrating over R 3 (which we can because all the terms 

are integrable by the decay estimates for Q above and the decay estimates for U and P 

established in Lemma 3.2), we obtain 

0o) r -~,yj AUj + yj U~ N;- + yj ~--~y ~ ay=o. 
~\ Yk 

Integrating by parts (which, again, we can because of the decay estimates we have for U 

and Q), we obtain 

rt3(IUl2+3Q) dy O. 

(3.12) 
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On the other hand, [U[2+2Q~0 in R 3 by Lemma 3.2 and Lemma 3.3 (see also our first 

proof of the Theorem 1), and hence 

R3([U[2 +2Q) dy < O. 

Subtracting fR3(~[U[ 2 +2Q) dy---O from this inequality, we obtain fR3 �89 2 dy<~O and 

the proof is finished. [] 

Appendix 

Here we recall the estimates which can be used for the proof of Proposition 2.1. 

PROPOSITION A.1. Let Q=BI(0)  • (-1,  0 ) c R  n •  and Q ' = B I - ~  • ( - ( 1 - 5 )  2, 0), 

where 0<5<1 is a fixed number. (Typically we imagine that 5 is small.) Let l < p < + e c  

and f = (fl, ..., fn)  �9 L p (Q). Assume that v �9 L 2 (Q) is a weak solution of the heat equation 

OV_ v = ofj  in 0,. 
Ot Ox~ 

Then v satisfies the following estimates (in which we use c to denote the "generic con- 

stant" which can depend on p and 5): 

[[DVIILp(Q,) cIIfIILp(Q ) +CIIVIIL (Q), 

IIvIILq(Q') < C]I/]ILp(Q)+clIvlI  (Q) 

IIvlIc  r(Q') < cllflln (Q)+cllvllL (Q) 

1 1 1 
if  - - -  >0,  

q p n+2  
n+2  

if  a = l -  >0,  
P 

where Cpar(Q' ) denotes the space of functions which are a-HSlder continuous with re- 

spect to the parabolic metric in which the distance between (x, t) and (x', t') is given by 
]X--X'[+[t--t'[1/2. 

Proof. These estimates are well-known and can be obtained for example by com- 

bining the LP-estimates established in [LUS, Chapter IV, w Theorem 9.1] with the 

imbeddings established in [LUS, Chapter II, w Lemmas 3.2 and 3.3]. [] 

PROPOSITION A.2. Let B = B I ( O ) c R  n and let B'=BI_~(O),  where 0<5<1 is a 

fixed number. (Typically we imagine that 5 is small.) Let u=(u l ,  ..., Un) EL2(B). Then, 

for k--- 1, 2... we have 

IIDkuIIL~(B ,) <. cll Dk-1 curlullLp(B) +cliD k-1 divullLp(B) +cliullL2(B) 
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and 

IIDkullc "(B') <. cllD k-1 curlullC,(B)+cll Dk-1 div UlIC,(B) +CllUlIL2(B), 

where l < p <  c~, 0 < a < 1, antic denotes the "generic constant" which can depend on 5, p 

and (~. 

Proof. This is a well-known consequence of the classical L p- and C~ for 

the Laplace equation. [] 
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