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Chapter 1 

1.1. I n t r o d u c t i o n  

During the last twenty years the complex Monge-Amp~re equation has been the subject 

of intensive studies. 

In its classical form it is a fully non-linear equation of elliptic type: 

. f 02u "~ 
MA(u) :-----det! - -  ) = / ,  (1.1.1) 

\ Ozj 02k 
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where the solution u is required to be a plurisubharmonic (psh) function in some open 

subset ~ of C n. E. Bedford and B. A. Taylor have shown in [BT1] the way the equation 

may be understood if uEPSHNL~oc(12 ). An essential ingredient of this generalization is 

the notion of a positive current introduced by P. Lelong. The right-hand side of (1.1.1) 

then becomes a Borel measure. Bedford and Taylor also solved the equation in the case 

of continuous f and continuous boundary data. The same authors developed in [BT2] 

the basic structure of pluripotential theory in which the Mongc~Amp~re operator MA 

plays a central role being the counterpart of the Laplacian in classical potential theory. 

The new theory has brought in a much better understanding of psh functions and it has 

given rise to many recent developments in the theory of extremal functions, the theory of 

polynomial approximation and complex dynamics. In a survey paper by E. Bedford, and 

in M. Klimek's book, the reader will find a detailed exposition of pluripotential theory 

and ample reference to the papers of other authors. 

Differential geometry is another source of interest in the complex Monge-Amp~re 

equation. The proofs of two conjectures of E. Calabi, one asserting the existence of 

a Ks metric on a compact K~ihler manifold which has the preassigned Ricci form, 

and another concerning the existence of Einstein-K~ihler metrics, boil down to solving 

an appropriate Monge-Amp~re equation (see (1.1.2) below) with the right-hand side 

depending also on the unknown function in the case of the latter conjecture. The equa- 

tions were solved by T. Aubin [Aul] and S.-T. Yau [Y] (see Theorem 2.1.1 below) under 

suitable smoothness assumptions. Constructions of Einstein-K~hler metrics and Pdcci- 

fiat metrics on non-compact complex manifolds by means of solving the Monge-Amp~re 

equation were carried out by S.Y. Cheng, S.-T. Yau in ICY] and G. Tian, S.-T. Yau in 

[TY1], [TY2]. The partial differential equations approach of those authors (and others: 

E. Calabi, L. Nirenberg, A.V. Pogorelov, to mention only a few) is analogous to the 

one applied in the case of the real Monge-Amp~re equation which has a much longer 

history (see e.g. [GT]). It is based on the method of continuity and in any given situa- 

tion requires laborious a priori estimates for the derivatives of the solution up to third 

order. In a similar vein L. Caffarelli, J .J .  Kohn, L. Nirenberg and J. Spruck [CKNS] 

have proved regularity results for the Dirichlet problem associated to (1.1.1) in a strictly 

pseudoconvex domain. 

This historical account is not meant to be complete but we would like to mention 

also very important works of J.-P. Demailly and L. Lempert. Demailly (see e.g. [D1], 

[D2] and [D3]) uses the Monge-Amp~re operator techniques and the result of Yau to 

prove very deep facts of algebraic geometry. He usually deals with those unbounded psh 

functions for which MA(u) still makes sense. Lempert [Lem] solved the Monge-Amp~re 

equation with pointwise singularity in a convex domain and this result has found striking 
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applications in complex analysis. 

In the present paper we seek solutions to the Monge-Amp~re equation under possibly 

weak assumptions on its right-hand side. For this we use an approach based on the 

pluripotential theory. In particular, we exploit the specific properties of psh functions, 

like their quasicontinuity or the possibility of estimating the size of the sublevel sets in 

terms of pluricomplex capacities. The comparison principle of [BT2] is used at almost 

every stage. 

Chapter 2 deals with the complex Monge-Amp~re equation on a compact Ks 

manifold M. The equation now takes the form 

( + a5r 
det ~gjk O ~ )  = fdet(gy~)' (1.1.2) 

where ~-~gjk dzj| is a K~hler metric on M and f~>0, fELl(M), suitably normal- 

ized, is given. Locally (1.1.2) is equivalent to (1.1.1) if we use a potential for the given 

metric. The absence of the boundary data in (1.1.2) accounts for the difference in treat- 

ing the two equations. The equation (1.1.2) has been solved by S.-T. Yau [Y] in case 

f E C 3 (M) and f >0 with improved regularity of the solution (see Theorem 2.1.1 below). 

Our aim is to generalize the existence part of this result admitting all non-negative f 

which belong to certain Orlicz spaces. In particular, we obtain continuous solutions 

to (1.1.2) for fenr when r m, m>n:=dimM. 
If we took m<n here the assertion would no longer be true by a counterexample of 

L. Persson [P]. It readily follows that for fcLP(M), p> 1, the equation has a continuous 

solution. If f E C 1'~, a >0, then the regularity of the solution is treated in [Au2]. 

In the last section of the second chapter we consider a special case of (1.1.2) taking 

M = P  n and ~gj~ dzjQd2k equal to the Fubini Study metric on pn. Then, applying 

the generalized Yau theorem one can solve the equation (1.1.1) in the class of functions 

of logarithmic growth in C '~ under a fairly weak hypothesis on f .  The equation has been 

treated in [BT3], [Be] and [CK2]. It is interesting because of its connections with the 

theory of extremal functions and complex dynamics. 

The third chapter is devoted to the study of the Dirichlet problem for the equation 

(1.1.1) in a strictly pseudoconvex ~ with continuous boundary data. Again, in general 

f must be replaced by a Borel measure. We wish to determine which measures yield 

bounded (or continuous) solutions to (1.1.1). To this aim, for a given measure #, we 

consider a special regularizing sequence #j weakly convergent to # and such that (1.1.1) 

can be solved by using the Bedford-Taylor result or Cegrell's generalization ICe2]. De- 

noting by uj the corresponding solutions we define a candidate for the solution of the 

original problem putting u= (lira sup uj)*. Trying to verify whether u actually solves the 

equation we face two problems: 



72 s. KOLODZIEJ 

(a) Is the sequence uj uniformly bounded? 

(b) If so, is the convergence uj--~u good enough to entail the convergence of the 

corresponding measures #j to #? 

Before we state the sufficient conditions for those questions to have affirmative an- 

swers, let us consider a necessary condition which any measure # leading to a bounded 

solution of (1.1.1) must satisfy: 

i t(K) < const-cap(g, 12), (1.1.3) 

for any K a compact subset of 12, where 

cap(K,~t)=sup{JK MA(u): uC PSH(Ft) , -1  ~ u  < 0 }  

is the relative capacity introduced in [BT2]. As an example in [Kol] shows, even in 

the one-dimensional case there are measures fulfilling (1.1.3) but yielding unbounded 

solutions of (1.1.1). So, searching for sufficient conditions we strengthen (1.1.3) by putting 

F(cap(K, gt)) on its right-hand side with a suitable function F(x)<.x when x is small. 

As shown in Theorem B of w under certain restrictions on F this leads to a positive 

answer to question (a). One may take, for instance, F(x)=x(log(l+x-1)) -(n+~), ~>0. 

Consequently, if the density of # with respect to the Lebesgue measure is in the Orlicz 

space mentioned above then (1.1.1) is solvable. The same counterexample from [P] as in 

the previous chapter shows that  this result is almost sharp. 

The answer to the second question is yes if # satisfies the following local version of 

(1.1.3): 

t t(K) <~ const-cap(K, B') tt(B) (1.1.4) 

for any choice of KccB:=B(x, r)cB':=B(x, 4r)Cfl  ( g  compact). 

Any measure fulfilling (1.1.4) and the hypothesis of Theorem B admits continuous 

solutions to the Monge-Amp~re equation (1.1.1). However, (1.1.4) is not a necessary 

condition for the existence of bounded solutions--a relevant example is given in [Kol]. 

Therefore we are still not able to characterize measures yielding bounded (or continuous) 

solutions to (1.1.1) by means of an inequality (or inequalities) like (1.1.3) or (1.1.4). The 

main result of the third chapter--Theorem C--says  that  if there exists a subsolution to 

(1.1.1) then the equation is solvable. Here the hypothesis is often easier to verify than 

those of the previous theorems. 

The results of the second chapter are new. Chapter 3 contains the results of [Kol], 

[Ko2], [Ko3] except the continuity part of Theorem B and Corollary 3.5.2. However, 

some technical parts of the proofs have been simplified. 

I would like to thank Z. Btocki and U. Cegrell for their comments on the paper. 
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1.2. Prel iminaries  

In this section we recall fundamentals of pluripotential theory, focusing on notions and 

results which are used in the sequel. By now several texts on the subject have been 

written. We refer to books by U. Cegrell ICe3] and M. Klimek [K1], and extensive papers 

by E. Bedford, B.A. Taylor [BT2], [Be] and J.P. Demailly [D1], [D2] for the proofs and 

a thorough treatment of the theory or some of its aspects. 

(A) Positive currents. A differential form with distribution coefficients on a complex 

n-dimensional manifold M given in local coordinates by 

T = E '  rig dzlAd2j (1.2.1) 
]II=p 
Igl=q 

( ~  means that  the sum is taken over increasing multiindices) is called a current of 

bidegree (p, q) (alternatively: of bidimension (n-p, n-q)). It is a continuous functional 

on the space of test forms C~,(n_p,~_q ) (M). 
The action of T on a test form 

W= E '  wIjdzlAd2jeCo~(n-p,n-q) (M) 
IZl=~-p 
IJl=~-q 

is given by 

(T,w)= /MTAW= /M E 
l 

IIl=n--p 
IJl=n--q 

TI' J' (02I J ) dzI, Ad2j, Adzi Ad2j, 

where I '  (or J ' )  complements I (or J) to (1, 2, ..., n). 

We say that  T is a positive current of bidimension (p,p) if for any collection of 

(1,0)-forms al, a2, ..., ap, 

TAial A~I  Aioz 2 A 62 A... A i a p  AtOp 

is a positive measure. Then its coefficients are complex measures and the action of T 

extends to the space of forms with continuous coefficients. The exterior differential of 

(positive) T is defined by 

(dT, w) : -(T, dw), 

where wEC~2n_2p_l)(M). T is closed if dT=O. We often split d into differentials 

taken with respect to holomorphic and antiholomorphic coordinates, d=0+c~, and write 

d~:=i(O-O). 
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(B) Currents associated to psh functions. The Monge-Amp~re operator. If f~ is an 

open subset of M and uE PSH(f~) then dd~u is a closed positive (1, 1)-current. Conversely, 

if T is a positive closed current of bidegree (1, 1) defined in a neighbourhood of a closed 

ball then there exists a psh function inside the ball such that  ddCu=T (see e.g. [LG]). 

Following [BT1] we can define wedge products of this sort of currents provided that  the 

associated psh functions are locally bounded. Indeed, for uE PSHML~oc(f~ ) and a closed 

positive current T on ~, the current uT is well defined and so is 

ddr := dd~(uT). 

Moreover, the latter current is also closed and positive. 

This way, using induction, one may define closed positive currents 

ddCul AddCu2 A...AddCuN , 

for uj E PSH A L~or ). It is also possible to define 

dul AdCu2 AddCu3A...AddCuN , 

with uj as above (see [BT2], [Be]). 

The Monge-Amp~re operator MA acts on a C2-smooth psh function u according to 

the formula 

( 02u ) 
MA(u) := 4nn] det \~zju'-5:7--8-2 dA = (ddCu) '~ (dA denotes the Lebesgue measure), 

k 

where the power on the right is taken with respect to the wedge product. As we have 

seen its action can be extended to all locally bounded psh functions. For n =  1, MA is 

just the Laplacian multiplied by a constant. In general, the Monge-Amp~re operator 

shares with the Laplacian some of its properties. The following basic result reflects an 

"elliptic" nature of the Monge-Amp~re operator. 

THEOREM 1.2.1 (comparison principle)[BT2]. If 

u, v E P S H n L ~ ( f l )  and l~mio~f(u(z ) -v (z ) )  >10 

then 

f{~<v} (ddCv)~ <~ [ (ddCu) n. 
J{u<v} 

A psh function u is called maximal in l] if (ddCu)n=o in this set. 

Given uEPSH(fl)  and a non-negative, radially symmetric function 0 E C ~ ( B )  

(B stands for the unit ball in Cn), where f od~=l ,  define a regularizing sequence 
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uj = u . Q  j, with Qj(z):=j2nQ(jz). The sequence decreases to u on any relatively compact 

subset of ~. Convolutions are also used to regularize currents. Put  Tj:=T*Qj, where, 

in the representation given in (1.2.1), we set (Tj)I,j=TI,j*Qj. Then Tj--~T in the sense 

of currents which, by definition, means that  for any test form w the sequence (Tj, w) 

converges to (T, w). Monotone convergence of psh functions implies the convergence of 

corresponding currents. 

j O0 THEOREM 1.2.2 (convergence theorem) [BT2]. Let {uk}j= 1 be an increasing 

(or a decreasing) sequence of psh functions in ~ for k = l ,  2, . . . ,N,  and let u~---~ukC 

PSHAL~oc(~ ) almost everywhere as j--~oc for k = l ,  2, ..., N.  Then 

ddCu{ A...Add~uJ N -~ dd~ul A...AddCuN 

in the weak topology of currents. 

One can relax the assumptions of the theorem a bit (see Theorem 1.2.12 below, 

[Be], [D1]) but there are counterexamples showing that,  for instance, the convergence in 

L p for any p<c~ is not sufficient to get the statement (see [Cel], [Lel]). The conver- 

gence results rely, in part, on the Chern-Levine-Nirenberg inequalities [CLN] or their 

generalizations [AT], [D1], [D2]. 

THEOREM 1.2.3 [CLN]. If  ~'CCI2 then for a constant C=C(~ ' ,~ )  the following 
inequality holds: 

~ , ddCulA...Add~u,~ <~ Cllullla... Ilunlla, 

for any set of ukePSHNL~(12),  where II" II denotes the sup norm of a function. 

(C) Capacities. Capacities in C n, modelled on the capacities associated to sub- 

harmonic functions, prove to be very useful in the studies of psh functions (see e.g. [S]). 

In this paper we shall deal primarily with the relative capacity of E. Bedford and 

B. A. Taylor [BT2] and a capacity defined in terms of the global extremal function intro- 

duced by J. Siciak IS]. In particular, we shall make use of a result comparing those two 

capacities obtained by H. Alexander and B.A. Taylor [AT]. Given a compact subset K 

of a strictly pseudoconvex domain ~ in C '~ we define the relative extremal function of K 

with respect to 12 and the global extremal function (the extremal function of logarithmic 

growth) (see [S]) of K by 

UK(Z) = sup{u(z) : U e P S H n L  ~ ,  u < 0 in •, u ~ - 1  on K}, 

Lg(z)  = sup{u(z) : u �9 PSH(Cn), u(z) = log(1 + Izl)+O(1), u < 0 on K}. 
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The upper semicontinuous regularizations u*g(z ) :=-limz,-.~UK(Z') and L~ are psh func- 

tions. A compact set K is said to be regular if U*K=UK (equivalently: L*K=LK ). By 

means of extremal functions we define two capacities, 

cap(K, 12)--sup{/K(ddCu)n: uE PSH(~t) , -1  ~ u < 0 }  

and 

TR(K) := exp( -  sup{L~(z): ]z I <~ R}) 

for some fixed R>0.  The first one is called relative capacity. Both are Choquet and 

outer capacities (see [BT2], IS]). In particular, for an open set U, 

cap(U, ~) = sup{cap(K, ~t) : K C U, K compact} 

and 

TR(U, D) = sup{TR (K, ~):  K C U, K compact}. 

We shall need the following properties of relative capacity. 

THEOREM 1.2.4 [BT2]. Let K be a compact subset of a strictly pseudoconvex do- 
main ~. Then 

cap(K, ~) = /K(ddCu*g)n = ~ (ddCu*K)n. 

* and * maximal away from K. Moreover, U K L K are 

THEOREM 1.2.5 [AT]. Given three strictly pseudoconvex sets ~" c cl2' C Cl2, there 
exists a constant A>0 such that for any compact subset K C ~ "  we have 

cap(K, ~t) ~ cap(K, ~t') ~ A cap(K, 12). 

THEOREM 1.2.6 [BT2]. Given an open set ~'CCgt, where gt is strictly pseudo- 

convex, there exists a constant C=C(~' ,  ~) such that 

A(K)<~Ccap(K, 12) for K c ~ ' .  

The two capacities are comparable as the following result shows. 

THEOREM 1.2.7 [AT]. If B:=B(O,R) and KcB(O,r) ,  r<R,  is compact, then 

exp(-A(r)(cap( K, B) ) -1) • TR(K) < exp(-27r(cap(K, B))-I /~).  

We close this section by giving a list of results where relative capacity is used to 

describe the behaviour of psh functions. They all come in handy in solving the Monge- 

Ampere equation. 
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THEOREM 1.2.8 [BT2]. If  uEPSH(~), ~ strictly pseudoconvex, then given e>0 

one can find an open set U with cap(U, ~ )<e  such that ui~\u is continuous. 

We say that plurisubharmonic functions are quasicontinuous because of the property 

given in the statement of Theorem 1.2.8. 

THEOREM 1.2.9 [BT2]. / f  gt is strictly pscudoconvex and u, uj EPSH(~), j = l ,  2, ..., 

u j=u  in a neighbourhood of On, uj~u in ~, then for any t>0 we have 

lim cap({uj > u+t},  f~) = 0. 
j---~cx~ 

COROLLARY 1.2.10. If  gt is strictly pseudoconvex, t>O, KCC~t, uEPSHnL~(gt)  

and u j E P S H N L ~ ( ~ )  with uj~u in ~, then 

lim cap(KN{uj > u+t},  12) = 0. 
J --->(X) 

Proof. Adding a constant to all the functions we may suppose that U l < - I  on ~. 

Fix a defining function ~) for ~t which (after being multiplied by a constant) becomes less 

than u on K. Then v:=max(u, Q), vj :=max(uj, ~)) fulfil the hypothesis of Theorem 1.2.9. 

Moreover, KM{uj >u+t}C  {vj >v+t}  and thus the result follows. 

THEOREM 1.2.11 [AT] (see also [Be]). Given ZoC~ and K,  a compact subset of 

a strictly pseudoconvex domain ~, there exists a constant A>0 such that for any uC 

PSH(~), u<0, u (z0 )>- l ,  s>0, we have 

cap(KN{u < -s},  ~) E A/s.  

A sequence uj of functions defined in ~ is said to converge with respect to capacity 

to u if for any 5>0 and KCC~t, 

lim cap(KnTlu-ujl > 
j---*cx) 

The Monge-Amp~re operator is continuous with respect to sequences converging in this 

fashion. 

THEOREM 1.2.12 [X]. If uj is a uniformly bounded sequence of psh functions in 

converging with respect to capacity to ucPSH(ft) then 

(ddCuj)n _~ (aacu)n 

in the sense of currents. 
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Chapter  2 

2.1. The  complex  M o n g e - A m p ~ r e  equat ion  o n  a compact  K~hler  manifold.  

Resul t s  

Let us consider a compact n-dimensional K~hler manifold M equipped with the funda- 

mental form w=li~k , j  gkjdzkAd2 j. By the definition of a K~hler manifold, (gkj) is a 

Hermitian matrix and dw--0. The volume form associated to the Hermitian metric is 

given by the nth wedge product of w. 

We shall study the Monge-Amp~re equation 

(w+ddCr ~ = Fw", (2.1.1) 

where r is the unknown function such that w+ddCr is a non-negative (1,1)-form. The 

given non-negative function FELl(M) is normalized by the condition 

/MFWn= /MWn= Vol(M ). (2.1.2) 

Since, by the Stokes theorem, the integral over M of the right-hand side of (2.1.1) is 

equal to Vol(M), this normalization is necessary for the existence of a solution. 

The equation has been solved by S.-T. Yau in the ease of smooth, positive F. 

THEOREM 2.1.1 [Y]. Let F>0,  FECk(M), k>.3. Then there exists a solution to 
(2.1.1) belonging to HSldcr class ck+l'C'( M) for any 0~<c~<l. 

By solving the Monge-Amp~re equation Yau proved the Calabi conjecture which 

says that given a closed (1,1)-form R representing the first Chern class of M one can 

find a Kghler metric such that R is its Ricci form and the new fundamental form is in 

the same Chern class as R. 

Using the Yau theorem we find continuous solutions r  when F is assumed 

to be non-negative and satisfying condition (A) below. This condition is quite weak as 

it admits all non-negative functions belonging to LP(M), p > l ,  and also functions from 

some more general subspaces of L 1 (M) (see w 

By [Au2, Proposition 7.12], if F>0,  FECk'~(M), k>.l, 0 < a < l ,  and a C2-solution 

r exists then cEck+2,~(M). 
We say that F satisfies condition (A) if there exist a sequence FjEC~(M), Fj>0,  

Fj--*F in LI(M) and a covering of M by strictly pseudoconvex coordinate patches Vs 

such that for any compact, regular set KccVs  the following inequality holds: 

fK FJWn<~Acap(g,v,)[h((eap(g,v~))-l/n)] -x, j , s = l , 2 , . . . ,  (2.1.3) 
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for some constant A > 0  and some increasing function h: (0, oo)--~(1, c~) satisfying 

~(yhl/,~( ))-1 y dy < oo. 

Here cap stands for the Bedford-Taylor relative capacity (see w 

If we take h(x)=max(l, xa), a>0 ,  in (2.1.3) then the right-hand side of the inequality 

simplifies to A(cap(K, V~)) l+a/n. With a = 0  the condition would no longer be a sufficient 

one. In w we show that  our assumptions are fairly sharp. 

We shall apply the generalized version of the Yau theorem to solve the Monge- 

Ampere equation in the class of functions of logarithmic growth in C ". Let s  denote 

the family of functions plurisubharmonic in C n and differing from v(z):=log(l+]z]) by 

a bounded function (which may depend on the function). Given a Borel measure # let 

us consider the equation 

(ddCu) n =d#, uE /:+, 

c d #  = (2~r) n. 
(2.1.4) 

n 

The normalizing condition is necessary due to a result of B.A. Taylor [Ta]. In [BT3] 

E. Bedford and B. A. Taylor proved that  the solutions to (2.1.4) are unique up to an ad- 

ditive constant. E. Bedford discussed the problem of existence of a solution in his survey 

paper [Be]. He observed that  applying Theorem 2.1.1 one obtains solutions for d#=f dA 
(dA denoting the Lebesgue measure), where f(z)=const.exp(F(z))(1-b[z[2) -n -1  and F 

extends to a C3-function in P " .  In the paper of U. Cegrell and the author [CK2] it 

is shown that  any Ca-smooth f bounded from above by const . ( l+[zl2)  - " - 1  admits so- 

lutions to (2.1.4) with d#=fdA. In particular, the equation is solvable for measures 

with test function densities. On the other hand, some restriction on the growth of f is 

necessary as an example from the same paper shows. 

In the present work we dispense with the smoothness assumption and relax the 

hypothesis on the growth of f .  This result is sharp to the same extent as the generalized 

Yau theorem which is used to prove it (with M=P"). Again it is enough to assume that  

f belongs to a certain Orlicz space with respect to the volume form of P " .  

Next we discuss the equation (2.1.4) for measures singular with respect to the 

Lebesgue measure. Then we consider #j,  the standard regularizations of # via con- 

volution with a smoothing kernel, and we suppose that  (2.1.3) still holds true with #j 

in place of Fjw n. Instead of # E L l ( M )  we now assume that  # is locally dominated by 

capacity (see w Under these assumptions (2.1.4) is solvable. 
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2.2. Weak so lut ions  to  the  M o n g e - A m p ~ r e  equat ion  

Let us fix FELl (M) ,  F>~O, satisfying (2.1.2). Consider an approximating sequence 

F j c C ~ ( M ) ,  F j > 0 ,  Fj--*F in LI (M) .  Passing to a subsequence we can obtain 

1 
IlF-Fhllil(M) <" 25+---Y" (2.2.1) 

Multiplying F 5 by a constant which tends to 1 as j ~ oc we can also get 

f Yjw" = Vol(M). 

By virtue of the Yau theorem (Theorem 2.1.1) one can find e j E C t ( M )  such that  

(w§162 = Fhw n. 

LEMMA 2.2.1. If  the sequence r is uniformly bounded then r  ~ r 

solves the equation (2.1.1). 

Proof. Let us introduce some auxiliary functions, 

Ckl = max r gk = ( lim T CkZ)*, 
k ~ j ~ l  l--*c~ 

Fkt = min Fj, Gk = trim 1 Fkt. 
k ~ j ~ l  

Since, locally, w is representable by ddCv, where v is a psh function, one can apply [BT1, 

Proposition 2.8] to get 

(w+ddCCkl) n ~ Fktw n. 

Hence, by the convergence theorem (Theorem 1.2.2), 

Gkw n • lim (w+ddCCkt) n = (w+ddC gk) n, (2.2.2) 
l ---~ r 

where the convergence is understood in the weak* topology. 

Note that  r  so one can apply the convergence theorem once more to 

get 

(w+dd~ gk) ~ --, (w+dd~r n. (2.2.3) 

From (2.2.1) we have IIF--GklILI(M)<.I/2 k, SO Gk--~F in LI (M) .  Combine this conclu- 

sion with (2.2.2) and (2.2.3) to obtain 

(w+dd~r n >~ Fw '~. 

Since the integrals over M of both currents in the above inequality are equal to Vol(M) 

we finally arrive at 

(w+ddCr n = Fw n. 

Thus the lemma follows. 

In the next section we shall prove that  the hypothesis of Lemma 2.2.1 is satisfied 

provided that  F satisfies condition (A). 
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2.3.  L e e - e s t i m a t e s  for  t h e  so lu t i ons  

The following lemma and its proof will be used to prove the boundedness as well as the 

continuity of the solutions to the Monge-Amp~re equation. It is a refined version of 

Theorem 1 in [Ko3]. 

LEMMA 2.3.1. Let ~ be a strictly pseudoconvex subset of C n and let v E PSH M C(~) ,  

IiviI <C.  Suppose that u E P S H N L ~ ( ~ )  satisfies the following conditions: u<0 ,  u(0) > C '  

(0E~)  and 

/g(ddCu)n A c a p ( g , ~ ) [ h ( ( c a p ( g ,  (2.3.1) ~,-~))- l / n ) ]  - 1 ~< 

for any compact subset K of 12, where h: (0, oo)--+(1, c~) is an increasing function which 

fulfils the inequality 

l~(Yhl/n(y)) -1 dy < c~. 

I f  the sets U ( s ) := { u -  s < v } M ~" are non-empty and relatively compact in ~" C ~' C C ~ 

for sC[S, S + D] then infa u is bounded from below by a constant depending on A, C, C ~, 

D, h, ~ ,  ~, but independent of u, v, ~ ' .  

Proof. Let us introduce the notation 

a(s) :-- cap(U(s), ~t), 

Then 

b(s) =/v(s)(dd~u)n. 

t'~a(s) <~ b(s+t) for 0 < t < S + D - s .  (2.3.2) 

Indeed, consider a compact regular set KcU(s ) ,  the psh function w : = ( u - s - t ) / t  and 

the set V:={w<uK+v/ t }M~ ' ,  where UK denotes the relative extremal function of K 

with respect to ~. Let us first verify the inclusions K c V c  U(s+t). 

Take xEKCU(s) .  Then u(x ) - s<v(x )  and so 

w(x)  = ( u ( x ) - s - t ) l t  <<. 

which means that  xEV. To see the latter inclusion, note that  if x E V  then 

( u ( x ) - s - t ) / t  <~ ug(x)+v(x) / t  <<. v(x)/ t  

since UK is negative. 

Once we have the inclusions we can apply the comparison principle and Theo- 

rem 1.2.4 to the effect that 

(ddCu)n=t-nb(s+t). 
J U(s+t) 
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In this way (2.3.2) follows. 

Next we define an increasing sequence so, sl,  ..., SN, setting s0 :=S  and 

sj:=sup{s:a(s)<<, lim da(t)} 
t - - * s j _ l +  

for j = l ,  2, . . . ,N, where d is a fixed number such that  1 < d < 2 .  Then 

and 

lim a(t) <. l i m  da(t) 
t--~Sj -- t S j - - I +  

a(sj) >~ da(sj_2). (2.3.3) 

The integer N is chosen to be the greatest one satisfying sN <~S+D. Then 

a(S+D)<~ lim da(t). 
t---*SN + 

From the last inequality, (2.3.1) and (2.3.2), it follows that  for any tC(sN, S+D) we have 

(S+ D-t)~a(t) <~ b(S+ D) <<. Aa(S+ D)h-I([a(S+ D)] -1/~) 
<~ Ada(t) h -1 ([a(S+D)]-I/'~). 

Hence 

S+D-SN <. (Ad)I/~h-1/~([a(S+D)] -1/n) = (Ad)~/~L~. (2.3.4) 

Now we shall estimate sN--S. Consider two numbers S<g<s<S+D such that  

a(s)<~da(s'), and set t:=s-s'. Then by (2.3.1) and (2.3.2) we have 

a(s') <. t-nb(s) <~ At-n a(s)h-'([a(s)] -1/~) <. Adt-~a(s')h-~([a(s)]-I/~). 

Hence 

t <~ (Ad)l/~hl(a(s)), 

where hl(x):=[h(x-1/~)]-l/~. Letting s--~sj+~- and s'--*sj+ we thus get 

tj  := sj+l-sj <. (Ad)l/~hl (a(sj+l) ). 

Using this inequality, (2.3.3) and the fact that  the function h2(x):=hi (d x) =h-i/~(d -~/~) 
is increasing one can estimate as follows: 

N - 1  N - 1  

tj <. (Ad) 1/~ ~ h2(logaa(s~+l)) 
j = 0  j = 0  

r N-2 rlogd -(*j+~) + 2h2(l~ a(Sg))l J ~(Ad)l/n[j~=l JlOg~a(sj) h2(x) dx 

I" r loga a ( S + D )  a(S+ D))] J < 2(Ae) /o 
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The change of variable y=d -x/'~ leads to the following transformation of the above inte- 

gral: 
log d a(S+D) f l o g  d a(S+D) 

h2(x) dx = [ [h(d-X/n)] -1/n 
�9 / log  d a(S) J l o g  d a(S) 

n / [~(s)]-l/~ 
: in d J[~(S+D)]-*/~ [(h(Y))I/nY]-I dy. 

Hence finally, 

where 

sN--S <~ (Ad)l/nL2, (2.3.5) 

2n f [a(S)]-l/~ 
L2 := 1-~ J[a(S+D)]-I/~ [yhl/n(Y)]-1 dy + 2[h(a(S+ D)-t/")] -1. 

Note that,  due to our hypothesis on h, both L1 and L2 tend to 0 as a(S+D)---+O. 
By Theorem 1.2.11, 

l i r a  cap({u < - s } A ~  t, f~) = 0 

and the convergence is uniform with respect to u as long as u satisfies the assumptions of 

the lemma. Since U(S+D)c{u<C+S+D} one concludes from these remarks, (2.3.4) 

and (2.3.5) that  for S<So=So(A, C, C', D, h, ~', f~) the following inequalities hold: 

S+ D-sN  <~ (Ad)I/'~L1 <. 2A1/nL1 < �89 
1 sN--S <~ (Ad)l/nL2 <~ 2AI/nL~ < ~D. 

Combined, they yield a contradiction. This shows that  S is controlled from below by a 

constant depending only on A, C, C', D, h, fY, f~, and thus the statement follows. 

From now on we suppose that  F satisfies condition (A) (see w Consider the 

sequence Cj of solutions to the Monge-Amp~re equation from the previous section. They 

are determined up to a constant, so we need to impose some kind of normalization to 

obtain a finite limit r We choose Cj so that  

sup Cj = O. 
M 

It is no loss of generality to assume that  M is connected. From [H, Theorem 4.1.9] 

applied in coordinate patches 1/8 to psh functions vs+r  where ddCvs=w in Vs, we 

conclude that  either C j -+-c~  uniformly on compact subsets of Vs or there exists a 

subsequence of {r converging in LI(V~). If the former possibility occurs then, since 

M is connected, Cj--+-c~ uniformly on M, contrary to the normalizing condition above. 

Thus upon passing to a subsequence and using the diagonal procedure with respect to 

coordinate patches, one can assume that  r162 in LI(M).  
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Before proceeding further we shall fix a special covering of M by coordinate patches. 

Let us observe that  for any xEM there exist a neighbourhood U~ and a potential 

vEPSH(U~) satisfying dd~v=w and having local minimum at x. Indeed, take any 

~EPSH(U~) such that  dd~9=w. The Taylor expansion of ~ at x in local coordinates 

has the form 

~(x +h) = Re P(h)+ H(h)+o(ihI2), 

where P is a complex polynomial and H the complex Hessian of 7). Since H is positive 

definite it is easy to see that  v : = ~ - R e P ( . - x )  has a local minimum at x. 

Once we know this, we can find, using compactness of M, positive constants r, R 

such that  6r<R and for any xEM there exist a coordinate chart 0~: U~--*B(O, R) and 

Vx EPSH(U~) satisfying dd~vx =w, v~ <~ 0 and 

supv~ < inf v~, 
u~ ou~' 

where Ux:=0~-I(B(0, r)), U" :=Oxl (B(0 ,  �89 with B(0, r) and B(0,  �89 denoting open 

1 respectively. One may choose {Ux} balls in C n centered at the origin of radius r and 5R 
to be subordinate to {V~}. 

We fix a finite covering Us := Ux~, s =  1, 2, ..., N, of M and write for brevity U~ = U~,  

U~'=U~', 0~=0~, vs=vx~. Then there exists co>0 such that  

sup v~ < inf v ~ -  co. (2.3.6) 
us ou~' 

Since, due to our choice of Cj's, the integrals fv~ CJ wn are bounded from below by 

a constant cl independent of s and j ,  we infer that  also 

s u p C j > c l ,  j=l ,2 , . . . ,  s = l , 2 , . . . , N .  (2.3.7) 
us 

Now we shall see how to apply Lemma 2.3.1 to derive that  Cj is uniformly bounded. 

Given j fix a~EM such that  Cj(a~)--minCj,  then choose U~ containing a~ and a point 

aj E Usj satisfying Cj (aj) :suposj Cj. Take Q~I (B (O~j (aj), 2 R)), Qs-j 1 (B (Qsj (a j), 1R)) 
and Us~ to play the role of Ft, Ftt and ft '1 respectively, in the lemma. Since for every 

j thus defined the sets gt and ~ '  can be identified with the fixed balls B(0, 2R) and 

B(0,  �89 we may consider these sets to be independent of j .  As u and v in the lemma 

we take vsj+r and 0 respectively. Clearly, v~ are uniformly bounded from below, so 

from (2.3.7) one concludes that  

(vs j+r  >~c2, j---- 1,2,..., 
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which settles the assumption "u (0 )>C ~''. 

By the choice of a} and (2.3.6) we have 

(Vsj§162 < inf (v~j+r  j = 1,2,.. . .  
ov,~ 

Thus the constant Co can be taken as D in the lemma. Both c2 and Co do not depend 

o n  j .  

To verify (2.3.1) we use the fact that  {U~} is subordinate to {V~}. It is enough to 

observe that  the right-hand side of (2.3.1) is increasing in cap(K, f~) and that if ~CfY 
then cap(K, f~)~>cap(g, ~ ')  for Kcf~ (see Theorem 1.2.5). 

Applying Lemma 2.3.1 in the way described above we conclude that  v~r162 are 

uniformly bounded on U~r by a constant independent of j .  Since v~ are uniformly 

bounded and Cj assumes its infimum in Us~ it follows that  Cj are uniformly bounded. 

Thus, by Lemma 2.2.1 the bounded function r  (lim sup Cj)* solves the Monge-Amp~re 

equation (2.1.1). 

2.4. Cont inu i ty  of  the  so lut ion  

Suppose that  r were not continuous. Then d : = s u p ( r 1 6 2  Since r 1 6 2  is upper 

semicontinuous and bounded (by w the supremum is actually attained at some point 

xoEM. One may choose x0 so that  

r = min r 
{~b--~b. =d}  

Such x0 exists since F = { r 1 6 2  =d} is closed and if xj E F  with r r then for any 

accumulation point x0 of the sequence xj we have r r otherwise ( r162  

would exceed d, contrary to the definition of d. 

Let us fix a coordinate chart r onto B:=B(O, 1 ) c C  '~, and a potential function 

vePSHnC~ such that  r  r and 

inf v - v ( 0 ) : =  b > 0, (2.4.1) 
S 

where S:=OB(O,r), r < l .  

The function u:=v+r162176 satisfies condition (2.3.1). After adding 

a constant one can assume that  u > 0  on B and A:--U(Xo)>d. (Her e again we have used 

the result of the previous section.) 

We wish to apply the proof of Lemma 2.3.1 to show that  the hypothesis "r dis- 

continuous" leads to a contradiction. To this end we choose a sequence of smooth psh 
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functions ujSu which are defined in a neighbourhood B" of the closure of B~:=B(0, r). 

Our first objective is to prove that  for some a0>0, t > l  the sets 

W ( j , c ) : = { w + c < u j } ,  w h e r e w : = t u + d - a 0 ,  

are non-empty and relatively compact in B ~ for c belonging to an interval which does 

not depend on j >J0. 

Obviously E : = { u - u .  = d } N B ' = { r 1 6 2  -1 - ( r 1 6 2  and 0 c E .  For 0 < a < d  

we denote by E(a) the set { u - u .  >~d-a}AB'. Those sets are closed and E(a) ~E as a---*O. 

Hence, by semicontinuity of r and the choice of x0 one gets 

limsupc(a)~o 4 0 ,  c (a ) :=r162162  -1. 

Indeed, suppose that  for some ~,>0 and xjEE(aj), aj---*O, we had ( r 1 6 2  

( r162  Then any accumulation point x of xj belongs to E and so (r162 

(r162 Thus 

l imsup( r162  E ( r 1 6 2  3, and l i m [ ( r 1 6 2 1 6 2 1 6 2  

From these two formulas we obtain (r r 71 ) (x) - (r r  1 ) �9 (x) ~> d+  % a contradiction. 

Fix a0 satisfying the two conditions 

0 < a0 < min(�89 d), (2.4.2) 

c(a) < �89 f o r a • a o .  

Next, choose t > l  satisfying the inequalities 

( t -  1) (A-d)  < a0 < ( t -  1 ) ( A - d +  2b). (2.4.3) 

We shall need the following version of the Hartogs lemma. 

PROPOSITION 2.4.1. If  u - t u . < c  on a compact set K c B  ~ then for some j 0 E N  we 

have 

uj < tu+c on K, 

where u, uj are the functions we are dealing with. 

Proof. By the assumption and the semicontinuity of u one can find for any x E K  

a neighbourhood V of x and d < c  such that  

t u > s u p u - c  ~ on V. 
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The Hartogs lemma provides then an integer J0 such that  

uj ~ sup u +  ( c -  c') < tu+c 

on V if j>jo. Since K is compact the above inequality extends to the whole set K after 

increasing j0 if necessary. Thus the proposition follows. 

Consider now yCSAE(ao). Then by (2.4.1) and (2.4.2) one gets 

u,(y) >~ v(O)+b+r162 >~ v(0)+b+r162  -1 ( 0 ) - c ( a o ) - d  >~ A - d +  2b. 

Hence by (2.4.3), 

which implies that  

holds on S\V .  

get 

(t-1)u.(y) > ao, 

u(y) <~ u, (y) + d < tu, (y) + d -  ao. (2.4.4) 

Since the left-hand side of this inequality is upper semicontinuous and the right-hand 

side is lower semicontinuous it extends to vd, where V is a neighbourhood of SNE(ao). 
Applying Proposition 2.4.1 we thus obtain 

uj<tu+d-ao  o n V  i f j > j l .  (2.4.5) 

Since E (ao) n (S \ V) -- ~ the inequality 

u - u ,  < d-ao 

Applying Proposition 2.4.1 once more and increasing j l  if necessary we 

uj <. u+d-ao < tu+d-ao (2.4,6) 

on S \ V  if j > j l .  

From the first inequality in (2.4.3) it follows that  for some al >0 

tu.(O)+d-ao < u ( 0 ) - a l  < u j ( 0 ) - a l .  (2.4.7) 

Putt ing w:=tu+d-ao we see from (2.4.5) and (2.4.6) that  the sets W(j, c)={w+c<uj} 
are relatively compact in B'  for c>0, j > j l .  Fhrthermore, (2.4.7) implies that  for cE 

(0, al) some point near 0 belongs to W(j, c). 

Now we can apply the proof of Lemma 2.3.1 with w, uj,B',B",O, al in place of 

u, v, ~" ,  ~, S, D. We have just verified that  the hypothesis of the lemma is then satisfied. 

Thus from (2.3.4) and (2.3.5) we obtain that  

(LI+L2)A -1/n >~ �89 
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which by definition of L1 and L2 gives a positive lower bound for cap(W(j, al),B")>j 

a2>0 not depending on j. This leads to a contradiction since we have {w+al<uj}C 

{u+(d-ao+al)<uj} ,  where d-ao+al>O and the capacity of the intersection of the 

latter set with B ~ tends to 0 as j - - ~  by Corollary 1.2.10. 

In this way we have proved 

THEOREM 2.4.2. / f  FELl(M)  satisfies (2.1.2) and condition (A) then there exists 

a continuous solution to the equation (2.1.1). 

2.5. Funct ions  sat isfying condi t ion (A) 

In this section we are going to identify some Orlicz spaces of functions which fulfil con- 

dition (A). The spaces LP(M), p> l ,  axe among them. At the end of the section we give 

an example indicating that our assumption is fairly sharp. We adopt here the results of 

[Ko3] giving more detailed exposition. 

Condition (A) is given in terms of the relative capacity whereas the Orlicz spaces we 

shall be dealing with are defined with respect to the Lebesgue measure. The following 

lemma exhibits a relation between the capacity and the measure. 

LEMMA 2.5.1. Suppose uEPSH([2)NC(~), u=0 on O~, f(ddCu)n<,.1. Then the 

Lebesgue measure A(U~) of the set Us:={u<s} is bounded from above by cexp(-27risl), 

where c does not depend on u. 

Proof. Assume ~ to be contained in a ball B=B(O,R). We denote by Ak the 

Lebesgue measure in C k. Let us write the coordinates of a point zEC n in the form 

z = ( z l , z ' ) E C x C  n-l,  and denote by Sl (or B') the balls {zeC:  Iz[<R} (or {zEC~-I:  

[z[<R}). Consider the slices of the set/]8, 

:= {z l e  c :  

For fixed s, the extremal function of logarithmic growth of Us(z') in C (or of Us in C '~) 

will be denoted by V~, (or V). We shall use a capacity which corresponds to the global 

extremal function (see w 

TR(E)=exp ( -  sup VE), EcB(O,R) .  
B(O,R) 

For n=l  the set function TR dominates the logarithmic capacity multiplied by a constant 

depending on R. Hence by classical potential theory (see [Ts]) 

< C1TR(Us(z')), 
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where C1 is an independent constant. Thus, making use of the Fubini theorem we can 

estimate as follows: 

~(v~) = / ~l(Vs(z'))d~n_l(z')< Cl/TR(V~(z'))~_l(Z') 

~< C1/exp(-- sup V(Zl, z')) dAn-l(Z'). 
Iz~l<R 

(2.5.1) 

By a result of Alexander [A] there exists an independent constant C2 such that  

sup VE</VEdS-C2 ,  E c B ,  
BlXB '  

where dS is the normalized Lebesgue measure on S=O(BlxB') and VE denotes the 

global extremal function of a Borel set E.  We deduce from this inequality that  the 

dS-measure of the set 

{VE <. sUp VE--a} 
S 

tends to 0 as a--*oo. Therefore, by taking C3 large enough we get 

An-I({z'CB':supVE(zl,z')>/ sup VE-C3})>/1An_I(B'). 
B1 BIxB' 

Thus the right-hand side of (2.5.1) is dominated by 

c4 exp(- sup V(z)) < C4TR(U~). 
BlXB' 

From Theorem 1.2.7 it follows that  

TR(U~) <~ exp[-27r(cap(Us, B) ) -1~hI <. exp[-2zr(cap(Us, Q))--l/n]. 

So, continuing the estimate (2.5.1) we finally arrive at 

A(U~) E C4 exp[-27r(cap(U~, Q))--l/n]. 

To complete the proof it remains to show that  

cap(Us, ~) ~< is] -n .  (2.5.2) 

Fix t > l  and a regular compact set KC Us. Then by the comparison principle we have 

cap(K,f~) = /K(ddCuK)n = I (ddCuK)n <~ tnlsl-n/a(ddcu)n <. tn[s]-n. 
J {--ts-lu<~Ug} 
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Thus (2.5.2) and the lemma follow. 

We now proceed to find Orlicz spaces satisfying the condition (A). The background 

material on Orlicz spaces can be found in [M]. Let r [0, co)--~[0, co) be an increasing 

function fulfilling the inequalities 

2t ~ r ~ he(t), (2.5.3) 

for some a>0  and any t>to. Then the Orlicz space corresponding to r and w '~ is defined 

by 

Lr { f ELI(M) : /M r < co} �9 

Since condition (A) is expressed in coordinate patches we shall work in Lr dA) (dA de- 
notes here the pullback of the Lebesgue measure via the coordinate chart) rather than 

in Lr Obviously fELr if and only if feLr dA) for all s. Under the above 

assumptions on r given fELr there exists a sequence fj eC~(M) such that f j --*f  

in L 1 (M) and the integrals fM r  I) wn are uniformly bounded. 

Suppose that 

•(t)  = Itl ( log(I-t-Itl))" h(log(1-k Itl)), 

with h(x)~x, x > l ,  satisfying the hypothesis of condition (A), and that r fulfils (2.5.3). 

We are going to verify the inequality (2.1.3) for a sequence Fj of smooth positive func- 

tions, uniformly bounded in L~h(M) and converging in Lr to F. Fix f~=Vs. We need 

to show that for some A>0 and any compact regular set KC ~ the following inequalities 

hold: 

KFj dA ~ A cap(K, 12)[h((cap(K, ~))-1/,~)]-1. (2.5.4) 

First, let us note that (2.5.4) follows from 

~l vl~h(M)FjdA~A, j = 1,2,..., (2.5.5) 

where vEPSH(~) is of the form v=cap-1/n(K,~)UK, with ug the relative extremal 

function of K with respect to ~l. Indeed, from (2.5.5) we have 

/> cap -1 (g, n) h((eap(K, n))-l/~) fK St d~, 
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which proves (2,5,4). To prove (2.5.5) we shall use Young's inequality applied to G(r)= 

g(log(1 + r ) ) =  (log(1 +r))  n h(log(1 +r))  and its inverse. Then 

fFj (x) dr +rg(Iv(X)]o I) 
g(lv(x)[)Fj(x) ~ ]o g(log(l+r)) [exp(g-l(t))-1] dt 

+~0 I~(x)l < Fj(x)g(log(l+Fj (x))) eSg'(s) ds 

~< r (x))+g(Iv(x)l)el~(x)t. 
Since, by the choice of Fj, the integrals far are bounded by some constant 

A0<oc, we obtain by integrating the above inequality over 

s tvrnh(Ivt)rj ~ < A0+s g(Iv(x)l)e ~(~)l d~. 

It remains to find a uniform bound (independent of K) for the last term. To do this we 

make use of Lemma 2.5.1: 
OG 

s=0 {--s--l<v<--s} 
o o  

< E(8"~l)nh(8"J-1)eS+l/~({v < - 8 } )  

s : 0  

Oo 

< c ~ ( s +  1)n h(s+ 1) el§ 
s ~ 0  

~<e h(1)+ s+ l )~+le  1+8(1-2'~) ~<const<oo. 
L s--1 J 

The extra assumption h(x)4x which has been used above is unrestrictive since by de- 

creasing h (and ~) we extend the space L r Thus we have proved 

THEOREM 2.5,2. If h is the function from condition (A) and 

r = [tl(log(1 + It[))'~h(log(1 + It])) 

satisfies (2.5.3) then for any FELr the Monge-Amp~re equation (2.1.1) has a con- 
tinuous solution. 

Example 1. Take r m, m>n. Then it is 

straightforward that this function satisfies the assumptions of Theorem 2.5.2. Now if 

x(t)=lt](log(l+]t])) "~, re<n, then by a result of L. Persson [P], the Monge-Amp~re 

equation admits unbounded solutions with pointwise singularities for some radially sym- 

metric densities from L x. This shows how sharp is the hypothesis of Theorem 2.5.2. 

Example 2. For a n y p > l  we have LP(M)cLr where r is the function from the 

previous example. Thus for FEL v, p > l ,  the equation (2.1.1) is solvable in the domain 

of continuous psh functions. 
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2.6. Solutions of  the Monge--Amp6re equation belonging to s 

The class of functions plurisubharmonic in C n of logarithmic growth, 

s  := {ue  PSH(C~):  lu(z)-log(l+lzl)  I <c~}, 

plays an important role in the study of polynomials and the theory of extremal functions 

in particular. The total Monge~Ampbre mass fc-(ddCu) n of a function u belonging to 

s  is always equal to (2~r) n (see [Ta D. In the present section we shall deal with the 

following problem. Given a Borel measure # with 

fe d# = (2~r) ~, 

find uEs satisfying 

(ddCu)" = d # .  (2.6.1) 

If # is not singular with respect to the Lebesgue measure then the generalizations of the 

Yau theorem obtained so far can be applied directly. Indeed, let us specify M = P  n and 
1 c w=w0, where Wo=~dd log IZI 2 is the Fhbini-Study form with Z denoting the homoge- 

neous coordinates in pn.  In C n, embedded in pn  in the usual way, the Fubini-Study 

form is equal to ddCvo, vo := �89 log( l+  I z12). Straightforward computation leads to 

n! 
w~(z) = (l+lzq2)n+ 1 dA. 

Applying Theorem 2.4.2 we get 

COROLLARY 2.6.1. If  d#=Fw~, where F c L I ( p " ) ,  satisfies condition (A) then 
(2.6.1) is solvable and the solution is continuous. (It is unique up to an additive constant 
by [BT3].) 

To make the hypothesis more explicit one can use Theorem 2.5.2. 

COROLLARY 2.6.2. / f  r +ltl))"h(log(l +lt])) satisfies (2.5.3), h fulfils 
the hypothesis of condition (A) and the function f given by 

1 
d#(z) = f ( z ) ( l + l z l 2 ) n +  1 dA 

satisfies 

J[c 1 r  (l+lzl2)n+ 1 dA < cx~, 

then there exists a continuous solution of the Monge-Amp~re equation (2.6.1). 

Example 1. Putt ing ho(x)--(l+x) m, m>0;  hl(x)=l+( log( l+x))  m, m>n; h2(x)= 

l+(log(l+x))n(log(log(l+x))) m, m>n,  in place of h in Corollary 2.6.2 we get some 
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particular classes of measures admitting solutions to (2.6.1). We may continue to decrease 

h and thereby extend the corresponding class defined in the corollary. Again we observe 

that  our result cannot be substantially improved since, on the one hand, for 

/ ( z )  - Izl2 
( l og ( l+ l z l ) )p ,  p > n + l ,  

we have a solution in s  on the other hand if n = l  and 

[z12 (p=n+l  (!)) 
f ( z )  - (log O + izl))2 

then the solution of the Poisson equation 

1 
d d C u = f ( z ) [ l ~ _ t  , )'t--'z'2" 2 d)~ 

is no longer in s  The first part of this statement follows from Corollary 2.6.2 with 

h =  h0 as defined above and m < p - 1 - n .  Then the convergence of the integral f C([ f I)w~ 

is equivalent to the convergence of 

x( log( l  + x) )p - n - m  
dx < c~. 

As for the solution u of the Poisson equation above, observe that  

c log(l+]zl)  ddCu(z) = +c~, 

which implies that  u ~ s  (see e.g. [CKL, Proposition 1.4]). Using the integral formulas 

for radial psh functions, obtained in [P] by L. Persson, one can draw the same conclusion 

in higher-dimensional case. 

While dealing with psh functions one very often comes across functions having 

Monge-Amp~re mass singular with respect to the Lebesgue measure. The standard op- 

eration of taking maximum of a finite number of psh functions gives rise to such objects. 

Extremal functions are of this type as well. 

Trying to cope with the equation (2.6.1) for general Borel measures we cannot use 

Lemma 2.2.1 any more, so we need to find a replacement for this result with possibly 

weak assumptions on it. In the case of the Dirichlet problem for the Monge-Amp~re 

equation in a strictly pseudoconvex domain ~ with continuous boundary data  we have 

such a theorem (Theorem A in w There we consider measures satisfying the condition 

#(E)  ~ A cap(E,  B ' ) i t (B) ,  (2 .6 .2)  
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where E c B = B ( x ,  r)CB~=B(x, 4r)Cf t  and the inequality holds for any choice of such 

sets with an independent constant A>0. 

Then we regularize # via convolution, #j=Qj*# (with oEC~(B(O, 1) a radial non- 

negative function such that  f odA=l  and pj(z)=j2no(jz), j = l ,  2, ...), and solve the 

Dirichlet problem for #j. If the resulting sequence of solutions uj is uniformly bounded 

then u= (lim sup u j)* is the desired solution for #. 

To solve the equation (2.6.1) we repeat this procedure. Let #j=Oj*#. Assume that  

with #j in place of Fjw n (2.1.3) is still satisfied and that  for # (2.6.2) holds true. By 

Corollary 2.6.1 we find ujE/~+ such that  (dd%j)n=d#j. Applying the results of w167 2.3 

and 2.4 we conclude that  u=(limsupuj)* is continuous and belongs t o / : + .  Adding a 

constant one may suppose that  uj >0, j = l ,  2, .... It remains to prove that  (dd~u)n=d#. 
Let us fix R > 0  and denote by uj,n, j = l , 2 , . . . ,  the psh solution of the following 

Dirichlet problem in the ball B(0, R): 

{ (dd%) n = dltj IB(0,R-1), 

v = u on OB(O, R). 
(2.6.3) 

Applying Theorem A in w we conclude that  vR:= (lim sup uj,R)* satisfies 

(dd%R) n=d#lB(o,R_l) in B(0, R). (2.6.4) 

Since all uj differ from log(l+lzl)  by a constant independent of j (because the corre- 

sponding solutions of (2.1.1) in P'~ are uniformly bounded due to Lemma 2.3.1) one can 

find for any t > 1 a radius R0 such that  

t - luj  <~ uj,R <<. tuj in B(0, R), R > R0. (2.6.5) 

(Here we use the comparison principle in B(0, R) to verify the first inequality and we 

do the same in B(0, R - 1 )  to prove the other one.) Hence passing to the sup limits one 

obtains t-lU~VR~tu. Since t was arbitrary exceeding 1, we deduce that  VR--*u locally 

uniformly as R--+c~. Then the convergence theorem implies that  (ddCu)n=d#. Let us 

state the result we have just proved. 

THEOREM 2.6.3. If the measure # from (2.6.1) satisfies (2.6.2) and if (2.1.3) holds 
tz~ue with Fjw n replaced by #j=Oj *# then the equation (2.6.1) has a continuous solution. 

The condition (2.6.2) is not necessary for the existence of a continuous solution. In 

[Kol] we gave an example of a continuous subharmonic function in C with the Laplacian 

not satisfying (2.6.2). 
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Chapter 3 

3.1. The complex Monge-Amp~re equation in a strictly pseudoconvex 

domain. Results 

In this chapter we shall study the Dirichlet problem for the complex Monge-Amp~re 

equation in a strictly pseudoconvex domain ~t. Given ~EC(0~t) and a non-negative 

Borel measure d# we look for a plurisubharmonic (psh) function u satisfying 

u e  PSHML~(~), 

(ddCu) '~ -- d#, (*) 

limz~x u(z) = ~(x) for x e 0~. 

So far the set of Borel measures for which there exists a bounded (continuous) 

solution has not been characterized. We believe that the results presented here give a 

fairly accurate description of this set. 

In 1976 E. Bedford and B.A. Taylor proved the following fundamental result. 

THEOREM 3.1.1 [BT1]. / f  d # = f  dA (A denotes the Lebesgue measure), fEC(f i ) ,  
then (,) has a unique continuous solution. 

U. Cegrell ICe2] generalized this theorem to the case of bounded f ,  and then, to- 

gether with L. Persson [CP], solved (,) for fEn2(gt). There are examples (see [CS], [P]) 

indicating that one cannot do the same for f E L 1 (12). For measures equicontinuous with 

a rotation-invariant measure in a ball.the equation has been solved in [CK1] under the 

condition that a subsolution exists. 

There is a number of results (see e.g. [CKNS], [CY]) showing that under additional 

assumptions on smoothness of f and ~, and non-degeneracy of f ,  one may obtain smooth 

solutions to (*). In particular, we have the following regularity theorem. 

THEOREM 3.1.2 [CKNS]. If d#=f  dA, f E C ~ ( ~ ) ,  f > 0  and O~ is C~-smooth, 
then (*) has a unique solution uEC~(~) .  

In this paper we focus on solving (*) under possibly weak assumptions on d#. From 

the very definition of the relative capacity of Bedford and Taylor, 

cap(K, 12) :=sup{ /K(ddCu)'~ : uE PSH(~), - l  < u < 0} , 

it follows that a bounded solution to (,) exists only if the measure # is dominated by 

capacity, 

# (g )  < A cap(K, ~t). (3.1.1) 
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This condition, however, is not sufficient even in the case of the Poisson equation (see 

[Kol]). In the first of our main theorems (Theorem A below) we use a local version of 

this condition. We say that  # is locally dominated by capacity if for any cube I and the 

ball Bx of radius equal to 2 diam I, concentric with the cube and contained in f~, the 

following inequality holds: 

i t(E) ~< A cap(E, B I )# ( I ) ,  (3.1.2) 

where A is an independent constant and E is a Borel subset of I. One may weaken this 

condition requiring only that  the inequality holds away from a set of arbitrarily small 

measure #, but even then it does not become a necessary condition (see [Kol]). 

One may strengthen (3.1.1) in yet another way by putt ing F(cap(K,  f~)), with some 

F(x)<.x,  in place of cap(K,f~) on the right-hand side of (3.1.1). Condition (A) from 

w is of this form. As we have already seen, at least for d # = f d A ,  f c L l ( f ~ ,  d)~), this 

condition seems to be close to giving a characterization of measures leading to continuous 

solutions. 

Given a Borel measure # let us consider an approximating sequence #j = f j  dA, where 

f j  is constant on small cubes constituting the j t h  subdivision of f~ and # j ( I ) = f i  f j  d)~ 

for any such cube. Using Cegrell's result [Ce2] we find solutions uj of (*) with # replaced 

by itS. 

THEOREM A [Kol]. If  a Borel measure it, compactly supported in f~, is locally 

dominated by capacity and the sequence u s defined above is uniformly bounded then u:= 

( l imsupuj)* solves the Monge-Amp~re equation (*). 

One may use some other way of approximating it (for instance, in [Kol] we use 

convolutions with a smoothing kernel) to get the same result. However, not any weakly 

convergent sequence itS--~it would do (see [CK1]). 

Once we have Theorem A a natural question arises: When is u s uniformly bounded? 

As in Chapter 2, condition (A) takes care of that.  

THEOREM S. Let f~ be a strictly pseudoconvex domain in C n and let it be a Borel 

measure in f~ such that fa dit<.~ 1. Consider an increasing function h: R--*(1, c~) satis- 

fying 

~ (yhl/n(y) ) -1 dy < c~. 

If  it satisfies the inequality 

i t (K) < A cap(K, ~) h -1 ((cap(K, ~))-1/,~) 

for any K C ~  compact and regular, then the norm Ilullio~ of a solution of the Dirichlet 

problem (,)  is bounded by a constant B = B ( h ,  A) which does not depend on it. Moreover, 

u is continuous. 
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Applying the results of w we obtain the following consequence of Theorem B. 

COROLLARY 3.1.3. Let Lr dA) denote the Orlicz space corresponding to 

r  = Itl(log(l+ltl))nh(log(l+ltl)), 

with h satisfying the hypothesis of Theorem B. If f cLr d)~) then (*) is solvable with 

d # = f  d)~, and the solution is continuous. 

In particular, the corollary provides continuous solutions to the Monge-Amp~re 

equation for any f E L  p, p > l .  Let us note that  for n = l ,  when we deal with the Poisson 

equation, the result is similar to the classical one of A. P. Calder6n and A. Zygmund [CZ] 

(see also [GT, w The method of the proof is completely different as we make no 

appeal to the Newtonian potential. 

Combining Theorems A and B one gets 

COROLLARY 3.1.4. If a measure tz in f~ is locally dominated by capacity and satisfies 

the hypothesis of Theorem B with h such that 

h(ax) <~bh(x), x > 0 ,  

for some a> l, b> l, then there exists a continuous solution to (*). 

This result allows us to solve (*) also in the case of measures singular with respect 

to the Lebesgue measure. 

Even in the situation of the above corollaries it is not easy to verify the assumptions 

of Theorems A and B. Perhaps the following theorem is of more use when it comes to 

solving (*). We say that  a bounded psh function v is a subsolution for (*) if (dd~vs)'~>~d# 

and lim~--,x v(z)=qo(x), xeOf~. 

THEOREM C. If there exists a subsolution for the Dirichlet problem (,) then the 

problem is solvable. 

This statement remains true also in the case of weakly pseudoconvex domains under 

the necessary hypothesis that  there exists a maximal function with given boundary data. 

An interesting consequence of Theorem C is that  for any collection of uj E PSH N L ~162 (f~), 

j = l ,  2, ...,n, the current ddCulAddCu2A...AddCun is equal to (ddCu) n for some bounded 

psh function u. 

The results presented here give answers to some of the problems posed in the survey 

paper by E. Bedford [Be]. We refer also to M. Klimek's monograph [K1] for background 

material in pluripotential theory and to Z. Btocki's paper [B1] for a simplified proof of 

Theorem 3.1.1. 
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In the next section we make some preparations for the proofs of Theorems A and C. 

This unified approach simplifies the exposition of the results originally published in [Kol] 

and [Ko2]. Then, in w we fairly easily complete the proof of Theorem A. To finish 

the other proof (w requires much more effort. w is closely related to w The 

proof of Theorem B follows almost directly from Lemma 2.3.1. The corollary following 

it has also been proved in the previous chapter. The assumption on the measure # in 

Corollary 3.1.4 slightly differs from that  of condition (A) in w so to prove it we show 

that  the assumptions are equivalent. Then we apply Corollary 3.1.4 for some particular 

classes of measures. 

3.2. Prel iminaries  for the  proofs  of  Theorems  A and C 

In this section we define a candidate for the solution of the equation (*) in terms of the 

solutions corresponding to a sequence of measures approximating #. Then we formulate 

a condition (3.2.1) which is proved to guarantee the solution of (,) .  In the following 

sections we shall verify (3.2.1) under the assumptions of Theorem A and Theorem C. 

We close this section by showing a lemma which is an essential ingredient of the proofs 

that  follow. 

Let us first state some additional assumptions and observe that  by doing this we 

do not affect the generality of the proofs. So, in Theorem C it is enough to consider 

only measures # which have compact support. Then, given a non-compactly supported 

measure # one can find solutions corresponding to Xj#, where Xj is a non-decreasing 

sequence of cut-off functions, Xj T 1 on f~. The solutions will be bounded from below by 

the given subsolution (due to Theorem 1.2.1) and they will decrease to the solution for 

# by virtue of the convergence theorem (Theorem 1.2.2). 

Then, the subsolution v given by the hypothesis of Theorem C can be modified so 

that  limz--,x v(z) =0 for any xEOf~. Furthermore, using the balayage procedure, one can 

make the support of du:=(ddCv) n compact. 

To limit the number of independent constants we also assume that  

(a) aCIo:=[O, 1]2nCcn, 

(b) 
(c) when a sequence uj or vj defined below is uniformly bounded by a constant 

then this constant is taken to be 1, 

(d) the boundary values p in ( . )  are negative, 

(e) - l < v < 0 .  
Now we define a regularizing sequence for #. Let us consider a sequence B8 of 

subdivisions of I0 into 3 2sn congruent open cubes of equal size which are pairwise disjoint 
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but whose closures cover I0. 

v(U_reB ~ 0I)=0. Set 

tt~ :=fide, 

vy :=gy dA, 

(for xeOI  we put fj(x)=gj(x)=O.) 

and 

It is no restriction to assume that  for each s we have 

#(Ina) 
f j (x ) . -  A(In t) if xe I ,  

gj(x):=A(inf ) i f x e I  

Using Cegrell's result [Ce2] one can solve the Dirichlet problems 

uj E PSH(f~) A C(~) ,  

(ddCuj) n = fj dA, 

uj (x )=~(x)  f o r x e O Q ,  

vj C P S H ( a ) A C ( ~ ) ,  

(ddCvj) n = gj dA, 

vj = 0 on 0~.  

Passing to a subsequence (after renumbering we stick to the original notation) one 

may suppose that  uj and vj are convergent in L~o r (see [H, Theorem 4.1.9]). Set u :=  

( l imsupuj)*.  It is meant to be the solution of (*). One should keep in mind that  if we 

again pass to a subsequence of uj (as we shall do in the sequel) the function u remains 

unchanged. 

PROPOSITION 3.2.1. The function u defined above solves the Dirichlet problem (*) 
provided that for any a > 0  and any compact K C ~  we have 

lim f (ddCus)n=o, where E j ( a ) : = { u - u j ~ a } .  (3.2.!) 
j---*oc dEd(a )nK  

Proof. Indeed, if (3.2.1) holds then for any s one can find j(s) such that  

(ddCu~)n < 1 - ,  j ) j ( s ) .  
j ( 1 / s ) m g  8 

Set 0s :=max(uj(s),  u - 1 / s ) .  Then (ddCQ~)" = (ddCuj(~)) n on the interior of K\Ej(8)(l /s) ,  
and so the above inequality implies that  any accumulation point of {(ddCQ~) n} is ~>d# 

on int K.  On the other hand, by the definition of Q8 and a version of the Hartogs 

lemma given in [H, Theorem 4.1.9], Q~---~u uniformly on any compact E such that  UlE 
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is continuous. So it follows from Theorem 1.2.8 that 0s converge to u with respect to 

capacity. Therefore applying Theorem 1.2.12 we obtain (dd~0~) n _~ (dd~u) n, and furt her 

(ddCu) n ) d#. (3.2.2) 

To get the reverse inequality note that 0s=uj(8) on a neighbourhood of 0f~ since all the 

uj's (and therefore u as well) are bounded from above by the solution of the homogeneous 

Monge-Amp~re equation with the same boundary data, and this solution is continuous 

in the closure of ~. Hence, due to the Stokes theorem, fn(ddCos)'~=fa(ddCuj(~))n. By 

the construction, the last integral is equal to fad# ,  so the measures in (3.2.2) must be 

equal. 

We shall prove Theorem A and Theorem C by verifying (3.2.1). 

The following lemma is a key element of the proofs that follow. 

LEMMA 3.2.2 [Kol]. Given ZoCf~ and two numbers M > I ,  Ro>0 such that 

BM: {Iz--z01 < eMRo} c c  

and given vEPSH(~t)nC(~), - l < v < 0 ,  denote by E=E(5)  the set 

{z �9 Bo: (1-5)v(z) <~ sup v}, 
B0 

where he(O, 1) and Bo={Iz-zol<Ro}. 
Then 

cap(E, B1) < Co 
MS' 

where Bl = {Iz-  zol < eRo } and Co is an independent constant. 

Proof. From the logarithmic convexity of the function r--~suPlz_z01< ~ v(z) it follows 

that for ZEBM\Bo and ao:=sUPBoV we have 

v(z) <~ a o ( 1 - - ~  log ~ ) .  

Hence 

al:=supv<~ao(1--~).B1 

Let U=UE,Bl:=sup{wEPSH(B1):w<O, w<<.-1 on E} be the relative extremal function 

of E with respect to B1 (see w From the inequality v(z)<<.ao/(1-5), zeE,  one 

obtains 
1 

al-ao/(1-6)  (v-a1) <. u. 
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So, for some Zl E OBo the following inequalities hold: 

Co-hi 6 -1  
u(zi)/> /> az-ao/ (1-6)  ( M - 1 ) 6 + 1 "  

Note that  Ec{Iz - zo l<2Ro}CB1.  Therefore Theorem 1.2.11 and the above estimate 

yield 

/E Co cap(E, B1) = (ddCu)n <~ M~" 

COROLLARY 3.2.3. If 6>0 and Et'CC~ then 

A(INE(v,I ,  6)) =0 ,  
lira sup 

where E(v , I ,  6 ) :={zEI:v (z )<supzv-5  } and sup is taken over all cubes I c ~ '  of dia- 
meter <e and all v e P S H n C ( ~ t )  satisfying - l < v < 0 .  

Proof. Fix a>0 .  Let Bo,Bi ,BM be defined as in Lemma 3.2.2 for some zo, Ro. 
Then the constant C in Theorem 1.2.6 corresponding to (Bo, Bz) in place of (~/', Et) does 

not depend on z0 and R0 provided that  we normalize the measure replacing A(K) by 

A(K)/A(Bo) in this formula. 

For E>0 small enough there exists M > 0  so large that  

CoC 
M---6" < a, 

where Co comes from the statement of Lemma 3.2.2, and furthermore, for any cube I c  ~ 

of diameter <c  one can find z0, R0 such that  d i a m I = 2 R 0  and I C B o C B M C ~ .  Then, 

by Theorem 1.2.6 and Lemma 3.2.2 we get 

 (InE(v,Z, 5)) C )~(Bo) cap(IAE(v, I, 6), B1) ~ CCo)~(Bo) J~(Bo) 
M6A(I) <~ a A(I~-" 

By the choice of B0 the quotient A(Bo)/A(I) depends only on the dimension of the space, 

and thus the result follows. 

3.3. P r o o f  o f  T h e o r e m  A 

To finish the proof we need one more lemma. 

LEMMA 3.3.1. Suppose that a compactly supported measure # on ~ is locally dom- 
inated by capacity (i.e. it satisfies (3.1.2)). Then there exist Az>0,  so EN  such that for 
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any s>so and any j>s+n we have 

#j(E) < AII~(I') cap(E, Bx,), 

for ECICCI' ,  IEBs, I'EBs-1. 

Proof. Let us note that  F is the unique cube from B,-1 which is concentric with I. 

Since # has compact support one may choose So so that  if supp # n I S O for some I cB~ o 
then B p c f L  First we shall estimate #j in terms of/~j:=#*Qj,  where Qy is a smoothing 

kernel defined as follows. Denote by dy the diameter of a cube belonging to By. We 

require that  a radially symmetric non-negative function Qy E C~(B(O, 2dy)) be constant 

on B(0, dy) and furthermore that  

s 1 and s oyd,\=l. Oj d l  = 
(0,dj) (0,2dj) 

Then for any xEICl3y we have IcB(x ,  dy), and so 

f x(t) /2j(x) = Oj(x-y)d#(y)>. 2X(B(x, dj)) 2A(B(x, dj)) #j(x)=:A~l#j(x)" (3.3.1) 

By the choice of Qj, 

/2j(E) < sup # ( E - x ) ,  (3.3.2) 
]xl<2d~ 

where E-x:={z  :z=y-x,  yEE}. Finally, if j>s+n then for any IEBs, 

I+B(O, 2dj) C I' .  

Hence, applying Theorem 1.2.5 we find an independent constant A3 such that  

cap(E-x, Bi,) <A3cap(E, Bi,), ECI ,  Ixl <2dj .  (3.3.3) 

Combining the estimates (3.3.1), (3.3.2), (3.3.3) and (3.1.2) one obtains 

#j(E) ~<A2/~j(E) ~<A2 sup #(E-x)  
Ixl<2dj 

<~ AA2 sup #(1') c a p ( E - x ,  BI,) <<. 32nAA2Az#j(1) cap(E, Bz,), 
Ixl<2d~ 

which is the desired conclusion. 

We proceed to complete the proof of Theorem A. Recall that it is enough to show 

(3.2.1). Given e>0  apply Lemma 3.2.2 to find s so large that  

cap(E(v,  �89 B,) < e, (3.3.4) 
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whenever IcB8 and E(v, �89189 where vCPSH(~2)is  

such that  - l < v < 0 .  

Put  b(I) := sup1 u, bj (I) : = s u p / u j  and choose j0 > s + n such that  

b(X) < b ( I )+1  ~a, I E ]38, J > Jo. 

Then for J>J0,  

E j = E j ( a ) = { u j < ~ u - a } C F j : =  [.J { ze I :u j ( z )< .b j ( I ) - �89  (3.3.5) 
IEB, 

Hence by (3.3.4), cap(Fj,  BI)<r and further, by applying Lemma 3.3.1 we get 

#j(FjnI)  <~ Al#y(I') cap(Fj,  BI)  < Ale#j(I'). 

If we sum up these inequalities over all IEB~ then, recalling that  # ( D ) < I  and using 

(3.3.5), we finally arrive at 

#j( Ej(a) ) <<. #j(Ej) < 32"~Ale. 

This gives (3.2.1) and completes the proof. 

3.4.  P r o o f  o f  T h e o r e m  C 

To avoid some technicalities we shall work under an extra assumption that  vj is uniformly 

bounded. How to get the general case is explained at the end of the proof. Let us first 

show the following stability result. 

THEOREM 3.4.1. v=(limsupvj)*. 

The theorem will follow from the following two lemmata. 

LEMMA 3.4.2. For any t > l  and a>0 ,  

lim f (dd%k) n = 0, 
k--+co JY(k,a,t) 

where V(k, a, t):={vk < tv -a} ,  

LEMMA 3.4.3. For any t < l  and a>O, 

lira f (ddCv) ~ = O, 
k--*or ,]V(k,a,t) 

where V(k, a, t) := {tv < vk -- a}. 

Proof of Lemma 3.4,2. We fix t and write for brevity V(k, a):=V(k, a, t). Note that  

if the statement holds for some a0 then it is also true for a>ao. So we may feel free to 

decrease a if necessary. Keeping this in mind one can fix ~>0 and b>a so close to a that  

fv < (ddCvk) ~ (3.4.1) 
(k,a)\V(k,b) 
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for infinitely many k from a preassigned subsequence. 

Using Theorem 1.2.8 choose an open set U such that  vln\v is continuous and 

/u(ddCv~)n <<.E and /u(dd~vk)n <~e (3.4.2) 

for any k. 

Denote by V'(k, a) the union of cubes belonging to Bk and contained in V(k, a)UU. 
Let us first prove that  

!Lm f (~d%)~ =0. (3.4.3) 
k oc J V ( k , a ) \ V ' ( k , a )  

Let E(5, k):=Ule~k{zEI: s u p / v - v ( z )  >15}. We shall see that  if IEBk and I~V'(k, a) 
then 

InV(k, a) C IV(k, a)\V(k, b)] US(5, k)U U (3.4.4) 

for some 5>0 and k large enough. 

Indeed, for some kl and any x, yEI\U, IEBk, k>kl, we have by continuity of vln\v 

b-a 
Iv(x)-v(y)l < 5 :-- t + l  (3.4.5) 

Suppose now that  IEBk, k>kl, and that  there exists zoCI\(UnV(k,a)). Take 

any zEI\[E(5, k)UU]. To verify (3.4.4) we need to show that  z~V(b,k). Indeed, since 

z~g(5, k), we have vk(z)~vk(zo)--5 and, due to (3.4.5), v(z)<.V(Zo)+5. Therefore 

vk(z)-tv(z) ~ Vk(Zo)--tV(Zo)--5(t + l ) >~ --a--5(t + l ) = -b, 

and so (3.4.4) follows. 

Increasing kl if necessary and applying Corollary 3.2.3 one obtains 

~InE(5,k)( ddCvk)n < ~ J~I (ddCvk)n' k > kl. (3.4.6) 

Since by (3.4.4), 

[V(k, a)\V'(k, a)] c [V(k, a)\V(k, b)]UE(~, k)UV, 

(3.4.3) follows from (3.4.1), (3.4.2) and (3.4.6). 

Recall that,  by the construction of (ddCvk) n, we have 

/Y'(k,,~) (ddCv~)n =/V'(k,~) (ddCvk)n" 
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From this and the comparison principle one infers that 

= [ (ee%) 
JV(k,a)\V'(k,a) 

Hence 

(tn-1) /V,(k,a)\u(ddCvk)'~-tn/v(ddCvs)n <-(tn-1) /y(k,a)(ddCvs)n 

/V(k,a)\V'(k,a) (ddCvk)n" 

By (3.4.3) the right-hand side tends to 0 as k~co ,  which forces the left-hand side to 

have non-positive upper limit. Thus by invoking (3.4.2) and (3.4.3) once more the lemma 

follows. 

Proof of Lemma 3.4.3. The proof is similar to the preceding one. Formula (3.4.1) 

can be replaced by 

Iv (ddCvs)'~ < (3.4.1') 
(k,a)\V(k,b) 

Instead of (3.4.4) we now prove 

I\[E(5, k)UV] C Y(k, a) (3.4.4') 

for any ICBk such that (I\U)NV(k, b)~O. The proof is analogous to the one of (3.4.4). 

So, if Y'(k) denotes the union of cubes from IGBk satisfying (I\U)AV(k,b)~O 
then Y'(k)C Y(k, a)U UUE(5, k) and, obviously, 

Y(k, a) C Y'(k)U[V(k, a)\V(k, b)]U U. 

These inclusions combined with (3.4.1'), (3.4.2) and (3.4.6) lead to 

/v(k,~) (dd~vk)n >~ JV'(k) f (dd%k)n-/u(dd%~)~- fJE(6,k) (dd~vk)n 

2e=/v,(k)(dd~v~)n- 2e 
(3.4.7) 

f (dd%)'~- fv(dd%)'~-2s 
J[V(k,a)\V(k,b)] 

>7 JYf(k,~) (dd~v~)n - 4~. 
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On the other hand by the comparison principle, 

/v (  Ovs) t < l  (3.4.8) 
(k,a) (k,a) 

The inequalities (3.4.7) and (3.4.8) are contradictory for sufficiently small E unless 

l imk-.~ fv(k,a)(dd~vs)n=O, which gives the result. 

Proof of Theorem 3.4.1. First, let us verify (limsupvk)*<~v. Set w=(limsupvk)*. 
Suppose that  the statement were not true. Then for some z0Ef~ and ~>0 we would have 

v(zo) < w ( z 0 ) - 3 e .  Since the inequality is valid on a set of positive Lebesgue measure in 

any neighbourhood of z0, and the set where w>l im sup vk has measure zero one may 

also suppose that  W(Zo)=limsupvk(zo). By the upper semicontinuity of v we have 

v<v(zo)+�89 on a ball B=B(zo, r). Apply the comparison principle to obtain 

/ak ( ddC(vk +r )n <~ /Gk( ddCv, ) n, 

where Gk={v<vk+r and r is a strictly psh negative function in ~ with r 1 8 9  and 

dd~r 6>0,  /3(z):=dd~lzJ 2. Then GkCCf~. Since v<~v(zo)+�89 on B we get by 

the Hartogs lemma vk<Vk(ZO)+e for k>ko. Then by the mean value inequality for 

subharmonic functions vk )vk(zo)--e on a subset Fk of B such that  2,k(Fk)>~A(B). 
For zEFk and k large enough, 

vk (z) >/~k (zo) -~  > w(zo)- 2~ > v(zo) +~  > ~(z) + �89 

Thus Fk C Gk and so the left-hand side integral exceeds 

/F (ddCr [ ~n)16n j 3 n = c o n s t > 0 .  f 
J Fk 2 JB 

This leads to a contradiction as the right-hand side tends to 0 when k-*co,  by Lemma 

3.4.3. 

The proof of the reverse inequality is analogous with the roles of Vk and v inter- 

changed. To get vk <V(Zo)+e in a neighbourhood of z0 the Hartogs lemma is used. To 

draw the final conclusion we now apply Lemma 3.4.2. The details are given in [Ko2]. 

REMARK. In the proof of Theorem 3.4.1 we do not really need to know that vk is 
uniformly bounded. 

Proof. In the general case only the inequality (3.4.2) requires an explanation. 

Let V(k, s) denote the set {vk <--S} and put  Bk(s):={/EBk : sup I vk >z--s}. Then 

for ICBk(S) we get by applying Theorem 1.2.6 and Theorem 1.2.11 

uk(InY(k, s2)) ~< Cluk(I) cap(InY(k, s2), Bz) <~ C2vk(I) ,  (3.4.9) 
S 
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where C1, C2 are independent constants and vk stands for (dd%k) n. 
On the other hand, for ICBk\Bk(s) we have IcV(k,  s), and using Theorem 1.2.11 

one finds a constant C3 such that  

cap(KnV(k, s), ft) < Ca, 
8 

where g : =  supp (dd~%) n. Hence (recall that  - 1 < v < 0), 

E j~i (ddcvk)n= ~ f (  ddcvs)  
Iel3k\Bk(s) ICB~Bk(s)  d I 

f (dd~vs) n <. cap(KnV(k, s), Ft) <. C3 <~ 
2K nV(k,s) 8 

This combined with (3.4.9) provides s so large that  

f (ddCvk) ~ < ~r 
vk<-s} 

for all k. Then, choosing U with cap(U, f~)<r n one obtains, by the definition of the 

relative capacity, 
f] (dd~ Vk )n e 

n{~k~>-s) ~ -~-/ <cap(U, g t )< 2sn, 

and so 

fu(dd%k)n= f (dd%k)n+ f~ (dd%k)'~ <e. 
Jun{vk)-s} n{vk<-s} 

COROLLARY 3.4.4. Let T be a current of the form 

ddCo1Add~Q2A...Add~on, 0~ E PSH(fl),  - 1  < Q~ < 0. 

Then 
lim [ T = O  

k--*oc J V  (k,a,t)nK 

for V(k,a,t)={vk <tv-a}, t> l, a>0 .  

Proof. For fixed a and t set Q = a ( p l + 0 2 + . . . + Q n - 1 )  and Gk={Vk<tV+O}. Then, 

by the hypothesis, - ( l + n ) a <  p < - a .  Therefore V(k, (n+ 1)a, t)CGk cV(k, a, t). Apply 

the comparison principle to obtain 

/V (k,(n+ l)a,t) T ~ /v(k,(n+ l )a,o(ddC(tv+ o) ) "~  

<. s (deC(tv+o))o s176 
The statement now follows from Lemrna 3.4.2, which says that  the right-hand side of the 

above inequality tends to zero as k-~oo. 

Now we are in a position to prove the crucial lemma. 



108 s. KOLODZIEJ 

LEMMA 3.4.5. 

quence, we have 

Ej (dd~uj)n > Ao, 
(~o) 

Then there exist am>0,  Am>0,  k l > 0  such that 

JE~ (dd~vj)'~-mA (dd~vk)m > Am, 
(~,,) 

Suppose that (3.2.1) is not true, and so, after passing to a subse- 

A 0 > 0 ,  a 0 > 0 .  

k>kl ,  j> j (k ) .  (3.4.10) 

Proof. We shall proceed by induction over m. For m = 0  the statement holds by the 

hypothesis. We assume that  (3.4.10) is true for some fixed m<n and now we shall prove 

it for rn+ 1. 

Let us observe that  by the Chern-Nirenberg-Levine inequalities there exists C > 0  

such that  

I T <. C (3.4.11) 

for currents T which are wedge products of dd~vj, dd~u and ddCvjk (defined below). 

Indeed, all the functions u, vj, vjk are bounded from below by - 1  on a compact subset of 

ft and maximal away from this set. Take a defining function for ft which does not exceed 

- 1  on the compact set. We can now extend u, vj, vjk by this function to a neighbourhood 

of ~, and thus by Theorem 1.2.3 the inequality (3.4.11) follows. 

Let us denote by T=T(j ,  k, m) the current (ddCvj)n-m-lA(ddCvk) m and set vjk:= 
max(vj, vk-2~) for some fixed e>0.  

Using quasicontinuity of u and v (Theorem 1.2.8) we choose an open set U such 

that  

cap(U, 12) < 3-~, (3.4.12) 

and both u and v are continuous on ~ \ U .  Then for j>jo and k>ko we have 

max(Vj,Vk) <~ v+e and uj <~ u+e, (3.4.13) 

on ~t\U. Indeed, the inequalities are valid in a neighbourhood of 012 because all uj 
(or vj) are bounded from above by the maximal function in fl with boundary data  

(or 0). On the remaining part of f l \ U  one obtains (3.4.13) by the Hartogs lemma, since 

due to Theorem 3.4.1, v-- (lim sup vj)*. Set 

: = / ( u - u j )  ddCvjkAT, J' (j, k) 

J(j ,k):= f (u-uj)ddCvkAT, j>Jo, k>ko. 
J~ 
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Using the inequalities vk--vjk<.2e, Ivk[~<l, (3.4.11) and integration by parts we can 

estimate the difference of those integrals in the following way: 

J'(j, k)- J(j, k) =/a(vjk--vk) dd~(u-uj)AT 

_ I lvk II dd uAr + 2e ~ dd~(u+ uj)AT 

The second term on the right-hand side is bounded from above by 

~(dd~(u+vj +vk)) ~ ~< 3 '~ cap(U, < f~) 

As for the first one, we shall make use of Corollary 3.4.4. We need to know that  

{vk<vj-2e}\UcY(k,a,t) for some t > l ,  a>0.  Recalling (3.4.13) one obtains v j - 2 c <  

V--e<(I+ls)v -l~s o n  f t \U.  Thus {vk<vj-2~}\VcV(k, 1~, I+�89 Applying Corol- 

lary 3.4.4 one can find kl>ko such that  

J'(j, k)-J(j, k) <<. 4(C+ 1)e. (3.4.14) 

In the next step we shalI estimate J'(j, k) from below. Using the second inequality of 

(3.4.13) we have 

J' (J' k ) >~ am s dd%jk AT- e ~\u ddCvjk /xT- /v dd%~k /xT 
(3.4.15) 

) am/E3(a.~) ddCvj kAT-z(C§ 

~r the rmore ,  

/EJ (~.0 ddCvjk AT ) /E~ (a.~)n{,j >vk -2E} ddCvjk AT 

=/E~ (a.dn{vj >v~-2~} ddCvj AT 

>>" JE,(,~,.) ddCvj AT- fu dd%j AT 

- fE~ (am)n{v~ ~<vk-2~I)\U ddCvj AT. 

(3.4.16) 
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To estimate the last integral we again apply Corollary 3.4.4. Using (3.4.13) we get 

{vj <~vk -2E} \ V c  {vj < v - e }  C {vj < (1+ �89 �89 Therefore, given k one can find j(k) 
such that  for j>j(k) 

f(E ddCvj AT ~ ~. 
(am)n{v~ ~vk -2~})\U 

Hence, according to the induction hypothesis one obtains from (3.4.16) 

Ej(am) ddCvjkAT >>'Am-2e' j > j ( k ) .  

Plug it into (3.4.15) to get 

J'(j,k) >lam(Am-2e)-E(C+l), j > j ( k ) .  

Thus, if we start  with E small enough, we may conclude from (3.4.14) and the above 

inequality that 

J(j, k) >~ z 5amAin, k>kl,  j>j(k) .  (3.4.17) 

Fixing d>0  one can estimate J(j, k) from above: 

J(J,k) <~ f{u~<u_diddCvkAT+d~ ddCvkAT <~ f{u~<~_d}ddCvkAT+dC" 

Setting am+l :=d=amAm/4C in the last formula and combining it with (3.4.17) we finally 

arrive at 

E ddCvkAT>'�88 k > k l ' j > j ( k ) '  
j(am+l) 

which concludes the proof of the inductive step. Thus the lemma follows. 

Now we shall prove Theorem C reasoning by contradiction. So, suppose that  the 

hypothesis of Lemma 3.4.5 is valid. Then using its statement for m=n we can fix k>kl 
such that  

E (dd~vk)n>An if j>j(k) .  
~(a,~) 

Since, by the construction, (dd~vk)n<~Mk~ '~ for some Mk>0,  one infers from the last 

inequality that 

f An 
A(Ej(an)) >~ M[l  JEj(,~,~)(ddCvk)n > --Mkk' j > j ( k ) ,  

which contradicts the fact that  uj---~u in L~o c. This completes the proof of Theorem C 

modulo the additional assumption. To dispense with the extra hypothesis one should re- 

place vk in Lemma 3.4.5 by functions wk := max(vk, Cv) with Cv < inf~ v on supp (ddCv) n. 
Lemma 3.4.5 still holds true in that  case, but the argument completing the proof of 

Theorem C needs to be modified since wk are not smooth. Fortunately, due to Corol- 

lary 3.4.4 we have (dd~wk)n=(dd~vk) n away from a set of arbitrarily small measure 

(dd~vk) n provided k is large enough. We refer to [Ko2] for details. 



THE COMPLEX MON(:]E-AMPI~RE EQUATION 111 

REMARK. Theorem C remains valid in a pseudoconvex domain, provided that there 
exists a solution to the homogeneous Dirichlet problem for the Monge-Amp~re equation 
with the given boundary data. 

Proof. Let us consider an exhaustion sequence of smooth strictly pseudoconvex sets 

~jTft. Fix ~2 and a decreasing sequence ~jk, k=l ,  2, ..., of continuous functions on 

0gtj such that limk-,~ ~jk Iv, where v again denotes the given subsolution. Theorem C 

now provides Ujk solving (,) in ~j  with boundary data equal to ~jk- By the convergence 

theorem uj := lim Sujk solves (dd~uj)~= d# in ~tj and hence, via the comparison principle, 

u j ) v  in ~j.  In particular, the last inequality holds on 0~j-1.  So, again applying 

the comparison principle, uj~uj-1 on ftj_l. Thus we have shown that uj is (locally) 

increasing, By the convergence theorem, u=(supuj)* is the solution of (*) in ~. The 

extra hypothesis ensures that u satisfies the boundary condition. (I overlooked that point 

in [Ko2].) 

COROLLARY 3.4.6. If ft is strictly pseudoconvex and Vl,. . . ,vnePSHnL~(~2) then 
there exists u C PSH A L ~ (Ft) matching any prescribed continuous boundary data and such 

that (ddCu)n= dd%1A... A dd~v~. 

Proof. The Monge-Amp~re mass of vl+...+v~ obviously exceeds the given mea- 

sure #. Take a sequence of cut-off functions X3T1 in gt and solve (*) for Xj d# and given 

boundary data ~. The solutions uj produced in this way decrease to a psh function u 

which is bounded from below by -(I]v]]+ll~ll) and solves (*). 

The Monge-Amp~re operator is well defined for psh functions which are locally 

bounded outside a compact subset of ~ (see [D1], [I)2], [P]). 

COROLLARY 3.4.7. If vePSH(Ft), vcL~c(12\E), ECC~ with limz__.xv(z)=~(x) 
for xEO~, and if a Borel measure # satisfies #(E)=0,  d#~(ddCv) n, then there exists 
u>~v solving 

{ u6PSHnL~c(~\E) ,  

(ddCu) n = d#, 

limz--.x u(z) = ~(x) for x e O~. 

Proof. Denote by U, the set {v<- s} ,  s = l ,  2,..., and solve the Dirichlet problem 

(*) for measures #8 :=#la\u, .  The solutions are denoted by us. Then by the comparison 

principle, u~>max(v , -s ) ,  and so u=lim~u8 is the desired solution. 
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3.5. M e a s u r e s  admitting solutions t o  t h e  M o n g e - A m p ~ r e  e q u a t i o n  

Theorem B follows easily from Lemma 2.3.1. 

Proof of Theorem B. Due to Lemma 2.3.1, IlUllL~ is bounded by a constant de- 

pending on A and h. The change of the normalizing condition u ( 0 ) > - I  into f d # < l  
is harmless, since by shifting the origin if necessary one can obtain the lower bound for 

u(0) also in that  case. 

We need to prove the continuity of u. To do this we shall apply Lemma 2.3.1 again. 

Since ~ is continuous one can find for any given d >0  a compact K C  ~t such that  uj <u+d 
on OK, where uj : - -u ,wj  is the standard regularization sequence for u. Then the sets 

{uj > u + 2 d }  must be empty for j large enough. Otherwise, by the formulas (2.3.4) and 

(2.3.5), their capacity would be bounded away from zero in contradiction to Corollary 

1.2.10. 

Corollary 3.1.3 has been proved in w 

Proof of Corollary 3.1.4. First we shall prove the statement under the assumption 

that  # has compact support in ft. Define a regularizing sequence of measures #j by 

fixing wEC~(B),  a radially symmetric non-negative function with f wd~=l (here B is 

the unit ball in Cn), and setting 

#j  = wj*#, 

where 

Wj(Z) =j2"~w(jz). 

By Theorems A and B it is enough to find j0>0,  A > 0  such that  for any compact 

set KC ft the following inequalities hold: 

#j(K) ~Acap(g ,~)h- l ( (cap(g ,  ft))-l/n), j >j0 .  (3.5.1) 

PROPOSITION 3.5.1. If ECC~ is regular then for any d> 1 there exists to such that 

cap(Ku,f~) <<. dcap(K,f~), lYl <to,  

where K C E  is regular and K u : = { x : x - y c K  }. 

Proof of Proposition 3.5.1. For K c E  define Wy(X):=Ug~(x+y), where uK~ is the 

1 define ftc={uE<--c}. By relative extremal function of Ky. For any c such that  0 < c <  

continuity of UE one can fix to>0  such that  if lyl<<.to and xCftc/2 then x+yEf~. Then 

xea /2, 
g(x) := �9 r 
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is a well-defined plurisubharmonic function in ft. Since K c E  and Wy=-I on K one 

concludes that  g=wy-c  in a neighbourhood of K.  Hence by Theorem 1.2.4, 

cap(K, f~) ~> (i + 2c)-n/K (ddCg) n = (i + 2c)-n/K (ddCwy) n 

= (1+2c)- f (ddr n = ( l+2c) -ncap(Ky ,  a) .  
JKy 

Thus the proposition is proved. 

To complete the proof of Corollary 3.1.4 let us fix a set E and a positive number j0 

such that  the above proposition holds with E := [-JJ>Jo supp #j c c gt, j0 > l / t0,  and d=  an. 

By the assumptions there exists A0 >0 such that  

#(K) ~< A0 cap(K, ~ )h -*  ((cap(K, 12))-Wn). 

Hence for j>jo we have by Proposition 3.5.1 and the extra assumption on h 

#j(K)<~ sup #(Ky)<~Ao sup cap(gy,~)h-l((cap(gy,~)) -1/n) 
lYI<I/j lYI<I/j 

<. Aodcap(K, a)h-l((dcap(K, a)) -l/n) 
<~ Ao db cap(K, f/) h -1 ((cap(K, a))--l/n).  

Setting A:=Aoanb we verify in this way that #j satisfy (3.5.1) for j > j 0 ,  with the 

constant A independent of j .  Thus by Theorem B the family of solutions of (*) for #jl 

J>Jo, is uniformly bounded. So one can apply Theorem A to get the conclusion. 

To verify the statement for an arbitrary measure # note that  by the above argument 

the solutions exist for Xj d#, where Xj is a non-decreasing sequence of smooth cut-off 

functions, Xj T 1 in ~. Moreover, the L~-norms of those solutions are uniformly bounded 

by a constant depending only on A. Hence the result follows by applying the convergence 

theorem. 

Let us point out some families of measures that  fulfil the hypothesis of Corollary 

3.1.4. Recall that  the p-Hausdorff content of a set E c R  '~ is given by 

IF.) = }7_, "L 
jEJ 

where the infimum is taken over all coverings of E by unions of balls B(aj, rj). 

COROLLARY 3.5.2. Let # be a Borel measure in ~ satisfying the inequality 

#(E) p>0,  



114 s. KOLODZIEJ 

where C is an independent constant, z : ( z l , z ' ) c C x C  n-1 and 

E(z ' )  := {zl e C :  (zl, z') e E}. 

Then one can solve the Monge-Amp~re equation ( . )  for #. 

Proof. It follows from Corollary 1.3.1 via the following proposition which shows that  

both assumptions on tt are satisfied in this case. 

PROPOSITION 3.5.3. I f  # is as in Corollary 3.5.2 then for any cube I c B I C Q  

(BI as defined in w we have 

#(E) <~ C0(cap(E, BI)) 2, E C I. 

Proof of Proposition 3.5.3. By the hypothesis, 

Applying ITs, proof of Theorem III.19] and recalling that  for n = l  the capacity TR 

and the logarithmic capacity are equivalent (see e.g. [Ta]), one can estimate ~p/2n(E(z ' ) )  

by the capacity TR(E(z ' ) )  ( R =  radius of BI): 

c1 (3.5.2) 
~p/2n(E(z ' )  ) <~ _ log TR(E(z ' )  ) " 

Now, following the argument from the proof of Lemma 2.5.1 we get the conclusion. 

REMARK 1. We are free to choose the coordinate system in 12 to meet the require- 

meAts on p in Corollary 3.5.2. 

REMARK 2. The surface measure of a smooth compact real hypersurface satisfies the 

assumptions of the last corollary. 

The method of the proof of Corollary 3.5.2 works also for some other measures as 

long as their one-dimensional slices are dominated by capacity. This is the case, for 

instance, when a measure # is upper bounded by the Lebesgue measure of the totally 

real part R n of CA: 

#(E) ~< const.An. (EARn). 

Then instead of (3.5.2) we use the well-known inequality between the length of a subset 

of the real axis and its logarithmic capacity (see ITs]). 

In w we gave further examples of measures for which (*) is solvable (clearly, M 

should now be replaced by gt). 
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