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1. I n t r o d u c t i o n  

Many interesting Hilbert space operators can be modelled by natural  operations on spaces 

of functions analytic in the unit disk D. The most basic of these operations is multi- 

plication by the coordinate function z, and in this case the invariant subspaces of the 

operator  correspond to what we call the invariant subspaces of the function space, i.e. 

those closed subspaces M for which z M c M .  As a mat te r  of terminology, we will call 

the smallest invariant subspace containing a given set S the invariant subspace generated 
by S, and we will denote it by [S]. An invariant subspace generated by a single function 

will be called cyclic. 
The best known example in this area is the case where the function space is the 

Hardy space H 2. This space consists of those functions f analytic in D for which 

IIf[[2H2= sup / [f(reiO)[ 2 dO 

By means of radial limits, H 2 can be identified with the subspace of L 2 (0D) of functions 

f for which 

](n)=Jz f(z) 2 n Idzl  
I =1 ~ = u  for n = - l , - 2 , . . . .  

Multiplication by z on H 2 models the unilateral shift (a0, al ,  ...)~-*(0, a0, a l ,  ...) on 12+, 

an operator of basic importance in many areas of analysis. A famous classical result of 

A. Beurling [B] classifies the invariant subspaces of H 2, and thus the invariant subspaces 

of the unilateral shift. To describe this result we recall that  an inner function in H 2 is a 

function ~ E H  2 whose radial limits have modulus 1 a.e. on 0D.  We will use the notation 

M O N = M N N  • for closed subspaces N, M such tha t  N c M .  

A part of this work was done while the second author was visiting the University of Hagen. The 
second and third authors were supported in part by the National Science Foundation. 
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BEURLING'S THEOREM. Let M ~ { 0 }  be an invariant subspace of H 2. Then M@zM 
is a one-dimensional subspace spanned by an inner function ~, and 

M = [~] = [MOzM]. 

For a proof and other background about H 2, see [D], [Garn] and [Koo]. Here we will 

give the simple proof that  any function ~ E M O z M  of unit norm is inner. To see this, 

note that zn~_l_~ for n - l ,  2, ..., hence 

~z Idzl i=ll~(z)12zn-~-~-=O for n= l,2,.... (1.1) 

This equation together with its complex conjugate shows that  1~12(n)--0 for all n~0 .  

Hence I~12 is constant a.e. on 0D, and this constant must be 1 since ~ has unit norm. 

For his description of the invariant subspaces of a unilateral shift of arbitrary mul- 

tiplicity, P. Halmos introduced the concept of a wandering subspace [Hall: a subspace N 

of a Hilbert space is said to be wandering for an operator S if N is orthogonal to Sn(N) 
for n=l,  2, .... If M is an invariant subspace of S, then clearly MOS(M)  is wandering 

for S, and we will refer to this subspace as the wandering subspace of M. Thus in this 

terminology Beurling's Theorem can be restated as saying that the invariant subspaces 

of H 2 are in one-to-one correspondence with the wandering subspaces of M~, where the 

correspondence is given by 

M = [MezM]. 

Furthermore, all nonzero wandering subspaces are one-dimensional and are spanned by 

an inner function. 

Beurling's Theorem has played an important role in operator theory, function theory 

and their intersection, function-theoretic operator theory. However, despite the great de- 

velopment in these fields over the past forty years, it is only fairly recently that progress 

has been made in proving analogues for the other classical Hilbert spaces of analytic func- 

tions in D, the Dirichlet space and the Bergman space. In [R], the second named author 

proved that Beurling's Theorem in the form we have stated it is true in the Dirichlet 

space. Namely, all invariant subspaces are generated by their wandering subspaces, and 

the nonzero wandering subspaces are one-dimensional. 

In this paper we will be concerned with the Bergman space L 2, defined to be the 

space of functions f analytic in D for which 

]]f[[~ / f l~  [f(z)[ 2 dA(z) 
I<i Ir 
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It has been known for some time that  the invariant subspace lattice of L2a is very 

complicated indeed. In [ABFP], C. Apostol, H. Bercovici, C. Foias, and C. Pearcy showed 

that  if n is any positive integer or c~, then there is an invariant subspace M of L 2 such 

that dim(MOzM)=n. They deduced from this that  any strict contraction on a Hilbert 

space is unitarily equivalent to the compression of multiplication by z to a subspace of 

the form MON, where N c M  are invariant subspaces of L 2. In particular, the invariant 

subspace conjecture for Hilbert space operators is equivalent to the conjecture that  if 

NCM are invariant subspaces of L~ such that  dim(MON)>~2, then there exists another 

invariant subspace properly between them. The proof in [ABFP] is quite abstract and 

applies to many function spaces other than L 2. A more concrete construction is in [HRS]. 

These results show that  unlike in the H 2 situation, wandering subspaces may have 

any dimension. In particular, not every invariant subspace of L 2 is cyclic, since it is easy 

to show that  if M is cyclic then dim(MOzM)=l. Nevertheless, the following analogue 

of Beurling's Theorem is true and is the main result of this paper (Theorem 3.5): 

THEOREM. Let M be an invariant subspace of L~. Then M=[MOzM]. 

Thus, as in the Hardy and Dirichlet space cases, invariant subspaces in L2~ are in 

one-to-one correspondence with their wandering subspaces. 

This result and its proof have roots in several recent papers. In the following dis- 

cussion and in the sequel we will use the following definition, which has become fairly 

standard. 

Definition. An L2-inner function is a ~EL~ of unit norm for which 

/fLz I~(z)12z ndA(z) = 0  for n = l , 2 , . . . .  (1.2) 
l<  1 71" 

The analogy with (1.1) and hence the reason for the terminology is apparent. Note 

that this definition is equivalent to the condition that 

/fDz i~(z)12u(z ) dA(z) = u(0) (1.3) 
I<i 7r 

for any bounded harmonic function u. 

A big breakthrough in the study of the invariant subspaces of L 2 was made by 

H. Hedenmalm in the papers [Hedl] and [Hed2]. Given an invariant subspace M of L~, 

he considered the extremal problem 

sup{Re f (0 ) :  f e M, IlfllL~ < 1}. (1.4) 
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(If f ( 0 ) = 0  for all fEM,  we replace Re f (0)  by Re f(n)(0), where n is the smallest integer 

for which there exists an f E M  such that  f( '~)(0)r It is easy to see that  the extremal 

function ~ for this problem is unique and in MOzM. We will refer to this function simply 

as the extremal function for M. By the same argument as the one above for the space H 2, 

is an L2-inner function. Conversely if ~ is L~-inner, then ~ is a constant multiple of 

the extremal function for the invariant subspace M =  [~]. Hedenmalm showed that  there 

exists a unique function ~ E C ( D ) Q C ~ ( D )  such that  ~ - 0  on 0D and A~=4(1~I2 -1 )  

in D. He further showed that  ~ > 0  in D and that  

2 i f [  (1.5) l l /~ l l~  = IIf[In~ +-4 J JTz ~9(z)A[I(z)I 2 dA(z) 
t<1 ~r 

for all polynomials f .  This shows that  ~ has the expansive multiplier property, i.e. that  

IIf~llL~ ~ IIfllL] for all polynomials f .  Now consider an invariant subspace M determined 

by a zero set, i.e. let {zn} be a sequence of points in D and let M consist of those fEL  2 
which have a zero at every z ~ D of order at least as great as the number of times z appears 

in the sequence {z~}. We assume MS { 0 } .  It is easy to see that  dim(MOzM)=l and 

hence that  M G z M  is spanned by the extremal function ~ for M. We will refer to q~ as 

the extremal function for the zero set {z,~}. Hedenmalm used the expansive multiplier 

property of extremal functions and a limit argument to show that  f /~EL  2 whenever 

f E M  and that,  in fact, IIf/~llL~ <~llfllL~, i.e. that  ~ is a contractive divisor. 
A different proof of Hedenmalm's results was found by P.L. Duren, D. Khavinson, 

H.S. Shapiro and the third named author ([DKSS1], [DKSS2]). They showed that the 

function �9 found by Hedenmalm could be written as 

r = 4 / 1  ~ F(z,w)Al~(w)[2 dA(w), 
i<1 7r 

where F(z, w) is the biharmonic Green function (see w The fact that  ~ > 0  now follows 

from the well-known fact that  F>0 .  Thus (1.5) can be written in the form 

Iifq~ i<i//~.I< I F(z' w) Alf(w)l'Alq~ .j(w)Ir dA(z)Ir (1.6) 

for all polynomials f .  This approach led to an extension of Hedenmalm's results to the L~- 

spaces (of which we will have more to say below). The formula (1.6) and generalizations 

of it are central to the work in the present paper. 

The classical inner-outer factorization of H 2 functions was discovered before Beur- 

ling's Theorem but is nevertheless closely related. Suppose f E H 2, f $0 ,  and let ~v be the 

inner function that  generates If]. Since [~] = 1 a.e. on 0D,  it is easy to see that  If] =~vH 2. 

If we write 

f =~F, (1.7) 
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then it is immediate that  F is cyclic in H 2, i.e. that  [ F ] = H  2. On the other hand, it is 

well known that  the cyclicity of F is equivalent to the following property: 

gEH 2 and IgI<IFI a.e. o n O D  ==> Ig(0)I<IF(0)I.  (1.8) 

We take (1.8) as the defining property of outer functions. Then (1.7) is the classical 

inner-outer factorization alluded to above. 

In seeking to extend these ideas to L2a, B. Korenblum was led to the concept of 

domination. Note that  if g and h are in H 2, then Igl<<.lh] a.e. on 0D if and only if 

IlfgllH2 < IlfhllH2 for all polynomials f .  This motivates the following definition. 

Definition (Korenblum [Kor]). Let g, hEL 2. Then we say that  h dominates g, in 

symbols g-<h, if IlfgllL~ <. IIIhHL~ for all polynomials f .  

The results of Hedenmalm we have been discussing show that  ~ E L  2 is L2-inner if 

and only if II~IIL]=I and 1-<~. 

In analogy with the H2-case (1.8), Korenblum made the following definition in [Kor]. 

Definition. An L]-outer function is an FEL2a for which 

gEL 2 and g-<F ~ Ig(0)l~<lF(0)l. 

He showed that  cyclic functions are outer and asked whether the converse were true. 

As a consequence of our main result, we are able to prove this converse and to show that  

every L2a-function can be written as the product of an L2-inner and an L2a-outer function, 

(Propositions 4.6 and 4.8). 

As we mentioned above, the invariant subspace lattice of L 2 is exceedingly rich, 

and while our results illuminate it, they certainly do not provide the kind of complete 

description that  Beurling's Theorem affords in the H2-case. The main reason for this is 

the absence of any kind of structure theory for L2-inner functions and for the spaces of 

the type MGzM that  show up in our work. For instance if M is an invariant subspace 

of L 2 such that  dim(MOzM) =2 and f ,  g form an orthonormal basis of MOzM, then it 

is easy to show that  

/ f z  f(z)g(z)u(z) dA(z) = 0  
I<I  7r 

for all bounded harmonic functions u. No such pair of functions is concretely known. 

Our results point to a need for an investigation of these types of questions. 

The paper is organized as follows. After preliminaries in w we prove the main result 

in w w is devoted to consequences of this result, including the material concerning 

L2a-outer functions and inner-outer factorizations. We also prove an analogue of the 
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contractive divisor property for arbi t rary invariant subspaces (Proposition 4.9). In w 

we extend some of these results to the L p spaces. These are the spaces of functions f 

analytic in D for which 

I l f l l~  f / ~  if(z)l p dA(z) = < 0 0 .  

I<1 7r 

As is well known, i f  l~<p<cc, I1 IIL~ makes Z~ into a Banach space, and if 0 < p < l ,  
a ( f , g ) = l l f - g l l ~  makes Z~ into an F-space. In analogy with the Z~-case, w e  say that 
qoEL p is an LP~-innerfunction, i f  II~IIL~--1 and 

:z I~(z)lp: dA(Z) =o f o r n = l , 2 , . . . .  
I<1 7r 

Furthermore, an L~-outer function is a function F E L p such that  Ig(0) l~< IF(0) I whenever 

gEL p and ]]fgiiL~ <-]]fFIIL~ for all polynomials f .  Notice tha t  the concepts of LP-inner 

and LP-outer functions depend on the index p, 0 < p < c ~ .  In Proposit ion 5.1 and The- 

orem 5.2, we shall prove a structure theorem for cyclic invariant subspaces of L~. In 

particular, cyclic invariant subspaces are generated by LP-inner functions. As conse- 

quences one obtains that  the cyclic vectors in L p are the LP-outer functions and that  

every function in L p can be factored as a product  of an LP-inner and an LP-outer func- 

tion. We shall also see that  invariant subspaces that  are described by zero sets are always 

cyclic (see Proposition 5.4 and the remark following it). 

Finally, in w we prove an interesting inequality with a strong connection to the 

proof of our main result. 

2. P r e l i m i n a r i e s  

In this section we gather material  that  will be needed in the proofs of our main results. 

The first two lemmas record well-known facts and are included here for purposes of 

reference. The first is an exercise involving Fatou's  Lemma and Egoroff 's Theorem 

(see [D, Lemma 1 of w and the second consists of s tandard formulas proven by using 

Green's  Theorem. 

LEMMA 2.1. Suppose that # is a finite positive measure, 0 < p < ~ ,  and that fn, f 
are measurable functions such that 

lim f I fnl  p d# <~ f I f l  p d# < O(3 

and 
f~ --~ f a.e. [#]. 

Then f If - f,,l" d#-~O. [] 
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LEMMA 2 .2 .  

then 

/ J w  1 log r ( z -w)  Av(w) dA(__w)_ 
(a) 5 r2-~,---~ [<r 

and 

If v is a C 2 function in [}wl~<r], where 0<r<oe, and Iz[<r is fixed, 

~ .  r2-1z12 v(w) Idwl § 
i=~ tz-wl ~ 2~rr 

i<~  ~r - I=~ ~ J J I w l < ~  rr " 

The Green function for D is 

the biharmonic Green function for D is 

1, 
and the corresponding potentials are 

a[ul(z) =/~w1<1G(z,w)u(w) dA(w____)) 

and 
F[u](z) = / ~  r(z,w)u(w) dA(w) 

~[<1 

As is well known (see [Gara, Chapter 7]), for sufficiently nice functions u, G[u] and 
F[u] satisfy and are determined by the properties 

and 

G[u] �9 C(D)NC2(D), 

g[u]=O on0D, 

AG[u]=u inD 

r[u] �9 CI(D)nCa(D), 

[ u ] = s  onOD, F 

A~F[u]=u in D. 

We state a few more facts about F in the following lemma. Note that an important 

consequence of (a) is the well-known fact that F(z, w)>O for z, wED. 
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LEMMA 2.3. 

(a) 

(b) 

(c) 

Let z, wED.  Then 

1 (1-1zl27(1-1~12) ~ <r(z'w)<li-d (1-1z12)20-1wl~7 
5~ Ii-e~l~ I1-~1 ~ 

(1 -Iwl) 2 (1 -Izl~) ~ <r(z, w) ~< (1+ Iwl) 2 (1 -Izl~)L 
32 16 

Azr(z ,  w) =G(z, w) + 1 (1 -Iwl =) Re 1 +~z  for z # w .  
1 - ~ z  z~ 

Proof. Simple manipulations with the definition of F and the identity 

z - w  2= ( 1 _ l z 1 2 ) ( l _ l w 1 2 )  
1 -  l ~ w  11-~12 

yield the formula 

I 2) 1 ( 1 - N 2 ) 2 ( 1 - [ w 1 2 ) 2 f ( l _  z - w  
F(z,w) = 16 11-2w] 2 k ~ ' 

where f ( x ) = ( ( 1 - x ) l o g ( 1 - x ) + x ) / z  2. By l'Hopitals rule f(0+) - 1 - 7 ,  and it is not difficult 

to show that �89 for 0~<x~<l. This proves (a), and (b) follows from (a) and the 
inequalities 

1 1 1 

(l+lwl) 2 II-z~l  ~ (1-1~l) ~" 
The proof of (c) is a straightforward calculation with the differential operators 

and the identity 

o_1(o+1 o), 
Oz 2 ~ 7 ~  
0 1(o 
Oz=~ i 

0 0 
A~ = 4 c9---~ c9---~" [] 

If f is a function in D and 0~<s<~l, we denote by f~ the dilation of f by s, 

f s ( z )= f ( s z ) .  

PROPOSITION 2.4. Let 0<p<c~.  

(a) If  f is analytic in D and wED is fixed, then 

lim /flz r(z'w)Alfs(z)lp dA(z)-/fz dA(z) 8-1- i<1 ~ i<1 r(z 'w)alf(z)lp 
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(b) 

Furthermore, these integrals are finite if and only if f EL p. 
(c) If qa is an LPa-inner function, then 

f fz r(z,w)Al~(z)l~ dA(z )_ / f~  a(z,w)l~(z)l  ~ dA(z) 
I<1 r I<1 7r 

If f is analytic in D and w E D is fixed, then 

f flz I<1F(z'w)Alf(z)lP dA(z) _ j~z I<IA~F(z'w)'f(z)'P dA(z)r 

+ ~(1-1wl2). 

Proof. By a change of variable argument, 

jj~, ( l _ l z l ~ ) ~ l , L ( z ) l  p dA(z)_ 1 /~ll~ (s~-Izl~)~AlY(z)lP dA(z) 
I<1 ~r s 4 I<~  ~r ' 

so by monotone convergence we see that 

lim J~ (1-1zl2)~/xlf~(z)l'dA(z)=/f,z (1-1zl2)2Aly(z)l pdn(z) (2,1) 
s ~ l -  I<l 7r I<l 7r 

If frill<l(1--Izl2)2AIf(z)lPdA(z)/Tr<cxD, Lemma 2.1 (with p = l )  shows us that 

lim / j~  (l_lzl~)21Aif(z)lP_Aif~(z)lp I dA(z) =0,  
s---* 1 -  i<  1 71" 

Together with Lemma 2.3 (b) this proves (a). If f f l , l<l (1-1z l2)2AI f (z ) l  p dA(z)/lr=c~, 
(a) is an immediate consequence of (2.1) and Lemma 2.3 (b). 

To prove (b) we first note that F(z,w)=OP(z,w)/On~=O for zEOD, by Lem- 
ma 2.3 (a). Hence (b), with f replaced by f, ,  is an immediate consequence of Green's 
Theorem (it is easy to show that the singularities at z=w and the zeros of f cause no 
problem). Now (b) follows from this together with (a), since it is obvious from the form 
of AzP(z, w) given in Lemma 2.3 (c) that 

lim /f l~ A~F(z,w)lf~(z)lv dA(z) =Jfl~ A~F(z,w)lf(z)l p dA(z) 
s---*l- 1<1 71" I<1 7r 

The subsequent assertion is obvious given Lemma 2.3 (b). 
To prove (c), plug f = ~  into (b) and use Lemma 2.3 (c) to obtain 

JJz r(z,w)al~(z)l, dA(z) 
I<1 7r 

= f f l z  I<1 G(z, w) lqo(z)lp dA(z)Tr 

= / ~ z  I<1 G(z,w) ko(z)t p dA(Z)Tr 

+ 1 ( 1 -  Iw12)/fz l<1 Re l+@z~ k~ IpdA(Z)Tr 

+ l(1-iwl= ) , 



284 A. A L E M A N ,  S. R I C H T E R  AND C. S U N D B E R G  

since Re(l+~z)/(1-~z) is a bounded harmonic function of z whose value at 0 is 1. [] 

Proposition 2.4 (c) can be written in the form 

r[Al l ] -- G[I I 1]. (2.2) 

This is implicit in [DKSS2] and can be proved using the methods there. An immediate 

consequence is the recent result of Khavinson and Shapiro [KS] that  

0 ~< G[l l"- 1](z) < �88 

We can also use (2.2) to give an alternate proof of one of the main results in [DKSS2]: 

PROPOSITION 2.5 (Duren, Khavinson, Shapiro and Sundberg). Let qo be an LP-inner 
function, where 0<p<oo ,  and vEC2(f)). Then 

(a) 

/~z ko(z)lpv(z ) dA(z) 
I<i 7r 

= / f z  v(z) dA(z) +/~z f f w  F(z,w)Av(w)A,~o(z), p dA(w) dA(z) 
I .<1 71" I< i  1<1 71" 71" 

and 
(b) if in addition v is subharmonic, we have 

/ ~  [qo(z)lpv(z) dA(z) >1/~ v(z) dA(z) 
I<1 rr I<1 rr 

Proof. We write 

v = G[Av]  + h, 

where h is a bounded harmonic function in D. By (1.3) and Proposition 2.4 (c), 

/ f z  ko(z)lpv(z ) dA(z) 
I<1 7r 

=/SzI<I '~(z)'P /~wl<l G(z' w)Av(w) dA(w) - - r r  +h(0)  

I<1 I<1 G(z'w) kO(z)IB AV(W) dd(w) +v(O)-G[Av](O) 

+-[--/J(lw]<X ~(l--'w]2)Av(w) dA(w)Tr +v(O)- G[Av](O)]. 
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By Lemma 2.2 with r=l, z--0, we see that  the quantity in brackets is 

f~w v(w) dA(w), 
l< i  

so (a) is proved. 

If v is subharmonic in D, then Ave>0 there, so (b) is a consequence of (a) and the 

fact that  F (z ,w)>0 .  [] 

The following proposition, although quite simple, is one of the keys to our results. 

PROPOSITION 2.6. If v>iO in D then 

r[s%] (z) < 2r[v](z) 

for 0 ~ s ~ l  and zED. 

Proof. We define 

so that  by Lemma 2.3 (a), 

1 (1-1zl2)2(1-  Iw12) 2 
F ( z , w )  = 16 I I - ~ ' w l  2 

�89 w) ~< r(z, w) ~< P(z, w). (2.3) 

One sees easily that  

d ~ w (1- Iz12)2(s2-1w12)2 [ 1 2 2 1 1 ]  
sls-~wl: -7+~--7~+8-1wl ~ - ~  ~-zm 

1 (1-1z12)2(s2-1w12) 2 s-lwl 
/> - - > 0  

16 , I , - ~ I  ~ ~(*+I~I) 

if Iwl <s.  Hence by a change of variable argument 

dA(w______~)Tr 

The proposition follows from this and (2.3). [] 
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3. T h e  W a n d e r i n g  S u b s p a c e  T h e o r e m  in t h e  B e r g m a n  space  

Throughout this section we let M be an invariant subspace of L 2, and we denote by T 

the restriction to M of multiplication by z. We will also denote the L2~-norm simply 

by I1" II. 
The objective in this section is to prove our main result, that  M is generated by 

MOTM. Since the proof is rather long we will here at tempt to provide an overview, 

considering first the case when dim(MOTM)=I. In this case MOTM is spanned by a 

single L]-inner function ~o. An argument of Hedenmalm's ([Hedl]) shows that  if fEM, 
then fAo is analytic in D. We can thus define operators Rs: M--+[MOTM]=[~o] by 

for 0<~s<l. Obviously Rsf---+f pointwise as s ~ l - .  To complete the proof we must get 

some control over IlR, fll, and it is here that  (1.6) comes into play. If we replace f in 

(1.6) by respectively f /~ and (f/~)~, we obtain 

f 2 /jfl z / f~, F(z,w)A f_ 2A,~(z)l 2dA(w) dA(z) JlfJJ 2 = + (3.1) 
]<1 I<1 ( W )  71" 

and 

A f 2 dA(w) dA(z) 
liR~f,l 2-- ( ~ ) 8  ,z,<l fjw,<lr(Z, w) (3.2) 

An easy limit argument shows that  (3.2) is true. The most difficult part of our proof 

will be to show that  the inequality /> holds in (3.1) for all fEM. This together with 

Proposition 2.6 will show that  for �89 ~<s<l, the functions of z given by 

J<l \~OA 

is dominated by the integrable function 

An application of the Dominated Convergence Theorem then shows that  lim,__,l- IIRsfll 2 

exists and is equal to the right-hand side of (3.1). Since this is bounded by Ilfll ~, an 

application of Lemma 2.1 shows that  R ~ f ~ f  in L~, completing the proof in the ease 

when dim(MOTM) = 1. 
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Notice that  for AED, the map f~--*(f/~)()~)~ defines a skewed projection Q~ of 

M onto M G T M  with null space (T-)~I)M, and that  R8 can be expressed in terms of 

these projections by the formula Rsf(z)=Q~zf(z). In Lemma 3.1 we will show that  the 

skewed projections Q~ also exist when dim(MOTM)> 1, allowing us to extend the above 

discussion to this case. We can define the operators R~ by the same formula as above, 

and it will easily be seen that  R~f---*f pointwise as s - ~ l - .  

In Lemma 3.2 we will show that  R~ maps M into [MOTM] and that  QwR~ =Q~ 
(these facts were trivial in the case when dim(MOTM)=I). The analogues of (3.1) and 

(3.2) are then seen to be respectively 

IIIH2 - - / ~ 1 < 1  UQ;~f[[2 dA(A)lr 

(3.3) +/f~l<l /fl~,<lr(z'w)A~A~lO~f(z)12 dn(w)cr dA(z)cr 
and 

IIR~fll2 :/~:,1<1 i]G~,f[i 2 dA(,~)Tr 
(3.4) 

+ ff,  J<, r(z,w)aza ,O wf(z)12 dA(w),  eA(z),  
In Lemma 3.3 we will show that  (3.3) holds for all f E [M 0 TM]; in view of Lemma 3.2 

this will show that (3.4) holds for all fEM.  The heart of the proof will be Lemma 3.4, 

where we show that the inequality ~> holds in (3.3) for all fEM.  Once this is done it 

will follow that  R~f---*f in L 2 as we indicated above for the case dim(MOTM)=I. This 

fact, along with the evident consequences that  M= [MOTM] and that  (3.3) holds for all 

fEM,  is stated formally as Theorem 3.5. 

We will now proceed with the details. 

LEMMA 3.1. For any ) ,ED, M is the Banach space direct sum of the closed sub- 
spaces M O T M  and (T-)~I)M. Furthermore, if Q~ is the skewed projection operator 
onto MOTM corresponding to this decomposition of M, then 

v =-I l IIQ~II <. C:,, where CA- l_IAI2 

Proof. The case A=0 is clear, so we assume A~0. We will first consider the case 

M=[f]. Let nf  be the order of the zero of f at 0 and let ~ be the extremal function 

for [f]. The argument of Hedenmalm's mentioned above shows that  g/~ is analytic in D 

for any gE[f].  We are going to refine this argument to show that  if gE[f] ,  then 

< c ,llgll. (3.5) 
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It will clearly suffice to prove (3.5) under the assumption that p(A)r  It is easy to 

see that the extremal function associated to the zero set {A} is 

~ ( z )  = (1 1 ~-1/2(1  k~(z) 

where k~,(z)=l/(1-Az) 2 is the reproducing kernel for n~, so that 

~(0) = 1~1(2-1~12) 1/2. 

If g(A)=0 there is nothing to prove. So assume g(A)r  and set 

~(~) 
h(z) = ~(z)- ~ zg(z). 

It is easy to see that h/~,  E If]. Hence by the extremal property of ~, 

h(n,)(0) ~-]-<~(n')(0) ~ .  

Now h(w)(O) = ~(nl)(O), and by Hedenmalm's Theorem 

h - <  Ilhll. 

Since 

~(:~) f f  izl= dA(z) ~< 1-t- IlgllL Iih112=1+ ~ JJ Ig(z)12 

we can deduce (3.5) from (3.6) and (3.7). The computation also shows that 

cA-  ~/V=- I~1';' 

g(z)=.r 
This shows that if 

with kE [f], then 
o 

Together with the obvious identity 

g(z) (g/p) (~)~(z) g(z) = ~ (x)~(z) + (z- x) 
z--~ 

this proves the lemma in the case M= [f]. 

(3.6) 

(3.7) 
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We turn to the general case. 

It  is easy to see that  

Suppose tha t  hEMGTM,  f E M  and 

g(z) = h(z) + ( z -  h)f(z). 

P[s]h E [f]eT[$], 

so by what we have already proved, 

IIP[s]hll < C llP[s]gll. 

Since P[fl•177 this implies that  

Ilhll < C:,llgll. 

Hence the subspaces M O T M  and ( T - h I ) M  are at a positive angle, and the projection 

of their sum onto the first summand has norm at most  CA. To complete the proof, we 

must show that  their sum is all of M. To see this, suppose that  

g E M e ( ( M e T M ) + ( T - h I ) M )  = T M e ( T - M ) M .  

Write g = T f  with f E M .  By what we have already proved, [f]=([f]OT[f])+(T-hI)[S], 

SO 

T[f] n (If] O ( T -  h i ) [ f ] )  = [f] O (([f] o T [ f ] )  + ( T -  h i ) [ f ] )  : {0}. 

It is easy to see that  g is contained in the subspace on the left. Hence g = 0  and we are 

done. [] 

Remark. As noted above, we are eventually going to show that  (3.3) holds for all 

f E M .  From this it is easily deduced that  in fact l lQxl l~ l / (1-1hf2) .  

Standard methods show that  Q~ is analytic in h. We can get an explicit formula for 

Qx in terms of the operator 

L = (T*T)-IT *. 

Notice that  we could also define L by the formulas 

L = O  on M O T M  

and 

LT = I. 

If g E M G T M  and hEM, then it is easy to calculate tha t  

( I -  ikL)(g+ Th) = g+ ( T -  s 
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Lemma 3.1 thus implies that  ( I -AL)  -1 exists for all I E D ,  and we see tha t  

Q~ : PM~TM(I--AL) -1 : ( I - T L ) ( I - A L )  -1. (a.s) 

Thus 
O ~  

Q.~ : E A n A n '  

n:O 

where An=PMoTML '~ is a map from M to MOTM.  
We now define for f E M and 0 ~< s < 1, 

(3.9) 

Rsf(z) =Q~f(z ) .  (3.10) 

The definition of Q~ makes it obvious in particular that  f ( z ) -Q~f ( z )  is zero when 

z=A.  Hence Qzf(z)=f(z),  so it is obvious from the continuity of the map  A~-*Q~ that  

R~f(z)-~f(z) as s-~l- ,  for any z e D .  In the next lemma other important  properties of 

the operators Qx and R~ are studied. 

LEMMA 3.2. Rsf  E [M O T M] for any f e M. Furthermore, QwR~ =Qs~. 

Proof. From (3.9) we see tha t  

O O  

R ~ : E s ~ T ~ A ~ ,  0 ~ < s < l .  (3.11) 
n ~ 0  

This series in fact converges in norm. To see this note tha t  as a consequence of the 

convergence of (3.9), 

snHTnmnH <~ ~ snlIAnH < oo 
n ~ 0  r im0 

for all 0~<s<l.  Since An maps M into M O T M  it is now clear tha t  R~ maps M into 

[MeTM]. 
To prove the remaining assertion we note that  if n ~> k then 

A~T k : P M G T M L n - k L k T  k = PM@TM L n - k ,  

and if n < k then 

AnTiC D r n ~ n ~ k - - n  r~ ~ k - n  
= F M ~ T M L J  J[ J[ -~- I - M O T M ~  = O, 

Combined with the obvious fact tha t  LPM@TM=O, these formulas show that  AnTkAk=O 
if k#n,  and AnTnA~=A~. Hence A~Rs=s~An by the norm convergence of (3.11). 

Combined with (3.9) this shows tha t  Q~Rs=Q~w. [] 
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Although our proof depends on a s tudy of the operators Qx rather  than  Rs, it is 

nevertheless interesting to note a connection between R~ and operators arising in classical 

approximation theory. If f is in M we can decompose f as a sum of an element of MQTM 
and a "remainder term" by the formula f=Pf+TLf ,  where P=PM@TM. Repeating 

this for L f, we obtain f=Pf+T(PLf+TL2f)=Pf+TPLf+T2L2f .  Continuing this 

process we get the formal series 

f = Pf+TPLf+T2pL2f+T3pL3f+ ..., 

each te rm of which is in [MOTM]. We see tha t  comparison with (3.11) and the definition 

of An shows tha t  the functions R~f  are Abel means of this formal series: 

R~ f = Pf  + sTPf + s 2 T2pL2f + s 3T3PL3f + .... 

In our next result the important  formula (1.6) is generalized. 

LEMMA 3.3. If fe[MOTM] then 

ilfll2 : f ~ ,  I< 1 iiQ~,fll 2 dA(A)rr 

+ ff,  <l r(z'w)a a 'o f(z)l   A(z) 
(3.12) 

N Proof. First suppose f(z)=y'~= o Znr with qonEMOTM. If ~EME)TM then 

clearly 

/ f ~  I~(z)12z '~dA(z)-(Tn~l~)=O for n = l , 2 , . . . .  
i< 1 7r 

Hence if ~ 0 ,  then qo/l]~oll is inner. Thus Proposition 2.5 tells us that 

f~  i~(z)12v(z ) dA(z) _ f f  v(z) dA(z____~)i1~11~ 
I<1 ~ J J I z l < l  

+ r(z,w)av( )Al (z)12ea(w)  A(z) 
I<1 I<1 ~" ~ 

(3.13) 

for all r and vEC2(D) .  We polarize (3.13) and set v(z)=zm2 n to get 

/fl~ ~m(z)~n(z)zm2n dA(z) _ / J ~  zm2n dA(z) <~ml~n) 
I<1 7r I<1 7r 

+ ffl ,<l ffwi<lr(z,w)a(wm  la( m(z)  (z) ) eA(w)  eA(zl 
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Summing up over m,n we prove (3.12) for f as above by using the obvious fact that  

N 

Q f(z) = 
n=O 

To prove the general case, we introduce the temporary notation of ]]" ]l. 2 for the 

right-hand side of (3.12). The fact that 

AzAw,Q~of(z)[2=16 ~z o~Q~f(z) 2 

shows that I1" II* is a norm. Now let fE[MGTM] and f,~ be functions of the form we 

have treated such that f~---+f in L 2. 

Since Ilfm-fnll. = [If,~-fnll by what we have already shown, Fatou's Lemma shows 

that 

]]f_f,~]]2 ~< lira H fro-fall2. = lim ]]fro--fail 2 = I]f--fn][ 2. 
T'Ft "--* ~ r t l - . - *  ~ 

Hence IlflI=lim,~--,~ I I%ll=l im~_~ I I f ~ l l , - - I l Y l l , ,  s o  w e  are done. [] 

Our main result will now follow fairly easily from Proposition 2.6 and the following. 

LEMMA 3.4. lf fEM, then 

ilfl121>/f,  IIQ flI2 dA( ) 
l<  1 7r 

(3.14) 

+ f f l ~  I<1 f f l ~  I<1F(z'w)A~A~lQwf(z)12da(w)Tr da(Z)Tr 

Proof. Our first objective will be to verify the following formula, for all fEM and 

0 < r < l .  

I=. ~ § ( [z [Z-r ' )  y(z)-Qxy(z) IdAI dA(z) (3.15) 
I<1 I=r z - A  2 r r  7r 

The ideas behind this formula and its application came from the work in [AR]. 

The proof of (3.15) is obtained by integrating 

zf(z)-AO;~y(z) 2 _ r  2 f(z)-QAy(z) 2 
(3.16) 

z - A  z - A  

over IA[=r and [z[<l.  We first observe that  
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The integral of the middle term of this last expression over IAl=r is 0, since A~  
(f(z)-Q~f(z))/(z-A) is analytic in D (remember that QJ(z)=f(z)), and it follows 
that 

]/(z)12 =/~,1=~ zf(z)-AQ~f(Z)z_A 2- r2  f(z)-Qxf(Z)z_A 2 27rr" IdAI (3.17) 

We use a similar idea in integrating (3.16) over ]z] <1. Here the key observation is that 
f-Q~fE(T-AI)M by the definition of Q~; hence z~(y(z)-O~y(z))/(z-~) is in M. 
Since QxfEMOTM, this means that 

fflz Q~y(z)zy(Z)-Q~f(z) dA(z)=0. (3.18) 
I<1 z -A  7r 

Now write 

zf(z)-AQxf(z) 2= 
z -A  

QAf( +z QAf(Z)-f(z)A_Z 2 

= IQ~f(z)[2+2ReQ~f(z) z Qxf(z)-f(z) + izl2 Qxf(z)-f(z) 2. 
~ - z  

Combined with (3.18) this shows that 

fflz ,<1 ( zf(z)-AQ~f(z) 2-'A'2 f(z)-Q~f(z) 2) z-A 7r 
(3.19) 

= IIQ~flI2+ [ [  i<x(IZl~-1~12)JJlz y(z)-Q~y(z) 2 dA_(z) 
Z - - / ~  "IF " 

Equation (3.15) is now established by combining (3.17) and (3.19). 

It follows from (3.15) that 

fix IdAI ::z  f r2-N2 15 IdAI dA(z) (3.20> Ilfl12/> IIQ~flI2 ~ - 7r I=r I<r J l ~ l = r  I'~-zl 2 I f ( z ) -Q~f(z )  27rr 

By Lemma 2.2 (a) with v(w)= IQwf(z)-f(z)l 2 and the observation AwlO~f(z ) - : (z) l=  = 
A ~ I Q j ( z ) I  2, 

_ [ r=-Izl  = lQ~f (z )_ f ( z ) l  2 Idwl 
Jl~l=~ Iz-wl = 27rr 

(3.21) 

= fflw log --r(z-W)r 2-wz AwlQd(z)12dA(W)Tr ' 
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and by Lemma 2.2 (b) with v(w)=lQwf(z) l  2, 

Idw, f dA(w) r 2 IQ~f(z)l 2 = IQ~f(z)l 2 
i=~ 27rr I<~ 7r 

(3.22) 

+/ /w I<r ~(r2-lwl2)AwlQ~f(z)12dA(w)~r 

Using (3.21) and (3.22), we can deduce from (3.20) that 

11f[12 >~/ /w I<r [[QwfJ[2 dZ(w)zc ~-f/~ I<~ [ 4 ( r2-  [w[2) f / z  I<1Aw[Q~~ dm(z)~r 

+/flz,<~ ll~ r(Z-W) A~~ --Tr " (3.23) 

Denote by r w) the quantity in brackets in the second integral of the righthand 
side of (3.23). Here 0<r~<l and Iwl<r. We claim that r To see this, substitute 
z=rC to write 

/fl~ 1 r(z-w) 2 dA(z) 
I<r ~ log ~ A~lQwf(z) l  ~r 

ff, ~log C-w/r dm(C) ~(r) ' 
I<I 1-(~Ir)C A~lQ~f(rr ~r 

where 
qd(rl) =r2//; 1 C-w/r A~lQw/(vff)l 2 dA(C) 

i<1 ~lOg 1 -  (z~/r)~ 7r 

The function ko is clearly continuous in D and superharmonic in D, so 

�9 (r) ~> min kO07 ). 
I,J=1 

If [~[=1 we substitute z=7/~ to get 

@(rl) =r2//~l<, ~ log l-ff/~/r)zZ-'w/r A~olQwf(z)12 dA(z)Tr 
(3.24) 

J J l= l< l  " 7r 

The function of z given by 2cgQwf(z)/Ow is in MOTM and hence is a multiple of an 
inner function. We can thus apply Proposition 2.4 (c) to the expression (3.24) to conclude 
that 

1( ,)//. �9 (rl) >1 -r 2. 1- ,w A.iQd(z)lU dA(z) 
r I< 1 "ff 

-~ --X(r2--'W[2) ~ l<1 A~lQ~"f(z)[2dA(z)'lr 
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which proves the claim. Another application of Proposition 2.4 (c) shows us that 

lim r 1 6 2  F(z,w)AzA~lQ~f(z)l 2 dA(z) (3.25) 
r---*l- [<1 71" 

Since r we can apply Fatou's Lemma in (3.23) as we let r--+l-. By (3.25) we 

obtain (3.14), completing the proof. [] 

We are now ready to state and prove our main result. 

THEOREM 3.5. If fEM then R~f--*f in L 2 as s-~l-, and 

u"2= /fi  "O~f[[2 dA~A) t-/~z J~w F(z'w)AzA~'Q~f(z)'2 dA(w) dA(z) 
]<=1 71" I<:i i< I ~ 7/" 

As a consequence, M=[MOTM]. 

Proof. Since R~fe[MOTM] we see by Lemma 3.3 that 

IIR~fll2 = / ~  I<1 IIQ'~xfll2 dA( 
(3.26) 

r(z,w)AzA lO J(z)l dA( ) dA(z) 
[<1 I < l  71" 71" 

We now apply Proposition 2.6 with v(w)=A~A~]Qwf(z)l 2 to obtain 

/~ sF(z,w)AzA~lq~f(z)l ~ dA(w) 
]<1 71" 

(3.27) <2/J  ,<~ F(z,w)A~A~tQ~f(z)[ 2dA(w)~ Vz~D.  

By Proposition 2.4 (a) with f(w) replaced by 20Q~f(z)/Oz, we have for zED 

lim f f  sF(z,w)AzA~,lQ~f(z)12 dA(w) 
~ I -  d dlwl<l r 

(3.28) 

In view of Lemma 3.4, (3.27) and (3.28) we can apply the Dominated Convergence 

Theorem to the last integral in (3.26). Together with the elementary fact that 

lim fJ~ ]]Q~xfH2 dA(A) = J/l~ llQ~fll~ da(A) 
s---* I -  I< 1 71" ]<1 7r 

this implies that liras__.1- [IR~fll 2 exists and is bounded by Ilfll 2. We have already noted 

that R,f(z)--,f(z) for all z e D ,  thus by Lemma 2.1, R~(f)~f in L~, and so the proof 

is complete. [] 
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4. S o m e  c o n s e q u e n c e s  a n d  f u r t h e r  r e s u l t s  

We continue to use the notational conventions of the previous section. 

If N is a closed subspace of the invariant subspace M, then it is easy to see tha t  

PMeTM(N)=PMoTM([N]). Thus if [ N ] = M ,  then P MOTM(N )= MOTM,  so Theo- 

rem 3.5 shows the following: 

PROPOSITION 4.1. M is generated by d i m ( M O T M )  elements, and no smaller set 

can generate M. 

It  is of interest to compare this result with a result of Domingo Herrero [Her]. In his 

terminology, Proposit ion 4.1 says that  T is dim(MOTM)-multicyclic. On the other hand, 

it is not difficult to show directly that  T - A I  is semi-Fredholm of index - d i m ( M O T M )  

for all AED, and of course T - A I  is invertible if IAI>I.  Herrero's  Theorem implies 

tha t  an operator  with these properties is at least in the norm closure of the set of the 

dim( M O T M )-multicyclic operators. 

Our results specialized to the case d i m ( M G z M ) =  1 yield some interesting new facts. 

PROPOSITION 4.2. If  d i m ( M O T M ) = I  and ~ is the extremal function for M, then 

M =- [~] . [] 

The next two propositions are special cases of this. 

PROPOSITION 4.3. If  M =  [f] and ~ is the extremal function for M, then M =  [~]. [] 

PROPOSITION 4.4. If M is the invariant subspace given by a zero set and ~ is the 

extremal function for M, then M = [~]. [] 

It is of interest to isolate a part  of the work of w to the case d i m ( M G T M ) = I .  For 

an inner function ~, Hedenmalm defines (with different notation) 

"',.> } ~00 . 

I<1 I<1 Ir ~r 

Because of our Proposit ion 2.4 (b), if ~ is not the constant 1 we can drop the requirement 

that  f e L]. 

Definition. Let ~ be a nonconstant L~-inner function. Then fl,2(7~ ) is the space of 

analytic functions f in D for which 

/:  <lr(z,w)alf(w)12al:(z)12 dA(w) dA(z) i ~ ( X ) ,  

I<I 7r 7r 

supp l ied  w i t h  the  n o r m  

ff r(z,w)Alf(w)12Al:(z)l dA(w) dA(z) 
j j i z l < l  J J i w ] < l  7: 7~ 

If ~ is constant, then A2(~)=L~.  
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The following result highlights the importance of this space. 

PROPOSITION 4.5. Suppose that ~ is L2-inner. Then 

= 2 

with equality of norms. Moreover, if f EA2(~) then 

f s ~  f~  in L~. 

Proof. By the statement "with equality of norms" we mean that  IIf~lln~ =llfllA~(~) �9 

The inclusion [qa]c~..A2(qp) and the equality of norms is due to Hedenmalm; it is a 

restatement of (1.5). 

For the opposite inclusion, assume fE.A2(~). By Proposition 2.6, 

/jwj< r(z,w)Alfs(w)l 2 dA(w) <. 4 Jf w < r(z,w)AIf(w)? dA(w) 
7r 7r 

for l~<s<l ,  and by Proposition 2.4 (a), 

lim / f l~ l< lF(z ,  w)AIf~(w)l 2 dA(w) _ / f l ~  F(z ,w)A,f(w)]  2 dA(w) 
s - * l -  71" i~ 1 71" 

Obviously f ~ E  [~], so IIf.,HA2(~)= IIf~ll. We can thus apply dominated convergence to 

show that  ]]f~l]----~]]fllA2(r In particular, Ilfs~ll is bounded for �89 ~<s<l, so it is easy to 

see that  f ~  is in the weak closure of {f~}1/2~<~<1. Since the weak closure of a subspace 

is the same as the strong closure, this shows that  f~E[~].  This in turn shows that  

[[f~ll=llfllA2(~); hence [[f~ll--~llf~[[. By Lemma 2.1, f~----~f~ in L 2. [] 

We note that the results we have been discussing answer all conjectures in [Hedl] in 

the affirmative. 

We turn to the study of outer functions and inner-outer factorizations. We first 

show that  Korenblum's conjecture ([Kor, p. 106]) is true. 

PROPOSITION 4.6. L2a-outer functions are cyclic in L 2. 

Proof. Suppose that F is L2-outer and that  ~ is the extremal function for IF]. Since 

qFe[F]=[~] for any polynomial q, Proposition 4.5 applies to show that  IlqF[[)[[qF/qoll. 

Thus F/v-<F, so by the definition of outer function, 

F(0)  ~< IF(0)[. (4.1) 

Since ~E[F], (F /~) (0)~0 ,  so (4.1) implies that F ( 0 ) ~ 0  and then that I~(0)1/>1. Since 

H~II=I, we must have ~=1,  so F is cyclic. [] 

Thus the cyclic functions are exactly the outer functions. This allows us to show 

that the outer functions enjoy a much stronger property than their defining property. 
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PROPOSITION 4.7. Suppose that F is outer and g-~F. Then tg(X)I~<IF(~)I for all 
AED. 

Proof. Let WA(z)=(z+A)/(I+Az) be a disk automorphism sending 0 to A. The 

results we have been discussing show that Fo:A is outer, and clearly gowA-<FowA. Thus 

Ig(A) I = Ig ~ : ~  (0)I ~< I F ~  : ~  (O) l= IF(A) I �9 [] 

Final ly we prove an analogue of the  classical H2- inner -ou te r  factorizat ion.  

PROPOSITION 4.8. Suppose f EL~. Then f has a factorization 

f = ~F 

where ~o is L2-inner and F is L]-outer. Furthermore, 

F--< f 

and 

IF(O) I = max{Ig(O) l : g "< f } .  

Proof. Let  ~o be the  ex t remal  funct ion of If]. We have a l ready ment ioned  in the  

proof  of Propos i t ion  4.6 t ha t  

F=l---~:. 
qo 

Thus  if qn are polynomials  such t h a t  q,~f--%0, then  {qnF} must  be  a Cauchy  sequence 

in L 2. Hence qnF--*l so F is cyclic, hence outer .  Finally, if g-<f the  same  reasoning 

shows tha t  qng--*(~o/f)g in L 2, so ]](~o/f)gll<<.l. Thus  ]g(O)l<l(f/~o)(O)l=lF(O)l. [] 

I t  is na tura l  to ask whe ther  the  factor izat ion in Propos i t ion  4.8 is unique. H. Heden-  

m a l m  has shown us the following a rgumen t  which shows t h a t  a funct ion fEL2a m a y  have 

dist inct  L2-inner  and L2-outer  factorizat ions.  Indeed,  a cons t ruc t ion  of Borichev and 

H e d e n m a l m  [BH] makes  it possible to find a noncons tan t  L2-inner  funct ion ~0 such tha t  

I:(z)l ~>c(1-1zl) e for all z E D  

1 --e 2--{-5 (see (4.4) of [BH]). T h e n  for small  ~ > 0 and cer ta in  5 > 0, we have ~o -E, ~o E L a . Hence 

it follows f rom a result  of H.S .  Shapiro  [S1], [$2] t ha t  ~o -~ and  ~o 1-e are cyclic in L2a . 

Thus  ~pl-~--~o'~o-~, i.e. 2 an La-ou te r  funct ion can be wr i t t en  as a p roduc t  of a noncons tan t  

L2-inner  funct ion and an L~-outer  function. 

The  last  t heo rem in this sect ion can be regarded as the  analogue of the cont rac t ive  

divisor p rope r ty  for a rb i t r a ry  invariant  subspaces.  
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PROPOSITION 4.9. Let M be an invariant subspace of L~ with dim(MGTM)=N 
(finite or infinite). 

If N {~n}n=l is an orthonormal basis for MOTM, then for each f E M  there is a 
sequence of functions N C 2 { f n } n = l - L a  s u c h  t ha t  

N 

f ( z )= ~-~f~(z)~n(z) 

for each zED, and 
N 

Proof. We define 

Then for each zED,  

fn(z)=(QJ,~n)n~, z E D .  

N 

Qzf = E. f~(z)~n,  
n=l 

where the sum converges in the norm of L~. Thus, 

N 

f(z) = (Qzf)(z) = E fn(Z)~n(Z) 

for each zED. Furthermore, from Theorem 3.5 we see that  

g / ~ N = I  dA(A) 
E IIfnll2~ = ](Q~f'czn)12 -- 
n : l  [<1  71" 

= / ~  I<1 ]]Q~fi]2 dA()~)~r ~< ]if H2' [] 

Two remarks regarding Proposition 4.9 in the case N > I :  First, if 

N 

n=l  

as above, then it is not clear whether any individual summands are in the Bergman space. 

Secondly, there may be many ways to write 

N 

n=l  
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N even with the condition • n : l  [ I g n ] ] ~ < l l f ] [ 2 ~  �9 Indeed, suppose that  N=2 and f e M ,  
f(z)=fl(z)~l(z)+f2(z)~2(z) as in the proposition with [[f1112 +[[f2112 < [[f[12 . Then 

for small ~ �9 C, the functions gl--fl-bE~2, g2----f2- 8qPl would satisfy the same conditions. 

Technically, one could circumvent this problem by formulating a "vector analogue" of 

Proposition 4.5 for arbitrary invariant subspaces. One would use the formula of Theo- 

rem 3.5 to define the relevant space of vector-valued functions. We omit the details. 

5. T h e  case  p C  2 

Many of the results of the previous section hold in LYe for 0<p<oe .  For an invariant 

subspace M of L p, we consider the extremal problem 

sup{Re f(n)(0): f �9 M, [[f[[L~ ~< 1}, (5.1) 

where n is the smallest integer for which there exists an f E M  such that  f(n)(0)r  

It can be shown (see [DKSS2]) that  if an extremal function ~ for (5.1) exists, then it 

satisfies [[~[[L~=I and 

/ ~ z  I~(z)lpzndA(z)-o for n =  1,2, . . . ,  
[<1 ~" 

i.e. is an LP-inner function. 

If ~ is an LP-inner function, we define .AP(qp) analogously to the case p=2 in w 

Proposition 4.5 remains true, but we must alter the proof. Furthermore, notice that  

from the definition it is not clear that  AP(~) is a metric space (or a normed space in the 

case p>~ 1), but that this will follow from the next proposition. 

P R O P O S I T I O N  5 . 1 .  If ~ is LPa-inner then 

[~] = ~ . ~ 4 p ( ~ )  

with equality of norms. Moreover, if feAP(~) then fs~---* f~  in LVa as s---*l-. 

Proof. If f is a polynomial then we know that  

IIf~llL~ = Ilfl l~,(~).  (5.2) 

This was proven in [Hedl] (it is Proposition 2.5 (a) of the present paper with v=lflP).  

In the case p=2 it is easy to take limits to prove that  (5.2) is true whenever f ~ �9  

this follows from the inequality 

]AIf]2-Algl  2] < 2A]f--gl2, 
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which in turn follows from the fact that  Alfl2=41f'lL This inequality fails for p ~2 ,  so we 

need another approach. Let f ~ e  [~] and suppose that  (fn) is a sequence of polynomials 

such that  f,~(p---+f~ in L p. We apply (5.2) with f replaced respectively by fn and f~ to 

get 

II :":11~': -- II : "  II~':-t- S/i. I<l//i.,i <, l'(z' ~') : ' I:n @') I" A I : ( ' )  I" dA(w) d A ( ' ) . -  ,- (5.3) 

and 

IJfs~gOOPLP:OOfsHIPLPa-I-ifz I<1 iflw ,<1F(z'w)ilfs(w)lPAl~(z)iP dA(w)Tp dA(z)71. (5.4)  

Since IIf~vllP:--~llfq0ll~: as n--+cc, we can apply Fatou's Lemma to (5.3) to see that  

IIf~ll~.:/> Ilfll~,(~), (5.5) 

which shows that  fEAP(~). By Proposition 2.6, 

ffl~ r(z'w)AIf~(w)l" dA(wl <<" 4 ffl~ r(z'w)AIf(w)l" dA(w) 
i< 1 7r i< 1 r 

if �89 ~< s < 1, so by Proposition 2.4 (a) we can apply dominated convergence to (5.4) together 

with Fatou's Lemma to conclude that 

llf~N~ ~ lim I I f ~ l l ~  ---IIfNPp(~) �9 (5.6) 
8--.1- 

C o m b i n i n g  (5.5) and (5.6) we see that  llf~ll~:=N/ll~.(~) and that  iif,~il~-~Nf~ll~. 
By Lemma 2.1, fsqo--~f~ in L p. 

We turn now to the proof of the inclusion ~.AP(qo)C [~]. Suppose feAP(~). We can 

use Proposition 2.6 and Proposition 2.4 (a) as we did in the proof of Proposition 4.5 to 

show that  

Ilfs~llL~ ~ 41/PilfliAp(~) for �89 ~< s < 1. (5.7) 

Now if p~>l, L p is a Banach space and we can show from (5.7) that  f~E[~]  as we did 

in the proof of Proposition 4.5. Unfortunately this does not work if p <  1, and we need a 

more complicated argument in this case. 

Let {zn} be the zero set of f ,  and for s ~> 1 and n =  1, 2, ..., let X,~s, ~b,~ be the extremal 

functions for the zero sets {(1/S)Zl, ..., (1/s)zn}, {(1/s)zn+l, (1/s)zn+2, ...}, respectively. 

By this we mean e.g. that  Cn~ is the extremal function for the problem (5.1), where M is 

the invariant subspaee of LPa determined by the zero set {(1/s)z,~+l, (1/s)zn+2, ...}. The 
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existence and uniqueness of such extremals are shown in [DKSS2]. 

each zED and n=l, 2, 3, ..., 
X~8(z)-~X~(z) 

and 

To see this, suppose that  Cnsj 

We claim that  for 

Cns (z) -* r (z) as s - -+l- .  

is a subsequence and f is a function such that  

(5.8) 

(5.9) 

lim r (z) = f(z) for all z E D. 
j---~cx~ 

Clearly IlfllL~<~l and f vanishes on {zn+l,zn+2,...}, so by the definition of r  

CnX(0)~>/(0). On the other hand, (r (the ordinary dilation of r by sj) van- 

ishes on {(1/sj)zn+l, (1/sj)zn+2, ...} and I1(r [[L~ <~IlCnl]IL~ =1, SO by the definition 

of r r162162 Since l i m j - . ~ r  we see that  

r (0)=f(0) ,  so by the uniqueness of the extremal functions associated to zero sets we 

see that  f=~bnl. We have thus shown that  any pointwise convergent subsequence ~bnsj 

of r converges to r  and, by a standard argument, this proves (5.9). The same proof 

shows (5.8). 

We now use (5.7) together with the contractive divisor property of Cn, and Xn8 

([DKSS1], [DKSS2]) to see that  

< 4VPllfllA.( ) = c .  (5.10) 

Since fs/x~8r has no zeros in D we can write (5.10) as 

A ~p/2 X~8r } L~(I,l") ~< C. (5.11) 

Since Xns and r are extremal functions associated with finite zero sets, they are analytic 

in a neighborhood of D and their moduli are bounded below by 1 on 0D ([DKSS2]). 

We can thus argue from (5.11), (5.8) and (5.9), as in the proof of Proposition 4.5, to 

show that  there are polynomials qk such that  qk-~(f/XnlCnl) p/2 in L2(I~olP). We apply 

Proposition 2.5 (a) with v respectively equal to Iqkl 2 and (f /xnlr  to get 

f z  iqk(z)121~(z)l p dA(z) - / f z  iqk(z)12 dA(z) 
I<1 ~r I<1 
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and 

f p 
(~nf~2nl)s r ~Pa: (~n'~nl)s ~fl L~ 

/~z,<:l /J(~wl,<l F(Z' w) A (~nf~)nl )s (w) PAI~(z)'P dn(w)~ dn(z)Tr 
(5.13) 

and then that 

so by Lemma 2.1, 

Combining (5.14) and (5.15), we see that  

lim ( f )~ ~ f :~ 
s--,1- \XnlCnl ~ L~ Xnl~)nl 

f 

This shows that f~/X,~lCnl E [~]. Multiplication by the bounded function X~I (it is the 

extremal function associated to a finite zero set) shows that (f/~l'nl)~E [~]. Now by the 

contractive divisor property of ~ 1 ,  

and it is shown in [DKSS2] as a consequence of the contractive divisor property that 

lim~--,~ ~b,~l(z)=l for all zED.  Hence by Lemma 2.1, ( f / r  in L~, which shows 

that I ~ E  [~]. [] 

This will allow us to prove the p-analogue of Proposition 4.3. Before doing this we 

mention a technical point. Let M be an invariant subspace of L p. If p~> 1, the existence 

and uniqueness of an extremal function for (5.1), which we will refer to simply as an 

extremal function for M, can be proved easily (see [DKSS1]), but if O<p< 1 neither the 

existence nor the uniqueness are known in general. For cyclic invariant subspaces we can 

prove this, and this is part of our next result. 

f P ~t~ p P 
(5.15) 

We let k--.c~ in (5.12) and s--*l- in (5.13) and argue as we did with (5.3) and (5.4) to 

see first that 
/ p f (5.14) 
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THEOREM 5.2. Suppose that M is a cyclic invariant subspace of L p. Then there 
exists a unique extremal function ~ for M, and M=[~]=~AP(~). 

Proof. By hypothesis, M=[f] for some f .  Consider the following two extremal 

problems: 

(a) sup{Reg(O) :g feM and [[gfiiL~ =1}, 

(b) sup{Re h(0): hep2(Ifl p) and llhllL2(i/iP ) =1}. 

Here P2(IflP ) is the closure of the polynomials in the weighted Hilbert space L2(IfiP). By 

elementary Hilbert space considerations, there is a unique extremal function ho for (b), 

and if hn is any maximizing sequence then hn--+ho in L2(IflP). Let hn be a sequence of 

polynomials approaching ho, and let ~ be the L2-extremal function corresponding to 

the zero set of h~. By the results of [DKSS2], since the zero set of hn is finite, we have 

that ~,~ is analytic in a neighborhood of D, I~n]~l on 0D, and hn/~n is analytic in a 

neighborhood of D. Proposition 2.5 and an easy limit argument now shows that  

/~z Ihn(z)i2if(z)lp dA(z) - / f z  -~-~(hn'z)'2] '2 dA(z) 
I<1 ~r I<1 , If(z)lpl~n(z) 7r 

>I f~z h~(z) 21f(z)l P dA(z) 
I<1 

Since I(hn/~)(0)l~>lhn(0)l, this shows that  we can assume that  hn has no zeros in D. 

The same argument (with LPa-extremal functions and the results in [DKSS1], [DKSS2]) 

shows that  a maximizing sequence for (a) can be assumed to consist of polynomials with 

no zeros in D. If g~ is such a sequence, then hn=gP/2 is a maximizing sequence for (b). 

Hence hn--+ho in L2(IflP), so gn--+go=h2o/p in LP(Ifl p) by Lemma 2.1. This shows that  

P=gof is the unique extremal function for M. Furthermore, the extremal property of 

h0 implies that  

/ /~  z~ho(z) lf(z)l pdA(z)-O for n = l , 2 , . . . .  
I<1 71" 

With hn as above we see that  

/fzl<l hn(z)( f )P/2(z) 21~(z)lp dA(z) - I<llhn(z)121f(z)lpdA(z)-17c 

and h~(z)(f/~)P/2(z)--~ho(z)(f/~)P/2(z)=l for all zED,  so by Lemma 2.1, 

hn --+ 1 in L2(i~IP). (5.17) 
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We also see that 

/J~l~ / f Np/2 /9(z z n ~ )  (zl192(z)[ pdA(z)- :ho(zllf(z)b pdA(z) =0 for n=l,2,.... 
1<1 7r 1<1 Ir 

(5.18) 

Let Af be the closure in L2(192[ p) of the set of polynomial multiples of (f/92)p/2. By 

(5.17) and (5.18), l � 9  and as a consequence 

/ : z  (f/92)P/2(z)-(f/92)P/2(A)192(z)FdA(z) 0 V A � 9  (5.19) 
Z 

1<1 Z - - A  71" 

Consider formula (3.18) and its role in the proof of Lemma 3.4. If one replaces QAf(z) 
by (f/9~)(A)~(z) one obtains 

f (A) / : z  z (f/92)(z)- (f/92)(,\) 192(z)12 dA(z_____J = 0 VA �9 D, 
I<I z - A  ~r 

which makes the connection between (5.19) and (3.18) apparent. We can now use (5.19) 

in exactly the same way we used (3.18) to show that 

L=r 27rr 

- f / z  I<, /~1=, ( r ' -  Iz[2) (f/~)P/2(z)-(f/~)P/'(A)z-1 2192(z)lp 27rrldI[ dA(Z)Tr 

It then follows as before that 

, i= ,. 27rr 

j/. :/. ,o. l i" + 1 __r(z-w) A (w) A192(z)[ p dA(w) dA(z), 
I<~ I<~ ~ r 2 - Z w  7r 7r 

and then that 

Ilfll~/> r(z, a192(z)F 
9 2 L~ I<1 }<1 71" 71" 

Now an application of Proposition 5.1 to the function f/92 shows that fE[92], so we are 

done. [] 

An immediate consequence of Theorem 5.2 is that Propositions 4.6, 4.7 and 4.8 are 

true in L p. In particular, we have 
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PROPOSITION 5.3. Let 0<p<oc.  A function f E L~ is L~-outer if and only if f is 
cyclic in L B. Furthermore, any f �9 L p has a factorization 

f=~oF~ 

where ~ is LP-inner and F is L~-outer. [] 

We can also deduce the truth in L~ of Proposition 4.4 from the following result, 

which is of interest in its own right. 

PROPOSITION 5.4. I f  (Mn) is a decreasing sequence of cyclic invariant subspaces of 

L p then NnMn is cyclic. Moreover, if An M,~#{0} and ~n is the extremal function for 

Mn then ~n converges in L p to the extremal function for An Mn. 

As we mentioned above, Proposition 5.4 implies that zero set based invariant sub- 

spaces are cyclic because it is known that invariant subspaces defined by finitely many 

zeros are cyclic. Similarly, one shows that invariant subspaces of g-Beurling type of L p, 

0<p<co, are cyclic (see [HKZ], especially the proof of Theorem 4.1). 

Proof. If (~nk) is a subsequence of (~n) that converges uniformly on compact sets 

to 0, then by Theorem 5.2 and Proposition 5.1, every fENnM,~ can be written in the 

form f=~nkhnk with hnkeL p and [[hnk[iL~ < [[fi[L~" Hence f=O, so NnMn={0}. Assume 

that N,~M,~#{0} and let (~n~) be a subsequence of (~n) that converges uniformly on 

compact sets to a function ~ 0 .  For each index j and nk>j  we have ~nkEMj. It follows 

from Proposition 5.1 and Theorem 5.2 that ~,~k/~aj EAP(~j) so by Fatou's Lemma ~/~ j  E 

AB(~j) , hence ~E [~j] =Mj.  Hence ~E An Mn, and clearly [[~][L~ <~ 1. It now follows easily 

that ~ is in fact extremal for ~,M,~, and so by Lemma 2.1, ~,~ converges to ~ in L p. 

Suppose that fe Mn Mn. By Proposition 5.1 and Theorem 5.2, f/~nkEAP(~n~) Vk, so by 

Fatou's Lemma f /~eAP(~) .  Hence ~n Mn =~.AB(~)= [~o], so ~ is the unique extremal 

function for NnMn and ~n---*~ in L p. [] 

Our methods do not seem to be sufficient to establish the p-analogues of Proposi- 

tions 4.1 and 4.2. We state these analogues as a conjecture. 

Conjecture. If M is an invariant subspace of Lp, then M is generated by dim M / z M  

functions. 

6. An inequality 

Proposition 2.6 played an important role in the proof our main result by justifying the use 

of the Dominated Convergence Theorem at a crucial point. It can also be used together 
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with Proposition 5.1 to show that  if ~ is an LP-inner function, then 

if h~E [~] and s < l .  This says that  dilation is a bounded operator in the space PP(I~IP), 

the closure of the polynomials in the weighted space LP([~IP ). Of course in the classical 

spaces of analytic functions dilation has a bound of 1, and it is of interest that  this is 

also true in our situation if p : -2  (or any even integer): 

]lhs~llL~ < IIh~llL~ 

if hqpE [~]. This follows from the next proposition. 

PROPOSITION 6.1. I f  h is analytic in D,  then 

['(Ath~i2](z) 

is an increasing funct ion of  s, for  0 <. s <~ 1 and z E D fixed. 

Proof. By Proposition 2.4 (a), the function in question is continuous in 0~<s~< 1, so 

all we need show is that its derivative with respect to s is nonnegative. We remark here 

that the method used to prove Proposition 2.6 will not work here, since a calculation 

shows that  
d~r(z,w/8) 

is not nonnegative throughout lz[ < 1, [w[ <s.  

By an easy approximation argument we may assume that  h is a polynomial, say 

h(z) ~ = ~ = o  anz �9 The function 

r[A]h[2](z) 
satisfies and is determined by the properties 

A2F[A[h[2] = A[h[ 2 i n D ,  (6.2) 

F[A[h121 = ~0 F[AIh[2] = 0 on 0D.  (6.3) 
~ n  

Set 
N 1 1 ~ - ~  ^ ~~+I  

H ( z )  = -~ A.~ ~ an~ , 
n~O 

so that  AIg i2=4 lH '12=ih l  2 and 

N 
1 1 

Ig(rei~ = 4 Y~ ( m + l ) ( n + l )  ama'~rm+n+2ei(m-n)s" 
m ~ n ~ 0  
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Define 

1 
 (re = 

oo 1 

E ( m + l ) ( n + l )  a m a n  
m,n=O 

X [r re+n+2 --  (mAn+ 1 ) r  I m - n l + 2  Jr (mAn)r Ira-hI ]e i ( m - n ) o  

(here mAn=min(m, n); we will also use the notation mVn=max(m, n)). We see that  

zx2  = ZX=IHI 2 = /X lh l  2 

and 

=On = 0  onOD. 

Hence (I)=F[Alhl2]. Algebraic manipulations now yield the expression 

N 

1 1 amSn(l--r2)2r Im-~l 
(m+ l l ( n+ l )  m~n=l 

x [mAn + ( m A n -  1)r 2 +. . . -~ - r2mAn--2 ]e  i ( m - n ) O .  

(6.4) 

If we replace an by snan in (6.4) and differentiate with respect to s, we obtain 

J~F[A,hs,2](re ~) = ( l - r 2 )  2 s ( m ~ e i m ~ 1 7 6  
48 m , n = l ~k 7 I- ] ~k n ~- 2] 

x r Im-nl (re+n)[mAn+ ( m A n -  1)r 2 +... +r2m^n-2]. 

We must show that  this is always nonnegative, i.e. that the numbers 

bran = r I m - n l  (m-~-n)[?I t  A n--~- ( m A n  - 1)r 2 --~ ...--~-r 2mAn-2]  

are the coordinates of a positive-semidefinite matrix for 0~<r<l.  We can show that  

det(rl'~-nl)l<~m,n~<g = (1--r2) y-1 

by expanding on the last column and using induction on N (notice that  if the last column 

of this matrix is crossed out, the ( N - 1 ) s t  row of the resulting matrix is r times its Nth  

row, so the expansion on the last column has only two terms). Hence (r Im-nl) is a 

positive-definite matrix, so by the Schur Product Theorem ([M]) all we need show is that  

the matrix (Cmn), where 

Cmn = (m-l-n)[mAn+ (mAn-- l)r 2 +... q-r2mAn-2], 
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is positive-definite. Now fix k, O<.k<.N-1. We will show that the coefficient of r 2k 

in (Cmn) is a positive-semidefinite matrix. The coordinates of this coefficient are 0 if 

mAn<~ k, and 

( m + n ) ( m A n - k )  = ( m A n + m V n ) ( m A n - k )  

= ( m A n + k ) ( m A n - k ) + ( m V n - k ) ( m A n - k )  

= ( m A n + k ) ( m A n - k ) + ( m - k ) ( n - k )  

if m a n  ~> k + 1. The second term of this last expression obviously represents a nonnegative- 

definite matrix. The proof will be completed by another application of the Schur Product  

Theorem once we show that  

(mAn+k)m,n>~k+l 

and 

(mAn-k),~,n>>.k+l 

are both positive-definite matrices. To see this we compute that  

det(mAn+k)k+l<~m,,~<~N = 1+2k 

and 

det(mAn-k)k+l<<.m,n<~N = 1 

by subtracting each row from the one below it, starting from the next to the last row. [] 
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