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1. S t a t e m e n t  o f  r e su l t s  

Consider a group G of M5bius transformations acting on the 2-sphere S 2. Such a group 

G also acts as isometries on the hyperbolic 3-ball B. The limit set, A(G), is the accu- 

mulation set (on S 2) of the orbit of the origin in B. We say the group is discrete if it is 

discrete as a subgroup of PSL(2, C) (i.e., if the identity element is isolated). The ordinary 

set of G, ~(G),  is the subset of S 2 where G acts discontinuously, i.e., ~t(G) is the set of 

points z such that  there exists a disk around z which hits itself only finitely often under 

the action of G. If G is discrete, then gt(G)=S2\A(G). G is called a Kleinian group 

if it is discrete and ~(G) is non-empty (some sources permit A = S  2 in the definition of 

Kleinian group, but our results are easier to state by omitting it). The limit set A(G) 

has either 0, 1, 2 or infinitely many points and G is called elementary if A(G) is finite. 

The Poincard exponent (or critical exponent) of the group is 

6(G) = inf { s : ~-~ exp(-so(O, g(O) ) ) < oc } , 
G 

where 0 is the hyperbolic metric in B 3. A point xEA(G) is called a conical limit point 

if there is a sequence of orbit points which converges to x inside a (Euclidean) non- 

tangential cone with vertex at x (such points are sometimes called radial limit points 

or points of approximation). The set of such points is denoted At(G). G is called 

geometrically finite if there is a finite-sided fundamental polyhedron for G's action on B 

and geometrically infinite otherwise. A result of Beardon and Maskit [6] says that  G is 

geometrically finite if and only if A(G) is the union of At(G), the rank 2 parabolic fixed 

points and doubly cusped rank 1 parabolic fixed points of G. This makes it clear that  

dim(Ac)=dim(A) and area(A)=0 in the geometrically finite case. 
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For any Kleinian group R=f~(G)/G is a (branched) Riemann surface. If R is of 

finite type (i.e, a finite union of compact surfaces with at most finitely many punctures 

and branch points), then G is called analytically finite. These are the groups with which 

we will work. By the Ahlfors finiteness theorem ([2], [8]), any finitely generated group is 

analytically finite, so our results hold for finitely generated groups. This case is slightly 

easier because by Selberg's lemma any finitely generated discrete matrix group contains 

a finite index subgroup without torsion. This subgroup must have the same limit set as 

the original group, so for finitely generated groups it will always be sufficient to assume 

that  G has no torsion. 

In this paper "circle" will always refer to Euclidean circles or lines (e.g., circles on 

the sphere). Similarly the terms "disk" or "ball" will always denote spherical balls. The 

main results of this paper are the following. 

THEOREM 1.1. If  G is a non-elementary, discrete Mhbius group on B then 5(G)=  

dim(Ac(G)). 

THEOREM 1.2. If  G is an analytically finite Kleinian group which is geometrically 

infinite then dim(A(G))=2.  

Theorem 1.1 uses nothing but the definitions and a few simple properties of Mhbius 

transformations. The direction dim(Ac(G))<~5(G) is easy and well known. We have 

only been able to locate the opposite inequality in the literature under the additional 

assumption that  G is geometrically finite or Fuchsian (e.g., see [57], [60], [49] and [34]). 

More detailed information about the conical limit points can be found in [64] and [65]. 

Theorem 1.2 can be sharpened in some cases, e.g., in [12] we show that  the limit set has 

positive Hausdorff measure with respect to the function t 2 ~/log 1/t log log log 1/t if we 

assume that  the injectivity radius of M = B / G  is bounded away from zero. 

We should also note that  our proof of Theorem 1.1 works for any discrete group of 

M6bius transformations acting on the hyperbolic ball in any dimension and in the rank 1 

symmetric space case in general. In [25] Corlette proved the rank 1 case of Theorem 1.1 

for geometrically finite groups without cusps and in [26] Corlette and Iozzi prove it for 

rank 1 geometrically finite groups with cusps. The case of finite-volume, rank 1 spaces 

is considered in [3], [4], [27]. 

It is well known that  xEAc if and only if the geodesic ray from 0 EB to x corresponds 

to a geodesic on M = B / G  which returns to some compact subset of M infinitely often. 

Our proof shows that  for any E > 0 there is a subset of Ac (G) of dimension > /5 (G)-  ~ which 

corresponds to geodesics which never leave the ball of radius R(c) around x. Thus if M 

is a hyperbolic manifold with finitely generated fundamental group and xEM,  then the 

set of directions corresponding to geodesic rays starting at x which have compact closure 
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has dimension 5(G). This had been proven for geometrically finite Kleinian groups by 

Ferns and Melis [34] and by Stratmann [54]. Ferns and Meli~n also show in 

their paper that this holds for all Fuchsian groups. 

Theorem 1.2 was previously known in special cases. Examples of groups with 

dim(A(G))=2 were constructed by Sullivan in [58], and Canary [20] proved that Theo- 

rem 1.2 holds if M = B / G  is a "topologically tame" manifold such that the thin parts 

have bounded type (in particular, if the injectivity radius is bounded away from zero). 

Our result shows these extra hypotheses are unnecessary. 

Sullivan [60] and Tukia [63] independently showed that if G is a geometrically finite 

group then dim(A(G))<2. Thus Theorem 1.2 implies 

COROLLARY 1.3. An analytically finite Kleinian group is geometrically finite if and 

only if dim(A(G)) <2. 

The proof of Theorem 1.2 divides into two cases. First, if 5(G)=2, it follows im- 

mediately from Theorem 2.1. Secondly, if 5(G)<2 and G is geometrically infinite we 

will show that area(A(G))>0. Since it is known that 5(G)=dim(A(G)) for geometrically 

finite groups, we also obtain 

COROLLARY 1.4. Suppose that G is a non-elementary, analytically finite Kleinian 

group and that area(A(G))=0. Then 5(G)=dim(h). 

For geometrically finite groups Stratmann and Urbanski [55] proved that the Haus- 

dorff and Minkowski dimensions of A agree. Since Theorem 1.2 clearly implies this for 

geometrically infinite groups we get 

COROLLARY 1.5. If G i8 an analytically finite Kleinian group then the Minkowski 

dimension of A exists and equals the Hausdorff dimension. 

For alternate proofs of this result which do not need Theorem 1.2, see [10] and [11]. 

Another corollary of Theorem 1.2 is the following. 

THEOREM 1.6. If  {Gn} is a sequence of N-generated Kleinian groups which con- 

verges algebraically to G then dim(A(G)) <lim infn dim(A(G,~)). 

Using the proof of Theorem 2.1 it is easy to see that 5(G) is lower semi-continuous 

under algebraic convergence, so using Corollary 1.4, the only case that causes problems 

is when the {Gn} are geometrically finite and G is geometrically infinite with positive 

area limit set. 

As final applications of Theorem 1.2 we have: 
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COROLLARY 1.7. Suppose that G is a finitely generated Kleinian group and ~ is a 

simply-connected, invariant component of 12(G). Then d i m ( 0 ~ ) = l  if and only if  Ogt is 

a circle. 

COROLLARY 1.8. If  G is a finitely generated Kleinian group then its limit set is 

either totally disconnected, a circle or has Hausdorff dimension > 1. 

These two results were previously known for geometrically finite groups (see [21]), 

and are clear for geometrically infinite groups since the limit set has dimension 2. This 

type of result was first formulated by Bowen [15] for quasi-Fuchsian groups with no 

parabolics. The geometrically finite, cocompact Kleinian group (also called "convex 

cocompact") case was proven by Sullivan [57] and by Braam [16]. See also [59], [49]. 

There are more elementary proofs of these results which apply to all analytically finite 

groups at once, and these are given in [12]. The proof given there also shows that  in 

Corollary 1.7, 5 ( G ) = I  if and only if A is a circle. In particular, this implies that  if G is 

analytically finite, but geometrically infinite, then 5(G)> 1. 

The Ahlfors conjecture states that  the limit set of a finitely generated discrete group 

of Mhbius transformations is either the whole sphere or has zero area. Thus by Corol- 

lary 1.4 the Ahlfors conjecture implies 5 (G)=2  for any geometrically infinite group. We 

do not know an argument for the converse direction, but both results are known to be 

true for topologically tame groups, [20]. 

The elementary groups have to be excluded in Theorem 1.1 and Corollary 1.4 because 

a cyclic group consisting of parabolics has a one-point limit set, but 5(G)=�89 Also the 

invariance of ~t is necessary in Corollary 1.7; the boundary of a general component can 

have dimension strictly less than 5(G). 

Very interesting pictures of limit sets can be found in several sources such as [17], 

[46], [50]. 

The remaining sections of this paper are organized as follows: 

w We prove Theorem 1.1 and deduce from the proof that  5(G) is lower semi- 

continuous with respect to algebraic convergence. 

w We collect some facts about the convex core of a hyperbolic 3-manifold that  we 

will need in later sections. 

w We record some facts about the heat kernel and prove an estimate on Green's 

function which we need to prove Theorem 1.2. 

w We prove Theorem 1.2 (geometrically infinite implies that  A has dimension 2). 

w We prove Theorem 1.6 (dim(A) is lower semi-continuous). 

w We deduce some corollaries of our results in the special case when the groups be- 

long to T(S) ,  the closure of the Teichmiiller space of a finite-type surface S. For example, 
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dim(A(G)) is a lower semi-continuous function on T(S) and is continuous everywhere ex- 

cept at the geometrically finite cusps, where it is discontinuous. 

Many of the auxiliary results we use could probably be found in the literature (or 

easily deduced from the literature). We have included proofs of most of these results 

to t ry  to make the paper as accessible to non-experts as possible and to emphasize the 

elementary nature of our approach. 

We thank many people for helpful conversations and suggestions: Michael Ander- 

son, Itai Benjamini, Mladen Bestvina, Dick Canary, Jay Jorgenson, Irwin Kra, Curt 

McMullen, Bernie Maskit, Yair Minsky, Yuval Peres and Bernd Stratmann among others. 

The first author particularly thanks Ed Taylor for explaining the results of [21] and for 

suggesting the problem of proving that  the Hausdorff dimension of degenerate limit sets 

is strictly greater than 1. It was by considering this problem that  we were led to the 

other results in this paper. 

Originally this paper was circulated as a preprint which also contained the results 

of [12]. To improve the readability, the preprint was cut into two shorter papers for 

publication. 

2. The  conical  l imit set and critical e x p o n e n t  

First we recall the definition of Hausdorff dimension. Given an increasing function ~ on 

[0, ec), we define 

H~(E)  = i n f { E  p ( r j ) :  E cUD(x j , r j ) ,  rj < 5} 
J 

and 

H~(E) = lim H~(E). 
5-*0 

This is the Hausdorff measure associated to ~a. H ~  is called the Hausdorff content. It is 

not a measure, but has the same null sets as Ha.  When ~a(t)=t ~ we denote the measure 

H~ by Ha and we define 

dim(E) - - i n f I a  : H~(E) = 0}. 

For ~---1 we sometimes denote H1 by 1 (for "length"). An upper bound for dim(E) can 

be produced by finding appropriate coverings of the set. We will be more interested 

in finding lower bounds. The usual idea is the mass distribution principle: construct a 

positive measure # on E which satisfies #(D(x, r))<~Cr% This implies dim(E)~>a since 

for any covering of E we have 

E r; ~ C -1 E #(D(xj,rj) >/C -lft(E) > O. 
J J 
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Taking the infimum over all covers gives 

H~(E) > C-I#(E) > 0, 

which implies dim(E) ~>~. 

Next we will prove that  5(G)=dim(Ac) for any non-elementary, discrete Mhbius 

group. This was previously known for geometrically finite Kleinian groups and all Fuch- 

sian groups, and can be proven in many cases by considering the Patterson measure on 

the limit set (see [51], [52], [48], [56] and [60]). We shall also build a measure on the 

conical limit set, but  ours is not a group-invariant construction. We do not assume that  

G is finitely generated (much less geometrically finite) and G is allowed to have torsion. 

THEOREM 2.1. Suppose that G is a discrete group of Mhbius transformations with 
more than one limit point. Then 5(G)=dim(Ac). 

Proof. If G has only two limit points, then it is easy to check that  it is generated 

by a loxodromic (with the given fixed points) and a finite group of elliptics. Thus 

5(G)=O=dim(A~). Therefore we may assume that  G has more than two limit points 

(and hence infinitely many). 

Let 5=5(G) be the critical exponent for the Poincar~ series of G. The direction 

5~>dim(A~) is easy and well known (e.g., Corollary 4.4.3 of [49]). Briefly it goes as 

follows. Let G=G(O) denote the orbit of 0 EB under G. Fix a large number M and for 

each gEG let B 9 be the Euclidean ball centered at g(O)/Ig(O)I (the radial projection of 

the orbit point onto the sphere) and radius M(1-ig(O)]) .  Let EM be the set of points 

which are in infinitely many of the balls B 9. Since 

E diam(B9 )~+~ < c~, 
g 

for any e>0,  we see that  dim(EM)<~5(G) for any M. On the other hand, any point of 

A~(G) is in EM for some M. Thus dim(A~(G))~<5(G), as desired. 

To prove the other direction, 5~<dim(Ac), we will construct a subset C c G  of the 
C orbit of 0. We will give C the structure of a tree with root at 0, i.e., we have c=U,~= 0 n 

and each zEgn, n~>l, will have a unique "parent" in Cn-1 and a collection of "children" 

C(z)CCn+l. We will show that  we can construct C so that  its boundary E c S  2 (i.e., the 

limit points of all sequences {Zn}CC where z~+lEg(zn) for all n) is a subset of A~ and 

has dimension as close to 5 as we wish. See Figure 2.1. 

Let B(z, r) denote the Euclidean ball of radius r around z. We will show that  for 

any c > 0  there are numbers 1~<C0, N < ~  and points C c G  (as above) so that: 

(1) If wEg(z) then wEB(z,N(1-[zl) ). 
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Fig. 2.1. The tree of orbit points 

1 (2) If weC(z), then Col<~(1-1wr)/(1-1zI)<~. 
(3) For Wl,W2EC(z) distinct, B(wl,2N(1-iWlI)) and B(w2, 2 N ( 1 - i w 2 i )  ) are dis- 

joint. 

( 4 )  Ewec(z)(1-1wl)*-2~C3(1-1zl) ~-2~. 
First we will show how to construct such a collection of points. We will then show 

that the boundary of the tree on S 2 has dimension at least 5 - 2 c  and lies inside A~. 

Let {z~} be an enumeration of the orbit of 0. Choose a point xoCS2=OB so that 

j: Izj -xl <r 

for every r > 0  (here Iz-xl denotes the Euclidean metric on B).  We can do this by 

a simple compactness argument. Since G is non-elementary, x0 is not fixed by every 

element of G. Therefore we can choose an element gEG so that xl=g(xo)~Xo. Fix r > 0  

to be so small that the balls B0, B] on S ~ (in the Euclidean metric) of radius r around 

the points x0, xl  have disjoint doubles. 

Since B0 and B1 have disjoint doubles they are separated by some positive angle 

0 when viewed from the origin. In other words, two geodesic rays from 0 landing in 

B0 and B1 respectively must make an angle of at least t7 at the origin. Using simple 

properties of hyperbolic geodesics one can check the following: 

Property A. There is an N < c ~  (depending only on 0) such that if z ~ 0  then any 

geodesic ray starting at z and making angle at least 10 with the radial segment [0, z] stays 

inside the (Euclidean) ball B(z, g ( 1 - 1 z l )  ). This is the Y which will work in conditions 

(1)-(4) above. 

Property B. There is a K,  l ~ < K < c c  (also depending only on 0), so that if the 

geodesic segment from z to w makes angle at least �89 with [0, z] and has hyperbolic 
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length L then 

1<~ (1--]wI)eL <~ K. (2.1) 
1-1zl  

Note also that  if L > 2 1 o g K  then we have 1-]wl~<�89 Thus Co=e -L will work as 

the constant in (2). 

Let An={zEB:2-n-~<.l- iz l<2-n}.  We claim that  for i=1 ,2 ,  

lim sup Z (1-  [zJl)~-2r = ~ (2.2) 
n--~cx~ j : z j E B I N A ~  

If not there would be an M < oc so that  

(1-]zyl)6-2~ ~ < M  , 
j : zj E Bi AA,~ 

for all n, and hence we obtain the contradiction, 

y~ (1-1z~l? -~ < 6 ~ 2  -n~ ~ (1-1zjl) ~-2~ < C M ~ 2  - n ~  < o ~ .  

j : z j E B ~  n j : z j E B ,  AA,~ 

We can easily restate (2.2) as 

lim sup # ( zj E B~ A An) = oc. 
n~cc 2 n(6-2e) 

(2.3) 

Since the zj's make up the orbit of a single point, they are uniformly separated in 

the hyperbolic metric of B (i.e., if j r  then Q(zj,zk)>eo for some Co>0 independent 

of j and k). Thus for any A<c~ we may split the sequence into a finite number B of 

sequences (depending on A) each of which is separated by at least A in the hyperbolic 

metric. Moreover, 

Property C. Given the N above there is an A so that for Wl, w2 EAn, co(w1, w2)/>A 

implies 

B(Wl, 3N(1- Iwl  I)NB(w2, 3N(1-]w2 I)) = O. 

By the preceding remark and (2.3), to each of the points x0,xl ,  we may associate 

a collection of points V0, V1c{zj} such that  VicBiNAn~, i=O, 1, and which satisfy the 

following two conditions: 

B(wl, 3N(1- Iwl  I)NB(w2, 3N(1 -Iw21)) = 0,  

for any distinct wl, w2cVi, and 

Y~ (1-[zjI)  6-2~ >~ e-(6-2~)L'#(V/)~>C 4, 
j:z~EV~ 

(2.4) 

(2.5) 
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Fig. 2.2. Vo, V1 and g(Vo),g(V1) 

where L~ is chosen so that  

V~C {zEB:Li >~Q(O,z) > Li-1} 

and Co is as above. Since we may take no, nl as large as we wish, we may assume that  

Li>~21ogCo for i=O, 1. See Figure 2.2. 

We now define the collection C= U~C~ by induction. Start with Co = {0}. Let C1 = Vo 

(V1 would work just as well). In general, suppose that  z=g(O)ECn. Consider the cone 

of geodesic rays from z to g(Bo) and g(B1) respectively. These cones are separated by 

angle at least ~ from each other, so at least one of them is separated by angle at least �89 

from the radial segment [0, z]. Let iE{0, 1} be an index for which this happens and set 

C(z)-~g(V~). (This is the step of the proof which is not group invariant and the reason 

why the measure we construct is not group invariant.) 

We can now easily verify each of the four desired conditions. Condition (2.4) and 

the fact that  the geodesic segments from z to its children have hyperbolic length at least 

2 l o g o  prove (1), (2) and (3). Equations (2.1) and (2.5)imply 

E (1-Iw[)  ~-2~ ) Coe+2ee (6-2~)L~ (1 - Iz l )e-2~#(Vi)  ) C02(1-Izl) e-2e. 
w~C(z) 

This is (4). 

We now use conditions (1)-(4) to finish the proof of the theorem. Let E be the 

boundary of the tree on S ~, i.e., E is the set of all limit points of sequences zl ,z2,  ... 

where Zn+l is a child of Zn. Note 

Property D. If zES 2 is in B(Zn,2N(1-[z,[)), then zn lies in a cone with vertex z 

and angle depending only on N. 
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Fig. 2.3. The Cantor set formed by the disks 

Since points in the boundary of tree are in infinitely many such balls, they are 

vertices of cones containing infinitely many orbit points, i.e., E c A c .  

Thus all we have left to do is to prove dim(E)~>~-2E. This is a standard argument 

which goes as follows. 

Let Dz-=B(z,2N(1-N))AS 2. For ZeCn these are disjoint disks by (2) and (3). 

Define E n = U z e c ,  Dz. Thus E=NnEn. See Figure 2.3. Define a probability measure # 

on E by setting # ( E 0 ) = l ,  and for zECn with "parent" z'EC,~-I, set 

# (D , )  = ~wec(~,)(l_lwl)e_2~ #(B~,). 

It is easy to see by induction that  

/z(D~) ~< (1-[z[)  6-2~ ~< C diam(Dz) e-2~, 

for each z in C. We want to show that  this inequality is true for any disk D on S 2. Let 

D be any disk and let Do=Dz be the lowest generation disk in our construction so that  

DonDCrg but D~2Do. Let D1 be the parent of Do. By the maximality of Do we have 

DC2D1.  Since 2D1 is disjoint from any other balls of the same generation, 

#(D) ~ #(D1) ~< C diam(D1) e-2~ ~ C(NC) ~-2~ diam(Do) ~-2~ 

< C(2NC) ~-2~ diam(D) 6-2~. 
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This is the desired inequality (the constant in front is larger, but is uniform over all 

disks; the power is the same). We now have 

dim(At(G)) ~> dim(E) ) 5-2~, 

by the mass distribution principle. Since e is arbitrary, we get Theorem 2.1. [] 

The proof of Theorem 2.1 has the following corollaries. 

COROLLARY 2.2. Suppose r>0.  There are constants C=C(r) and N = N ( r )  so that 

the following holds. Suppose that G is a non-elementary group of MSbius transformations 

on B and suppose that there are integers no, nl and balls Bo, B1 with disjoint doubles of 

(Euclidean) radius r and a collection of points F~cG(O)AAn~, i=0, 1, which satisfy both 

z, w E Fi, z r w, implies [z-w[ >1 N2 -n~, i = O, 1, 

and 

E (1-[z[) ~ > C .  
zEF~NB~ 

Then e(a)=dim(At) >a. 

Once we have the conditions in the hypothesis, the proof of Theorem 2.1 proves the 

corollary. The corollary is technical looking, but it shows that getting a lower bound for 

5(G) only requires information about a finite number of orbit points. For example, one 

obvious corollary is that 

5(a) = sup{5(a') : a'C G, a '  finitely generated}. (2.6) 

This had been proven earlier by Sullivan [58]. If G is another group which is very close 

to G then G will also satisfy these conditions with only slightly worse constants (since 

they only involve a finite number of elements in the group). Moreover, our proof of 

Theorem 2.1 shows that any discrete G with more than one limit point satisfies the 

conditions of Corollary 2.2 with a=5(G)-r  for any e>0. Thus 

COROLLARY 2.3. Suppose that G is a discrete Mgbius grow with more than one 

limit point generated by {gl,...,gn}. Given any 5o>0 there is an ~o>0 (depending only 

on 5 and G) such that if G is a group containing elements {~01, ...,gn} with [[gi-gill <co 

(as elements of PSL(2, C)) then 

Suppose that {Gn} is a sequence of m-generated MSbius groups each with a specific 

listing of its generators Gn={gln, ..., g,~n}- We say that Gn converges algebraically to a 

Kleinian group G with generators {gl, ...,g,~} if gjn-*gj for each l<~j<~m, as elements 

of PSL(2, C). See [40]. If we identify groups with points in PSL(2, C) m, this is just 

convergence in the product topology. 
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COROLLARY 2.4. Suppose that G is discrete and has more than one limit point. 

If {Gn} is a sequence of discrete MSbius groups converging algebraically to G, then 

6(G) ~< lira inf 6(Gn). 

This says that  $(G) is lower semi-continuous with respect to algebraic convergence. 

Strict inequality is possible even for sequences of Kleinian groups (e.g., we will see later 

that  one can choose a sequence {Gn} of geometrically infinite groups (with ~(Gn)=2)  

in the boundary of Teichmiiller space converging to a geometrically finite cusp group G 

(with ~(G)<2).  The hypothesis that  G has 2 or more limit points is also necessary, 

since hyperbolic cyclic groups (with 6=0) can converge to a parabolic cyclic group (with 
e = ~ ) .  

Let M = B / G .  If G has no torsion then M is a manifold and otherwise it is an 

orbifold. Suppose that  x E M  is the point which projects to 0EB.  It is well known that  

geodesic rays from 0 to points of Ac lift exactly to the geodesic rays starting at x which 

return to some compact set of M infinitely often (the compact set depends on the ray). 

Thus the unit tangent directions at x corresponding to such geodesic rays has Hausdorff 

dimension exactly ~(G). 

In the proof of Theorem 2.1, the set E c A c  which is constructed has an additional 

property. The geodesic ray from 0 E B  to each point of the set E corresponds to a 

geodesic ray in M = B / G  which remains in a bounded part of M. To see this, note 

that  each z in the set we construct is contained in a nest sequence of balls of the form 

Nn=l B(z~, A ( 1 - l z d ) ) = ~  B~, where z~ is some sequence of orbit points. Now if ~/is the 

geodesic from 0 to z, then let ~/n=~/n(B~\B~+l).  Since 1-lze+ll>.C-~(1-1z~l), w e  see 

that  zET~ implies O(z, zn)<~C ~ for some uniform C~<cc, i.e., the projection of "7 to a 

geodesic ray in M never leaves a C-ba l l  around the base point. Therefore we have the 

following. 

COROLLARY 2.5. If G is any non-elementary, discrete M6bius group, e > 0  and xE 

M = B / G ,  then there is an R=R(e ,x )  such that the set of directions (i.e., unit tangents 

at x) which correspond to geodesic rays starting at x which never leave the ball of radius R 

around x has dimension >~(G)-e=dim(Ac(G))-e .  /n particular, the set of directions 

at x of bounded geodesic rays has •mension exactly 6(G). 

As mentioned in the introduction this was proven for geometrically finite groups by 

Ferngndez and Melis [34] and by Stratmann [54]. 

The only facts about hyperbolic geometry we used in Theorem 2.1 were Proper- 

ties A-D. Versions of these facts hold for rank 1 symmetric spaces. Such spaces consist 

of the usual hyperbolic upper half-spaces over the reals, and the analogous spaces over 



HAUSDORFF DIMENSION AND KLEINIAN GROUPS 13 

the complex numbers and quaternions plus one exceptional case corresponding to the 

Cayley numbers (see [25], [38], [47]). They all have negative curvature bounded and 

bounded away from zero, so comparison theorems such as Toponogov's comparison the- 

orem (e.g., [24]) can be used to deduce these properties. Also see Theorem 2.2 of [25]. 

Thus Theorem 1.1 also holds in the rank 1 case (the Euclidean metric on the boundary 

is replaced by a sub-Riemannian metric and Hausdorff dimension on the boundary is 

computed with respect to this metric). 

COROLLARY 2.6. If G is a non-elementary, discrete group of isometries of a rank 1 

symmetric space then 6(G)=dim(Ac(G)). 

3. T h e  c o n v e x  hul l  o f  t h e  l i m i t  s e t  

A discrete group of Mbbius transformations is called geometrically finite if there is a finite- 

sided fundamental polyhedron for its action on B and otherwise it is called geometrically 

infinite. We will make use of several different characterizations of geometrically finite 

groups. Recall that  a rank 1 parabolic fixed point p is called doubly cusped if there are 

two disjoint balls in f~(G), tangent at p, and both invariant under the parabolic subgroup 

fixing p. Beardon and Maskit [6] proved that  if G is a finitely generated Kleinian group 

then G is geometrically finite if and only if every point of A(G) is either a conical limit 

point, a rank 2 parabolic fixed point or a doubly cusped rank 1 parabolic fixed point. 

Geometrical finiteness can also be characterized in terms of the convex hull of the limit 

set. If K is a compact set on S 2 = 0 B  we will let C ( K ) c B  denote its convex hull with 

respect to the hyperbolic metric on B. If G is a Kleinian group, we let M = B / G  be 

the hyperbolic 3-manifold (or orbifold) associated to G. Then C(M)=C(A(G)) /GcM 

is called the convex core of M. 

For r > 0  we define the radius r-neighborhood of C(M) as 

Cr(M) = {z e B :  gist(z, C(M) ) < r}, 

where distance is measure in the hyperbolic metric. Although we do not need it here, 

we should point out that  Thurston has shown that  G is geometrically finite if and only 

if Cr(G) has finite volume for some (all) r>0 .  We cannot take r = 0  because if G is 

any Fuchsian group, then A(G) is contained in a circle, so the convex hull of A(G) is 

contained in a hyperplane and hence has zero volume. Thus C(M) has finite volume 

even for infinitely generated Fuchsian groups. However, for finitely generated groups this 

is not a problem. If G is a finitely generated Kleinian group and C(M) has finite volume 

then G is geometrically finite. We define 

Mthin(r ) = {X E M :  inj(x) ~< ~}, 
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Fig. 3.1. Geometrically finite and infinite manifolds 

and denote the complement in M by Mthick(e). Another equivalent definition of geo- 

metrically finite is t h a t  Mthick(e)NC(M ) is compact  for all c>0 .  The equivalence of the 

many  formulations of geometric finiteness is proven in [14]. See Figure 3.1. 

Suppose E C S 2 and let u be the solution of the Dirichlet problem on B with bound- 

ary values XE, i.e., u is the hyperbolic harmonic function with boundary values 1 on E 

and 0 on S2\E. This function can also be defined by integrating XE by the appropriate  

version of the Poisson kernel on S 2, as described in Chapter  5 of [49]. For z E B ,  we define 

the ha~Tnonic measure of E with respect to z as 

w(z, E , B ) =  u(z). 

This also represents the probabil i ty that  a (hyperbolic) Brownian motion s tar ted at z 

will hit the sphere at infinity at a point of E.  

For z E B define 

w(z)= max w(z,D,B), 
DCn(G) 

where the max is over all round disks in ~(G) .  Then C ( A ) - - { z E B :  w(z)< �89 }. Note that  

a; is G-invariant and so is well defined on M. 

Next we want to show that  the convex core can be separated from the geometrically 

finite ends by a "nice" surface of finite hyperbolic area. To prove this we need to recall 
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the notion of uniformly perfect sets. For zErO(G) define 

d( z ) -- gist (z, Ol2( G) ) =dist (z, A), 

where "distance" means spherical distance. 

A compact set K is called uniformly perfect if there is an ~>0 such that  for any 

x E K  and r < d i a m ( K )  there exists y E K  such that  

er  <~ I x - y l  <~ r. 

There are several well-known equivalent formulations of this condition (e.g., [33], [35]). 

Suppose that  K is compact and f~ is its complement. Then the following are known to 

be equivalent: 

(1) K is uniformly perfect. 

(2) There is a positive lower bound for the length of the shortest closed hyperbolic 

geodesic in f~. 

(3) There is a constant CKc~ so that  

1 Idzl Idzl 
I@(z)l Cd(z). 

The following was proved in [53]. Also see [18] and [39]. 

LEMMA 3.1. If G is an analytically finite, non-elementary Kleinian group then A is 

uniformly perfect. In particular, if ~ is the hyperbolic metric on a component f~ of f~(G), 

then 
Idzl 

IdQ(z) l ~ d(z)" 

We will also use two elementary facts about Lipschitz graphs which we state as 

lemmas for the convenience of the reader. A Lipschitz graph in B over an open set 

f~cS  2 is a set of the form S = { f ( x ) . x :  zErO}, where f :  f~--, [�89 1] is a Lipschitz function, 

i.e., there is an M < c c  so that  
I f ( x ) - f ( y ) l  ~ M ,  

Ix-yl 
for all x, yEfL 

LEMMA 3.2. Suppose that f~cS  2 is open, c1>0 and consider a family of disks Da 

with diameters satisfying 
diam(D,~) 1 

51 ~ 
dist(Da, 0~) 2' 

and such that each point zE~  is the center of at least one of the disks. Let H a c B  be 

the hyperbolic half-space bounded by Da. Then Ua Ha is bounded by ~t and a Lipschitz 
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graph s  with constant M depending only on c:. Moreover, we have a 

c2>0 (again depending only on cl) so that 

c2 <~ f ( x )  ~< 1 (3.1) 
dist(x, 0~t) c2" 

LEMMA 3.3. Suppose that ~ is an open set on S 2 with uniformly perfect boundary 

and that s is an M-Lipschitz graph supported on ~ which satisfies (3.1). Then the 

radial projection f ( x ) . x - * x  is bi-Lipschitz between the hyperbolic metric restricted to s 

and the hyperbolic metric on ~. The bi-Lipschitz constant depends only on the uniform 

perfectness constant of 0~, and the constants c2 and M. 

The proofs are easy and left to the reader. 

Our next goal is to see that  C(M) can be separated from ~(G) by a finite-area 

surface. It is true that  OC(M) itself has finite area and is a Lipschitz surface in M ([32]), 

but it is more convenient to replace OC(M) by a surface at bounded distance from 

C(M) which corresponds to a Lipschitz graph in B. The following is easy to prove and 

is sufficient for our purposes. 

LEMMA 3.4. Suppose that G is an analytically finite Kleinian group and M = B / G .  

Let {~j}l  N be the conjugacy classes of components of ~(G) (i.e., the geometrically finite 

ends of M).  For each ~j there is a locally Lipschitz surface Sj in M so that the following 

holds. 

(1) dist(Sj, C ( M ) ) > 2 .  

(2) Each Sj has hyperbolic finite area. 

(3) The function f (y)=(vol(B(y,  1)) -1/2 is integrable over Sj, i.e., 

f s  (vol(B(y, 1)) -1/2 dA(y) < c~ 
J 

(B(y, 1) is the ball in M of hyperbolic radius 1 around y, vol denotes hyperbolic volume 

in M and dA is hyperbolic area on Sj). 

(4) The surfaces Sj separate C(M) from the geometrically finite ends of M, i.e., 

there is an :o > 0 so that w(z) ~ 1 - :o  on the component M: of M \  U j S j containing C( M).  

(5) There is a constant C < cxD so that the Hausdorff distance between S and OC(M) 

is less than C. In other words, 

S C {x E M: dist(x, OC(M)) < C} 

and 

OC(M) C {xEM:  dist(x, S) < C}. 
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Proof. Fix a fundamental domain ~c~(G) for G. Since 012=A is uniformly perfect, 

we know that  dQ~d(z)-lldz], where d(z) and ]dz] denote the spherical metric. Take 

c<< 1 small and let Dz={wES2: ]z-wl<~cd(z)}. Let {D~} be the collection of all such 

disks and all their images under elements of G. By the Koebe distortion theorem all these 

disks satisfy the estimate in Lemma 3.2, so the union of the corresponding hyperbolic 

half-spaces defines a Lipschitz graph s above ~t. By Lemma 3.3 the radial projection 

from s to ~ is bi-Lipschitz between the hyperbolic metric on B restricted to L: and the 

hyperbolic metric on ~. Also s is clearly G-invariant by definition, so its quotient by G 

is a surface S in M. 

Simple geometric arguments and Lemma 3.1 show that  if c is small enough then S 

is at least hyperbolic distance 2 from C(A). For each component ~2j we simply take Sj 
to be the intersection of a fundamental polygon in B for G with S. Thus the hyperbolic 

area of S is bounded by at most a constant times the area of a fundamental region in ~. 

This is (2). To prove (3) we split the integral over Sj into pieces: one for each part of Sj 
lying over a horoball in ~ and the remaining compact part of Sj. The integral over the 

compact part is clearly bounded. The integral over each of the cusps is easily bounded 

using the fact that  the injectivity radius decreases exponentially in the cusps (in terms of 

hyperbolic distance) and the observation that  for y E S, vol(B(y, 1))~inj (y). Here inj (y) 

denotes the injectivity radius of M at y. Details are left to the reader. Conditions (1) 

and (4) are easy to check if Co is small enough. 

To check (5), we note that  any point xEOC(A) is on the boundary of some hyperbolic 

half-space which meets S 2 in a disk contained in 12, and the spherical radius of this disk 

is comparable to the spherical distance from its center to A. Thus the point o f / :  over 

the center of the disk is a bounded spherical distance from x (depending only on c in 

the definition of s Conversely, given any point z on s we can find a point Wl EA with 

dist(z, Wl)~dist(z,  A) (distances are spherical, as above). By uniform perfectness of A, 

we can find a second point w2EA with dist(wl,w2)~dist(z, wl). Thus the top of the 

geodesic from wl to w2 is a point of C(A) which is a bounded distance from z. This 

completes the proof. [] 

We want to use the fact that  if G is geometrically infinite then we can find a se- 

quence of points xEC(M) tending to infinity and with inj(x) bounded away from zero. 

This follows from the Margulis lemma (see, e.g., [7]) and an alternate definition of geo- 

metric finiteness. According to the Margulis lemma (e.g., p. 134 of [7]) there is an c > 0  

(independent of G) so that  if yE B,  then the group Ge(x) generated by 

{g E G: ~(x, g(x)) ~< c} 
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is almost-nilpotent and hence elementary. Let 

T~(G) = {x e B :  G~(x) is infinite}. 

According to Definition GF4 in [14], G is geometrically finite if and only if C(M)\T~(G) 
is compact for some s less than the Margulis constant. If G has no elliptics this is the 

same as saying that  C(M)\Mthin(C) is compact, where 

Mthin(e  ) = {X E M: inj (x) • ~}. 

Thus if G is geometrically infinite and has no elliptics (which we may assume if G is 

finitely generated by Selberg's lemma), we obtain the desired sequence. 

If G has elliptics then the only difference between the conditions is the possibility 

of points with small injectivity radius due to the action of finite subgroups of G. By 

considering the possible finite elementary groups (as listed in [41] or w of [5] for example), 

we see that  for groups of bounded order we can always move unit hyperbolic distance and 

reach a point with injectivity radius bounded uniformly away from zero. The only finite 

Kleinian groups of high order are the cyclic groups Zn and the corresponding dihedral 

groups. 

Thus if G is geometrically infinite we can find points xnEC(M) tending to infinity 

with either the injectivity radius bounded away from zero or the points are in the thin 

parts of finite cyclic groups of arbitrarily high order. If the latter case occurs then 

choose lifts of the points in a convex fundamental domain for G in B and assume that  

the points accumulate to a single point of S 2 (which we may assume by passing to a 

subsequence if necessary). Then the geodesic connecting two of the points x~, Xm lies in 

the fundamental domain and C(M), and has large distance from 0 (depending on n, m). 

Moreover, if xn, xm are in the thin parts of different finite groups, there is a point on the 

geodesic which is on the boundary of the thin part of one of the groups and not in any 

other thin part (otherwise the group associated to that  point would not be elementary). 

This point has injectivity radius bounded uniformly away from zero, and so we can 

construct the desired sequence. 

Note that  this argument also implies that  for any geodesic ray in B which lands in 

the limit set, either the landing point is fixed by some element of G or the ray leaves 

every thin part  (and hence the injectivity radius is bigger than some c > 0  on the ray 

arbitrarily close to the landing point). 

We will need the following lemma in the proof of Theorem 1.6. Note that  if we 

replaced C(M) by an r-neighborhood of itself, we would simply be stating one of the 

equivalent definitions of geometrically finite. 
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LEMMA 3.5. If G is a Kleinian group (not necessarily finitely generated) and A(G) 

has positive area then C( M) has infinite volume. 

Note that  we need the hypothesis that  G is Kleinian (i.e., A~S2) ,  since it is possible 

for G to be a discrete group with A ( G ) = S  2, but C(M)=M to have finite volume (e.g., 

if G is co-compact). 

Proof. We will show that  there is a sequence {Xn}EC(M) with dist(xn, aC(M))--*c~, 

and in j (x~)>s  for all n. Thus C(M) contains infinitely many disjoint balls of fixed 

volume, proving the lemma. 

As above, for z E B  define 

w(z)-- max w(z,D,B), 
Den(C) 

where the max is over all round disks in ~(G).  It is easy to see that  for any R > 0  there 

is an c so that  w(x)<g implies dist(x, OC(M))>R. 
Since A(G) has positive area the Lebesgue density theorem gives us a point of density 

z0cA(G).  We may also assume that  z0 is not one of the (countably many) points fixed 

by some element of G. Let ~/ be the hyperbolic geodesic connecting the origin to z0 

(i.e., a radius of B)  and consider points xE ' /  converging to z0. Clearly w(x)--*O, so 

dist(x, aC(M))--*oc as x-~zo. Therefore we only have to show that  the injectivity radius 

of x is ~>~ along some subsequence converging to z0. 

If this were false then eventually ~ would remain in one of the thin components for 

all points close enough to the boundary. This implies that  Zo is fixed by some element 

of G, and this contradiction completes the proof. [] 

We will use the following result in the proof of Theorem 1.2 (but it is not essential; 

we will also sketch a proof which does not require it). 

LEMMA 3.6. Suppose that G is analytically finite and geometrically infinite. Then 

there is a sequence {xn}CC(M) with dist(xn, OC(M))--*co and inj(x~)>~ for all n. 

Proof. By our earlier remarks, we can find ~>0 and {x~}CC(M) tending to in- 

finity with inj(x)>c.  All we need to do is to check that  there is a subsequence with 

dist (x~, OC(M))--*oc. 
If not, there is some A < o c  such that  dist(x~, OC(M))<A for all n. By Lemma 3.4 

these points are also a bounded distance A ~ from the surface S we constructed. Therefore 

we can construct a sequence {y~}cS such that  y(Xn, yn)<A'. For each of the finitely 

many cusps on S, there is a neighborhood of the cusp so that  any point in M within 

hyperbolic distance A' of the cusp has injectivity radius < i s  (just consider the parabolic 

fixing the cusp point on $2). Thus the {Yn} must all lie in a compact region of S, for 
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otherwise there would be an infinite sequence of disjoint disks in S all with a given area, 

contradicting the fact that  S has finite area. This is clearly a contradiction since xn--*c~ 

implies yn-~c~, proving the lemma. [] 

4. T h e  h e a t  k e r n e l  

In this section we recall some facts about  the heat kernel K(x, y,t) on M = B / G  and 

prove a simple est imate which we will need in the proof of Theorem 1.2. The heat kernel 

is the fundamental  solution for the heat equation on M, i.e., 

u(x, t) = fM u0(y)K(x, y, t) dy, 

is the solution of the heat equation ut =Au with initial value u0. It  can also be interpreted 

in terms of Brownian motion: K(x, y, t)dy is the distribution at t ime t of a Brownian 

motion star ted at the point x. 

We will also need the fact that  the Green function G(x, y) for M may be obtained 

by integrating the heat kernel, i.e., 

// G(x, y) = K(x,  y, t) dt. 

We are mainly interested in the Green function, but it is easier to deal with the heat 

kernel because of the semi-group associated to K and the fact that  this kernel can be 

easily expressed in terms of the eigenfunctions of the Laplacian on M. 

The est imate we need is known. For example, in [28] E .B.  Davies shows 

THEOREM 4.1. If  5>0  then there is a constant C=C(5) such that 

0 <~ K(z,  y, t) <~ Cvol(B(x, tl/2)) -1/2 vol(B(y, t1/2))- l /2e -e(x'y)2(4+5)-lt-1 , 

for 0 < t < l ,  where Q(x,y) denotes the hyperbolic distance between x and y in M, and 

vol(B(x, t)) denotes the volume (in M) of the ball of radius t around x. Furthermore, 

0 <~ K(x, y, t) ~ Cvol(B(x, 1))  - 1 / 2  vol(B(y, 1))-l/2e(~-~~ -e(x'y)2(4+~)-lt-1 , 

for l ~t<c~, where ~o is the base eigenvalue for the Laplacian on M. 

See also [28], [31] and [37] and their references. For completeness, we include the 

proof of the following est imate which is weaker than Davies',  but which is sufficient for 

our purposes. We state our result in three dimensions only, but a similar est imate holds 

in any dimension. 
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LEMMA 4.2. Let G be any discrete MSbius group and let M = B / G .  
an absolute C<~z so that for any x, y c M  and t > 0  we have 

K(x, y, t) ~< 

for o<t<~Q(x,y), and 

K(x, y, t) <~ 

c ( 1 +  e(x, y)) t-3/2e-~e-~-~(~,~)~/s 
vol(B(x, 1))~/2vol(B(y, 1))1/2 , 

C e- )~ot 
vol(B(x, 1))1/2 vol(B(y, 1))1/2, 

Then there is 

(4.1) 

(4.2) 

for t>~l. Here iko denotes the base eigenvalue of M. 

Using these estimates and integrating over t we obtain the estimate on Green's 

function which we will use in the next section. 

COROLLARY 4.3. Let G be any discrete MSbius group and let M = B / G .  Suppose 
that the base eigenvalue )~o is non-zero. Then there are constants C < oo and c>O (depend- 
ing only on Ao) so that for any x, y with Q(x, y)~>8, we have 

G(x, y) <~ C vol( B(x, 1)) -1/2 vol(B(y, 1) ) - l / 2  e -co(x 'y)  . 

1 Proof. We set R-gQ(x,  y) and split the integral 

a(x,y)  = g (x ,  y, t) dt = K(x ,y , t )  d t+ K(x, y, t) dt. 

Now use the estimates from the lemma (we drop the volume terms since they do not 

involve t) to get 

~ C [ ~ R(  l + ~( x, y) ) t -  3/2 e-t e- t-  l o(x,Y)2 /S + / R e -  ~Ot ] 

~C[(l+Q(x,y))  ~Rt-3/2e-te-t-lo(x,Y)2/16e-t-~o(x,Y)2/16+/~e -;~ot] 

<C[(l+o(~,~))e-~(x'Y)/2 f t-3/2e-r~/16+le-~~ 
Jo ~o J 

C e_~O~(X,v)/s ~< C e_~Q(~,y), 

where c = m i n ( ~ 0 ,  �88 [] 

This estimate on Green's function is not as strong as possible, but is more than we 

need. All we will use is that  

G(x, y) <~ Cvol(B(x, 1)) -1/2 vol(B(y, 1))-l/2~(Q(x, y)), 
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where r/(t)-+0 as t--+oo. 

Proof of Lemma 4.2. We begin with the proof of estimate (4.1). We recall that  if 

k(w, z, t) is the heat kernel on the hyperbolic ball B, then ([29, p. 178]) 

~(w, z) e_t_~(~,~)~/4t. 
k(w, z, t) = (47rt) -3/2 sinh(Q(w, z)) 

Using the observation that  

for r>O gives, 

sinh(r) 
- -  ~ ( l + r ) e  - r  , 

Q(~,z)~) 
k(w,z , t ) , ,~ t -3/2( l+Q(w,z))exp - t - ~ ( w , z )  4t " (4.3) 

Fix x, yEM and let w E B  correspond to x via the covering map and let {z j }cB  be all 

the points corresponding to y. Then 

K(x,  y, t) = Z k(w, z~, t). 
J 

Let 

Sn = {zj :n  ~< ~(w, z j ) - ~ ( x ,  y) < n +  1}, 

so that  {zj}=[.JnSn. Notice that  each S,~ can be covered by at most Ce 2(n+~(~'y)) 
hyperbolic balls of radius 1. (This is a very weak estimate; with more work the 2 can be 

replaced by 6(G)+~ for any ~>0.) 

We claim that  if B c B  is some hyperbolic ball of radius 1, then the number points 

of {zj} which can lie in B is at most 

C vol(B(y, 1)) -1. (4.4) 

To prove this let U be a connected, simply-connected neighborhood of yEM which lies 

in the ball of radius 1 around y and has the same volume as this ball. We associate 

to each zj the component Uj of the lift of U which contains zj. If zj E B then Uj is in 

the double of B (same center, radius 2). Since different Uj are disjoint and each has 

volume vol(B(y, 1)), we see that  there are at most Cvol(B(y, 1)) -1 of them, where C is 

the volume of a ball of radius 2 in B. 
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Combining estimates (4.4) and (4.3) we obtain for 0 < t <  l~(x,  y), 

K(x,y,t)=~ ~ k(w, zj,t) 
n=O zj ESn 

<~ C vol( B(y, 1)) -1 E e2"+2o(x'Y)t- 3/2(l + o(x' y) ) 
n=O 

•  (O(x'y)+n)2~-~ ] 

<~ Cvol(B(y, 1))- l t-3/2e-t( l+o(x,  y)) 

) • Z exp ~(x, y)+n- O(x, y)2+2no(x, y)+n2 
~=0 4t 

The sum is (recall 1 t<~O(x,Y)) 

~e  -~ E e x p  O(x,y)+n-  1 n 2 g~(x, y) ~- no(x,y)- ~- 
n = 0  

<~ e- o(x,y)2/st E exp(Q(x, y) + n -  O(x, y) - 4 n -  O) <~ Ce- o(~,y)Z/st. 
n~O 

Thus 
K(x,  y, t) < Cvol(B(y,  1))-1(1--~--~o(x, y)) t -3/2e-te  -O(x'y)2/8t. 

A standard fact about the heat kernel is its symmetry, i.e., 

(4.5) 

K(x,y , t )  =K(y ,x , t ) .  

Thus 

K(x, y, t) = (K(x, y, t) .K(y, x, t)) 1/2. 

Estimate (4.1) now follows from this symmetry and by applying the estimate above twice. 

Now we turn to the proof of (4.2). We start by setting x=y and t = l  in (4.5) to get 

K(x,y ,  1) ~< Cvol(B(x, 1)) -1. (4.6) 

We now use an argument shown to us by Jay Jorgenson to handle the case t~>l. First, 

let us assume that M is a manifold (so that  the group has no elliptic elements). Let {~tn} 

be an exhaustion of M = B / G  by compact submanifolds (or suborbifolds) with smooth 

boundaries and let x, yE~n  for all n. Denote by Kn(x, y, t) the heat kernel on ~n. Then 

we have 

Kn(x, y, t) --* K(x, y, t), 
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as n--+oc. Fix some n and recall that  L2(f~n) has a complete orthonormal basis of 
n oc n ~  n eigenfunctions for the Laplacian, {q0j }j=o, with eigenvalues {A~} chosen so that  Aj -.~ Aj+ 1 

(see [23]). Then 

OO OG 

E ~ - ~t -:~'dt X-" ~.nr / ( n ( x . y . t ) =  = e  . 

j = 0  j = 0  

Now if y=x we notice that  each term of the series, ~flr~(x)2e -('x~-)''d)t is a decreasing 

function of t, and hence taking n---+cc, we get for t~>l, 

CX) 

K(x, x, t) <~ e -:~~ l i m  E ~Y (x)2e-~+~~ = e~~176 x, 1). 
j=O 

(4.7) 

The Cauchy-Schwarz inequality implies 

K(x,  y, t) <<. (K(x, x, t) .K(y, y, t)) 1/2, 

so combining this with the estimates (4.6) and (4.7) gives for t~> 1, 

K(x,  y, t) <~ C vol(B(x, 1)) -1/2 vol(B(y, 1))-l/2e -x~ 

as desired. 

We now outline the proof for the case when M is an orbifold (i.e., the group G 

has elliptic elements). We first look at the hyperbolic ball B and let X denote the 

(countable) collection of all elliptic axes in B. We claim that  X is a closed set. To see 

this, first find for each elliptic axis Xj a group element gj fixing the axis and so that  

0(x, Xj)--1 implies p(x, gj(x))> �89 (we can do this by taking some power of the elliptic 

fixing Xj). Let x0 E B and suppose that  there are an infinite number of distinct Xj coming 

within distance 1 of x0. It is an elementary compactness argument to find a sequence of 

distinct axes which converge in the Hausdorff metric in the ball of radius 2 around x0 

so that  the corresponding elements gj also converge (to a non-identity element). Thus 

gjgj~-i is a sequence of non-identity elements of the group which converge to the identity, 

contradicting the discreteness of G. Hence X is closed. 

Let M = ( B \ X ) / G  be the manifold obtained by removing from M the elliptic axes. 

Then the previous argument for manifolds shows that  (4.2) holds for R'(x, y, t), the heat 

kernel for ~f. Therefore G, the Green function for ~ r  obeys the estimate of Corollary 4.3 

(the only estimate we really require). The proof is concluded by noting that,  from 

elementary results on Newtonian capacity (see e.g., [22]), the Newtonian capacity of X is 

zero. Thus the Green capacity (i.e., the capacity with respect to the Green kernel on B) 
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of X is zero. Lifting G to B \ X ,  we obtain a function harmonic and bounded away from 

the poles of the lift of G. Therefore (since the capacity of X is zero) the lift of G is 

harmonic on B minus the poles. Thus G agrees with the usual Green function for M. [-7 

It may be worth pointing out that Davies' estimate gives an interesting bound on the 

counting function of a Kleinian group. Given x, yEM=B/G,  assume that  x corresponds 

to an orbit containing 0 via the covering map and y to an orbit (yj}. Let ~=Q(x, y) and 

Nk = #({y~ : Q+k < e(0, yj) < e + k + l } ) .  

Then Davies' estimate implies that  for any r  

exp( ( l+r  5(Q+k)[1 - ((1 - ,)~0)1/2/5)(1 - ((2kg+k2)/(o+k)2)1/2)]), 
Nk ~< C~ 

v o l ( B ( x ,  1)) 1/2 v o l ( B ( y ,  1)) 1/2 

where A0=5(2-5) .  See [11] for details. 

5. Geometr ica l ly  infinite groups have d imens ion  2 

In this section we will prove 

THEOREM 5.1. If G is analytically finite and geometrically infinite then 

dim(A(G)) = 2. 

If 5(G)=2 then this follows from Theorem 1.1. Therefore we may assume 5(G)<2.  

In this case Theorem 5.1 follows from 

THEOREM 5.2. If G is an analytically finite, geometrically infinite group and 
5(G) <2 then A(G) has positive area. 

Proof of Theorem 5.2. Let A=A(G)  be the limit set of G. Let 5=5(G) be the critical 

index for the Poinca% series and ~o the base eigenvalue for the Laplacian on M=B/G.  
The Els t rodt-Pat terson formula relates 5 and the base-eigenvalue by 

1, if 5 < 1, 

~0=  5(2-5) ,  i fS~>l  

(e.g., Theorem 2.18 of [61]). In particular, 5 (G)<2  implies/ko>0. 

Let C(A) be the convex hull of the limit set in B and C(M)=C(A) /GcM be the 

convex core of M (see w Let S = U j  Sj be the surface given by Lemma 3.4 which 

separates C(M) from the geometrically finite ends, f~(G). Let w(x, fl(G)) denote the 
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harmonic measure of the geometrically finite ends with respect to the point xEM. More 

precisely, let u be the solution of the Dirichlet problem on B with boundary values 1 on 

a and 0 on A (e.g., see Chapter  5 of [49] for a description of u in terms of the Poisson 

kernel of Xa)- Then u is a G-invariant harmonic function on B and so defines a harmonic 

function on M which we denote w(x, ~(G)). One easily sees that  

area(f~) 
u ( 0 ) -  area(S2) 

If x6C(M) then the surface S separates x from a (G) ,  so the Gauss theorem yields 

w(x,a(G)) =C ~n (X,y)dA(y), (5.1) 

where O/On is the normal derivative to S and dA is area measure on S. This equality 

is easier to see when lifted to B. Let S denote the lift of S to B and let BN denote the 

hyperbolic ball of radius N in B centered at 0. Let BY be the subdomaln of BN consisting 

of all points separated by S from 0, and let RN = G~BN N OBN. Then 0Bn = RN t)SN, where 

SN-=SNBN . Now setting g to be the Green function for B with pole at 0, 

~(o, n(a)) = area(a) = lim area(RN) _ l i m c  -~n dA, 
N----~oo area(OBN) N---~oo NBn 

where the last equality uses Green's theorem. Also note that  although the hyperbolic 

area of OBN grows to infinity as N--~oz, the measure (Og/On) dA is simply (normalized) 

Lebesgue measure on the sphere. Similarly, because S is a Lipschitz graph we have 

Write S = U S j  where Sj=~j(So) is the image of some fundamental region for S. Then 

letting gj denote the Green function on B with pole at zj ='yj (0), 

j S~ j 0 

where the sum and integral can be interchanged using the Lebesgue dominated conver- 

gence theorem. This completes the verification of (5.1). 

Suppose Q(x, y)~> 1. By lifting from M to the hyperbolic ball and using Harnack's 

inequality we obtain the estimate G(z, z)<CG(x, y) for all zEB~ (y, 1). To see this, let 

H denote the projection from B to M and let u(w)=G(x, H(w)). Then if I I (0)=y,  we see 

that  u is a positive harmonic function on {w6B:Q(0,  w)<  1}, so we can apply Harnack's 
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inequality to deduce u(w)<~Cu(O) on { w e B :  6(0, w)< �89 }. Projecting back to M gives 

the desired estimate. 

Next we want to estimate the gradient 

as long as O(x, y) >11. 
property on halls, i.e., 

I%a(x, y) l < Ca(x, y), (5.2) 

This follows because harmonic functions satisfy the mean value 

u(x) = f u(w) dw. 
JB(x,1) 

Thus 

lu(x)-u(z)l <~ f lu(w)l dw <~ Ilull~ vol(B(x, 1)AB(z, 1)) ~< Cllull~lx-zl, 
JB (x,1)~B(z,1) 

where EAF=(E\F)U(F\E).  This proves the estimate if we take u(x)=G(x, y). 
Thus by (5.1) and (5.2), 

co(x, a(a)) = c / s  oa f ~n (X, y) dA(y) <<. Cjs  G(x, y) dA(y). 

By Corollary 4.3 this gives 

co(x, ~(G)) <~ C [  vol(B(x, 1))-1/2 vol(B(y, 1))-1/2e -c~ dA(y). 
J s  

By Lemma 3.6 we can choose a point xEC(M) where the injectivity radius in j (x )>c>0  

is uniformly bounded below and 

dist (x, S)/> dist (x, OC(M)) - R, 

is as large as we wish. For such a point we get 

co(x, ~(G)) <~ cr f vol(B(y, 1)) -1/2 dA(y). 
JS 

By Lemma 3.4, the integral is bounded, so 

co(x, ~(G)) ~ c~-l/2e-cR ~ 1 

if R is large enough. Thus we can find a point x E B at which the harmonic measure of 

f~(G) is strictly less than 1. This means that  f~(G) has less than full area measure on 

the sphere, so the limit set must have positive area. This proves the theorem. [] 
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F i g .  5 .1 .  B r o w n i a n  m o t i o n  e s c a p e s  in  t h e  c o n v e x  c o r e  

Sketch of proof using Brownian motion. The preceding argument can be rewrit ten in 

terms of Brownian motion on the manifold M as follows. To show tha t  A(G) has positive 

area, it suffices to show tha t  a Brownian motion in the ball has a positive probabil i ty 

of first hitting the boundary in A(G). Projecting to M=B/G, it suffices to find a point 

xEC(M) so tha t  a Brownian motion s tar ted at x has a positive probabili ty of going to 

infinity in M without ever crossing the surface S. See Figure 5.1. 

Let U be a unit neighborhood of S. The expected t ime a Brownian motion s tar ted 

at x spends in U is expressed in terms of the heat kernel by 

The heat kernel estimates of the previous section imply that  if we choose xEC(M) 
with injectivity radius bounded away from zero and with dist(x, U) very large, then the 

expected t ime a Brownian motion s tar ted at x spends in U is as small as we wish. 

However, the expected t ime it takes a Brownian motion s tar ted at a point y of S to 

first leave U (i.e., to travel unit distance from S) is bounded away from zero independent 

of the start ing point y. This is because the expected t ime .to travel distance 1 in M is 

greater than or equal to the expected t ime to travel this distance in the covering space B, 

and this is bounded away from zero. Let to >0  be a lower bound for the expected t ime 

to travel distance 1. Thus the expected t ime a Brownian motion star ted at x spends in 

U is at least the probabili ty tha t  it ever hits S multiplied by the bound to. From this it 

is easy to see tha t  the chance tha t  a Brownian motion star ted at x ever hits S is small 

if dist(x, S) is large. Thus with positive probabili ty the Brownian pa th  never crosses S, 

as desired. D 

Sketch of proof using doubling. It  actually suffices to use a weaker estimate on the 
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heat kernel and less information on the convex hull. All we need to know is that  Brownian 

motion is transient on a complete, connected, infinite-volume Riemannian manifold with 

lowest eigenvalue bounded away from zero. For example, the estimate 

K(x,  y, t) ~ Cle -C2t, 

for some fixed x and y and all t>To would be sufficient for this. 

We pay for the less precise estimate by a more involved construction on the orbifold. 

Let S be the surfaces described by Lemma 3.4 which separate the convex core from the 

geometrically finite ends. Cut M along S and let M1 be the component containing C(M). 

Glue two copies of M1 along S. We claim that  the resulting manifold N (the double 

of M1) has lowest eigenvalue bounded away from zero. If so then the heat kernel estimates 

apply to the new manifold N and we deduce that  the expected time a Brownian motion 

spends in U (the unit radius neighborhood of the S) is finite. By the Borel-Cantelli 

lemma this says that  there are points x in M from which the probability of ever hitting 

S is strictly less than 1 (in fact, it is as small as we wish). Thus there is a point x E N \ U  

from which the chance of ever hitting U is less than �89 But the two components of N \ S  

are both exactly M1. Thus Brownian motion in M1 must have a positive probability of 

tending to infinity without ever hitting S. 

This proves the result, except for verifying that  N has first eigenvalue bounded 

away from 0. We will not verify this in detail, but simply note that  since M has constant 

negative curvature and lowest eigenvalue >0, Buser's inequality (e.g. [19]) implies that  

the Cheeger constant for M is bounded away from zero. From this one proves that  the 

Cheeger constant for the manifold with boundary M1 is non-zero, and hence that  the 

Cheeger constant for the doubled manifold N is non-zero. Then Cheeger's estimate says 

that  the first eigenvalue for N is non-zero, as desired. [] 

6. Lower  s e m i - c o n t i n u i t y  o f  H a u s d o r f f  d i m e n s i o n  

In this section we will prove 

THEOREM 6.1. If G is a finitely generated Kleinian group and {Gn} is a sequence 
of Kleinian groups converging algebraically to G then 

dim(A(G)) < lim inf dim(A(Gn)). 
n 

In particular, if G is geometrically infinite then this result and Theorem 1.2 imply 

that  limn dim(A(G~))=2.  
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If G is elementary then d im(G)=0,  and the result is trivial so we may assume 

that  G is non-elementary. Similarly, if l iminfd im(A(Gn))=2 ,  there is nothing to do, so 

assume (after passing to a subsequence) that  l imdim(A(Gn)) exists and is strictly less 

than 2. In particular, we may assume that  all the Gn's are geometrically finite and hence 

5(Gn)=dim(A(Gn)). If G is geometrically finite then 5(G)=dim(A(G)), so Theorem 6.1 

follows from Corollary 2.4. Therefore we may also assume that  G is geometrically infinite. 

The following result shows that  this is impossible and completes the proof of Theorem 6.1. 

THEOREM 6.2. If  {Gn} is a sequence of geometricaUy finite Kleinian groups which 

converges algebraically to a finitely generated, geometrically infinite discrete group G then 

5( 0n)--" 2. 

This result follows from two known results: 

THEOREM 6.3 (Canary). If  G is an n-generated, geometrically finite group then 

An 
~o <. vol (C(M)) '  

where An is a constant that only depends on the number of generators of G. 

Proof. This is essentially Theorem A of [19] except that  there Canary proves 

, x ( O C ( M ) )  
A 0 ~ < ~ ~ ,  

where A is an absolute constant and where X denotes the Euler characteristic. However, 

the Euler characteristic of OC(M) is the same as that  of Ft(G)/G, because there is always 

a homeomorphism between the two (e.g., see Epstein and Marden's paper [32]). By the 

Bers inequality [8] (a quantitative version of the Ahlfors finiteness theorem) the area, 

and hence the Euler characteristic, of Ft(G)/G can be bounded in terms of n, the number 

of generators of the group G. Thus Canary's result says that  

An 
A0 ~< 

vo l (C(M)) '  

where An depends only on the number of generators. [] 

THEOREM 6.4. Suppose that {Gn} are geometricaUy finite Kleinian groups such that 

sup vol(C(M)) < oc. 
n 

If the sequence { Gn } converges algebraically to a finitely generated, geometrically infinite, 

discrete group G then A(G) has zero area. 

Proof. This is an easy case of a result obtained by E. Taylor in [62] and is probably 

well known. Here we will sketch a proof which follows an argument given by Jcrgensen 

and Marden in [40]. 
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Suppose that  A(G) has positive area. We will derive a contradiction. Suppose that  

{G~} is a sequence of Kleinian groups converging algebraically to the Kleinian group G. 

The set of compact subsets of a compact metric space is itself compact with the Hausdorff 

metric 

d(E, F)  = max dist (z, F )  + max dist (w, E),  
zEE wEF 

so by passing to a subsequence (which we also denote {Gn}) we may assume that  the 

sets An =A(G~) converge in the Hausdorff metric to a compact set A~.  

We say that  a sequence {Gn} converges polyhedrally to a group H if H is discrete 

and for some x0 ~B  the fundamental polyhedra (the Dirichlet polyhedron) 

P(G~)  = {z E B :  ~(z, Xo) <~ Q(z, g(xo)) for all g E G~} 

converge to P(H) uniformly on compact subsets of B. By Proposition 3.8 of [40] any 

algebraically converging subsequence has a polyhedrally convergent subsequence and the 

polyhedral limit group contains the algebraic limit group (but they need not be equal). 

A third notion of convergence of groups is geometric convergence. Given a sequence 

of groups {Gn} we define 

E n v { a . }  = {g E PSL(2, C) :  g = lim gn, g. E G.~}, 
n 

and we say that  Gn--~H=Env{Gn} geometrically if for every subsequence {Gnj}, 
Env{Gnj}=Env{Gn}.  Proposition 3.10 of [40] says that  Gn converges geometrically 

to H if and only if it converges polyhedrally to H.  

Thus we may assume that  we have groups GcH such that  

(1) G~---~G algebraically, 

(2) G~--*H polyhedrally and geometrically, 

(3) An--~A~ in the Hausdorff metric. 

If we can show that  the convex core of B/H has finite volume, then we can obtain 

a contradiction as follows. Since A ( G ) c A ( H ) ,  the latter set also has positive area. If 

A ( H ) r  2 then this contradicts Lemma 3.5. On the other hand, if A ( H ) = S  2 then we 

get v o l ( B / H ) < o c ,  which implies that  the thick part of B/H is compact, which implies 

that  the thick part  of B/Gn is eventually compact, another contradiction. 

Thus it suffices to prove that  the convex core of B/H has finite volume. 

We first claim that  A ( H ) c A ~ .  If Ao~=S 2 there is nothing to do, so we may assume 

that  Ao~ is not the whole sphere. In this case we follow the proof of Proposition 4.2 

of [40]. Let f t = S 2 \ A ~  and suppose that  K, K '  are compact sets such that  

K C  int (K')  c K t C  ft. 
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Suppose hEH. Because {Gn} converges geometrically to H we can write h=l imn gn with 

gn E Gn. 
We claim that  h(K)Cl2. If not then h(K) intersects AM, so int (h(K'))  also hits A~.  

This implies that  in t (h(K r) intersects An for all large enough n, say n>~N1. Therefore 

int(gn(K')) hits Am for all m>~N1, for all sufficiently large n, say n>~N2. So if N3= 

max(N1, N2), then n>~N3 implies 

int(gn(K') )nAn # 0. 

Therefore 

int (K')ng~ -~ (An) = int (K')  NAn # ~ .  

This is a contradiction, so we must have h(K)C~. This implies h(~)C~t.  Since the same 

argument applies to h -1, we see that  h ( ~ ) = ~ ,  or equivalently, h (AM)=A~.  Since AM 

is a closed set which is invariant under the group H we must have A ( H ) c A M  as desired 

(recall that  the limit set is the smallest closed H-invariant set if H is non-elementary). 

Since A ( H ) c A ~  the convex hull C(A(H))  of A(H) in B is contained in the convex 

hull C(AM) of A~.  The convex hulls C(An) of the sets An converge, uniformly on 

compacta, to C(AM). Thus for any R<cx~, 

vol(C(A(H)) MP(H)nB(x0 ,  R)) ~< lim inf vol(C(An)NP(Gn)NB(Xo, JR)) < M, 

by the lemma below. Thus C(A(H))NP(H) has finite volume, as desired. [] 

The above inequality uses the the following lemma about the convergence of convex 

hulls. 

LEMMA 6.5. Suppose that {Kn}CS 2 are compact sets which converge in the Haus- 

dorff metric to K. Then for any R<oc, 

lim vol(C(Kn)NB(O, R)) = vol(C(K)NB(O, r)). 
n ---4 CX) 

Proof. Let Xn denote the characteristic function of C(Kn) and XK the characteristic 

function of K.  We first claim that  

lim Xn(Z) = XK(Z), 
n - - - ~  OO 

for all z6OC(K). First suppose zEint(C(K)). Then there are four points Zl, . . . ,z4E 

int (C(K)) ,  so that  the convex hull of these points contains a neighborhood of z. Since 

Kn--+K in the Hausdorff metric it is easy to see that  for any c>0,  and all large enough n, 
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C(Kn) will contain points within c of each of the four points, and thus will contain z 

(if s is small enough). 

On the other hand, suppose z~C(K). Then there is a closed hyperbolic half-space 

which contains z but does not hit C(K). This half-space hits S 2 in a closed disk which 

is a positive distance from K.  Thus for all large enough N the disk does not hit Kn and 

so z~C(K~). This proves the claimed convergence. 

Finally, since each point of OC(K) is on the boundary of an open half-space which 

misses OC(K), the Lebesgue density theorem implies that  OC(K) has zero volume. Thus 

the Lebesgue dominated convergence theorem implies the lemma. [] 

Now that  we have the two results, we can can finish the proof of Theorem 6.2. 

Suppose that  G is a finitely generated, geometrically infinite discrete group and that  

{G~} are geometrically finite groups converging to G algebraically. If A(G) has zero area 

then ~(G)=dim(A(G))=2 by Theorem 1.4 and ~(G~)--~2 by Corollary 2.4. Thus we may 

assume that  A(G) has positive area. By Theorem 6.4 we must have vol(C(Gn))--*c~, so 

by Theorem 6.3 we get )~0(Gn)--*0. Thus by the Els t rodt-Pat terson formula 5 (G ~)~2 ,  

as n--~c~. This completes the proof of Theorem 6.2. 

7. Te ichmfi l ler  s p a c e s  

In this section we shall consider dim(A(G)) as a function on the closure of the Teichmiiller 

space T(S)  of a finite-type hyperbolic surface S. 

Given a finite-type surface S (compact with a finite number of punctures, possibly 

none), the Teichmfiller space T(S) is the set of equivalence classes of quasiconformal 

mappings of S to itself. Each such is represented by a Beltrami differential/5 which may 

be lifted to a Beltrami differential # on the the upper half-plane H. Let F be a Fuchsian 

group acting on H such that  H / F = S .  There is a quasiconformal mapping F of the plane 

which fixes 0, 1, oc and such that  OF/OF=# on H and so that  F is conformal on the 

lower half-plane. On the lower half-plane the Schwarzian derivative S(F) satisfies 

IIS(F) N = sup I Im(z)l  2 IS(F)(z)I  < 6 < ~ .  
Z 

This realizes T(S) as a bounded subset of a Banach space and gives a metric on T(S). The 

closure of T(S) with respect to this metric is denoted T(S) and the boundary OT(S). 
Points of T(S) may be identified with certain Kleinian groups which are isomorphic 

to F. Moreover, convergence in the Teichmiiller metric implies algebraic convergence of 

the groups. A group is called degenerate if ~(G) has exactly one component and this 

component is simply-connected. Such groups must be geometrically infinite by a result 
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of Greenberg [36]. GEOT(S)  is called a cusp if there is a hyperbolic element in F which 

becomes parabolic in G. Bers showed that  0T(S)  consists entirely of degenerate groups 

and cusps, and that  degenerate groups form a dense Gs-set in OT(S) in [9] (in fact, the 

cusps lie on a countable union of real codimension 2 surfaces). McMullen [45] proved 

that  there is a dense set of geometrically finite cusps in 0T(S) .  

Recall that  Theorem 1.6 says that  if {gn} converges algebraically to G then 

dim(A(G)) < lim inf dim(A(Gn)). 

One special case where this holds is for GET(S) ,  the closure of the Teichmfiller space 

of a finite-type hyperbolic Riemann surface S. Since A(G) is at most 2 and is lower 

semi-continuous, it is continuous whenever it takes the value 2 (i.e., at the geometrically 

infinite groups). Since these points are dense on the boundary of Teichmiiller space, this 

function must be discontinuous at the geometrically finite cusps on the boundary. Thus, 

COROLLARY 7.1. Suppose that S is a hyperbolic Riemann surface of finite type. 

Then dim(A(G)) is lower semi-continuous on T(S)  and continuous everywhere except at 

the geometrically finite cusps in OT(S) (where it must be discontinuous). 

This also shows that  equality in Corollary 2.4 and Theorem 1.6 need not occur, 

because a geometrically finite cusp (5(G)< 2) can be approximated by degenerate groups 

(so 5(Gn)-*2).  The discontinuity at the geometrically finite cusps had been proved 

earlier by Taylor in [62]; he showed that  for each geometrically finite cusp G there is 

a sequence G~--*G algebraically, but G n - ~ H  geometrically where H is a geometrically 

finite group containing G and 

dim(h(Gn))  --* dim(A(H)) > dim(h(G)) .  

If f is lower semi-continuous then {f~<a} is closed. Thus, 

COROLLARY 7.2. The set E ~ = { G E T ( S ) : d i m ( A ( G ) ) ~ a }  is closed in T(S) .  The 

set F~={GEOT(S):  d i m ( A ( G ) ) < a < 2 }  is a closed, nowhere dense subset of OT(S). 

Since a lower semi-continuous function takes a minimum on a compact set, dim(A) 

attains a minimum value on 0T(S) .  We prove in [12] that  A is either totally disconnected, 

a circle or has dimension >1. Limit sets corresponding to points of OT(S) cannot be 

circles or totally disconnected, so the third option holds for them. Thus, 

COROLLARY 7.3. dim(A(G)) takes a minimum value on OT(S) and this minimum 

is strictly larger than 1. 

It is not clear where the minimum occurs. Canary has suggested that  it might 

occur at the cusp group corresponding to shrinking a minimum length geodesic on S to 
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a parabolic, since this requires the "least" deformation of the Fuchsian group (in some 

sense), Since dim(A(G)) takes a minimum on 0T(S) which is >1, any group in T(S)  

with small enough dimension must be quasi-Fuchsian. Thus, 

COROLLARY 7.4. Suppose that {Gn} is a sequence of quasiconformal deformations 

of a Fuchsian group G (i.e., {Gn} is a sequence in T(S) ,  S = D / G ) .  If  dim(A(Gn))--*l, 

then Gn--~ G. 

Proof. This is immediate from Theorem 6.1 and the fact (deduced from Theorem 1.7) 

that  G is the only point in T(S)  where dim(A)= 1. (Actually, since the groups involved 

are all geometrically finite we could use Corollary 2.4 and the geometrically finite case 

of Theorem 1.4 instead of the more difficult result Theorem 6.1.) [] 

COROLLARY 7.5. Suppose that G is finitely generated and has a simply-connected 

invariant component ~o (possibly not unique). Let ~o /G=S.  Then for any s > 0  there 

is a 5, depending only on S and 6, such that d im(A(G) )< l+6  implies that G is an 

c-quasiconformal deformation of a Fuchsian group. 

Proof. If G is a quasi-Fhchsian group this follows from the previous result. Maskit [43] 

proved that  a finitely generated Kleinian group with two invariant components is quasi- 

Fuchsian, so we may now assume that  G is a b-group (i.e., has exactly one simply- 

connected, invariant component). If G is geometrically infinite then dim(A(G))=2, which 

contradicts our assumption. Therefore, G must be geometrically finite. Abikoff [1] proved 

that  every geometrically finite b-group covering S is on the boundary of the Teichm/iller 

space T(S) ,  and so its dimension is bounded away from 1 by Corollary 7.3. [] 

It is not true that  the c in Corollary 7.5 can be taken to depend only on the topo- 

logical type of S (e.g., the number of generators of G). For example, given a surface with 

punctures S, it is possible to use the combination theorems to construct a b-group G with 

dim(A(G)) as close to one as we wish and so that  ~o/G is homeomorphic to (though not 

conformally equivalent to) S. 

Larman showed that  there is an co, such that  if {Dj} is a collection of three or 

more disjoint open disks then the dimension of C \ ( J j  Dj is larger than 1+60. A careful 

reading of Larman's paper [42] shows that  his proof gives 

THEOREM 7.6. There is an e0>0 such that if {Dj} is any collection of three or 

more disjoint open 6o-quasidisks, then d im(C\  [Jj Dj) > l+c0.  

Recall that a web group is a finitely generated Kleinian group each of whose com- 

ponent subgroups is quasi-Fuchsian. Suppose that  G is a web group. If ~(G) has only 

two components then G is quasi-Fuchsian ([44]). So suppose that  G has three or more 
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components and let {G1, . . . ,Gn} be representatives of each conjugacy class of compo- 

nent subgroups. By the last corollary either one of these subgroups has a limit set with 

dimension > 1+5 (where 5--5(Gn)) or all the limit sets are c0-quasicircles. In the lat ter  

case, Larman ' s  theorem implies tha t  A(G) has dimension bigger than  1+~0. In either 

case the dimension is bounded away from 1 by a number  which only depends on the 

conformal structure of f~(G)/G. 

COROLLARY 7.7. Suppose that G is a finitely generated web group which is not 

quasi-Fuchsian. Then dim(A) > 1 +~ where E > 0 depends only on the conformal types of 

the components of 12(G)/G. 

It  is not true that  the dimension of limit sets of proper web groups (i.e., not quasi- 

Fuchsian) is bounded uniformly away from 1. Canary, Minsky and Taylor have con- 

structed examples of proper web groups (with a fixed number  of generators) whose limit 

sets have dimension arbitrarily close to 1 (personal communication).  
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