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Let C be a smooth embedded closed curve in R n (or more generally in an n-manifold 

with a real-analytic Riemannian metric) and let S be an area minimizing disk with 

boundary  C. Then S can be parametr ized by an almost-conformal map F from the 

closed unit disk D to R '~. Almost-conformality of F means tha t  F is conformal except 

for finitely many  points at which D F  vanishes. Such exceptional points are called branch 

points. Even though D F  vanishes at a branch point p, there may be a neighborhood U 

of p such tha t  F(U) is a smooth embedded 2-manifold; tha t  is, the image surface may be 

smooth even though the parametr izat ion is not. If  so, the branch point is called a false 

branch point. Otherwise it is called a true branch point. In [G2], R. Gulliver proved tha t  

F cannot have any false branch points. In this paper,  we show tha t  F cannot have true 

branch points along any real-analytic portion of the portion of the boundary  curve C. 

This is somewhat surprising for the following reason. There are many  examples of area 

minimizing disks in R ~ (if n~>4) with interior true branch points, such as 

zEDCC~-+ (z3, z3k+l ) E C2~- R4, 

which is area minimizing by the Wirtinger inequality [F]. If  S is such a surface and C '  is 

a closed curve in S tha t  passes through one of the branch points, then the portion of S 

bounded by C '  will be an area minimizing disk with a true boundary branch point. In 

this way one can make, for any k<oc ,  a Ck-curve in R 4 tha t  bounds an area minimizing 

disk with a true boundary branch point. Moreover, R. Gulliver has pointed out tha t  

the example in [G3] is the real part  of a holomorphic curve S in C 3 ~ R 6 ;  this surface 

S is area minimizing and has a C~-boundary  curve with a true boundary  branch point. 

However, according to our theorem, no such boundary curve can be real-analytic. 
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In case the ambient manifold is 3-dimensional, this theorem was proved by Gulliver 

and Lesley [GL]. Whether true branch points can occur along C~-boundaries of area 

minimizing disks in R 3 (or other 3-manifolds) is perhaps the major open question about 

regularity of classical minimal surfaces. (Such surfaces cannot have true interior branch 

points by the work of Osserman [O], or false branch points by the work of Alt [Alt] 

and Gulliver [G1]; see also [GOR].) Gulliver [G3] gave a very interesting example of a 

C~-curve in R 3 bounding a minimal disk with a boundary branch point; it is not known 

whether that  example is area minimizing. In any case, it is impossible to prove the kind 

of local curvature estimates that  would, in general, exclude boundary branch points [W]. 

Aside from the result in this paper, there are two situations in which true boundary 

branch points can be excluded. First, if a smooth simple closed curve C in R n (or, 

more generally, in a manifold with nonpositive sectional curvatures) has total curvature 

less than or equal to 4~r, then C does not bound any minimal disk with branch points 

(interior or boundary) IN, w Second, if S is a minimal surface lying in a uniformly 

convex subset ~t of a Riemannian manifold and if OS is a smooth embedded curve in 0R, 

then S has no boundary branch points (see the proof of the corollary to Theorem 4.5 

in [MW]). 

The result of this paper (absence of true boundary branch points) also holds for 

surfaces that  minimize area plus the integral of a differential form; see the discussion 

in [MW, w ~r the rmore ,  since the arguments are local, the result is valid not only 

for disk-type solutions, but also for classical (Douglas) Plateau problem solutions of any 

finite topological type. (False branch points, on the other hand, cannot be ruled out 

by local arguments, and for non-disk surfaces or for surfaces minimizing area plus the 

integral of a differential form, additional hypotheses are required. See [G2].) 

Sheldon Chang [C], building on work of Almgren [Alm], proved that  the 2-dimen- 

sional integral current solutions to Plateau's problem are classical branched minimal 

surfaces away from the boundary curve. But very little is known about boundary regu- 

larity (except in 3-manifolds, where the integral current solution is known to be a smooth 

embedded manifold with boundary [HS]). For analytic boundary curves, one could per- 

haps prove boundary regularity theorems using the methods of Almgren and Chang. 

Of course if one could exclude a sequence of handles accumulating at the boundary, then 

the result in this paper would give full boundary regularity. 

Proving partial regularity for integral currents at C~-boundaries seems to be much 

harder. Much work on interior singularities (for example that of Almgren [Alm] and 

Chang [C] for integral currents and that  of Gulliver [G1], [G2], Alt [Alt], and Micallef 

and White [MW] for classical minimal surfaces) depends on the fact that  a minimal sur- 

face cannot be flat to infinite order at a point unless the surface is flat. (More generally, 
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different sheets of a minimal surface cannot make infinite-order contact with each other.) 

This enables one to get nontrivial surfaces as limits of suitable blow-up sequences. How- 

ever, in the Gulliver example mentioned above, the surface is fiat to infinite order at a 

true boundary  branch point. Thus it seems unlikely tha t  any blow-up methods will work 

for C ~ - b o u n d a r y  curves. 

Reformulat ion  of  t h e o r e m  

Let N be a manifold with a real-analytic Riemannian metric and let 

F : D c C - - * N  

be a classical minimal surface parametrizat ion,  i.e. a continuous map  such tha t  

(1) FIOD is one-one, 

(2) F is harmonic, and 

(3) F is almost conformal on the interior of D (i.e., conformal except at isolated 

points where D F  vanishes). 

Let pEOD belong to an arc (~ of 0 D  such that  F(c~) is a real-analytic curve (i.e., 

an embedded real-analytic 1-dimensional submanifold) in N.  Then (by [HH]), F is real- 

analytic near p and in fact extends analytically to a minimal map  F* on a domain of the 

form 

DUB(p ,  ~). 

Thus it suffices to show tha t  if F* has a true branch point at p, then F does not minimize 

area. Indeed, we will show tha t  for r < s ,  there is a map 

G: B(p,  r) --* N 

such that  

and such that  

G(z)=F*(z) ifzeOB(p,r) orifz~D, 

area(G) < area(F*lB(p,  r)).  

It  is convenient here to replace F by Fou, where u is a linear fractional t ransforma- 

tion that  takes 0 to p and tha t  maps the upper half plane { z : I m ( z ) > 0 }  to the interior 

of D. Then, by the above discussion, it suffices to prove the following theorem. (In this 

theorem, the branch point is now at the origin, the disk D corresponds to B(p, r) above, 

and we drop the notational distinction between F and F*.) 
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THEOREM 1. Let 

F : D c C - - ~  W c R  n 

be a smooth map that is almost conformal and harmonic with respect to a real-analytic 

Riemannian metric g on W.  Suppose that F maps R N D  homeomorphicaUy to a real- 

analytic arc F in W,  and that F has a true branch point at O. Then there is a map 

G: D-~ W such that 

G ( z ) = F ( z )  if  z � 9  or i f I m ( z ) ~ O ,  

and such that a rea (G)<area (F) .  

The rest of the paper is devoted to proving Theorem 1. 

S t r u c t u r e  o f  b o u n d a r y  b r a n c h  p o i n t s  

We may assume without loss of generality that  

F(O) =0, 

(0) = (c) 

Dgij (0) = O. 

As in [MW], we say that  a function r is Ok(Izl p) if DJr p-j)  for j =  

0, ..., k, and we define ok(H p) similarly. 

PROPOSITION 2. Let 

F : D C C ~ W c R  n 

be an almost-conformal harmonic map with respect to a real-analytic Riemannian metric 

g on W satisfying the conditions (c). Suppose that F has a true branch point at O. 

Then there is an integer Q >~2, a linear similitude L: Rn--+R ~, and a C2-diffeomorphism 

w: C---~C (with w ( z ) = z  + o ( N )  ) such that for all z sufficiently near O, 

(LoFow) (z) = (z Q, f ( z ) )  �9 C • R n-2 ~ R n, 

where f ( z )  is 0 2 ( N  Q+I) and has the form 

f ( z )  = r Q) +h(z) +ol (]zl~), (*) 

and where h(.)  is a nonzero homogeneous harmonic polynomial of a degree # that is 

greater than Q and not divisible by Q. 
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Furthermore, if F maps (-E, ~ ) C R N D  (for some E>0) homeomorphically to a real- 

analytic are F, then Q is odd and h(z)=O for all real z. 

Proof. Except for the last sentence, this theorem was proved (even when the metric 

is only C 2) in [MW, Theorem 1.4 and Corollary 1.5]. (When the metric is analytic, one 

can replace 02 and ol above by O ~  and 0~; see [MW, w The oddness of Q follows 

easily (and is also true in much greater generality [HH]). 

Thus it remains only to show that  h(z)=O for all real z. 

Without loss of generality, we assume that  L(X) - -X .  (Otherwise replace F by 

noF.) 

Let 7 be the projection of F onto the (x 1, x2)-plane. Then 7 is a real-analytic curve 

tangent to the real axis in C---R 2 and there is a real-analytic function 

U: ~/--* R n - 2  

such that  

z e %  

parametrizes F. Note that  u(z)=o(M ) (since f(z)=o(IzlQ)). 

CLAIM. For every degree d~#,  there exists a real-analytic function 

r = Cd: B(0, r) C R 2 --* R n-2 

(for some r=rd >O) and a homogeneous harmonic polynomial 

P = Pd: R 2 ---* Rn-2  

of degree d such that 

(1) the graph of ~ is a minimal surface, 

(2) r for ze7 ,  and 
(3) f ( z ) - - r  

Furthermore, P(z)----O for all real z. 

Proof of claim. Let us first prove that  the last assertion is implied by (1)-(3). Note 

that  there is a curve 7. tangent to the real axis such that  the map z~-*z Q maps 7. 

homeomorphically to 7- By (2), f ( z ) = r  Q) when z e v . .  Thus by (3), P(z) must 

vanish when z is real. 

Now we prove that  there exist r and P satisfying (1)-(3). By the Cauchy-Kowalevski 

theorem, there is a real-analytic function 

r B(0,  r) ~ R n-2 
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satisfying (1), (2), and such that  

D 2 r  f o r z e - y  

(here D2=O/Oy, where z=x+iy). Since u(z)=o(Iz[), this means De(0)--0. Since r 

is analytic, this implies r 2) or, equivalently, r Thus we have 

(1)-(3) with d=Q by letting P(z)-O. That  is, we have proved the claim for d=Q (and 

therefore also for any d<Q). 
Now suppose that  there exist a r and a P as claimed for a certain value of d<# .  

If we can prove there exist a r  and a P '  as claimed corresponding to d + l ,  then by 

induction we will have established the claim. Combining (*) and (3), and using the fact 

that  d<# ,  we see that  P(z) must be a function of zO: 

P(z) =p(z~). 

We already saw that  P(z)=O when z is real. Hence p(z)=O when z is real. Now by the 

Canchy-Kowalevski theorem, there is a CP satisfying (1), (2), and 

D2r =D2r for z E 7. (4) 

Since the graphs of r  and r are minimal surfaces, 

r 1 6 2  = g(z) +ol (IzI deg H) (5) 

for some homogeneous harmonic polynomial H [MW, Remark 1.6]. Since r  and r 

coincide along V, H(z) must vanish when z is real. Thus H(z)=p(z) when z is real. 

Likewise, by (4) and (5), D2H=D2p along the real axis. Thus H-p. Thus by (5), 

r = r +p(z) +o(Izl d~ p) 

SO 

and so (3) becomes 

r = r Q) +P(z) +o(Izl d) 

f(z)-r Q) -= o(Hd). 

By [MW, Remark 1.6], there is a homogeneous harmonic polynomial P'(z) of degree 

d' > d such that  

f(z)-r = P'(z) 

This completes the proof of the claim. [] 

To complete the proof of Proposition 2, note that,  by (*) and (3), h(z)-P~(z), 
which, according to the claim, vanishes for real z. 
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C O R O L L A R Y .  

for  some vector v E R  n-2. 
a n - 2  . 

Proof. 

The harmonic funct ion h in Proposition 2 has the form 

h(re i~ = (r ~ sin #O)v 

In  particular, h takes values in a 1-dimensional subspace of 

Since h is a homogeneous harmonic polynomial, it can be writ ten as 

h( z ) = az  t' + ~ 

0 =  h ( 1 ) =  a-t-fi 

for some a E C  n-2. Thus 

so a = b i  for some b E R  n-2. Thus 

h(z)  = b i z  u - b i 2  u = b i (2r  u sin #8 i) = (r u sin # 8 ) ( - 2 b ) .  [] 

The graph-Dirichlet functional 

Let P be an oriented 2-plane in R n ~ R  2 •  n-2. If P is the graph of a linear function 

from R2---+R n-2,  denote the linear function by LB. Let 

~:  R n _-- R 2 • R n - 2  ___, R 2 

be the orthogonal projection, and let 

•( P ) = Inp12 j p  , 

where ILpI 2 is the sum of the squares of the entries of the matr ix  for L p  and JR is the 

Jacobian determinant of the map  

~IP: P --. R 2. 

If P is not the graph of a linear map L p ,  let T)(P) and ]Lp] 2 be co. 

Let M be a compact  oriented 2-manifold with piecewise smooth boundary  and let 

F be a Lipschitz map  from M into R 2 • R n-2. We say that  F is graph-like if the map  

~oF: M --~ R 2 

is an orientation-preserving branched immersion, and if for almost every z E M, the image 

of O F ( z ) i s  a plane P = P ( z )  with ILp] 2 bounded (independently of z). 
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(Thus for almost every zEM,  there is a neighborhood of z whose image under F is 

the graph of a Lipschitz function from an open subset of R 2 to R n-2, and the Lipschitz 

constant is uniformly bounded. In other words, at most points, the image of F looks 

like the graph of a Lipschitz function. In [MW, w two such maps were regarded as 

equivalent if they were related by a homeomorphism of M, and the equivalence class of 

such an F was called a "Lipschitz graph-like M-surface" .) 

We define a functional on graph-like maps as follows. If we identify oriented 2-planes 

with simple unit 2-vectors in the usual way, we can define/)(v) for all simple 2-vectors 

vEA2(R ~) by requiring that  7)()~v)-A7)(v) for A>~0. If F is a graph-like map, we let 

v(F)= f D(OFA ~ 
J M \ Ox -~y dx dy. 

Note by the area formula that  if S=F(M) ,  then 

T)(F) = f /)(Tanp S) 7-~~ - l (p))  dT-L2p. (6) 
Jp Es 

In other words, :D(F) depends only on the image of F (counting multiplicity), and not 

on F itself. 

We call this the graph-Dirichlet functional for the following reason. If zroF is a 

one-one map from M to a region U E R  2, then the image of F is the graph of a function 

u: U--*R ~-2 and :D(F) is just the usual Dirichlet energy of u: 

T)(F) = / v  [Du[2" (7) 

(In [MW; w this T)(F) is written Dir[F]. Note that  it is not the usual Dirichlet energy 

of F.) 

We say that  a graph-like map F: M--~R ~ minimizes the graph-Dirichlet functional 

if 

/ ) ( g )  < / ) ( H ' )  

whenever Hq M - ~ R  n is a graph-like map with 

H'IOM=H[OM. 

The graph-Dirichlet functional arises from the area functional in the following way. 

PROPOSITION 3. Let F and h be as in Proposition 2. Let D+={z=x+iyED:y~O}  

be the closed upper half-disk. 

(1) If  F[D is area minimizing, then the map 

H: D --* R ~, 

g ( z )  = (z Q, h(z)) 
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minimizes the graph-Dirichlet functional. 

(2) If  FID + is area minimizing, then the map 

H+: D + ~ R n, 

H+(z) = (z Q, h(z)) 

minimizes the graph-Dirichlet functional. 

Proof. Conclusion (1) was proved in [MW, Theorem 2.1]. 

To prove (2), suppose that F]D + minimizes area. Then clearly 

area(F) <~ area(G) 

whenever 

G: D ~ R  n, 

G(z)=F(z)  f o r z e D - U O D  

(where D-={x+iyeD:y<~O} is the lower half-disk). The proof of (1) in [MW, Theo- 

rem 2.1] then shows that 

D(H) < D(H') 

whenever 

HI: D --* Rn~ 

H ' ( z )=H(z )  for z e D - U O D .  

But this clearly implies that HID + minimizes the graph-Dirichlet functional. [] 

Maps that minimize the graph-Dirichlet functional have the following regularity: 

PROPOSITION 4. Suppose that H: M--*R n is a graph-like map that minimizes the 

graph-Dirichlet functional. Let U be a simply-connected open subset of R2\:r( H(OM) ) 

that does not contain the image of any branch point of ~roH. Then 

(TroH)-l(U) 

consists of a finite union Uj Uj of disjoint open subsets of the interior of M, and H 

maps each Uj homeomorphically onto the graph of a harmonic function 

uj: U--* R n-2. 

Proof. By the definition of graph-like surface, r o l l  is a branched immersion and 

therefore ( rol l ) -1  (U) consists of a finite union [.Jj Uj of open subsets of M, each of which 

gets mapped homeomorphically by 7roll onto U. Hence F maps Uj homeomorphically 

to the graph of some function 
uj: U--* R n-2. 

But then by (7), uj must minimize f ]Duj]  2. T h a t  is, uj is harmonic. [] 
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Conclusion of proof 

By Proposition 2 and its corollary and by Proposition 3, the main result (Theorem 1) 

reduces to 

PROPOSTION 5. Let 

H + : D + ~ R 3  ~ C •  

H+ (z) = (z Q, rUsin #0), 

where Q is odd, #>Q is not divisible by Q, and z=re i~ Then H + does not minimize 

the graph-Dirichlet functional. 

Proof. This follows from exactly the same cut-and-paste argument as used in [O] 

and [GL], so we simply sketch the argument. (The argument is in fact easier to carry out 

here, since we only need to apply it to the explicit and rather simple map H + above.) 

Note that the portion of the image of H + above D + (in other words, the intersection 

of the image H + (D +) with 7r -1 (D+)) consists of a union of graphs of harmonic functions 

u j : D + - - . R  

(namely functions ~-~Re((r u) corresponding to different choices of the Qth root). 

These functions do not all coincide since # is not divisible by Q. Thus suppose that ul 

and u2 do not coincide. Now for every j ,  

u (O 

Hence by the Hopf boundary point lemma, there must be some point p in the interior of 

D + such that ul(p)=u2(p). By the homogeneity of h, 

These two graphs must cross transversely along I={sp: sE(0, 1)} since they do not co- 

incide. 

Let F be the graph of ualI (or, equivalently, of u21I). Now cut H+(D +) along F 

and re-glue to get a new surface. It is an exercise in elementary topology to check that 

the new surface is still topologically a disk (or half-disk), and hence may be parametrized 

by a graph-like map 
HI: D + -~ R n 

with H~=H + on 0D +. 

Note that H ~ is not a branched immersion, but has two creases where we did the 

cutting and pasting along F. Hence by Proposition 4, H ~ does not minimize the graph- 

Dirichlet functional. (Let U={zE int D+: Izl < Ipl}.) By (6), :D(H ') =79(H+), so H + does 

not minimize the graph-Dirichlet fimctional either. [] 
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