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1. I n t r o d u c t i o n  

Let M be an n-dimensional compact  Riemannian manifold of negative sectional curva- 

ture. The geodesic flow (pt is a smooth dynamical  system on the unit tangent bundle 

T1M of M, generated by the geodesic spray X.  

Recall tha t  T1M admits four natural  foliations W s~, W ~, W s, W s~ which are invari- 

ant under the geodesic flow. The leaf W~(v)  containing vETIM of the strong stable 

foliation W ~ consists of all points wETIM with the property tha t  the distance be- 

tween Otw and Otv converges to zero as t--*c~ (where we may use the distance on TIM 

induced by the Sasaki metric). The leaf W~(v) through v of the stable foliation W ~ 

is W~(v)=UteR~tw~(v ) ,  and the strong unstable foliation W ~ (or the unstable fo- 

liation W ~) is the image of W ~ (or W ~) under the flip .~: w--*-w. The leaf W~(v) 

of W i (i=ss, su, s, u) is a smoothly immersed submanifold of TIM depending continu- 

ously on v in the C~- topo logy  (see [Sh]). Moreover the tangent bundle T W  i of W ~ is a 

HSlder-continuous subbundle of TTIM. 

The purpose of this paper  is to investigate ergodic and analytic properties of second- 

order differential operators L on TIM with HSlder-continuous coefficients and without 

zero-order terms which are subordinate to the stable foliation in the following sense: 

Definition. A differential operator subordinate to W ~ is a differential operator  L on 

T1M with continuous coefficients and such that  for every smooth function a on T1M the 

value of L a  at vET1M only depends on the restriction of a to W~(v). 

If  L is subordinate to W ~, then L restricts to a differential operator  L v on W~(v) 

for all vETIM. Call L leafwise elliptic if L v is elliptic for every vcT1M. A standard 
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example of such a leafwise elliptic operator  can be obtained as follows: Fix a positive 

semi-definite bilinear form g of class C 1 on TIM with the property that  the restriction of 

g to the tangent bundle T W  8 of W 8 is positive definite, i.e. that  g induces a Riemannian 

metric on T W  s. The restriction to every leaf of W s of this Riemannian metric is of 

class C 1 and hence g induces for every vET1M a Laplace operator A ~ on W~(v). By 

our assumption on W s and g these leafwise Laplacians group together to a differential 

operator  A on T1M with continuous coefficients which is subordinate to W ~. 

Moreover every second-order leafwise elliptic operator  L subordinate to W ~ whose 

principal coefficients are leafwise continuously differentiable can be obtained in this way 

up to terms of order 41:  Namely for such an operator  we can find a continuous, leafwise 

C 1 Riemannian metric ~ on T W  ~ such that  L coincides with the leafwise Laplacian of 

up to lower-order terms. This follows from the basic computat ions for s tandard elliptic 

operators as in [IW]. Formally this representation also holds for second-order elliptic 

operators  whose principal coefficients are just  continuous. 

Recall that  a section Y of T W  ~ over T1M is said to be of class C~ '~ for some k~>0 

and some a E  [0, 1) if Y as well as its leafwise jets up to order k along the leaves of W s are 

HSlder continuous with exponent a.  Let as before g be a positive semi-definite bilinear 

form on TIM of class C 2,~ whose restriction to T W  ~ is positive definite, and denote by 

A the leafwise Laplacian induced by g. Let Y be a section of T W  ~ of class C1'% Then 

L = A + Y  is a second-order leafwise elliptic operator  subordinate to W ~ with H61der- 

continuous coefficients. 

Now the leaves of W ~ equipped with the metric g are complete Riemannian man- 

ifolds of bounded geometry, and for every vET1M the operator  L v is uniformly elliptic 

with respect to g with uniformly bounded coefficents. Thus L" defines a conservative 

diffusion process on WS(v), given by a Markovian family {PY}yEWS(v ) of probabili ty mea- 

sures with initial distribution 5y on the space ~+ of continuous paths ~: [0, c~)--*T1M, 

equipped with the smallest a-algebra for which the projections Rt: ~--~(t) are measur- 

able. The full collection of probabili ty measures {pV}v~T1M then defines a stochastic 

process on T1M which we call the L-process. 

A Borel probabili ty measure 71 on TIM is called harmonic for L if it is an invariant 

measure for the L-process. Harmonic measures always exist ([GAD; they are precisely 

those Borel measures ~] on T i M  which satisfy f(La)d~=0 for every smooth fimction c~ 

on TIM. Another characterization can be given as follows: Recall that  the semi-group 

[0, c~) acts on ~+ by the shift transformations (t, ~)-~Tt~ where Tt~(s)=~(s+t).  Then 

is invariant for the L-process if and only if the induced probabili ty measure P on 12+ 

which is defined by P(B)=fP ' (B)d~?(v )  is invariant under the shift t ransformations 

(see [Ga D . 
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Since ~ is harmonic for L we can reverse the time of the diffusion to obtain a new 

process on TIM defined by a {Tt}-invariant probability measure Q on 12+. This process is 

generated by a leafwise elliptic operator L* which we call the ~?-adjoint of L. Notice that  

a priori L* may depend on the choice of an invariant measure for L; it is characterized 

by f ( L * a ) ~ d ~ = f a ( L ~ ) d ~  for all smooth functions a,/3 on TIM. 

Call L self-adjoint with respect to ~ if f a ( g ~ )  d ~ = f ~ ( g a )  d~ for all smooth func- 

tions a, 13 on TIM. We also say that  ~ is a self-adjoint harmonic measure for L. In 

general self-adjoint measures do not exist; but if self-adjoint measures exist, they are 

unique (this is shown in w 

Now L lifts naturally to a differential operator on the unit tangent bundle T1]l~r of the 

universal covering ]~f of M which we denote again by L. Let ( -, .  } be the Riemannian 

metric on M and /~r; for every vETI~I  the restriction of L to WS(v) then projects 

to a uniformly elliptic operator Lv on (M, ( . , . ) )  with pointwise uniformly bounded 

coefficients. Call L weakly coercive if the operators Lv are weakly coercive in the sense 

of Ancona ([An]) for all vETIM,  i.e. if there is a number r  and a positive (Lv+r 

superharmonic function o n / ~ .  

Let jr4 be the space of Borel probability measures on TIM which are invariant under 

the geodesic flow Or. For pEA//denote  by h0 the entropy of 6. Recall that  the pressure 

pr ( f )  of a continuous function f on T1M is defined by p r ( f ) = s u p { h o - f f  dQ]QEA/t}. 

If ~/ is a harmonic measure for L, then the Kaimanovich entropy hL of the diffu- 

sion induced by L on (T1M, ~l) is defined. We have hL=O if and only if for ~-almost 

every vET1M the leaf W~(v) does not admit any non-constant bounded L~-harmonic 

functions ([Ka2]). 

Recall that  the Riemannian metric g on T W  ~ defines an isomorphism between T W  ~ 

and its dual bundle T*W s. If ~ is a section of T*W ~ of class C~ '~ for some a > 0 ,  

then for every vET1M the exterior differential d~(v) of the restriction of ~ to WS(v) is 

defined at v and the assignment v---~d~(v) is a section of A 2 T*W ~ of class C% We call 

stably-closed if d~=0.  With these notations we show 

THEOREM A. Let L = A + Y  be as above and assume that Y is g-dual to a stably- 

closed section of T*W 8. Then we have: 

(1) If  pr(g(X, Y) )>0  then L is weakly coercive, L admits a unique harmonic mea- 

sure ~ and the Kaimanovich entropy hL is positive. 

(2) If pr(g(X, Y ) ) = 0  then L is not weakly coercive, L admits a unique self-adjoint 

harmonic measure U and the Kaimanovich entropy hL vanishes. 

(3) If pr(g(X,Y))<O then L is weakly coercive and the Kaimanovich entropy hL 

vanishes. 
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If pr(g(X, Y ) ) < 0  then in general a harmonic measure for L is not unique: In [H3] 

we give examples of operators as above which admit harmonic measures in uncountably 

many measure classes. 

Denote by P: T1M--*M (or P: T1/~f--*M) the canonical projection. The kernel of 

the differential dP of P equals the vertical bundle T v, i.e. the tangent bundle of the 

vertical foliation of TIM whose leaves are just  the fibres of the fibration TIM--*M. 

Denote by go the smooth positive semi-definite bilinear form on T1M which is de- 

fined by go(Y, Z)=(dP(Y) ,  dP(Z)). Since the foliation W ~ is transversal to the vertical 

foliation the bilinear form go restricts to a Hhlder-continuous Riemannian metric g~ on 

the tangent bundle T W  ~ of W s in such a way that  the restriction of g~ to every leaf 

of W ~ is smooth. These data  then define a leafwise Laplacian A s on T1M subordinate 

to W s. 

Theorem A implies that  a harmonic measure w for A s is unique. This fact was 

earlier derived by Ledrappier ([L3]) and Yue ([Y2]). In the case that  M is a hyperbolic 

surface the corresponding result is contained in the paper [Ga] of Garnett;  her proof easily 

generalizes for the stable Laplacian A s of an arbitrary compact manifold M of negative 

curvature (and in fact, Ledrappier and Yue independently rediscover her argument). 

w of our paper is devoted to a generalization of a result of Ledrappier ([L4]). For this 

let (9/~r be the ideal boundary of M and let dist be the distance function on 2~ induced by 

the Riemannian metric. Let 7r: TI~I--,O~I be the natural projection which maps vETI~I  

to the asymptoticy class 7r(v) of the geodesic % with initial velocity ~/~(O)=v. For x E M  

and v ~ w E T l ~ i  define the Gromov product (v]w) of v and w by 

(v]w) = lim �89  

~-.(w) 

For sufficiently small 7->0 the assignment (v, w)-~e -T(vlw) defines a distance on the fibres 

of the fibration T12~r--,~r, the so called Gromov distances ([GH]), which are invariant 

under the action of the fundamental group 7rl(M) of M on T1/~ and hence project to 

a family of distances on the fibres of TIM---~M which we denote by the same symbol. 

Define a (Hhlder) norm ]1" lIT on the space of continuous functions f :  TIM---*R by 

IIf]]~ = sup If(v)] + sup{sup If(v) - f(w)l e ~'(~1~) ] v, w e T i M  }. 
X 

Then we show in w 

THEOREM B. Let L = A + Y  be as above such that pr(g(X,Y))>O. Denote by Qt 

(t>~O) the action of [0, oc) on functions on TIM which describes the L-diffusion. Let 

be the unique harmonic measure for L. Then for sufficiently small T>0 there are 

numbers C>O and ~ < 1 such that I IQ,f-  f f d~llT ~< Cff'll f llr for all continuous functions 
f : T I M - - , R  with Ilflt~<oc and all t>0 .  
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Theorem B for L=A s is due to Ledrappier ([L4]); moreover it implies a central limit 

theorem for the L-diffusion (see [L4] for details and further applications). 

The appendices contain a discussion of solutions of families of elliptic and parabolic 

equations. These more technical results are used for the proof of the above theorems. 

Before we proceed we introduce a few more notations which are used throughout 

the paper. 

For every x E M  the exponential map at x induces local coordinates on the ball 

B(x, 1) of radius 1 about x. These coordinates then induce for every integer k~>0 and 

every (~e[0, 1) a Ck'~-norm for functions on B(x, 1). For a function f o n / ~  define [Ifl[k,~ 

to be the supremum of these Ck,%norms of the restrictions of f to balls of radius 1 in 

/~  (whenever this exists). 

The bilinear form go restricts to H61der-continuous Riemannian metrics gi on the 

leaves of the foliations W ~ (i=su, u, s, ss). For veT iM and r > 0  denote by B~(v, r) the 

open ball of radius r about v in (W~(v), gi). 

The foliations W i lift to foliations on TI .~  which we denote by the same symbol. 

For vETI~I let 0v be the Busemann function at the point %(oo) of the ideal boundary 

0M which is normalized by 0v('y~(0))=0. The canonical projection P: TI/~--*-~ then 

maps WS~(v) diffeomorphically onto the horosphere 0v1(0) and We(v) diffeomorphically 

onto ~r. For c~E(0, zr) denote moreover by C(v, ~) the open cone of angle c~ and direc- 

tion v in M, i.e. C(v, ~ ) = { P ~ w  I w e T ~ I ,  Z(v, w)<c~, t e  (0, oo)} where Z is the angle 

of (. , .) .  
Define 

/9 = { (v, w) e T1/~ • T1M I w e W s (v)}. 

Since any two points in M can be joined by a unique minimizing geodesic, the set / )  

can naturally be identified with the bundle TW ~ over T1/~. In particular, /)  carries a 

natural Hblder structure and a natural foliation ~ with smooth leaves. Here the leaf 

of ~ through (v,w)E/9 is just the tangent bundle of the manifold WS(v). The leaf of 

9 ~ through (v, w) depends Hblder continuously in the C ~176 topology on the point (v, w), 

i.e. the jet bundles of arbitrary degree are Hblder continuous. Let moreover D be the 

projection of D under the natural action of ~rl(M) on TI~I• Clearly D is 

naturally homeomorphic to the bundle TW ~ over T1M. 

Recall that  an open subset C of T1M admits a local product structure if for v E C 

there are open, relative compact neighborhoods A of v in W~(v), B of v in WS~(v) and 

a homeomorphism A: A • B--*C with the following properties: 

(i) A(w,v)=w for all weA.  

(ii) A(v, z)=z for all zEB. 
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(iii) A({w} • B}) is contained in a leaf of W s~ for all wEA. 
(iv) For every zEB the map A~: A--*W*(z) which is defined by A~(w)=A(w, z) is a 

homeomorphism of A into W ~ (z). 

The maps Az are called canonical maps for the local product structure. 

2. H a r m o n i c  m e a s u r e s  for t h e  s t a b l e  fo l i a t ion  

As in the introduction, let M be an arbitrary compact Pdemannian manifold of negative 

sectional curvature and let g be a positive semi-definite bilinear form on T1M of class C 2,~ 

for some a > 0  whose restriction to TW s is positive definite. Denote by v 8 the Lebesgue 

measure on the leaves of W s induced by g. Let A be the leafwise Laplacian induced 

by g and let L = A + Y  for a section Y of TW ~ of class C~ '~. Lift L to an operator on 

T1M which we denote by the same symbol. For vETI~/I the restriction L v of L to W~(v) 
admits a unique fundamental solution p(v, w, t) (wEW~(v), t>0 )  of the heat equation 

L ~- O/Ot--0 relative to the volume element dv ~. Since the coefficients of L are Hhlder 

continuous, the function p:/9 x (0, oc)--*(0, co) is Hblder continuous (see Appendix A) 

and it projects to a H61der-continuous function on D which we denote again by p. 

Let ~+ be the space of paths ~: [0, oc)--*Tl,~, equipped with the smallest a-algebra 

A for which the projections Rt:~--~Rt(~)=~(t) are measurable. For vETI~/I the L v- 
process on WS(v) is given by a Markovian family {PW}wew~(. ) of probability measures 

PW on ~+. Namely for every t > 0  and every Borel set AcTI~/I we have P~{~I~(t)EA}= 
fAnWs(,) p(v, W, t)dv ~ (w); moreover P ' -a lmos t  every path in ~+ is continuous. 

Let H: TI~/I--*TIM be the canonical projection. Then II induces a measurable pro- 

jection of ~+ onto the space fl+ of paths ~ in T1M. For every wETI~/I the measure 

PW projects to a probability measure on fl+ which only depends on Hw=v and will 

be denoted by PV. These measures describe the L-process on T1M (see [Ga] and the 

introduction). 

Let ~7 be a harmonic measure for L on T1M. Then r/is absolutely continuous with 

respect to the stable and the strong unstable foliation (see [Ga]), and the conditionals 

on the leaves of W ~ are contained in the Lebesgue measure class. More precisely, let 

be the lift of ~ to a a-finite Borel measure on T1/~. For vET1M and r > 0  let again 

B~(v,r) be the open ball of radius r about v in (WS(v),g~). For rE(0,  oc) we then can 

desintegrate ~ to a measure ~ u  on W~(v) by defining ~8~(B) - -~ (U~e ,  B~( w, r)). This 

measure is locally finite and projects via the projection lr to a measure on 0~f. The 

measure class of this projection does not depend on r > 0  or on the base point v and is 

invariant under the action of F=~rl (M) (these facts follow from the results in [Ga D. We 

denote it by mc(~, oc). 
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Recall that  the semi-group [0, ce) acts on ~+ by the shift transformations {Tt[ t>0} 

via (Tt~)(s)=~(s+t). The measure P=fP'dTl(V) on ~t+ induced by ~ is invariant under 

the shift. 

The next lemma describes the ergodic components of a harmonic measure for L, i.e. 

it translates the results of [Ga] into our geometric context. 

LEMMA 2.1. The measure on ~+ induced by ~ is ergodic under the shift if and only 
/f mc(~?, ce) is ergodic under the action of F. 

Proof. Let again P be the measure on 12+ induced by the L-process and the mea- 

sure ~]. Assume first that  mc(~, c~) is ergodic under the action of F and let Acl2+ be a 

measurable set which is invariant under the transformations T t (t>~O). We have to show 

that  a=P(A) equals 0 or 1. Define a function r TIM--*[0, 1] by r This 

function is measurable and lifts to a function r on T1M. By the definition of P and the 

Tt-invariance of A we have for every uETI~/I and every t>~0 that  

~(u) = pu {~ [ iITt~ E A} + 1 = / p ( u ,  w, t)~(w) d~ ~ (w). (,) 

For vETIM let ~ be the restriction of r to the stable manifold WS(v). By (.) the 

function r satisfies L~r Thus r is a bounded positive Borel function on T1M 
which is LV-harmonic for ~-almost every vET1M. 

The Riemannian metric g on TW s induces a continuous Riemannian metric on the 

dual bundle T*W ~ of TW 8 which we denote again by g. Then 

(A+Y)  (log r = r  (A+Y)( r  -g(dr de) r  

and hence fg(dr d r 1 6 2  -2 d~=- f L ( l o g r  d~=O, i.e. r is constant along ~]-almost every 

leaf of TIM and consequently r is constant ~-almost everywhere on T~M by ergodicity. 

This constant then equals (~+1 where a=P(A). 

Now the finite intersections of sets of the form R[I(B) (BcT1M Borel, tE(0, co)) 

form a M-stable generator for the a-algebra on ~+. Thus under the assumption aE  (0, 1) 

there are for every ~>0 some Sorel sets B~, ..., B~ CT1M and numbers t~, ..., t~ E(0, co) 

(k>0 and i=l, ..., l) with the following properties: 
B k -1 i (i) The sets i=Nj=l are Rt~ (B~) pairwise disjoint. 

(ii) P(Uti=lBi) > 1 - a - e .  

(iii) P(AM(Uli=I Bi))<e. 
But since ~b is constant ~-almost everywhere on T1M we have by the Markov property 

and the definition of P that  P(A~qBi)=aP(Bi) for all iE{1, ..., l}, i.e. P(An  (Ui=l B i ) )=  
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aP(Ut i=lBi ) .  If (~r 1 then we can choose e<a (1 -c~ ) / ( l+c~ )  and obtain a contradic- 

tion. Hence either P ( A ) = I  or P ( A ) = 0 ,  i.e. P is indeed ergodic with respect to the 

shift. 

On the other hand, if mc(rh ec) is not ergodic under the action of F, then we can 

find a subset A of T I M  consisting of full stable leaves and such that  0 < ~ ( A ) < I .  Then 

{~EfLLh(0)eA} is a shift-invariant subset of ft+ whose measure coincides with ri(A), 

i.e. the measure induced on ft+ is not ergodic under the shift. [] 

Next let again r 1 be a harmonic measure for L with lift ~ to T1M and let O(oe) 

be a Borel probability measure on 0_~f which defines the measure class of mc(~/, c~). 

For vETI~/I  we then can represent the measure 7) near v in the form d(?=aduSxd~(c~)  

where a: T12~r--. (0, c~) is a Borel function and we identify ~)(oc) with its projections to the 

leaves of W ~u under the restrictions of the map 7r. For (v, w)E/9 define l~ (v, w)= l  (v, w )=  

a ( w ) / a ( v ) ;  this function is called the growth of ~l relative to u s and it is independent of 

the choice of ~)(oc). 

For a continuous section Z of T W  ~ over T1M (or T12~) which is of class C l along 

the leaves of the stable foliation write div Z to denote the function on T I M  (or T12~f) 

whose restriction to a leaf W~(v)  of W ~ equals the divergence of Zlw~(v ) with respect 

to the volume element u ~. Moreover for a function f of class Cs 1 on T1M denote by V f  

the section of T W  ~ whose restriction to the leaf WS(v)  equals the g-gradient of f iw~(v).  

Then we have 

LEMMA 2.2. A ( a ) - d i v ( c t Y ) - 0 .  

Proof. Consider a smooth function f on T I M  with compact support. Partial inte- 

gration then shows 

/ ( A + y ) ( f )  (v) a(v)  dv ~ x d~(c~)(v) 0 

and from this the lemma immediately follows. 

= f div(aY)) dv ~ x dO(co) 

[] 

By Lemma 2.2 the function a is differentiable along the leaves of the stable folia- 

tion. Hence we can define the g-gradient of ~ to be the r/-measurable section Z of T W  s 

whose restriction to the leaf W ~ (v) is just the g-gradient of the rbmeasurable function 

w e w  

Next we describe the self-adjoint harmonic measures in terms of their growth: 

LEMMA 2.3. The measure ~? is self-adjoint for L i f  and only i f  p(v, w, t ) l (w,  v ) =  

p( w , v, t) for ~-almost every v E T l  ff/I and w E W S ( v ) , all t E (0, c~ ) . 

Proof. Let (t, u) --*Atu be the action of [0, c~) on functions u on T I M  which describes 

the L-process on T1M. Then 7/is self-adjoint for L if and only if for all continuous func- 
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tions ~, u on T l ~ r  with compact  support  and all t > 0  we have f~o(Atu) dg/=fu(At~)  d~ 

(this follows as in the case of the trivial foliation, see [IW]). But 

f ~(At~)~ = / [  ~(v)p(v, w, t ) u ( w ) d ~ ( ~ ) a ( v ) ( ~  • ~ ( o ~ ) ) ( ~ )  

= / ' / "  u(w)p(v, w, t) qp(v) a(w)l(w,  v) d ,  ~ (w)(du s • d~(c~))(v) 

and this is equal to f u ( A t ~ ) d ~ = f ( f p ( w , v , t ) ~ ( v ) d u ~ ( v ) ) u ( w ) d ~ ( w )  for all functions 

qo, u as above if and only if p(v ,w , t ) l (w , v )=p(w ,v , t )  for 7)-almost every vETI~/I, 

wEW~(v)  and all t>0 .  [] 

Recall that  the fundamental  solution p(v, w, t) of the heat equation for L is a H61der- 

continuous function on D x (0, oc) (see the appendix). For rE(0, oo) and v e T 1 M  define 

d s s at(v)  = ~(p(v,~ v , t ) p ( r  v,v,t) -1) 8~0; 

the function at :  TZM--~R is Hblder continuous. 

C O R O L L A R Y  2.4. There is at most one self-adjoint harmonic measure 7] for L. Such 

a measure exists if and only i f a t = a s = a  for all t, s > 0  and if the pressure of a vanishes. 

Proof. Let r /be a self-adjoint harmonic measure for L and write d~=dv ~ x dr/s~ where 

r f  ~ is a quasi-invariant family of locally finite Borel measures on the leaves of W ~ .  

Lemma 2.3 shows that  

d 
d(r ld~;?S)(v)~ o for every t > 0; at(v)  = ~ = 

in particular, a t = a ~ = a  for all s, t>0 .  Since the function a is Hblder continuous there is 

a unique Gibbs equilibrium state defined by a which admits  the measures r] ~ as a family 

of conditionals on strong unstable manifolds. But  this just means tha t  the pressure of a 

vanishes and that  a self-adjoint harmonic measure for L is unique. 

Vice versa, assume tha t  at =as =a  and tha t  the pressure of a vanishes. Then there 

is a family of conditionals r /~  on the leaves of W ~ of the unique Gibbs equilibrium state 

defined by a with the property tha t  

d { r ; ~ ~  t=0 = a .  

Define a finite measure r /on  T I M  by drl=duSxdrl su. 
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By the definition of ~, the growth of ~ relative to v ~ is well defined and can be viewed 

as a function I o n / )  which satisfies l(v, q~Sv)=p(v, CSv, t)p(q)Sv, v, t) -1 for all sElCt and 

all t>0 .  But l is a HSlder-continuous function, and since p is H51der continuous on 

/9 • (0, cr we necessarily have l(v, w) =p(v, w, t)p(w, v, t) -1 for all (v, w) E/9 and all t > 0  

(compare the considerations in [H2]). By Lemma 2.3 this just means that  7? is a self- 

adjoint harmonic measure for L. [] 

Call a section ~ of AvT*WScAPT*(T1M) of class C~ for some integer jE[0,  ~ ]  if 

the restriction of ~ to every leaf of W ~ is of class CJ and if the jets of order ~<j of these 

restrictions are continuous. If ~ is of class C~ for some j~>l, then for every vET1M 

the exterior differential d~(v) of the restriction of ~ to Wi(v)  is defined at v, and the 

assignment v--*d~(v) is a section of AP+IT*W ~ of class C~ -1. 

Let ~? be an arbi t rary Borel probabili ty measure on T1M which is absolutely continu- 

ous with respect to the stable and the strong unstable foliation, with conditionals on the 

leaves of W ~ contained in the Lebesgue measure class. More precisely, we assume tha t  

there is a Borel probabili ty measure 7)(c~) on 0-~  and a function a: T1114--+(0, oc) which 

is measurable and leafwise differentiable, with measurable leafwise differential such that  

the lift ~/of 77 to a a-finite Borel measure on Tl-~f is locally of the form 

d~l = c~ dv ~ x d~l(cr 

where as before we identify ~(oc) with its projections to the leaves of W ~ under the 

restrictions of the map  r Let Z be the g-gradient of ~?. 

Recall that  the Riemannian metric g on T W  ~ natural ly extends to a Riemannian 

metric on the continuous vector bundles APT*W ~ over T I M  (p>~O). 

Define an inner product ( . , . )  on the vector space C ~ ( A V T * W  ~) of sections of 

A P T * W  ~ of class C ~  by (~, r  and denote by H ~ the comple- 

tion of C ~ ( A  v T * W  ~) with respect to this inner product.  Then d is a densely defined 

linear operator  of H ~ into 0 H~+I, and hence its adjoint d* is well defined. We want to 

determine d*; for this let * be the Hodge star  operator on the leaves of W ~ with respect 

to the metric g, viewed as a bundle isomorphism of A v T * W  ~ onto A n-v  T * W  ~. For a 

section ~ of A v T * W  ~ and a section E of T W  ~ denote by E J ~  the inner product of 

and E.  Then we have 

LEMMA 2.5. Let Z be the g-gradient of ~1. Then 

d * ~ = ( - 1 ) " P + n + l * d * ~ - Z J ~  for every ~ e C F ( A T * W  ~) (p~>l); 

in particular, 71 is a self-adjoint harmonic measure for A + Z .  

Proof. If 7/i ( i=l ,  ..., k) is a finite smooth parti t ion of unity for TIM,  then d*~=  

~ i d * ( ~ i ~ ) ,  *d*~=~-~i*d*(Th~) and Z J ~ = ~ Z J ( v ~ )  for all ~veCy(APT*W~), and 



HARMONIC MEASURES FOR COMPACT NEGATIVELY CURVED MANIFOLDS 49 

hence it suffices to show the lemma for forms which are supported in an open subset 

C of T1M with a local product  structure, given by vET1M and open, relative compact  

neighborhoods A of v in WS(v), B of v in W~U(v) and a homeomorphism A: A • B ~ C  

as in the introduction. 

Let ~8~ be a conditional of ~ on B and define a measure ~ on A • B by d~(0, w)--  

d~ (A(0 ,  w)) • d~S~(w). The map  A is absolutely continuous with respect to the measure 

on C, the measure ~ on A • B and its Jacobian with respect to these measures is given 

by the growth l=ln: DM(C• oc) of ~ with respect to v ~, where D C T 1 M •  

is as in the introduction. For z E B  and wEW~(z) write l~(w)=l(z, w). 

Let now ~ be a section of A p T*W ~ of class C 1 with support  in C. For a section 

CEC~(A p-1 T*W ~) we then have 

:(--1) np+n+x / g(r *dgr d'r]-/ g(dlog lzA' 2, dg ] 

by Stokes' theorem. The lemma now follows from the fact tha t  g(dloglzAr 

g(r  ZJ ~). [] 

Now we can characterize self-adjoint harmonic measures as follows: 

CORALLARY 2.6. For a Borel probability measure ~ on T1M the following are equi- 

valent: 

(1) ~ is a self-adjoint harmonic measure for L = A  + Y.  

(2) The g-gradient of ~ equals Y; in particular, Y is g-dual to a stably-closed section 
of T*W 8. 

(3) f (div(Z)+g(Y, Z)) d o = 0  for all sections Z of T W  ~ of class C 1. 

Proof. The equivalence of (2) and (3) is a consequence of the proof of Lemma 2.5; 

moreover (3) implies (1). Thus we are left with showing tha t  (3) is a consequence of (1). 

For this let 77 be a self-adjoint harmonic measure for L = A + Y ,  let Z be the g-gradient 
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of 0 and qo, ~ be smooth functions on TIM. Then 

f d0 
= f r162 +g(~bV~, Y) -g (Vr  V~)) d0 

and consequently 

/ ( d i v ( q o V ~ - ~ b V q o ,  Y)) d0 = 0. +g(qoV~ 

On the other hand, we have V(qo~b)--qoVr162 and fL(~)  do=O, and from this 

and the above formula we conclude that f(div(qoV~b)+g(qoV~, Y))do=O for all smooth 

functions qo, r on T1M. Since smooth functions are dense in the space of functions of 

class C~ on T1M, this identity also holds whenever ~ is a function of class Cs 1 and r is 

smooth. On the other hand, using a suitable smooth partition of unity for T1M and local 

coordinates it is easy to see that every section A of T W  8 of class C] can be written as 

a finite sum of sections of the form ~Vr where qo is of class C~ and r is smooth. Thus 

the above equation implies that f(div(A)+g(Y, A))do=O for every section A of T W  ~ of 

class C~ which is (3). [] 

Let A/[ be the space of (I)t-invariant Borel probability measures on T1M, and for 

pEJ~/[ denote by h e the entropy of 6- Recall that the pressure pr(f) of a continuous 

function f on T1M is defined by p r ( f ) = s u p { h e - f f  de heeM}. If f is HSlder continuous 

then f admits a unique Gibbs equilibrium state pi EM, i.e. QI is the unique element of 

M such that h ~ s - f f  dpf=pr(f).  Then QI admits a family Q)u of conditional measures 

on strong unstable manifolds which transform under the geodesic flow via 

d{Q)~'~ t=o = f+p r ( f ) .  

Let X be the geodesic spray on T1M. As an immediate consequence of Corollary 2.6 we 

now obtain 

COROLLARY 2.7. L = A + Y  admits a self-adjoint harmonic measure if and only if 

the following is satisfied: 
(1) Y is g-dual to a stably-closed section of T*W s. 

(2) The pressure of g(Y, X) vanishes. 

Proof. Assume that Y is g-dual to a stably-closed section of T*W ~ and that the 

pressure of g(Y, X) vanishes. Let 0 ~ be a family of conditional measures on strong 

unstable manifolds of the Gibbs equilibrium state of g(Y, X) with the property that 

d{oS~oq?t}/dtlt=o=g(Y, X). Define a finite Borel measure 0 on TIM by do=du~> do ~ .  
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Consider the lift 7) of r / to  T1/1~. The growth of ~ with respect to v s is a Hhlder- 

continuous function h/9--+ (0, co) such that  dl(v, Otv)/dt[t=o=g(Y, X)(v) for all veTl~I. 
By assumption on Y, for every vETI~/I there is a function fv on WS(v) of class C 1 

such that  dfv is g-dual to Y[w,(.). Then f~ is uniformly H61der continuous and satisfies 

fv(~tw) -- f~ (w) =log l(w, ~tw) for all wEWS(v) and all tER.  From H61der continuity we 

then conclude that  log l(w, z) = fv (z) - f~ (w) for all w, z E W s (v) (compare the arguments 

in [H2]). But this just means that  Y is the g-gradient of 77 and hence by Corollary 2.6, 

is a self-adjoint harmonic measure for A + Y .  [] 

Lemma 2.5 shows that  the adjoint d* of d with respect to ( . , . )  is defined on the dense 

subspace C~(APT*W 8) of (H ~ ( . , - ) ) .  Define a bilinear form Q on C~(APT*W ~) by 

Q(~, r  r  dr d*r Then Q is the form of the self-adjoint extension 

of Id + s  where s +d*d (we denote this extension again by Id +s  The completion 

Hp 1 of C~(A p T*W ~) with respect to Q just coincides with the domain of (Id +s 
Let i: Hp 1 ~ H  ~ be the natural inclusion. 

LEMMA 2.8. There is a continuous linear map G: H~ Q) with the following 
properties: 

(i) ioG is self-adjoint and commutes with the operators d and d*. 
(ii) (Id + s  

Proof. The existence of a continuous linear map G with property (ii) follows as in 

the case of elliptic differential operators from the Riesz representation theorem. Clearly 

ioG is self-adjoint. To show that  G commutes with d* let aEH~ and let r  Then 

(Id +t:)d*ga = (Id +dd* +d*d)d*~b = d* (Id +dd*)r = d* (Id +s = d*a 

and hence d*~b=Gd*a=d*Ga. In the same way we see that  G commutes with d as well. [] 

Denote by T/p the vector space of harmonic p-forms, i.e. the space of forms 

which satisfy d~o=d*~=O. Then ~-~P coincides with the orthogonal complement in H ~ 

of the subspace dH~_ l+d*Hpl+l; in particular, 7-/p is closed. Now dHlp_l and d*Hl+l 

are clearly orthogonal as well and hence we obtain an orthogonal decomposition Hp ~  

TlPOdHI_IGd*HI+I where dHlp_l denotes the closure of dHl_l in H ~ Next we inves- 

tigate the spaces dHl_l and dHlp_l in more detail. 

LEMMA 2.9. (i) dd*(E~_ 1Gia)--+a (k--+oo) for every aedile_ 1, 
(ii) d*d(EklG~a)--+a (k--+oo) for every ned*H1+1. 

Proof. We show the lemma for d r i l l ,  the statement for d*Hpl+l follows in the same 

way. Denote by [1" [[ the norm on Hp ~ induced from the inner product ( . , - ) .  Let aedHl_l 
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be an element of unit norm Ilal12=1, and let ai=GiaEdHl_ 1. Then dai=O for i ) l  and 
i , hence ai = (Id +E)a i+ l  = a i + l  +dd*ai+l, i.e. inductively a = a i  + ~ / = ~  dd a t for all i>/1. 

Moreover 

I[ai 112 = II (Id +L)a i+ l  I12 = [[ai+l II 2 +2(hi+l ,  dd*ai+l)+ I1 dd*ai+l l] 2, 

i.e. again inductively we see that  ll~,ll2=l-~=l(2lld*,~jll2+lldd*~l]2). This shows 

that  the sequence ([la~l])~>l is decreasing and the sequence (d*a j ) j ) l  converges to zero 

in H ~ 

We want to show that  a i ~ 0  ( i ~ o c )  and for this it suffices to show that  v2= 

inf~)llla~ll2=0. Since (a2i)~>0 is a bounded sequence in the Hilbert space dHl_l it 

admits a subsequence converging weakly to some a ~ .  Then d*o~i--+O (i-+cx)) implies 

Now a convex combination of a weakly convergent sequence is strongly convergent. 

This means that  for every ~>0 there is a number k=k(e)>O, integers l<.i(1)<...<i(k) 
k and numbers/3j>0 ( j = l ,  ..., k) such that  ~ j = l / 3 j = l  and IIEj   ,<J)gJlL But 

Y~" 2 2 2 2 //2 

j j<t 

and consequently u s -0 ;  in particular, the sequence dd* ~-]~k_l Gin converges strongly in 

H1 ~ to a (k-+cr [] 

CortOLLArtV 2.10. (i) aedHl_~ is contained in dH~_ 1 if and only if the sequence 
(d* (Ek lGia ) )k>0  is bounded in o H ~ - I "  

* 1 (ii) aed*Hlp+X is contained in d Hp+ 1 if and only if the sequence (d(~]~_ 1Gia))k>O 

is bounded in H~ 

- ~i=1 G~a" Assume that  the sequence Proof. Let aEdH~ 1 and for k>0  write ~3k----d* k 

(ilk)k>0 is bounded in H~ by passing to a subsequence we may assume that  the 

sequence (/3k)k>0 converges weakly in H ~  to a form t3. We then have fled*Hip and for 

every r/EHp 1 moreover (ilk, d*zl)--+(j3, d*rl). On the other hand, Lemma 2.9 shows that  

(~k, d*r/)=(d~k, r/)--*(a, r/) (k--*cc) and consequently/3eHpl_l and d/3=a. 

Vice versa, let a=dl3 for some/3EHpl 1 . Since (7-lp_IGdHI_2)NHI_I is contained in 

the kernel of d we may assume that  ~Ed*H~. Then d*(~/k 1Gia)=d*d(y'~.~=l Gi~)--~ 
(k--~co) by Lemma 2.9; in particular, this sequence is bounded. This shows (i), and (ii) 

follows in the same way. [] 

The above considerations show that  we may only consider operators of the form 

A + y  where Y is g-dual to a stably-closed section of T*W ~. Namely, if Y is an arbitrary 
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section of T W  8 and if r / is  a harmonic measure for L = A + Y ,  then we can decompose 

Y=YI+Y2 ,  where Y1 is g-dual to an element of ?-ll| and ]'2 is g-dual to an element 

of d*H~. Then fY2( f )dr /=0  for every smooth function f on T1M and hence r/is also a 

harmonic measure for L+Y1. Notice however that  there is a problem of regularity here: 

In general we can not expect that  the sections Y1, ]I2 are of class C~ '~ for some c~>0 if 

this is true for Y. 

Denote again by L the lift of L to T1M. For every vET1M the restriction of L to 

W 8 (v) projects to a uniformly elliptic operator Lv on (.~, ( . , . ) )  with pointwise uniformly 

bounded coefficients. Recall from the introduction that  L is called weakly coercive if the 

operators Lv are weakly coercive in the sense of Ancona for all vET1M. The next lemma 

shows that  weakly coercive operators do not admit self-adjoint harmonic measures. 

LEMMA 2.11. If  pr(g(X,Y))=O then L is not weakly coercive. 

Proof. Assume that  L is weakly coercive. Then there is a number 6>0  such that  

L+6 is weakly coercive as well. This implies by the considerations in Appendix B that  

there is a HSlder-continuous section Z of T W  ~ over T1M which satisfies 

div(Z) +g(Y, Z) + II ZII 2 +6 = 0; 

namely if Z denotes the lift of Z to T1A~, then for every vETlff/t the restriction of Z to 

W ~ (v) projects to the g-gradient of the logarithm of a minimal positive (Lv +6)-harmonic 

function with pole at 7r(v). 

Now assume to the contrary that  L admits a self-adjoint harmonic measure r/. 

Then O=f(div(Z)+g(Y, Z)) dr~=- f([[Z[[2+6) dr/ which is a contradiction and shows 

the lemma. [] 

Call L = A + Y  of gradient type if Y is g-dual to a stably-closed section of T ' W <  

Next we describe the g-gradient of an arbitrary harmonic measure r/for such an operator. 

Namely, denote by L' the operator which is adjoint to L with respect to r/, i.e. L' is 

defined by requiring that  f ( L ' f ) r  dr/=f f (Lr  all smooth functions f ,  r on TIM. 
Then we have 

LEMMA 2.12. Let ~ be a harmonic measure for L with g-gradient Y + Z .  Then Z 

is g-dual to a harmonic section of T*W s, i.e. to an element of Tl 1, and L ' = L + 2 Z =  

A + Y + 2 Z .  

Proof. Let c~, ~ be smooth functions on TIM. Since the operator A + Y + Z  is self- 

adjoint with respect to r /we have 

/ dr/= / .( + y + dr/- [ dr/ 

: f dr/- / er/. 
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But ~ is a harmonic measure for A + Y  and A + Y + Z ,  and this implies that  f(Zf) dr/--0 
for every smooth function f on TIM. In particular, since Z is g-dual to a stably-closed 

section of T*W s this means tha t  Z C ~  1. From this the lemma follows. [] 

Let now Q be the probabili ty measure on t h e  space ~+ of paths on T1M which is 

obtained from P by a reversal of time. Let At (or A~) be the action of [0, oc) on functions 

u on T1M which describes the L-process (or the L~-process) on TIM. For Borel subsets 

A, B of T1M with characteristic functions XA, XB we then have 

P{w [w(O) �9 A, w(t) �9 B} = f xA(AtxB) dq 

XB d ,  = t (0) �9 B, �9 A}, 

and Q is induced by the U-diffusion. In other words we have 

COROLLARY 2.13. The reversal of time of the L-diffusion on (TI~I,~) is the L'- 
diffusion with LI=L+2Z.  

We conclude this section with the basic examples which were considered earlier in 

the literature. 

Recall tha t  the Bowen-Margulis measure # on T1M is the Gibbs equilibrium state 

of a constant function. There are families #i of conditional measures on the leaves of 

W ~ (i=ss, su) such that  d#=dpSSx dpSUx dt (with respect to a local product structure) 

where dt is the one-dimensional Lebesgue measure on the flow lines of the geodesic flow. 

The measures #~ on the leaves of W ~ which are defined by d p ~ = d # ~ x d t  are in fact 

invariant under canonical maps. 

The above considerations are in particular valid for the Borel probabili ty measure 

a on T1M which is locally the product of the Lebesgue measure +k s on the leaves of W s 

and the (normalized) conditionals of the Bowen-Margulis measure on the leaves of W ~ ,  

i.e. d~r=dASxdl~U=dA~Sxd#~xdt. Let A s be the stable Laplacian, i.e. the leafwise 

Laplacian induced by the lift go of the Riemannian metric on M. 

From Lemma 2.5 we obtain immediately 

COROLLARY 2.14. a is a self-adjoint harmonic measure for A : + h X .  

Remark. We can also investigate harmonic measures for operators subordinate to 

the strong stable foliation. Namely, define an inner product  ( . , .  )ss on the vector space 

C ~  (A p T*W ~) of sections of A p T*W ~s of class C ~  by (~, r =fgS:(~(v),  r  da(v) 
where a is defined as above and gS~ is the restriction of go to T W  s:. Let H~ be the 

completion of C ~ ( A P T * W  ~s) with respect to this inner product.  As before, we can 

define a natural  exterior derivation d:s which is a densely defined linear operator  of 
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H~ into Hp~ we denote its adjoint with respect to ( . , .  )ss by d* s. Let *ss be the 

Hodge star operator on the leaves of W ss with respect to the metric gSS, viewed as a 

bundle isomorphism of A p T*W ss onto A n-p-i T*W ss. As in the proof of Lemma 2.5 

we obtain (see also [Kn], [L3] and [Ka2]): 

The restriction of d* s to C~(APT*W ss) equals ( - 1 ) ( n - 1 ) p + n * s s d s s * s s  , a n d  a is a 

self-adjoint harmonic measure for Ass. 
In fact, the measure a is the unique harmonic measure for Ass. Namely, the strong 

stable foliation is of subexponential growth and consequently every harmonic measure 

for A ss is fully invariant ([Ka2]), i.e. it defines a transverse measure for the strong stable 

foliation which is invariant under canonical maps. On the other hand, an invariant 

transverse measure for W ss is unique (up to a constant) and induces the measures #~ on 

the transversals W~(v) (vETiM) to the strong stable foliation ([BM]). 

The subspaces dssHl,ss are not closed in Hp~ (or the spaces d*sH~+i,ss are not 

closed in Hp~ To see this, let C be the orthogonal complement of the space of constant 

function with respect to the L2-inner product defined by a. Observe that  under the 

assumption that  dssHl, ss is closed in H~ the differential dss is a continuous one-to- 

one linear mapping of the Hilbert space H~,~s N C onto the Hilbert space dssH~,~s E H~ 
and hence it admits a continuous linear inverse ~I'. Thus ~I' is in particular bounded, 

i.e. there is a number Q>0 such that  (dss~,dss~)ss>~Q(~,~)~ for all ~EH~,ssAC. On 

the other hand, if M is a compact locally symmetric space of negative curvature, then 

a is just the Lebesgue measure A, and in particular, a is invariant under the geodesic 

flow. Let f :  TiM--*R be any smooth function with f f  dA--0 and f f2 dA=l. For t E R  

define ft=fo@t. Then (dssf t ,dssf t ) -~0 ( t ~ o o )  but f tEC and (ft, f t ) s s = l  for all t E R  

contradicting our assumption that  dssHl,ss is closed in H ~ l~8s" 

Recall that  for every yEASt the ideal boundary 0A~ can naturally be identified with 

the exit boundary for Brownian motion o n / ~  emanating from y. In other words, the 

Wiener measure on paths starting at y projects to a Borel probability measure w y on 

OA/I~TiyA/I. The measures w y transform under F = ~ I ( M )  via w~Y=wyo(dq2)-i I and 

hence they project to measures on the fibres TiM of the fibration TiM--*M (xEM). 
Define a Borel probability measure w on TiM by w(A)=f  wX(ANTIM)dAM (x) where 

AM is the normalized Lebesgue measure on M. Then w is the unique harmonic measure 

for the stable Laplacian A s ([L3], see also [Y2] and [Ga]). 

For vETI~I denote by Y(v) the gradient at Pv of the logarithm of a minimal positive 

harmonic function with pole at the point =(v) of the ideal boundary 0A~. Via the natural 

identification of WS(v) w i t h / ~  the vector Y(v) can be viewed as an element of TvW s. 
The assignment v--*Y(v) is then a section of TW s of class C ~  which is equivariant under 

the action of the fundamental group F of M on TiA~, i.e. Y can be viewed as a vector 
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field on T1M. Clearly Y is the g0-gradient of the measure w. Hence we obtain 

LEMMA 2.15. d*~o=(-1)np+n+m*d*~o-YJ~o for every ~oEC~(APT*W ~) (p>~l). 

Let now ~ E H  ~ be g0-dual to the vector field Y. The following corollary is an 

immediate consequence of the above considerations. 

COROLLARY 2.16. (i) d~----d*~----0, i.e. ~ is harmonic. 

(ii) f a ( A * ( ~ ) + Y ( ~ ) )  d w = f  ~ ( A * ( a ) + Y ( a ) ) d w = -  f ( V s a ,  V ' ~ )  do: for all smooth 
functions (~, qo on TIM; in particular, w is a self-adjoint harmonic measure for As+ Y. 

(iii) f Y ((~) dw=0; in particular, f (~ A*(~o) dw= f !o( A*((~ ) + 2Y ((~) ) dw for all smooth 
functions ~, ~o on TIM. 

3. O p e r a t o r s  o f  n o n - z e r o  e s c a p e  

In this section we consider again an operator L of the form L = A + Y  where A is the 

leafwise Laplacian of a positive semi-definite bilinear form g of class C 2,~ on T1M whose 

restriction to T W  s is positive definite and Y is a section of T W  ~ of class C~ '~ which is 

g-dual to a stably-closed section of T*W ~. We assume in addition that  pr(g(X, Y) ) r  

By Corollary 2.7 this is equivalent to the non-existence of a self-adjoint harmonic measure 

for L. We then call L of non-zero escape, a notion which will be justified below. 

The purpose of this section is to show that  such an operator L is necessarily weakly 

coercive in the sense of Appendix B. First of all notice the following: 

LEMMA 3.1. For an operator L of non-zero escape there is a number x > 0  with the 
following property: Let r? be a harmonic measure for L with g-gradient Y + Z. Then 

I tlzIt 2 d , > x .  

Proof. Assume to the contrary that  for every j > 0  there is a harmonic measure r 5 

for L with g-gradient Y + Z j  and such that  f IIZj II 2 d~?j < 1/j. Let r / be a weak limit of a 

subsequence of the sequence {rlj}j which we denote again by {rlj}. For every section A 

of T W  s over TIM of class C~ we then have 

f (div(A)+g(Y,A))d~ = j h m  f g(Zj,A)d~?j 

~< l i ? s u p  ( f  HAH2drh) 1/2 ( f  HZjH~drh)I/2:0 

and hence 7/is a self-adjoint harmonic measure for L. This contradicts the assumption 

that  pr(g(Y, X ) ) r  [] 
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Let ~ be a harmonic measure for L = A + Y  with g-gradient Y+Z.  We use ~? to 

define the Hilbert space H11 as in w The g-dual ~ of Z is pointwise uniformly bounded 

in norm with pointwise uniformly bounded leafwise differential; in particular, ~ is con- 

tained in H i.  Since C~(T*W s) is dense in HI 1 we can approximate ~ in H i by Hhlder- 

continuous leafwise smooth sections of T*W s. However, since the harmonic section ~ of 

T*W ~ (in the sense of w is in general not continuous it is a priori not clear whether 

can be approximated in H i by Hhlder-continuous leafwise closed sections of T*W ~. The 

following lemma answers this question in an affirmative way: 

LEMMA 3.2. Let Y + Z be the g-gradient of ~? and let ~ be g-dual to Z. Then there 
is a sequence {~i}cC~,a(T*W s) of Hhlder-continuous stably-closed forms ~ with the 
following properties: 

(1) if, Hi 
(2) The forms ~i are pointwise uniformly bounded in norm, independent of i>0 .  

Proof. Write f=~(X)=g(X,  Z). Recall that for ~-almost every vET1M the restric- 

tion of Z to W~(v) is the g-gradient of the logarithm of a function ~ on W~(v) which 

satisfies A ( ~ ) + Y ( ~ ) = 0 .  In other words, ~ is a solution of an elliptic equation with co- 

efficients of locally uniformly bounded Cl,a-norm. Schauder theory for elliptic equations 

then shows that  the restriction of the function f to a leaf of W s is locally uniformly 

bounded in the C2'%norm. 

Choose a smooth partit ion of unity for T1M, given by functions ~1, ..., r which 

are supported in open subsets C1, ..., C~ with a local product structure. More precisely, 

we arrange the set Ci in such a way that  the local product structure on Ci is given 

by a point piEM, an open ball Ai about Pi in M, an open subset Bi of Tp~M and a 

homeomorphism A~: A~ • B~--~C~ which satisfies n~ (y, w)E W s (w) and P oA~ (y, w ) = y  for 

all (y, w) EA~ • B.~. Then for every wEB~ the restriction of A~ to Ai • {w} is smooth, and 

its jets of arbitrary degree depend H51der continuously on w. 

Denote by )~M the Lebesgue measure on M. For every yEM there is a unique finite 

Borel measure ~Y on T~M such that ~(A)=f~Y(AATIM)d)~M(y) for every Borel set 

A c T I M  (see [H2]). The measures ~Y are positive on open sets. For every iE{1, ..., k} the 

map Ai is absolutely continuous with respect to the measures ~MX ~P~ on M • Tlp~MD 
Ai • Bi and the measure ~ on Ci CT1M, with uniformly bounded Jacobian. 

For wET1M and ~>0 write S(w , s )={zET~Ml~(z ,w)<~  }. Choose s0>0 suffi- 

ciently small that  for every point z in the support of r the cone S(z, 2r is contained 

in C~. Let a :R-~[0 ,  1] be a smooth function with a ( t ) = l  for t <  1, a ( t ) = 0  for t~>l and 

for s~<s0 and w~T~M write 

O~(W) : f ~(,/(W, Z)& -1) d~PW(z) > O. 
Js  (~,~) 
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From the explicit description of the measures yPw (wET~M) ([H2]) it is apparent 

that  the functions c~ c are HSlder continuous. For iE{1, ..., k} and ~<~0 define a function 

f~ on TiM with support in Ci by 

f~ (A~(y, w)) =- o~e (w)- i f  (~f)(A~(y,  z ) )~ ( / (w ,  z)c -1) d~] p~ (z). 
Js  

Then f~=~i f~ is HSlder continuous and moreover pointwise uniformly bounded, 

independent of E>0. The restriction of f to a leaf of the stable foliation is locally 

uniformly bounded in the Cl,~-norm. 

Recall from w the definition of the Hilbert space H01 of functions on TiM which 

are square integrable with respect to ~, with square integrable leafwise differential. The 

functions f~ converge as ~--~0 in H 1 to f .  In fact, convergence even holds in the Sobolev- 

type space of functions which are of class L 2n (with respect to ~) with leafwise differential 

again of class L 2n. The usual Sobolev embedding theorem then implies that  for ~]-almost 

every vETIM the restriction of f~ to W~(v) converges uniformly on compact subsets of 

WS(v) to the restriction of f as ~--~0. 

Recall from the introduction the definition of the set / g c T1 / ~ x T l _ ~ .  Let ]~ be 

the lift of f~ to TiM. Then for every vETI~I the restriction of ]~ to W~(v) is locally 

uniformly HSlder continuous, and hence there is a unique function ~ :  D--+R such that  

~(v, ~tv)=fo ]~(O~v)ds for all vETl~i and tER.  For example, for wEWSS(v) we have 

(compare [H2]). 

The function ,~ is invariant under the diagonal action of ~ I ( M ) = F  on /9C 
T1/~r • T i M  and satisfies/~ (v, z ) = ~ ( v ,  w ) + ~ ( w ,  z) for all vETI~I and all w, zEWS(v). 
Moreover ~ is globally HSlder continuous. 

Recall now that  ]~ is differentiable along the leaves of the stable foliation, with 

uniformly H51der-continuous leafwise differential. This implies that  there is a Hblder- 

continuous, ~l (M)-equivariant section ~ of T* W s over Tl_~ such that  for every v E TI-~ 

the restriction of ~ to W~(v) is the leafwise differential of the function w---+~(v,w). 
We have ~ ( X ) = ]  ~, and if YETvW ~ is tangent to the strong stable foliation at v, then 

~(Y)  = tSm ~otdr ~) ds 

(compare [LMM]). 

The 1-form ~ projects to a section ~ of T*W s over TiM. Now ~r is in fact a form 

of class C~ ,~, which follows from the fact that  fr is a function on TiM of class C 2'~. 
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For example we obtain the divergence of the g-dual of 9~ ~ at v simply by computing the 

derivatives as asymptotic integrals of second derivatives of f f  as above (compare [LMM]). 

Moreover the norm of 9~ ~, viewed as an element of HI 1, is uniformly bounded inde- 

pendent of s>0 .  

Let now {s~}~ be a sequence such that  s~--*0 (i--*0) and the sections ~ converge 

weakly in the Hilbert space H11 to a section ~. Then ~ is stably-closed and a section 

of T*W ~ of class L~ ;  moreover ~ ( X ) = ~ ( X ) .  But this necessarily implies that  ~=qa. 

Then a convex combination of the forms ~*  converges strongly to ~a in//11 and defines 

a sequence as stated in the lemma. [] 

As an immediate corollary we obtain 

C O R O L L A R Y  3.3. There is a number X>0, an integer k>~l and k sections A1, ..., Ak 

of T W  ~ over T1M of class C~ with the following properties: 
(1) IIAill(v)K1 for all vET1M. 

(2) Ai is g-dual to a stably-closed section of T*W ~. 

(3) For every harmonic measure ~1 for L there is iE{1, ..., k} such that 

/( div(Ai) +g(Y, Ai)) d~ >1 X. 

Proof. Let ~] be a harmonic measure for L. By Lemma 3.1 and Lemma 3.2 there is 

a section Av of T W  s of class C~ such that  av=f(div(Av)+g(Y,  An) ) du>0.  

Let g be the space of harmonic measures for L, equipped with the weak*-topology. 

Then g is a compact convex subspace of the space of probability measures on TIM. For 

every UEg the set U v = { ~ E g  I f(div(A~)+g(Y, Av)) d~> �89 is a weak*-open neighbor- 
k hood of ~/ in g. Choose finitely many ~/1,...,~/kEg such that  gcUi=lUv~.  Then the 

corollary is satisfied with A i = A ~  and x = m i n {  �89 I i--  1, ..., k}. [] 

As in w denote by ~+ the space of continuous paths ~: [0, oc) ---*TI-]~ and for vCTl~/I 

let/3~ be the probability measure on ~+ which describes the diffusion on WS(v) induced 

by LIw~(v ) with initial probability 5v. 

Let moreover f~+ be the space of continuous paths w: [0, ~)--*T1M and for vET1M 

denote by P~ the probability measure on ~t+ which lifts to the measure/3~ for one and 

hence every lift w of v to T1/~. 

For iE{1, ..., k} and t > 0  define now a function f [ : f t+- -*R as follows: Let wE~t+ 

and let ~ E ~ +  be a lift of w. The restriction to WS(~(0)) of the lift of the section A~ 

from Corollary 3.3 is the differential of a function ai. Define f~(w)=ai(~(t))-a~(~(O)); 

this does not depend on the choice of the lift ~. If {Ttlt>O} is the semi-group of shift 

transformations on f~+ then we have f~+t (w) = f~ (w) + f~ (T~w). 
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Let again X>0 be as in Corollary 3.3. The proof of the next lemma is essentially 

due to Ledrappier ([L4]): 

LEMMA 3.4. For every ~>0 there is a number T ( e ) > 0  such that 

if .  max f~- dP v >~ X - e  
l <<. i <~ k -T 

for all vET1M and all T ) T ( e ) .  

Proof. (Compare the proof of Proposition 2 in [L4].) We argue by contradiction and 

we assume that  the lemma is false. Then there are numbers Tn>O such that  T,~--*cc 

(n--~oc) and points v,~ET1M such that  (1 /Tn) f f~ .  dP ~" < X - e  for every iE{1, . . . ,k}.  

By our assumption we can find a number to > 0 small enough that  

sup sup f fit dPW <. 1 

O~t~to wET1M J 

for every iE{1, ...,k}. By the Markov property for the L-diffusion and the fact that  

f~+t(w)=f~(w)+Z(T~w) there are then integers Nj>O such that  Nj---~oo (j--~oo) and 

1 /f*N~ dP'~ <X-�89162 Njto to 

Denote by Qt the action of [0, co) on functions on T1M which describes the L- 

diffusion. Take a weak limit # of a subsequence of the sequence #j  of probability measures 

on TIM defined by #j=(1/Nj)  ~NJ=ol Qkto$,j where 5~j is the Dirac mass at vj. Then 

# is Qt0-invariant and 

1 fI:o d..< V0 
for every ie{1, . . . ,k}.  Let #'=(1/to)ft~ Then #' is Qt-invariant and hence 

a harmonic measure for n. On the other hand we have (1/to)ff~io d# '<X-�88 for i =  

1, ...,k, which is a contradiction to the fact that  maxl~<i~<k limt-.~(1/t)ff~d#~>~X by 

Corollary 3.3. This shows the lemma. [] 

Let again wef t+ and let ~ E ~ +  be a lift of w. For t > 0  define 

~t (w) = dist (P~  (0), P ~  (t)); 

this clearly does not depend on the choice of ~. Since for every iE{1, ..., k} the g-norm 

of Ai is pointwise bounded by 1 there is a cons tan t /3>0 such that  

:t@) i>/3 max If:(w)l 

for all t > 0  and all weft+.  This together with Lemma 3.4 then shows 
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COROLLARY 3.5. There are numbers T0>0, b>0 such that (1/T) f ~TdPV)b for 
all vET1M and all T)To. 

Now by the subadditive ergodic theorem, for every harmonic measure ~? for L, for 

q-almost every v ET1M and PV-almost every w the limit ~ ( w ) = l i m t ~ ( 1 / t ) ~ t ( w )  ex- 

ists. The assignment w--*~(w) is measurable and invariant under the shift. We call 

f ~  dP ~ d~?(v) the non-signed escape rate of the diffusion induced by L and ~?. By Corol- 

lary 3.5 this non-signed escape rate is not smaller than b>0 for all 7. The arguments 

of Prat ([Pr]) then imply that  for every vET1M and P~-almost every path wE~+ the 

limit limt__,~ w(t)=w(ce) exists and is contained in 0M and consequently the measure 

P~ projects to a probability measure ~. on 0 ~  r. The measures r (vET1/~) are then 

equivariant under the action of ~1 (M) on T I M  and 0~r. The following lemma gives some 

properties of the measures ~ .  

LEMMA 3.6. For L = A + Y  with pr(g(Y,X))r the following are equivalent: 
(1) There is vETIM such that the support of r is not ~r(v). 
(2) For every vETIM, ~ does not have an atom at ~r(v). 

Proof. Clearly (1) above is a consequence of (2). Thus we assume that  (1) above is 

satisfied. 

Denote by S the set of all vectors vET1M with the property that  for one (and hence 

every) lift ~ of v to T1M the support of r is not equal to ~r(~). By our assumption S is 

not empty; moreover S consists of full stable manifolds. 

We show first that  S=T1M, and for this it is enough to show that  for pEM the 

intersection of S with TiM is open in Tr 

As in the introduction, denote for wETI~I and s > 0  by C(w,s) the open cone 

of angle s about w in 2~, i.e. C(w,s)={P~tz[zET~,~M, Z(w,z)<s, tE(0, cx~)}. Let 

OC(w, s) be the boundary of C(w, s) as a subset of 2~UOM. 

Let v ET1]~ be a lift of a point of S and s0 E (0, Tr) be such that  0=~v (OC(-v, so)) > O. 
Choose numbers SlE(S0,~r), s2E(Sl,Tr). By Corollary 3.5 and the arguments of 

Prat ([Pr]) there is a number T>0 such that  for every wET1M and every zET~,oM 
we have 

r s2))+~co>~C~{colPc~(T) CC(Z, Sl)} )r so)) 1 -gO, 

By Ito's formula (compare [Pr]) there is a number R>O such that  

1 PW {w I dist(w(O),w(T)) ~ R} < -gO 
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for every wETI~I, where T>0 is as before. Let B C M  be the open ball of radius R about 

Pv in 2~. Then 

p(v, z, r) d~,S(z) >1 -~o 

PzEC(--v,oq )nB 

by the above consideration. 

By Corollary A.5 from Appendix A the kernel p is H61der continuous and hence 

there is an open neighborhood U of v in T~vM such that  

p(w,Z,T) dl.,S(z) >~ 1 0 

PzEC(-v,al)NB 

for every wEU. But this just means by the above that  ~w(OC(-v,c~2))>~�89 for every 

wEU. In other words, the projection of U to T1M is contained in S. This then shows 

that  for every wETI~I the support  of ~w is not 7r(w). 

For vETIM write now Av ={wEft+ I w(0) =v,  l i m t ~  ~(t)=Tr(~) for a lift ~ ofw with 

~(0)=~},  and let A=UvET1M A~. Then A is a subset of ~+ which is invariant under 

the shift, and P'(A)<1 for every vET1M by the above. But this implies that  for every 

ergodic harmonic measure r I for L we have P ( A ) = 0  where P = f P ~  &?(v). Since ergodic 

harmonic measures for L are just extremal points in the space of all harmonic measures, 

this implies that  P ( A ) = 0  for every measure P of the form f P "  do(v) where r 1 is an 

arbitrary harmonic measure for L. 

On the other hand, every shift invariant measure for the diffusion induced by L is 

of this form and thus we conclude that  pV(A)=O for every vET1M. This is equivalent 

to saying that  for every ~ E T l j ~  the measure s does not have an atom at 7r(~). In other 

words, (2) above follows from (1), and hence (1) and (2) are equivalent. [] 

Let now X be the section of T W  ~ over TIM whose restriction to W~(v) equals the 

g-gradient of the negative of a Busemann function at 7r(v). If g is the lift go of the 

Riemannian metric on M, then X just coincides with the geodesic spray X. Let rl be a 

harmonic measure for L and define the signed escape rate of the L-diffusion to be 

l,(L) = - / ( d i v ( X )  +g(Y, ,~)) dr/. 

Notice that  a priori ln(L ) depends on the choice of the harmonic measure r/. However we 

obtain the following. 

COROLLARY 3.7. Assume that L satisfies the assumption in Lemma 3.6 and let b>0 

be as in Corollary 3.5. Then l~(L)>~b for every harmonic measure ~? for L. 

Proof. It suffices to show the corollary for ergodie harmonic measures 77 for L. Let 

r /be  such a measure, let P be the measure on f~+ derived from 77 and let ~ E ~ +  be the 
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lift to T I M  of a typical path for P. Let 0 be the lift to WS(&(0)) of the Busemann 

function at 7~(~(0)) which is normalized at P~(0) .  By Ito's formula and the Birkhoff 

ergodic theorem we then have 

t l im l (O(~(t))-O(~(O)))=- / ( d i v ( X ) + g ( Y , X ) ) d ~ .  

On the other hand, since ~(ce)r  by Lemma 3.6 there are numbers t0>0,  R > 0  

such that  O(~(t))>~dist(P~(O),P~(t))-R for all t>~to. This then implies that  I , ( L ) =  

- f (d iv (X)+g(Y,  s  d~>~b by Corollary 3.5. [] 

In the sequel we call an operator L which satisfies the assumption of Lemma 3.6 of 
positive escape. 

For a number t > 0  define a function at: ~t+--+R as follows: Let wE~t+ and let 

be a lift of w to T1M. Denote again by 0 ~(~ the function on WS(~(0)) which satisfies 

0~(~ and which projects to the negative of a Busemann function on .~  at 7r(v). 

Define ch(w)=O~(~ this does not depend on the choice of the lift ~ of w. 

For an operator of positive escape the arguments in the proof of Lemma 3.4 imply 

(compare also [L4]): 

LEMMA 3.8. If  L is of positive escape, then for every c>O there is a number T(~)>O 

such that (1 /T) faTdPV>~b-e  for all vETIM and all T>~T(c), where b>0 is as in 
Corollary 3.5. 

From Lemma 3.8 we conclude with the arguments of Ledrappier (see Proposition 3 

in [L4]): 

LEMMA 3.9. If  L is of positive escape, then there is a number T0>0 and for every 

rE(0 ,  r0] a number ~ = ~ ( r ) < l  such that f e  -~-~ dPV<~ t for all sufficiently large t > 0  

and all v E T1M. 

Proof. Again we follow Ledrappier. By the Markov property and the properties of 

the functions at it suffices to show the lemma for a fixed time T. 

For t > 0  define a function Ct on f~+ as follows: Let wef t+ and let ~ be any lift of w 

to T1M. Then Ct (~)=(d is t (P~(0) ,  P~(t)))2edi~t(P~(~ 

Choose T>T(�89 as in Lemma 3.8. We then have e - ~  <~l--rat+2T2r for t < T  
and r > 0 .  

Since the coefficients of the differential operators L~ on M are uniformly bounded 

with respect to the Riemannian metric <., .  >, independent of vET1M, a comparison 

argument shows that  there is a constant C > 0  such that  f Ct dP ~ <.C for all vET1M and 

all t<~T. By Lemma 3.8 we then have 

e 'raT ~ - -  �89 dp  ~ 1 
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and moreover 

/e-~O~ dpv I+TC+2T2C <<. 

for all t ~< T. 

Choose now T >0 sufficiently small that  a= 1-1Tb+2T2C < 1. If k >/1 is sufficiently 

large that  ~=-ak(I+TC+2~'2C)<I then we obtain the lemma for this number T with 
~ =~1/Tk . [] 

COROLLARY 3.10. Let L = A + Y  be as before. If I~ is of positive escape then L is 
weakly coercive. 

Proof. Assume again that  L is of positive escape. Recall the definition of the subset 

of T I M •  T1/~ from the introduction and let p: D • (0, oc)--* (0, c~) be the fundamental 

solution of the Cauchy problem L-O/Ot=O on TI~/ .  Let vETI~I and for r > 0  let Br 

be a ball of radius r about v in W~(v). Let T>0,  ~----~(T)<I be as in Lemma 3.9. Then 

e-~~ for all wEBr. 
Choose to>0  such that  for all t>to the conclusions of Lemma 3.9 are satisfied, and 

let ~ = -  1 log ~ > 0. Then 

/B eetp(v, w,t) dvS(w) <<. l /B e~tp(v, w,t)e-~~ dvS(w ) 
r e l "  r 

1 ~t f -~,~ l e - e t  < -iTe ] e dPV < 

by Lemma 3.9, and consequently the Harnack inequality for parabolic equations implies 

that  for v~w the integral f o  e~tP( v, w, t)dt is finite. But this just means that  there is a 

positive (L~ +r function on M; in other words, L is weakly coercive. [] 

We are left with the investigation of operators L = A + Y  as above with pr(g(X, Y ) ) ~ 0  

which do not have the properties described in Lemma 3.6. We call such an operator of 
negative escape. In other words, if L is of negative escape, then for every vETI~/I the 

measure P~ projects to the Dirac mass at 7r(v). 

For a harmonic measure ~/for L denote again by I , ( L ) = -  f(div(X)+g(Y, X)) d~ the 

signed escape rate of the L-diffusion with respect to 7/. We want to show that  l~(L)~-b 
for every harmonic measure T/, where b>0 is as in Corollary 3.5. 

For this denote by DTM the smooth fibre bundle over M whose fibre at xEM 
consists of pairs (v,w) of elements of T~M and denote by DTM the corresponding 

fibre bundle over M. We then obtain a H61der-continuous foliation DW ~ on DTM by 

requiring that  the leaf of DW ~ through (v, z) E DT~/I consists of all points (w, u) C DT~/I 
with :r(u)=1r(z) and ~r(v)=Tr(w). The first factor projection RI: DT~I--~TI~I and the 

second factor projection R2: DT~I~TI~I  map the foliation DW ~ to the stable foliation 
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of TI~r; moreover we have a natural embedding (T1/~ r, WS)--* (DT~/I, DW ~) of foliated 

spaces by mapping vETl~f to the element (v, v) of the diagonal in DT~I. In the sequel 

we identify T1/~ with this diagonal. 

The fundamental group 7h (M) of M acts naturally on DT~/I and this action pre- 

serves the foliation DWL Thus we obtain a corresponding foliation DW ~ on DTM and 

an embedding (T~M, W~)--~(DTM, DW s) of foliated spaces as before. The structure of 

this foliation can be described as follows: 

LEMMA 3.11. Every leaf of DW ~ c DTM contains the diagonal in its closure. 

Proof. Recall that  the closure of every leaf of DW ~ in DTM is a union of leaves 

and that  moreover every leaf of the stable foliation of TiM is dense in T1M. Thus it 

suffices to show that  the closure of every leaf of DW ~ contains a point of the diagonal. 

For this let (v ,w)eDTM and let ~eOM-{~(v),Tr(w)}. If { x j } c M  is any sequence of 

points which converges as j---+oo in/~U0/14 to 4, then the angle under which the points 

~r(v), ~r(w) are seen at xj tends to zero as j--*oo. From this the lemma follows. [] 

Recall from the introduction the definition of the Gromov product on 0714 (see [GH]). 

Namely for x E M  and 4, ~E0/~  define 

( ( l ~ ) ~  : lim ~ (dist(x, y )+dis t (x ,  z) -d i s t (y ,  z)) y ~  z 
z----+ U 

and for x e M  and v # w e T ~ I  write also (vlw)=-(~(v) I~(w))x. There is then a number 

c > 0 only depending on the curvature bounds such that  (L (v, w)) c ~< e - (v I~) ~< (L (v, w)) 1 / 

for all v, wET~ff/I and all xE~r;  in particular, for a sufficiently small number ~->0 the 

assignment (v, w)-~e -~(vl~) defines a distance on the fibres of the fibration T1M--+M. 

For vETI~/I let again tTv be the Busemann function at ~r(v) normalized by ~(Pv)=0. 
Recall the following observation (see [GH]) which we state as a lemma for further refer- 

ence: 

LEMMA 3.12. (Tc(v) l~r(W))y--(Ir(v)lTc(w))x=l(O~(y)+O~(y)) for all x, ye~/i and all 
v # w e T l  ~/I. 

Now the assignment (v, w)--+(vlw ) can be viewed as a function on the complement 

of the diagonal in DT~/I which is clearly invariant under the action of the fundamental 

group of M on DTM and hence it descends to a function on the complement of the 

diagonal in DTM which we denote by p. 

Notice that  p is well defined and continous on D T M - T 1 M  and Q(v, w)-+oo if and 

only if (v, w) converges to the diagonal. 
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Recall that  the first factor projection DTM---*T1M maps D W  s to the stable foli- 

ation, and hence the operator L lifts to a leafwise elliptic differential operator DL on 

(DTM, DWS), with Hhlder-continuous coefficients and without zero-order terms. 

In other words, DL induces a diffusion process on D T M  which restricts to the 

L-diffusion on the diagonal. 

After this preparation we are ready to show 

LEMMA 3.13. If  L is of negative escape, then 1,7(L ) ~ - b  for every harmonic measure 

z l for L, where b>0 is as in Corollary 3.5. 

Proof. We argue by contradiction and we assume that  the lemma does not hold. 

Denote by Qt the action of [0, oc) on functions on T1M which describes the L-diffusion. 

Then there is vET1M and a sequence {tj}j  C [0, (:x:)) with tj---~oc (j---~oc) and such that  

the following is satisfied: 

(1) The measures #j=(1/t j ) foJ(Qt6v)dt  converge weakly as j--*cc to a harmonic 

measure ~?. 

(2) For PV-almost every path w the limit l imt_~(1/ t )~t(w) exists and equals 

b~>b>0 where ~t is defined as in Corollary 3.5. 

(3) For PV-almost every path w the limit l i m t _ ~  at(w) exists and equals c > - b  

where at is as in Lemma 3.8. 

Let now w # v  and consider the restriction of the diffusion induced by DL on the 

leaf DWS(v, w) of DWL Denote by P ( "~ )  the corresponding probability measure on the 

space of paths in D T M  with initial condition (v, w). We claim that  for P(~'~~ 

every path w the limit 

lira ~ 0(w(t)) 
t ~ o O  

exists and equals �89 To see this consider a lift (9 ,~)  of (v,w) to DTM.  The 

restriction to DWS(~, ~) of the DL-diffusion can be identified with the diffusion induced 

by L on W~(~). Let 0~ be the Busemann function at 7r(~) which is normalized by 

0~ ( P ~ ) =  0. Since L is of negative escape, P%almost every path converges to ~r(~5)#~r(z~). 

But this just means that  for Pg-almost every path w the limit limt-~oo O~(w(t))/t exists 

and equals b, where b>0 is as above. On the other hand, by our assumption (3) above 

the limit limt-~o~O~(w(t))/t exists P ' - a lmos t  everywhere as well and equals c. It is 

then immediate from Lemma 3.12 that  l i m t ~  0(w(t)) / t  = �89 (b+c) / t  > 0 for P(~'~)-almost 

every w. In other words, P(V,W)-almost every path w of the DL-diffusion approaches the 

diagonal in D T M  as t---+oc. But this contradicts the fact that  the projection of P~ to 

0.~t equals the Dirac mass at 7r(~) and 7 r (~)#r (9 ) .  This contradiction then finishes the 

proof of the lemma. [] 
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Now Lemma 3.13 together with the arguments in the proof of Lemma 3.9 and 

Lemma 3.10 show that  an operator L of negative escape is weakly coercive as well. 

In other words we have shown 

PROPOSITION 3.14. If  pr (g(X,Y)) r  then L = A + Y  is weakly coercive. 

4. W e a k l y  coerc ive  o p e r a t o r s  

In this section we investigate an operator L of gradient type of the form L = A + Y  with 

pr(g(X, Y))#0.  Proposition 3.14 shows that  L is weakly coercive. We continue to use 

the assumptions and notations from w Our goal is the proof of Theorem A from the 

introduction. The next lemma is partially a consequence of the considerations in w 

LEMMA 4.1. For a weakly coercive operator L = A + Y  the following are equivalent: 

(1) There is a harmonic measure U for L with 1,7(L)<O. 

(2) For every ergodie harmonic measure V for L, lv(L ) equals the negative of the 

non-signed escape rate for the diffusion induced by (L, ~]). 

(3) There is vETI~I  such that the minimal positive Lv-harmonic function on ~/I 

with pole at ~(v) is constant. 

(4) For every vETI~I  the minimal positive L~-harmonic function with pole at ~(v) 

is constant. 

Proof. Let AcTI~/I  be the set of all vectors vCT13/I with the property that  the 

minimal positive Lv-harmonic function with pole at ~r(v) is constant. Then A consists 

of full stable manifolds and is invariant under the action of ~I(M) on T1M. 

Assume now that  (3) is satisfied, i.e. that  A~O.  Then for every p E M  the set 

A ~ T I M  is dense in TIM. Thus for an arbitrary vET1M and every e>0  there is a point 

wET~v~INA with A(v,w)<e. Let f be a minimal L~-harmonic function on /14 with 

pole at ~r(v). Since the constant function is minimal Lw-harmonic with pole at ~(w) the 

Harnack inequality at infinity (Corollary B.5 of Appendix B) shows that  the restriction 

of f to the cone C ( - v ,  Tr-2e) is bounded from below by a positive constant. Martin's 

theory then implies that  the support of the L~-harmonic measure at Pv is contained in 

the intersection with 0-~ of the closure of C(v, 2e) in -~U0-M. Since c>0  was arbitrary 

we conclude that  the harmonic measure for L~ is an atom at r(v),  in other words we 

have vEA. This shows that  (3) and (4) above are equivalent. 

Assume now that  (4) above is satisfied and let 7? be an ergodic harmonic measure 

for L. Since L is weakly coercive, the non-signed escape rate for L is positive; moreover 

for q-almost every vETI~I  the exit boundary of the L~-diffusion consists of the single 
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point ~r(v) by our assumption (4). With the notations from w this just means that  L is 

of negative escape, which implies (2) by the arguments in w 

On the other hand, (2) clearly implies (1). But if (1) is satisfied, then L does not 

satisfy the assumption in Lemma 3.6 and hence for every vETI~I  the exit boundary of 

the diffusion induced by L~ is the single point 7r(v) which implies (4). [] 

As before, we call an operator L as in Lemma 4.1 of negative escape. 

LEMMA 4.2. If  L is of negative escape then pr(g(X, Y)) <0. 

Proof. Since pr(g(X, Y ) ) r  by Lemma 2.11 we may assume to the contrary that  a =  

pr(g(X, Y))>0.  Let Q~ be a family of conditional measures on strong stable manifolds for 

the Gibbs equilibrium state of g(X, Y) such that  d(Q~So~t)/dtlt=o=-g(X, Y)-(~.  Choose 

moreover a harmonic measure ~ for L and let ~ be a family of conditional measures on 

strong unstable manifolds for y such that  dTl=d~ ,~ • d~? ~ with respect to a local product  

structure. Denote by Y + Z  the g-gradient of ~?. Since L is of negative escape, for every 

vETI~I  the constant function is a minimal L~-harmonic function with pole at 7r(v) and 

consequently by the Harnack inequality at infinity and Martin's theory we conclude that  
t X there is a number c>0  such that  fo g( , Z)(o-~v) d s ~ - c  for all vETI~I  and all t~>0. 

Let a be the Borel measure on T1M which is defined by d a = d Q ~ • 2 1 5  with 

respect to a local product structure; we may assume that  a(TIM)=I .  Then we have 

d(ao~-t)/dti t=o=t~-g(X, Z) and hence for t>log(c+2)/a the Radon-Nikodym deriva- 

tive of coo -t  with respect to a is at least 2 at every point vET1M. Since a is finite, this 

is impossible and shows that  pr(g(X, Y)) <0. [] 

Next we consider weakly coercive operators which admit a harmonic measure ~? such 

that  l~(L)>0. As in w we call such an operator of positive escape. By Lemma 4.2 these 

operators include all weakly coercive operators with pr(g(X, Y) )>0 .  For vETI~I  let wv 

be the hitting probability of the Lv-diffusion (recall that  this is well defined) on 0/~. 

Then w~(O~I-Tr(v))=l by Lemma 3.6 and Lemma 4.1, and moreover the measure class 

of Wv is independent of vETlff/I. The next lemma contains a more precise statement of 

this fact: 

LEMMA 4.3. There is a number cl >O with the following property: Let v > 0  be as in 

Corollary B.3 of Appendix B, let vETI~I  and let wET~v~i  with L(v ,w )<~ .  Then the 

restrictions to OC(~I(-v) ,  �88 of the measures w~,ww are absolutely continuous 
and their Radon-Nikodym derivatives are contained in the interval [c~ 1, Cl]. 

Proof. Recall that  the sets B~(v ,  �88 �88 ( v E T ' M )  form a basis for 

the topology of 0M. Since the measures wv are Borel it thus suffices by Corollary B.5 
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to show that there is a constant x > 0  such that for all vETlffl, all wET],~M with 

A(-v, w)<  �88 and all t > 0  we have 

Wv (Boo ({tw, �88 p{tw,  7r(v))-i E Ix - i ,  3~] 

where as in the appendix we denote for v E T I ~  r by Kv:M x M x 0M--+ (0, oc) the Martin 

kernel of Lv and by K~* the Martin kernel of its formal adjoint L*. 

For this let wET~,~M with Z ( - v , w ) <  17r, let t>0 ,  (EB~o(Otw, �88 �89 
and write also x=Otw. The Harnack inequality of Ancona, applied to the positive 

L~-harmonic functions y--+Kv(x,y, rc(w)) and y---+K~(x,y,() which are defined on 

C(-{ tw,  �89 and vanish on OC(-{~tw, lrr)MOM, shows that there is a number c>0  

not depending on v, w, t, ( such that 

K,, (x, Pv, Ir (w)) K~ (x, Pv, ( ) - 1 E [c - 1 c]. 

Let now X>0 be such that Wz (Boo (2, �88 for all zET1M and all 2ET~zM. The 

existence of such a constant again follows from the uniform estimates of Ancona ([An]). 

Let zEWS(v) be such that Pz=x. Then 

w~(Boo(~tw, �88 =/B~(~w,~/4)  ~-~ (~) dw,(~) = / Kv(x, Pv,~)dw~(~) 

by the definition of the Martin kernel K~, and hence 

c- lx  Kv(x, Pv, 7r(w) ) <~ Wv (Boo ( g2t w, �88 7r) ) <~ cKv(x, Pv, 7r(w) ) 

by the above estimates. On the other hand, Lemma B.9 shows that there is a number 

Co >0  such that 
CO 1 .~ * .~ K~ (x, Pv, 7r(-w) ) Kv(x, Pv, It(w)) <~ co. 

But for every wET~vM with g(-v ,w)< �88 the function y-~Kv(Pv, y, ~r(-w)) is posi- 

tive and L*-harmonic on C(-v,  �89 and vanishes on OC(-v, �89 Thus another 

application of the Harnack inequality at infinity for the weakly coercive operator L* 

yields 

K~ (Pv, x, 7r(-w))(If* (Pv, x, 7r(v))-I E [c -1, C]. 

This shows that 

Kv(x, Pv, 7r(w)) <~ coK*(x, Pv, 7r(-w)) -1 <~ cocK~(Pv, x, 7r(v)) 

and similarly 

Kv(x, Pv, 7r(w)) >>. co'K~(x , Pv, 7r(--W)) -1 ~ C01c-IK~(Pv, x, 7r(v)). 
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From this we obtain tha t  

c-2XcoIK * (Pv, x, 7r(v)) <. aJv (Boo (#)tw, �88 <~ c2cog~ (Pv, x, ~r(v)) 

and this is just the desired inequality. [] 

Remark. The estimates in the proof of the above lemma imply in particular tha t  

the measures COy (veT1M) do not have atoms. 

Garnet t  showed in [Ga] that  a harmonic measure for the stable Laplacian A s on a 

compact  surface of constant negative curvature defined by the lift go of the Riemannian 

metric is unique, a fact which was generalized to arbi t rary compact  negatively curved 

manifolds M by Ledrappier ([L3]) and Yue ([Y2]) with essentially the same proof. We 

want to generalize their result to operators  L=A+Y of positive escape. For this recall 

the definition of the set D cT1M x TIM from the introduction. Let K:  D x 0/~--+ (0, oc) 

be the function whose restriction to WS(v)x WS(v)xO~I equals the Martin kernel of 

the operator  LV=LIws(v); the function K is invariant under the action of F--~rl(M) on 

D •  For vETIM define X(v)=dK(v,~tv, Tr(v))/dtlt=o. The function X is clearly 

invariant under the action of F; moreover by Corollary B.7 (see Appendix B) it is Hhlder 

continuous and hence X projects to a Hhlder-continuous function on T1M which we 

denote by the same symbol. Then 13=x+g(X, Y) is Hhlder continuous as well. 

LEMMA 4.4. The pressure of ~ vanishes. 

Proof. For vETI_~I denote by ~ov the hitt ing probabili ty on 011~ of the diffusion on 

which is induced by the operator  L .  and which emanates  from Pv. Since wv has 
no atoms we may project Wv along the geodesics which are asymptot ic  to 7r(v) to a 

Borel probabili ty measure wv on WSS(v). For wcWSS(v) the measure ww is absolutely 

continuous with respect to w~. This means that  we can define a family ~ss of locally 

finite Borel measures on the leaves of W ss such that  for vETIM the restriction of ~?ss to 

WSS(v) is absolutely continuous with respect to c5. and its Radon-Nikodym derivative 

with respect to ~v at wEWSS(v) equals (d~w/cl~v)(w). By Lemma 4.3 the measures are 

quasi-invariant under canonical maps; moreover by the estimates in the appendix there 

is a number c1>0 such that  c-~l<<.~SSBS~(v, 1)~<Cl for all vETIM. 
Let now ~s~ be a family of conditionals on strong unstable manifolds of the Gibbs 

equilibrium state induced by ~. The measures rl s~ are well defined on every leaf of 

WS~c TIM, they are locally finite, positive on open sets and quasi-invariant under canon- 

ical maps. As before there is a number  c2>0 such tha t  c21<~rlS~BS~(v, 1)<~c2 for all 

vET1M. 
Now the measures 77 ss are invariant under the action of r - -~ r l (M)  on T1/~ r and 

hence they project to locally finite Borel measures on the leaves of W~ScTZM which we 
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denote by the same symbol. We then obtain a locally finite Borel measure ~? on TIM by 

defining d ~ = d ~ •  d ~ •  where dt is the one-dimensional Lebesgue measure on the 

flow lines of the geodesic flow. By the above estimates the measure r] is in fact finite and 

positive on open sets. 

Let q E R  be the pressure of/3. The measures ~ are quasi-invariant under the action 

of (I)t and they satisfy d(~SUo~t)/dtit=o=~+q. Also, the measures ~ s  on the leaves of 

W ~s are quasi-invariant under (I) t and we have 

ddt {~%(I)t (v)} t=o = d K(v'  ~tv' ~ ( - v )  ). 

In other words, for t E R and v ET1M the Radon-Nikodym derivative of ~?o (I) t with respect 

to ~ at v equals 

e v, e v, .(-v))e 

where f~ is the unique function on WS(v) which satisfies f ~ ( v ) = l  and such tha t  the 

g-gradient of its logarithm equals Ylw~(v). 

Recall from Lemma B.8 and Lemma B.9 in the appendix tha t  there is a number  

c > 0  such tha t  

fv (r  K(v,  r ~(v))K(v,  Ctv, ~ ( - v ) )  E [c - I ,  c] 

for all t E R .  Assume that  q # 0  and choose 7-ER in such a way that  eq*>~2c. By the above, 

the Radon-Nikodym derivative of ~o(I) * with respect to ~ is ~> 2 everywhere on TIM. But 

this is a contradiction to the fact that  the measure ~ is finite. From this we conclude 

that  necessarily q--0. [] 

COROLLARY 4.5. Let u s be the family of Lebesgue measures on the leaves of W ~ 

induced by g and let ~su be a family of conditional measures on the leaves of W su of the 

Gibbs measure induced by ~. Then the measure ~? on T1M defined by d~=d~S• d~ su is 

the unique harmonic measure for L (up to a constant). 

Proof. By Lemma 4.4 and its proof, the family ~ of conditionals on the leaves of 

W ~ of the Gibbs equilibrium state ~0 defined by/3 transforms under (I)t via 

d 
t} t=0 

Let ~? be defined by &?=du 8 • dr/~ and let 1 be the growth of y with respect to u ~. Then 

for every v E T I M  the function Iv: W ~ ( v ) - ~ R  defined by lv(w)=l(v, w) is L*-harmonic, 

which means that  7] is a harmonic measure for L. Notice that  mc(~, co) is ergodic with 

respect to F since a Gibbs equilibrium state  is ergodic with respect to (I) t. 

Now let Q be any ergodic harmonic measure for L and denote by [(v, w) the growth 

of Q with respect to ~ .  Then for Q-almost every v ET1M the function c~: W ~ (v)--* (0, oc), 
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w--~c~v (w)=[(v, w) is L* I w.(~)-harmonic. Since L* is weakly coercive this means that  

for every vETlf fI  there is a unique Borel probabili ty measure ~ on 0 ~  r such tha t  the 

function a~ satisfies 

C~v(W) = / K * ( v ,  w, ~) d(,(~). 

Let r/~ be a family of locally finite Borel measures on strong stable manifolds such 

tha t  the measure r/0 on TIM defined by dyo=dy ~ x du ~ x dt is the Gibbs equilibrium 

state  r/0 of the function/3. The measures r/~ are well defined on every leaf of the strong 

stable foliation and hence we obtain a finite Borel measure r on TIM by defining 

de = dTl ~s x do ~ x dt. 

Via normalization of the measures 0 ~ by a universal constant we may assume that  

r  Let r be the lift of ~ to T1M. 

For vETI~I  and wEW~(v) we have c~w=a~(v)c~;  in particular, the measures ~., ~ 

define the same measure class and hence they have the same support.  By ergodicity 

we can assume that  for @almost  every v E T I M  the measure ~v does not have an a tom 

at  zr(v). 

Let vET1MI be such that  the function a ,  is defined and L*-harmonic on W~(v). The 

Harnack inequality at infinity of Ancona together with the maximum principle shows that  

there is a number c > 0  not depending on v such that  a,(O-tv)>>.cK*(v, O-tv, ~r(v)) for 

all t~>0. But av(O-tv)K*(v,  O-tv, zr(v)) -1 equals the Radon-Nikodym derivative at v of 

the measure r  - t  with respect to ~ which implies that  r162  on T1M (compare 

Lemma B.8 from Appendix B). 

Let now ~ be an accumulation point of the sequence { ( l /k )  k ~i=i r176 Then 

LD~>cr and moreover ~ is ~2t-invariant. Since mcO? , oo) and mc(o, oo) are ergodic with 

respect to the action of F we obtain from this the existence of a ~t-invariant ergodic 

measure w on TIM which is contained in the measure class of r If ~ is the lift of w to 

TIA~ then for ~-almost every vETI~I we have 

l iminf  K*(v,  Otv, ~r(v) )-l av( ~tv) > 0 
t ----* O 0  

which implies by Mart in 's  theory tha t  the measure ~v has an a tom at 7r(v). This is a 

contradiction to our assumption and shows tha t  a harmonic measure for L is unique. [] 

Remark. Corollary 4.5 shows in particular that  we can define the escape rate l(L)>0 
of the L-diffusion to be the escape rate of L with respect to its unique harmonic measure. 
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COROLLARY 4.6. If L is of positive escape, then the pressure of g(X,Y) is positive. 

Proof. For vET~/I let again X(v)=dK(v, Otv, 7r(v))/dt and denote again by X the 

projection of X to TIM. Since the operator L does not have a zero-order term we obtain 

from Martin's theory that  liminft_,~(1/t)f~x(~Sv)ds>~O for all vET1M. Thus if p is 

any r Borel probability measure on TIM then 

and hence the pressure of g(X, Y) is non-negative by Lemma 4.4. 

pr(g(X, Y))--0 is excluded by Lemma 2.11. 

Recall the definition of the functions ~ and X on T1M. We have 

However the case 
[] 

LEMMA 4.7. If L is of positive escape, then there is a number c > 0  such that 

If 
t-,~ t X(~-~v)ds~-~ and limsupt~ -t ~(~-~v)ds<~-~ 

for all vET1M. 

Proof. We consider first the function X. Assume to the contrary that  there is a 

sequence {vi}CT1M and a sequence { t i } c R  such that  ti--*c~ (i---*c~) and 

1 ft~ 1 
ti Jo X(r ds <<. -:. 

For a Borel set A of TIM denote by c A its characteristic function and define a Borel 

probability measure ~i on T1M by vi(A)=(1/ti)fo~CA(Osv~)ds. Let v be a weak limit 

of the measures vi. Then v is invariant under ~t,  and moreover fxdv<~O since X is 

continuous. 

For veT1M define a function fv on WS(v) by fv(w)=g(v,w,~(v)). Let Z be the 

(Hblder-continuous) section of TW ~ over T1M whose lift 2 to T~M restricts on W ~ (v) 

to V log fv  for every vET1M. Recall that  Lv does not have a zero-order term and 

hence by the maximum principle the Green function G.  of L .  is uniformly bounded 

on { (x, y) EM • M ldist(x , y) ~> 1}. Since fv projects to a minimal positive L.-harmonic 

function o n / ~  with pole at ~r(v) the Harnack inequality at infinity of Ancona ([An]) 

implies that  there is a number c>0  such that  fv(O-tv)<~e c for all vET1M and all t~>0. 

This means that  fo x(~sv) ds>~-c for all vETI~I and all t~>0. 

By Lemma 4.1, for every vETlff/l the harmonic measure for L~ does not have an atom 

at 7r(v). Martin's theory then shows that  l i m t ~  inf fo X(~sv) ds=oc for all vETtM. 
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For T>~0 define a set CTCT1M by CT={vET1MlfoX(r for all t>.T}. 
Then CTCC~ for T~<7, and moreover UT>oCT=T1M by the above considerations. 

Thus there is a number T > 0  such that  v(CT)>>. �89 Then 

/ x d~= l / ( foTX(a2Sv) ds)d~(v) 

1 T T 

~>~ 2 c -  = ~ >0 ,  

a contradiction. This means that  the lemma holds indeed for X. 

Consider now the function/3. Observe that  for vETI~I and t > 0  we have 

f ~/3(r =log (v, ~(v)) ds K* (btv, 

where as before K* is the Martin kernel of the formal adjoint of L. Since the Green 

function G~ of L~ is uniformly bounded on { (x, y) E M x M I dist (x, y) ~> 1 }, the same is 

true for the Green function G*: (x, y)~G;(x,y)=G~(y,x) of L; .  As before, this means 
t s that  there is a number c>0  such that  fo/3(r v)ds>~-c for all vETIM and all t~>0. 

We argue by contradiction and assume that  the statement for /3 is false. Then 

there is a (I)t-invariant Borel probability measure O on T1M such that  f/3do<,.O. Since 

by Lemma 4.4 the pressure of /3  vanishes, the measure 0 has vanishing entropy and 

coincides with the unique Gibbs equilibrium state for/3. In particular, we can decompose 

d0=dQ ~u x do ss x dt where Oi is a family of locally finite Borel measures on the leaves of W i 

(i=ss, su) and we have d(o'"oOt)/dtlt=o=/3. Since the function/3 is HSlder continuous 

we obtain moreover from the Birkhoff ergodic theorem that  

lim 1 ~ t  t--.or t ~(~-Sw) ds 0 

for every vETIM and ~)~s-almost every wE W~(v). 
Consider the lifts of the measures Q/to the leaves of WiCTI~/I which we denote by 

the same symbols. Then the projections of the measures 0 ~u to 0 ~  r define the measure 

class mc(r/, ec) where r/is the unique harmonic measure for L. The considerations in the 

proof of Lemma 4.3 show moreover that  for every vETI~I the projection of 0~Slw88(. ) 

to 0_~r determines the measure class of the exit measure of the L~-diffusion on _~r. 

Together with Lemma B.9 from Appendix B this means the following: Let v ETI~/I 
and let ~ be the exit measure of the L.-diffnsion emanating from Pv. Then for ~ -  

almost every (E0.M the minimal positive L.-harmonic function with pole at ~ grows 

subexponentially along a geodesic ray with endpoint ~. 
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Let now ~E~+ be a typical path of the L-diffusion on Ta/~ for which the limit 

l imt~P~(t)=~(ce) exists and is contained in 0M-~r(~(0)). Let �9 be a minimal 

positive L~(0)-harmonic function o n / ~  with pole at ~(ce). Then 

lim log tg(~(t))-log ~(~(0)) 
t--*oo t 

equals the Kaimanovich entropy hL of the L-diffusion (see [Kal], [Ka2]). On the other 

hand, since a typical path follows a geodesic ([Pr]) this limit has to vanish by the above 

considerations. But the support of the exit measure for L~(0) is all of 0M and hence 

this entropy is strictly positive ([Kal], [Ka2]). This gives the required contradiction and 

finishes the proof of the lemma. [] 

For vET1M denote now by Gv the Green function of the operator L~. Then we have 

COROLLARY 4.8. There are numbers c>O, a > 0  such that Gv(x,y)~ce -adist(x'y) 
for all vETIM and all x, yE~i with dist(x, y)~>l. 

Proof. By Lemma 4.7, Lemma B.9 from Appendix B and the Harnack inequality 

at infinity of Ancona, for all v, wET1M with Pv=Pw there is a number e>0 such that 

limt__,~(1/t) log Gv(Pv, p~tw) ~-c.  We just have to derive from this a uniform estimate. 

For this recall from the results of Ancona ([An]) that there is a number c~>0 not 

depending on v and w such that Gv (Pv, P~t+Sw) <. eaG~ ( Pv, p~tw) Gv ( pCtw, P~t+Sw) 
for all v, wET1M with Pv=Pw, and all s, t~> 1. 

Let DTM be the compact subset of TIM • T1M consisting of vectors which project to 

the same point in M. For (v, w)EDTM there is then by the above a number T(v, w)~>l 

such that Gu(Pu, p~T(~'~)z)<e-2~ for every lift (u,z) of (v,w) to T1/~xT1/~. By 

continuity the same is true for every point of an open neighborhood U(v, w) of (v, w) 

in DTM. 
Choose finitely many points (vi,wi)EDTM ( i=l ,  ..., k) such that the sets Ui= 

V(vi,wi) cover DTM. Write Ti=T(vi,wi) and let To=max{Tili=l,...,k}. By the 

Harnack inequality there is then a number a > l  such that Gu(x,y)<~aG~(x,z) for all 

uETI~/[ and all points x, y, zE/~ with dist(x, y ) )1 ,  dist(x, z)~> 1 and dist(y, z)~<T0. Let 

uETI~/I, wETI~I with Pu=Pw and choose i0E{1,...,k} such that (u,w) projects to 

a point in Uio. Define inductively a sequence {ij}j~>0C{1, ..., k} as follows: If ij is al- 

ready determined for all J<~jo and j 0 ) 0  then let T = ~ ~  Tij, let fzEW~(u) be such that 

P~t-~POTw and choose ijo+l in such a way that the projection to DTM of the point 

(ft, ~Tw)ETI~/IxTI~/I is contained in U%+ 1. The required property now follows from 

the estimates of Ancona: 
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l x-'Z+l T- ~" Namely, for t~> 1 there is a unique integer 1/>0 such that  t E [~ j=0  Tij, z.~j=0 ~jj, 

clearly t~< (l+ 1)T0. Ancona's inequality then implies inductively that  G,~(Pu, P~tw) 
ae -(z+l)c~ and hence Gu(Pu, pCtw)<<.ae-~t where 6=a/To. This shows the corollary. [] 

As another application of the above results we obtain a better estimate for the 

fundamental solution p of the Canchy problem L-O/Ot=O. For this recall again the 

definition of the Gromov distances on 0M (see [GH]). Namely for x E ~  r and r r 

define 

(r = lim �89 (dist (x, y)+dis t(x,  z ) -  dist (y, z)). 
y--*r  
z---,r I 

For x E ~  r and v C w E T ~ I  write also (viw)=(Tr(v)lTr(w))~. Then we have 

COROLLARY 4.9. Assume that L = A + Y  is of positive escape. For vETlffI  let 

p~: M • M • (0, cx~)--* (0, c~) be the fundamental solution of the L,-  Cauchy problem. Then 

there are numbers a, b>0 and 6>0 such that for all t>>.2 we have 

Ipv (~, y, t) - p ~ ( ~ ,  ~, t) l < ae-~[e  -b(~(~)l'(~))" + e-b('~(~)'~(w))~]. 

Proof. By Corollary 4.8 and uniform boundedness of coefficients there is a number 

6>0 such that  L+25  is weakly coercive and such that  moreover for every vETI~I the 

Green function G2~ 6 of Lv +26 is bounded on M • M -  { (x, y) ] dist(x, y) ~< 1} by a universal 

constant independent of v. Since G~(x,  y)=foe2~tp~ (x, y, t) dt this implies by the Har- 

nack inequality for parabolic equations that  there is a number c>0 such that  for every 

vETI~I and every x E ~  r, t~> 1 the C~ of the function y--*p~(x, y, t) is bounded from 

above by ce - 26t. 

Let now t ~> 1, z C)~ and define f~ (y) =p~ (y, z, t). Schauder theory for parabolic equa- 

tions then shows that  there is a constant ~>0 not depending on z E M  and t~>l such that  

IIf~ ]]2,~ <<.~e -2~t where the C2,~-norm I1" ]]2,~ is defined as in the introduction. 

For x C_~ r and s >~ 0 define now 

s) = f p (x, s)f:(y) dy z, s+t)  

and u~ (x, s)= f p ~  (x, y, s)f~ (y) dy. Lemma A.4 then implies that  

I(uw-u~)(x,  t) l ~< ae-~(~(~)l~(w))~e -~* 

where ~>0 and /3>0  are constants depending on 5. 

Let now L~ be the operator on .~r which is formally adjoint to Lv. By our assumption 

on L there is then a positive function f on M such that  L~(~)=f - lLv ( f~ )  for every 
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smooth function ~ on /~. Thus if B is a ball in 2~r, if t > 0  and if v is a function 

on B x  [0, t] which satisfies ~<0 on Bx{O}UOBx [0, t] and (L*-O/Ot)~>~O then f ~  is 

a function on B x  [0, t] with Ivy<0 on Bx{O}UOB• [0, t] and (L~-O/Ot)(f~)>~O. The 

maximum principle for the parabolic operator Lv-O/Ot without zero-order terms then 

shows that  f ~ < 0  on B x [0, t], and hence v ~ 0  on B x [0, t]. In other words, the argument 

given in the proof of Lemma A.4 in Appendix A can be applied to L*. Now for x E / ~  

define gtX (y)_p~_ (x, y, t); with the same argument as above we have IigtX 112,c~<~e-25t. 
Let ft,(z, s)= f pv(y, z, s) g~ (y) dy and ~z~o(z, s)= f pw(y, z, s) g~ (y) dy=pw(x, z, s+ t ). 

The above argument can now be applied to the functions ~2~ and ~2~ using the parabolic 

equation L*-O/Ot=O (which is possible by the above remark) and shows that  

I ( ~ o - ~ ) ( z ,  t) l ~< ae-z(~(~)l'(~))~ e -~t 

Combining the two estimates we then obtain that  

Ip~ (x, z, 2t)-p~o(x, z, 2t)] ~< ae-ht[e -~(€200 +e  -z(~(~)l~(~))z ] 

for all t/> 1. [] 

In a similar way we obtain a better estimate for all solutions of the Cauchy problem 

L-O/Ot=O. 

COROLLARY 4.10. There is a number x>O with the following properties: Let v, wE 
Tl~I with 7r(v)~Tr(w) and let/:/~--+R be a function with ]]fi]2,(~<co. Denote by f~ 
(or f~) the solution of the parabolic equation (L~-O/Ot)f~=O (or (L~-O/Ot)f~=O) 
with fv(x,O)=f(x) (or f~(x,O)=f(x)) for all xcM.  Then 

I(fv-fw)(x,t)l  <<.x-xllfll2,~e -x(~(~)l~(w))~ for all (x,t) G_A~rx [0, oo). 

Proof. Let e>0  be sufficiently small that  the operator L+e is weakly coercive and 

that  moreover there is a number a > 0  such that  for every vET1M the Green function 

Gv of L~+e  s a t i s f i e s  Gv(x,y)~o~-le -c~dist(x'y) for all x, ye~I  with dist (x,y)~>l; such a 

number exists by Corollary 4.8. 

Let K~ be the Martin kernel of the operator L~+r and define a function ~ o n / ~  

by 
~(y )  = K,(  Pv, y, 7r(v) ) + K,  (Pc, y, 7r(-v) ). 

Since 

1 
log K, (Pv, pOtv, 7r(v)) >1 a, lim inf 1 log Kv (Pv, PO-tv, 7r(-v)) ~ a lim inf 

t --*c~ t t--~oo 
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the restriction of ~a~ to the geodesic "~ with initial velocity "yl(0)=v is bounded from 

below by a number co > 0 not depending on v. 

On the other hand, ~av is a positive (Lv +~)-harmonic function and hence the gradient 

of the logarithm of ~av is pointwise bounded in norm, independent of vc:TIM. Thus there 

is a constant 0>0 such that  ~av(r e-~ltt for every geodesic r in M which meets "7 

orthogonally in ~p(0) and every tER.  Since on the other hand we have e-(~(')l~(-'))r ~< 

cle -Ira~2 for some cl >0 and every such geodesic ~p, this implies that  there are constants 

c2>0, 5>0 such that  c 2 ( ~ ( y ) ) ~ e  -(~(v)i€ for all yEM.  

Now by our assumption on L there is a number b>0 such that  ](L~-L_~)u(x)l<~ 
b-lllull2,~e-b(Tr(v)br(-v))~ for all functions u on 2~ with liull2,~ <oc and all vc=T1M. If we 

choose b>0 smaller than 5b and c~lb, then ~a b is a L~-superharmonic function (since L~ 

does not have zero-order terms) and t (L , -L_ , )u(x ) l  <.b -1 liull2,o(~a,(x)) b for all functions 

L~ (~a~) ~< some u with liuli2,~<cc. On the other hand we have b --~a b for E>0. 

We use now the argument in the proof of Lemma A.4 to derive the desired conclusion. 

Let f :  2~--* R be a function with II f]l 2,~ < oc and let f .  (or f _ . )  be the solution of the L.-  

Canchy problem (or the L_.-Cauchy problem) with fv(x, 0)--f(x)  (or f_~(x, 0)=f (x) ) .  

Following the argument in the proof of Lemma A.4, the C2'~-norm of the functions 

if: x--~f~(x, t) and ft_.: x---~f_,(x, t) is bounded from above by alifl[2,~, where a > 0  is a 

universal constant not depending on v. 

As in the proof of Lemma A.4 choose again a non-decreasing function ~p of class 

C ~ on (0, co) such that  r  for se(0, �89 and r  for s~>l. Define p(x)= 

r  x)). Then there is a number k>0  not depending on v such that  ILvpl~k. 
Let N=211fllo and for R~>I, x e ] ~  and s~>0 define 

Since 

v(x, s) : (fv - f - v ) (X ,  s ) -  N (Q+ks)(x)-ag-lb -1 [[fl12,~ ~b(x). 

for all xE2~ we have (Lv-O/Ot)v>~O, and moreover 

v~<O on B(Pv, R)• R)• 

As in the proof of Lemma A.4 we conclude from this that  

(fv - f -v)(x,  s) ~ ag-lb -1 [[fll2,a ~bv (x) 

for all [0, oo). 
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Let now exp be the exponential map of M, and let 

Av = {exp sVl Y e  Tpr j- for some t e [-1,  1], s e R}. 

By the Harnack inequality at infinity of Ancona, applied to the function ~ .  on A.,  and 

the estimates for the Green function G~, there is then a number X>0 such that  

a~- l b- l ~b (y) ~ x-le-~((~(~)l~(-'))~ 

for all yEA~. On the other hand, for every t c R  we have fr  and f_r  

and consequently the above arguments applied to Otv then show that  ( f~-f-v)(X,  s)<~ 

X-lilfll2,~e -~(~(~)1~(-~))~ for all x EM.  Exchange of the role of v and - v  then yields 

[fv-f-~l(x, s)~x-lllfii2,c~e -x(~r(v)l~(-~))~ for all vET1M, xEM and sE[0, ce). 

Now if v, wET1M are arbitrary with ~r(v)~(w) then there is zETI~I such that  

7e(z)=zc(v) and ~r ( -z )=~(w) .  Then n~=Lz, L-z=L~ and hence the corollary follows 

from the above considerations. [] 

5. A central  l imit th eo rem for operators  of  pos i t ive  escape 

In his paper [L4] Ledrappier proves a central limit theorem for the leafwise diffusion 

induced on TIM by the stable Laplacian A 8. In this section we generalize his results to 

operators L = A + Y  of gradient type as in w167 2-4 with pr(g(X, Y))>0.  

Recall from w the definition of the bundle DTM over T1M and the definition of the 

foliation DW ~ of DTM. 

Recall that  the first factor projection DTM---+T1M maps DW ~ to the stable loll- 

ation and hence the operator L lifts to a leafwise elliptic differential operator DL on 

(DTM, DW s) with Hblder-continuous coefficients without zero-order term. In other 

words, DL induces a diffusion process on DTM which restricts to the L-diffusion on the 

diagonal. In the next lemma we describe the harmonic measures for DL; this lemma 

basically coincides with Proposition 1 of [L4]: 

LEMMA 5. l .  Every harmonic measure for DL is supported in the diagonal of DTM. 

Proof (compare the proof of Proposition 1 of [L4]). For (v, w)EDTM let P(~,~) 

be the probability measure on the space of paths on DTM which is induced by the lift 

of DL to DTM, with initial probability the Dirac mass at (v, w). Via the first factor 

projection the measure P(~,~) projects to the m e a s u r e / ~  on the space of paths in T I M  

induced by L and the initial probability the Dirac mass at v. 

Now the hitting probability on 0 M of the L-diffusion on W~(v) is well defined 

and does not have an atom (this follows from the explicit description of this hitting 
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probability in w In other words, for P ' -a lmos t  every path ~ the limit limt-.oo ~(t)  

exists in W~(v)UO~l and is contained in O~l-{~(v) ,r (w)} .  By the argument in the 

proof of Lemma 3.11 this just means that  for ~5(~'W)-almost every path ~ the distance 

between ~(t)  and the diagonal goes to zero as t-~oc.  From this the lemma immediately 

follows (compare Proposition 1 of [L4]). [] 

The unique harmonic measure ~? for L on TIM now induces a harmonic measure 

D~ for DL on D T M  which is supported on the diagonal. Lemma 5.1 together with 

Corollary 4.5 then imply 

COROLLARY 5.2. D~ is the unique harmonic measure for DL on DTM. 

Recall that  the DL-diffusion on D T M  leaves the complement of the diagonal in- 

variant. Thus if Qt denotes the action of [0, co) on functions on DTM which describes 

the DL-diffusion then we can evaluate Qto outside the diagonal. The following evaluation 

is due to Ledrappier (Proposition 2 of [L4], compare also Lemma 3.3): 

LEMMA 5.3. For every e > 0  there is a number T ( e ) > 0  such that 

I (QTO-O)(v,w)>~I-e 

for all ( v , w ) E D T M - T 1 M  and all T>~T(~), where l=l(L) is the escape rate of the L- 

diffusion. 

Proof. Our lemma is a slightly improved version of Proposition 2 of [L4], so we 

repeat the proof for the convenience of the reader. 

Assume that  the lemma is false. Then there are numbers Tn>O such that  Tn--*~ 

(n--*cx~) and points (vn, W n ) E D T M - T I M  such that  (1/Tn)(QT~O--O)(vn,wn)<l--~. 

By Lemma 3.12 and the assumptions on L we can find a number t0>0 small enough 

that  

sup sup 1 - Qtlo-o(v,  w)l(v, w) ~< 1 ~ .  
O<.t<~to ( v , w ) E D T M - T  M 

Thus by our assumptions we can find integers Nj >0  such that  Nj--*co (j--*cc) and 

1 
Njto (QNjtoO-O)(vj, wj) < l -  l e. 

Define a function ~a on D T M - T 1 M  by ~(v,w)=(1/to)(Qtoo-O)(v,w). Then ~a has a 

continuous extension to the diagonal by defining ~a(v, v)=(1/to)Qto (r where ~pv is the 

function on WS(v)CTIM which is given by ~b~(r 
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By the above, there is a sequence of integers Nj such that  Nj-,oo ( j~oc) and 

points (vj, wj) E DTM such that  

1 Nj-I 
~ Qk~o~(Vj,Wj)<l-�89 ~" 
k=O 

Take a weak limit # of a subsequence of the sequence of probability measures #j on 
1 Nj-1 the compact space DTM defined by # j = ( / N j )  ~k=o Qktoh(Vj,Wj) where 5(vj,wj) is 

the Dirac mass at (vj, wj). Then p is Qto-invariant and satisfies f ~  d # ~ l -  ~.1 

Now # ' =  ( l / t0 ) fo  ~ (Q~#) ds is Qt-invariant and we have f ~ d#<~l- �88 a contradic- 

tion to Corollary 5.2 and the definition of I. [] 

Ledrappier uses Proposition 2 in his paper [L4] to deduce a uniform estimate for 

the speed of contraction of the L-diffusion. The following corollary is the equivalent to 

Proposition 3 in [L4] and can be proved with exactly the same arguments (compare also 

the proof of Lemma 3.4): 

COROLLARY 5.4. There is a number To >0 and for every TE (0, To] there is a number 

~=~(T) < 1 such that (Qte - ~ )  (v, w) <. ~te-r~(v,w) for all (v, w) E DTM and all sufficiently 
large t > O. 

Proof. The corollary follows immediately from Lemma 5.3 with the arguments of 

Ledrappier (proof of Proposition 3 in [L4]). [] 

Recall that  every leaf of the stable foliation W ~ of T1M is locally diffeomorphic 

to M. Hence as before, via the lift of the Riemannian metric on M we can define for 

every veT1M and Te(0, 1) a C2'~-norm I1" 11~,~- for functions on W~(v). 

By abuse of notation denote again by Qt (t~>0) the action of [0, co) on functions on 

T1M which describes the L-diffusion. Then we obtain 

LEMMA 5.5. For su~ieiently small T>0 there is a number Cl=Cl(T)>O such that 

sup v IIQtfll~,~<cl supv If(v)l for every continuous function f on T1M and all t>~l. 

Proof. Let f :  T1M--*R be continuous. Then clearly sup~ IQtf(v)l ~<sup~ Ifl = m  for 

all t>~0. 

Now for every veT1M the function f~: W~(v)• [0, ~ ) ~ R ,  f , (z , t)=(Qtf)(z)  is a 

uniformly bounded solution of the parabolic equation L v -  O/Ot--O. Schauder theory 

for parabolic equations then tells us that  for every t>~l and for 7>0  sufficiently small 

(depending on the coefficients of L) the C2,~-norm of Qtflws(~) is bounded from above 

by a constant multiple of m. This shows the lemma. [] 
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For T>0 define now a norm ]]. I]~ on the space of continuous functions f on T~M by 

][f[[~--sup~ ]f(v)]+sup{[f(v)-f(w)[e~e(',~)[(v, w ) �9  and let 7-/~ be the Banach 

space of functions f on TIM with [[f[[~ <cx~. 

For a function ~ on DTM write moreover 

and 

]1~110 = sup I~(v, wDI, I1~11~,1 =sup{l~(v,  w ) - ~ ( v ,  v)le~O("~) [ (v, w) �9 DTM} 
(~,~) 

[[~[1~,2 = sup{[~(v, w)-~(w,  w)[e ~'e(''~) I (v, w) �9 DTM}. 

First of all we have 

LEMMA 5.6. Let T0>0 be as in Corollary 5.4, let ~-<~ To and let ~=~(7-)<1 be as in 
Corollary 5.4. Then IIQ~II~-,I ~<~tl[~l[~-,t for every continuous function ~ on DTM with 
[[~[[~,1 <oc  and all sufficiently large t>0 .  

Proof. Let ~:T1M--~R be such that ]l~[]~,l<CC and for (v ,w)eDTM let b(v,w)= 
[~(v, w ) - ~ ( v ,  v)] <~e -~e(~,~) I[~]]~,1. Corollary 5.4 then shows that 

[Qt~(v, w)-Qt~(v,  v)[ ~< (Qtb)(v, w) <~ ~t[[~[[~,le-~e(v'~) 

for all sufficiently large t>0 ,  and from this the lemma immediately follows. [] 

For a function f on T1M denote by ] its lift to DTM via the second factor projection 

R2: DTM~T1M,  i.e. ](v, w)=f(w) for all (v, w)EDTM. Then we have 

LEMMA 5.7. For sufficiently small T>0 there is a number c2=c2(~')>0 such that 

][Qt(Qlf)[[~,2<c2 supv [f(v)[ for all f e?-lr and all t~ l. 

Proof. Let f E ~  and write p=Ql f .  Let (v,w)EDTM and let (u,z)EDTM be a 

lift of (v, w). The restriction to W~(z) of the lift of ~ to T1M then projects to a function 

q3 on j~r which satisfies l[@[[2,~el SUPv [f(v)l where cl >0  is as in Lemma 5.5. 

Denote by ~u (or @~) the solution of the Cauchy problem L~-O/Ot=O (or 

L~-O/Ot=O) with initial condition @~(x, 0 )=~(x)  (or ~ ( x ,  0)=@(x)). Corollary 4.10 

then shows that for sufficiently small T>0 there is a constant X=X(T)>O such that 

IQtCo(v, w)-Qt~(w, w)l  = I~(Pu, t)-~z(Pu, t)l  

<~ xe -~(v'w) ][~[[2,~ ~ Xcle -~~ sup [f(v)[ 
V 

for all t~>0. From this the lemma follows. [] 
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COROLLARY 5.8. For sufficiently small 7->0 there is a number c3=c3(T)>0 such 

that IIQtfll~<<.c311fll~ for all fETt~ and all t>~l. 

Proof. Recall that  the fundamental solution of the L-diffusion on TIM is HSlder 

continuous; this means that  there is a number Q>0 such that  IIQlfll~.<<.QIIfll~- for all 

fET-/T. Write qO=Qlf. From Lemma 5.6 and Lemma 5.7 we then obtain for sufficiently 

large t>~0 that  

IIQ,§ ~ I IQ~llo+ IIQ~II,-,1 § IIQ~II,-,2 

<~ II~llo+~ll~ll~,~+e211fll~ ~ II~ll~-+c211fll~- ~< (~+c2)llfL- 

from which the corollary follows. [] 

Since Qs+t=QsoQt for all s , t > 0  Corollary 5.8 shows that  {Qtlt>~l} is an equi- 

continuous family of linear endomorphisms of 7-/r. 

As before let now ~/be the unique harmonic measure for L and let 7-/~ be the 

closed subspace of functions fET-/T which satisfy f f  do=0. Clearly 7-I o is invariant under 

the action of Qt (t/>0). 

LEMMA 5.9. For every ~>0 there is a number k0(r such that 

k 

for all f E ~  ~ and all k>~ko(c). 

Proof. Since Qj is a linear operator on 7-t ~ it suffices to show the lemma for all 

f e B = { q  ~176 I I1~11~- ~< 1}. 

Define a norm HI" Ill on the space of functions f on T1M by 

IIIflll : Ilfll,-+ sup Ilfll~,,-. 
V 

Then II1" III is a Hhlder norm in the usual sense (since the stable foliation is transversal 

to the vertical foliation of TIM) and there is a constant c>0  such that  IIIQtf]ll ~c for all 

f E B  and all t~>l by Lemma 5.5 and Corollary 5.8. 

For vET1M and j>~0 let #v,j be the image of the Dirac mass at v under the time-j- 

map of the L-diffusion. Then #v,j is a Borel probability measure on TIM. Since ~ is the 
1 k k-1 unique harmonic measure for L, the measures ( / ) ~ j = o  #v,J converge as k--~c~ weakly 

to ~ (see [Ga]). 
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By Arzela-Ascoli's theorem the inclusion of { Q l f l f E B }  into the space C~ of 

continuous functions on M is precompact. Since f(Qlf)d~=O for all f E B  this implies 

that  for e>0 there is a number k(v, c)>0 such that  

k - 1  k 

j~=o/(Qlf)dl~v,j = lkj=lE(Qjf)(v ) ~ 

for all f E B  and all k>~k(v, ~). 
The Uhlder norm of the functions w--~ (l/k)~-~'~k=l(Qjf)(w) is bounded independent 

of k~>l and f E B .  Thus there is an open neighborhood U(v,~) of v in TIM such that  

](1/k) :5-~sk-= 1 (QJ f )  (w)] ~< 2e for all w E U (v, e) and all k >1 k(v, e). 
Choose now finitely many points vl , . . . ,vmET1M such that  the sets U(vi,e) (i-- 

1,. . . ,m) cover TIM. Let ko=max{k(vi ,c) l i=l , . . . ,m }. It then follows from the above 

that  I(1/k)~-~f=l(Qff)(v)l ~<2~ for all f E B  and all vET1M, k~ko. [] 

COROLLARY 5.10. For every E>0 there is a number kl(g)>0 such that 

for all fET-I ~ and all k>~kl(r 

k 
l ~ Q3f <. eHfll, 
-k j= 1 ,,r 

Proof. Let e>0  and choose ko(e/6ClC2)=k as in Lemma 5.9, where c1>0 is as in 

Lemma 5.5 and c2>0 is as in Lemma 5.7. Let fE?-/~ and write ~=Qi((1/k)  ~ k =  o Qjf) .  
Lemmas 5.5, 5.7 and 5.9 then show that  ]]Qj~ll~,2<~lellfl]~ for all j~>l, and from this we 

conclude with the arguments in the proof of Corollary 5.8 that  IIQj ((l/k))-~k_ 0 Qlf)I[~ <~ 

�89 for all fET-/~ and all sufficiently large j > l .  Now for m>~l we have 

E (E __1 m k =--1 Q i k -~ Q j 

mk QJ m ,  i=0 - j=0 j = l  

Since the operator norm of the maps Qj (j~>l) is uniformly bounded, from this the 

corollary immediately follows. [] 

COROLLARY 5.11. ( I d - Q 1 ) ~  ~ is dense in 7-I ~ 

Proof. The closure in n o of (Id - Q 1 ) ~  ~ consists of all functions fET/~  which satisfy 

k 

lim 1 E QJ f = 0 
k--*oo 

j = 0  

[] in ~/o. Thus the corollary follows from Corollary 5.10. 
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COROLLARY 5.12. The spectral radius of Q1 is strictly smaller than 1. 

Proof. Since the operator norm of Qk is bounded independent of k>0,  the spectral 

radius of Q1 is not larger than 1. Thus it suffices to show that  1 is contained in the 

resolvent set for Q1. By Corollary 5.11 it suffices for this to show that  there is a number 

~>0 such that  II(Id-Q~)fll~>~llfll~ for all lET-/~ 

We argue by contradiction and we assume to the contrary that  there is a sequence 

( f j} jcT- /~  such that  I]fjll~--1 for all j~>l and IIfj-Qlfjll~--,o (j--~cc). Thus we may 

assume that  5 ~ l I Q l f j l l ~ 3  for all j~>l. Now the operator Q1 is continuous and con- 

sequently we also have IIQl(f j -Qlf j ) l l~=llQlf j-Q2fj l l~-~o (j--*oe); in particular, we 

may assume that  3~>llQ2fjll,~> �89 for all j~>l. 

Recall that  there is a number c>0  such that  IIQlfjll~+supv IIQlfjll~,~<~c for all 

j ~> 1. Thus by the theorem of Arzela-Ascoli we may assume by passing to a subsequence 

that  the functions Qlfj  converge as j--*oc in C~ to a continuous function ~. 

Since I d - Q 1  extends to a continuous operator on C~ we then have ( Id -Q 1 )~ - -0 .  

Now f (Ql f j )d~=O for all j~>l implies f ~ d ~ = 0 ;  moreover ~ = Q I ~  means L ~ = 0  and 

consequently ~=0 .  

Consider now the functions Q2fj. Since Qlfj--*O in C~ it follows from 

Lemma 5.7 that  IIQk(Q2fj)ll~,2--*o as j-~oc, uniformly in k~>l. 

On the other hand we have IIQk(Q2fj)llo-~O uniformly in k~>l as j - ~ c c  and 

IIQ2fjll,~< 3 for all j~>l. Thus by Lemma 5.6 there is a number k~>l and a number 

1 for all j>~jo. j0~>l such that  IIQkfjll~<<.g 
But also f j - -Qkf j=~k--~ Qz((Id-Q1)fj),  and since I I ( Id-Q1)f j l l~-*o (j--*ce) we 

conclude that  IIfj - Q k f j  II~-*0, a contradiction to II fj  II~ = 1 and II Qkfj lit ~< 1 for all j />j0. 

This shows the corollary. [] 

Now Corollary 5.12 implies that  there is a number k >0  such that  the operator norm 

of Qk as a linear endomorphism of 7-/~ is strictly smaller than 1. Write now N for the 

operator on continuous functions on T1M which associates to f the constant f f dT/. Then 

we obtain a generalization of Theorem 3 in [Ld]: 

THEOREM 5.13. For sufficiently small T>0 there are numbers C > 0  and r  such 
that IIQt-NII~-~C~ t for all t>0 .  

As in the paper [L4] of Ledrappier we deduce from this the following. 

COROLLARY 5.14. For every function f ET-I ~ there is a unique function uET-I ~ such 

that L u = f  . The function u is of class C u along the leaves of the stable foliation. 

Recall that  there is no continuous non-constant function f on TIM which satisfies 

Lf=O. However the next corollary implies that  the space of non-trivial sections r of 
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T * W  s with the property that  for every v E T I M  the restriction of r to W~(v) is the 

differential of an L-harmonic function is infinite-dimensional. 

COROLLARY 5.15. Let Z be a section of T*W ~ of class C~ '~ for some a > 0 .  Then 

there is a function u E ~ ~ such that div( Z + V u ) + g( Y, Z + V u ) = f ( div( Z ) + g( Y, Z ) ) &?. 

Corollary 5.15 contrasts sharply the case when L = A + Y  admits  a self-adjoint har- 

monic measure ~. In this case the vector space of L2-integrable sections ~ of T*W ~ 

which restrict to differentials of L-harmonic functions on the leaves of W ~ is just  the 

vector space ~1 of harmonic l-forms in the sense of w We then have 

PROPOSITION 5.18. Let 77 be a self-adjoint harmonic measure for L = A  + Y and let 

~.~1 be the space of harmonic sections of T*W s over (T1M, ~). Then dimT- / l= l .  

Proof. Clearly dim T-/l~l.  So assume to the contrary that  there are square- 

integrable linear independent sections A, E of T W  s which are g-dual to elements of 7-I 1. 

For every smooth function f on TIM we then have f A ( f ) d ~ = O = f E ( f ) d ~  and hence 

for all a, e E R  the measure ~ is harmonic for the operator  L+aA+eE.  

Let X be defined as in w If f ( d i v ( X ) + g ( Y + A , X ) ) d ~ = O  then ~ is a self- 

adjoint harmonic measure for L+A,  a contradiction to the fact that  the g-gradient of 

equals Y. Thus by suitably rescaling A we may assume that  f g (A ,  X )  d ~ = - l .  Similarly 

we may adjust E in such a way tha t  f ( d i v ( X ) + g ( Y + E ,  X) )  d~l=fg(E, X)  d ~ = l .  Then 

f ( d i v ( X ) + g ( Y + A + E , X ) ) d ~ = O  and hence ~ is self-adjoint harmonic for L + A + E .  

Thus A + E - - 0 ,  a contradiction to our assumption that  A and E are linearly indepen- 

dent. [3 

Appendix A 

In this appendix we collect some basic properties of solutions of parabolic differential 

equations on a simply connected Riemannian manifold (2~t, ( . , . ) )  of bounded negative 

sectional curvature. 

Fix a number rE(0,  oc) and recall that  for every x E ~  r the exponential map of ( - , -}  

at x maps the Euclidean ball B of radius r about  zero diffeomorphically onto the ball 

B(x, r) of radius r about  x in 2~t. These coordinates define for every j ~ 0  and aE(0 ,  1] 

a c J '~ -norm for functions on B(x, r); we refer to these norms in the sequel. 

Let g be a Riemannian metric on M which is uniformly equivalent to ( . , .  ) and such 

that  for some a E  (0, 1) the Cl '~ -norm of g on the balls B(x, r) in exponential coordinates 

is uniformly bounded independent of x. Since the curvature of 3~t is bounded this is for 

example true for g - - ( - , - ) .  Let Y be a uniformly bounded continuous section of T ~ r  
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with uniformly bounded Cl'~-norm in the exponential coordinates on the balls B(x, r), 

and let A be the Laplacian of g and define L = A + Y .  

For a Cl-vector field Z on/~r let moreover div(Z) be the divergence of Z with respect 

to the volume element dx on M induced by g. 

Let u0:/~--*R be continuous, h continuous function u:~lx [0, T ) - + R  (T>0) is a 

solution of the L-Cauchy problem with initial condition Uo if the following is satisfied: 

(1) ui~• is of class C 2 in the space variable, of class C 1 in the time variable. 

(2) iu-au/Ot=O on 2Erz (0, T). 

(3) u(x,O)=uo(x) for all xE/~r. 

A non-negative measurable map p: 2~r x/~r x (0, oc ) -oR is called a fundamental so- 
lution of the L-Cauchy problem if for every bounded continuous function u0 on ~r the 

function 
u(x,t)= { ff~p(x,y,t)uo(y)dy for t > 0 ,  

L uo(x) for t = 0 

is a solution of the L-Cauchy problem with initial condition u0. 

We first construct a fundamental solution of the L-Cauchy problem in a probabilistic 

way. Namely, recall from Corollary 6.2 of [IW] that  the operator L induces a unique 

diffusion on 3~. This diffusion is a stochastic process which can be described as follows: 

Compactify M by adding a point r at infinity; ~f=2~rU{r is naturally a topological 

space. Let f~+(2~r) be the set of all continuous maps w: [0, cc)---~2~ with w(t)=r  for all 

t~inf{s~Olw(s) =r162 

Denote by B (or Be) the g-algebra on f~+(~f) generated by the Borel cylinder sets 

(or the Borel cylinder sets up to time t) (compare [IW, p. 189]). The L-diffusion is then 

determined by the unique family {P~}~e~ of probability measures on (ft+(i~r), B) with 

the following properties: 

(i) P~{wlw(O)=x}=l for all xEiEr. 

(ii) f(w(t))-f(w(O))-fo(Lf)(w(s)) ds is a (P~,Bt)-martingale for every smooth 

function f on M with compact support and every xE_~r. 

Let XoE~r and let B be an open ball of radius rE(0, c~) about x0 in _~r. Then there 

is a unique fundamental solution q ,  of the equation L - 0 / O t  = 0 on B z (0, c~) vanishing 

on the boundary OB of B ([LSU, Chapter IV]). 

Let Bi,B2,... be an exhaustion of ~f  by open balls such that  BjcBj+i and 

U Define 5=1 

Sq'~(x'y't) for x, yEB,, 
qi(x,y,t) 

I 0 otherwise. 

By the maximum principle for parabolic differential equations ([PW, w we have q~/>0 

and qi+i ~>qi for all i>0.  Define p(x, y, t)=supi q~(x, y, t). 
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LEMMA A. 1. For every x � 9  and every Borel set A c M ,  t > 0  we have 

Px{w IT(t) �9 A} = f p(x, y, t) dy. 
JA 

Proof. For every t > 0  and every i > 0  the function qi induces an operator Q~ on 

L2(Bi) by 

(Q~f)(x) = / qi(x, y, t) f(y) dy. 

If f :  B~--*R is a continuous function vanishing near OBi, then the function u: (x, t)--* 

(Q~f)(x) is a solution of the equation L-O/Ot=O on Bi • (0, co) which satisfies 

lira u(x, t) = f (x) .  
t--*O 

Since such a solution is unique ([LSU, Chapter IV]) we have in particular 

q~(x, y, t +s) =/B, qi(x, z, t)qi(z, y, s) dz 

for all x, yEBi, t, s>0.  It follows from the maximal principle for parabolic differential 

equations ([PW, w that  qi (x, y, t) > 0 for all x, y �9 Bi, t > 0 and also f qi (x, y, t) dy < 1. 
Compactify Bi by adding a point/3 at infinity and define ~+(B~) as before. We then 

obtain a Markovian system of probability measures {P~}z~s~ on ~2+(Bi) by defining 

P~ {w IT(t) �9 A} = fA q~ (x, y, t) dy. The measures {/5~ }~E~ then describe the unique L- 

diffusion on Bi ([IT, Chapter V, w For a path w �9  with w(O)=xeBi and t > 0  

let Ti =inf{s>>.OIw(s ) � 9  and tAri (w)=inf{t, Ti(W)}. Then Ti is a stopping time for 

(12+(2~r), B) and consequently 

f(w(tAri(w)))-f(w(O))- fot^~'(~)(Lf)(w(s)) ds 

is a (Px, B)-martingale for every x E Bi and every smooth function f with compact support 

in Bi. 
Let {P~}~es~ be the unique family of probability measures on ~2(.~) which is defined 

by 

P~{w IT(t) �9 A} = P~{w IT(t) �9 A, t ~< ~-i (w)} 

where xEBi, t > 0  and AcBi  is a Borel set. By the above consideration these measures 
N 

describe the L-diffusion on Bi. Thus i i P~=P~ for all xEBi and i>0.  Since on the other 

hand clearly 

Px{w IT(t) e A} = sup P~{w IT(t) e A} 



H A R M O N I C  M E A S U R E S  F O R  C O M P A C T  N E G A T I V E L Y  C U R V E D  M A N I F O L D S  89 

we obtain 

Px {w ]w(t)E A} = sup/A qi(x ,y , t )dy=/A p(x,y,t)dy 

by Lebesgue's theorem of monotone convergence. This shows the lemma. [] 

Remark. As an increasing limit of continuous functions the function 

p: M x M x (0, oo) --~ (0, oo) 

is measurable and lower semi-continuous. 

Next we conclude that  p has the required properties: 

LEMMA A.2. The function p is a fundamental solution of the L-Cauchy problem 
with the following properties: 

(i) p(x,y,t)>O for all x, yE~I and all t>0 .  

(ii) p(x, y, t+s)=f~4p(x , z, t)p(z, y, s) dz for all x, yEffI and all s, t>0 .  

(iii) If u: M x [0, T)--*R is a bounded solution of the L-Cauchy problem then u(x, t)= 
f p(x, y, t)u(y, O) dy for all xEM and all t>0;  in particular, f p(x, y, t) dy=l and the L- 
diffusion is conservative. 

Proof. Let f be a continuous function on ]~r with compact support contained in 

some ball Bi. Then fEL2(Bj) for all j>i  and consequently by Lebesgue's theorem of 

monotone convergence and the fact that  f qi(x, y, t)dy< 1 for all xE]~  we have 

For j > i the function uj on Bj • (0, oc) is a solution of the parabolic equation L-O/Ot = 0 
which is uniformly bounded in absolute value, independent of j>O, t>O. Since L is 

uniformly elliptic on B(x, r) with Ca-coefficients of uniformly bounded C~-norm we 

may apply Schauder theory for parabolic equations (see [LSU]) to conclude that  for 

every t > 0  the C2'~-norm of the functions z--*uj(z, t) on compact subsets of B~ ( j> i )  is 

uniformly bounded. Thus the functions uj converge uniformly on compact subsets of ~r 

to a solution of the equation L-O/Ot=O. In other words, the function 

(x, t) --~ u(x, t) = / p(x, y, t) f(y) dy 

is a solution of the L-Cauchy problem. 

To determine its initial condition, let x EBi and let U be an open neighborhood of 

x in Bi. For j>i  we then have 

l~<lim f qj(x,y,t)dy<~limsup [ p(x,y,t)dy. 
t--~O J u  t--*O JU 
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But fp(x, y, t) dy<~ 1 for all t >0 and consequently lim supt__. 0 f~-u  p(x, y, t) dy=O. Since 

U was an arbitrary neighborhood of x it follows that  

}i~ / p(x, y, t)f(y) dy = f(x) 

and consequently p is a fundamental solution of the L-Cauchy problem. Property (ii) for 

p is an immediate consequence of the corresponding properties of the functions qi. 

For the verification of (iii) we use the arguments in the proof of Theorem 2.2 of [Dod]. 

Namely, let u: ~r x [0, T)--*R be a bounded solution of the L-Cauchy problem and define 

~(x,t)=fp(x,y,t)u(y,O)dy for x e M ,  t > 0  and fL(x,O)=u(x,O). We have to show that  

u=fz. Assume for simplicity that  u(x,O))O for all xEj~r. Choose a non-decreasing 

function ~ of class C 2 on ( 0 , ~ )  such that  ~(s )=0  for s � 9  �89 and ~ ( s )=s  for s ) l .  

Let XoE~r and for xE2~r define r(x)=dist(xo, x) (where dist is the distance induced by 

( ' , ' ) )  and O(x)=~or(x). 
Let A be the Laplacian on ~r of the metric ( . , .  }. Since ~r has bounded geometry 

there is then a number ~>0 such that  

< 

for all x E ~r (see [Dod]). But g is uniformly equivalent to ( - , . ) ,  and of uniformly bounded 

Cl'~-norm (in exponential coordinates); moreover the vector field Y is uniformly bounded 

and hence by the choice of ~o we conclude that  Lo<.K for some constant K > 0 .  

Let 

N = sup{[ ( u -  ~)(z, t)[ [ (u, t) �9 M x [0, T) }, 

let R > 0  be a large positive constant and choose i>0  sufficiently large that  B(x0, 2R) cBi. 
For j>i let Xj: Bj---*[O, 1] be a continuous function with compact support which 

satisfies Xj(x)=l for xEBj_l. Define a bounded function uj: Bj • [0, ec)--~R by 

uj (x, t) = f qj (x, y, t) xj (y) u(y, 0) dy 

for t > 0  and uj(x, O)=xj(x)u(x, 0). Then uj ~ f i  pointwise on B(xo, R)x  [0, ec). 

Let e>0,  let xeB(xo, R) and let t�9 There is a number j(x,t)>i such that  

I~(x,t)-uj(x,t)l<�89 for all j>~j(x,t). Then luj(x,t)-u(x,t)l<N+�89 and hence by 

continuity of uj and u there is a neighborhood g(x, t) of (x,t) in 2~rx [0, T] such that  

[uj(x,t)(y, s)-u(y, s)l<N+e for all (y, s)�9 Now for (y, s)EU(x,t) the sequence 

of numbers aj =uj(y, s) is monotonically increasing and consequently for every j>~j(x, t) 
we have 

laj-u(y, s)l <~ max{laj(x,t ) -u(y, s)l, If~(y, s ) -  u(y, s)l } < N + s .  
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But this means that [uj(y, s)-u(y,s) l<N+e for all (y, s)EU(x,t) and all j>~j(x,t). 
By the compactness of B(xo, R)x[O,T] there is then a number j (~ )>0  such that 

luj (x, t) -u(x, t)[ < ~ + N  for all (x, t)E B(x0, R) • [0, T] and all j ~>j(c). 

Let j>~j(c) and define 

. ( x ,  t) = u(x ,  t ) - u j ( x ,  t) - ----~(o+ Kt). 

Then v ~< 0 on 

B(xo, R) • {O}UOB(xo, R) • [0, T) 

and consequently (see [Dod]) 

I (x, t) l < 

for all (x, t) E B(xo, R) • [0, T) by the maximum principle. Since ~ > 0 and j >~j(~) was 

arbitrary this implies 
N 

]u(x, t)-~t(x, t)[ ~< -~(Q(x)+g(t)). 

Now R > 0  was arbitrary as well and hence u=f i  follows (compare [Dod]). This finishes 

the proof of the lemma. [] 

Remark. (iii) shows in particular that we have u(x)=fp(x,y,t)u(y)dy for every 

bounded function u o n / ~  which satisfies Lu=O. 

LEMMA A.3. For every xEM and t > 0  the functions z-*p(x, z, t) and z--~p(z, x, t) 
are of class C 2'~ with C2,a-norm on the balls B(y, r) bounded independent of y. 

Proof (compare [Ch, p. 197]. Recall that/~(x, y, t )=p(y ,  x, t) is a fundamental solu- 

tion for the equation L * - 0 / 0 t = 0  where L*u=Au-div(uY) is the formal adjoint of the 

operator L. Now if u is any smooth function on M with compact support  then we have 

0 /p ( x , y , t ) u ( x )dx = / (L xp ) ( x , y , t ) u ( x )dx=/p (x , y , t ) (L*u ) ( x )dx  

for all yEi~r. From this we conclude that 

~--~ / p(x, y, t) dx = - / p(x, y, t) div(Y)(x) dx <~ ~ / p(x, y, t) dx 

where ~ = s u p z e ~  I div Y(z) l < cx). This implies that  fp(x,  y, t) dx <~ e Xt for all t ~> 0. 

Let now f be a smooth function on J~ with compact support and for xE2~ and 

t > 0  define u(x, t)=fp(x, y, t)f(y)dy. The Cauchy-Schwarz inequality for the measure 

p(x, y, t) dy yields u2(x, t) <~ f p(x, y, t) f~(y) dy and hence 
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Thus for every t~>0 the L~-norm of u ( . , t )  does not exceed e ~ times the L2-norm 

of f .  Using Schauder theory for parabolic equations with H61der-continuons coefficients 

(see [LSU]) we conclude that  for every t > 0  there is a constant c(t)>0 such that  

sup lu(x, t)l ~< c(t)" IlfllL~" 
xE/~ 

But u(x, t) equals the L2-scalar product of f with p(x, . ,  t). Since f was an arbi- 

t rary  function with compact support it follows that  the L2-norm of p(x,. ,  t) does not 

exceed c(t); in particular, the sequence of functions {qj (x , - ,  t)}j>o from above is bounded 
in L 2 (/~). 

The functions qj (x , . ,  t) are solutions of the equation L-O/Ot=O. Therefore, using 

Schander theory for parabolic equations we conclude that  the C2,~-norm of qj (x , . ,  t) 

on B(y,r) (in exponential coordinates) is bounded independent of x, yE~/I and j > 0 -  

Then the functions qj(x,. ,  t) converge as j--*oc uniformly on compact sets to p(x, . ,  t). 
Moreover p(x, . ,  t) satisfies the properties stated in the lemma. 

Similarly, for a smooth function f on .M define ~(y, t )=fp(x ,  y, t ) f (x)  dx. Since 

f p ( x , y , t ) d y = l  for all t > 0  we obtain from the above argument that  the L2-norm of 

~ ( . ,  t) does not exceed e 2xt times the L2-norm of f for all t>0 .  The functions q j ( . ,  y, t) 

are solutions of the equation L*-O/Ot=O. Therefore we obtain as above that  the func- 

tions qj( . ,y , t )  converge uniformly on compact sets to p( . ,y , t ) ,  and that  moreover 

p ( . ,  y, t) satisfies the properties claimed in the lemma. [] 

Remark. The proof of the above lemma shows that  p(x,. ,  t) is square integrable for 

x E M ,  t > 0  with L2-norm bounded from above by a constant c(t) which only depends on 

t and C~-bounds for the coefficients of L in exponential coordinates. 

We assume now t h a t / ~  is the universal covering of a compact manifold M and we 

consider families of differential operators on ~r  which are projections of the lift to T1]14 

of a differential operator L on the unit tangent bundle TIM of M with Hhlder-continuous 

coefficients which is subordinate to the stable foliation. 

Let g be a positive semi-definite bilinear form on T1M of class C 1,~ for some c~E (0, 1) 

whose restriction to T W  8 is positive definite. Let Y be a section of T W  ~ of class C~ '~ and 

write L = A + Y  where A is the leafwise Laplacian subordinate to W ~ which is induced 

by g. For every vETI~/I the restriction of L to W~(v)~M then projects to a second-order 

uniformly elliptic operator Lv on M with Hhlder-continuous coefficients. 

Recall from the beginning of this appendix the definition of the C 2'c~ norms [[f[[2,a 

for functions f o n / ~  (a>0) .  

Recall from [GH] and the introduction the definition of the Gromov product on 0M. 
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Namely, for xE/~r and ~, rlEO/~ define 

1 (dist(x, y)+dis t  (x, z ) - d i s t  (y, z)). ( r  = l i m  
z---erJ 

For the proof of the following lemma compare [Dod]: 

LEMMA A.4. For every 5>0 there is a number/3=/3(5)>0 and a number c=c(5)>0 

with the following properties: Let f:2~--~R be a function with [[f[[2,~<oe. For v E TI ~/I 

denote by f~ the solution of the parabolic equation (L~-O/Ot)f~=O with fv(x,O)=f(x) 
for xe~/I. Then [(f~- f~)(x,t)[<~c][fll2,~e~te-~(~(~)l~(~))~ for v,weTl~/I  and all (x , t ) e  

• [0, 

Proof. Let x0EM be arbitrarily fixed. As in the proof of Lamina A.2 choose a non- 

decreasing function ~ of class C ~ on (0, ca) such that  ~(s )=0  for s e  (0, �89 and ~ ( s ) = s  

for s~>l. Define ~(x)=~(dist(xo,x)). Then there is a number k>0  such that  ]L~o[<<.k 
for all zCTI~I. 

Let v, wETI~/I and let p~ (or p,o) be the fundamental solution of the equation 

L~-O/Ot=O (or L~-O/Ot=O). Let f be a function on M with ][f]]2,~<oe and define 

and 

Since f p v ( x , y , t ) d y = l = f p ~ ( x , y , t ) d y  for all x E M  and all t>O, the C~ of the 
functions t. __+ t .  __~ f~. x f~(x, t) and f~. x rio(x, t) is bounded from above by I[f[[o independent 

of t>0.  Using Schauder theory for parabolic equations (see [Pr, pp. 64-65]) we deduce 

that  there is a number a > 0 not depending on v such that  

IIf lh,,  allflh,,  

for all t > 0. 

By our assumptions on L there are numbers b>0 , /3>0  such that  [ (Lv-L~)u(x)]  <<. 
b]]u]I2,ae-Z(~(v)l~(~))~ for all functions u on 1~ with ][u]]2,a<oo and all v, weTIM.  

Let 5>0. By eventually decreasing/3 we may moreover assume that  the function 

r x--*e-/~(~(v)l'~(~))- satisfies ]n~r ~< �89162 independent of v and w. Let now N=2][fl[0 

and let c=2ab. For R~>I, xE2~ and s~>0 define 

N 
v(x, s) = (f~ - f~ ) (x ,  s ) -  --R (o+ Ks) (x ) -  ~11 fl12,,~ e~r 

Since 
/ ",, 0 
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by the choice of c and the above estimates we have (L~-O/Ot)u>~O and moreover u~<0 

on B(x0, R)x  {O}UOB(xo, R)• [0,t]. The maximum principle then implies that  u ~ 0  on 

B(xo, R)• [0,t], and since R > 0  was arbitrary we obtain 

( f~-f~)(x,  s) < cllf]12,.e~e -~(~(v)l~(~))~ for all (x, s) 6 M x  (0, oc). 

Similarly we obtain an estimate for f v -  f~, and from this the lemma follows. [-1 

Denote by p.  the fundamental solution of the parabolic equation L~ - 0 /0 t  = 0. From 

the above estimates we then obtain 

COROLLARY A.5. There are numbers a>O, b>0 such that 

v, t) y, t)l < e '[e + e  

for all v, wGT1M and all t>.2. 

Proof. Let v, wETl~I, zEM and for t > 0  define a function ft  ~ on ~r by f [ ( y ) =  

p~(y, z, t). Lemma A.3 and its proof shows that  there is a constant cl >0 not depending 

f Z  Z __  on z such that  II 1/211o<<-cl �9 Now for t>�89 we have f~ (y)-fpv(y,u,t-�89 �89 
and since fp~(y,u, t - �89 du=  1/for all t>�89 this means that  ]]f[]lo<~e2 for all t~>�89 and all 

z e a l .  Schauder theory for parabolic equations then shows that  there is a constant c2 >0 

such that  ]]f[]]2,~<~c2 for all t~>l and all zE_/~. 

Let now t ~> 1, and for x E~f  and s > 0 define 

u~(x ,s )=/p , , (x ,y , s ) f : (y )dy  and u~(x , s )=/pw(x ,y , s ) f : (y )dy .  

By Lemma A.4 there are then numbers a, b, c>0 such that  

}(u~-uw)(x, s)l <~ cease -b(~(~)l~(~))~ 

for all ( x , t ) E M •  

On the other hand, for x E M  and s>0  write g~(y)=pw(x, y, s). The above arguments 

then show that  there is a constant c3>0 such that  ]]g~]]2,~ ~c3 for all x E M  and all s ~ l .  

Another application of the arguments in Lemma A.4 for the operators L~, L~ which are 

formally adjoint to L~, L~ shows that  ]u~(x, s)-p~(x,  z, s+t)] ~cea~e -b(~(~)l~(~))~ for 

all x E M  and all s ~ 0  (where we might have to adjust the constants a, b, c from above). 

Together this just means that  

Ipv(x, z, 2t) -pw(x,  z, 2t)t <~ ce ~t [e -b('(v)l~(~))~ +e  -b('(~)l'(~))z ] 

for all t ~> I. [] 



H A R M O N I C  MEASURES F O R  C O M P A C T  NEGATIVELY CURVED MANIFOLDS 95 

Recall from the introduction the definition of the set DcT1M• and let p: 

• (0, co) --~ (0, co) be the function whose restriction to {v} • W~(v) • (0, co) just equals 

the solution of the Liw~(~)-Cauchy problem with initial condition the Dirac mass at v. 

As an immediate consequence of Corollary A.5 we obtain 

COROLLARY A.6. The function p : / )  • (0, co)--*(0, co) is locally Hblder continuous. 

Appendix  B 

This appendix is devoted to the investigation of operators L on T1M with H61der- 

continuous coefficients which are weakly coercive. Our general assumption will be that  

M is a compact Riemannian manifold of negative sectional curvature and g is a positive 

semi-definite bilinear form on TIM of class C 1,~ for some a E  (0, 1] whose restriction to 

T W  s is positive definite. Let Y be a section of T W  s of class C~ '~ and let X be a function 

on T1M of class C a. Write L = A + Y +  X where as before A is the leafwise Laplacian 

subordinate to W s which is induced by g. The operator L lifts to an operator on T12~ 

which we denote again by the same symbol. For every vETI~I the restriction of L to 

W ~ ( v ) ~ l  then projects to a second-order uniformly elliptic operator Lv on 2~ with 

H61der-continuous coefficients. 

For a section Z of T W  s of class C] denote by div(Z) the function on TIM whose 

value at vET1M equals the divergence at v of the restriction of Z to the Riemannian 

manifold (W~(v), g). Write i * = A - Y + ( x - d i v Y  ). For every vETI~I the operator L* 

is then formally adjoint to Lv with respect to the projection of gIw~(v) to M. 

We call L weakly coercive if for every vETI~I the operator L~ is weakly coercive in 

the sense of Ancona ([An]). To clarify this notion we observe first of all 

LEMMA B.1. The following are equivalent: 
(1) L is weakly coercive. 
(2) There is vETI~I such that Lv is weakly coercive. 
(3) There is vETI~/I such that L* is weakly coercive. 

Proof. Since (1) obviously implies (2), assume that  there is some vETlff/l such that  

L~ is weakly coercive. We have to show that  for every wETI~I the operator L~ is weakly 

coercive. For this choose a number 5>0  such that  there is a positive (Lv+5)-harmonic 

function ~ on ~l~WS(v). Let pE]14 and let wETlp~l be arbitrary. Choose a sequence 

{koi}iC7rl(i) such that  ~i(7~(v))-~Tr(w) in 0/~. Let wiETlp~l be such that  7~(wi)= 

q2i(~(v)) and define ~ i = ~ o ~ - l / ~ ( ~ - l ( p ) ) .  Then ~i is a positive ( / ~ + 5 ) - h a r m o n i c  

function on 2~ which is normalized to be 1 at p. Since the coefficients of the operators 

Lw~ are uniformly Hblder continuous we may assume by passing to a subsequence that  
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the funcions ~ai converge uniformly on compact subsets of M to a function ~a. But 

L~+5---*L~+5 and hence necessarily (L~+5)(qa)=0. In other words, L~ is weakly 

coercive and (1) and (2) are equivalent. 

On the other hand, if L~ is weakly coercive for some vETI~I then there is 5>0 such 

that L~ +5 admits a Green function G on M. Then G* (x, y)=G(y, x) is a Green function 

for L~+5 on ]~r and hence L* is weakly coercive as well. This shows that (2) and (3) are 

equivalent and finishes the proof of the lemma. [] 

We assume from now on that L is weakly coercive. Recall from the introduction the 

definition of the set D C T1/~ r • T1M. Let K: D x 0M---* (0, oc) (or K*: D x 0/~r (0, co)) 

be the function whose restriction to WS(v)• W~(v)• 0 ~  r equals the Martin kernel of 

the operator LIws(v ) (or L*lw,(~)) and define K~:/9--*(0,~)  (or K~:/9--*(0, c~)) by 

K~(v,w)=K(v,w, Tr(v)) (or K*(v,w)=K*(v,w, Tr(v))). We want to show that K ~  is 

Hhlder continuous. 

Choose 5>0 sufficiently small that for every vETI~I the operator Lv+35 on 

M~WS(v) is weakly coercive. As in the introduction, for vETI~I and c~E(0, Tr) let 

C(v, c~) be the open cone of angle c~ and direction v in (M, (-,-)). 

For vETI~I and wEW~(v) define ~a~,(Pw)=K~(v, w). Then qav is a minimal positive 

L.-harmonic function on/~r with pole at 7r(v). Similarly let r (or r/~) be the unique 

positive minimal (L.+25)-harmonic function (or positive minimal (L~-25)-harmonic 

function) on ~r with pole at 7r(v) which is normalized by Cv(Pv)=l  (or rlv(Pv)=l). 
Let again dist be the distance on M induced by ( . , . )  and write x=Pv. Since the 

operators Lv-25, L~ and L~+25 are weakly coercive, there are constants C0~>l and 

/~1 >fl~ >0 such that 

Cole-/31 dist(x,y) < min{qov(y)/r rlv(y)/qo (y)} 
< 

for all yEC(-v, 17r) (see [An]). 

Recall that for every smooth function f on ~r we have 

qa~l Lv (:v f) = A(f) + Y(f) +2V log qov (f) 

and hence since Lv is weakly coercive the same is true for A+Y+2Vlogqov. For E>0 

denote by a~,~ the unique minimal positive (A+Y+2V log ~-e ) -ha rmonic  function on 

with pole at 7r(v) which is normalized to be 1 at Pv. Notice that a~,0--1 since qov is 

minimal. Then we have 
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LEMMA B.2. For every e6(0, 1] there is a number  t(e)>0 such that for  every vE  

TIA/I the following is satisfied: 

(i) The func t ion  -av  ~ 1 - ~  ~Pv ' ~ ' is ( L ~ - h a , , e ) - s u b h a r m o n i c  on C ( O t ( e ) ( - v ) ,  170. 

(ii) The funct ion  ov,  1 - o ~  ~ ' q~ ' is (L~+6av,~)-superharmonic  on C ( O t ( e ) ( - v ) ,  �89 

Proof. Fix a number e>0 and for v E T l ~ I  arbitrarily fixed write simply q~ (or r ~, a) 
instead of ~ (or r ~ ,  a.,~). The lemma now follows from the above estimates for the 

functions ~, r ~/and a simple computation. 
Let as before g be a positive semi-definite bilinear form on T I M  inducing A and for 

v~TIA/ I  and a smooth function a on )~r denote by Va  the glw~(v)-gradient of a (here 

we identify again W ~ ( v )  with/~r). Let I1" N be the norm on T/~ induced by gIw.(,) and 
write simply A instead of A~ and Y instead of Y~, X instead of X~. Let a,/3 be positive 
functions of class C 2 on ~r. By the definition of q~, ~b we then have: 

A(log r  r  r 1 6 2 1 6 2  IIV log r = -25-  IIV log r (1) 

A(log cp) +Y(log ~p) = -IIV log ~112-x, (2) 

A(r a) +Y(r +c~xr a = Ca [A(c~ log r +Y(c~ log r +c~x+ IIV(~ log r 2] 

= r [(log r + r (~))  + 2g(W, v log r - 2 ~  

-~l lV log r + II (log r log r 

= r  log r II 2 + (log r ,~-1 (A(c0 + Y(c~)) 

+2g(V log c~, V log r +c~ll (log r log c~+V log r 

(3) 

2g(V(~3a), v ( ~ l - - / 3 ) )  = 2 r  log r V((1 -/3) log qv)) 

= 2r ~I-Zo~[g(V log '~,, V log ~p) + (log ~,) g(V log a, V log ~p) 

-/3g(V log r  (log r  log a, V log ~ +  (log qo)V log/3)], 

(4) 

A ( ~ - , )  + y ( ~ , - ~ )  + (1 - /3)x~ ~- '  

= ~ l - z  [A((1 -/3) log qo) +Y((1  -/3) log qo) + (1 -/3) x +  II V((1- /3)  log qo)II 2] 

= qo 1-# [(/3-1) II V log ~ II z _ (log ~p)(A(/3) +Y(/3)) 

-29(V/3,  V log qo) +H V log ~ -  (flV log ~p + (log ~)V~)II2] 

= ~-~/~[-II  V log ~112 - (log qo)/3 -1 (A (/3) + r  (/3)) - 29(v log/3, v log ~) 

- 2  (log qo)g (v  log ~, v log/3) +/311v log qo + (log ~p)v log ~112]. 

(5) 
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Now le t /3=a .  Then we obtain from the above computations 

~(C% ~-") + y ( C %  1-~) + x C %  ~-~ = ~ - ~ / \  (C ~) 

+ 2g(27C ~, 27qol-a ) q-Ca A (~ 1-c~ ) 

= C%~-"~[-2~ - IIv log r  log ~112 

+2g(27 log a, 27 log C-27 log ~) 

+a-l (A(a)+y(a))( log C-log ~) 

+ 29 (27 log a, 27 log ~)(log C - l o g  ~ ) +  aR] 

where 

(6) 

(see [GT]). 

Since 

log Co +/31 dist (x, y) >~ log C(Y) - l o g  qo(y) >/32 dist (x, y) - l o g  Co 

for all y e C ( - v ,  �89 by the above estimates there is a number T(e)>0 such that 

6~ 2 + 3~5 
(log C - l o g  qo)(y)/> - -  

for all yeC(r On the other hand we have a(y)<~ce -~3dist(~'y) for y e  

C(-v ,  �89 with some/33>0, c>0  and hence we can find a number t(e)>~T(e) such that  

laRl(Y)<�89 for all yeC(gpt(e)(-v), l~r), where the function R : ~ R  is defined as in 

(6) above. 

Let now a=a. Since 

a -1 (A(a) +Y(a)) +29(27 log a, 27 log ~) = e 

we obtain 

o" 1 o" (7 1 o' o" 1 o" A(r ~ -  )+Y(r ~ -  )+xr  ~ -  
a 1 a = C r - a[-Z6+29(V log a, VV log C-27 log ~) -[[VV log C - VV log ~112 

+r C - l o g  q~) +aR]. 

R = II (log C - l o g  ~)V log a + V  log C -  V log ~112. 

Recall that  the geometry of )~r is bounded and that the operator A is uniformly elliptic 

with respect to (- ,- ), with uniformly bounded coefficients. This implies that  there is a 

number ~ ~> 1 such that 

sup{(]lV log qo H + H V log C]] + 1] 27 log ~TH + H 27 log a H) (Y) ] Y c M} ~< 
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Together with the above estimates this shows that  the function ~)cr~l-cr is indeed 

(L~-ha)-subharmonic on C(Ot(~)(-v), 17r) which is (i) of the lemma. 

The same computations and estimates can also be applied to the functions 

av 1--av (V e T1/~  f) 

and yield (ii) above. [] 

For y E M  and vET1M define zrv(y)=W~(v)UP-l(y). We use now Lemma B.2 to 

compare the function ~ .  (vETIM) on C(-v,  �89 with certain Lw-harmonic functions 

on C(-v ,  �89 provided that  wETIM is close enough to v. 

COROLLARY B.3. There are numbers a , v > 0  with the following properties: Let 
yETiS/I, wETlv~l with A ( v , w ) < v  and let f be the unique gw-havmonic function on 
C(-v ,  �89 which coincides with ~ on OC(-v, �89 Then 

(1-A(v, w)~)~v(x) <<. f(x) <. (l + /(v,  w)~)~(x)  

for all xeC(-v, 

Proof. Let Vl>0 be sufficiently small that  7r(w)q~OC(-v, 37r)nO~I for all vETI~I 
and all wETI~M with L ( v , w ) < v l .  Since asymptotic geodesics approach with an ex- 

ponential speed and since the stable foliation of T1/~ r is Hhlder continuous there are 

numbers al >0, x l  >0, a l  >0 such that  

A(% (y), 7rw (y) ) <. ale -~' dist( Pv,y) ( Z (v, w)) al 

for all vETIM,  all wETI,~I  w i t h / ( v , w ) < , l  and all yEC(-v ,  11r). 
For y e a r  and r > 0  let B(y, r) be the ball of radius r about y in (/~r, ( . , . ) ) .  Since 

the geometry of ]~r is bounded, exponential coordinates centered at y on the ball B(y, 1) 

induce a C2-norm for functions on B(y, 1) with the property that  for every zeTiM and 
every sE[-25,  25] the C2-norm on B(y, 1) of every positive (L ,+s) -harmonic  function 

/3 on B(y, 1) is bounded from above by a constant multiple of/3(y). 
U --~Crz '~  --Otz'r For EE[0,1] and zET1M write z,~--~z ~z . Fix vETI~I and write x=Pv. 

By the above estimates there are then numbers a2,x2,oz2>0 not depending on v and 

z ,c  such that  for every cE[0,1], all zEW~(v), every wETlx ~ with A(v,w)<~l and all 

yEC(-v ,  17c) we have 

I(L~-n~)uz,~.l(y) <~ a2e - ~  dist(x'Y) ( L(v, w) )C~2Uz,e~v(y). 

Following Ancona, the functions a=,~ were defined in such a way that  we can find a 

number r > 0 such that  

cl e- ~2 dist( Pz,y) /2 ~ az,~(y) ~ c11e - 2~3 dist( Pz,y) 
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for some C1>0 , X3E(0 , 1X 2) and all yEC(-z, �89 This implies in particular that  there 

is a number r o > 0  such that 6az,s(y)~a2e -X2 dist(Pz,y) and 

_ e -  ~3 dist(Pz,y) ~ log Uz,e(y) <~ e - x 3  dist(Pz,y) 

for all yEC(~~ �89 where zET1M is arbitrary. 

Let now t(E)>0 be as in Lemma B.2 and define r=max{t ( r  r0} and 

v = min{vl, (a~le-r• ]/~2 } > O. 

Let w E Ti~UI~ with X = Z (v, w) < v and define s = s (X) = ( -  log a2 - c~2 log X)/x2 >~ T and 
Z = ~ s V .  

For yEC(-v, 17r) we then have 

L~(u=,,qo~)(y) ~ (L.--a2e-~2<dist(Pv'u))+'r))Uz,eCflv(y) 

i> (~Oz,~(y)-a~e - ~  dis~(P~,~))(~,~ ~ ) (y ) />  0, 

i.e. the function Uz,eqov is Lw-subharmonic on C(-v, �89 With 

Q(X) =e-X3~ =a23/~2X~3~2/~2 

it follows moreover that  e-~ on C(-v, �89 
Let now f be the unique Lw-harmonic function on C(-v, �89 which coincides with 

~v on OC(-v, �89 Then e-e(X)u~,eqov-f is Lw-subharmonic on C(-v, l~r) and ~<0 

on (9C(-v, �89 and hence by the maximum principle f>~e-Q(X)uz,~ygv>~e-2e(x)qo~ on 

C(-v, �89 On the other hand, by the definition of •(X) there is a number a > 0  such 

that  e -2e(x) > ~ I - x  a for all X<V and consequently f>~(1-A(v, w)~)~v. This yields the 

first inequality in the corollary; the second one follows in exactly the same way by 

C(-v, [] comparing with the (Av-Sa~,~)-superharmonic functions ~z ' ~z ' on 

Ancona showed in [An] that  there is a number c>0  such that for all v, wETI~I and 

all positive L~-harmonic functions f, u on C(w, �89 ~) which vanish on OC(w, �89 we 

have 
f(pOlw) s(x-A) <c  for all 

~(x) u ( P ~ )  

As a corollary of the above considerations we obtain a similar Harnack inequality for L~- 

and L~-harmonic functions. For this let v>0 ,  c~>0 be as in Corollary B.3 and define 

~ = ( l + v ~ ) c  2. Then we have 
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COROLLARY B.4. Let vETI~I, wET~v~I with Z ( v , w ) < u  and let f (or u) be a 
positive Lv-harmonic function (or a positive Lw-harmonic function) which is defined on 
C(-v ,  �89 and vanishes on OC(-v, 17r)MOff/I. Then 

--1 f (POl(-v))  
e 

u(P(~l(-v))  

for aZZ xeC(el(-v), �89 

f(x) ~f(POl(-v))  
<~ ~(x) <<" u(Pq)l(-v)) 

Corollary B.3 can now be combined with the arguments of Anderson-Schoen (in the 

proof of Theorem 6.2 of [AS]) to show 

COROLLARY B.5. There is a number f l>0 such that 

~v(x) l - / ( v ,  w)~ < ~ < l+Z(v,w)~ 

for all veTIM, weT~vM with s  and all x e C ( - v ,  lrr). 

Proof. Let c>0 be the constant as above (whose existence is due to Ancona) and 

define X= ( c - 1 ) / ( c +  1)< 1. Let w, z E T12~ r and let u, f be positive L~-harmonic functions 

on C(z, �89 By the arguments in the proof of Theorem 6.2 of [AS] we then have 

~(x) u(y) .< s u(r 
f (x)  f(y) ~ c f(-N~z) 

for all x, yEC(~S+lz, �89 and all s~>0. 

Let vETI~/I, x=Pv and let w C T ~ I  be such that  Z(v,w)<u where u>0  is as in 

Corollary B.3. Recall that  there is a number x > 0  such that  

A(r ~(P~tv ) )  <<. e~tZ(v, w) 

for all t~>0 where 7r~: M--*W~(w) is defined as before. Define 

s = s(A(v, w)) -- log r - l o g  ~(v, w) 
2 x  

and let ~=~Sv, z=rrw(Pq~v). 
Let fz be the unique n~-harmonic function on C ( - ~ ,  �89 which coincides with ~ 

on OC(-~, �89 Since Z(~, z)<~ul/2Z(v, w) 1/2 we then have 

1-v'~12Z(v, W) ~ < ~ < lq-ua[2/(% W) ~ 



102 u. HAMENST~.DT 

for all yeC(-O, �89 where a > 0  as in Corollary B.3. Moreover the Harnack inequality 

for p~ together with the Harnack inequality at infinity of Ancona shows that  there is a 

number c1 >0 such that  

~v(Y) ~<cl for all yEC(r �89 cr ~< 

By the above estimates, for y, flEC(-v, �89 we then obtain 

~(~) ~(~) L~--~ ~ J  

<~Cl(l+v~,/2Z(v,w)~12) fz(Y) fz(fl) 
~(~) 

_t._Cll]C~/2Z(V, fz(Y) f z (9)- ~ (9) w)C~/2 ~z (9) +c~ ~(~) 

But 
fz(v) A(~) ~(y)  ~,(fl) <~ 2xS-lCCl 

by the above estimate, 

IA(~)- ~v (~)1 < ~'~/2z( v, w)~/~Cl~z(~) 

by Corollary B.3 and 

l~ [ l~176 

and consequently there is a number fl>O such that  

~ (Y) ~ (Y) - -  ~< Z(v, w) ~ ~(y)  ~(9)  

for all y, flEC(-v, �89 In particular, by choosing ~ = x  (or y=x) in the above inequality 

we obtain 

l _ / ( v , w )  # ~< ~v(Y) <~ l + A(v, w) # 

for all yEC(-v,  �89 But this is just the assertion of the corollary. [] 

As a consequence of Corollary B.5 we obtain 
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COROLLARY B.6. The function K~: D-+(0, co) is Hhlder continuous. 

Proof. By the results of Ancona ([An]) and Anderson-Schoen ([AS]), for every fixed 

vETI~I the Martin kernel K~:M•215 co) of L .  is uniformly Hhlder contin- 

uous. Since K~(v,w)=Kv(Pv, Pw, Tc(v)) we thus only have to show that  for every 

(y, z) EM • M the assignment v ~ K ,  (y, z, 7~(v)) is Hhlder continuous. 

For this let y, zE /~  and let vETI~/I. Let ~/: [0, co)--+2~r be the geodesic ray i n / ~  

which satisfies 7 (0)=y  and ~/(co)=~r(v). Since the angle at ~(t) of the geodesic triangle 

in (M, ( . , .  }) with vertices y, z, ~/(t) converges to zero as t--+co (see [HI]) there is t0~>0 

such that  zCC(-'/'(to), 1~). By Corollary 8.5 the maps w~g~(~/(to), z, 7c(w)) and 

w ~ K~(y, ~/(to), ~r(w)) = (K~ (7(to), y, 7r(w))) -1 

are Hhlder continuous near v and hence the same is true for the assignment 

w -~ K~(y, z, ~(w)) = K~(y, ~(t0), u(w))K~(7(to), z, 7~(w)). 

This shows the corollary. 

As another consequence of Corollary B.5 we also obtain 

COROLLARY B.7. The function 

d ~tv) t=o v~K~(v, 

is Hhlder continuous on TI~I. 

[] 

Proof. For v ETI~/I let again Kv: M • M • 0M-~ (0, co) be the Martin kernel of Lv. 

Then for every fixed v e T IM the assignment w--* dK~ (Pw, P~tw, ~(w))/dtit=o is Hhlder 

continuous (Lemma 3.2 of [H1]) and hence we only have to show that  for every vETI~/I 
the assignment 

w 6 T~I - -+  -~K~(Pv, P~ v, ~(w)) t=0 = d t 

is Hhlder continuous at v. 

For this recall from Corollary B.5 and the estimates in the proof of Corollary B.3 that  

there is a number X>0 such that  for every vETI~/I, every wCT],~I w i t h / ( v ,  w)<~  and 

every y c - ~  which is contained in the ball B(Pv, 1) of radius 1 about Pv in (2~, ( . , .  }) we 

have IL,~(y) l< /(v, w) x and I~,-~l(y)<A(v,w)•  Let x=/ (v ,w)  x and recall that  

there is a number Co>0 not depending on v such that  %1 ~<~,(y)~<c0 for all yeB(Pv,  1). 

Define ~ - - ( l + 2 c 0 x ) ~ - ~ .  Then >c~<~<(1+2c02)x and ]Lv~i<x  on B(Pv, 1) which 
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means that  there is a continuous function p: B(Pv, 1)---,[-1, 1] such that  (Lv+p)@--0.  

By our assumption on the coefficients of L ,  we then necessarily have 

for some cl >0  not depending on v, w and hence 

ClX(1+2co+2c2).  

This shows the corollary. [] 

We conclude this appendix with some remarks about  the relation between the oper- 

ator L and the operator  L* which is leafwise formally adjoint to L. For this recall tha t  

K~ denotes the Mart in  kernel of the operator  L~ which is formally adjoint to Lv. To 

explain the relation between K~ and K v assume for the moment  tha t  for every vETI~/I 
the vector field Y~--Yiw8 (v) on W s (v),,~ff/I is the g-gradient of the logarithm of a function 

f~ on 2~ which we assume to be normalized in such a way that  f~(Pv)=l. Then we have 

LEMMA B.8. K*(Pv, y,~)=fv(y)K,(Pv, y,~) for all vETI~I, ~EO~I and yEM. 

Proof. For a smooth function ~ on W ~ ( v ) ~ I  we have 

L*(Q) = A , ( r  

Now if ~ is any positive L~-harmonic function on W ~ ( v ) ~ I  then 

L*(~fv) = f~ A~ (~ ) +2g (V~ ,  V f ~ ) + ~ A ~  ( f ~ ) - d i v ( ~ V f v ) + ~ X ~  

= f~(A.(~)+Y.(~)+~X~) = 0 

and hence the assignment ~--*~fv maps the space of positive L~-harmonic functions on 

2~r to the space of positive L~-haxmonic functions. From this the lemma immediately 

follows. [] 

Assume now again that  L is an arbi t rary weakly coercive operator  on T1M with 

HSlder-continuous coefficients. Then we have 

LEMMA B.9. There is a number Co>0 such that 

Co 1 <. g , (Pw,  pCtw, u(w))K*(Pw, P(~tw, ~(-w)) <~ co 

for all v, wET1AI and all t>~O. 

Proof (compare Lemma 3.10 and Corollary 3.11 of [H1]). For vETI~/I let G~: 

M• co) be the Green function of the operator  Lv. For fixed x E M  the func- 

tion y--~G~(y, x) is positive and Lv-harmonic on M - ( x }  and its values on the distance 
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sphere of radius 1 about x are bounded from above and below by a positive constant not 

depending on v and x. The Harnack inequality at infinity of Ancona ([An]) as quoted 

in the text preceding Corollary B.4 then shows that  there is a number 5>0 such that  

5 -1 ~K  v (p~tw, Pw, 7r(w))/G~ (Pw, P~tw)<<. 5 for all v, w ET1/~ and all t~> 1. 

Now G*(x, y)=G~(y, x) is the Green function of the formal adjoint L* of L~. Hence 

another application of the Harnack inequality at infinity for positive L*-harmonic func- 

tions on _~r shows that  5 -1 <<.K~ (Pw, P~w,  lr(-w))/G~(Pw, P~tw)<~5. Together this 

shows the lemma. [] 
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