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O. I n t r o d u c t i o n  

Let f :  A-~B be a map of rings up to homotopy (or "FSP's", see e.g. [B61], [B53] or 

Definition 3.1 below). When is it possible to give a good description of the relative 

algebraic K-theory? Generally, K-theory is hard to calculate, so it is of special importance 

to be able to measure the effect of a change of input. 

Special instances of the case where f induces an epimorphism 7ro(A)-~Tr0(B) with 

nilpotent kernel have been studied by several authors. The first general result in this 

direction was Goodwillie's theorem [G1], that  in the case of simplicial rings, relative 

K-theory is rationally given by the corresponding relative negative cyclic homology. Re- 

cently, McCarthy has complemented this by giving a short and beautiful proof [Mc] 

showing that  at a given prime p, the relative K-theory is given by the corresponding 

relative topological cyclic homology. 

Although of great interest, simplicial rings do not cover all the important cases. In 

algebraic K-theory of spaces (Waldhausen's A-theory) the same question has been given 

considerable attention. If X--* * is a 2-connected map (corresponding to a 1-connected 

map of FSP's), it is shown in [B52] that  at a given prime p the relative K-theory is given 

by the topological cyclic homology. In [Gh, p. 621] Goodwillie announced the statement 

for general 2-connected maps X - * Y  (this will also follow from the main theorem below). 

This paper stemmed from a desire to understand the linearization A(BG)--* K(Z [G]) 

(which corresponds to a 1-connected map of FSP's); that  is, the connection between 

the algebraic K-theory of spaces and the algebraic K-theory of rings, each of which 

has theorems of the desired sort. Waldhausen has shown that  this map is a rational 

equivalence, but torsion information has so far been out of reach. 

In this paper we prove the conjecture of Goodwillie, posed at the International 

Congress of Mathematicians in Kyoto, 1990 [G5, p. 628]. 

The author was supported by the Danish Research Academy 
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MAIN THEOREM. Let f: A--*B be a map of FSP's inducing an epimorphism with 

nilpotent kernel r0(A)---~0(B), and let p be a prime. Then 

K(A)p  > TC(A)p 

K(B)~  > T C ( B ) ;  

is homotopy Cartesian. 

The conjecture as stated in [G5] was integral, but only about 1-connected maps of 

FSP's. Using ideas from [G4] the main theorem can be extended to an integral statement; 

this will appear in [DGM]. 

COROLLARY. I f  X i8 a connected space then 

A(X)p  ~ TC(X)p  

K(Z[Trl (X)l)p > TC(Z[rl (X)])p 

is homotopy Cartesian. 

The homotopy types of TC(.)B and TC(Z)p have been calculated by Bhkstedt, 

Hsiang, Madsen and Rognes (for TC(*)~ see [B53], for TC(Z)p see [B54]/[B55] when 

p is an odd prime, and [R] when p=2), and so one could hope to gain some access to 

the linearization A(*)--*K(Z). The map is a rational equivalence, and both spaces have 

finitely generated homotopy groups (see [Dw] and [Q1]), and so we have a homotopy- 

A(*) ~ 1-I TC(*)p 
p prime 

K(Z) , I-I TC(Z)p. 
p prime 

Thus one should be in position to compare number-theoretical ideas in K(Z) with geo- 

metrical information in A ( , ) = Q S  ~ • Using the diagram above, John Klein 

and Rognes have calculated the homotopy groups of the fiber of A(,)~--*K(Z)p in di- 

mension less than roughly p3 [KR]. See also the conjecture of Madsen [M1, p. 120]. 

For general X, if one wants to calculate A(X)  one should expect that the least 

accessible term in the Cartesian square of the corollary is K(Z[rl(X)]). However, for 

Cartesian diagram 
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some torsion-free groups ~rl (X), we know by the work of Farrell, Jones, Waldhausen and 

others that  the assembly map B~rl(X)+AK(Z)---*K(Z[~rl(X)]) is an equivalence. This 

list includes free groups [W2]; and so A(S 1) "only" depends on our understanding of K (Z) 

and TC. In [M2] Madsen points out that  this has the consequence that  WhT~ 1) fits in 

a cofiber sequence where the other terms are the cofibers of the corresponding assembly 

maps in TC. Hence one may hope to be able to calculate WhT~ which by the work 

of Farrel and Jones IF J] determines Wh T~ for negatively curved manifolds; and hence by 

Igusa [I], the homotopy groups of the space of pseudoisotopies in a range of dimensions. 

Christian Slichtcrull is currently pursuing these ideas. 

One should also note that  the proof of the main theorem gives as a spinoff the 

expected affirmative answer to the older conjecture of Goodwillie: 

THEOREM. Let A be an FSP and P an A-bimodule. Then KS(A,P)~- THH(A,P).  

The proof is purely homotopy theoretic, and depends only on the corresponding 

theorem for simplicial rings, [DM], and not on knowledge of TC, or of the manifold 

models for the algebraic K-theory of spaces. An outline for a different proof of the 

theorem is given by Schws Staffeldt and Waldhausen in [Ss Their outset is that  

the theorem is already known by [W2] in the "initial" case: AS(*)~limk__.~ ~kSk ("the 

vanishing of the mystery homology theory") and that  this should determine the behavior 

on all other rings up to homotopy. 

Another idea for the proof, which seemed plausible after the ring case was estab- 

lished, and which I owe to Goodwillie, is the following. Try to "resolve rings up to 

homotopy by simplicial rings" by means of co-Cartesian diagrams and recover the gen- 

eral result by means the calculus of functors. It is an interesting question whether this 

approach can be carried out literally. 

The approach chosen in this paper is to look at the cosimplicial resolution coming 

from the triple defining the integral completion. This resolution gives rise to cubes, just 

as in the calculus setup, except that  they are not "pushout cubes" in any category. 

The main point is that  these cubes are in a sense uniformly (depending on size) close 

to being both pushouts and pullbacks. Using this uniformity to translate back and forth 

between pushouts and pullbacks whenever desirable, the theorem is reduced to elemen- 

tary connectivity book keeping. In particular, we do not use the formal machinery of cal- 

culus of functors; the only trace of the relationship is the use of "Blakers-Massey-type" 

results (more precisely Theorems 2.5 and 2.6 in [G3]) to handle highly (co-)Cartesian 

cubes. 

Plan. In the first section we show that  the main theorem follows from two approxi- 

mation theorems, one for topological cyclic homology, and one for algebraic K-theory. In 
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the second section we prove some technicalities regarding cubical diagrams. The third 

section contains the actual construction of the resolution used in the first section. Then, 

in the fourth and fifth sections we prove the two theorems listed in w and we are done. 

In the last section we provide the promised proof of K s ~  - THH. 

For our purposes, good references on K,  THH and TC are either one of [B53], [G4] 

and [HM]. The survey article [M1] is particularly recommended for a general overview of 

the subject. 
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1. A r e d u c t i o n  

Let K---+ TC be the cyclotomic trace of [G4, 7] or [B62]. This is a natural transformation 

of functors from FSP's  (in [G4] it is only a chain of natural transformations, with some 

equivalences pointing in the "wrong" direction, but  this can be rectified functorially to 

give a natural transformation). Let f :  A--+B be any map of FSP's  inducing an epimor- 

phism ~0(A)--+zr0(B) with nilpotent kernel. Then the main theorem is true for f if it is 

true for all the other maps in 

I 
A ) B  

l l 
 o(A) > 

To see this, apply K---+ TC to the square to get a cube, where by assumption three faces 

are Cartesian. By inspection we see that  this forces the face corresponding to the main 

theorem to be Cartesian too. 

By McCarthy's theorem in [Mc], relative K-theory and topological cyclic homology 

agree on the lower horizontal map, so we have 
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REDUCTION I. The main theorem is true if it is true for A--+~o(A) for all FSP's A. 

Let P be the category whose objects are the finite subsets of the natural numbers, 

and with the inclusions as morphisms. In w we construct a functor from P to FSP's, 

S~-+(A)s, satisfying the following: 

(1) for S # 0 ,  (A)s is (equivalent to an FSP coming from) a simplicial ring, and 

(2) all maps in 7 ) induce 1-connected maps of FSP's, and hence ~o(A)~-~ro(As) 
for all S. 

If the cardinality of S is n, then (A)s(X)~Zn(A(X)), the "reduced integral ho- 

mology" functor applied n times to the space A(X) (see Example 2.1 for notation), and 

the maps connecting these spaces are induced by the Hurewicz map. 

In w we prove 

THEOREM (TC). TC(A)p-~ holim TC((A)s)p is an equivalence, 
( 

S E 7 ~ - - 0  

and in w we prove 

THEOREM (K).  K(A)-* holim K((A)s) is an equivalence. 
SET~-~ 

REDUCTION II. The main theorem follows from Theorems ( TC) and (K), and from 
the properties (1) and (2) of S~-+(A)s. 

Proof. By Reduction I we have to show that  

K(A)p ~ TC(A)p 

K(~oA)p > TC(~oA)~ 

is Cartesian, but by Theorems (TC) and (K), and property (2), this is equivalent to the 

square 
holim K((A)s)p ~ holim TC((A)s)p ( ( 

S E T ~ - g  S E T ~ - Z  

holim K(Tro(A)s); - holim TC(Tro(A)s);. ( 
S E T ' - O  S E T ' - O  

This square is Cartesian if for each SE7~-O,  

K((A)s)p 

1 
TC((A)s)p 

, TC(~o(A)s)p 
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is, which follows from [Mc] and the property (1). [] 

Note that,  for all this to make sense, it is important  that  we have chosen some model 

for K and TC such that  there actually is a natural transformation K---* TC of functors 

from FSP's. However, when proving Theorem (K) and Theorem (TC) we are free to 

choose the models for either functor which serve us best. 

On our way we will also prove 

THEOREM ( THH). THH(A)---~ holim THH((A)s) is an equivalence. 
$67~-o 

This together with Theorem (K) and [DM] gives K s _  ~ THH. This is carried out 

in w 

2. O n  c u b e s  a n d  l imi t s  

To fix notation, we recall a few facts regarding homotopy limits. When we write holim ( 

we shall mean a functorial model for what [BK, XI.8.8] calls "the total right derived 

functor of holim". For spaces this brings nothing new, but if A' is a functor from a small 

category I to pointed simplicial sets we may for instance choose 

holim X = hom(N( I / - ) ,  sin IA'(-) l) ( 
I 

in the notation of [BK, XI.3 and XI.4] (cf. also [G3, 0.1]). This means that  holimi X -  ~ 

sinholim I IA'I, and "the cube A' of simplicial sets is k-Cartesian" then is the same as 

"the cube IA'I is k-Cartesian". Homotopy colimits are treated dually, but as I holim A'I~- 

holim [,1" I and all simplicial sets are cofibrant, this makes no difference. In view of this, 

"spaces" will mean either simplicial sets or topological spaces (which in all cases will 

come from simplicial sets anyhow). 

Recall that  if ... --*Xn ---*X,~-I ---* ... ---*X0 = * is a tower of fibrations, then the homo- 

topy limit is equivalent to the categorical limit, i.e. the map 

li___m X,~ ~ holim Xn 
n C N  H E N  

is an equivalence. If IC_J is some subcategory, and F a functor from J to pointed 

simplicial sets, then the restriction hol imj  F--*holim x F]I  is a fibration. If J0 C J1 C_ J2 C_ 

... C_ Jn C_... C J=h_mmnE N Jn is a sequence of inclusions of small categories, then 

holim( F =~" lim~ holim FIj~ ---* holim holim FIj,~ 
J H E N  Jn  H E N  Jn  
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is an equivalence, and so holimjn FIj n approximates holimg F.  

Let S be a finite set, and let ~ S  be the category whose objects are the subsets 

of S and with the inclusions as morphisms. An S-cube is a functor from 7)S to some 

nice category where the standard homotopic notions make sense. We let ZS=7~S - {S} 

and .~S=PS-O.  For a finite set S, we let IS] denote the cardinality, and by abuse of 

notation we will often write "]S]-cube", or "]SI-dimensional cube" instead of S-cube. If 

d~< IS] we will let a d-subcube be a (]Tl=d)-cube formed by some inclusion 7)T-+PS. 

(Note: this is not the same as a face in the sense of [G3, 1.12]--not all subcubes a r e  

faces- -but  if the reader prefers one can use faces instead in all that  follows) 

We say that  an S-cube X is k-Cartesian if Xz--*holimj:sX is k-connected, and 

k-co-Cartesian if holimzs X-~Xs is k-connected. As a convention we shall say that  a 

0-cube is k-Cartesian (or k-co-Cartesian) if 2r is (k-1)-connected  (or k-connected). 

So, a 0-cube is an object Xz, a 1-cube is a map Xz--~X{1}, and a 1-cube is 

k-(co-)Cartesian if it is k-connected as a map. A 2-cube is a square 

"~'0 • '~"{ 1 } 

X{2} ' '~{12} 

and so on. We will regard a natural transformation of n-cubes X - * J ;  as an (n+l ) -cube .  

In particular, if F---*G is some natural transformation of functors of simplicial sets, and 

A" is an n-cube of simplicial sets, then we get an (n + l ) - cu b e  FX---*G.~. The cubes 

which are important to this paper are all connected with the following example. 

Example 2.1. If X is a pointed set, we can form the free Abelian group ZX= 

Z[X]/Z[*]. We extend the construction to pointed simplicial sets X, and because 

7rq(ZX)~-~Iq(X) w e  call Z X  the reduced (integral) homology of X. If X is ( k - l ~ > l ) -  

connected then the inclusion X h• is (k+l)-connected.  This follows e.g. from the 

Hurewicz theorem and the Leray-Serre spectral sequence for X--*K(~rkX, k), together 

with the fact that  Hk+l (K(Tr, k)) =0  if k > 1. Using the transformation I h ~ on X--* ZX  

we get a square 

X hx ) Z X  

lhx N I h~x 
2 x  zhx 

One may check by brute force that  this square is (k+2)-Cartesian if X is ( k - l > 0 ) -  

connected. We may continue this  process to obtain arbitrarily high-dimensional cubes 

by repeatedly applying h (see Lemma 2.6 below). 
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We will be using the following generalization of the Blakers-Massey theorem of 

Goodwillie many times. 

THEOREM 2.2 ([G3, 2.5 and 2.6]). Let S be a finite set with [Sl=n>~l, and let 
k: PS--*Z be a monotone function. Set M(k) to be the minimum of ~ k(T~) over all 
partitions {T~} of S by nonempty sets. Let X be an S-cube. 

(1) If 2d[T is k(T)-co-Cartesian for each nonempty TCS ,  then X is (1 -n+M(k) ) -  
Cartesian. 

(2) If X(--U(S--T))[T is (k(T))-Cartesian for each nonempty TCS,  then 2d is 
( n -  1 + M ( k ) ):co-Cartesian. [] 

Definition 2.3. If f is some integral function, we say that an S-cube X is f-Cartesian 

if each d-subcube (face) of X is f(d)-Cartesian. Likewise for f-co-Cartesian. 

With this definition, the following is a rather trivial corollary of Theorem 2.2, but  

since it is a key observation used repeatedly in the paper we list it as a lemma and prove 

it carefully. 

LEMMA 2.4. Let k>0.  

is ( 2 . i d + k -  1)-co-Cartesian. 
k=O. 

Proof. Note that it is trivially true if IS[ ~<1. Assume that it is proven for all d-cubes 

with d<n. 

To prove one implication, let X be an (id+k)-Cartesian (n=  [S[)-cube. All strict sub- 

cubes are also (id+k)-Cartesian, and so (2- id+k-1)-co-Cartesian,  and the only thing 

we need to show is that 2r itself is (2n+k-1)-co-Cartes ian.  This follows from Theo- 

rem 2.2 (2): A" is K-co-Cartesian where 

K =  n -  l + m i n  ( ~-~(IT'~]+kl)'a 

where the minimum is taken over all partitions {T~} of S by nonempty sets. But  this 

minimum is clearly attained by the trivial partition, for if we subdivide T into T1 and T2 

then Irl+k=lrll+lr21+k<~lTll+k+lT21+k, and so K = ( n - 1 ) + ( n + k ) = 2 n + k - 1 .  
In the opposite direction, let X' be a (2- id+k-1)-co-Car tes ian (n=  lSl)-eube. This 

time, all strict subcubes are by assumption (id+k)-Cartesian, and so we are left with 

showing that X' is (n+k)-Cartesian. Again this follows from Theorem 2.2 (1): X' is 

K-Cartesian where 

K =  ( l - n )  +min  (~--~ (21T~ I + k -  1)) , 

An S-cube of spaces is (id+k)-Cartesian if and only if it 
The implication Cartesian to co-Cartesian holds even if 
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where the minimum is taken over all partitions {T~} of S by nonempty sets. But 

this minimum is clearly attained by the trivial partition, for if we subdivide T into 

T1 and T2 then 21TI+k-I=21TII+21T21+k-I<.21TII+k-I+21T21+k-1,  and so K =  

( 1 - n ) + ( 2 n + k - 1 ) = n + k .  [] 

Homology takes cofiber sequences to long exact sequences. This is a reflection of the 

well-known statement 

LEMMA 2.5. If  2( is a co-Cartesian cube, then Z2( is Cartesian. [] 

We will need the following generalization of the Hurewicz theorem (cf. Example 2.1). 

LEMMA 2.6. Let k > l .  If  2( is an (id+k)-Cartesian cube of simplicial sets, then so 

is 2(--~ ZX.  

Proof. To fix notation, let 2( be an (n=lSI)-cube with iterated fiber F and iterated 

cofiber C. Let C be the S-cube which sends S to C, and all strict subsets to . .  Then the 

(ISI +l) -cube X--+C is co-Cartesian. 

As X is (id+k)-Cartesian, it is (2. id+k-1)-co-Cartesian,  and in particular, C is 

(2n+k-1)-connected.  Fhrthermore, if 2(IT is some d-subcube of 2( where {S}~T, then 

2(IT is (2d+k-1)-co-Cartesian,  and s o  ,~'IT---~CIT=* is (2d+k)-co-Cartesian. Also, if 

XIT is some strict subcube with {S}ET, then ,~IT----~CIT is still (2d+k)-co-Cartesian be- 

cause C is (2n+k-1)-connected, and d<n. Thus X--*C is (2. id+k-2)-co-Cartesian,  and 

co-Cartesian. Using Theorem 2.2 (1) again, we see that  k'--~C is ( 1 - n + 2 ( n + l + k - 2 ) =  

n+2k-1) -Car tes ian  as the minimal partition is obtained by partitioning SU{n + I }  in 

two: 

This implies that  the map of iterated fibers F--*~nc is (n+2k-1)-connected.  

We note that  n + 2 k - l > ~ n + k + l  as k > l .  ~ r thermore ,  as C is (2n+k-1)-connected,  

~n c--~ ~'~ ZC is ( n + k + l )-connected. 

But Lemma 2.5 implies that  

is Cartesian. Hence the iterated fiber of Z2( is ~tnzc,  and we have shown that  the map 

from the iterated fiber of 2( is (n+l+k)-connected.  Doing this also on all subcubes gives 

the result. [] 

Note that  Quillen's plus construction can be made functorial: choose for instance 

the partial integral completion functor of [BK, p. 219]. Then we have a natural transfor- 

mation X - * X  + which for pointed connected spaces is an acyclic cofibration killing the 

maximal perfect subgroup of the fundamental group of X. 
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LEMMA 2.7. If 2d is an (id+ l)-Cartesian S-cube of spaces, then so is X +. 

Proof. As all maps are 2-connected, the fundamental groups are equal for all spaces 

in 2d (call it r and hence also in 2d + (it is 7c/P where PC_rr is the maximal perfect 

subgroup). The homology spectral sequences for the homotopy colimits ([BK, p. 340]) 

2 E;q = li~m(p) Hq(X, Z[ar/P]) ~ Hp+q (holim X, Z[zr/P]) 
zs zs 

(the coefficients are pulled back) and 

E2q = fi__+m(p) Ha(X +, Z[Tr/P]) =~ Hp+q (holim X +, Z[Ir/P]) 
ZS Z S  

coincide. Hence the map holimzs 2d--~ holimzs 2d + is acyclic and kills the maximal perfect 

subgroup of the fundamental group, and so holimzs R "+~- (holimzs X) +. By Lemma 2.4 

R" is (2.id)-co-Cartesian, and so (holimzs ,Y)+--*R "+ is 2n-connected. Thus X '+ is 2n- 

co-Cartesian. We argue likewise for every subcube and see that X + is in fact (2.id)-co- 

Cartesian, which is the same as (id+ 1)-Cartesian. [] 

3. T h e  F S P  r e s o l u t i o n  

Recall the definition of an FSP (functor with smash product: [B51]). We use a simplicial 

version partially following M. Lydakis [L] and S. Schwede [Se]. Let F be the category of 

finite pointed sets, and 8. the category of pointed simplicial sets. A F-space is a functor 

F: F---+S.. It is important to notice that  the obvious maps 

r(XAYAZ,  XAYAZ) ~- r (xA Z, r(Y, XAYAZ)) 

--~ 8. (XA Z, Z. (F(Y), F(XAYAZ) ) ) 

~- $. (XAF(Y)AZ,  F(XAYAZ))  

(3.0) 

give rise to a natural transformation XAF(Y)AZ--~F(XAYAZ).  By applying F degree- 

wise to a simplicial finite set and taking diagonal, we may regard F as a pointed functor 

from simplicial pointed finite sets to $., and [BF, 4] imply that  it has good stabilization 

properties, i.e. it defines a functor with stabilization in the sense of B6kstedt. 

Note that  this gives rise to a connective spectrum {k~---~F(Sk)}, and we will say that  

a map (natural transformation) F----*G is a stable equivalence if the map of associated 

spectra induces an isomorphism on homotopy groups. We will call a map F----*G simply 

an equivalence if it induces a weak equivalence F(X)---*G(X) for every X. 
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Definition 3.1 (cf. [B51] or [Se]). An FSP A, is a F-space with a strictly associative 

multiplication and unit. More precisely we have natural transformations 

#x,Y: A(X) AA(Y) ---* A(XAY) 

and 1: id--*A, such that  for all X, Y and Z the diagrams 

and 

A(X)AA(Y)AA(Z) 

l i d A l z y ,  z 

A(X)AA(YAZ) 

/Lx,yAid 

~tX,YAZ 

) A(XAY)AA(Z) 

I ~ X A Y ,  Z 

A(XAYAZ) 

XAA(Y) lxAid ) A(X)AA(Y) < idA1y A(X)AY 

A(X/\Y) 

commute, where the unlabeled diagonal maps are the natural transformations coming 

from (3.0). 

I am grateful to the referee for pointing out that  I had a redundant axiom 1 . 1 =  1. 

The FSP's  defined above serve as a nice model for "rings up to homotopy" (which we 

perhaps could call F-rings? They are called DFSP's  in [Se] where they are defined as 

monoids in the closed symmetric monoidal category structure on the category of F-spaces 

displayed in [L]). Translation to and from the competing theories is left to the reader. 

Let I be the category whose objects axe the natural numbers (including zero), con- 

sidered as sets {1, ..., n} for n>~0, and whose morphisms are all injective maps. This is 

the category B5kstedt used to define topological Hochschild homology. It is not filter- 

ing, but the homotopy colimits over I have the "right" homotopy properties (see the 

approximation lemma of [B51] or [M1, p. 210]). This is needed in the general proce- 

dure for replacing an FSP A by a stably equivalent one whose associated spectrum is an 

~-spectrum. We set 

QA(X) = holim f~kA(SkAX), 
k E I  

and the approximation property of I tells us that  A--*QA is a stable equivalence. Note 

that  here means  sin I-I)}. 
I fA  is an FSP we can think of the functor S~(A)s of w as follows. The composition 

X~--~7,A(X) (see Example 2.1) is a new FSP, and the Hurewicz map A---~ZA is a map of 

FSP's. In fact, Z is a functor from FSP's to FSP's  and the Hurewicz map is a natural 

transformation from the identity. The functor SHAs can be formed iteratively by 
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starting with the 0-cube X~-*A(X), and applying Z, until we have the desired dimension, 

just as suggested in Example 2.1. That is, if X is the d-cube we reached at one stage, 

then the (d+l)-cube is X--*ZX, where the map is the Hurewicz map. In particular, 

A{1 ..... n}X=Zn(A(X))--the n-fold iteration of Z applied to the space A(X). 
A compact codification is the following. Recall that the integral completion functor 

of [BK] is defined by means of the cosimplicial space ZX coming from the free/forgetful 

adjoint pair connecting pointed sets and Abelian groups (stated by means of the as- 

sociated triple in [BK, 1.2]). Applying this to the underlying F-space of A, we get a 

cosimplicial F-space ZA, i.e. a functor from the category A of nonempty ordered finite 

subsets of the natural numbers to F-spaces. We augment this by adding an initial ele- 

ment O, and declaring that ZA(O)=A with the obvious maps induced by the Hurewicz 

maps. 

Definition 3.2. The composite 

ZA 
/~ C AUO - , {F-spaces} 

is what we in w called S~-~(A)s. This is a functor to FSP's as the only maps involved are 

induced by Hurewicz maps. For n a natural number, let n--{1, ...,n} and PnCT ~, the 

category of subsets of n under inclusions. Let S~-~ (A)~ be the cube given by restricting 

S~(A)s  to Pn.  

We now must prove the properties (1) and (2). (2) follows from Proposition 3.3 and 

(1) follows from Proposition 3.5. 

We say that a cube of FSP's is k-(co-)Cartesian if the underlying cube of spectra is. 

PROPOSITION 3.3. S~-~(A)~ is id-Cartesian. 

Proof. For each k> l ,  S~-*(A)}(S k) is (id+k)-Cartesian by Lemma 2.6, which is 

stronger than S~-~ (A)~ being id-Cartesian as a spectrum. [] 

Aside. Taking the homotopy limit of a cosimplicial object under the composition 

"Pn--OCP--OcA is closely related, [G2], to taking the (n-1)s t  total. So, saying that 

S~-~(A)~ is so and so Cartesian is just the same as saying that the n - 1  total spaces 

calculate the homotopy groups up to a certain point. If one looks at the spectral sequence 

[BK] coming from the cosimplicial resolution, this corresponds to saying that there is a 

"vanishing line" in the ELterm, and the one found is just the classical for the E2-term 

of the Adams spectral sequence [A]. 

Notation 3.4. The homotopy colimit and loop construction can equally well be per- 

formed in simplicial Abelian groups. More precisely, for M a simplicial Abelian group 
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let f~b M be the simplicial Abelian group {[q]~--~s.Ab(Z(SkAA[q]+), M)}, and observe 

that  we have a natural equivalence ~2kM+---~kAb M (since all simplicial groups are fibrant 

as simplicial sets). The homotopy colimit is the diagonal of the simplicial replacement 

[BK, XII.5] in the category of pointed simplicial sets. If we perform this on M: [--+sAb 
in the category of simplicial Abelian groups instead we get 

holim'abM = diag{ [q] ~-~ ~ M(iq) }. 
I io~--ii*--...~--iqENqI 

The inclusion of wedges in direct sums induce a map holiml M--~holimiAbM, and if M 

takes m-connected values, then Blakers-Massey gives that  this map is (2m+ 1)-connected. 

PROPOSITION 3.5. For every S ~ Z ,  the FSP (A)~ is equivalent to a simplicial ring, 
or more precisely, (A)~ is stably equivalent to an FSP coming from a simplicial ring R 
in the usual way X~-~ZXQzR. 

Proof. As we started with an arbitrary FSP A, this follows once we have shown that  

ZA is of the desired form. 

Consider the transformations of FSP's 

ZA(X) -~ QZA(X) *- holim f~kT,(XAA( Sk) ) *--- holim f~tbZ(XAA( Sk) ). 
kEI  kEI  

The first transformation is the stable equivalence making ZA an 9t-spectrum. The second 

is an equivalence since it is induced from the structure map (3.0), X A A ( S  k)---+A(XASk), 
which by the stability of A [BF, 4.1] is a stable equivalence. The third is an equivalence 

since ~kb--+~k is. 

Consider also the following transformations of FSP's: 

holimAbZ(X)Qf~bZA(S k) ---+ holimAb~kb(Z(X)| +--- holim f lkbZ(XAA(Sk)).  
k E I  k c I  kEI  

We have just seen that  the last FSP is stably equivalent to ZA. The first transformation 

is an equivalence by [Q2, II.6] since 7,A(S k) is (k-1)-connected. That  the second is a 

stable equivalence follows by the last line of Notation 3.4 since f}~tb(Z(X)| Z A(Sk)) TM 

~kAbZ(XAA(Sk)) is as connected as X is. 

Furthermore, tensor product commutes with homotopy colimits and we get that  

holim.ab(7,(X)| ~-- ~(X)| A(Sk), 
kEI  kEI  

and by the following Lemma 3.6 we are done. [] 
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LEMMA 3.6. Let 
R = holimAb~bZA(S k) E sAb. 

kEI 

The multiplicative structure inherited from A, makes R a simplicial ring (integral spec- 
trum homology of A), which in dimension q is 

Rq = ~[~ sAb(7,(SkqAA[q]+), 7,A(Skq)). 
ko~--... +--kqENqI 

Proof. The unit element is in the (0 . . . . .  0)-summand and is given by the unit 

S~176 and multiplication is given as follows. If f :  z(skqAA[q]+)--~ZA(S kq) is in the 

(k0 ~-... ~--- kq)-summand and g: Z(SIqA A[q]+)--~ZA(S lq) is in the (10 ~ . . .  ~--/q)-summand, 

then f .g  is the composite 

2(Sk A#qAZ [q]+ ) --, #qA A[q]+ ) 

l| ~,A(Skq)| 2A(SkqASZ~) 

in the (kot3lo*--...*--kqt3lq)-summand. The first map is induced by the diagonal 

A [q] --. A [q] x A[q] followed by a twist, and the last is induced by the multiplication in A. 

The axioms for the FSP A now show that  R is in fact a simplicial ring, and we leave the 

checking to the reader. [] 

4. P r o o f  o f  T h e o r e m  (TC) 

Let X be a space, and let THH(A, X)q be the q-simplicies in the topological Hochschild 

homology of A. More precisely, 

THH(A,X)q = holim ~ u x ( z A  A A(SX~)), 
xEiq'~l O~i~q 

where x=(x0 ,  ..., Xq) and U: I q+l --*I is concatenation. 

We shall need that  for each q>~O, S~-* THHq((A)~) is id-Cartesian. Here THHq((A)~) 
is regarded as a spectrum in the trivial way: k~-* THHq((A)~, Sk). 

The case q=0  follows from Theorem 3.3 above. For q>0  we must do some rewriting. 
A n Note that  THH((A)~)q essentially is a (q+l)-fold smash of ( )s, and so we must study 

closer what happens when we smash this cube with itself. Another thing worth noting is 

that  we never use the FSP structure when we are just looking at one simplicial dimension 

at the time, so we may just as well look at it on the space level. 

The augmented cosimplicial object Z may be subdivided r times. Formally we 

compose with the edgewise subdivision sdr: AUO---,AUO, x~--~I_[rx [B53], but  when 
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looking at the corresponding cubes (Z") ~, they are easier to understand as the cubes 

we get by iterating X H { X  hz~-lx" 'hzxhx)zr~ "} as in Example 2.1. For instance, if 

n = r = 2  we have 
X hzxhx ~ Z2 X 

(Z2)  2 X =  ,[h~xh X [h~3xh~2x 
"r ~2h~ x hx 

Z2X , ~4X. 

LEMMA 4.1. For q>~O the cube THH((A)~, S k) is equivalent to 

h o l i m  ~-~ux(zq+l)n(skA A A(S~')) �9 
xEiq+l O~i~q 

Proof. Let X~ be n~-connected. The map ZXoAZXI--+Z2(XoAX1) given by 

( E n x x ) A ( E , ~ y y ) ~ E n ~ m ~ ( z A y )  is (no+nl+l+min(no,nO)-connected. Using this 

repeatedly we get a natural transformation from 

~.-~+~ --~,z .~+~ ~ o.,-~ (xo  ~ (~x~) ~ A ~x~ 
o<~ i <~ q 

t o  

s~*+ 1 ~ s .  ~q+l s. ,  ( x 0  H A x ,  H 2q+1 A x, ,  
O~i~q O~i~q 

which is (~iq=oni+l+min{ni})-connected if the Xi are ni-connected. 
q A(S x~) we get a (Ei=0 x~- q+min{xi- 1} +k)-connected map 

Letting Xi= 

SkA A ZA(S~*)--~2q+I( SkA A A(S~')) 
O~i~q O~i~q 

inducing a map of cubes 

{ S ~ D " ' (  SkA A (A)~(S*~))}--~{S~DUx((zq+I)~( SkA A A(S*Q))}, 
o<~i<~q o<<.~<~q 

which is (-q+min{x~-1}+k)-connected at every vertex. Taking the homotopy colimit, 

and using the approximation property of I we get an equivalence of cubes. [] 

PROPOSITION 4.2. S~--~ THH((A)~) is id-Cartesian (meaning S~-* THH((A)~, S k) 
is (id+k)-Cartesian for big k), and so Theorem ( THH) follows. 

Proof. We see that the cube representing THHq is exactly as the cube representing 

THHo, except that we start with SkAAo<~<<.qA(SX'), and that the inductive step is 

not "if 2d is (id+K)-Cartesian, then so is ZX", but "if 2d is (id+K)-Cartesian so is 
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x ~ z q + I x  '' (with K=k+~o<~i<<. q xi). But this follows from [G3, 1.8 (i)] as it is the 

composite X--*7.X--~.. .- ,zq+Ix, each of which is ( id+K)-Cartesian.  

This means that  for each q, THHq((A)~, S k) is (2 . id+k-1)-co-Car tes ian ,  and as 

realization commutes with homotopy colimits we get that  THH((A)~, S k) is ( 2 . i d + k - 1 ) -  

co-Cartesian, or equivalently (id-{-k)-Cartesian. [] 

Let p be a prime, A an FSP and X a space. Recall the restriction map 

R: sdpz THH ( A, x ) cp ~ ---* sdp,-1 THH ( A, x ) cp ~- ~ , 

whose fiber is naturally equivalent to 

holim fl m THH ( A, SmA X ) hc p~ 
m E N  

(see [HM, 2] or [G4, l l . 1 ] - -where  by a historical quirk, the restriction map R is called r 

and the Frobenius F is called i). Set 

TR(A, X; p) = holim sdp, THH(A, z ) C ,  ~ 
R 

and let TR(A; p) be the associated spectrum. 

LEMMA 4.3. Assume that ~4 is a cube of FSP's such that THH(~4) is id-Cartesian. 

Then TR(.A; p) is also id-Cartesian. 

Proof. Choose a big k such that  THH(A, S k) is (id+k)-Cartesian. Let X be any 

m-subcube and X z =sdp~ xc~ ~. We are done if we can show that  holimi~ X l is (m+k)- 

Cartesian. Let Z z be the i terated fiber of X l (i.e. the homotopy fiber of Xlz---* 

holims# z X~). Then Z----holimRZ l is the iterated fiber of hol imRX l, and we must 

show that  Z is (m+k-1 ) -connec ted .  Since homotopy orbits preserve connectivity and 

homotopy colimits, THH (.A, k S )hCp, must be (id+k)-Cartesian, and so the fiber of 

R: X z---*X z-1 is (id+k)-Cartesian. Hence ~rqZ l-->TrqZ l - 1  is surjective for q=m+k  and 

an isomorphism for q<m+k,  and so 

7~qZ-~l_m(1)Trq.{_lZIxh_mTrqZl:O for q < m + k .  [] 
�9 R R 

PROPOSITION 4.4. Let p be a prime. Assume that .A is a cube of FSP's such 

that THH(JI) is id-Cartesian. Then TC(JI;p) is (id-1)-Cartesian. In particular, 

S~--~ TC((A)~;p) is (id-1)-Cartesian, and so Theorem ( TC) follows. 

Proof. The first statement follows from Lemma 4.3 and the fiber sequence 

TC((A)~, Sk;p) ~ TR((A)~, Sk;p) l-F) TR((A)~, Sk;p), 

where F is the Frobenius map. The second statement then follows by Proposition 4.2. [] 
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5. Proof  of Theorem (K) 

Let A be an FSP. The (m x m)-matrix FSP MmA is given by 

X ~-* M,~A(X) = $. ({1, ..., m}+, {1, ..., m}+AA(X)) 

("matrices with only one entry in each column") with the obvious multiplication and unit. 

The FSP structure makes QM,~A(S ~ =holim~e I Vt~M,~A(S x) a simplicial monoid. Let 
A 

GLm(A) be the grouplike monoid formed by pullback in 

Gt"Lm(A) ~ QMmA 

GLm(~roA) , Mm(~roA) 

A A 

and let GL(A)=h__.m,~GLm(A) (see [B53, p. 494]). The connected cover of the infinite 
A 

loop space of K(A) is naturally equivalent to BGL(A) +. 

PROPOSITION 5.1. Let,4 be an id-Cartesian n-cube of FSP's, n>0 .  Then K(`4) is 
(n + 1) - Cartesian. 

Proof. Let Mm.4 be the cube given by the (mzm)-matr ices  in .4. This is id- 

Cartesian, and so QM,~.4 is an id-Cartesian cube of simplicial monoids. As all maps 
A 

are 1-connected, we get T~-~GLm(.4T) as the pullback in 

A 

GLm(AT) ) QM,~AT 

l ,L 
G L m  (~'0`4o) ) M m  (7ro`4~) 

A A 

for all Tcn .  Hence GLm(A) is id-Cartesian, and so BGLm(A) is (id+l)-Cartesian. 

Using Lemma 2.7 we get that  also BG-L(`4)+=li_mmBG-Lm(`4) + is ( id+ 1)-Cartesian. 

As 7coK(`4) is the constant cube (either Ko(~ro`40) or Z, depending on your choice of 

model), we see that  K(`4) is (n+l)-Cartesian.  (It is not ( id+l)-Cartesian because its 

vertices are not connected). [] 

Theorem (K) now follows from Propositions 3.3 and 5.1. 

6. Stable K-theory and topological Hochschild homology 

Given the result in [DM], Theorems (THH) and (K) (4.2 and 5.1) also give a quick 

proof of the older conjecture "stable K-theory is topological Hochschild homology" for 
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FSP's  in general (see the program of [Ss In particular, it gives a non-manifold proof 

of "the vanishing of the mystery homology theory" of Waldhausen [Wl]. 

Let A be an FSP and P an A-bimodule in the sense of [PW]. We get a new FSP 

X~---~(AVP)(X)=A(X)VP(X) by demanding the product in P to be trivial. This is 

in analogy with the classical case where A is a simplicial ring and P is an A-bimodule: 

A ~ P is the square zero extension of A by P,  and the corresponding FSP is X ~--~A ~< P[X], 
which by Blakers-Massey is stably equivalent to the FSP AVP. 

If P is an A-bimodule, so is X~--~[)[Sm](X)=S'~AP(X). We define 

KS(A, P)  = holim 12kfiber{K(AVI-)[Sk-1]) --* K(A)}.  
k 

The trace map induces a map to 

holim 12k fiber{ THH ( A V P[ Sk-1] ) --* THH ( A ) }. 
k 

We have an equivalence to this space from holim k f~k(SiA THH(A,P[Sk-1])) given by 

the inclusion and the cyclic action. If we compose with the projection down to 

holim gtk(s1A THH(A, ~5[sk-1])) ~ holim ~k( THH(A,/5[Ski) ) ~ THH(A, P) 
k k 

we get a map on the homotopy groups, which for rings is equal to the map given in [DM], 

see [Mc, 4]. 

THEOREM 6.0. Let A be an FSP and P an A-bimodule. Then 

KS(A, P) ~- THH(A, P). 

Proof. The fllnctor S~--~(A)~ displayed in w can clearly be applied to A-bimodules 

as well, and S~-~(P)~ will be a cube of S~--~(A)~-bimodules, which ultimately gives us 

a cube S~--~(A)~V(P)~ of FSP's. There is a stable equivalence (A)~V(P)~--*(AVP)~, 
consisting of repeated applications of the 2k-connected map 

Z[A(Sk)] VZ[p(sk)] --, Z[A(Sk)]@Z[P(Sk)] ~-- ~[A(Sk)v p(sk)]. 

The noninitial nodes in these cubes are of a sort taken care of by [DM], and all we need 

to know is that  

K(AV P )  --~ holim K((A)s  V (P)s), 

THH(AV P) --* holim THH((A)s V (P)s) 
s~o 
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and 

THH(A, P) --* holim THH((A)s, (P)s) 
s~o 

are equivalences. This follows from Propositions 5.1 and (for the last statement: a very 

slight variation of) 4.2. [] 
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