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1. In tro d u c t io n  

The lack of suitable methods of stationary phase for both degenerate oscillatory integrals 

and degenerate oscillatory integral operators has been a major source of difficulties in 

many areas of analysis and geometry. Despite their name, degenerate phases are of- 

ten generic, for example in presence of high codimension or of additional parameters, 

a phenomenon familiar in singularity theory. Strongest results to date include the now 

classic work of Varchenko [18] on decay rates for oscillatory integrals with generic ana- 

lytic phases, and the relatively more recent progresses in the study of Lagrangians with 

Whitney folds [8], [4], [3], [9], generalized Radon transforms in the plane [10], [15], and 

sharp forms of the van der Corput Lemma in one dimension [11], [2]. 

The purpose of this paper is to establish sharp and completely general bounds for 

oscillatory integral operators on L 2 (R) of the form 

s (Tf)(x) = eiXS(x'Y)x(x, y)f(y) dy, 
O0 

(1.1) 

where X E C ~  (R 2) is a smooth cut-off function supported in a small neighborhood of the 

origin, and the phase S(x, y) is real-analytic. (Besides its intrinsic interest, the decay 

rate of IITII in IAI is closely related to the regularity of Radon transforms (see e.g. [3], 

[10], [15]), but we shall not elaborate on this point here.) Our main result is that  the 

sharp bounds for IITll as an operator on L2(R) are determined by the (reduced) Newton 

polyhedron of the phase S(x, y). Remarkably, the Newton polyhedron is the notion which 

had been shown by Varchenko, confirming earlier hypotheses of Arnold, to control the 
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apparently unrelated decay rate for the two-dimensional, scalar oscillatory integrals with 

phase S(x, y). 

More precisely, let 

S(x,y)= ~ cpqxPyq 
p,q=O 

be the Taylor series expansion of S(x, y). The Newton polyhedron of S(x, y) at the origin 

is defined to be the convex hull of the union of all the northeast quadrants in R~0 

with corners at the points (p,q) satisfying Cpqr The reduced Newton polyhedron is 

defined in the same way, with this time the vertices (p, q) constrained by the additional 

requirement that  pqr Equivalently, the reduced Newton polyhedron is the translate 

by the vector (1, 1) of the Newton polyhedron of 02S/OxOy at the origin. The boundaries 

of the Newton polyhedra are called Newton diagrams. We can now define the Newton 

decay rate as 

6 --- min 61 (1.2) 
l 

where the index l runs through the boundary lines of the reduced Newton diagram, and 

(6t -1, 6t -1) is the intersection of the line 1 with the line p=q bisecting the first quadrant. 

The boundary lines which realize the minimum value ~ are eatled the main boundary 

lines. In two dimensions, there are at most two main boundary lines, the case of two 

occurring exactly when the two lines and the bisecting line intersect simultaneously at a 

vertex of the Newton diagram. 

We have then the following theorem: 

THEOREM 1. Let S(x, y) be a real-analytic phase function. If  the support of X is 

sufficiently small, then the operator T is bounded on L2(R) with the bound 

16 
IITII < C l ~ l  - ~  , (1.3) 

where 5 is the Newton decay rate. The result (1.3) is exact in the sense that if X is not 

zero at the origin, then IITIl>>.c'lAI-�89 ~, as IAI--+cc, for some c'>0.  

It is intriguing to compare this statement with Varchenko's theorem for oscillatory 

integrals [1], [18]. In two dimensions, this theorem asserts that  for generic analytic phase 

functions S(x,y)  (non-R-degenerate, in Varchenko's terminology), we have the decay 

rate 

J ~ / _ : e i a S ( x ' Y ) X ( x , y ) d x d y  ~<C[A]-$(log,A]) x, 

where 6 is defined in the same way as 6, but with the reduced Newton diagram of S(x, y) 
replaced by its full Newton diagram, and x = 0  or 1, depending on whether the bisectrix 
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p=q encounters the Newton diagram at a vertex or not. The factor �89 in the decay rate 

for the operator vs. the decay rate for the oscillatory integral is easily understood on 

the basis of dimensionality. So is the irrelevance of pure x "~- and yn-terms in the Taylor 

expansion of S(x, y) in the case of the operator, since these terms are readily absorbed in 

the L 2 (R)-norms of Tf  and f respectively. However, we do not have a ready explanation 

for the absence of logarithmic terms, nor for the full generality of the analytic phase in 

the operator case. 

The above theorem is a substantial generalization and strengthening of both the 

homogeneous polynomial case of [13], and the case of analytic S(x, y) satisfying 

O,~ S On S 
Oxm_lOy (O)•O, OxOyn_l(O)r (1 .4 )  

of [12]. Indeed, the various decay rates for IITII found in [13] for polynomial phase 

functions of the form S(x, y)=E'~=l%xpy n-p just correspond to the different values 

that  5 can take, depending on which boundary line of the reduced Newton diagram for 

S(x, y) is the main boundary line. For general analytic phase functions S(x, y) satisfying 

(1.4), the estimate obtained in [12] was 

1 m~-n--4 IITLL =o(1 1 . . . . .  ). (1.5) 

We note that  in this case ( m - l , 1 )  and (1, n - l )  are two extreme points of the re- 

duced Newton diagram, and that  ( ( m + n - 4 ) / ( m n - m - n ) )  -1 is just the p-coordinate 

(or q-coordinate) of the intersection of the bisectrix p=q with the line joining these 

two extreme points. By the convexity of the reduced Newton diagram, we have then 

( m + n - 4 ) / ( m n - m - n )  <~5, with strict inequality except in the non-generic case where 

the line joining ( m -  1, 1) and (1, n -  1) is actually a boundary line for the reduced New- 

ton diagram. The case of smooth phases, as well as the closely related Radon transforms 

in the plane, is t reated extensively in Seeger [15]. We also observe that  when either m 

or n is equal to 2 in (1.4), the decay rate becomes O(lAl-�89189 ). This is 

of course just a special case of the classic result IITII=O(IAI-�89 valid for oscillatory in- 

tegral operators on L2(R d) with phase function satisfying the non-degeneracy condition 

det S~'j~ k 5 0  [5]. 

Although Theorem 1 establishes a strong correlation between the decay rates for 

scalar and for operator oscillatory integrals, the methods of proof are completely different. 

Varchenko's proof in the scalar case is based on successive blow-ups of the phase which 

reduce the integral to some simple canonical models, for which the desired estimate can 

be established directly. It is not known whether such methods can be developed for the 

operator case. Rather, a fundamental tool we rely on in this paper is a decomposition of 
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the complement R 2 \ Z  in R 2 of the singular variety 

z = {oxo s - s " ( x ,  y) = o)  

into small curved rectangles, whose contributions are summed by balancing an "oscil- 

latory" estimate governed by the size of S"(x, y) on the box, with a "size" estimate 

governed by the dimensions of the box. In its simplest form, this method had been 

instrumental in the earlier work [10], [13]. Here we must use it in conjunction with a 

delicate resolution of R 2 \ Z ,  where the regions between two highly tangent branches of 

Z have to be suitably magnified in several successive scales. 

The paper is organized as follows. In w we provide a few technical lemmas, which 

show that  for our purposes, analytic functions are as well behaved as polynomials. In w 

we establish an Operator van der Corput Lemma, which gives decay rates for oscillatory 

integral operators when the Hessian is of constant size and the shape of the support does 

not oscillate wildly. Due to the fact that  the variety Z can be extremely complicated, 

we give in w a detailed treatment of some typical cases, which serve as models for 

more general situations. This section is crucial to the understanding of the paper. It is 

actually a prerequisite for w since some of the key ideas and resummation techniques 

are introduced and discussed at length there. In w the proof for the general case is 

given, after a suitable discussion of the parameters of the Newton diagram, and of the 

algorithm for how to classify roots and study them with increasingly higher resolutions. 

Finally, we note that,  in preparation for higher-dimensional cases, it may be very useful 

to bring to bear directly the techniques of algebraic geometry, which we have in essence 

circumvented here by use of Puiseux series. Some progress in this direction is in [7]. 

2. Functions of  polynomial  type 

Let FEc(N)[~,~], with N~>I. We say that  F is of polynomial type (of degree N) in 

[a, ~3] with constant C if 

sup IF(N)(x)I <<.C inf [F(N)(x)l. (2.1) 

We always assume that  N is greater than or equal to 1. 

LEMMA 1. Under the above assumption, we have 

(i) sup~ei. IF(x)l<~asupxei IF(x)l, 

(ii) supxEI. IF'(x)l<<.a5 -1 supxei IF(x)l, 

where I is any interval in [a, ~] of length 5, I* is its double (in [a, ~]), and the constant 

a depends only on N and the constant C appearing in (2.1). 
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LEMMA 2. 

for all #>0 ,  

Assume that F is in c(N)[cg/3], and that IF(N)(x)I)A in [a,~]. Then 

I{x: IF(x)l <~ #}1 ~< CN# 1/NA-1/N. (2.2) 

Proof of Lemma 2. The case N =  1 is clear. We proceed by induction on N. Since 

F (N-l) is monotone, we may assume that  its minimum is at an end point, say Xo=a. 
The measure of the interval [x0, x0+A]A[a,  ~] is at most A, while in its complement, 

we have IF(N-1)(x)I)AA. Now the inductive hypothesis to F applied to each of the 

components of the complement gives 

Hence 

I{x ~ I\[xo, xo§ : IF(x)l < #}1 ~ 2CN-1 #1/(N-l)(AA)-I/(N-1). 

I{x: IF(x)l ~ #}[ < A+2CN_I pl/(N-1)(AA)-I/(N-1). 

If we choose A to be A=#Z/NA -1/N, the inequality (2.2) follows with CN=I+2CN_I. 

Proof of Lemma 1. By normalization, we can always assume that  

1 <<. IF(Y)(x)l <<. C (2.3) 

in [a,•]. Consider first the case g = l .  Then by (2.3) we have suPxei.  IF'(x)[<~C. 
If #=supxEi  IF(x)l, the lemma implies that  ]I[=6<c1#. Hence sup~ei. IF'(x)I<C<~ 
a h - 1 # = a 5  -1 suP~e ~ IF(x)l if a=ClC, and (ii) is proved in this case. Next, if xlEI* and 

x2 E I,  then 

]F(Xl)-F(x2){ < lXl --X2] sup IF'(x)t <~ 2&a~5 -1 sup [F(x)[. 
xC=I* xEI 

Thus sup~e/. ]F(x)l<~supxei IF(x)l+2asupxei [F(x)l , and (i) is proved for N = I  (with 

a replaced by 1+2a).  

We can now prove Lemma 1 for general N by induction on N. Assume then that  

it holds for N - l ,  and set supxEi IF(x)[=#. In view of Lemma 2, IIi=5<~CN# lIN, and 

thus 6N<~cN#. For x, x+[zEI, we have 

N - - 1  - k  

F(x+ h) = E h F(k)(x) + O(]t N) sup IF (N) (x)l. (2.4) 
k = l  xEI 

Next, for any xeI ,  there is an h, Ihl=hA-l=�89 so that  x+shEI for all 0~<s~l. If we 

integrate (2.4) with h=sh, we find 

~1 N-l hk ~1 
F(x+sh)r E -~. F(k)(z) Skr ds+O(hY)" 

k = l  
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Choose r so that  f0 lsr  ds=l  and f~ sk~(s)ds=O for k=0,  2, 3, ..., N - 1 .  Since 

fO 1 ds F(x+sh)r ~< Csup IF(x)l----c~ 
x E I  

we obtain �89 5IF' (x) I ~< c(# + 5N) ~< VS- Hence 

sup IF'(x)l ~< C'#~ -1 .  (2.5) 
x E I  

We can now apply the case N - 1  to the function F ' .  In view of part (i), the inequality 

(2.5) implies that  

sup IF'(x)I ~< ac'] - t~ - I  = act~-i sup IF(x)I. (2.6) 
xCI* x E I  

This is the statement (ii) for the case N. From (2.6), we deduce that  suPxer. ]F(x)[~< 

asuPxe I ]F(x)l , as in the case N = I ,  and the proof of Lemma 1 is complete. 

3. P u i s e u x  expansions; beginning of the proof 

The proof of the theorem is based on a decomposition of the operator T into pieces 

supported on certain curved boxes, away from the singular variety where the Hessian of 

the phase S(x, y) vanishes. A key ingredient is the following operator version of the van 

der Corput Lemma, adapted to curved boxes (a version with rectangles was instrumental 

in the study of homogeneous polynomial phases in [13]). 

THE OPERATOR VAN DER CORPUT LEMMA. Let r be a monotone continuous func- 

tion on [~,/3]. Let 

B = { ( z , y ) : r  < y < r a ~<x~<~} (3.1) 

denote the "curved box" of thickness 5 defined by r Assume that X(X, y) is supported 

in B, and that 

(i) IO~x(x,y)l<C6 -n, n=0,1 ,2 ;  

(ii) the function S"(x, y) is of polynomial type of order N in y, uniformly in x, in 

the "double" B* defined by 

B* = {(z, y): r  < y < r  < x ~< 9}; 

(iii) #~<IS"(x, y) i~A#,  for some positive constants A and #. 
Then 

IITII < CA,N(A#) -1/2 

for some constant CA,N independent of X, 5 and the interval [a, 13]. 

(3.2) 

Proof of the Operator van der Corput Lemma. We consider first the special case 

where r is linear, i.e., B is a parallelogram with a pair of sides parallel to the y-axis. 
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This is then Lemma 1.1 in [13], except for the assumption there that  S(x,y) was a 
polynomial in y of bounded degree, as x varies. However, since S" is assumed here to 

be of polynomial type, we can invoke the inequalities (i) and (ii) of Lemma 1 in w as a 

substitute for Lemma 1.2 in [13]. The proof is otherwise unchanged. 

To prove the Operator van der Corput Lemma in the general case, assume that  r is 

increasing. Define c~=xo, xl ,  . . . ,  XM=~ SO that  

r162 O~j<~M-1, 
r 1 6 2  ~< 5. 

Let T~j denote the rectangle [Xy, xj+l] • [r r Then 

and 

M - ]  

Bc U ~-j 
j=O 

T=ZTj 
J 

if we set 

Tjf(x)  = f _  eiXS(~'v)X(x , y) f(y)  dy. 
J 

By the special case we just proved, we have {{Tj II ~<A(AP) -1/2. Moreover, TjT~ :T~Tk:O 
when I j -k{~2,  since both the x- and y-supports of the kernels of Tj and Tk are then 

disjoint. The Operator  van der Corput Lemma follows. 

Proof of Theorem 1. We decompose the operator T as 

T: Z TV (3.3) 
4- j , k  

with T ~  '• defined by 

Tj~'• (3.4) 

Here ~j Xj(x)=l is a dyadic partition of unity of R+, with Xj supported in the interval 

[2 -l-j, 21-J]. The indices • refer to the quadrants defined by specific signs for x and 

for y. To simplify our notation, we shall restrict our discussion to the northeast quadrant 

x>0, y>0, the others being exactly similar, and drop the upper indices +. 

Let K be a large positive constant which we shall specify later. We shall sum back 

separately the contributions of the ranges 

k > j - K  and k<~j-K.  (3.5) 



112 D.H. PHONG AND E.M. STEIN 

Consider first the range k>j -K .  In this range, we shall parametrize the singular 

variety where S ' = 0  in terms of x. More precisely, the analyticity of S(x, y) and the 

Weierstrass Preparation Theorem imply that,  up to a non-vanishing prefactor U(x, y), 
we can write S"(x, y) as a polynomial in y with analytic coefficients in x, 

y) = u(x, (yn (x)y +... +c0(z)) y ' .  (3.6) 

We note that  the reduced Newton diagram of S(x, y) is the same as the translate 

by the vector (1, 1) of the Newton diagram of S'(x, y). Furthermore, Newton diagrams 

are invariant under multiplication by a smooth non-vanishing function. Indeed, consider 

two functions O(x,y) and ~(x,y)=U(x,y)~(x, y) related by a smooth non-vanishing 

factor U(x, y), and their Taylor expansions 

o o  

p,q=O 15,~=0 

Then 5~4=U(0)c~4 unless there is a coefficient %q--0 with (p,q)~(~,~), O<~p~ and 

0~<q~<~. In particular, if c~  is an extreme point of the Newton diagram of ~, there is 

no non-vanishing Cpq satisfying the preceding condition, and 5~4 must be non-zero. This 

shows that  the Newton diagram of �9 must be contained in that  of ~, and, by reversing 

the roles of (I) and ~, that  they are actually identical. 

Returning to the case at hand, we deduce that  the Newton diagram of S'(x, y) (or 

the reduced Newton diagram of S(x, y)) is the same as that  of the polynomial 

yn--  (3.7) 

(or its translate by the vector (1, 1)). 

It is well known that  the non-trivial zeroes rs(x), s = l ,  ..., n, of the polynomial of 

order n in y in (3.7) can be expressed in a small neighborhood of 0 as Puiseux series 

rs(X) =csxa~+... (3.8) 

with the exponents as positive real numbers. In fact, the polynomial 

yn +Cn_l(x)yn-1 +...+C0(x) 

can be first factored into a finite product of polynomials in y with analytic coefficients, 

with the property that  no factor in the product admits by itself identical roots (see 

e.g. Saks and Zygmund [14, pp. 268-271]). If we consider next each of the factors, the 

arguments in Siegel [16, pp. 90-98] can be easily adapted to produce the desired Puiseux 
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series expansion. More specifically, we note that ,  by a simple application of the Implicit 

Function Theorem, the roots of each of these factors are analytic functions of x in a 

small neighborhood of any value x0 for which they are pairwise distinct. Assume then 

tha t  at x0=0,  we have some multiple roots. Since after factorization, each factor has no 

identically equal roots, the values of x0 where the roots can be multiple must be isolated 

points in the complex x-plane. In particular, there is a small pointed disk around x--0,  

where the roots are all distinct and can be given an ordering. If  we analytically continue 

these roots around the origin, they will come back with possibly some permutat ion.  

Since the order of any permutat ion is finite, we can reiterate the analytic continuation 

a finite number N of times until we get back the original ordering. Now the x-range 

defined by going around the origin N times and gluing back with the original values is 

holomorphically equivalent to a disk in the t-plane, with t-~x 1IN. By construction, the 

roots are analytic functions in the pointed t-disk, continuous at t=0 ,  and hence must be 

analytic functions in the full t-disk. Since a power series in t is obviously a Puiseux series 

in x, this establishes our claim. 

The leading exponents as in the roots (3.8) as well as the coefficients cs can of course 

be the same although the roots are distinct. We shall in fact, in w introduce a more 

systematic notation to deal with this phenomenon. For the moment,  we simply list all 

the distinct leading exponents az, 

al < al+l,  (3.9) 

and choose K large enough so tha t  there can be no major  cancellation in y - r s  (x) when 

a s < l ,  and the support  of X small enough so tha t  we have when Xj(x)x(x, y)r 

azj+ 10K < al+lj. (3.10) 

Before proceeding further, we present in the next section some model cases upon 

which the general proof will be built. 

4. M o d e l  cases  

Due to the increasingly fine resolution with which we have to probe the zero set of 

the Hessian of the phase function, the complete argument  for Theorem 1 requires a 

cumbersome notat ion and induction process. However, the main ideas can be easily 

illustrated in a few model cases, which we present in increasing order of generality. By 

the t ime we are done with Model V, we will essentially have dealt with the most general 

c a s e .  
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(a) Model I. In this case, the operator T is given by (1.1), with a phase function 

S(x,  y) satisfying 

Stt(X, y) ~- (y--xa)  n. (4 .1 )  

The analyticity of S"  implies that  both a and n are non-negative integers. If either a 

or n is 0, the phase is actually non-degenerate in a small neighborhood of the origin. 

Thus we may always assume that  a>~l and n~>l. 

Besides boundary lines parallel to the axes, the reduced Newton diagram of S(x,  y) 

admits a single boundary segment, of equation 

q = - p + l + a + n a  (4.2) 
a 

This segment is the main segment, and the Newton decay rate 5, 

IITll ~ CIA1-�89 (4.3) 

is given by 
l + a  

= ( 4 . 4 )  
l + a + a n "  

On the support of the cut-off functions Xk(y)x j (x ) ,  where we restrict ourselves to con- 

sidering only the quadrant {x>0,  y>0} ,  the other quadrants being similar, we have 

2 -k-1  ~ y < 2 -k+l ,  

2-J a-a .< x a ,( 2-J a+a. 

Thus we need to consider three ranges of j ,  k, corresponding to whether there can be 

major cancellations between y and xa: 

�9 2 - Ja+a<2-k -2 ,  i.e., k < j a - a + 2 ;  

�9 2-k+1<2 - ja -a -1 ,  i.e., k > j a + a + 2 ;  

�9 ja -a+2<~k<~ja+a+2.  

It is convenient to denote simply the first range by k<<ja, where the symbol << 

means that  the left-hand side is smaller than the right-hand side, even after the addition 

of a positive constant depending only on the exponent a and possibly on the coefficients 

of the Puiseux series in the factorization of S",  but not on the summation indices j and k. 

Similarly for >>. Finally, we denote the third type of range by 

k~aj .  

We note that  the number of k's in this range is bounded by a fixed constant. 
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We also denote by Ax the maximum length of the support of the kernel of Tjk, 
viewed as a function of x, with y as a parameter. Similarly, the maximum y-length of 

the support of Tjk will be denoted by Ay. Since the kernel of Tjk is uniformly bounded, 

we have the following basic "size estimate": 

IlTjk II <<- (Ax) �89 (Ay) �89 <~ 2- �89 (4.5) 

where here (as elsewhere in the paper), we have dropped all constants independent of 

A, j and k. 

In the range k<<aj, the phase satisfies 

Stt~ 2-kn. 

Furthermore, the support of Xj (x) Xk (Y) is clearly of the admissible curved-box form, and 

the phase function S(x, y) is of polynomial type in y. Thus the Operator van der Corput 

Lemma applies, and we have 

IlTjkll < IAI-}2 �89 (4.6) 

Our general strategy is to sum the contributions of HTjk H's by balancing the size estimate 

(4.5) with the "oscillatory" estimate (4.6). To enforce the constraint k<<aj, we set 

aj = k+r, 

where r is an integer bounded from below. Then 

C~ C~ 
. l k  1 1 1 r 

E IITJkll ~ E E m m ( 2 - ~  ( +~)2-~ '~ ,  1 lkn IAI-~2~ ). (4.7) 
k~<ja k=O r=O 

(Here we observe that  the finite number of contributions coming possibly from the nega- 

tive values of r, can be bounded by a multiple of the contributions say of r=0 ,  and hence 

can be absorbed into the right-hand side of (4.7) up to a multiplicative constant, which 

we ignore.) The summation on the right-hand side of (4.7) is performed first with respect 

to the index appearing with opposite signs in the two estimates on the right-hand side, 

in this case k. It is convenient to state the outcome in a general form, as we shall use it 

often in the sequel. For large ]A], and for any a,/3 positive constants, we have 

o o  

E . 1 1 mm(2_~=k2_~M ' 1 1 I a i /3M ~ ' ~ .  [AI-~2 ~) ~ IAI- =~-z 2- (4.8) 
k=O 

In the case of (4.7), we find 

oo 

Z IITj II < Z I: 1 ~ I:q 
k<<aj r = 0  
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with 5 the desired decay rate in (4.4). 

In the range k>>aj, the Hessian of the phase is of size 

IS"l ~ 2 

on the support of the kernel of Tjk, and thus 

IITjkll ~ I)~1 . (4.9) 

Set now k=aj+r. Summing the estimates (4.5) and (4.9) in the same way as in the 

preceding case, we obtain 

o o  o c  

E I]Tjkll <<" E E min(2-�89189 I/kl-�89189 
k>>~j j=o r=O (4.10) 

o o  
1 1 a n  T 

~ 1A1- 62-  1+o+oo ~1, 1-�89 

Finally, we turn to the case k,~aj. In this case, for each j ,  there is only a finitely 

bounded number of operators Tjk. Furthermore, for [j-jP] suff• large, the projec- 

tions of the supports of Tjk and Tj,k, on both the x- and the y-axes, will be disjoint for 

(j, k) and (S, M) in this range. Thus the operators Tjk and Tj,k, are orthogonal, and it 

suffices to establish the estimate 

IITjkll 4 IA1-�89 (4.11) 

individually for each operator Tjk. 
We introduce then a finer partition of the operator Tj~, 

m ~ m  
= E 

m m 

T~I(x)= ei~S(='Y)Xk(y)xj(X)Xm(y--xa)x(x,y)f(y)dy , (4.12) 

T i f f (x )  = ei'Xs(='Y)xk(y)xj(x)xm(-(y-xa))x(x,y)f(y)dy. 

We separate in this way the region where y - x  '~ is positive from the region where it is 

negative. It suffices to consider T~'~ and the positive region, as the other region can be 

treated in exactly the same way. Evidently T ~  is only different from 0 for m>~aj-C, 
for some small integer C. In presence of the cut-off function X~(y-x~), we have the 

following bounds on the cross sections Ax and Ay of the support of the kernel of T~k.~" 

A y e 2  -m, 
(4.13) 

Ax ~ 2-m2 -(1-a)j, 
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where the second bound follows from differentiating the inequality y-xa,.~2 -m with 

respect to x. The Operator  van der Corput  Lemma still applies to the operator  Tj~, 

since the support  of Xm(y--x a) is an admissible curved box, and both  its y-cross section 

and the inverse of its derivatives with respect to y can be bounded uniformly by 2 -m.  

On the support  of Tj~, we have 
Is"l ~ 2  -ran,  

which leads to the size and oscillatory estimates for Ty~ given by 

IIT~ II ~< 2-m2- �89 (1-a)j, 
m 1 1 m n  Ilrjkll<~l~l-~2 ~ �9 

The constraint rn>~aj is enforced as usual by setting 

m = a j + M  

so that  the above estimates can be rewrit ten as 

IIr~r~ll < 2-�89 

HT~]I < I)~l-�89189189 

To sum in M,  we consider a convex means of these two estimates 

IIT~II ~< (I~I-�89189176189189176 

for some 0 between 0 and 1. Choose 0 so as to cancel the f factors 

ang = ( l + a )  ( 1 - 0 ) .  

We find that  0 must coincide with the Newton decay rate 5 of (4.4), 

and the est imate (4.16) becomes 

_ l + a  

l+a+an'  

IITj~ II < 1~1-~2 -(1-~-�89 

To sum in M, we need to consider the sign of 

1 _ 6 _ 1 n 5 = 1  n ( a - 1 )  
2 2 l+a+an 

Q 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

(4.19) 
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Thus the geometric series in M is rapidly decreasing and we can sum (4.18), obtaining 

the desired estimate (4.11), unless a=l. 
This last case can be treated separately, directly from the original estimate (4.14), 

E IITJ '~ll~< ~-~ min(2-'~' 1 lmn 1 , 
m ~ j a  m = 0  

which is the correct estimate when a--1. The treatment of Model I is complete. 

(b) Model II. This second model corresponds to the phase function 

s " =  ( y - z a l )  ... ( y - x ~ 1 7 6  

where the exponents a~ are distinct positive real numbers greater than or equal to 1, and 

we have ordered them as 

1 ~< al < a2 <... < an. (4.20) 

We begin by a preliminary discussion of the reduced Newton diagram of S(x, y). Set 

Al =al+...+al, 
Bt = n -  I. (4.21) 

Observation 1. The reduced Newton diagram of S(x, y) has vertices at the points 

(l+Az, l+Bz), l<~l<~n, (4.22) 

and its boundary consists of, besides the two boundary lines parallel to the axes, the 

segments joining (l+Az-1, l+Bz-1) and (l+Az, l+Bl) .  

To see this, we expand the Hessian S~(x, y) as 

n 

l=O Pl <. . .  <Pt 

This shows that the points (Ai,Bz) are on the Newton diagram of S'(x,y),  and that 

any other index (m, n) occurring with non-vanishing coefficient in the Taylor expansion 

of S~(x, y) already lies within at least one closed northeast quadrant with vertex at 

a point (Al, Bz). In particular, the Newton diagram of S'(x, y) is generated by these 

quadrants, while the reduced Newton diagram of S(x, y) is generated by their translates 

by the vector (1, 1). Evidently these translates have corners at ( l+Al,  l+Bz). 

To complete our claim, we shall show that each point (1 +Al+l, 1 +Bl+l) lies strictly 

above the line joining (l+Az-1, 1+B1-1) and (l+Al,  l+Bl) ,  so that the region above 
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the union of these segments is indeed a convex region. (More directly, the slope of the 

Ith segment is -a}- 1 and the at's are strictly increasing.) 

The equation of the line joining (l+At-1,  I+B~-I) and ( l+At,  l+Bt)  is 

q = - P - t  l+Al+(l+Bt)at (4.24) 
at al 

Substituting in the values l+At+l  for x and l+Bz+l for y, we find that our ordering 

at <at+l of the exponents at occurring in the factorization of S~t(x, y) is exactly the con- 

dition guaranteeing that (1 +At+l, 1 + Bz+l) lies strictly above the line of equation (4.24). 

Observation 2. The Newton decay rate 5 can be expressed as 

5 = min 51 (4.25) 
l 

with 5t given by 
1+at 

5t = (4.26) 
l + At+(l + Bt)at" 

This is an immediate consequence of the definition (1.2) for the Newton decay rate, since 
(5--1 5--1~ t , t j is just the intersection of the line of equation (4.24) with the bisectrix p=q. 

Observation 3. If the Newton decay rate 5 is achieved by the segment joining 

(l+At-1,  l+Bt-1)  and ( l+At,  I+B~), i.e., if 6=6t, for some particular index l, then 

we must have for that index 

Bt ~< At. (4.27) 

In fact, 5----5t just means that the segment joining (I+At-1, l+Bt-1)  and (l+Az, l+Bt )  

is a main boundary segment, that is, a boundary segment where the line x=y meets the 

boundary of the reduced Newton diagram. Its right end point ( l+At,  l+Bt)  must then 

be in the half-plane y<.x, which translates into the inequality (4.27). 

We now derive the desired estimate IITII=O(IAI-} 5) for the operator T. As before, 

we decompose T into operators Tjk, and consider only the region x>0, y>0. 

In the range k<<alj, the Hessian is of size IS~I ~2 -kn, and we have the two estimates 

IITjk LI ~< 2 -�89 
1 1 k n  

IITjkll ~< A I - ~ 2  ' �9 

Setting as before [alj]=-k+r, we obtain 

Z IIT khL-< EZmin(2-�89 0+~189 1 ~2~ ) 
k<<alj  k = 0  r = 0  

o0 (4.28) 
A{ 2 l+a l+na  1 2  �89 ~ + ~ 1  

rmO 

l+a  1 
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We recognize the exponent on the right-hand side as 81 ~>8. 

In the range k>>anj, the size and oscillatory estimates for Tjk are given by 

NZykll <~ 2 -�89 
1 1A,~j 

Ilr jkl l  < . 

Setting k=[a~j]+r, the summation in j and k leads to 

OO O~ 

IITJk II ~< Z Z min(2-�89189 ]AI-�89189 
k>>anj j = 0  r = 0  

~-~ . _ ! .  ~___z~a~___,. A ~ (4.29) 

r ~ 0  

~ F l-�89 l + A n + a n  

with An defined by (4.21). The rate in (4.29) is exactly 8n, which is again ~>8. 

We consider now the range alj<<k<<az+lj. The factors y - x  a~ are then of size 2 -~d 

or 2 -k respectively for i<~l and i>.l+l, so that  

I,.~" I ~., 2-A~J2-B~ k 

with Al, Bl defined as in (4.21). The size and oscillatory estimates for NTjkH are then 

IITjk]l <~ 2 -�89 
(4.30) 

IITjkll < ]AI-�89189 �89 

To sum in the range azj<<k<<al+lj, we have to consider three different cases, depending 

on whether we have Bz<Az, Az<Bz or Al=BL. 
In the first case, where Bz <Az, we set 

k=[azj]+r, r>lO, 

in terms of which the preceding estimates become 

IITjkl[ <~ 2-�89189 
(4.31) 

IITjk[[ ~ IA[-�89189 �89 

We shall take the convex means of these two estimates, 

flTjktl <. [IAI--�89189189189189 (4.32) 
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which annihilates the j-factors. This determines 0 as the solution of the equation 

(Al+Blat)O = ( l+az) (1 -0) .  (4.33) 

Thus 0 coincides exactly with 6z, 

0 = l+a~ = 5z. (4.34) 
1 +At + (Bl + 1)az 

The estimate (4.32) for IITj~[[ reduces to 

IITjkll ~ I~Xl-�89 -�89 (4.35) 

For a fixed r, this same bound holds for the sum over j ,  k satisfying k=[azj]+r, since the 

operators Tjk and Tj,k, have disjoint x- and y-supports, and hence are orthogonal when 

IJ -J ' l  is larger than some fixed constant 

E Tjk <. [AI-�89 - �89 (4.36) 
k=[atj]+r 

In the case we are considering, Bz <At, and the geometric series in r in (4.36) is conver- 

gent, since 

( l+Bz) ( l+az)  Az-Bl  
1-Sl-BzSz=l l+A~+(l+Bt)al = l+Az+(l+Bz)al >0.  (4.37) 

We obtain in this way the desired estimate 

~ Tjk ~l~l - ~  <l~1-�89 
r : 0  k=[atj]+r 

Consider next the case Al <Bl.  We set instead 

[ a / + l  J 

and rewrite the two basic estimates (4.30) as 

IITjkll < 2 -3 " ~+~/ z 2 , 

1 ! . (  At + B  ~k 1 . 
IITsklI<IAI-~2 ~ ko~+~ ~J 2~A~ r 

(4.38) 

The convex combination 0 annihilating the k-factors is given by 

Az + Bt al+l ) 0 = ( 1 +  a--~+~) (1-0)" 
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We find this time 

l + a t + l  = l+al+l 
0= l+At+(Bt+l)aL+l l+Az+l+(Bt+l+l)at+l =St+l.  

(4.39) 

Again, by orthogonality, the sum of the Tjk's over j,  k satisfying j = [k/at+l] +r for fixed r 

satisfies the same estimate as the individual Tjk's, 

j=[k/az+l]Tr 

(4.40) 

In the range At <Bt,  the above geometric series in r is again summable, since 

1 - - 5 l +  1 --AISI+I = 1 
( l + a l + l ) ( l + A t )  Bz-At  

l + Al+(Bt+ l)az+l --al+l l + At+(Bt + l)at+l > 0. (4.41) 

The desired estimate follows, 

OO 

~ Tj~ <1~1-�89 ~'+1 <l~l-�89 ~. 
r=O j=[k/at+l]-br 

The third subcase in the range atj<<k<<at+lj that  we need to consider is the case 

when At =Bt. In this case, we simply observe that  the basic size and oscillatory estimates 

of (4.30) can be rewritten as 

IIrjk II ~ 2 -~(j+k), 
(4.42) 

The sole dependence on j+k of both estimates in (4.42) allows us to sum diagonally over 

all j ,  k satisfying j + k = i  for fixed i. Indeed, along such diagonals, I J - j ' l>> 1 implies that  

lk -k ' l>>l ,  and thus Tjk and Tj,k, are orthogonaI for IJ-J'l large. By orthogonality, the 

sum over j,  k satisfying j+k=i admits then the same bound as each individual summand. 

Thus 

E Tjk ~<min(2 -�89189189 (4.43) 
j+k=i  

This leads immediately to the following bound for the sum in i: 

(2 '0 

E 1  E T;k ~< [A1-�89 (4.44) 
i=0  j+k=i  

Since in the case At=Bt, we may write 

l + a l  l+at  1 
l+Az+(Bl+l)al ( l + A t ) ( l + a l )  1+At 
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the preceding bound is again of the form O(IAl-�89 and our t reatment  of the range 

azj<<k<<al+lj is complete. 

The only range which remains to be treated is the range k~a~j. In this range, we 

begin by observing that  by suitably restricting the neighborhood of the origin, we may 

assume that  both k and j are so large that  

I j(az+l-az)[  > max a l+10  

and thus the ranges of the form k"~alj and k'~az+lj are well separated. As before, the 

finite number of k's in this range and the orthogonality of Tyk and Tj,k, for [j--j'[ large 

(this implies that  Ik-k'l is large as well) allow us to restrict ourselves to the proof of the 

estimate []Tjk [] ~< IX] �89 for individual (j, k)'s. 

Again, as in the third range considered in Model I, we introduce a further decompo- 

sition of the form (4.12) with ~ , ~  ~ = •  Xm(o'(y-x~*)), and study the bounds for the 

resulting T~ .  Only the range m>~azj contributes. 

The analogues of the estimates (4.14) are in the present case 

IIT~II <~ 2 -m2-�89 
1 1A " ~m ~Ba " (4.45) 

IIT~II ~<IAI-~2 ~ ' - ' 2 ~  2~ ~ t3. 

Set m =  [alj] +M. As explained before, we may consider only M non-negative integer, up 

to a suitable multiplicative constant in the subsequent estimates. In terms of M, (4.45) 

reduces to the following analogue of (4.15): 

IIT~]I ~ 2-�89 
IITj~]l ~< A--�89189 �89 (4.46) 

The convex combination 0 annihilating the j-factors is given by 

and thus 

(Al+ Bzal)O = (1-4-a~)(1-0) 

0=51 

as before. The resulting estimate for Tj~ is 

[[Tj~ l[ < IAI-�89 -�89 

We need to check the sign of 2-36t .  This expression can be rewritten as 

2Az-l+(2Bl+l)az-1 
2 -  35~ = 

l+Al+(l+Bl)al 

(4.47) 

(4.4s) 
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Since az is assumed to be/>1, the right-hand side is always strictly positive unless az= l  

and Bl =0, which means that  we have only a single factor in the factorization for S"(x,  y), 

of the form S " ( x , y ) = y - x .  This last case has already been treated in Model I, with 

the desired decay I]TII~<IA1-1/3. In the remaining cases, the geometric series in M is 

convergent, and we do obtain 

~ IIT;~II ~< I.X1-�89 ~< I.X1-�89 
m ~ o . l j  

The treatment of Model II is complete. 

(c) Model III. In Model III, we consider the simplest case of phase functions which 

may have the same leading exponents, but with different coefficients, 

S" = (y - cxx  ") ... (y--cNxa), cj # ck for j # k. 

We begin by observing that  for 

k < a j - K ( c l ,  ..., CN; a) 

(which we again denote by k<<aj), there is no major cancellation in any of the factors 

y - c i x  a. Thus we have 

Is"l ~ 2 -kN,  

and the same summation techniques used in the case k<<alj of Model II apply to yield 

the desired estimate 
, 1 l ~ - a  

IITjktl ~< ,X - ~ , + o + o ~ .  
k<<aj 

Similarly, the range k > a j + K ( c l ,  ..., CN; a) (abbreviated by k>>aj) is treated along the 

lines of the case k>>anj of Model II, and presents no new difficulty. 

We consider now the range - K  (cl , ..., cn; a)+aj  <~ k 4  K (Cl, ..., CN; a) +aj,  which we 
1 1~-o. 

denote by k ~ a j .  By orthogonality, it suffices to show that  IITjklI <IAI-  I+o+oN for 

each (j, k). In this case, we need a further decomposition. Select any of the factors 

in S", say, y - c l x  ~, and introduce a partition of unity ~ m  Xm(y--clx'~), leading to an 

analogue of (4.12). Thus, in the support of the kernel of T~ ,  we have 

y--c1  xa ~., 2 - m ,  m >1 aj. 

For a suitably large Kl(Cl,. . . ,  CN;a), the condition 

m > a j + K l ( c l ,  ..., CN; a) 
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implies that  for i #1 ,  

ly-~xOl = Iv -c l~O+(~-c , )x" l  ~ 2-o~. 

Thus the bounds IS"l,.~2-(N-1)aJ2-m are sharp, and the familiar two estimates for T~'~ 

are in this case 
m 1 IIT~II -< 2- 2-~( ~-o)j, 

(4.49) 
IIT~II-< l~l-�89189189 

This is the same estimate as in (4.45), say with al . . . . .  at=a, l=N, and m replaced 

by M. Thus it implies the desired decay rate IAI-{ 5. We may assume then that  

m ~ a j  and y - c l x ~  2 -m. 

In particular, the number of such m's is boundedly finite, and 

Is"l ~ 2 - ~ 1 7 6  ... j y - ~ x %  (4.5o) 

Thus we are reduced to the same case, with one factor less. If we go on in this manner, 

we can keep eliminating more factors in S ' .  Each step requires the insertion of a further 

cut-off X~(y-c~x~), which does not affect the applicability of the Operator van der 

Corput Lemma. The estimates we encounter are of the form (4.49), and can be handled 

just as in that  case. Finally, we arrive at the case when all factors y-cix ~ have been 

peeled off, and ]S'1~2 -Naj, so that  [[T~ ~ ..... "~N ]] ~ ]A]--�89189 Naj, with mi~aj denoting the 

decompositions inherent to each step. On the support side, we have Ax~K2-m2 -(1-~)j, 

Ay < 2 - m  which implies that  ]]Tj~ ~ ..... '~N [[ ~< 2--m 2 �89 (1--a)j ,.~ 2-- �89 (l+~)J. Altogether, 

l + a  
t",,d l + a + a N  , IITj,~I ..... mNl[ ~min(2- �89 ]AI-{2�89 i)~]- �89 

which is the desired estimate. 

(d) Model IV. We come now to the basic situation where several roots of the Hessian 

S"  can be highly tangent, while remaining nevertheless distinct, i.e., 

a " b N ~  s " =  ( y -x~  1)... (y-x --rN(X)x j 

with N~>2, l~a<bl<b2<...<bN, and rl(x),..., rN(x) functions not vanishing at 0. It 

is not difficult to verify that  the ranges k<<aj and k>>aj of our basic decompositions 

lead as before to the correct gain ~ IITjklI<IA[-�89 with 5=(l+a)/(l+a+aN). Thus 

we need consider only the range k~aj, where it suffices to establish the desired estimate 

for each individual Tjk. 
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We decompose Tjk into Tj~ by introducing a parti t ion of unity Xm ( Y -  x a  - - r N  (X)X bN) 
(restricting ourselves again to discuss only the side where y - x  ~ - r N ( x ) x  bN>O). Thus 

we have 

y - - x  a - - r g ( X ) X  bN'~  2 - m ,  m ~ a j ,  

on the support of the kernel of T~ .  If m>>bN-lJ, we have for each of the factors 

] y - x  a-ri(x)xb~l = I ( y - - x  a - - r N ( x ) x b N ) + ( r N ( x ) x  bN -- l ' i (x)xbi)[  ~ 2--Jbl 

for i<~N-1.  The size of IS"[ is then 

IS"[ ~ 2-(b~+...+bN-~)J2 -m. 

By restricting the support of T to be small enough, we may insure that  the factors 

y - x a - r i ( x ) x  b~ are all monotone functions of x. Thus the Operator van der Corput 

Lemma is applicable, and we have the two estimates 

IIT~jk [[ ~< 2-m2- �89  
(4.51) 

IIT~jk ll <~ [)q-�89 2](b~+"'+bN-1)J2 �89 

with the first estimate a consequence of familiar estimates for the cross sections of the 

support  of Tj'~. 

To sum in m, we note that  (4.51) is the same type of estimates as in e.g. (4.45). We 

summarize such estimates in the following lemma. 

LEMMA 3. Let the terms Tm of a series be bounded by 

~r" m ~ 2-m2-�89 (1-a)j, 

_ !  ! K " i g  m Tm~<[A[ 222 J22 , 

for m>~bj, with a constant b>~a, and non-negative constants K and Q. Assume that a> 1, 

or that K > 0 if a= 1. Then 

1 l~2b--a 

m>~bj 

Proof of Lemma 3. In terms of r, m = b j + r ,  the estimates in the hypothesis of 

Lemma 3 can be expressed as 

T m ~ 2-  �89 (i+2b-a)J2-r, 

T m ~ IAI-�89189189 
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The convex combination 0 annihilating the j-factors is 

l + 2 b - a  
0 =  

l + K + ( ~ + 2 ) b - a "  

We need to check that  the resulting estimate can be summed in r. This is the case when 

�89  which works out to be 

K + � 8 9  >0.  

This condition is satisfied under the hypotheses of Lemma 3. The proof of Lemma 3 is 

complete. 

Returning now to the estimates (4.51) for IIT~II, we can apply Lemma 3 and obtain 

1 1 -~ -2bN_  1 - - a  

E HT~ H ~< I)q--~''+b~+"'+bN--~+3bN--~--~" (4.52) 
m ~ b N - l j  

To compare this gain to the desired gain 5, we need the following lemma, which is a key 

tool for the case of highly tangent roots: 

LEMMA 4.  

Then 

Let l ~a<~bl ~b2~... bN-l ~bN be a finite sequence of numbers, and set 

l + 2 b - a  
5p(b) = l + b l + . . . + b p _ l + ( N - p + 3 ) b - a "  

5N(bN) ~ 5N-I(bN-1) ~ ... >1 51(bl) >1 51(a) = 5, 

with strict inequality 

5p(bp) >bp-l(bp-1) when bp>bp_l and p ~ 2 .  

When a > l ,  we also have the strict inequality 

51 (51) > 61(a) when bl > a, 

while when a = l ,  we have identically for all bl 

(4.53) 

Proof of Lemma 4. 
proportional to 

(4.54) 

(4.55) 

2 
51(b l )=N+ 2. (4.56) 

In fact, the derivative of 5p(b) viewed as a function of b is 

2(b l+ . . .+b~_l )+(N-p+l ) (a -1 ) ,  (4.57) 
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up to a strictly positive factor. Thus dip(b) is an increasing function of b, and since dip(bp) >~ 
dip (bp_ 1)=5p-1 (bp-1), we can iterate and obtain all the inequalities listed in (4.53), ending 

with dil (bl)~dil(a)-----di. Evidently, the expression (4.57) is strictly positive when p>~2, or 

when a > l ,  which accounts for (4.54) and (4.55). Finally, when p = l  and a = l ,  a direct 

calculation gives (4.56). Lemma 4 is proved. 

With Lemma 4, it is clear that  the gain we derived in (4.52) is at least as good as 

the desired gain. 

Next, the range jbp<<m<<jbp+l requires only a few modifications, so we shall be 

succinct. 

estimates 

In this range, IS"["~2--(b~+'"+b~)J2 -re(N-p), and we just need to sum the two 

Setting m =  [jbp] +r, 
in (4.58), 

II~jkll ~ 2-m2-�89 

IIZ~jk II < IAI-�89189189 
(4.58) 

r= jM,  we consider a /gM-convex combination of the estimates 

IIT~jk II ~ []AI--�89189189 (1-~ (4.59) 

Le t /9~  be defined so as to annihilate the j-factors. It is given by 

. l+2(bp+M)-a  
OM = l + b l  +... +bp + ( N - p +  2)(bp + M) - a  " 

As in the proof of Lemma 4, this expression is an increasing function of M. Thus 

l + 2 b , - a  = dip(bp). 
O*M >~ 06 = l +bl + . . .+bp+(N-p+ 2)bp-a 

We can now quote directly Lemma 4, and conclude that  O~)>di unless a = l  and p = l .  

Postponing this particular case for the moment, we may choose OM to be OM=O*M--e> 
5p(bp) for a small positive e, and write 

IIT~II ~< I)~1-�89189247247247247247247 

I)~l- �89 2-- �89 (l+bl+'"+bP+(g-P+2)bp-a)eJ2- �89 ( Y - p + 2 ) e r  (4.60) 

I)~I-�89189189 (g-p+2)er. 

The series in r is a convergent geometric series, and we can conclude that  

LIT;~II < I~1-�89 ~< I~1-�89 
m>>jbp 
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The other end range, aj<<m<<jbl is even simpler. There IS"1,'~2 -Nm, and thus 

I IT~ II < 2--m2--�89 
_ !  iNto I I T ~ l l < l ~ l  ~2~ . 

�9 1 + ~  ! 5  By Lemma 3, this leads to Em~>oj IIT~II~<[A1-�89 ~+o+N~ =]AI--2 . 

We turn now to the special case where a = l  and p = l .  Set m=[blj]+r. 
and oscillatory estimates for Ty~ reduce to 

I IT~II  ~<2 - m  = 2-b'~2 - ' ,  
IIT~II 4 1~l-�89189 �89 = l~]--�89189189 

The convex combination 0 annihilating the j factors is 

�89 = 1 - 0  

This leads to the desired estimate 

2 
~=~ 0 =  =5.  

2 + N  

I.Xl-~ 2 - ~  ~ I~Xl-~ ~. 
r ~ 0  r = 0  

The size 

(4.61) 

Finally, we are left with considering the range m~jbp, where the number  of m ' s  is 

boundedly finite. The size of the Hessian is controlled by 

IS" l  ,~ z - (N-~)b '~  l y - x  ~ - r ,  (x)xb,  I ... l y - x  ~ - rp (x )xbp  I, 

which is of the same form as the original S",  but  with fewer factors. As in Model III ,  

continuing this peeling off process leads ult imately to summands  where S"  is of constant 

size. We can then verify as before that  the resulting decay rate is greater than or equal 

to 5. 

(e) Model V. We consider now a Hessian of the form 

n N o  

s" = I I  II(y-c xO-  p(x)xbop), 
a p = l  

with O~cj~ck if j ~ k ,  r~p(O)r We also assume that  for each fixed a,  the exponents 

b~p are all distinct. In this case, the gain sought is 5=( l+a) / ( l+a+aN) ,  where we have 

set N=NI+. . .+Nn.  By convention, we order the b~p'S so tha t  

bal < b~2 < ... < bc, N,~. 



130 D . H .  P H O N G  A N D  E . M .  S T E I N  

As usual, the range k~aj  is the only one requiring a careful discussion. In this range, 

we choose an a ,  say a = l ,  and introduce a further decomposition in y--clxa--rlylX biN1 , 
SO that ,  once again on the support  of the kernel of each of the components T ~  of Tjk 
(m>~aj), we have 

y--C1 xa --rlN1 (x) xblgl r,~ 2 -m. 

If m>>aj + K[ca, bap; rap], then 

IS"I ~2-(Nl+'"+N~)ajly--elxa--rll(x)xb111... ly--clxa--rlNI(x)xblNll. (4.62) 

This is of the form of Model IV, only with the additional prefactor 2 -(Nl+'''+N~)aj. This 

factor is easily incorporated in the arguments for Model IV. Without  it, the gain 5 for 

the phase function (4.62) would be 

l + a  

l+a+aN1 " 

With a factor 2 - g j  in front of S", the gain gets shifted to (cf. Lemma 3) 

l + a  

l + K +a +aN1 " 

In the present case we have K=a(N2 +... +Nn), and the preceding formula does become 

( l+a)/(l+a+aN)=5. 
We are reduced then to the case m<<.aj+K[ca, b~v; rap], and in particular rn~aj. 

This implies that  the number of m ' s  is finite, and thus we can fix m. Now for each q, 

ly-cl x~ blq r= I(y-c  x~ ) + (x) b q)l ~ 2- J. 

Thus we have the following est imate for the Hessian: 

No �9 

rS"l ~ 2-N~aJ r I  l-I (y-cax~ (4.63) 
a = 2  p = l  

This is of the same form as the original estimate,  but with one less factor in a.  We 

can now proceed inductively. For example, decomposing y--c2xa--r2N2xb2N2 ~2 -m2, for 

m2>>aj, we are led to Model IV with 

IS" I ~ 2--(N--N2)aj p~=l(Y c2xa 

The correct est imate follows again from Lemma 3. On the other hand, in the range 

m2~aj, we reduce S"  by yet another  factor (~. Ultimately, we arrive at 

IS"l 2 -N~ 
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and the two estimates (all the mj's  are ~aj )  

iiT~'~ 1 . . . . .  ~ II < 2 -�89176 
IIT~ ~ ..... m. II < iAI-�89 �89 

In particular, 

T,~I ..... m~ ~min(2-[(l+a)J,[AI-�89189 ~ AS--' 1-2",+,+,N1+~. jk  

Our discussion of Model V is complete. 

(f) Complex roots. We shall now indicate how the above arguments  are modified in 

the presence of complex roots. Let a factor of S"  be given by y - r ( x ) ,  and let r(x)= 
cx~+ higher powers. There are then two possibilities: 

If  cER,  then 

]y-r(x)] ~ i y -Rer (x ) l+ l Imr (x ) ]  ~ ]y-Rer(x)]+lx[  b (4.64) 

for some b>a. We note tha t  the function Re r (x )  is a Puiseux series in x with real 

coefficients, and that  its leading exponent is a, the same as the leading exponent of r(x). 
Otherwise c ~ R .  Then we have 

l y -r (x ) i  ~ l y - R e  r ( x ) l + l I m  r(x)l ~ ~ l y - R e  r(x) l+ lx l  ~ 
(4.65) 

/>  ~1 ly l -C lx l~  I + Ixl ~ ~(lyl + rxl~ 

where ~ is a generic notat ion for a constant which can be fixed at an arbitrari ly small 

value. Since the reverse inequality [y-r(x)l  <~C(iYi+txP) is evident, we have in this case 

IY-  r(x) l ~ lYl + Ixl % (4.66) 

We can now see easily how the arguments for the boundedness of T apply essentially 

without any change in presence of complex roots. Consider e.g. Model II, with any factor 

l Y -  xa~ ] possibly replaced by either l y l+lxl  az or by ]y-  x ~z I + ix] b~ for some bt > a~. In the 

first case, the argument  is even simplified, since the bounds for Tyk are unaffected in the 

range alj<<k<<a~+lj. Even in the range k~a l j ,  there can be no cancellation between 

the terms lYl and Ix] ~ ,  so tha t  this range does not even require a separate t reatment .  

Alternatively, if we set as before lYi+ix] ~' ~ 2  - m  in the range k~a t j ,  the exponent m 

satisfies m ~ a z j ,  and hence can take on only a finite number  of values. 

In the second case, the factor l y - x  ~ ] has been replaced by the bet ter  bound 

l y - x ~ , l + l x l  b~, e.g., 

l 

IS"l "~(lY-X"l+Ixlb')  1-I lY-X~' l  >~ l - I  lY-X~"]" (4.67) 
u#l t~ =] 
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If we can apply the Operator van der Corput Lemma with only bounds from below for 

the Hessian of the phase, the desired estimates for all the Tjk's, and hence for T, would 

follow at once. The Operator van der Corput Lemma requires however that  the Hessian 

of the phase be uniformly bounded from both above and below, up t o  a multiplicative 

constant, by the same bound. This can be taken care of by the following minor variation 

of our argument. In the ranges atj<<k and k>>atj, the bounds from above and below 

for S" are unaffected by the presence of [x[ bz, since there is no cancellation between y 

and x a~ , and Ix[ a' is much larger than Ix[ bz . Thus we need only consider the range k ~ a l j .  

Set as before y - x a ~ , , 2  -m,  m>~atj. Then the factor [ y - x  ~' I+lx[ b~ in the factorization 

of S"  admits the following bound from both above and below: 

l Y -  xa' l + Ix l bz ~ 2 -  min(blj,m) (4.68) 

The Operator van der Corput Lemma can be applied, and leads to the same bound for 

IIT~II as in (4.45), with the contribution of l y - x  a~ I being replaced by the contribution 

(4.68) of l y - x  a' I+lxl b'. With the same notation as in (4.45), we have then 

117 jk 11 < IAI--�89189189189 <~ IAI-�89189189 �89 (4.69) 

The earlier proof now takes over without change, producing the same final bound for IITII, 

in terms of the exponents at. 

5. C l u s t e r s  o f  r o o t s  

(a) Clusters of roots. In the previous section, we had analyzed model cases where the 

roots of the Hessian can be classified by their leading exponent x az . For each exponent at, 

we can have however a cluster of roots of the form c~x a~ +r~qxbz~. In the model cases, 

we had essentially assumed that  all the coefficients r~q(0) and the exponents b~q were 

distinct, but this may very well not be the case in general. Rather, each term r~q(O)xbgq 

can be in turn the next leading coefficient for a smaller cluster of roots, which can be 

thought of as visible only with this finer resolution. Clearly, this process can repeat itself, 

until we reach, after a finite number of steps, a stage where all clusters consist each of a 

single root only, counted with its multiplicity. In order to deal more systematically with 

this picture, it is convenient to introduce the following notions. 

Let all the distinct roots of S", different from x - 0  and y - 0 ,  be expanded as 

a 1 a l ' " a p - - 1  
- -  Oil a l  I 0t1(212 a t  l ~ 1 7 6  a l l . . . l  r ( x ) - - Q  x +Cl l  x ~2+. . .+Q z x p +.. .  

1 1 2  l ' " p  ' 
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where 

c~1 ~ ' - l z  # for Z # %  ll. . .lp 11 ...Ip 

a t : ~ l  , , , O t p -  1 at~l...(~p-2 
l l . . . lp > l l . . . lp-1  ' 

and we have kept enough terms to  distinguish between all the  non-identical  roots  of S" .  

By  the  cluster 

~ l l  ... lp 

we shall designate all the roots  r (x) ,  counted with their multiplicities, which satisfy 

a 1 a l  �9 , . c t p _  1 
r[x't--(c~176 alll2 A_ -l-pGl"'~ , J , ~1 - ~  . . . . . . .  . z ,  ~ ) = o ( ~ b )  (5.1) 

for some exponent  b>a~X.::i~ p-x . We also introduce the clusters 

[Ol 
l l  ... I p - 1  1 

b y  

(3r 1 . . . . . .  Olp 

Each index C~p or lp varies in some finite range. Since the explicit form of most  of these 

ranges is irrelevant in the sequel, and since we do not  want  to overburden unnecessari ly 

the  notat ion,  we shall not  indicate these ranges explicitly. Rather ,  we just  need 

[ ] [ ... O~ 1 . . .  Cgp = # roots  in a l  , 
N ll  ... lp 11 ... lp 

(5.3) [Ol :] [Ol :] 
N ll ... 1 = # r ~ 1 7 6  ll ... 1 " 

Evidently, we have for p > k  

~ ... lp ll ... l p_ l  l ' 

(5.4) 

lp,...~k+l 

(b) T h e  reduced  N e w t o n  d i a g r a m  o f  the  phase .  Let al  < ... < az < ... < an be exponents  

so tha t  the  set of all roots  of S"  different f rom x - 0 ,  y - 0 ,  can be divided as 
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Then we may write 

s"-- 1-I r 
/ = 1  (5.5) 

8 

with U(x, y) a factor bounded from above and below by positive constants. To alleviate 

the notation, we shall until the end of this section set 

a = f l = 0  (5.6) 

and indicate at the end how to adapt our arguments to the general case of arbitrary a,/~. 

The following are the analogues of the quantities Al,Bz introduced in the study of 

Model II: 

A - E N  " 

Observation 1. The vertices of the reduced Newton diagram are at the points 

The argument is parallel to the one given for the analogous observation in the study 

of Model II. We shall check that 

(i) the points ( I + A [ ~ ] , I + B [ I ] )  do occur in the reduced Newton diagram; 

(ii) the region above the sequence of line segments joining (1 +A [z;1 ], 1 + B [l-'1 ] ) 

and ( l + A [ i ] , l + B [ i ] ) i s  convex; 

(iii) the translate by (1, 1) of any other point (p, q) with xPy q occurring with non- 

vanishing coefficient in the Taylor expansion of S"(x, y) must lie in this region. 

The first statement (i) is easy, since 

[1 a~N[;1 
and x 

are respectively the highest power in y and the lowest power in x among the pure x-terms 

in the expansion of ~[~]. Carrying out the product in (5.5) for S"(x, y) will produce 

then terms of the form 
B [ ; ]  xA[i] 

with non-vanishing coefficients. Since the reduced Newton diagram of S(x, y) is obtained 

by translating by (1, 1) the Newton diagram of S"(x, y), the statement (i) follows. 
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The verification of (ii) is identical to the case of Model II. The equation of the 

segment joining (l+A[z-1],l+B[z__l]) and ( I + A [ I ] , I + B [ i ] )  is just as before 

q-l(-p+l+A[i]+(l+B[i])at ) =0.  (5.9, 

Evaluating the right-hand side at (1 +A[z+I ], 1 +B[z+l  ]) gives 

(a'+-----!l-l~N[l;1 ] >0, 
at / 

which shows that (1+ A[t+l ], 1+ B[t+l  ]) lies strictly above the line joining (1 + A[l -1 ], 
l+B[121] ) and ( I+A[I] ,  I + B [ I ] )  , and thus that the region indicated is convex. 

To verify (iii), we shall show how to locate all the points (p, q) with xPy q occurring 
with non-zero coefficients in the expansion of S'(x, y). Ignore first the higher-order terms 
in the expansion of q)[i] and write 

~[i] =YN[i]+"'+xalN[i]+higher~ (5.10) 

where the dots stand for terms of the form 

yN[i]-kxa~(N[i]+k), l ~ < k ~ < N [ i ] - i  

(some of which may have zero coefficients). We consider now the corresponding terms in 
the product (5.5) defining S"(x, y), and isolate the term 

+N[;] 

occurring in the product 

o[;] o[:] 
We note that this term, multiplied by the terms 

alN[:] yN[i] and x t l~ 

(5.11) 

of r produces exactly the two end points (0, B[0])  and (alN[iJ,B[o]-N[i])= 
( A [ I ] , B [ ; ] )  of the uppermost boundary segment of the Newton diagram of S"(x,y). 
A key property of this boundary segment is that its slope is -1/al. We shall also say, 
informally, that it has "length" N [ [ ], since this is the amount by which the q-coordinate 
can change. 
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q 

B[o] 

B [ ; ]  - - ~  

r 

We can now identify easily the contributions of the intermediate terms given by the 

dots in (5.10), when multiplied by 

i.e., of the terms occurring in 

Each of these terms corresponds to an increase in the (p, q)-coordinates proportional to 

(a l , -1) ,  and thus produces a point on the above boundary line segment. In particular, 

these points are in the convex hull of the vertices (A[z] ,B[ i ] ) .  There are at most 

N [ 1 ] - I  of them (Figure 1). 

What are the effects of the intermediate terms in �9 [ 2 ] if we keep 

y[;]+ +[:] 

as the term arising from the product 

o[3] o[:], (5.13) 
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q 

t 
I 
I 
l 
I 

i.e., what are the points (p, q) arising from 

Consider first the terms 

(Figure 2). We note that the extreme terms 

~ ~ 
8[;] 

Y 

yN[ ] and x~ 

(5.14) 

within (I)[2] lead to the two end points of the next boundary line segment of the re- 

gion defined by the convex hull of the points (A[I] ,  B [i])" This boundary segment 

has slope -1/a2, length N [ 2 ] ,  and originates from the lower end point of the previ- 

ous boundary segment. If we consider now the contributions of the intermediate terms 

in ~ [2 ] ,  we see that,  just as in the previous case, they contribute points on the second 

boundary line segment. 

Similarly, the terms in 
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q 

B[; ]  

B[ i ]  

B[;JI--~jrUll ,illlL 

A[i] A[2] p 

lead to points on the segment of slope - l /a2,  of length N[2], and originating from the 
other end point of the first boundary segments, while the intermediate terms from 

can be located on parallel segments, of same length, but originating from the intermediate 
points in the first boundary segment. Clearly, they are all contained in the convex hull 
of the points (A[i] ,B[i])  (Figure 3). 

We can evidently continue in this manner, and locate all (m, n) arising from 

on the segments of length N[3], slope -1/a3, originating from any of the points obtained 
previously (Figure 4). Clearly, all these segments lie within the desired convex hull. 

We have so far ignored higher-order terms in the expansion of r However, the 
above argument shows easily what is the effect of such terms: at each stage l, they are 
located on segments of length N [;], originating from the points obtained in previous 
stages, and of slopes greater than -1/az. Thus they lie well inside the convex hull of the 

points (A[i] ,B[i])  (Figure 5). 



:rilE NEWTON POLYHEDRON AND OSCILLATORY INTEGRAL OPERATORS 139 

q 

B[0] 

\ 

B[]] 

B[~] - -- 
8 [ ; ] -  - -  

I I 
I t 
I I 
I I 

A[~] A[2] A[;]p  

S ' 

Fig. 4. The Newton diagram of S,, V e r t i c e s d u e t o O [ ~ ] ~ [ 2 ] ~ [ 3 ] y  [3] .  

q 

B [ 0 ]  

8 [ ~ ]  - - 

B [ 3 ]  - - 

I I 
I I 

I I 
A[~] A[2 ] A[~]p 

Fig. 5. The Newton diagram of S ' .  
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Observation 2. It follows from our discussion that  the leading exponents az of the 

roots of S"  (x, y) can be read off from its Newton diagram, together with their "generalized 

multiplicities" N [ i  ] (i.e., the number of roots with same leading exponent al). 

Observation 3. The coordinates (5/-1, 5~ -1) of the intersections of the boundary lines 

of the reduced Newton diagram of S(x, y) with the bisectrix p~-q are given by 

l+az  (5.15) 
5Z= l+A[i]+(l+B[i])a l 

as is readily seen from (5.9). We again set 

= min 51. (5.16) 
l 

For future reference, we note that  in presence of non-trivial factors x~y ~ in the 

factorization of S"(x, y), the above discussion goes through unchanged, up to the shifts 

This completes our discussion of the reduced Newton diagram in all the formulas. 

for S(x, y). 

(c) Resolutions. We now return to the proof of Theorem 1. Recall that  we are for 

the moment restricting ourselves to resumming the operators Tjk in the range where 

k > j - K ,  

where K is some large constant (cf. (3.5)-(3.8)), and that  the Hessian S"(x, y) has been 

factorized in (5.5). Continuing in this manner, we have, at each level of resolution p, 

ap] (x,y). (5.17) Is"r~u(x,y) 1-[ -1 
~1  . . . . .  ap  11 . . .  I p  

l t , . . . , l p  

Here as well as henceforth, we are using for the sake of simplicity the same notation for 

a l  -.. ] (x,y)  
(2p 

�9 ll ... lp 

and its absolute value. As we have seen in the treatment of complex roots (w (f)), we may 

assume without loss of generality that  the roots r(x) appearing in (5.5) are all Puiseux 

series with real coefficients. Clearly, since we are assuming that  k>j -K,  the ranges we 
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consider below for k, namely k~at j  and k<<at+lj, are only relevant when az, a z + l ) l .  

Thus we may assume tha t  al, al+l ) 1  for the t ime being. 

Consider now the usual dyadic decomposition y ~ 2  -k ,  x,-~2 - j .  

If  azj<<k<<al+lj, then just as before 

Is"l ~ 2-J(~176 2 - k ( N [ g l ] + + N [ ; ] )  

1 A  and the arguments of Model I I  apply verbatim, e.g., I ITll ~< l)q - ~ , with 

l + a z  

l +alN[1] +.. .+aig[i] +al(N[l+l] +...+ N[n] + l ) 

Consider next the range k~al j  for some I. Then 

(5.18) 

and we have 

IS"l",~2--J(alN['l]+'"+az-lN[121])~[i ] 2--Jal(N[l;1] +'''+N[n]) . (5.19) 

Thus we are reduced to the case of a single exponent az, case similar to Model III ,  whose 

t rea tment  we shall now follow. 

The key observation is that ,  by going to finer and finer resolutions, superposing at 

each step a finer cut-off yIP=I Xmq (y-rq (x)), we will arrive after a finite number of steps 

at a resolution of S"  with the following properties: 

(i) For each curved box in the final resolution, there is a resolution of a cluster of 

roots of S", 

l D ll l D . . .D  ll 12 

such tha t  the last resolution 
OZ OZ 2 

ll 12 

~ 1 7 6  ~   020/ 
... l D ll 12 ... Ip 

... OZp 

... lp ] 
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where the positive numbers 

contains only a single root (counted with its multiplicity); 

(ii) On the curved box of the final resolution, the Hessian of S satisfies an estimate 

from above and below of the form 

C t  2 �9 a l - - - a p - -  1 �9 C~ 1 . . .  

o l  . o l  ~ '~ 'p ] ( 5 . 2 1 )  •176  ,2]. . .2",1 , .- ,~.N[zl ~ "P 
... O:p 

12 ... lp 

. . .  O t p _  1 

. . .  l p -  1 

are defined by 

N" ll 

�9 .. l p -1  

�9 ] [ .] = V ~  aO, i . . .c~_i N oq ... a p - 1  
Ip l i ' " lp- i t t  l l  lp -1  

tt<~ lp "'" 

al  . . . .  P- ' E N [ ~  ... a p - 1  '[-all""lp-ilp li lp -1  
~ l p + l  "'" 

(5.22) 

In the next subsection, we provide the algorithm leading to the resolutions satisfying 

(i) and (ii). 

We also note the following special case of the quantities 

introduced in (5.22) 

Oil ' "  OLp--1 P l  
Af  ll ... lp-1 l 

(5.23) 

(d) Algorithm for  the resolution of roots. Returning to the decomposition Tjk in 
c~ 

the range k ~ a z j ,  we note that  if the cluster [i] consists of a single [l  ], which itself 

contains only a single root counted with its multiplicity, then (5.19) shows that  we have 

the desired resolution. This case becomes identical to that  of Model II, where the root 

y - x  ~z also does not resolve any further. The arguments there apply to give the desired 

estimate. 

Thus we assume that  
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The est imate (5.19) for the Hessian of the phase S can then be rewrit ten as 

n  o, iYlo[ ] 
-y 

We note that  the above est imate (5.24) is of the desired form (5.21), only with possibly 

many factors r on the right-hand side, instead of a single 

[Ol 
r 11 ... l~ 

as in (5.21). Thus our first main task is to decrease the number  of - fs  on the right-hand 

side of (5.24). 

We select an index a among the "y's. Let r [~  ](x) be a root within [i] with highest 

exponent a n and set lm~ 

We need to consider again several different cases. 

If m>>azj,  then all the factors ~[ '~] are for "/r of size 

It  follows at once tha t  

. ( 5 . 2 5 )  

This is again of the form (5.21), but with a single factor ~ [  7 ] '  

If  m,'~azj, then the est imate (5.24) for S"  reduces at once to 

which is of the form (5.24), but with one less factor among the r 

Thus we decrease the number  of factors r in all eventualities. In the case m>>azj ,  

we already arrived at a single r In the case m'-~azj, and if there are more than  

a single ~' left which are different from c~, we can repeat  the process until there is also 

a single �9 left on the right-hand side of (5.26). In this way, by a single resolution, we 

have reached a stage where Is"l satisfies estimates of the form (5.21), with however the 

condition (i), namely that  the lone cluster ~ appearing on the right-hand side consists 

of a single root with its multiplicities, still possibly not satisfied. 
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Our next step is to introduce further resolutions, when necessary, to fulfill the con- 

dition (i) as well. This is achieved simply by repeating the resolution process. Now we 

started with a resolution 1-Iz ep [i] ,  into clusters of roots distinguished by their leading 

exponents 

a~ < ... < a t  < a~+l < . . . .  

The stage described by (5.25) is the one where we have isolated a cluster of roots c'~x ~ +. . .  

among all the roots c'~x ~ +. . .  with leading exponent x ~z . Within the cluster [ z ], there 

are smaller clusters of roots, distinguished by their next leading exponents after c~x  ~z. 

Indeed, set l - l l ,  a----a1. Then 

and 

11 2 la l 

u[ol ] ol 
t2 tl 12  T(x) r ( x ) = c " l x ~  . . . .  (5.2s) 

One cycle of our resolution process will be complete when we shall have reduced estimates 

for S", originally written in terms of 1-It �9 [i] - [t: ], into estimates for S", written in 

terms of 

for some fixed 12. 

More precisely, consider the range k ~ a z j  of the decomposition of T into Tjk, and 

assume that we have already reduced S"  to an estimate of the form (5.25), with c~, l 

denoted now by c~1, 11, as in (5.27). 

Then if [ z~ 1 ] consists of only one root counted with its multiplicity, we are done. 

Otherwise, consider the finer resolution of (5.27), and order the exponents a~} 2 in in- 

creasing order in 12, 

at1 u < a~( ,+l) .  (5.29) 

Select a root r ( x )  in 

with highest exponent a~2 ,  and set 

[ol ;] 
U Ii I 12 

v-r(x) ~2 -m, 

where, to lighten the notation, we still use the index m, although it is distinct from the 

index m of earlier resolutions. 
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(]~i ' OZI " If ahz~j<<m<<ahq2+l) , then 

" I " ~ OLI ~2-.~ ;], ..<l~, J # 

] ~ 2-m~[7: ;]. .>~I~+1. 
# 

It follows that IS"I can be bounded by 

allttg [ll ; ]--allN [ it'll ])  2--ffi r t t ) / l + l  N[  ll ; ]  . (5.30) is, ,l~2_y[,~]2_j(r..<,~ ol ~, ~, 
The size estimate of the corresponding operator is still (AxAy)l/2<~2-m2-�89 
Combining this with the oscillating estimate resulting from (5.30), we find the following 

1A 
decay rate I~1-~ , after applying the summation Lemma 3, 

c~ 1 
A = l+2ahz  2 - a h (5.31) 

If we view the right-hand side of (5.31) as a function of a~}2, it is an increasing func- 

tion (cf. Lemma 4), and thus its value is greater than the value we get by letting 
a ~  ~ ah(12_l ). Continuing in this manner, we obtain 

A ) 1 +2a~(z2_1) - all 

l+'Af[lll-allN[~ 11J [ ll 12-'] 
1+2a~i  - a h  (5.32) 

>/ 

-alaN 31 + N ctl +2 a~l-al~ 

Again using the fact that  the right-hand side of (5.32) is an increasing function of a ~ ,  

we can let a ~  tend to ah,  and arrive at 

A ~> l + a h  = 5 h ~> 6 

in view of (5.15), (5.16) and (5.23). 

This shows that  we need study only the operators T ~  arising from m~a~l}~ j. The 

number of such m's is boundedly finite, and it suffices to establish the desired rate for 

each m. In this case, 

I 
11 

~ ]  �9 31 ~1 ~ 2-,~ ,1.1 

~] ~2 - j ~  

#~<11--1, 

#~>/1+1. 

(5.33) 
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Thus the Hessian of the phase satisfies the following estimate from above and below 

[Ol [S"[ ~ 2 - i X [ l :  ] 2-JAr[ lal 1 12] 2JatlN[ lal 1 ]2Ja~l~2N[ 7: l;] (~ l l l  

This is an estimate of the form that  we wanted, i.e., in terms of clusters 

distinguished by their next leading exponents a~} 2. 

A cycle of our resolution process is now complete. Evidently each cycle decreases 

the number of roots involved by at least one, so that,  by repeating the resolution process 

a finite number of times, we can reach the stage where the condition (i) is also satisfied. 

(e) Estimates for the operators of the resolution. We shall now show that  bounds of 

the form (5.21) lead to the desired decay rate for T. Prom the resolution process, at each 

step of further decompositions T~  of Tjk given by [y-r(x) l~2-m for some root r(x), 
we observe that  T~  can be summed back to give the desired estimate for Tjk except for 

O ~ l . . . O / p _ _  1 . a boundedly finite number of values of m, clustered around some exponent al~...zv 3- 

This statement is the exact analogue of the fact that,  in the original decomposition of T 

into Tjk, the ranges of k not clustered around alj for some exponent l can immediately be 

summed to give the desired result. Thus we need consider only each individual m as we 

go to the next resolution, and establish uniform individual bounds for the corresponding 

operator TjUk, when we arrive at the final resolution satisfying the conditions (i) and (ii). 

Assume then (i) and (ii), and set 

y - r ( x ) ~ 2  -'n, m>~a~l.::i~ ~-1, 

with r(x) the only root left in 

[Ol 
ll ... lp-1 l 

Denote the resulting operator decomposition simply by Tm. Then the size and oscillatory 

estimates are given by 

][Tm[[ < 2-m2�89 )j, 

NTmI[ <~ [A[�89189 (~r ]+N[ ~'h t= ] +---+N[ ~lh "'"-~-1,~_1 z~ ]) 

12 ]+'"+atl...tp N[ ll c~P •  N[?I a2 o'1 .... p-1 al ... . . . .  1, 12 L,1 z , ] )  (5 .35)  

• 2�89 ?: ... ,p,p]. 
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In view of Lemma 3, we have 

IIT II I),1-�89 A 
O~l.,.~p_ 1 m~al I .,.Ip 

with A = Numerator/Denominator, 

Numerator = 1+2a, ~ ; ~ - ~  -at,  

�9 . . .  �9 

Denominator = 1 + N  [/i ] +Af [/a~ /21 +...+iV. [/~1 ap--1 ] 
�9 .. Ip-1 lp 

OL1 OZl 0~2 Oil 
- ( a l l N [ l l l - k a ~ l l 2 N [ 1 1  121+'"+a~l.:: i:V-lN[ll  

... Ip +2 a al"''c'v-1 l l , . , lp --al~ �9 

... Otp 

(5.36) 

We shall show that this rate is better than the rate 6. In view of Lemma 4, the 
fraction on the right-hand side of (5.36) is an increasing function of a~Z.::i~ p-~ . Thus we 
get a lower bound by letting a~'"~'-lh...z, decrease to ah...(z _1).~'"~'-' We repeat the decreasing 
process until we reach a ~1"~'-1 Evidently, the numerator of (5.36) becomes tl...Ip-l l " 

1 +2a~1.::i~:; -a l l .  

As for the denominator, since 

' ' 

ll ... lp-1 lp L 1 ... lp-1 Ip 

as ll...z~ * l~...(l~-l), it evolves successively as 

Ot 2 O~ 1 OLp 

- ( a l l N [ l : l q - a ~ l l 2 N [ l :  12 l"[-'"[-a~lili~v-lN[ll ::: lp 1)  

0~ 1 ... Otp 
- I - I N [ / 1  .., lpl-~2)a~ll,::i~ "-l-alx 

---~X+.Af[l:]+.N'[/: l l ] + . . . + . N ' [ / :  ::: l~P~ lp-X]  

0~1 +a~}2N OZl OZl 
- +'"+a/~'(lP-1) N 11 all N ll ll 12 

+ f N [ a l  ... ap OZl...~:~p_l 
... lpl+21ah. . .qp-1)  - a h  

~ 

~ 

OZp 
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and ultimately, when we have decreased a~lll...zp"'~P-1 all the way down to a '~l"''~p-lll...Iv_ll ' as 

�9 OL 1 . . .  �9 

�9 .. Iv-2 Ip-1 

011 0~2 a~ ...av_2 OL1 "'" 
- ( . ~ [ ~ ] ~ a ~ [ ~ : ~ ] + ~ . ~ , ~ f ~  1 ~ /~'~ 

[Ol ]) ... Otp 

+a~l.::i~_-~; N 11 ... l v 

+(~[~: o, ~,]+~)<:::~::::-o,~ 
This last expression can be rewritten as 

... lp- 2 lp-1 

( .  ~ [ ~ ] +a~ ~ [~11 ~~ +o~' .... ~:~:~ [ ~1 �9 o~-1~_1 ~ ,1~ 
Ot I ... 

+ ( N [  11 ~ 
�9 . .  l p - l J  } " " " -  

a ~' ' 'a~-I to a ~1"''~p-2 the preceding expression becomes If we decrease now l l . . . Ip-ll  ll...Ip-21v-l' 

I+ .M[ l l ]+Az[ /~ I  / ; ]+ . . .+ j~ [ /~ l  ..."" aP-21p_2 lp'-l] 

--(allY[ l~ll ]ba~ll2N[ l~l 1 l~22]+"'-ka~"::i:P-[2N[ lal 1 ..."" ~ J.] ]~ 
( ~ [ ~  o,~1 ~ . . . .  

+ ~ ' + 2  4 / . . . & ; _ ,  lp-1 J .] --all, 
which is exactly the same denominator we started with, but with p replaced by p -  1. We 
can thus decrease p all the way to p=2,  and find for the denominator 

l+Af [ / : ]+JV[ /11  l ; ] - ( a h N [ l a ~ ] + a ~ } 2 N [ l a ~  l : ] )  

11 12 + 2  a~}2--all, 

which reduces to, upon decreasing a~} 2 to ah, 

l + 3 f [ l : ] - a h N [ l : ] + ( N [ ~ ] + 2 ) a h - a h : l + A f [ l : ] + a h .  (5.38) 
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Since the denominator has become l+az1 in the process, we can conclude that  

>/ 1 +all  = ~z. (5.39) 

The bounds for Tjk in the range k > j - K  follow. 

We provide now the modifications we need in presence of factors of the form x~y ~ 
in the factorization of S"(s,y). In the range alj<<k<<az+lj, simply shift in all our 

arguments A[i  ] by c~, B [ i  ] by/3. In particular, the denominator in the expression (5.15) 

for ~z shifts by c~+~al, which gives the decay rate we want. The previous arguments apply 

verbatim. In the range k,'~alj, we note that  the size of S"(x, y) is then modified by a 

constant prefactor of 2 - (~+z~)j  , everything else remaining the same. As we can see from 

Lemma 3, the net effect is again to shift the final estimate in terms of 5z by the additional 

(c~+j3az)-term in the denominator just as before. 

To complete the proof of Theorem 1, we consider the remaining range k< . j -K  in the 

decomposition (3.5). However, in this range, it suffices to write the Hessian S"(x, y) as 
a polynomial in x, with analytic coefficients in y (up to the usual non-vanishing factor). 

The zeroes of S" are then of the form x=~s(y) ,  with ~s(Y) Puiseux series with leading 

exponents b,. We can now repeat our arguments, with the roles of x and y interchanged. 

Evidently, the range j>jk+K we are now considering can only fit in j,',bsk, or j<<bsk 
for b~ > 1. Hence the above argument applies, and the proof of (1.3) is complete. 

To prove the converse inequality, we consider three cases depending on whether the 

main face of the reduced Newton diagram when extended intersects both the p- and q~ 

axes; or whether the face is parallel to one of the axes; or lastly whether the face reduces 

to a single vertex. In the first case, let (a, 0) and (0,/3) denote the intersections with the 

p- and q-axes respectively. Then 
~ = 1 + 1  

Now for large positive ~, define the functions f~, g~ by 

f x ( y ) = { 1 0  if l ~ < A y ' ~ l + C l ,  

otherwise, 

1 if l~<Ax ~ ~<1+Cl, 

g~,(x)= 0 otherwise. 

Here cl is a small constant to be fixed later. Note that  I[f~[[~A-~e and I[gx[[~A-~ as 

A--+oo. 
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With S(x, y)=~'~p,q CpqXPy q, let So=~'Cpq, when the summation is restricted to 

the main face of the reduced Newton diagram. Then, as is easily verified, for any ~>0, 

in the support of fx(y)g~(x), we have 

IAS(x, y)-  Sol < ~, 

as long as Cl is taken to be small in terms of ~ '  ]Cpq I, and then A is taken to be large. If 

we take, say ~< �89 then this shows that  

,(T~f~,g~),>~c(/g~(x)dx)(/f~(y)dy) ~ A -~A -~  

as A ~ oo. Hence 

tlf~llllg~ll 
proving our claim. The case when the main face is parallel to the p-axis corresponds 

effectively to the above situation when a = c ~ .  In this situation, we define g~ to be 

independent of A and to be the characteristic function of a small interval around the 

origin. The argument then proceeds as before; the situation is also similar when the 

main face is parallel to the q-axis. Finally, when the main face reduces to a vertex (c, c), 

we take a = / 3 = 2 c  and argue as before. 

6. F u r t h e r  r e m a r k s  

We discuss briefly some closely related developments. 
(a) We have recently shown that  the methods of this paper can also be adapted 

to generalize Theorem 2 of [13], i.e., to establish the optimal decay rate O(IA1-1/2) for 

oscillatory integral operators with arbitrary analytic phases S(x, y) and amplitudes with 

a damping factor IS~u(x, y)l 1/2. A paper containing these results is being prepared for 

publication. 

(b) There is evidence that  the above sharp statements for analytic phases may not 

be valid for arbi trary smooth phases. However, we expect that  the sharp result will 

still hold in the Ca-case  under an additional finite multiplicity hypothesis: the ideal 

generated by S~y and S~'vy has finite codimension. We shall return to these matters  

elsewhere. 

(c) Another set of questions deal with lower Newton decay rates for Ca-phases .  The 

estimate (1.5) with loss of c for the case when condition (1.4) holds is in [15] (although 

not explicitly stated there). Since then, we have been informed by Seeger that  he can also 

obtain results similar to ours, but with a loss of e. In this connection, we should mention 
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that  A. Carbery has pointed out a flaw in the application of the stopping-time argument  

in our paper  "On a stopping process for oscillatory integrals", J. Geom. Anal., 4 (1994), 

105-120. As a result, the logarithmic loss of decay claimed there is not established. We 

hope to return to this point in the future. 
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