
Acta Math., 179 (1997), 79-103 
(~) 1997 by Institut Mittag-Lei~ler. All rights reserved 

Heat kernel asymptotics 
and the distance function 

in Lipschitz Riemannian manifolds 

b y  

JAMES R. NORRIS 

University of Cambmdge 
Cambridge, England, UK 

1. I n t r o d u c t i o n  

In a solid medium, heat flow is governed by two characteristics, conductivity and capacity, 

which may vary over the medium, sometimes in an irregular way. A general mathemat ica l  

model is provided by a manifold M, in which the conductivity, or rather  its inverse, the 

resistance, corresponds to a Riemannian metric, and the capacity corresponds to a Borel 

measure m. We shall be concerned with the heat flow on M associated to the Dirichlet 

form 

E(f) =/M Iv fl2 din. 

In particular, we shall consider the Dirichlet heat kernel pe(t,x,y) and the Neumann 

heat kernel p(t, x, y). Physically, these express the rise in tempera ture  at y after t ime t, 
due to unit heat input at x, when, respectively, the boundary is maintained at a fixed 

tempera ture  or is perfectly insulated. Our main aim will be to relate, under minimal 

hypotheses, the small t ime asymptotics of these heat kernels to distance functions derived 

from the metric. We shall show that  the basic asymptot ic  formula of Varadhan [V1] 

remains valid without smoothness assumptions on the metric or measure, and indeed 

without any sort of completeness or curvature bound on the underlying space. 

We work throughout in the context of a Lipschitz Riemannian manifold M,  of di- 

mension n, on which is given a Borel measure m. See for example [DP1], IT], [Z]. We 

thus have a maximal  atlas of charts, the transition functions between which are locally 

Lipschitz homeomorphisms in R '~. Henceforth we shall write Lipschitz to mean locally 

Lipschitz. We systematically refer to a chart by its domain U, which is moreover then 

identified with its image, an open set in R n. We assume that  in each chart U the measure 

m is absolutely continuous with respect to Lebesgue measure 1 in R n. In each chart U 
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the metric and measure are given by measurable functions 

a : U ~ R n |  n, # : U ~ [ 0 ,  cc), 

where 

a ij (x) = (dx i, dx j) = aJi(x), #(x) = dm/dl. 

Our basic assumption is that  for some atlas / /  of charts U, there are constants A-- 

)~(U) <cx~ such that ,  for all xEU and ~E(Rn)  *, 

~-Xl~l 2 < ~ a~J(x)~i~j ~ ),1~12, /~-1 < ~t(X) ~ /~. ($) 
i,j=l 

We do not assume that  the constants )~(U), UC/4, are uniformly bounded. Note that ,  

since the transition functions are Lipschitz, once bounds of the type (*) hold for some 

atlas L/, they also hold for all charts with relatively compact domain. Given a chart U 

with )~(U) <oc,  we shall write C for a finite positive constant depending only on ~ and n. 

Further dependence will be made explicit in the notation: thus C(e) will denote a finite 

positive constant depending on s, )~ and n. The value of these constants may be adjusted 

from line to line. 

For measurable functions f :  M--*R having a weak derivative V f  we set 

We define 

C(f)  = / M  Ivfl2 dm. 

79---- WI '2(M) = { f :  C(f)+llfll 2 < ~ ) .  

Recall that  every Lipschitz function has a weak derivative. The set of Lipschitz functions 

in 7) is dense in 7). The closure in 7) of the set of Lipschitz functions of compact support 

will be denoted 7)o--WJ'2(M). Given a non-empty closed set KC_M, the closure in 79 of 

the set of Lipschitz functions vanishing on K will be denoted 7)g. 

Write L for the symmetric divergence form operator in L2(M) given formally in a 

chart U by 

0 (tt(x)aiJ(x)~--fxi) L f = # ( x )  -1 ~ ~x i 
i,j=l 

We say that  a continuous map t~-*ut: [0, cc)--*L2(M) is a solution of the heat equation 

Ou/Ot = Lu 
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with Neumann boundary conditions if uEL2([O,t] x:D) for all t > 0  and for all r we 

have 

/ M C u t d m - j M C u o d m = - ~ o t / M ( V r  

When :D is replaced by Do we get the notion of a solution with Dirichlet boundary 

conditions. When l )  is replaced by :DK we say that  u has Dirichlet boundary conditions 

on K and Neumann boundary conditions at infinity. It is well known that ,  for a given 

initial function uoEL~(M), there exist unique solutions, in all three cases. Moreover 

these solutions may be expressed in terms of fundamental solutions or heat kernels which 

we denote, respectively, p, P0 and PK. See for example [LM], [$2]. Thus, for example, in 

the Neumann case we have 

u(t, x) = /M  p(t, x, y) Uo (y) m(dy). 

Of course we have P0 <~P and PK ~<P. 

The distance function for M is defined by 

d(x, y) -- sup{w(y) -w(x)} ,  

where the supremum is taken over all Lipschitz functions w: M--*R such that  IVwl ~< 1 

almost everywhere. We emphasize that  we do not assume that  M is complete. 

Before stating our results, we shall review briefly the history of the problem we 

consider. The early results concern the case where M = R  n and A(Rn)<cc ,  where, in 

particular, P=Po. In 1968, Varadhan IV1], [V2] considered the case of the non-divergence 

form operator 
�9 . , ,  02f 

L f  = 2_., a ~3 (x) Ox--~-OxJ" 
i , j= l  

He proved, under the assumption that  the metric a is uniformly H61der continuous, the 

fundamental asymptotic result, as t -*0,  

t log p(t, x, y) --~ - ld(x, y)2. 

Soon afterwards, Aronson obtained, in the divergence form case, and without any hy- 

pothesis of continuity on the metric, global Gaussian estimates on the heat kernel, from 

which follow immediately the asymptotic estimates 

Cd(x, y)2 d(x, y)2 
~< lim inf t log p(t, x, y) <~ lim sup t log p(t, x, y) <~ 

4 t-~0 t-~o 4 C  

Aronson's Gaussian estimates are of fundamental importance in the study of linear and 

non-linear heat equations--in particular, the absence of regularity assumptions is relevant 
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in the modelling of many  physical systems, as well as in more theoretical developments. 

The question whether one can take C- -1  in the asymptot ic  estimates, and so recover 

Varadhan 's  formula, without regularity assumptions, has since remained open. 

Two major  advances, relevant to this question, were made around 1986. Firstly, in 

the smooth case, and for a complete Riemannian manifold with Ricci curvature bounded 

below, Li and Yau [LY] obtained upper  and lower Ganssian estimates on the heat kernel, 

from which Varadhan 's  asymptot ic  result follows immediately. Secondly, Davies [D1] 

succeeded in sharpening Aronson's upper  est imate in R n enough to give the upper  es- 

t imate  that  would be needed to generalize Varadhan's  formula. Later, Davies [D3] also 

gave an adequate upper  est imate for Riemannian manifolds, without smoothness or cur- 

vature bounds. In collaboration with Dan Stroock INS], we obtained a Ganssian lower 

bound, which complements Davies'  upper  bound in R n and allows one to deduce small 

t ime asymptotics when the metric is only continuous but the measure is still Lipschitz. 

Zheng [Z] recently proved Varadhan 's  formula in R n, by a probabilistic method, in the 

case where the metric a is constant,  but allowing a general measure m. 

There remain important  open problems in the investigation of small t ime asymp- 

totics in the absence of local ellipticity or symmetry  of the operator,  and in spaces that  

are not locally approximately Euclidean. We mention some significant results in these 

directions. L~andre [L1], [L2] has proved a version of Varadhan 's  formula for subellip- 

tic operators of HSrmander type. Sturm [$2] has a very general form of Davies' upper  

bound, which applies to a general class of Dirichlet spaces. Hsu [HI has proved a version 

of Varadhan 's  formula in the non-symmetric  case, involving an extra  geometric condition, 

which he shows to be necessary. 

Here is the main result of this paper. 

THEOREM 1.1. Uniformly on compact sets in M •  as t-*O, 

t logp(t,  x, y) --~ -�88 y)2, 

t logpo(t, x, y) --* - l d ( x ,  y)2. 

Note, in particular, tha t  the limit does not depend on the measure m. In fact we 

prove a more general result concerning the heat which passes through a given closed 

set K.  Define 

p(t, x, K, y) =p(t ,  x, y)--pg(t ,  x, y), 

p0(t, X, K, y) = p0(t, X, x, y). 

Here we have used the superscript M \ K  to indicate that  we consider the given notion, 

here the Dirichlet heat kernel, relative to the open submanifold M \ K .  We will do this 
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systematically. Define also 

d(x, K, y) = inf{d(x, z)+d(z,  y) : z �9 K}. 

THEOREM 1.2. Assume that K is the closure of its interior. Uniformly on compact 

sets in M x M ,  as t---~O, 

t log p(t, x, K, y) --* - ld(x,  K, y)2, 

t log P0 (t, x, K, y) --* -�88 d(z, K, y)2. 

The fact that  the Dirichlet and Neumann limits are the same in these theorems is a 

manifestation of the "principle of not feeling the boundary".  We also prove the following 

result which expresses the same principle in a stronger form, but subject to an additional 

hypothesis. Given an open set UCM,  define a neighbourhood of the diagonal in U• U, 

AM(U) = {(x, y) E U• U: d(x, y) < d(x, M\U ,  y)}. 

THEOREM 1.3. Uniformly on compact sets in AM(U), as t-*O, 

PM\U(t, X, y ) /p( t ,  X, y) --+ 1, 

pUo (t, X, U)/po(t, y) --* 1. 

Here is the plan of the paper. In w we prove a global upper bound on the heat kernel 

p(t, x, K, y) for an arbitrary closed set K,  which immediately gives the upper estimates 

needed for Theorems 1.1 and 1.2. In w we introduce a second distance function do(x, y), 

defined in terms of paths of least action, and show that  d=do. Then in w we obtain 

the asymptotic lower bounds needed to complete the proofs of Theorems 1.1 and 1.2. 

A key step in the argument for the lower bound of Theorem 1.1 and also the proof of 

Theorem 1.3, involves the upper bound of Theorem 1.2. The following facts will be 

needed in w and w The first is easy and well known; see [$2], so we omit the proof. 

PROPOSITION 1.4. Let u be a solution of Ou/Ot=Lu on [0, c~) •  with Neumann 

boundary conditions. Let r be a Lipschitz function on M, bounded with bounded deriva- 

tive. Then 
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PROPOSITION 1.5. Let u be a bounded solution of Ou/Ot=Lu on [0, oc) • M with 
Dirichlet boundary conditions. Let r [0, c~) • M--*R be Lipschitz and of compact support. 
Then for all f E C 2 ( R ) ,  

/M Ct f ( ut ) dm -- /M r f ( uo ) dm = fot/M ~-s f ( us ) dm ds 

-- fOt/M Csf" (us)lVus] 2 dmds 

- OJ'(us)(Vr 

Proof. Consider 
f t + n  -1 

u ~ n ) = n - l J t  u s d s .  

Then (n) ut --~ut in LZ(M) and u(n)-*u in L2([O,t],WI'2(M)) for all t, as n--*oc. So it 

suffices to prove the identity for u (n). In addition to being a solution, u (n) has the 

property that  t~-~u~n): [0, ~ ) - -*WI '2 (M)  is continuous. Let us assume then that  u has 

this property. 

We deal first with the case where r is independent of t. Denote by ,4 the set of 

those f E C 2 ( R )  such that  the identity holds whenever CEL~(M)MWI'2(M) and r has 

compact support. Obviously `4 is a vector space which contains the constants. By 

dominated convergence, ,4 is closed in C2(R).  The fact that  u is a solution says that  

f (u)=u belongs to ,4. So by the density of polynomials in C2(R),  it suffices to show 

that  ,4 is an algebra. 

Let f ,  gE`4 and CEL~ be of compact support. Then Cf(ut) ,  Cg(ut)E 
L~(M)AWI '2(M)  for all t. Fix n and set _s=n -1 [ns/tJ, ~=n -1 [ns/t 1 . Then by splitting 

the interval [0, t] into n subintervals, we deduce from the identities for f and g that  

fMCf(ut)g(ut) dm-- /MCf(uo)g(uo) dm 

/o7  = _ r 

/o7  _ I u t u 

- fOt fMr Vu2 dmds 

- f f  vus> 
I 

dm ds. 
JOJM 
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This yields the desired identity for the product fg  on letting n--~cc. 

We extend to the case where r depends on t by a similar argument, first reducing 

to the case where t~-+r [0, oo)--*Wl'2(M) is continuous, and then letting n--~oc in the 

identity 

/M C t f ( ut ) dm -- /M O~ f ( u~ ) dm = j~o t/M -~sOr f ( u ~ ) dm ds 

- r 

- r (Vr Vus) dmds. [] 

Certain of the results of this paper have been announced in IN2]. I would like to 

thank Weian Zheng for posing the question which led to this work and to thank Brian 

Davies for some helpful remarks. 

2. U p p e r  b o u n d s  

In this section we prove an upper bound on the heat kernel p(t,x, K,y), giving the 

temperature at y due to unit heat starting from x and passing through a closed set K.  

The basic argument, which deals with the case K = M ,  is well known: see [D3], [$2]. Here 

we combine that  argument with a reflection principle to deal with the general case. 

We recall an argument of Gaffney [G]. Let A, BC_M be Borel sets and let w: M--*R 

be a bounded Lipschitz function, constant on A and B, such that  [Vw] ~ 1 almost every- 

where. Denote by ut, vt solutions to the heat equation with Neuma~n boundary condi- 

tions, with, respectively, uo=lA, Vo-=lB. Fix a E R  and set 

g(t) =/M(e~Wut) 2 din. 

By Proposition 1.4, g is differentiable almost everywhere with 

g'(t) =--2 /Me2a~~ dm--4a /Me2aW {Vut, utVwl dm 

.<< 2o,2/Me2~u~lVwl2 dm .< 2~2g(t). 

So, by Gronwall's Lemma, g(t)<~e2~2tg(O). Thus 

I le~ut  ll2 ~< e~ 2t l[e~ uo ]t 2 = rn( A ) l /2 e~W( A )+ ~ 2t 
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and by the same argument, 

lle-~W,,,ll~ ~< m(B)l/ue-~(B)+~% 
Hence for the heat kernel we obtain 

fA fBP(t,x,y) m(dy) m(dx) 

and, on optimizing over c~ and w, 

where 

=/MUt/2Vt/2 dm 

= fM(e~Wut/2)(e-~Wvt/2) dm 

<~ rn(A)l/2m(B)l/2 e~(~~ +~2t 

fA fB p(t, X, y) m(dy) m(dx) < m( A )U2m( B)l/2 e -d(A'B)2/4t, 

d(A, B) = sup{w(B) -w(A)} .  

Fix now a closed set K C M. Recall that  

p(t, x, K, y) =p(t, x, y)-pN(t, x, y), 

where PK is the heat kernel in M \ K  with Dirichlet conditions on K and Neumann 

conditions at infinity. We propose to combine a mild generalization of Gaffney's argument 

with a general form of the reflection principle, in order to deduce an upper bound on 

p(t, x, K, y). In fact, Gaffney's argument can be expressed in terms of the Dirichlet space 

structure alone: see for example [$2]. 

Consider the Dirichlet space ~I=KU(M\K)+U(M\K) - obtained by glueing to- 

gether two copies of M over the set K.  Then /~  inherits a metric from M, defined 

almost everywhere, and we have a measure ~t on 2kf given by 

~ ( A ) = ~ 2 m ( A )  i fAC_K,  

( m(A) if ANK = 0. 

On Wl'2(i~r) there is a Dirichlet form given by 

g ( f )  = f~.  IV/I 2 d~ .  

Given any function f on 2~r we obtain two functions f+ ,  f -  on M by restricting f to 

KU(M\K) + or to KU(M\K)-.  Set f= f++f - ,  f g = f  +- f - .  Then it is easy to check 

that  f~-+(f, fg) /v~ gives an isometry 

W1,2 (j~) ---> WI'2(M)+W#2(M). 
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Let ~ be a solution of the heat equation for ~, with Neumann boundary conditions. Thus 

t~-~tt: [0, cc)---+L2(2~) is continuous, ~teW1,2(/~) for all t and, for all CeWI'2(M),  

By suitable choice of test functions (~, we deduce that  u=u++u - satisfies the heat 

equation for ($, 7)), and UK=U +- u- satisfies the heat equation for (E, DK). Hence the 

heat kernel for { is given by 

lp(t,x,y) for x e K  or y e g ,  

/5(t,x,y)= �89 for x, y e ( M \ K )  +, 

�89 f o r x e ( M \ K )  +,ye (M\K) - .  

For Borel sets A, BC_M\K we define 

d(A, K, B) = sup{w + (B) - w-  (A) }, 

where w+ ,w- :  M ~ R  are Lipschitz functions, w + constant on B, w-  constant on A, 

such that  [Vw+l, IVw-[~<l almost everywhere and w+=w - on K.  It follows that  

d(A,K,B) =d(A,B), 

where A is the lifting of A in (M\K)- ,  B is the lifting of B in (M\K) +, and 

d(A, ~ ) :  sup{~(~)- ~(~i)}, 
the supremum taken over Lipschitz functions ~: 3~r--.R, constant on fi~ and/3,  such that  

IVY[ ~< 1 almost everywhere. 

Now Gaffney's argument applies without alteration in/~r, so we have 

/~ /~ /5(t,x,y) ~n(dy) ~rt(dx) ~ ?~t(2~) 1/2 ?~t(B) 1/2 e -d(~'~)2/4t. 

Hence we deduce 

fA /B p(t,x,K,y)m(dy)m(dx) <<. 2m(A)l/:m(B) 1/z e -d(A'K'B)2/4t. 

Note that  the same estimate remains valid when either A or B intersect K,  because, in 

that  case, d(A, K, B)=d(A, B), and the original argument may be used. 

Moreover there is a well established way to deduce, from Gaffney's integrated esti- 

mate, a pointwise estimate on the heat kernel, using Moser's parabolic Harnack inequality 

[M1], [M2]. In the generality we require here, this procedure is found in [$2], to which 

we refer for the details. We deduce from [$2, Theorem 2.6], applied to 15, the following 

pointwise estimate. Given an open set UC_R n and 5>0, set 

u(5) = {xc  u: Ix-x'l ~5 implies xtE U}. 
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THEOREM 2.1. Let K be a closed set in M. Let U, V be charts such that )~= 

max{A(U),A(V)}<co.  There is a constant C(A,n)<c~ such that, for all 5>0,  all t>0 ,  

all xeU(5) and all yeY(5) ,  

p(t, x, K, y) <. C max{t -'~/2, 5-~}(l+d(x,  K, y)2/t)n/2e-d(x'K'Y)2/4t. 

This estimate shows in particular that,  for all c, 5>0,  all t<52,  all xEU(5) and all 

yey(5), 
1 d(x, K, y)2 + �89 log(C/ t), t logp( t ,x ,K,y)  <. - ~  

which certainly implies the upper estimate in Theorem 1.2. 

3. T h e  d i s t a n c e  f u n c t i o n  

Recall that  for x, y E M  we define 

d(x, y) = s u p { w ( y ) - w ( x ) } ,  

where the supremum is taken over all Lipschitz functions w: M--~R with IVwl ~ 1 almost 

everywhere. The main purpose of this section is to give an alternative characterization of 

this distance function d in terms of paths of least action. Two features of the context make 

this difficult: first, for a measurable Riemannian structure, some local regularization is 

necessary in order to define the action of a path; second, the lack of completeness allows 

a minimizing sequence of paths to leave all compact sets. 

We begin by considering the case where M = R  n with A=)~(Rn)<c~. Thus, for all 

x E R  n and ~ e ( R n )  *, 

~-11~1~ ~< ~ aiJ(x)~i~j <~ ~1~12. 
i , j=l  

In this case, only the problem of local regularization remains. When, as now, M is 

identified as having a global chart, we will always make the metric explicit to avoid 

confusion with the standard metric in R n. Thus, for a Lipschitz path 7: [0, 1]---+a n, we 

write 
n 

�9 2 V TM a - 1  . i . j  

i , j=l  

When a is continuous, it is easy to show that  

~0 11%[a-1 ds, d(x,y)2 = i n f  �9 2 
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where the infimum is taken over Lipschitz paths with ~'0--x, ~I=Y. However it is clear 

that  this identity must fail in general, because the right-hand side may depend on the 

values taken by a on a set of measure zero, which the left-hand side does not. 

Motivated by the lower bound in [NS], let us instead define a family of distance 

functions, one for each continuous probability density function r on R n, of finite vari- 

ance a2(r Set 
( ~1 ,1/2 

d,(x,y)= inf 

Thus de is the distance function corresponding to the regularized inner product a -1 *r 

We will show that  

dr as a(r 

for some distance function do, and then that  do=d. 
The following properties are obvious: 

(i) de(x, y)~<dr z)+dr y), 

(ii) dr162 y)--~dr y) as ~(r 

(iii) (V/~)- l ]x-yl  <de(x,  y)<~x/~ ]x-yl. 

PROPOSITION 3.1. We have 

de(x, y ) + 2 v ~ a ( r  d(x, y). 

Proof. 
~,: [0, 1]-~R n be a Lipschitz path with ~/(0)=x, V(1)=y. Then 

Let w: R n ---+R be a Lipschitz function with IVWla ~ 1 almost everywhere. Let 

w(y)-w(x) < r +2v  

= (Vw(z),+s>r162 
n 

(/01 
The claim follows on optimizing over w and 7. 

PROPOSITION 3.2. We have 

[] 

dr162 y) +2v/~ a(r ~> de(x, y). 

Proof. Note the inequality 

de(x-z ,  y-z)+2v/~ Izl >/de(x, y). 
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We have 

SO 

dr162 inf f l  . 2 s = I% I(o-~.~).,~ d 
7 J 0  

R - 2 Z =i~f or I%l(o-,.r d~d 

f fiz)dr ,-z) dz 

d~,r y) >~ d~(x, y)-2v/A a(r [] 

We deduce from Proposition 3.2 that  

SO 

lim sup d~ (x, y) ~< d ,  (x, y) + 2x/~ a(r 
~(r 

lim sup d o (x, y) ~< lira inf de(x, y). 
a(~)-~0 a(r 

This shows that  de(x, y) converges as a(r We denote the limit by do(x, y) and note 

the following inequalities, obtained on passing to the limit in certain inequalities above: 

(i) d0(x, y)<do(x, z)+do(z, y), 
(ii) (v/-A )-llx-y[<~do(x,y)< v/A Ix-yl, 
(iii) do(x, y) >~d(x, y), 
(iv) d~(x,y)2>~ fm.C(z)do(x-z ,y-z)  2 dz. 

We postpone the argument which shows that  do=d until we can give it for a general 

manifold M, since we would have to repeat it then anyway. 

Next we prove two localization results. Given an open set U C R  '~, denote by g--Qv 

the Euclidean distance to the boundary 

~(x)=inf{Iz-x]:zg~U}, xeU. 

Let a -1 be a metric on U with A=A(U)<c~. Let a-~l,a~ 1 be extensions of a -1 to 

R n and suppose that  A 1 (Rn), A2(R n) < oc. Denote by d~, d~ the corresponding distance 

functions. We introduce a neighbourhood of the diagonal in U• U: define 

h(u) = {(x, ~) e u •  u :  e (x )+e(y)  > ~ ly-x l} .  

Recall that U(e) = { x e U :  ~o(x) >5}. 
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P R O P O S I T I O N  3.3. We have 

d~=d 2 on A(U). 

Proof. Suppose (x,y)EA(U). Choose ~>0 so that  

e(x)+Q(y) >  ly-xl+2 . 

Let r be a probability density function, supported in the ball of radius r in R n. Let 

~/: [0, 1]--*R n be Lipschitz, with ~/(0)=x, "~(1)=y. If % • U(r for some s, then for i= 1, 2, 

1 

d (x'Y)2 <  ly-xl2 < <f0 

On the other hand, if %EU(r  for all s, then 

/0 /0 �9 2 I% lai-!.r ds = 1"~[2 ,r 

On taking the infimum over "y we find 

d (x,y) 

The claim follows on letting e--+0. [] 

We denote by d U the common restriction to A(U) provided by Proposition 3.3�9 

We return to the case of a general Lipschitz Riemannian manifold M, with distance 

function d. The distance function corresponding to an open set UCM is given by 

dU(x, y) = sup{w(y) -w(x)} ,  

where the supremum is taken over Lipschitz functions w: U--*R with ]Vwl~<l almost 

everywhere in U. Of course dV>~d on U• U. For each x c M  the set 

{z ~ M: d(x, z) <~ r} 

is compact for all sufficiently small r>0 .  Denote by d(x, co) the supremum of such r. 

Define a neighbourhood of the diagonal in M •  by 

A(M) = { (x, y) �9 M•  : d(x, y) < d(x, oo)+d(y, co)}. 

Note that,  if U is a chart with )~(U)<co, then A(U)_CA(U). 
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PROPOSITION 3 . 4 .  For any open set UC_M we have 

dU=d on A(U). 

Proof. Suppose that  (x,y)EA(U) and that  w: U--*R is Lipschitz, with IVwl~l  al- 

most everywhere. Then 

w(y) -w(x)  < dV(x, oc)+dV(y, cx)). 

By adding a constant to w, we can assume that  

w(x) > -dU(x, oc), 

Hence the cut-off functions 

w-  (z) = - (w(x) +dV(x, z) )-,  

w(y) < dV(y, c~). 

w+ (z) = (w(y)-dV(y, z) ) + 

are Lipschitz, of compact support, and satisfy IVw+l~ 1 almost everywhere. See for 

example [S1]. Set ~ = w - V w A w  +. Then ~(x)<~w(x), ~(y)>~w(y), ~ is Lipschitz, of 

compact support, and IV~I ~ 1 almost everywhere. Hence, if UCM, we can extend ~ to 

M by setting ~--0  on M\U.  The claim follows on optimizing over w. [] 

PROPOSITION 3.5. Assume that U is a chart with )~(U)<oc. Then 

dgo >~d on A(U). 

Proof. The restriction of the metric to U extends to a metric ~-1 on let n. Denote 

by d the associated distance function. Then for (x, y)EA(U), 

dV(x, y) = do(x, y) >1 d(x, y) = dV(x, y) = d(x, y) 

by Propositions 3.3 and 3.4. [] 

We now extend the definition of do to M. Define 

k 

d0(x, y) = inf E dU~(zi-l' zi), 
i = 1  

where the infimum is taken over all integers k/> 1, all sequences of charts U1,..., Uk with 

A(Ui) <ec,  and all sequences of points z0, ..., zk with z0 =x ,  zk = y  and (zi-1, zi) EA(Ui) for 

all i. Consistency with the old definition, when M has a global chart U with A(U)<c~, 

is an easy consequence of Proposition 3.3. The following properties hold: 

(i) do (x, y) < do (x, z) + do (z, y), 

(ii) do(x,y)<~ ~ l x - y  I for (x,y)EA(U), 
(iii) do(x, y) >~d(x, y). 

Property (iii) follows from Proposition 3.5 and the triangle inequality for d. 
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THEOREM 3.6. We have do=d. 

Proof. Fix xEM and set w(y)=do(x,y). We shall show that  w is Lipschitz, with 

IVwl ~< 1 almost everywhere. This implies that  

d(x,y)~w(y)-w(x)=do(x,y). 

Combined with (iii) above, this proves the theorem. 

We can cover M by charts U with X(U)<ce. Then we can cover each chart U 

by Euclidean balls N such that  for some ~>0, for all y,y~EN and all Izl<<.~, we have 

(y-z,y '-z)eA(U).  Then for y , y ' eg  and Izl~<Q, 

I~ (~ - z ) -~ , ( y ' - z ) l  <. dU(y-z,  y ' -~)  = & ( y - z ,  y ' - z )  <. Av/X~ ly-y' l ,  

where cl0 corresponds to some extension 5 -1 of the metric from U to the whole of R ~. 

This shows, by taking z=O, that  w is Lipschitz on N, and so has a bounded weak 

derivative on N. 

Let r be a smooth probability density function, supported on the ball of radius 

in R n. Set wr162  on N. Then, for y,y'EN, 

we(Y)- we (y') = [ r  dz 
JIz I <<.~ 

SO 

(w~(y)-w~(y'))2 <~ f~l.< r dz 

<. f~or y'-z) ~ dz <. &(y, y')~. 

We used the inequality (iv), written after Proposition 3.2, at the final step. Now 5 -1 *r 

is continuous, so given ~>0, there is a hE(0, 8) such that,  for y, y~EN, 

(5 -1 . r  ~< (1+~) (5 -1 *r = ( l+c ) ( a  -1 *r (y). 

_ ! Set %-y+s(y -y). Then 

/o I /o 1 �9 2 �9 2 t 2  ~r y,)2 <~ I%]a-1.r ds <~ (I+E) I%la-l.r ds = ( l + s ) ] y - y  ]~-1.r 

Hence 

]Vwr ~< 1 on N. 

On letting a(r we obtain ]VW]a<<.l almost everywhere on N, as required. [] 
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We mention that  the problem of characterizing the distance function d in terms of 

paths has already been solved by De Cecco and Palmieri [DP1], [DP2], who showed that  

d=5, where 

t~(x,y)=sup(inf fo 1" 2 ds) 1/2, 

where the supremum is taken over all sets NC_M with r e (N)=0  and where the infimum 

is taken over all Lipschitz paths 3': [0, 1 ] ~ M  such that  3"(0)=x, 3'(1)=y and 3'(s)•N for 

almost all s. 

Let us show directly, in the case where M = R  '~ and A(Rn)<cx~, that  6~<d0. Given 

~>0, we can find a continuous probability density function r supported in the ball of 

radius c, and a Lipschitz path 3': [0, 1]--*M with 3'(0)=x,3"(1)=y such that  

~0 1 �9 2 
I% la-1.r ds <~ do (x, y)2 +e. 

Fix N C R  '~ with m(N)=O. Define for z E R  '~, 

rls(z)=(SAlA(~-~-fi-))z 

and set 

N'~={zERn:foll.rs+m(z)~Nds>O}. 

By Fubini's theorem, m(N'Y)=O, so we can find z~N "y with Izl~<r such that  

But then ?+~(z)_l_N and 

f0 1 �9 2 
I%la-l(~+z) ds <~ do(x, y)2+2~. 

j C  ]x/8 q-~)8 (z) ]2-1 ~< do(x, ds y)2  q - C ( ) ~ ) ~ .  

Since ~>0 and N were arbitrary, this shows that  5~<d0. 

It is easy to extend this inequality to general M, and to show that  5~>d. So we can 

recover De Cecco and Palmieri's result d=~ from Proposition 3.6. 

4. Lower  b o u n d s  

In this section we establish the lower bound needed to complete the proof of Theorem 1.1. 

We also complete the proofs of Theorems 1.2 and 1.3. Recall that  M is a Lipschitz 

Riemannian manifold, m is a Borel measure on M, and the basic assumption (*) is in 
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force. We have to show that,  for the Dirichlet heat kernel p0(t, x, y), for every compact 

set K C M  and every s>0 ,  there is a 5>0  such that  for all tE(0,5)  and x, y E K ,  

t log P0 (t, x, y) >~ - ~ do (x, y)2 _ e. 

Whilst it would be nice to deduce such an asymptotic statement from a simple global 

lower bound, as we did for upper bounds in w this has not been achieved. Indeed our 

analysis allows that  the rate of convergence in the lower estimate as t--*0 may depend 

on the roughness of m and on the complexity of a minimizing sequence of paths for 

the distance function. In [N1], [N3] we proved estimates for heat kernels with rapidly 

oscillating coefficients, which show that  this is inevitable. 

We begin with the case where M - - R  n with A(Rn)<ce ,  where most of the analysis 

is done. In the subcase where # is Lipschitz, the operator takes the form 

i , j=l  Ox----'~ aiJ(x) + aiJ(x) OxJ 

and the global lower bound in [NS], together with w gives the desired asymptotics. 

Another subcase, where a is constant on each side of a hyperplane and where # is the 

associated Riemannian volume, was dealt with recently by Zheng [Z]. Our method for 

the general case is an elaboration of the method used in [NS], in which # is approximated 

in L2(M) by a Lipschitz function. 

Next we prove a lower bound for the Dirichlet heat kernel pU(t, x, y) of an open set 

UC_R n with A(U)<c~. The method uses the upper bound of Theorem 2.1 to control 

p(t, x, R n \  U, y) together with the identity 

pU(t, X, y) = p(t, X, y) --p(t, X, a n \ u, y). 

The general lower bound then follows by a chaining argument. 

THEOREM 4.1. Assume that M = R  ~ and that A(Rn)<oe.  For every R<oo and 

g>0 there is a (~>0 such that for all tE(0,5) and x, y E R  n with Ix], lyl<~R, 

t log p(t, x, y) >~ - �88 do (x, y)2 _ ~. 

Proof. Denote by Lo~ the classical heat kernel in R n, 

Q~-(x) = (47rT)-n/2e-lxl'/4r. 

Let d~- denote the Riemannian distance function corresponding to the smoothed metric 

a - l*g~ ,  which was written as da~ in w We know by w that  for all x,y ,  

a s  
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By equicontinuity, this convergence is uniform on compact sets. 

Fix RE (0, co) and ~, 5, rh r E  (0, �89 Fix also tE (0, 1] and x, yER n with ]xl, ]Yl ~<R. 
We can find a Lipschitz path 7: [0, t]--~R n such that  

and 

and then moreover, for all s, 

Choose rE(0,  oo) so that  

{ ~  for s ~< �89 

% = for s/> ( 1 - � 8 9  

~o t &- (x, y)2 
I#~l~-~.o~d, = ( 1 - Z ) t  ' 

I~sl ~< AR, ]@sl ~< Cly-xl/t. 

jflzl>r&- dz <~ �89 

and then (rE(0, oc) so that  

flz (0 , ,#-#)~ dz <~ �89 
I~<R+r+AR 

Set ~s(Z)=Qr(Z--%) and v=Qs*#. Then A-' ~<~,(z)~<A for all z. Moreover for all sE[0, t], 

JIzI<.R+r+XR 

Consider the probability measure ~ on R n given by 

dTr/dm c~ ~t/2/v. 

The normalizing constant is then 

and by Jensen's inequality 

f 
1 -c t  ~< JR ( 1 -  (# /y) ) r  dz <~ (5. 

In particular a~> �89 so Idrr/dml <~2AT -n/2. 
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We have 

p(t,x,y)= /R P(lt, x,z)P(�89 z,y) m(dz) 

(-~--lTn/2 f ~(1§ x,z)P(�89 y) Tr(dz) 
>1 ~ j r t  , ~ ,  z ,  

so by Jensen's inequality again 

log V( t, x, y) ~ -C-~- �89 log T -~-O~ -1 { G(�89 q-G(it) }, 

where 

(t) 

G,(s) = fR (r ) logp~ din. 

Then by an obvious extension of Proposition 1.5, G .  is differentiable almost everywhere 
with 

G~(s) = f (V logps, aV logp~)(r dm 
JRn 

- f r t ( V  log ~ ,  aV logp~)(r dm 

+ / R ( V  log u, aV logp~) (r dm 

+/ r t  ('~, V log p~) (~b~/u) dm 

+ fR ('9~, V log ps ) ((#/u) - 1) ~b~ dz 

-/R@~, V log r )((p/u) - -  1) (log p s )  r dz 

=I1+I2+I3+I4+I5+I6. 

f 
G(s) .].(r log p(8, x, z) m(dz), 

~(s) = fR (r p(s, z, y) m(dz). 

The following crude Gaussian bounds are due in the case #=1 to Aronson [A]. See 
for example [D2]. The extension to general # is straightforward. Details may be found, 
for example, in [N3]. There is a constant C(A, n)<c~ such that, for all t>0 and x, yER n, 

c-l t-n/2 e -Cly-xl2/t <~ p(t, x, y) <~ ct-n/2 e -ly-xl2/Ct. 

We deduce that 
G(1/3t) ~ - C - � 8 9  log(1/3t) -CT/  (~t). 

Fix •>0 and set ps(z)=p(s, x, z)+x. Define 
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Note that I1>0. We exploit this fact using quadratic inequalities of the form 

A2+AB>~-�88 2 to obtain a lower bound for G~(s). We have 

�89 + I2 >~ -(C/v) fR. Iv log r162 dz >~ -C/~?r, 

~d1+I~ ~> -CllV log -Ill/~. 

1 /R  I%l~-,(~)(,/ul(z)~(z)dz (1-~)I1+/4/> 4(1_7) ,~ 

1 jR . ~ z f~(( , /~)-x)~r > 4(1-v) ,b'~lo-,(=)~'~( )dz-Cl'%l: 
>-- - i'5', I~- , .~ . /ao -,7) -c521y-xl~/t ~, 

~,7I, + & > - (  c/,7)l+~l:./,o( (t,/,,)-1)~~, d~ 

> -C,521y-~l:/,Tt 2, 

I6 >~ -(c/~)b,I ~/R~ 1)2~, dz - v f~o}V ~og ~ f  0og p,)~e, dz. 

To estimate this final integral we use the crude Gaussian bounds above, which imply for 
1 1 

(logp~) 2 ~ (l +}z-xl~)2/s 2 <~ C(l +ly-x]4 +}z-%14)/~2tu, 

where we have used 

Iz-:~l < Iz-~, , l+ b . - ~ l - <  Iz--~,l+Csly-xl/t. 
Then 

R" Iv log r (log ps)2~s dz <. C(I+  lY-Xl4)/132rt2" 

Thus we obtain for 1 1 ~t<~s<~ $t the lower bound 

O: (s) >1-[~1~-,,~r/4(1--7) 
- ( c / t  ~) (~  ly - xl~/v+v(1 + ly - ~ ? ) / ~ )  

-c(i/~+ IIV log ,,I l l/,~). 

Hence 

f~/2 

r t / 2 .  2 d 
1 Jo I")'~[,~-,.L,.~ s t> 4(1-~) 

- ( C / t ) ( S Z l y - x l z / y + r / ~ + v ( l + l y - x [ 4 ) / ~ % )  

-Ct(1/ ,~ + llV log . l l l  /~). 



H E A T  K E R N E L  A S Y M P T O T I C S  IN L I P S C H I T Z  R I E M A N N I A N  M A N I F O L D S  99 

The right-hand side is independent of •>0, and so is also a lower bound for G(�89 

By symmetry there is an analogous lower bound for G(�89 Hence, on substituting 

in (~), we obtain 

t logp(t, x, y) >~ - d r ( x ,  y)2 /4 (1 -N) (1 - /3 ) (1 -5 )  

-c(521y-x12/ + x14) 
-ct2(i +ilV log 

Given c>0,  we can choose/3, then 7, then r], then 5, so that for all ]xl, lyl<~R, 

t logp(t, x, y) >~ - �88 y ) 2 _ r  2 (1/U7+ ]l V log ul]2/~?). 

The result follows. [] 

The following lemma is the first step in extending Theorem 4.1 to a general mani- 

fold M. 

LEMMA 4.2. Let U C_M be a chart with A(U)<cc.  For every s >O and every compact 

set KC_A(U), there is a 5>0 such that for all tE(0,5) and ( x , y )EK ,  

t logpU(t ,x ,y)  >1 1 U - ~ d  0 (x, y )2-~ .  

Proof. The assertion is independent of M \ U  so, since U is a chart, we can assume 

that M = R  ~ and A(R~)=)~(U). In this case we have 

pU(t,x,y)  = p ( t , x , y ) - p ( t , x ,  R n \ U , y ) .  

Given KC_A(U) compact, there is an ~>0  such that,  for all ( x , y ) e K ,  

d(x, R~ \U,  y)2 ~> (d(x, oc)+d(oc, y))2 > d(x, y)2 + 12~7. 

By Theorems 2.1 and 4.1, given ~>0, there is a 5>0  such that for all tE(0,5)  and 

( x , y ) e g ,  

t log p(t, x, y) >~ - ld(x ,  y)2 _ ~, 

t logp(t, x, R n \U, y) < - l d ( x ,  R ~ \U, y)2 +e.  

Hence, provided that 5~e~<~, we have 

P( t , x , R~ \U , Y )  <<. e-n/t  <<. e-~ 
p( t ,x ,y )  
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and 

t logp0~(t, x, y) ~> t log p(t, x, y ) + t  log(1 - e  -1 )/> - �88  y)2 - 2 e .  [3 

We can now complete the proof of Theorem 1.1. We have to show that,  for every 

e > 0  and every compact set K C M ,  there is a 5>0  such that  for all tE(0, 5) and x, yCK, 

t logp0 (t, x, y) >~ - �88 y)2 -c .  

Recall that  the distance function do is defined by 

k 

do( x, y) = inf E dgo ~( Zi- l' Zi )' 
i = l  

where the infimum is taken over all integers k ) l ,  all sequences of charts U1, ..., Uk with 

A(Ui)<ec, and all sequences of points zo,...,zk with zO=x, zk=y and (Zi_l,Zi)CA(Ui) 
for all i. Hence, given e>0,  we can cover M x M  by open sets of the form NoxNk where 

k~>l is an integer and where there is a sequence of charts U1,...,Uk with A(Ui)<ec 

and a sequence of open sets N1, ...,Nk-1 such that Ni is relatively compact for all i, 

Ni_lXNiC_A(Ui) for all i~>1, and 

k 

i = l  

whenever xi E Ni for all i. 

By Lemma 4.2, there is a 5>0  such that  for all tE(0,5)  and xiCNi, 

1 J r , ,  , x d  2 - e / k .  t logp0(t, xi-1, xi) >1 - ~ao (xi-1 

For any ~h, ...,Trk~>0 with 7q+ . . .+z rk=l ,  we have 

k--1 

po(t, xo,xk) > / [  m(dxl).. .  [ m(dxk-1) H p(Trit, xi- l ,Xi)  
JN 1 J N k - 1  i=1 

so for all xo E No, xk E Nk, 

k - 1  k--I  

t log Po (t, Xo, x k) ) E t log m (Ni) + inf E t log p(zri t, xi-1, xi), 
i=1 i=1 

..., Xl EN1, where the infimum is taken over all xlEN1, Xk-lENk-1. We can find * -- ..., 

X'k-- 1 E N k -  1 w h e r e  t h i s  i n f i m u m  is  a c h i e v e d .  T a k e  

ui  �9 �9 
do (xi-1, xi) 

~ri : k - - l  . U j i  . . ' 
E j = I  aO t X j - l , X j )  
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where x 0 -x0 ,  x k-xk .  Choose 5 >0 sufficiently small that  for all t � 9  (0, 5), 

k - 1  

E tlogm(Ni) <. ~. 
i=1  

Then for rE(0, 5) and xo�9 xkENk we have 

k--1 k- -1  
Ui * t logpo (t, xo, xk) ~> E t log m(Ni)-  E do (x i - l '  x*)2/4~'i - r 

i=1  i=1  

) -ldo(xo, xk) 2-3e .  

This completes the proof of Theorem 1.1. 

A small variation on the argument just used also gives the lower bound needed to 

complete the proof of Theorem 1.2. For we have for a non-empty closed set K C M  and 

s �9  

po(t, x, K, y) >~ / p o ( s ,  x, z)po(t-s, z, y) m(dz) 
i *  

JK 
and 

d(x, K, y) = inf (do(x, z)+do(z, y)). 
z E K  

So, provided K is the closure of its interior we can re-run the preceding argument with 

po(t, x, y) replaced by po(t, x, K, y) and d(x, y) replaced by d(x, K, y), where we make the 

additional requirement that  Ni C K for some i. 

Finally we prove the principle of not feeling the boundary, Theorem 1.3. Recall that  

for UCM open we set 

AM(U) = {(X, y) �9 U• U: d(x, y) < d(x, M\U, y)}. 

We have to show that,  uniformly on compacts in AM(U), 

pM\ (t, x, y)/p(t, x, y) 1, 

pU(t, x, y)/po(t, x, y) ~ 1. 

We have 

PM\U(t, X, y) = p(t, X, y)--p( t, X, M \  U, y), 

pU(t, x, y) =p0(t,  x, y)-po(t, x, M\U, y). 

Given KC_AM(U) compact, there is an ~>0 such that,  for all (x,y)EK, 

d(x, M \  U, y)2 >~ d(x, y)2 + 12~. 
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By Theorems  2.1 and  4.3, there  is a 6 > 0  such tha t ,  for all tE  (0, 6) and  (x, y ) E K ,  

t log p0 (t, x, y) >~ - �88 y)2 - c ,  

t logp(t, x, M \ U ,  y) <~ - �88 M \ U ,  y)2 +c ,  

SO 

and this is enough. 

p(t, x, M \ U ,  y)/p(t ,  x, y) • e -~/t, 

po( t, x, M \  U, y) /po( t, x, y) < e -~/t, 
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