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In troduct ion  

In recent years, the study of the algebraic K-theory space K(R) of a ring R has been 

approached by the introduction of spaces with a more homological flavor. One collection 

of such spaces is connected to K-theory by various trace maps and is particularly effective 

in measuring the relative K-theory K(f) associated to a surjective ring homomorphism 

f :  R- -*S  whose kernel is nilpotent. Goodwillie's main theorem in [10] shows that the 

rational homotopy type of K(f)  can be recovered from cyclic homology. The main 

theorem of this paper shows that, for any prime p, the p-adic homotopy type of K(f)  

can be recovered from topological cyclic homology, TC(f). 

To define the topological cyclic homology TC(R) for a ring R one must first consider 

ordinary rings as special types of more general rings up to homotopy. Functors with 

smash product, or FSP's, were introduced by M. BSkstedt in [2] as useful models for such 

topological rings and it is for these objects that topological cyclic homology is defined by 

BSkstedt-Hsiang-Madsen in [4]. Every ring naturally gives rise to an FSP which models 

the associated Eilenberg-MacLane ring spectrum of the ring, and in this way rings and 

simplicial rings are naturally embedded into the category of FSP's. One can extend the 

definition of algebraic K-theory from simplicial rings to FSP's so that the algebraic K- 

theory of a simplicial ring agrees with the algebraic K-theory of its associated FSP. There 

is a natural transformation trc: K--*TC, called the cyclotomic trace, which was used by 

B5kstedt-Hsiang-Madsen in [4] to solve the algebraic K-theory analogue of Novikov's 

conjecture for a large class of discrete groups. In [12], Goodwillie conjectured that for 

maps f of FSP's such that 7~o(f) (a ring map) is surjective with nilpotent kernel then the 

relative cyclotomic trace from K(f) to TC(f)  would be an equivalence after pro-finite 
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completion. In this paper we prove the following theorem. 

MAIN THEOREM. If f: R--*S is a surjective ring map with nilpotent kernel then the 

relative trace map K(f )  trcb TC(f )  is an equivalence after p-completion for all primes p. 

We actually prove the slightly more general result that  if f :  R---~S is a map of simpli- 

cial rings such that  rr0(f) is surjective with nilpotent kernel, then the relative trace map 

K( f )  trc~TC(f) is an equivalence after p-completion for all primes p. Recently, Bjorn 

Dundas has shown how to deduce Goodwillie's original conjecture for all FSP's from this 

result for maps of simplicial rings ([6]). Essentially, he shows how one can use simpli- 

cial rings to approximate arbitrary FSP's when the functors in question are sufficiently 

analytic. 

We will be using the work of Hesselholt and Madsen in [16] for our basic results and 

terminology of TC. This result was announced in 1994 and has since been used to make 

several explicit calculations in algebraic K-theory (see for example the computations of 

Hesselholt and Madsen in [16], Wsalidis in [19], and B6kstedt and Madsen in [5]). For 

a very nice overview of the subject of trace maps, algebraic K-theory and computations 

recently obtained we recommend the review by Ib Madsen in [18]. 

The general scheme for our proof goes as follows. By an argument of Goodwillie 

in w of [10], we can reduce the main theorem to the case of a map of ordinary 

rings admitting a section and having a square-zero kernel. For X a based simplicial 

set, A a simplicial ring and M a simplicial A-bimodule we let ]~[X] be the simpli- 

cial A-bimodule M[X]/M[.]. We let A~<~/I[X] be the new simplicial ring with mul- 

tiplication (a, m)(a',  m ' ) =  (ca', am' +ma'). Let K(A ~< M[-] )  be the functor obtained 

by taking the homotopy fiber of the natural map K(A~</~r[-])--~K(A). Similarly, let 

T'-C(A~< M[-])  be the functor obtained by taking the homotopy fiber of the natural map 

TC(A~<.~[-])-*TC(A). The functors K(A~<M[-]) and T'-C(A~<M[-]) are homotopy 

functors from based spaces to spectra which are both (-1)-analytic in the sense of cal- 

culus (for homotopy functors) as defined by Goodwillie in [14]. 

If for all primes p and n~>l the trace map from K(A~<M[Sn]) to T-C(A~</~[Sn]) 

is 2n-connected after p-completion then the derivatives of these two homotopy functors 

agree at a point (as defined by Goodwillie in [11]). It is not too difficult to show that  for 

these two functors this also implies that  their differentials agree. By analytic continuation 

(5.10 of [12]) we can deduce that  the trace is an equivalence after p-completion for all 

based spaces within the radius of convergence for each functor. Since the functors are 

both (-1)-analytic this implies that  this is true for all based spaces. In particular, the 

p-completed trace is an equivalence for the space S o which is the special case we needed. 

In [7], B. Dundas and the author prove that  there is a natural transformation from 
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~:(A~</~r[-]) to TH(A;/~r[S1A-]) which is (2n§ on n-connected spaces. 

In [15], L. Hesselholt proves that  for n-connected spaces and all primes p, T~-C(A ~< M[-] )p  

is equivalent to S1ATH(A; M[-] )p  in a 2n-range (where p is p-completion) by a natural 

diagram of spaces. Thus, the objective is to "glue" these two arguments together com- 

patibly which we do in w using the categorical description of the trace map established 

by B. Dundas and the author in [8]. 

I would like to thank Bjcrn Dundas and Stavros Tsalidis for many encouraging 

conversations while working on this paper. Also, I would like to thank Ib Madsen for 

inviting me to talk on this result in Aarhus during which several improvements to the 

original argument were made. I am especially indebted to Tom Goodwillie for generously 

sharing his time and insights with me while I was a Tamarkin assistant professor at 

Brown University, and specifically for his help in establishing the p-limit condition and 

analyticity for T-C(A~</~[-])p (w and w 

0. Reduct ion  by work of  Tom Goodwi l l ie  

We now establish some notation, terminology and a result which will reduce the main 

theorem to showing three conditions. Let p be a fixed prime number. 

Notation. Our conventions for spaces, connectivity and spectra are the same as 

those in [14]. In particular, a map of spaces is called k-connected if each of its homotopy 

fibers is (k-1)-connected. The empty space is (-2)-connected, every based space is 

(-1)-connected, path-connected spaces are 0-connected, and so on. For us a spectrum 
(which some authors call a prespectrum) is a sequence {E(n)In>~O } of based spaces 

equipped with based maps E(n)--*~E(n+l) (we will assume that  all our spectra are 

(-1)-connected). A morphism of spectra is a sequence of based maps which strictly 

respects these structure maps. Following [14, 5.10] we define the p-completion of a spec- 

t rum E, written Ep, to be the homotopy limit of the tower EAM(~pn]) of smash products 

with Moore spaces. 

Let F be a functor from the category of simplicial rings to spectra. For f a map of 

simplicial rings from R to S we write F(f) for the homotopy fiber of F(R) -~:~F(S). The 

functors F which we will consider satisfy the following three conditions: 

Condition 1. There is some integer b such that  for k-connected simplicial ring 

maps f, F(f) is (k-b)-connected. In particular, if f is such that  Ill is a homotopy 

equivalence then the map f .  is a weak homotopy equivalence. 

Condition 2. If f is a surjective map of simpliciM rings whose kernel I satisfies 12 --0 

then F(f) is naturally equivalent to the realization of the simplicial spectra [n]---F(f[~]). 
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We note that  Condition 2 can be modified to say that  F( f )p  is naturally equivalent 

to the realization of the simplicial spectrum [n] -*F(f[n] )p since each F(f[n]) is a spectrum 

bounded below by -1 .  

We write F(A~(~r[X]) for F(Tr) when Ir is the projection A~(~I[X]--*A (sending 

(a,m) to a). By Condition 1, the functor F(AD</~r[-]) from based spaces to based 

spaces is a reduced homotopy functor in the sense of [11]. 

Condition 3. For all rings A, A-bimodules M, the functor F(A~<]~r[-])p is (-1)-  

analytic and satisfies the p-limit axiom as defined in [14, 4.2 and 5.10]. 

We have the following variation of one of the main theorems of T. Goodwillie's 

calculus of functors. 

THEOREM 0.1 (Tom Goodwillie). Let F and G be functors satisfying Conditions 

1, 2 and 3. Let ~ be a natural transformation from F to G such that for all rings A, 

A-bimodules M,  and n>~O, the natural map produced by 7? from F(A~<M[Sn])~ --, 

G(A~(2~r[S'~])p is at least 2n-connected. Then for any map f: R--~ S of simplicial rings 

such that ro(f)  is surjective with nilpotent kernel, the diagram 

F(R) " G(R) 

I s" 
F(S) v , G(S) 

is homotopy Cartesian ( a homotopy pull-back) after p-completion. 

Reduction step. By Conditions 1 and 2, one can use the argument in w of [10] to 

reduce to the special case when f is a map of rings having a section (i.e. f has a right 

inverse) and whose ideal I is square zero. We briefly recall the steps in this reduction. 

Let H be the homotopy fiber of (~?)~ and suppose that  H(f )  is an equivalence for 

surjective ring maps f having a section and a square-zero kernel. We want to deduce 

that  H(f )  is an equivalence for simplicial ring maps f such that  only ~r0(f) is a surjective 

ring map having a nilpotent kernel. 

Suppose that  f :  R--+S is a surjective simplicial ring map with kernel square zero. 

Take a free resolution OS-%S of S (as simplicial rings) and form the fiber product 

R'  g ) ~ S  

R " S .  

Since H preserves equivalences it suffices to show that  H(g ) is an equivalence. By 

Condition 2, H(g) can be computed degreewise and these are given by split extensions 
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(having square-zero kernel) since S is free, and thus H(g) is an equivalence by assumption. 

By induction applied to the diagrams 

R ~ R / I  n 

R/I n-1 

we see that H(f) is an equivalence for all surjective maps of simplicial rings with nilpotent 

kernel. 

Now let f: R--+S be a map of simplicial rings such that ~r0f is surjective with nilpo- 

tent kernel. By the diagram of simplicia] rings 

f 
R ~ S  

! 1 
7r R ~of> 7r0S 

we see that  H ( f )  is an equivalence if H of the two vertical maps are equivalences. Thus, 

we are left to consider the case of a simplicial ring R with I a 0-connected ideal and 

f: R---+R/I the quotient map. 

In general, if I C R  is a k-connected simplicial ideal, then by Lemma 1.1.7 of [10] 

there exists a simplicial ideal J C S  with J (k+l)-reduced (its k-skeleton is a point) 

and a map of simplicial ring-ideal pairs (S, J)---+(R,I) such that  both S---*R and J---*I 

are equivalences. Observe that  if J is (k+l)-reduced then J |  is (2k+l)-connected 

since the realization of the diagonal simplicial complex is equivalent to the bisimplicial 

realization which is (2k+2)-reduced. If m: jQj___+j2 is the multiplication map, then 

ker(m) is also (k+l)-reduced and so by the short exact sequence 

J |  --+ 0--* ker(m) --* m j2__, 0 

we see that  j2 is (k+l)-connected when J is (k+l)-reduced. Considering the diagram 

of simplicial rings 

S g~ ~ S / J  2 

s/J 

we see by Condition 1 that  H(g2) is (k+ 1-b)-connected and since H(gl) is an equivalence 

this implies that  H(g) is (k§  which implies (again by Condition 1) that  
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for I k-connected, H(R---~R/I) is (k+l-b)-connected.  Thus, by induction, if I is 0- 

connected then H(R--*R/I) is (n-b)-connected for all n and hence an equivalence. 

This ends the reduction step. 

Proof of Theorem 0.1. By the reduction step it suffices to show that for all rings A, 

A-bimodules M and based sets Y, the diagram 

F ( A ~( AI[Y]) ~ G( A D< ~r[y]) 

F(A) ,7 , G(A) 

is homotopy Cartesian after p-completion. 

Let X be a based simplicial set. Since A~<M[XVSn]~-(A~(ff/I[X])~<~/I[Sn], 
the homotopy fiber of F(A~(ff4[XVSn])-~F(A~ffI[X]) is naturally equivalent to 

_F((A ~ 2~[X])~ _~[Sn]). By Condition 2, F((A ~< _~[X]) ~ M[S ~])p is naturally equivalent 

to the diagonal of the bi-simplicial space sending [m], [m'] to F((A ~(~I[Xm]) ~M[S[m,]]) p . ~  '~ ^ 
The same is true for G in place of F and for each fixed m the natural map induced by 

~1 from F((A ~(M[Zm]) ~( M[S'~])p to G((A ~< M[Xm]) D( M[Sn])~ " is at least 2n-connected 

by assumption. Thus, the map of realizations is also 2n-connected and the diagram 

F(A~(~[XVSn] ) v ~. G(AD(~[XVSn]) 

F(A~(M[X]) " > G(A~M[X]) 

is 2n-Cartesian (homotopy pull-back in a 2n-range) after p-completion for all n~>0. 

This shows that the map OxF(A~M[X])p--~OxG(A~I[X])p induced by ~ is an 

equivalence for all based spaces (X,x). By Condition 3, the functors F(A~(M[-])p 

and G(A~<2~[-])p are (-1)-analytic and satisfy the p-limit axiom. By Theorem 5.10 

of [14] we deduce that diagram (1) is Cartesian after p-completion for all (-1)-connected 

spaces Y. That is, for all based spaces. 

In order to apply Theorem 0.1, we recall that the functor K(. ) satisfies Condition 1 

by Proposition 1.1 of [20], and Condition 2 by Lemma 1.2.2 of [10]. Actually, one uses 2.7 

of [9] to deduce that the diagram on p. 359 of [10] is homotopy Cartesian. Proposition 3.1 

establishes Condition 3 for K(-).  We show in w167 1 and 2 that the functor TC satisfies 

Conditions 1-3. Theorem 4.1 establishes the fact that the cyclotomic trace from K to 

TC defined in [4] satisfies the conditions of ~ in Theorem 0.1. This will be deduced by 

showing that the equivalence of stable K-theory and topological Hochschild homology 
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proved in [7] and the p-completed equivalence of stable TC and topological Hochschild 

homology proved in [15] can be compatibly combined. 

Aside. The careful reader may object at this point since the cyclotomic trace defined 

in [4] is not a natural transformation of functors but a natural homotopy class. This 

problem can be resolved, for example, by using the definition of the cyclotomic trace 

in [3, w which uses another model for the algebraic K-theory of an FSP which is naturally 

equivalent to one used in [4]. In [8], the cyclotomic trace is defined for ordinary rings by 

a natural transformation of functors to spectra (using iterations of the S-construction 

for deloopings) and we can equivalently use this model for the cyclotomic trace when we 

want to apply [14, 5.10]. 

1. The analyticity of TC(A ~</~/[--])~ 

In this section we will show that TC(A~<~r[-]) satisfies Conditions 1 and 2 and the 

analyticity part of Condition 3 for Theorem 0.1. Unless specified otherwise, we will be 

using the notation and terminology of [16] and [18]. In particular, for A a ring, we 

write A[-] for the FSP sending a space (pointed simplicial set) to the realization of the 

simplicial A-module [n]~-*A[Xn]/A[*]. We let S 1 (instead of G in [16]) be the circle 

group and write Cq for the subgroup of S 1 with q elements. We will write Rp for the 

restriction--the natural map TH(A)Cp n--,TH(A)Cp ~-1 obtained by restricting mapping 

spaces to fixed points (written Cp in [4] and [13]) and Fp for the Frobenius--the natural 

map TH(A)C~---~TH(A)C~ "-~ obtained by inclusion of fixed points (written ip in [4] 

and [13]). Following [18], for a fixed prime p and natural number n, we will call the 

cofibration sequences 

T H ( R ) h c p . - ~ T H ( R )  Cp" R~ TH(R)Cpn_I 

the fundamental cofibration sequences (see for example [16, w or [18, 2.4.6]). An ob- 

servation which we will be implicitly using in L~nma 1.1 and Proposition 1.3 is the 

following. If 

--o Ei+l fi~-I fi  �9 .. ~ Ei - -~E~-I  ~ ...--~E1 f-~-~Eo =* 

is a sequence of spectra such that the homotopy fibers of each fi are k-connected then 

holim/Ei is again k-connected. 

We now establish Condition 1 for TC. Given a simplicial ring R., we define _~. [-] 

to be the evident FSP determined by X--* I In] ~-*/~ [X]I. 
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L EMMA 1.1. If  f: R.---*S. is a map of simplicial rings such that Ill is k-connected, 
then TC(f)  is (k-2)-connected. 

Proof. If f: R.--*S. is a map of simplicial rings such that Ifl is k-connected, then 

for all spaces X, ][X]:R.[X]--~S.[X] is k-connected (see for example 5.1 of [20]) and 

so TH[~] (f) is (k-1)-connected for each simplicial dimension [n] and hence wn( f )  is 

(k-1)-connected. Since homotopy orbits preserve connectivity, for a fixed prime p, it 

follows from the fundamental cofibration sequences 

TH(R)hcp ---, TH(R)C, ~ Rp, TH(R)Cp~-I 

that hol imRTH(f )c ,  ~ is (k-1)-connected. Thus TC(f; p) (which is the homotopy fiber 

of 1-Fp acting on holimRpWH(f)c~ ") is (k-2)-connected and hence TC(f)  is (k-2)-  

connected by [16, Theorem 3.1]. 

Now we establish Condition 2 for TC. What we prove for TC is actually stronger 

than Condition 2 since we show that TC always commutes with realizations. We note in 

contrast that algebraic K-theory does not, in general, have this additional property. 

LEMMA 1.2. For A.  a simplicial ring, TC(A.) is naturally equivalent to 

I[n] ~--~ TC(A,~) I. 

Proof. For each simplicial dimension [k], I[n] ~-*TH[k] (An)I~TH[k] (A.) and hence 

I[n] ~-~ TH(A~)I - ~  TH(A.). 

Since homotopy orbits commute with realization, by inducting the fundamental cofibra- 

tion sequences we see that 

I[ n] ~-* TH(An) Cpk I - ~  TH(A*) Cpk 

for all primes p and natural numbers k. In general, inverse limits do not commute with 

realizations but the directed inverse limit of functors to connective spectra (of weak CW- 

type) which do commute with realizations again commutes with realizations (essentially 

because for connective spectra finite homotopy colimits commute with homotopy inverse 

limits and lim(n)=0 when n~>2 for directed inverse limits) and hence 

I[n] H holim TH(An)Cp k I - ~  holim TH(A.)Cp k . 
Rp Rp 

Thus, TC(A. ;p), which is the homotopy fiber of 1 - F p  of this inverse limit (see [16, 3.1.1]), 

can be computed degreewise and hence by Theorem 3.1 of [16] so can TC(A.). 
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Now we examine the analyticity of T C ( A ~ r [ - ] ) .  We recall from [14, w that 

a homotopy functor F is o-analytic if there is some number q such that F satisfies 

E,~ (no-q, O-P 1) for all n~> 1. Recall that F satisfies E,~ (c, k) if X: P(S)--~g is any strongly 

co-Cartesian (n+l)-cube (every face is co-Cartesian, see [14, 2.1]) such that for all sES 
the map 2?(O)---~X(s) is ks-connected and ks>~k, then the diagram F(X) is (-c+Eks)- 
Cartesian. We simply write E,~(c) for E,~(c,-1). 

PROPOSITION 1.3. /f  T H ( A ~ r [ - ] )  satisfies En(-n) for all n>~l then for all 
primes p, TC(A ~/~r[-])p is ( -  1)-analytic. 

Proof. Since homotopy orbits preserve homotopy fibrations and connectivity, 

TH(A ~ M[-])hC also satisfies E,~(-n) for all finite subgroups C of S 1. Induction with 

respect to k on the fundamental cofibration sequences shows that TH(A ~ ~f[_])cpk sat- 

isfies En(-n) for all n. Thus, holimR WH(A~<.~r[-])c~ k also satisfies En(-n) for all n. 

Since T C ( A ~ r [ - ] ; p )  is the homotopy fiber of 1-Fp acting on this, it satisfies En(1 -n )  

for all n. Since p-completion preserves fibrations and connectivity, TC(A~<J~f[-];p)p 

satisfies En(1-n)  also. By [16, Theorem 3.1], the natural map TC(F)---~TC(F;R) is 

an equivalence after p-completion for all FSP's F and primes p so TC(A~J~[-])p also 

satisfies E~(1-n) .  

In order to study the analyticity of T H ( A ~ r [ - ] )  we first establish some notation 

for rewriting it into its homogeneous pieces. This rewriting will also be used extensively 
in w 

Notation 1.4. Following [15], we let AVM be the FSP defined by setting AVM(X)= 
A[X] VM[X] with multiplication 

AVM(X) AAVM(Y) -% A[X] AA[Y] V.~[X] A ~r[Y] V~r[X] AA[Y] V~f[X] A/~r[Y] 

~-~ A[XAY] V~r[XAY] V~r[XAY] i AVM[XAY]. 

The first map a is the canonical homeomorphism, the second map 13 is #x,yV1x,yV 
. I X  ~ rx,yV* and the third map V is 1Vfold. The unit in AVM is the composite X-----*A[X]--~ 

AVM(X). It is straightforward to check that AVM is an FSP. 

We define a morphism of FSP's from AVM to A ~( M by 

t~[X]VM[X] inc fi][X] xM[X] ~-A~M[X]. 

Using the canonical homeomorphisms which permute smash products and wedge sums, 

we obtain a natural map of cyclic spaces from V~=0Ta(A; M) to T(AVM) where 
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Ta(A; M) is the cyclic subspace of TH(AVM) determined by the a-homogeneous part. 

That is, 

Ta(A; M)k = holim~2 x~ V (Fo[SZ~ 
Ik+l  O ~ j l < . . . < j ~ k  

Ft = otherwise. 

We see that for all n ) 0  the natural inclusion from V~__0 Ta(A; M) to T(A~M)  is a map 

of cyclic spectra and by Theorem 2.1 of [15] this natural inclusion is an equivalence of 

cyclotomic spectra. 

PROPOSITION 1.5. Let F be a simplicial object in the category of reduced homotopy 
functors from pointed spaces to (-1)-connective spectra such that 

(i) F([v]) satisfies En(c, x) for all x, 
(ii) F([v])=* for O<~v<.q-1. 

Then ]F] is a reduced homotopy functor from pointed spaces to spectra which satisfies 
En(c-q, x) for all x. 

Proof. Let X be a strongly co-Cartesian (n+l)-cube such that X(O)--*2d(s) is 

ks (/> ~)-connected for all s E S. By condition (i), F([v]) (X) is a ( - c +  Eks)-Cartesian cube 

of spectra which is a (n-c+Eks)-co-Cartesian cube of spectra. Since homotopy colimits 

commute and realization (as we are using it here) is a homotopy colimit the iterated 

homotopy cofiber is the realization of the simplicial iterated homotopy cofibers degree- 

wise. This simplicial spectrum is q-reduced (i.e. does not have cells in dimensions <q) 

by condition (ii) and is (n-c+Eks)-connected in all other simplicial dimensions--so it 

is at least (n-c+q+Eks)-connected. Thus, ]F](A') is (n-c+q+Ek~)-co-Cartesian and 
hence (-c+q+Ek~)-Cartesian and IF] satisfies En(c-q, x). 

COROLLARY 1.6. TH(A~<2~r[-]) satisfies E,~(-n) for all n>>.l. 

Proof. We first note that T~(A; M) is (a-1)-reduced for all a and hence it is at least 

(a-2)-connected. Thus, TH(A ~< M) is naturally homotopy equivalent to 1-Ia Ta(A; M) 

and it suffices to show that Ta(A;2~[-]) satisfies En(-n) for all n~>l. Fix a. In each 

simplicial dimension v t> a -  1, T~ (A; 2~r[-])v is naturally equivalent to 

X ~-* V HAA(v+l-a) AHMAa AEcr [XAa]" 
O<.jl <. . .<ja <~ V 

The functor X~E~ ^a] satisfies En(c) for any c when n>~a and En(0) when n<a by 

the argument of [14, 4.4]. Thus T~(A;.Q[-]). satisfies E,~(c) for any c when n>~a and 
En(0) when n<a also since it is the finite coproduct of functors obtained by composing 
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X ~ E ~ 1 7 6  Aa with linear functors (smashing with another spectrum). By Proposition 1.5, 

Ta(A;A4[-]) satisfies E~(c) for any c when n>~a and E,~(0+I-a)  when n<a,  and hence 

E,~(-n)  for all n~>l. 

2. The p-limit axiom for T-C(A~</%~/[--]) 

If F is a homotopy functor from spaces to p-complete spectra, then one says that F 

satisfies the p-limit axiom if, for every CW-complex X, the mod p homotopy groups 

of F ( X )  are colimits of mod p homotopy groups of F ( X a ) ,  indexed by the finite sub- 

complexes X ~ C X .  To show the p-limit axiom for T-C(AV/~[-]) we will first make a 

series of reductions and observations. To ease our notation we will write T~ (or T) for 

the functor T~(A;- )  (or T(AV-) )  from A-bimodules to cyclotomic spectra as defined 

in Notation 1.4. We also recall that after p-completion, the natural map from TC to 

TC( - ;p )  is an equivalence. Thus, it suffices to show that TC( - ;p )  satisfies the p-limit 

axiom and we will write the functor TC(AV-;p)  simply as TC(p). 

GENERAL RESULTS 2.1. Let k be relatively prime to p. Then: 

(a) Tkp~ is at least (kp "~- 1)-connected. 
(b) c ~  T c ~  T p -Va~>0-~ �9 

F, �9 TCP"  ... ~pCp.-1 
(C) p . - - k p n  - - k p , ~ .  

(d) Rp:TCp:--~wCp:_-11 (wherep -1 impl ies , ) .  

(e) For all n there is a natural cofibration sequence of spectra 

Rp _ C p , -  1 
(Tkp~) hC~ ~ T kC;: -----* ' l'kp~- l . 

(f) Let trp be a representative for the transfer map from (Tkp.)hCp. to (Tkp~)hC~._~ �9 

Then the following diagram of cofibration sequences commutes up to homotopy: 

(Tkp~)hCp. ~ TCp~ Rp ~ TC~_I 
~ kp  n k p n - 1  

cp~_ 1 TCp (Tkp~)hC,~_l , Tkp~ R, ) ~-2 
k p n -  1 �9 

(g) There is a natural map from (ETkp~)hS 1 to the homotopy inverse limit of 

(Tkp,~)hCp. obtained from the transfer maps trp which is an equivalence after taking p- 

completion. 

Proof. Part (a) follows from the fact that Tkp~ is (kp~-l)-reduced, (b)-(e) follow 

from w167 and 2.2 of [15]. We obtain (f) from Lemma 3.5 of [16] and (g) (in our 
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generality) is due to Goodwillie and can be found as Lemma 4.4.9 (or Remark 4.4.10) 

in [18]. 

For k relatively prime to p, we write T(k) for Vr~>0 Tkp~ and hence T~--V(k,p)=lT(k), 
and by (c) and (d) this decomposition respects both structure maps FB and Pp. We 

note that by (a), T(k) is at least (k-1)-connected. Since homotopy orbits preserve 

connectivity, (a) and induction with (e)'lmply that Wkp~Cpr is at least (kp n-r-  1)-connected 

for all k, n and r, and so T(k)C; is also at least (k-1)-connected. 

LEMMA 2.2. TC(p) = [holimnp Tcp r ]hFp '~V(k,p)=l [h~ hG" 

Proof. By (a) and (e), holimRW(k) Cp~ is at least (k-1)-connected, and hence 

[holimR, T(k)C~r ]hG is at least ( k -  2)-connected. Thus, (using (b)) the following natural 

maps are weak equivalences: 

[holimTC~] hG-~[holim V T(k)Cp~] hG -~  [holim H W(k)C~] hG 
k Rp Rp Rp (k,p)----1 (k,p)=l 

V [h~ -~  H [h~ipmT(k)Cp~] hG" 
(k,p)=l (k,p)=l 

This proves the lemma since homotopy inverse limits commute. 

To prove the p-limit axiom, it suffices to show that TC(p) commutes with filtered 

direct limits after p-completion. Since homotopy colimits commute, we see by Lemma 2.2 

that 

holimWC(p) -~h~ V [h~ hG 
(k,p)=l R~ 

--"~ V h~ hF~' 
(k,p)----1 

and hence it suffices to show that [holimRT(k)C~'] hG satisfies the p-limit axiom for all 

fixed k relatively prime to p. Thus, we now fix k. 

We now recall an observation of Goodwillie (see for example 3.1.1 of [16]) which 

allows us to interchange to roles of Rp and Fp: 

[holim T(k) Cp~ ]hFp ..~ [holim T(k) C'~ ]hR,. 
R v - -  Fp 

LEMMA 2.3. For each fixed n, the functor . . . .  Gr nonmG~kv= satisfies the p-limit axiom. 

Proof. We will induct on n. First, the case n=0. By observation (e), we have 

cofibration sequences 
(Tk)aG ~ ~ T C ~  Rp *, 
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and since homotopy inverse limits preserve cofibration sequences of spectra we get by 

observations (f) and (g) a map 

(ETk)hS~ --* holim (Tk)hC,. --~ holim TC~ 
trp Fp ~ k  

which is an equivalence after taking p-completions. The functor (ETk)hS1 commutes 

with direct limits because Tk does and homotopy colimits commute. 

Since the p-completion of a functor which satisfies the limit axiom satisfies the p- 

limit axiom (bottom of [14, p. 328]), we see that nollmFpl k satisfies the p-limit axiom. 

Now assume that the lemma is true for the case n - 1 .  We again obtain a cofibration of 

spectra 

holim (Tkp,~)hVp; "-+ holim Tc•: R~ holim T Cp'-I 
trp Fp ir Fp k P n - 1  " 

The left-hand term satisfies the p-limit axiom since it is equivalent to (~Tkp,OhS~ after 

p-completion and Tkp~ commutes  with direct limits. The term on the right is equivalent 

to the case n - 1  by cofinality and hence satisfies the p-limit axiom. Since p-completion 

preserves cofibrations of spectra and homotopy colimits commute we are done. 

\! wC~ -~r I  > ~ Since T C~ is at least (kp n - ' -  1)-connected, for a fixed r, vn~>0 kp n k p  ~ n ~ u  top , 

and thus, 

. ~--[hohm V Tk ~] 
Fp n ~ 0  P 

-] h Rp 

"~ [holim ] 1  TC~ ]hR~ []-[ holim TC~! 
t - kpo j L 

If we write H~ for the functor holimGTCp: then the action of Rp takes Hn to Hn-1 and 

we get 

We still need to know if we can pass homotopy colimits pass this homotopy in- 
Rp 

verse limit after p-completion. The fiber of H,~----*H,~-I is naturally equivalent to 

(~Tkpn)hS 1 after p-completion which is at least kpn-connected. Thus, the natural map 

from holimR~ H,~ to Hn is at least kp'~-connected after p-completion. By Lemma 2.3 the 

functors H~ satisfy the p-limit axiom for all n and hence holimR, Hn satisfies the p-limit 

axiom also. 
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3. The functor K(A; M)  and the analyticity of K(A~<]~/[--]) 

We need to recall some of the constructions and results of [7]. We let A be a ring, P its 

exact category of finitely generated projective right A-modules and M its exact category 

of right modules. 

Definition 3.1. For M an A-bimodule, we define K(A; M) to be 

K(A; M)-f~- Ces'~' H ~  C| 

where S is Waldhausen's S-construction for algebraic K-theory (see [21]). We note that 

K(A; 0)-~K(A), K(A; A)~K(End(P))  and that K(A; - )  is a functor of A-bimodules. We 

also note that K(A; M) is the usual algebraic K-theory for the exact category with objects 

the pairs (P, a) consisting of P E P  and a an A-module homomorphism from P to P| 
with morphisms 

Hom((P, a), (Q,/3)) = {rE HOmA (P, Q) l/3of ---- (f| 

A sequence (P",a")--,(P,a)--*(P',a') is exact if and only if P"--*P--*P' is an exact 

sequence in P. 

We extend K(A; - )  to simplicial A-bimodules degreewise. That is, for M. a simplicial 

A-bimodule, K(A;M.) is the realization of the simplicial space [nicK(A; Mn). Since 

I Hces.~, Homs.j~a (C, C@A M) I is connected, K(A; M.) can equivalently be defined as the 

loop space of the realization of the associated bi-simplicial set. By the realization lemma, 

K(A;M[-])  is a homotopy functor: taking homotopy-equivalent spaces to homotopy- 

equivalent spaces. 

We define K(A; MIX]) to be the (homotopy) fiber of the natural retraction from 

K(A;M[X]) to K(A;~I[*])=K(A). Since K(A;M[X]) is an infinite loop space and the 

map in question is a map of infinite loop spaces, we see that K(A; MIX]) is weakly 

homotopic to K(A)• ~r[X]). We note that K(A;2~[X]) is naturally equivalent 

to lim,~__.~ f~n Vpes!~)~,(Homs!~)p(p ' P))-[X] since this is the underlying space of the 

cofiber (as spectra) of the natural section from K(A) to K(A; .~[X]). 

We are interested in the functor K(A; M) because of its relationship with K(A ~< M) 

which we now recall from [7]. We let K(A ~< M) be the fiber of the natural map from 

K(A~<M) to K(A) produced by the ring homomorphism sending (a,m) to a. This is 

a map of infinite loop spaces with a section so K(A~<M) is weakly homotopic to 

K(A)• We write B.M for the bar construction naturally considered as a 

simplicial A-bimodule; in particular K(A; B.M)~K(A; ll~[S1]). 
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THEOREM ([7, 4.1]). For any simplicial A-bimodule M, there exists a natural weak 
homotopy equivalence 

�9 (A, M): K(A; B.M) - ~  K(A ~< M) 

which factors to give a homotopy equivalence ~(A, M) from K(A, B.M) to K(A~<M). 

PROPOSITION 3.2. The homotopy functor X~-*K(A;I~r[X]) is O-analytic. Thus, the 
homotopy functor K(A ~< ~r[_]) is (-1)-analytic since it is equivalent to the composition of 
the suspension functor followed by the O-analytic functor K(A; A4[-]). Since p-completion 
preserves analyticity, K(A~<A4[-])p is also (-1)-analytic for all primes p. 

- -  - -  N 

Proof. We show that for each q the functor Vpes~.p(Homs~p(P,P)) [-] takes 

strongly co-Cartesian (n+l)-cubes to (q+n+Eixi)-co-Cartesian cubes. By taking 12q 

of these and the limit with respect to q we will obtain an (n+Eixi)-co-Cartesian dia- 

gram of spectra which is equivalent to a (Eixi)-Cartesian diagram of spectra (see [14, 

Remark 1.19]) and hence the result. 

Let 2d be a strongly co-Cartesian (n+l)-cube of spaces. We may assume that 

the natural maps are inclusions of sub-simplicial sets. Suppose also that the maps 

X(O)-+2d({i}) are xi-connected. Thus, the maps from A'({0, ..., n}-{ i} )  to X({0, ..., n}) 

are also xi-connected. For G any abelian group, the functor G[-] is linear and pre- 

serves connectivity, thus G[X] is a strongly Cartesian cube with G[2d({0,...,n}-{i})] 

to G[A'({0, ..., n})] being xi-connected. By Theorem 1.4 of [14], we see that G[2d] is an 

(n + Ei xi )-co-Cartesian cube. 

If X is a simplicial subset of Y, then the cofiber of the inclusion map is just the 

degreewise quotient Y,~/Xn. Thus, 

cofiber< V (H~ P)) [X]> - V cofiber((Homs.~'(P, P)) [X]> 
Pesq. 7~ Pesq. p 

which is (q+n+ ~i xi)-connected (since a q-reduced simplicial space of t-connected spaces 

is (q+t)-connected). 

4. Connectivity of the p-completed relative trace 

For X a pointed set and E a spectrum we let X A E  be the new spectrum determined 

by (XAE)n----XAEn. For a pointed simplicial set X. we let X. |  be the resulting 

simplicial spectrum obtained by In] ~-*Xn AE. 
Let A[1] be the simplicial set HomA(-,[1])  and let S 1 be the simplicial set 

A[1]/0A[1]. Thus, the realization of S 1 is the standard CW-decomposition of the circle 
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with one vertex. One can realize the rotation action of S 1 by a simplicial model by ob- 

serving that S 1 is a cyclic set (see for example [17]). We note that S 1 is a based simplicial 

set with basepoint 0 and that S 1 (obtained by adding a disjoint basepoint +) is a based 

cyclic set. We note that 2~r[$1] is the bar construction B.M of the abelian group M and 

that ]~[S+ 1] is the cyclic bar construction NCyM of M. We recall that if Y. is a cyclic set 

then (using the diagonal) there is a simplicial map S+ 1 AY. _L~y. which realizes the usual 

circle action on IYI. For any spectrum E we have a split cofibration sequence 

S~174 ~ $1+ |  _L~ S1@E 

obtained by identifying + with 0. 

We observe that S+~ | M)-~TI(A; M) by extending the simplicial inclusion 

map TH(A; M)-+T~(A; M) to a free cyclic one. We let a be the natural composite map 

of spectra (in the homotopy category) 

T~--H(A ~< M) ~- T--H(AVM) ~ T1 (A; M) ~ S+ 1 | M) --L S I| M), 

where p is the projection map. 

THEOREM 4.1. For M an m-connected simplicial A-bimodule the cyclotomic trace 

fi(A D< M) trc) T'C(A ~< M) 

is 2m-connected after p-completion for all primes p. 

Proof. We consider the diagram 

E:(A ~< M) t r r  > T"-C(A ~< M) 

TH(A~<M) 

SI| M), 

where tr is the usual Dennis trace map and res is the restriction map. The triangle is 

known to commute up to homotopy (see for example [18, w and the right-hand com- 

posite sores is 2m-connected after p-completion by the main result of [15] (see the proof 

of the result). The natural map 7? from SI| M) into TH(A; M[S1])=TH(A; B.M) 

(obtained by including wedges into products) is an equivalence and by Theorems 3.4 
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and 4.1 of [7], the spectra K(A ~< M) and TH(A; B.M) are (2m+2)-equivalent by a natu- 

ral map. Thus, once we establish that the composite qoaotr actually is a 2m-connected 

map we will be finished. The rest of the paper is devoted to establishing this fact. 

Let ~- be the composite map 

S 1 | M) - ~  T1 (A; M) --+ T--H(A ~< M). 

Thus, T is 2m-connected and aOT~_Tr. By the Blakers-Massey theorem, the natural 

map (obtained by sending wedges to products) from SI@K(A; M)--*K(A; NCYM) is at 

least 2m-connected. The natural fibration NCyM--~BM has a section a defined by 

a(ml,  . . . , m n ) : ( ( - 1 ) ~ i ~ l m i , m l ,  ...,mn). We also write a for the natural map from 
K(A; BM) to K(A; NCYM) defined by K(A; a). 

PROPOSITION 4.2. There exists a natural map (in the homotopy category) 

(I): ~:(A; NCyM) --+ T~--H(A ~< M) 

such the following two squares commute up to homotopy: 

I<(A~<M) t r  ,T~-~(A~<M)< ~ SI@TH(A;M)  

K(A; BM) ~ , K(A; NCyM) < S I| M), 

where # is the natural transformation K(R;. )-*TH(R;-)  of [7, 3.4]. Though we will not 

need it, �9 will also be 2m-connected and defined by a sequence of natural Sl-equivariant 
maps. 

We note that once we have established Proposition 4.2 the result will follow from 

the following diagram (all unlabeled figures commute by naturality): 

K(A~<M) t r  > T~---H(A D< M) < ~(_~2,~) SI+| ) 

K(A;BM) ~ - K(A;NCYM) < = 2 m  S I |  ) s~| SI |  

K(A;BM) < -~2m S l |  ) S~| Sl| 

Reduction. It is convenient to restrict our attention to free modules. It follows 

by cofinality and Nakayama's lemma that the homotopy types of both K(A ~< M) and 
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K(A; B . M )  are not changed if we use only the subcategory 9rC7) of free modules (see 

for example p. 697 of [7]). We can also assume that  9 r is an exact category of finitely 

generated free modules with one object for each nonnegative integer. 

TH of exact categories. In order to construct ~, we will be using the techniques 

developed in [8] (also outlined in w of [18]). For ,4 a small category, the cyclic nerve, 

NcyA, is the cyclic set 

In] ~-* I I  HomA(A1, A0) x HomA(A2, A1) x ... x HomA(A0, An) 
Ao,...,Ar, EJt 

with operators like those for Hochschild homology. For C a small linear category, we can 

define a cyclic spectrum TH(C) where we use the Homc-abelian groups to form FSP's 

with several objects. In particular, 

[n] ~ holim Map (S =~ A... A S =" , 
XO)...)~ ~/xn+l 

V (Hom~t (Xl, X0))-[S~] A... AHom~ (A0, An)-[SX~]), 
Ao,...,AnE.A 

where I is the category of finite nonempty sets having one object for each isomorphism 

class and for x E I, S * is the sphere indexed on x. The operators are again like those for 

Hochschild homology (see [8, 1.3.6] for more details). There is a natural map from Ncyc 

to TH(C) given by sending a0 x ... Xan to a0A...Aan. 

We can incorporate the S-construction of [21] into our construction TH as follows. 

For C an exact category, each SnC can also be considered as a category with the mor- 

phisms the natural transformations of functors. We can further consider this as an exact 

category by declaring a sequence C'---~C-~C ~ to be exact if the associated sequences 

for all i<~j are exact as sequences of C. With these conventions, we can consider S.C 

not only as a simpliciai set but as a simplicial category or even as a simpliciai exact 

category. We consider the composed functor TH(S7)). This is a cyclic simplicial space 

whose realization is naturally an Sl-space by first realizing the simplicial direction and 

then giving the realization of the resulting cyclic space its usual Sl-action. We list below 

several propositions whose proofs can be found in [8]. 

FACTS 4.3. Let A be a ring, M an A-bimodule and 7) the exact category of 

finitely generated projective right A-modules. We will also write M for the functor 

HomA(--, --| M).  

(1) [8, 2.1.5] / f  we consider A as a category with one object *, then the natural 

linear functor from A to 7 ) (given by sending �9 to AET)) produces a homotopy equivalence 

TH(A, M ) ~ T H ( 7 ) ,  M).  
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(2) [8, 2.1.3] For all k>~O there is a natural homotopy equivalence 

[TH(P, M ) [ - ~  flk[TH(S(k)7 p, M)[. 

(3) [8, 2.2.3] For all k~O, the natural map by degeneracies 

TH0(S(k)P, M) deg ~ TH(S(k)p ' M) 

is 2k-connected. 

(4) [8, 2.1.6] The trace map from K(A) to TH(A) can be recovered by the composite 

K(A) -- f~[SP I fl~gtlTH0(SP)I ~ f~ITH(SP)I ~ ~- ITH(P)I ~ ~ ITH(A)I. 

(5) [8, 2.1.1] The inclusion functor gives an equivalence TH(~) -%TH(P)  and the 

trace map factors up to homotopy through the K-theory of jr via the commuting diagram 

K ( A ) = ~ I S P l  i > ~ITH0(SP)I > ~tlTH(SP)l �9 _~ ITH(T,)I �9 ~_ ITH(A) I 

l T- T- T- 
~tlSgVl 1 , fl]THo(S~)I , •ITH(SJr)I �9 _~ ITH($-)] �9 ~_ ]TH(A)I. 

Suppose that  we have a subcategory tg of C with the same set of objects and whose 

morphisms are always isomorphisms. Note that  NotC is naturally isomorphic to C and 

that  N. tg  can also be considered as a simplicial linear category with morphisms the 

appropriate commutative diagrams. 

LEMMA 4.4 (after [21, 1.4.1]). The natural maps by degeneracies Ncy(c)-~NCy(N.tC) 

and TH(C)--~TH(N.tC) are homotopy equivalences. 

Proof. We do only the statement for TH as the other is similar. By the realization 

lemma, it suffices to show that  T H ( g ) ~ T H ( N n t g )  (given by s=TH(so ... so)) is an equiv- 

alence for all n. Fix n. The map s is a section to d=TH(do ... do) and thus it suffices to 

show that  sod is homotopic to the identity. This composite is equal to the map induced 

by the linear functor which takes Ao~ 22- ... ( ~  An in N,~tg to An . . . . .  An. Since this 

functor is naturally isomorphic to the identity we are done by 1.6.2 of [8]. 

Now we define an inverse to the first equivalence in Lemma 4.4. We define a simplicial 
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map  r from the diagonal of NCy(N.tC) to Ncy(c) as follows: 

2~ 0 < ~o ~Z~I < ~l ... <'~',:-1 2~ i < ~q: ... < "t,~ d O  

Ao,o < "~o Ao,1 < ~'~ ... <'y~-i ~ ... Ao,o 

An,0 < An,1 < ... < An,i < ... ~ A~,0 

A0,0 < flo An,1 < fll 

r 

A n - l , 2  < f12 �9 ..  ,Kiln--1 A l , n  < fl'~ A0,0, 

{ ~o[~.(1)... o~1 (1)] -~ 
fl~ = [a ,~- i+ l  ( i ) . . .  a l  (i)] ?i[an-i(i+l)... a l ( i +  1)] -1  

OZl (n)')'n 

if i = 0, 

if l ~ i ~ < n - 1 ,  

if i = n .  

It  is straightforward to check tha t  r is a simplicial map and tha t  the composite Ncy(c) d e g  

NCY(N.tC)CNCy(c) is the identity. Thus, r is a homotopy inverse to the inclusion by 

degeneracies. 

A key observation for the commuting of diagram (1) is tha t  when C is a groupoid 

(every morphism is an isomorphism) then the diagram 

N.C 1 , N~YN.C 

l 
NcYC < r N.CyN.C 

commutes where "1" is the map  which takes every object of a category to its identity 

endomorphism as an element in N~ y and a is the map defined in Proposition 4.2. Observe 

tha t  by Facts 4.3 (4) one can factor the trace map  through the cyclic bar construction 
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using the natural commuting diagram 

flls 'l > flIN~YST'I > f~ITHo(SP)I 

h, l 
~INcys~ol , fllTH.(S~O)I. 

On the relationship of K(A ~(M) and K(A; M). Now we recall some of the details 

used in [7] to establish the relationship between K(A~< M) and K(A; B.M) in order to 

obtain a similar result for TH. We can consider ~A as a subcategory of .~A~<M with all of 

the objects (one for each natural number), but having only the morphisms 03, 0). Note, 

however, that for q> l  the subcategory SqJCA of SqJT'A~< M does not have all the objects. 

For short, write B=A~(M and note that as an A-module B=A@M. For q,q~>~O 
we get 

HomB ( A q | B ,  Aq'| B) TM HOmA ( A q , Aq'| B) 

-~ HomA(A q, Aq'| (A@M)) 

-~ HomA ( A q, Aq')oHomA (A q , Aq'| M). 

We will write a morphism of JT'AD( M as a pair (a,/3) via this natural identification. 

Let U be the exact functor from ~'A ~ M to itself defined by the identity on objects and 

U(a, ~)=(a ,  0). It is a retraction (UU--U). Recall that SqJ:A~(M is a (full) subcategory 

of the functor category (JT'A~<M) Ar[q] a n d  we le t  "Sq.~A~(M be the image of SqJ:A~M under 

the endofunctor 
u Ar[q] : (,~ A~< M ) Ar[ q] ~ (.,T'A ~< M ) Ar[q] . 

Let T be the class of isomorphisms of the form (1,/3). These are precisely the morphisms 

which U takes to the identity maps. The functor J:A--~JCA~M, given by extension of 

scalars, induces a bijection of the sets of isomorphism classes of objects ([1, III.2.12]). 

This shows that we may choose a common skeleton category for the categories ~A and 

U3rA~M, and more generally, that (when this is done) S~A a n d  "S~4A~<M have the same 

set of objects. It follows that there is an isomorphism of bisimplicial sets 

N.t'SJ:AzM ~- I~ B*H~ F'F| 

Every object C of Sq.~A~M is t-isomorphic to an object of  "Sq.~A~M, namely 

Sq(U)(C). This follows from the fact that in .TA~M every short exact sequence splits. 

(Every filtered object C is a split object, and so its isomorphism class is determined 
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by the isomorphism classes of its subquotients C(i+l/i) ,  l<~i~q.) If 77 is an isomor- 

phism from C to Sq(U)(C) then, putting ~=Sq(U)(r/), ~-1o7/ is a t-isomorphism be- 

cause Sq(U)(~-lo~I)=Sq(U)(~)-loSq(U)(~)=~-lo~=I. Thus, N.tSqJ:A~M is equivalent 

to N.tSqJ:A~M and we obtain 

K(~=A ~ M) = a lS~A ~ U l - ~  a lN.t~TA. M I ~ ~ P I I  B. nomsT. (F, F| M) 

= K(JVA; B. M). 

LEMMA 4.5. There is a commuting diagram of equivalences: 

TH.'S.T'A~(M "~ > TH. S.T'A ~( M 

TH.N.tg~A~M ~- , TH.N.tS~'A~M, 

Proof. The vertical maps axe equivalences by Lemma 4.4. Since N.t'Sq~A~M is 

simplicial homotopy equivalent to N.tSq~A~M by linear functors and TH[p] is functorial 

for all [p], the realization lemma tells us that the bottom map is a homotopy equivalence 

and hence the top one is also. 

Definition. We define (I) to be the natural map of cyclic spaces from K(A; NCYM) to 

T--H(A D< M) as follows. Let ~: K(A, NCyM)--~TH(SgrA~M) be the map determined by 

~)n: H Homs~-(F, F| n+l --* THn'S.TAD(M, 
PES.T 

(F; ao, ..., an) --* ((1, ao)A...A (1, an)), 

(1, ai) �9 Hom~-A ~" (P| (A D< M),-FQA (A D< M)). 

We observe that (~ can be written as a composite 

ILl Ncy Homs~a A (F, F| M) --~ i cy (ShrA ~ M) --* TH (S~'A ~ M). 
PES~-A 

We define @ (in the homotopy category) by the diagram 

K(A; NCyM) ~-~ ~-T'H('S.~AvcM) - ~  ~T-H(S.fi'AD(M) ~- T--H(Av< M) 

(where the first equivalence is by Lemma 4.5 and the second is by Facts 4.3). 
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Proof of Proposition 4.2. We first show that the following natural diagram commutes 

(up to homotopy): 

f((AxM) t r  ~ T~-~(AxM) 

I-~ ( i ) I �9 
K(A; B.M) ~ , K(A; NCYM). 

By Lemma 4.4 and Facts 4.3 (5), it suffices to note that the following diagram commutes 

(by inspection): 

> cy N,t'SflZAxM degol  N.N.tS.~'AxM 

I I  B*Homsj: 'A(F,F| M)  a> I.I Nc, YHoms:FA(F,F|  �9 
P Es.~A P ES~'A 

We now establish that the following natural diagram commutes up to homotopy: 

T'-H(AxM) ~ S+1 | M) 

T �9 (2) ls~| 
K(A; NCYM) < S+ 1 | M). 

For each q~>0 and F, QESqY z, we obtain group homomorphisms 

Homsq~A (F, Q| M) --* Hom~qyA ~ M (FeA (A x M), Q| (A x M)) (a ~ (0, a)), 

HOmS~-A (F, Q) -* Homg~-A~ M (F| (A D< M), Q| (A x M)) (fl ~ (fl, 0)). 

These homomorphisms produce maps of simplicial spaces from TH(SqJV, M) to 

TH('Sq.TAxM) which are natural with respect to the S-operators and hence assemble 

to give a map of bisimplicial spaces %b(k) for each k>~0: 

TH(S(k)~ ",M) r 
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We recall that 

K(A; M) -- lim ~k V Homs(k)~ (F, F@A M), 
k ~ S ( k ) ~ -  A 

THo (S(k)bCA; M) ---- holim Map(S x, V (Homs(k)~A (F, F| M))-  [S~]) 
x E I  p E S ( k )  %- A 

---* (~ Homs(k)~A(F, F| 

THo(S(k).TAxM) 

-- h~ Map( S~, V (Homg(k)~A~M(F|174 

----+ | (A~< M),F| (A~< M) ). 
F~S(~).~A 

The map/3 in [7] from K(A; M) to limk 12kTHo(S(k).T'A; M) is given by the natural 

map from the wedge into the direct sum of abelian groups and then taking limits with 

respect to iterations of the S-construction. Thus, composition with ~b0, up to natural 

homotopy equivalence, is the map from K(A; M) to limk 12kTH0(S(k)~A~M) determined 

by the map (a l l (0 ,  C~)) and the inclusion of the wedge into the direct sum. We let/3' be 

the map from K(A; M) to limk 12kTHo(S(k).T'A~<M) determined by the map (a~-+(1, a)) 

and the inclusion of the wedge into the direct sum. The maps r ~ and ~' do not produce 

homotopy-equivalent maps to ~kTHo (S(k)~A~ M) but they are homotopy equivalent after 

composing with the projection to ~k ~-~(~(k)T. A~< M). 
For k>~0 we let p(k) be the composite map 

SI| S~| $I | $I | ) 

Using the above remarks, we have a natural diagram (commuting up to homotopy) 

limk flkT-H(S(k).~A~(M) < ~o(S~|162 S+~ | 12kTHo(S(k)5~A; M) 

K(A; NCyM) < d e g  S I | M) 

1 I~ . ,  1 o since ~)odeg=#o(S+l | ') and S+| -S+ |162 f0. 
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Let A be the category with one object and morphisms the elements of A. We obtain 

a commuting diagram 

TH(A ~ M) < ~ S+ 1 |  M) 

~.~k~.H(~(k)~A~M) < ev o (S~_|162174 ) 
~'-----_.__~(s~ ~r T 

S+ 1 N limk f~k THo (S(k)~'A; M).  

The vertical arrows are equivalences by Proposition 4.2 and Lemma 4.5, and the com- 

muting (up to homotopy) of (2) follows. 
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