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Chapter 1
1.1. Introduction

During the last twenty years the complex Monge-Ampére equation has been the subject
of intensive studies.

In its classical form it is a fully non-linear equation of elliptic type:

MA(u)::det( O ):f, (1.1.1)

8zj 0z,
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where the solution u is required to be a plurisubharmonic (psh) function in some open
subset 2 of C™. E. Bedford and B. A. Taylor have shown in [BT1] the way the equation
may be understood if u€ PSHNL{S (2). An essential ingredient of this generalization is
the notion of a positive current introduced by P. Lelong. The right-hand side of (1.1.1)
then becomes a Borel measure. Bedford and Taylor also solved the equation in the case
of continuous f and continuous boundary data. The same authors developed in [BT2]
the basic structure of pluripotential theory in which the Monge-Ampeére operator MA
plays a central role being the counterpart of the Laplacian in classical potential theory.
The new theory has brought in a much better understanding of psh functions and it has
given rise to many recent developments in the theory of extremal functions, the theory of
polynomial approximation and complex dynamics. In a survey paper by E. Bedford, and
in M. Klimek’s book, the reader will find a detailed exposition of pluripotential theory
and ample reference to the papers of other authors.

Differential geometry is another source of interest in the complex Monge-Ampeére
equation. The proofs of two conjectures of E. Calabi, one asserting the existence of
a Kahler metric on a compact Kahler manifold which has the preassigned Ricci form,
and another concerning the existence of Einstein-Kahler metrics, boil down to solving
an appropriate Monge-Ampere equation (see (1.1.2) below) with the right-hand side
depending also on the unknown function in the case of the latter conjecture. The equa-
tions were solved by T. Aubin [Aul] and S.-T. Yau [Y] (see Theorem 2.1.1 below) under
suitable smoothness assumptions. Constructions of Einstein-Kéhler metrics and Ricci-
flat metrics on non-compact complex manifolds by means of solving the Monge-Ampére
equation were carried out by S.Y. Cheng, S.-T. Yau in [CY] and G. Tian, S.-T. Yau in
[TY1], [TY2]. The partial differential equations approach of those authors (and others:
E. Calabi, L. Nirenberg, A.V. Pogorelov, to mention only a few) is analogous to the
one applied in the case of the real Monge-Ampere equation which has a much longer
history (see e.g. [GT]). It is based on the method of continuity and in any given situa-
tion requires laborious a priori estimates for the derivatives of the solution up to third
order. In a similar vein L. Caffarelli, J.J. Kohn, L. Nirenberg and J. Spruck [CKNS]
have proved regularity results for the Dirichlet problem associated to (1.1.1) in a strictly
pseudoconvex domain.

This historical account is not meant to be complete but we would like to mention
also very important works of J.-P. Demailly and L. Lempert. Demailly (see e.g. [D1],
[D2] and [D3]) uses the Monge-Ampere operator techniques and the result of Yau to
prove very deep facts of algebraic geometry. He usually deals with those unbounded psh
functions for which MA(u) still makes sense. Lempert [Lem| solved the Monge-Ampere
equation with pointwise singularity in a convex domain and this result has found striking
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applications in complex analysis.

In the present paper we seek solutions to the Monge—Ampere equation under possibly
weak assumptions on its right-hand side. For this we use an approach based on the
pluripotential theory. In particular, we exploit the specific properties of psh functions,
like their quasicontinuity or the possibility of estimating the size of the sublevel sets in
terms of pluricomplex capacities. The comparison principle of [BT2] is used at almost
every stage.

Chapter 2 deals with the complex Monge-Ampére equation on a compact Kéhler
manifold M. The equation now takes the form

- 52

det <gjk+—8z%%;) = f det(g;)s (1.1.2)
where 3 g,z dz;®dZ; is a Kahler metric on M and f>0, feL'(M), suitably normal-
ized, is given. Locally (1.1.2) is equivalent to (1.1.1) if we use a potential for the given
metric. The absence of the boundary data in (1.1.2) accounts for the difference in treat-
ing the two equations. The equation (1.1.2) has been solved by S.-T. Yau [Y] in case
J€C3(M) and f>0 with improved regularity of the solution (see Theorem 2.1.1 below).
Our aim is to generalize the existence part of this result admitting all non-negative f
which belong to certain Orlicz spaces. In particular, we obtain continuous solutions
to (1.1.2) for feLY(M) when %(t)=|t|(log(1+t|))" (log(log(1+t])))™, m>n:=dim M.
If we took m<n here the assertion would no longer be true by a counterexample of
L. Persson [P]. It readily follows that for f€ L?(M), p>1, the equation has a continuous
solution. If f€C*®, a>0, then the regularity of the solution is treated in [Au2].

In the last section of the second chapter we consider a special case of (1.1.2) taking
M=P" and }_ g, dz;®dZ; equal to the Fubini-Study metric on P". Then, applying
the generalized Yau theorem one can solve the equation (1.1.1) in the class of functions
of logarithmic growth in C™ under a fairly weak hypothesis on f. The equation has been
treated in [BT3], [Be] and [CK2]. It is interesting because of its connections with the
theory of extremal functions and complex dynamics.

The third chapter is devoted to the study of the Dirichlet problem for the equation
(1.1.1) in a strictly pseudoconvex Q with continuous boundary data. Again, in general
f must be replaced by a Borel measure. We wish to determine which measures yield
bounded (or continuous) solutions to (1.1.1). To this aim, for a given measure u, we
consider a special regularizing sequence p; weakly convergent to p and such that (1.1.1)
can be solved by using the Bedford—Taylor result or Cegrell’s generalization [Ce2]. De-
noting by u; the corresponding solutions we define a candidate for the solution of the
original problem putting u=(limsup u;)*. Trying to verify whether u actually solves the
equation we face two problems:
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(a) Is the sequence u; uniformly bounded?

(b) If so, is the convergence u;—u good enough to entail the convergence of the
corresponding measures p; to p?

Before we state the sufficient conditions for those questions to have affirmative an-
swers, let us consider a necessary condition which any measure p leading to a bounded
solution of (1.1.1) must satisfy:

(K < const-cap(K, ), (1.1.3)

for any K a compact subset of €2, where
cap(K, Q) :sup{/ MA(u): uePSH(Q), -1<u< 0}
K

is the relative capacity introduced in [BT2]. As an example in [Kol] shows, even in
the one-dimensional case there are measures fulfilling (1.1.3) but yielding unbounded
solutions of (1.1.1). So, searching for sufficient conditions we strengthen (1.1.3) by putting
F(cap(K,Q)) on its right-hand side with a suitable function F(z)<x when z is small.
As shown in Theorem B of §3.1, under certain restrictions on F' this leads to a positive
answer to question (a). One may take, for instance, F(z)=z(log(1+2~1))~("+8) £>0.
Consequently, if the density of x with respect to the Lebesgue measure is in the Orlicz
space mentioned above then (1.1.1) is solvable. The same counterexample from [P] as in
the previous chapter shows that this result is almost sharp.
The answer to the second question is yes if p satisfies the following local version of
(1.1.3):
w(K) < const-cap(K, B') u(B) (1.1.4)

for any choice of KCC B:=B(z,r)CB’:=B(z,4r)CQ (K compact).

Any measure fulfilling (1.1.4) and the hypothesis of Theorem B admits continuous
solutions to the Monge-Ampére equation (1.1.1). However, (1.1.4) is not a necessary
condition for the existence of bounded solutions—a relevant example is given in [Kol].
Therefore we are still not able to characterize measures yielding bounded (or continuous)
solutions to (1.1.1) by means of an inequality (or inequalities) like (1.1.3) or {1.1.4). The
main result of the third chapter—Theorem C—says that if there exists a subsolution to
(1.1.1) then the equation is solvable. Here the hypothesis is often easier to verify than
those of the previous theorems.

The results of the second chapter are new. Chapter 3 contains the results of [Kol],
[Ko2], [Ko3] except the continuity part of Theorem B and Corollary 3.5.2. However,
some technical parts of the proofs have been simplified.

1 would like to thank Z. Blocki and U. Cegrell for their comments on the paper.
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1.2. Preliminaries

In this section we recall fundamentals of pluripotential theory, focusing on notions and
results which are used in the sequel. By now several texts on the subject have been
written. We refer to books by U. Cegrell [Ce3] and M. Klimek [KI], and extensive papers
by E. Bedford, B. A. Taylor [BT2], [Be] and J. P. Demailly [D1], [D2] for the proofs and
a thorough treatment of the theory or some of its aspects.

(A) Positive currents. A differential form with distribution coefficients on a complex
n-dimensional manifold M given in local coordinates by

!
T= Z TrydziANdzZy (1.2.1)

|I|=p

|J|=q
(3" means that the sum is taken over increasing multiindices) is called a current of
bidegree (p, q) (alternatively: of bidimension (n—p,n—gq)). It is a continuous functional

on the space of test forms Cg‘%n_p’n_q)(M).
The action of T on a test form
!
w= Y wrydzrNdz; € CS_p n (M)
|f|=n—p
|J|=n—q

is given by

(T,w):/ T/\UJ:/ Z’ TI/JI((.UIJ) dzp ANdZpANdzpNdZ g,
M M &
|I|=n—p
|J|=n—q
where I’ (or J’) complements I (or J) to (1,2,...,n).
We say that T is a positive current of bidimension (p,p) if for any collection of
(1,0)-forms oy, ag, ..., ap,

T A A8y Aiaa A2 ... Aiay A8y

is a positive measure. Then its coeflicients are complex measures and the action of T
extends to the space of forms with continuous coefficients. The exterior differential of
(positive) T is defined by

(dT, w) = _(Tv dw)’

where wEC(‘)”‘i?n_%_l)(M ). T is closed if dT'=0. We often split d into differentials
taken with respect to holomorphic and antiholomorphic coordinates, d=0+9, and write
d®:=i(0-9).
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(B) Currents associated to psh functions. The Monge-Ampére operator. If Q is an
open subset of M and ue PSH(Q) then dd°u is a closed positive (1, 1)-current. Conversely,
if T is a positive closed current of bidegree (1,1) defined in a neighbourhood of a closed
ball then there exists a psh function inside the ball such that dd“u=T (see e.g. [LG]).
Following [BT1] we can define wedge products of this sort of currents provided that the
associated psh functions are locally bounded. Indeed, for uc PSHN LY, (£2) and a closed
positive current T on €2, the current uT" is well defined and so is

dd°unT :=dd°(uT).

Moreover, the latter current is also closed and positive.
This way, using induction, one may define closed positive currents

dd°uy Add®us A.. . Ndd°up,

for u; e PSHN L. (Q). It is also possible to define

loc

dui Adus AddCusA...Addup,

with u; as above (see [BT2], [Be]).
The Monge-Ampere operator MA acts on a C?-smooth psh function u according to
the formula

8%u

6Zj Oz

MA(u) :=4"n! det( )d)\ =(ddu)™ (dX denotes the Lebesgue measure),
where the power on the right is taken with respect to the wedge product. As we have
seen its action can be extended to all locally bounded psh functions. For n=1, MA is
just the Laplacian multiplied by a constant. In general, the Monge-Ampére operator
shares with the Laplacian some of its properties. The following basic result reflects an
“elliptic” nature of the Monge-Ampere operator.

THEOREM 1.2.1 (comparison principle) [BT2]. If
u,v € PSHNL>(Q) and limcj,rfllf(u(z) -v(2))20

then

/ (ddv)" < / (ddcu)™.
{u<wv} {u<v}

A psh function v is called mazimal in Q if (dd°u)”=0 in this set.
Given u€PSH(f)) and a non-negative, radially symmetric function p€C§°(B)
(B stands for the unit ball in C"), where [gdA=1, define a regularizing sequence
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u;=uxp;, with p;(z):=52"0(jz). The sequence decreases to u on any relatively compact
subset of 2. Convolutions are also used to regularize currents. Put T;:=T'xp;, where,
in the representation given in (1.2.1), we set (T};);,y=Tr,7*g;. Then T;—T in the sense
of currents which, by definition, means that for any test form w the sequence (T},w)
converges to (T, w). Monotone convergence of psh functions implies the convergence of
corresponding currents.

THEOREM 1.2.2 (convergence theorem) [BT2]|. Let {ui}‘j’;l be an increasing
(or a decreasing) sequence of psh functions in Q for k=1,2,..,N, and let u},—ur€
PSHNLE () almost everywhere as j—oo for k=1,2,...,N. Then

dd®ui A...Add°uly — dd°ui A... Add°un

in the weak topology of currents.

One can relax the assumptions of the theorem a bit (see Theorem 1.2.12 below,
[Be], [D1]) but there are counterexamples showing that, for instance, the convergence in
L? for any p<oo is not sufficient to get the statement (see [Cel], [Lel]). The conver-
gence results rely, in part, on the Chern-Levine-Nirenberg inequalities [CLN] or their
generalizations [AT], [D1], [D2].

THEOREM 1.2.3 [CLN]. If 'CCQ then for a constant C=C(SV,Q) the following
inequality holds:

/ dd°ui A...Add°u, < C|lur]|q-. || unllas

for any set of up € PSHNL™(Q), where ||-|| denotes the sup norm of a function.

(C) Capacities. Capacities in C", modelled on the capacities associated to sub-
harmonic functions, prove to be very useful in the studies of psh functions (see e.g. [S]).
In this paper we shall deal primarily with the relative capacity of E. Bedford and
B. A. Taylor [BT2| and a capacity defined in terms of the global extremal function intro-
duced by J. Siciak [S]. In particular, we shall make use of a result comparing those two
capacities obtained by H. Alexander and B. A. Taylor [AT]. Given a compact subset K
of a strictly pseudoconvex domain Q2 in C™ we define the relative extremal function of K
with respect to Q and the global extremal function (the extremal function of logarithmic
growth) (see [S]) of K by

uk (2) =sup{u(z) : € PSHNL*®, 4 <0 in ,u< ~1 on K},
L (z) =sup{u(z): u e PSH(C"™), u(z) =log(1+z|)+0O(1), u<0 on K}.
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The upper semicontinuous regularizations u} (z):=lim,/_,,ux(2’) and L% are psh func-
tions. A compact set K is said to be regular if u} =ug (equivalently: L} =Lg). By
means of extremal functions we define two capacities,

cap(K,Q) = sup{/ (dd°u)™: ue PSH()), —1<u< 0}
K
and
Tr(K) := exp(—sup{Lk(2): 2| < R})

for some fixed R>0. The first one is called relative capacity. Both are Choquet and
outer capacities (see [BT2], [S]). In particular, for an open set U,

cap(U, Q) = sup{cap(K,§): K C U, K compact}
and

Tr(U, Q) =sup{Tr(K,Q): KCU, K compact}.
We shall need the following properties of relative capacity.

THEOREM 1.2.4 [BT2]. Let K be a compact subset of a strictly pseudoconver do-
main 2. Then

cap(K, ) = / (ddul)" = f (ddCui )™
K Q
Moreover, ujy and L}, are marimal away from K.

THEOREM 1.2.5 [AT]. Given three strictly pseudoconvez sets Q"'CCQVCCQ, there
exists a constant A>0 such that for any compact subset KC§Y we have

cap(K, ) < cap(K, ') < Acap(K, Q).

THEOREM 1.2.6 [BT2|. Given an open set Q¥'CCQ, where Q is strictly pseudo-
convez, there exists a constant C=C(Y, Q) such that
MK)<Ccap(K,Q) forKcQ'.
The two capacities are comparable as the following result shows.
THEOREM 1.2.7 [AT]. If B:=B(0,R) and KCB(0,r), r<R, is compact, then

exp(—A(r)(cap(K, B)) ") < Tr(K) < exp(—2n(cap(K, B)) /™).

We close this section by giving a list of results where relative capacity is used to
describe the behaviour of psh functions. They all come in handy in solving the Monge—
Ampére equation.
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THEOREM 1.2.8 [BT2]. If uePSH(Q), Q strictly pseudoconvex, then given £>0
one can find an open set U with cap(U, Q) <e such that u|og\y s continuous.

We say that plurisubharmonic functions are quasicontinuous because of the property
given in the statement of Theorem 1.2.8.

THEOREM 1.2.9 [BT2]. If Q is strictly pseudoconvez and u,u; e PSH(Q), j=1,2,...,

uj=u in a neighbourhood of 05), u;lu in Q, then for any t>0 we have

lim cap({u; >u+t},Q)=0.
j—o00

COROLLARY 1.2.10. If Q is strictly pseudoconver, t>0, KCCQ, uc PSHNL>(Q)
and u; EPSHNL®(Q) with u; u in Q, then

lim cap(KN{u; >u+t},Q)=0.
/00

Proof. Adding a constant to all the functions we may suppose that u; <—1 on €.
Fix a defining function p for Q which (after being multiplied by a constant) becomes less
than u on K. Then v:=max(u, ), vj:=max(u;, o) fulfil the hypothesis of Theorem 1.2.9.
Moreover, KN{u; >u+t}C{v; >v+t} and thus the result follows.

THEOREM 1.2.11 [AT] (see also [Be]). Given z€Q and K, a compact subset of
a strictly pseudoconver domain Q, there erists a constant A>0 such that for any uc
PSH(Q), u<0, u(z)>-1, >0, we have

cap(KN{u< —s},2) < A/s.

A sequence u; of functions defined in € is said to converge with respect to capacity
to u if for any >0 and KCcCQ,

lim cap(KN{|u—u;|>6},2)=0.
j—oo

The Monge-Ampeére operator is continuous with respect to sequences converging in this
fashion.

THEOREM 1.2.12 [X]. If u; is a uniformly bounded sequence of psh functions in Q
converging with respect to capacity to u€ PSH(Q) then

(dd°u;)™ — (ddu)™

in the sense of currents.
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Chapter 2

2.1. The complex Monge—Ampére equation on a compact Kihler manifold.
Results

Let us consider a compact n-dimensional Kahler manifold M equipped with the funda-
mental form w=%i >k 9k3 dzFAdzi. By the definition of a Kéhler manifold, (gi;) is a
Hermitian matrix and dw=0. The volume form associated to the Hermitian metric is
given by the nth wedge product of w.

We shall study the Monge-Ampére equation

(w+dd°¢)" = Fuw", (2.1.1)

where ¢ is the unknown function such that w+dd°¢ is a non-negative (1,1)-form. The
given non-negative function F€ L}(M) is normalized by the condition

/MFwnz/MwnzVol(M). (2.1.2)

Since, by the Stokes theorem, the integral over M of the right-hand side of (2.1.1) is
equal to Vol(M), this normalization is necessary for the existence of a solution.
The equation has been solved by S.-T. Yau in the case of smooth, positive F'

THEOREM 2.1.1 [Y]. Let F>0, FeC*(M), k>3. Then there exists a solution to
(2.1.1) belonging to Hélder class C*+1:2(M) for any 0<a<1.

By solving the Monge-Ampére equation Yau proved the Calabi conjecture which
says that given a closed (1,1)-form R representing the first Chern class of M one can
find a K#hler metric such that R is its Ricci form and the new fundamental form is in
the same Chern class as R.

Using the Yau theorem we find continuous solutions ¢€C(M) when F is assumed
to be non-negative and satisfying condition (A) below. This condition is quite weak as
it admits all non-negative functions belonging to LP(M), p>1, and also functions from
some more general subspaces of L(M) (see §2.5).

By [Au2, Proposition 7.12], if F>0, FeC**(M), k>1, 0<a<1, and a Cz-solutlon
¢ exists then ¢p€C*+2(M).

We say that F satisfies condition (A) if there exist a sequence F;€C>(M), F;>0,
F;—F in L'(M) and a covering of M by strictly pseudoconvex coordinate patches V.
such that for any compact, regular set K CCV; the following inequality holds:

/ Fjw" < Acap(K, V;) [h((cap(K, Va))"V/™)] 7Y, j,s=1,2,..., (2.1.3)
K
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for some constant A>0 and some increasing function h: (0, 00)— (1, 0) satisfying

/1 T whi(y)) " dy < oo.

Here cap stands for the Bedford—Taylor relative capacity (see §1.2).

If we take h(x)=max(1,z%), >0, in (2.1.3) then the right-hand side of the inequality
simplifies to A(cap(K, V))!**/™. With a=0 the condition would no longer be a sufficient
one. In §2.5 we show that our assumptions are fairly sharp.

We shall apply the generalized version of the Yau theorem to solve the Monge—
Ampere equation in the class of functions of logarithmic growth in C™. Let £, denote
the family of functions plurisubharmonic in C™ and differing from v(2):=log(1+|z|) by
a bounded function (which may depend on the function). Given a Borel measure u let
us consider the equation

(dd°u)" =dp, weLl,,
(2.1.4)
dp=(2m)".
Ccn

The normalizing condition is necessary due to a result of B. A. Taylor [Ta]. In [BT3]
E. Bedford and B. A. Taylor proved that the solutions to (2.1.4) are unique up to an ad-
ditive constant. E. Bedford discussed the problem of existence of a solution in his survey
paper [Be]. He observed that applying Theorem 2.1.1 one obtains solutions for du=f d\
(dX denoting the Lebesgue measure), where f(z)=const-exp(F(2))(1+|z|?)"""! and F
extends to a C3-function in P™. In the paper of U. Cegrell and the author [CK2] it
is shown that any C3-smooth f bounded from above by const-(1+|z[?)~"~! admits so-
lutions to (2.1.4) with du=fdX. In particular, the equation is solvable for measures
with test function densities. On the other hand, some restriction on the growth of f is
necessary as an example from the same paper shows.

In the present work we dispense with the smoothness assumption and relax the
hypothesis on the growth of f. This result is sharp to the same extent as the generalized
Yau theorem which is used to prove it (with M=P"). Again it is enough to assume that
f belongs to a certain Orlicz space with respect to the volume form of P™.

Next we discuss the equation (2.1.4) for measures singular with respect to the
Lebesgue measure. Then we consider y;, the standard regularizations of y via con-
volution with a smoothing kernel, and we suppose that (2.1.3) still holds true with p;
in place of F;w™. Instead of u€L'(M) we now assume that u is locally dominated by
capacity (see §3.1). Under these assumptions (2.1.4) is solvable.
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2.2. Weak solutions to the Monge—Ampére equation
Let us fix FeL}(M), F>0, satisfying (2.1.2). Consider an approximating sequence

F;eC>®(M), F;>0, F;—F in L'(M). Passing to a subsequence we can obtain

1
15~ Ejllexan) < 5557 (2.2.1)

Multiplying F}; by a constant which tends to 1 as j—o0 we can also get

/ Fjw™ =Vol(M).
M
By virtue of the Yau theorem (Theorem 2.1.1) one can find ¢;€C°°(M) such that
(w+ddc¢j)n = Fjw".
LEMMA 2.2.1. If the sequence ¢; is uniformly bounded then ¢:=(limsup,_,o, ¢;)"
solves the equation (2.1.1).
Proof. Let us introduce some auxiliary functions,

= . = llm >
o kngl?%(zd)” 9k (l_)ooT(bkl),

Fy = min F; Gk= lim Fkl-
W= min B, l——»ool

Since, locally, w is representable by dd°v, where v is a psh function, one can apply [BT1,
Proposition 2.8] to get

(w+dd¢p)™ = Faw™.
Hence, by the convergence theorem (Theorem 1.2.2),

Grw™ < llim (w+ddc¢kl)n = (w+ddcgk)", (2.2.2)

where the convergence is understood in the weak* topology.
Note that ¢=limg_,o ] gx, S0 one can apply the convergence theorem once more to
get
(w+dd®g)™ — (w+dd¢)". (2.2.3)
From (2.2.1) we have ||F —Gy||L1(ar)<1/2¥, so Gx—F in L'(M). Combine this conclu-
sion with (2.2.2) and (2.2.3) to obtain

(w+dd°¢)™ = Fw".
Since the integrals over M of both currents in the above inequality are equal to Vol(M)
we finally arrive at

(w+dd°¢)™ = Fw™.
Thus the lemma follows.

In the next section we shall prove that the hypothesis of Lemma 2.2.1 is satisfied
provided that F satisfies condition (A).
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2.3. L*°-estimates for the solutions

The following lemma and its proof will be used to prove the boundedness as well as the
continuity of the solutions to the Monge—Ampere equation. It is a refined version of
Theorem 1 in [Ko3].

LEMMA 2.3.1. Let §2 be a strictly pseudoconver subset of C™ and let ve PSHNC(R),
lv[|<C. Suppose that ue PSHNL>®() satisfies the following conditions: u<0, u(0)>C’
(0€9) and

/K (dd°u)™ < A cap(K, Q) [h((cap(K, Q))~1/™)] ! (2.3.1)

for any compact subset K of Q, where h: (0,00)— (1, 00) is an increasing function which
fulfils the inequality

/ R () dy < oo.

If the sets U(s):={u—s<v}NQ” are non-empty and relatively compact in Q"CQY'CCf
for s€[S,S+D] then infqu is bounded from below by a constant depending on A, C,C",
D,h,Y,Q, but independent of u,v, .

Proof. Let us introduce the notation
a(s):=cap(U(s),Q), b(s)= (dd®u)™.
Then
t"a(s) <b(s+t) for 0<t<S+D-—s. (2.3.2)

Indeed, consider a compact regular set KCU(s), the psh function w:=(u—s—t)/t and
the set V:={w<ug+v/t}NQ”, where ux denotes the relative extremal function of K
with respect to €). Let us first verify the inclusions KCVCU(s+t).

Take € KCU(s). Then u(z)—s<v(z) and so

w(z) = (u(z)—s—t)/t Suk(z)+v(2)/t,
which means that z€V. To see the latter inclusion, note that if z€V then
(u(z)—s—t)/t Sux(z)+v(z)/t <v(z)/t

since ug is negative.
Once we have the inclusions we can apply the comparison principle and Theo-
rem 1.2.4 to the effect that

cap(K,Q)</K[dd°(uK+v/t)]”S/V[ddc(uK-i-v/t)]”g/v(ddcw)"

<t / (dd°w)™ <" / (dd°u)™ = £~ "b(s-+t).
14 U(s+t)
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In this way (2.3.2) follows.
Next we define an increasing sequence sg, 81, ..., SN, setting sg:=S5 and

sj:=sup{s:a(s) < ,_lim da(t)}

—85_1t+

for j=1,2,..., N, where d is a fixed number such that 1<d<2. Then

lim a(t)g‘t lim da(t)

t—s;— —s8j.1+
and
a(s;) > da(s;-2). (2.3.3)

The integer N is chosen to be the greatest one satisfying sy <S+D. Then
a(S+D) < :_1.13,14. da(t).
From the last inequality, (2.3.1) and (2.3.2), it follows that for any t€(sy, S+ D) we have
(S+D—t)"a(t) <b(S+D) < Aa(S+D)h " ([a(S+D)] /™)
< Ada(t)h([a(S+D)]"V™).

Hence
S+D—sy < (Ad)Y"h~Y™([a(S+D)]"Y™) = (Ad)V/" L,. (2.3.4)

Now we shall estimate sy —S. Consider two numbers S<s'<s<S+D such that
a(s)<da(s’), and set t:=s—s’. Then by (2.3.1) and (2.3.2) we have

a(s') <t7"b(s) < At "a(s)h ™ ([a(s)]"V/™) < Adt"a(s")h " ([a(s)]7V/™).

Hence
t < (Ad)'/™hy(a(s)),

where hy(z):=[h(z~1/")]"1/". Letting s—s;4+1— and s’ —s,+ we thus get
tj =841 8; < (Ad)/"ha(a(s;41))-

Using this inequality, (2.3.3) and the fact that the function hy(x):=hs (d®)=h~1/"(d~*/")

is increasing one can estimate as follows:

N-1 N-1
t; <(Ad)Y™ Y ha(logga(s;r1))
=0 =0
N-2 ilog, a(s;42)
< (Ad)Y/r [ / ha(z) dz + 2hy(log, a(sN))]
j=1 Ylogg a(s;)

logg a{S+D)
< 2(Ad)Y/ [ / ha(x) dz + h2(logy a(S+ D))] .
log4 a(S)
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The change of variable y=d /" leads to the following transformation of the above inte-

gral:

logy a(S+D) log; a(S+D)

/ ha() dz = / [h(d==/")]" /" da
logy a(S) log; a(S)

n [l

= (h(y)"/"y) " dy.
lnd [a(S+D)]~1/n[ ( ))
Hence finally,

sn—S8 < (Ad)Y™Ly, (2.3.5)

where

o flaEIT . T

La= s [ [yhY/"(y)]~ dy+2[h(a(S+D) /™).

nd Jia(s+p)-2/»

Note that, due to our hypothesis on h, both L; and L, tend to 0 as a(S+D)—0.
By Theorem 1.2.11,
lim cap({u<—s}NQ,Q)=0

and the convergence is uniform with respect to u as long as u satisfies the assumptions of
the lemma. Since U(S+D)C{u<C+S+D} one concludes from these remarks, (2.3.4)
and (2.3.5) that for S<Sp=5,(A,C,C’,D,h, ¥, Q) the following inequalities hold:

S+D-sy < (Ad)Y/"L, <24Y"L; < 1D,
sn—S<(Ad)/"Ly < 24" L, < 1D

Combined, they yield a contradiction. This shows that S is controlled from below by a
constant depending only on A,C,C’, D, h,§¥,Q, and thus the statement follows.

From now on we suppose that F satisfies condition (A) (see §2.1). Consider the
sequence ¢; of solutions to the Monge-Ampeére equation from the previous section. They
are determined up to a constant, so we need to impose some kind of normalization to
obtain a finite limit ¢. We choose ¢; so that

sup ¢; =0.
M

It is no loss of generality to assume that M is connected. From [H, Theorem 4.1.9]
applied in coordinate patches V, to psh functions vs+¢;, where dd°vs=w in V;, we
conclude that either ¢;——oo uniformly on compact subsets of V; or there exists a
subsequence of {¢;} converging in L'(V;). If the former possibility occurs then, since
M is connected, ¢;——oo uniformly on M, contrary to the normalizing condition above.
Thus upon passing to a subsequence and using the diagonal procedure with respect to
coordinate patches, one can assume that ¢;—¢ in L1(M).
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Before proceeding further we shall fix a special covering of M by coordinate patches.
Let us observe that for any z€M there exist a neighbourhood U, and a potential
vePSH(U;) satisfying dd°v=w and having local minimum at z. Indeed, take any
0€PSH(U,) such that dd‘t=w. The Taylor expansion of ¥ at z in local coordinates
has the form
#(x+h) =Re P(h)+H(h)+o(|h|?),

where P is a complex polynomial and H the complex Hessian of . Since H is positive
definite it is easy to see that v:=9—Re P(-—z) has a local minimum at z.

Once we know this, we can find, using compactness of M, positive constants r, B
such that 6r<R and for any €M there exist a coordinate chart g,:U.— B(0, R) and
v, € PSH(UY) satisfying ddv,=w, v,<0 and

sup v, < inf v,,
U auy

where U, :=g;(B(0, 7)), Uy :=p7'(B(0, R)) with B(0,7) and B(0, 3R) denoting open
balls in C™ centered at the origin of radius » and %R respectively. One may choose {U,}
to be subordinate to {V,}.

We fix a finite covering U,:=U,,, s=1,2,..., N, of M and write for brevity U;=U, ,
UJ=U] , 0s=0z,, Vs=Uz,. Then there exists co>0 such that

sup v, < inf vs—cp. (2.3.6)
U, ouy
Since, due to our choice of ¢;’s, the integrals st ¢;w™ are bounded from below by
a constant ¢ independent of s and j, we infer that also

supg; >c1, j=1,2,.., s=12,..,N. (2.3.7)
Us

Now we shall see how to apply Lemma 2.3.1 to derive that ¢; is uniformly bounded.
Giveil j fix a;EM such that ¢; (a;v):min ¢;, then choose Us, containing a;- and a point
a;€U;, satisfying qﬁj(aj):supgsj ¢;. Take o7 1(B(0s,(a5), 3R)), o5, (B(es;(a5),3R))
and U;’] to play the role of €, ' and Q” respectively, in the lemma. Since for every
j thus defined the sets Q and €’ can be identified with the fixed balls B(0, 2R) and
B(0, 3R) we may consider these sets to be independent of j. As u and v in the lemma
we take vy, +¢; and O respectively. Clearly, v, are uniformly bounded from below, so
from (2.3.7) one concludes that

(vs; +5)(aj) =2 c2, 7=1,2,..,
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which settles the assumption “u(0)>C"”.
By the choice of a; and (2.3.6) we have

(vsj+¢j)(a;)< (U5j+¢j)—co7 j=12,...

inf
Uy
Thus the constant ¢y can be taken as D in the lemma. Both ¢z and ¢y do not depend
on j.

To verify (2.3.1) we use the fact that {U]} is subordinate to {V;}. It is enough to
observe that the right-hand side of (2.3.1) is increasing in cap(K,2) and that if QC ¢
then cap(K, Q) >cap(K, Q') for KCQ (see Theorem 1.2.5).

Applying Lemma 2.3.1 in the way described above we conclude that v,;+¢; are
uniformly bounded on Us; by a constant independent of j. Since v, are uniformly
bounded and ¢; assumes its infimum in Uy, it follows that ¢; are uniformly bounded.
Thus, by Lemma 2.2.1 the bounded function ¢=(limsup ¢;)* solves the Monge-Ampere
equation (2.1.1).

2.4. Continuity of the solution
Suppose that ¢ were not continuous. Then d:=sup(¢—¢.)>0. Since ¢—¢, is upper
semicontinuous and bounded (by §2.3), the supremum is actually attained at some point
o€ M. One may choose zg so that

P(xo) = .

min
{¢p—¢.=d}
Such zg exists since F'={¢—¢,=d} is closed and if z; € F with ¢(z;) —infr ¢ then for any
accumulation point zo of the sequence z; we have ¢(zo)=infr ¢, otherwise (¢p— . )(zo)
would exceed d, contrary to the definition of d.
Let us fix a coordinate chart ¢ onto B:=B(0,1)CC", and a potential function
vePSHNC*(B) such that ¢¥(z¢)=0, ¥*ddv=w and

iréfv——v(O) =b>0, (2.4.1)

where S:=9B(0,r), r<1.

The function u:=v+¢op~1€ PSHNL>®(B) satisfies condition (2.3.1). After adding
a constant one can assume that u>0 on B and A:=u(xg)>d. (Here again we have used
the result of the previous section.)

We wish to apply the proof of Lemma 2.3.1 to show that the hypothesis “¢ dis-
continuous” leads to a contradiction. To this end we choose a sequence of smooth psh
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functions u; |u which are defined in a neighbourhood B” of the closure of B':=B(0,r).
Our first objective is to prove that for some ag>0, t>1 the sets

W(j,c):={w+c<wu;}, wherew:=tu+d—ao,

are non-empty and relatively compact in B’ for ¢ belonging to an interval which does
not depend on j> jo.

Obviously E:={u—u.=d}NB'={¢poyp~' —(¢o9p~1).=d}NB’ and 0 E. For 0<a<d
we denote by E(a) the set {u—u, >d—a}NB’. Those sets are closed and E(a) | E as a—0.
Hence, by semicontinuity of ¢ and the choice of zg one gets

limsupe(a) <0, c(a):= oy~ (0)—min gorp™ .
a—0 E(e)

Indeed, suppose that for some y>0 and z;€E(a;), a;—0, we had (goyp™*)(z;)<
(¢o1p~1)(0)—~. Then any accumulation point z of z; belongs to E and so (¢oyp~1)(z)>
(¢9~1)(0). Thus

limsup(¢oy™')(z;) < (¢eyp™!)(z)—y and Hm[(goyy™")(z;) —(po9p ™ )u(zs)] =d.

From these two formulas we obtain (¢o~2)(z)—(¢oyp~1)«(z) = d+7, a contradiction.
Fix ay satisfying the two conditions

0< ap <min(3b,d),

(24.2)
c(a) < zb for a<ao.
Next, choose t>1 satisfying the inequalities
(t—1)(A—d) <ap < (t—1)(A—d+2b). (2.4.3)

We shall need the following version of the Hartogs lemma.

PROPOSITION 2.4.1. If u—tu,<c on a compact set KC B’ then for some jo€N we
have
uj <tu+c onkK,

where u,u; are the functions we are dealing with.

Proof. By the assumption and the semicontinuity of u one can find for any x€ K
a neighbourhood V of z and ¢’ <c such that

tu>supu—c on V.
1
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The Hartogs lemma provides then an integer jp such that

u; <supu+(c—c') <tutc
\Z

on V if j>jo. Since K is compact the above inequality extends to the whole set K after
increasing jo if necessary. Thus the proposition follows.

Consider now y&€SNE(ag). Then by (2.4.1) and (2.4.2) one gets
U (y) 2 v(0)+b+ oy~ (y) —d > v(0)+-b+ oy (0)—c(ao) —d > A—d+3b.
Hence by (2.4.3),
(t—1)u.(y) > ao,
which implies that
w(y) S ux(y)+d < tu.(y)+d—ap. (2.4.4)

Since the left-hand side of this inequality is upper semicontinuous and the right-hand
side is lower semicontinuous it extends to V, where V is a neighbourhood of SNE(aq).
Applying Proposition 2.4.1 we thus obtain

uj<tut+d—ap onV if j>j;. (2.4.5)
Since E(ag)N(S\V)=2 the inequality
U—Uy < d—ag

holds on S\V. Applying Proposition 2.4.1 once more and increasing j; if necessary we
get
uj Kut+d—ag <tut+d—ag (2.4.6)
on S\V 1fj>]1
From the first inequality in (2.4.3) it follows that for some a; >0

tu,(0)+d—ap <u(0)—a; <u;(0)—a;. (2.4.7)

Putting w:=tu+d—ap we see from (2.4.5) and (2.4.6) that the sets W (j, ¢)={w+c<u;}
are relatively compact in B’ for ¢>0, j>j;. Furthermore, (2.4.7) implies that for ce
(0, a1) some point near 0 belongs to W(j, ¢).

Now we can apply the proof of Lemma 2.3.1 with w,u;, B, B”,0,a; in place of
u,v, ", Q, S, D. We have just verified that the hypothesis of the lemma is then satisfied.
Thus from (2.3.4) and (2.3.5) we obtain that

(Ii+La) A > 1D,
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which by definition of L; and L, gives a positive lower bound for cap(W (j,a1), B”)2>
a2>0 not depending on j. This leads to a contradiction since we have {w+a;<u;}C
{u+(d—ao+a1)<u;j}, where d—ap+a;>0 and the capacity of the intersection of the
latter set with B’ tends to 0 as j—oo by Corollary 1.2.10.

In this way we have proved

THEOREM 2.4.2. If FeL'(M) satisfies (2.1.2) and condition (A) then there exists
a continuous solution to the equation (2.1.1).

2.5. Functions satisfying condition (A)

In this section we are going to identify some Orlicz spaces of functions which fulfil con-
dition (A). The spaces L?(M), p>1, are among them. At the end of the section we give
an example indicating that our assumption is fairly sharp. We adopt here the results of
[Ko3] giving more detailed exposition.

Condition (A) is given in terms of the relative capacity whereas the Orlicz spaces we
shall be dealing with are defined with respect to the Lebesgue measure. The following
lemma exhibits a relation between the capacity and the measure.

LeEMMA 2.5.1. Suppose u€ PSH(Q)NC(Q), u=0 on 80N, [(dd°u)"<1. Then the
Lebesgque measure A\(U,) of the set U,:={u<s} is bounded from above by cexp(—2m|s|),
where ¢ does not depend on u.

Proof. Assume Q to be contained in a ball B=B(0,R). We denote by A the
Lebesgue measure in C*. Let us write the coordinates of a point z€C™ in the form
2=(21,2')€ECxC""!, and denote by B, (or B’) the balls {z€C:|z|<R} (or {zeC"!:
|2[<R}). Consider the slices of the set U,

Uy(2'):={21€C:(21,2') € U,}.

For fixed s, the extremal function of logarithmic growth of Us(2’) in C (or of U, in C™)
will be denoted by V, (or V). We shall use a capacity which corresponds to the global
extremal function (see §1.2),

Tr(E)=exp(— Bs(})llj)i) Ve), ECB(0,R).

For n=1 the set function T dominates the logarithmic capacity multiplied by a constant
depending on R. Hence by classical potential theory (see [Ts])

A(Us(2)) S C1Tr(Us(2)),
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where C is an independent constant. Thus, making use of the Fubini theorem we can
estimate as follows:

)\(Us)z/)\l(Us(z')) d)\n_l(z')gcl/TR(Us(z’))d)\n_l(z')
(2.5.1)
<Cl/exp(— sup V(z1,2")) dAn_1(2).

|z1|<R

By a result of Alexander [A] there exists an independent constant Cs such that

sup VE</VEdS—Cz, ECB,
Bix B’

where dS is the normalized Lebesgue measure on S=8(B;XxB’) and Vg denotes the
global extremal function of a Borel set E. We deduce from this inequality that the
dS-measure of the set

{Ve <sup Vg —a}
s

tends to 0 as a—oo. Therefore, by taking Cs large enough we get

An-1({Z'€B':supVg(z1,2') > sup Vg—Cs}) 2 §An-1(B").
Bl Bl)(B’

Thus the right-hand side of (2.5.1) is dominated by
Cyexp(— sup V(z)) <C4Tr(U,).
BixB’
From Theorem 1.2.7 it follows that
Tr(Us) < exp[—27(cap(Us, B)) /"] < exp|—2n(cap(Us, 2))~/™].
So, continuing the estimate (2.5.1) we finally arrive at
MUs,) < Cy exp|[—2n(cap(Us, Q)) /™).
To complete the proof it remains to show that

cap(Us, ) < [s|™™. (2.5.2)

Fix t>1 and a regular compact set KCU,. Then by the comparison principle we have

cap(K, Q)=/ (ddcuK)"=/ (ddcuK)"<t”|s|‘"/(ddcu)"<t"|s|_”.
K {—ts~lu<ux} Q
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Thus (2.5.2) and the lemma follow.

We now proceed to find Orlicz spaces satisfying the condition (A). The background
material on Orlicz spaces can be found in [M]. Let 9:[0,00)—{0,00) be an increasing
function fulfilling the inequalities

2t <y(2t) <ay(t), (2.5.3)

for some a>0 and any t>ty. Then the Orlicz space corresponding to 1 and w™ is defined
by

pran={serion: [ wifen <oof.

Since condition (A) is expressed in coordinate patches we shall work in L¥(V,d)) (dA de-
notes here the pullback of the Lebesgue measure via the coordinate chart) rather than
in L¥(M). Obviously feL¥(M) if and only if feL¥(V;,d)) for all s. Under the above
assumptions on 1, given f€L¥(M) there exists a sequence f; €C° (M) such that f; — f
in L'(M) and the integrals [,,¥(|f;|)w™ are uniformly bounded.

Suppose that

¥(t) = |t|(log(1+1¢]))™ h(log(1+[¢])),

with h(z)<z, >1, satisfying the hypothesis of condition (A), and that v fulfils (2.5.3).
We are going to verify the inequality (2.1.3) for a sequence F; of smooth positive func-
tions, uniformly bounded in L¥(M) and converging in L¥ (M) to F. Fix Q=V,. We need

to show that for some A>0 and any compact regular set KC the following inequalities
hold:

/ F; d) < Acap(K, Q) [h((cap(K, ))~1/™)] L. (2.5.4)
K

First, let us note that (2.5.4) follows from
/ [v|"h([v|) F5dA< A, §=1,2,.., (2.5.5)
Q

where v€PSH(Q) is of the form v=cap~1/"(K,Q)uk, with ux the relative extremal
function of K with respect to €. Indeed, from (2.5.5) we have

A> / ol h([o]) Fy dA > / o[ h(Jo]) F; dA
Q K

> cap™ (K, ) h((cap(K, D) ") [ Fya,
K
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which proves (2.5.4). To prove (2.5.5) we shall use Young’s inequality applied to G(r)=
g(log(1+4r))=(log(1+7))"h(log(1+r)) and its inverse. Then

Fy(x) g(|v(z)])
o(jv(@)) F;(2) < / g(log(1++)) dr + / fexp(g™1(t))~ 1] dt

[v{@)]
<Fj(m)g(log(1+Fj(x)))+/ e®q’'(s)ds

<Y(F;(@))+a(jv(z)))el* @,
Since, by the choice of Fj, the integrals [, (|F;|)dA are bounded by some constant
Ap <o, we obtain by integrating the above inequality over Q

[ o) F ar< dot [ gu@el@ ar

Q Q

It remains to find a uniform bound (independent of K) for the last term. To do this we
make use of Lemma 2.5.1:

/ g(jv(@)])el @ dr = Z/ g(lv(@)]) @) d

s—1<v<— s}

o

< Z(s-&- 1) h(s+1)esTA\({v < —s})

gcz (s+1)"h(s+1)el+s(1=2m)

s=0

o

c [h(l)—l—Z(s—}- 1) el+s(-2m) | < const < co.
s=1

The extra assumption h(z)<z which has been used above is unrestrictive since by de-

creasing h (and 1) we extend the space L¥. Thus we have proved

THEOREM 2.5.2. If h is the function from condition (A) and

(t) = [t](log(1+[¢]))" h(log(1+[t]))
satisfies (2.5.3) then for any FeLY(M) the Monge-Ampére equation (2.1.1) has a con-
tinuous solution.

Ezample 1. Take 9(t)=|t|(log(1+|¢[))™(1+1log(1+log(1+]t])))™, m>n. Then it is
straightforward that this function satisfies the assumptiohs of Theorem 2.5.2. Now if
x(t)=|t|(log(1+]t[))™, m<n, then by a result of L. Persson [P], the Monge-Ampére
equation admits unbounded solutions with pointwise singularities for some radially sym-
metric densities from LX. This shows how sharp is the hypothesis of Theorem 2.5.2.

Ezample 2. For any p>1 we have LP(M)C L¥ (M), where 9 is the function from the
previous example. Thus for F'€ L?, p>1, the equation (2.1.1) is solvable in the domain
of continuous psh functions.
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2.6. Solutions of the Monge-Ampére equation belonging to £

The class of functions plurisubharmonic in C™ of logarithmic growth,
Ly :={uePSH(C"): |u(z)—log(l+]|z|)| < cu},

plays an important role in the study of polynomials and the theory of extremal functions
in particular. The total Monge-Ampére mass [, (ddu)™ of a function u belonging to
L, is always equal to (2m)" (see [Ta]). In the present section we shall deal with the
following problem. Given a Borel measure p with

[ -ty

(dd°u)™ = dp. (2.6.1)

find ue L satisfying

If 12 is not singular with respect to the Lebesgue measure then the generalizations of the
Yau theorem obtained so far can be applied directly. Indeed, let us specify M=P" and
w=wy, where u.)():%ddC log|Z|? is the Fubini-Study form with Z denoting the homoge-
neous coordinates in P™. In C", embedded in P™ in the usual way, the Fubini-Study
form is equal to dd°vg, vo:=3 log(1+|z|?). Straightforward computation leads to

n n!
) (Z) = W dX.

Applying Theorem 2.4.2 we get
COROLLARY 2.6.1. If du=Fw}, where FEL'(P™), satisfies condition (A) then

(2.6.1) is solvable and the solution is continuous. (It is unique up to an additive constant
by [BT3].)

To make the hypothesis more explicit one can use Theorem 2.5.2.
COROLLARY 2.6.2. If ¥(t)=|t|(log(1+[t]))™h(log(1+]|t])) satisfies (2.5.3), h fulfils
the hypothesis of condition (A) and the function f given by

1

du(z) =f(Z)W dX

satisfies
1
Lﬂﬂf(@l)m dA < oo,

then there exists a continuous solution of the Monge-Ampére equation (2.6.1).

Ezample 1. Putting ho(z)=(14+2z)™, m>0; hi(z)=1+(log(1+x))™, m>n; hao(x)=
1+(log(1+2))™(log(log(1+z)))™, m>n, in place of h in Corollary 2.6.2 we get some
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particular classes of measures admitting solutions to (2.6.1). We may continue to decrease
h and thereby extend the corresponding class defined in the corollary. Again we observe
that our result cannot be substantially improved since, on the one hand, for

|22

&)= GogTampe

p>n+l,

we have a solution in £, ; on the other hand if n=1 and

|22
)= =n+4+1(!
F6)= Gogrig e @10
then the solution of the Poisson equation
dd°u= f(2) ! dA
()2

is no longer in £,. The first part of this statement follows from Corollary 2.6.2 with
h=hg as defined above and m <p—1—n. Then the convergence of the integral [ (| f|) wi
is equivalent to the convergence of

/“ 1 dz <
, z(log(L+a)p—n—m S

As for the solution u of the Poisson equation above, observe that
/ log(1+|2|) dd°u(z) = +oo,
C

which implies that u¢ L (see e.g. [CKL, Proposition 1.4]). Using the integral formulas
for radial psh functions, obtained in [P] by L. Persson, one can draw the same conclusion
in higher-dimensional case.

While dealing with psh functions one very often comes across functions having
Monge-Ampere mass singular with respect to the Lebesgue measure. The standard op-
eration of taking maximum of a finite number of psh functions gives rise to such objects.
Extremal functions are of this type as well.

Trying to cope with the equation (2.6.1) for general Borel measures we cannot use
Lemma 2.2.1 any more, so we need to find a replacement for this result with possibly
weak assumptions on yg. In the case of the Dirichlet problem for the Monge-Ampére
equation in a strictly pseudoconvex domain €} with continuous boundary data we have
such a theorem (Theorem A in §3.1). There we consider measures satisfying the condition

u(E) < Acap(E, B) u(B), (26.2)
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where EC B=B(z,r)C B'=B(z,4r)C and the inequality holds for any choice of such
sets with an independent constant A>0.

Then we regularize p via convolution, p;=p;*u (with o€ Cg°(B(0,1) a radial non-
negative function such that [pdA=1 and p;(z)=3%"0(jz), j=1,2,...), and solve the
Dirichlet problem for u;. If the resulting sequence of solutions u; is uniformly bounded
then u=(limsup u;)* is the desired solution for p.

To solve the equation (2.6.1) we repeat this procedure. Let pu;=g;*u. Assume that
with g; in place of Fjw™ (2.1.3) is still satisfied and that for 4 (2.6.2) holds true. By
Corollary 2.6.1 we find uj€L; such that (dd°u;)"=du;. Applying the results of §§2.3
and 2.4 we conclude that u=(limsupwu,)* is continuous and belongs to £,. Adding a
constant one may suppose that u; >0, j=1,2,.... It remains to prove that (dd°u)"=dp.

Let us fix R>0 and denote by u; g, j=1,2,..., the psh solution of the following
Dirichlet problem in the ball B(0, R):

ddv)" =du; _1,
(ddfv)" =dpis |0, r-) (2.6.3)
v=u on 3B(0, R).
Applying Theorem A in §3.1 we conclude that vg:=(limsup u; r)* satisfies
(dd°vg)" =du|Bo,r-1) in B(0,R). (2.6.4)

Since all u; differ from log(1+|z|) by a constant independent of j (because the corre-
sponding solutions of (2.1.1) in P™ are uniformly bounded due to Lemma 2.3.1) one can
find for any £>1 a radius Ry such that

t7'uj <ujpr<tu; in B(0,R), R> Ry. (2.6.5)

(Here we use the comparison principle in B(0, R) to verify the first inequality and we
do the same in B(0, R—1) to prove the other one.) Hence passing to the sup limits one
obtains t"luvgr<tu. Since t was arbitrary exceeding 1, we deduce that vg—u locally
uniformly as R—oo. Then the convergence theorem implies that (dd°u)®=du. Let us
state the result we have just proved.

THEOREM 2.6.3. If the measure i from (2.6.1) satisfies (2.6.2) and if (2.1.3) holds
true with Fjw™ replaced by pj=p;*p then the equation (2.6.1) has a continuous solution.

The condition (2.6.2) is not necessary for the existence of a continuous solution. In
[Kol] we gave an example of a continuous subharmonic function in C with the Laplacian
not satisfying (2.6.2).
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Chapter 3

3.1. The complex Monge-Ampeére equation in a strictly pseudoconvex
domain. Results

In this chapter we shall study the Dirichlet problem for the complex Monge—Ampére
equation in a strictly pseudoconvex domain Q. Given p€C(0Q2) and a non-negative
Borel measure du we look for a plurisubharmonic (psh) function u satisfying

ue PSHNL*>®(Q),
(dd°u)™ = dp, (%)
lim,_,; u(z) = ¢(z) for z€N.

So far the set of Borel measures for which there exists a bounded (continuous)
solution has not been characterized. We believe that the results presented here give a
fairly accurate description of this set,

In 1976 E. Bedford and B. A. Taylor proved the following fundamental result.

THEOREM 3.1.1 [BT1]. If du=fdA () denotes the Lebesgue measure), f€C(Q),
then (x) has a unique continuous solution.

U. Cegrell [Ce2] generalized this theorem to the case of bounded f, and then, to-
gether with L. Persson [CP], solved (x) for f€ L?(Q2). There are examples (see [CS], [P])
indicating that one cannot do the same for f€ L!(Q2). For measures equicontinuous with
a rotation-invariant measure in a ball the equation has been solved in [CK1] under the
condition that a subsolution exists.

There is a number of results (see e.g. [CKNS], [CY]) showing that under additional
assumptions on smoothness of f and ¢, and non-degeneracy of f, one may obtain smooth
solutions to (*). In particular, we have the following regularity theorem.

THEOREM 3.1.2 [CKNS]. If du=fd), feC>®(Q), f>0 and 0Q is C*-smooth,
then () has a unique solution u€ C*>(Q).

In this paper we focus on solving (*) under possibly weak assumptions on dy. From
the very definition of the relative capacity of Bedford and Taylor,

cap(K, Q) ::sup{/ (dd°u)™: we PSH(Q), —1<u<0},
K

it follows that a bounded solution to () exists only if the measure p is dominated by
capacity,
u(K) < Acap(K, Q). (3.1.1)
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This condition, however, is not sufficient even in the case of the Poisson equation (see
[Kol]). In the first of our main theorems (Theorem A below) we use a local version of
this condition. We say that p is locally dominated by capacity if for any cube I and the
ball By of radius equal to 2diam I, concentric with the cube and contained in €2, the
following inequality holds:

1(E) < Acap(E, Br) u(), (3.1.2)

where A is an independent constant and F is a Borel subset of I. One may weaken this
condition requiring only that the inequality holds away from a set of arbitrarily small
measure (1, but even then it does not become a necessary condition (see [Kol]).

One may strengthen (3.1.1) in yet another way by putting F(cap(K, 2)), with some
F(z)<z, in place of cap(K,() on the right-hand side of (3.1.1). Condition (A) from
§2.1 is of this form. As we have already seen, at least for du=fd)\, f€L'(Q,d)\), this
condition seems to be close to giving a characterization of measures leading to continuous
solutions.

Given a Borel measure 4 let us consider an approximating sequence p;= f; dA, where
f; is constant on small cubes constituting the jth subdivision of € and p;(I)=f; f; dX
for any such cube. Using Cegrell’s result [Ce2] we find solutions u; of (*) with y replaced
by p;.

THEOREM A [Kol]. If a Borel measure p, compactly supported in €2, is locally
dominated by capacity and the sequence u; defined above is uniformly bounded then u:=
(limsup u;)* solves the Monge—Ampére equation ().

One may use some other way of approximating p (for instance, in [Kol] we use
convolutions with a smoothing kernel) to get the same result. However, not any weakly
convergent sequence p; —p would do (see [CK1]).

Once we have Theorem A a natural question arises: When is «; uniformly bounded?
As in Chapter 2, condition (A) takes care of that.

THEOREM B. Let Q be a strictly pseudoconver domain in C™ and let u be a Borel
measure in Q such that [, du<1. Consider an increasing function h: R—(1,00) satis-
fying

/loo(yh”"(y))‘ldy<oo-

If p satisfies the inequality
u(K) < Acap(K,2)h™" ((cap(K, Q) /™)

for any KCQ compact and regular, then the norm |lul|L~ of a solution of the Dirichlet
problem () is bounded by a constant B=B(h, A) which does not depend on . Moreover,
U 1S CONtinuous.
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Applying the results of §2.5 we obtain the following consequence of Theorem B.

COROLLARY 3.1.3. Let L?(Q,d)) denote the Orlicz space corresponding to
(t) = [t|(log(1+1¢[))" h(log(1+]t]),

with h satisfying the hypothesis of Theorem B. If fcL#(f,d)) then (x) is solvable with
du=f d\, and the solution is continuous.

In particular, the corollary provides continuous solutions to the Monge—Ampere
equation for any f€LP, p>1. Let us note that for n=1, when we deal with the Poisson
equation, the result is similar to the classical one of A.P. Calderén and A. Zygmund [CZ)]
(see also [GT, §9.4]). The method of the proof is completely different as we make no
appeal to the Newtonian potential.

Combining Theorems A and B one gets

COROLLARY 3.1.4. If a measure p in S is locally dominated by capacity and satisfies
the hypothesis of Theorem B with h such that

h(az) <bh(z), x>0,

for some a>1, b>1, then there exists a continuous solution to (*).

This result allows us to solve (*) also in the case of measures singular with respect
to the Lebesgue measure.

Even in the situation of the above corollaries it is not easy to verify the assumptions
of Theorems A and B. Perhaps the following theorem is of more use when it comes to
solving (*). We say that a bounded psh function v is a subsolution for (x) if (dd“vs)™>du
and lim,_,, v(2)=p(z), £€0f.

THEOREM C. If there exists a subsolution for the Dirichlet problem (x) then the
problem is solvable.

This statement remains true also in the case of weakly pseudoconvex domains under
the necessary hypothesis that there exists a maximal function with given boundary data.
An interesting consequence of Theorem C is that for any collection of u;€ PSHNL>(Q),
j=1,2,...,n, the current dd®u; Add°usA...Add°u,, is equal to (dd°u)™ for some bounded
psh function u.

The results presented here give answers to some of the problems posed in the survey
paper by E. Bedford [Be]. We refer also to M. Klimek’s monograph [K]] for background
material in pluripotential theory and to Z. Blocki’s paper [Bl] for a simplified proof of
Theorem 3.1.1.
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In the next section we make some preparations for the proofs of Theorems A and C.
This unified approach simplifies the exposition of the results originally published in [Ko1]
and [Ko2]. Then, in §3.3 we fairly easily complete the proof of Theorem A. To finish
the other proof (§3.4) requires much more effort. §3.5 is closely related to §2.5. The
proof of Theorem B follows almost directly from Lemma 2.3.1. The corollary following
it has also been proved in the previous chapter. The assumption on the measure y in
Corollary 3.1.4 slightly differs from that of condition (A) in §2.1, so to prove it we show
that the assumptions are equivalent. Then we apply Corollary 3.1.4 for some particular
classes of measures.

3.2. Preliminaries for the proofs of Theorems A and C

In this section we define a candidate for the solution of the equation (*) in terms of the
solutions corresponding to a sequence of measures approximating p. Then we formulate
a condition (3.2.1) which is proved to guarantee the solution of (x). In the following
sections we shall verify (3.2.1) under the assumptions of Theorem A and Theorem C.
We close this section by showing a lemma which is an essential ingredient of the proofs
that follow.

Let us first state some additional assumptions and observe that by doing this we
do not affect the generality of the proofs. So, in Theorem C it is enough to consider
only measures p which have compact support. Then, given a non-compactly supported
measure p one can find solutions corresponding to x;u, where x; is a non-decreasing
sequence of cut-off functions, x;T1 on Q. The solutions will be bounded from below by
the given subsolution (due to Theorem 1.2.1) and they will decrease to the solution for
@ by virtue of the convergence theorem (Theorem 1.2.2).

Then, the subsolution v given by the hypothesis of Theorem C can be modified so
that lim,_,, v(2)=0 for any £€9Q. Furthermore, using the balayage procedure, one can
make the support of dv:=(dd°v)" compact.

To limit the number of independent constants we also assume that

(a) Qclp:=[0,1]>"cCn,

(b) w(@)<r(Q)<1,

(c) when a sequence u; or v, defined below is uniformly bounded by a constant
then this constant is taken to be 1,

(d) the boundary values @ in {x) are negative,

(e) —1<wv<0.

Now we define a regularizing sequence for y. Let us consider a sequence B; of

subdivisions of Iy into 32*™ congruent open cubes of equal size which are pairwise disjoint
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but whose closures cover Iy. It is no restriction to assume that for each s we have
V(Ujeg, 01)=0. Set

InQ) .

[,l,jlzfj dA, fJ(x) 22% ifzel,
v(INQ)

vji=g;dA, g;(x):= )\EIQQ; ifexel

(for z€dI we put f;(z)=g;(x)=0.)
Using Cegrell’s result [Ce2] one can solve the Dirichlet problems
u; € PSH(Q)NC(),
(ddCUj)n = fj d)\,
uj(x) =p(zx) for x€0Q,

and

v; € PSH(Q)NC(Q),
(ddc,vj)n =gj d)\,
v;=0 on JQ.

Passing to a subsequence (after renumbering we stick to the original notation) one
may suppose that u; and v; are convergent in Ll _ (see [H, Theorem 4.1.9]). Set u:=
(limsupw;)*. It is meant to be the solution of (x). One should keep in mind that if we
again pass to a subsequence of u; (as we shall do in the sequel) the function u remains

unchanged.

PROPOSITION 3.2.1. The function u defined above solves the Dirichlet problem ()
provided that for any a>0 and any compact KCQ we have

lim (dd°us)" =0, where Ej(a):={u—u; >a}. (3.2.1)
7= J B, (a)nK

Proof. Indeed, if (3.2.1) holds then for any s one can find j(s) such that
c n 1 : -
/ (ddus)*< =, j=3(s).
E;(1/s)NK 8
Set os:=max(u;(s),u—1/s). Then (dd°g,)™=(dd"u;(s))™ on the interior of K\ Ej;(,)(1/s),
and so the above inequality implies that any accumulation point of {(dd®es)"} is >du

on int K. On the other hand, by the definition of g; and a version of the Hartogs
lemma given in [H, Theorem 4.1.9}, ps—u uniformly on any compact E such that u|g
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is continuous. So it follows from Theorem 1.2.8 that g, converge to u with respect to
capacity. Therefore applying Theorem 1.2.12 we obtain (dd®ps)"™— (dd°u)™, and further

(ddu)™ > dp. (3.2.2)

To get the reverse inequality note that gs=u(,) on a neighbourhood of (2 since all the
u;’s (and therefore u as well) are bounded from above by the solution of the homogeneous
Monge-Ampere equation with the same boundary data, and this solution is continuous
in the closure of Q. Hence, due to the Stokes theorem, [, (dd°gs)™= [, (dd°u;(s))™. By
the construction, the last integral is equal to fn du, so the measures in (3.2.2) must be
equal.

We shall prove Theorem A and Theorem C by verifying (3.2.1).
The following lemma is a key element of the proofs that follow.

LEMMA 3.2.2 [Kol]. Given 20€Q and two numbers M >1, Ry>0 such that
By ={|z—2| <eMRy} cC 9,
and given veEPSH(Q)NC (), —1<v<0, denote by E=E(6) the set

{z€ Bo: (1-6)v(2) Ssgg)v},

where 6€(0,1) and Bo={|z—z0|<Ro}-
Then

C
cap(E, B;) < V(;S’

where By ={|z—zp|<eRp} and Cy is an independent constant.

Proof. From the logarithmic convexity of the function r—sup),_, ., v(2) it follows
that for z€ Bas\ By and ag:=suppg, v we have

1 —
v(2) <ao (1—M log %)

Hence

= v < 1 !
al.——sglp K Q i .

Let u=ug, p,:=sup{wePSH(B;): w<0, w<—1 on E} be the relative extremal function
of E with respect to By (see §1.2). From the inequality v(2)<ao/(1—6), z€FE, one
obtains

1
m(v—al) S’U,.
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So, for some z; €0By the following inequalities hold:

ag—ay S 6—1
ar—ao/(1-6) 7 (M—-1)6+1"

U(Zl) }

Note that EC{|z—29|<2Rp}CB;. Therefore Theorem 1.2.11 and the above estimate
yield

Co
—_ C, n < — .
cap(FE, By) /E(dd w)* < YT

COROLLARY 3.2.3. If 6>0 and Q'CCS) then

AINE(v,1,6))

e—0 Iw )\(I) ’

where E(v,I,6):={z€l:v(z)<sup;v—6} and sup is taken over all cubes ICQY of dia-
meter <e and all vePSHNC(Q) satisfying —1<v<0.

Proof. Fix a>0. Let Bg, By, Bys be defined as in Lemma 3.2.2 for some zp, Ry.
Then the constant C' in Theorem 1.2.6 corresponding to (Bg, B ) in place of (€', Q) does
not depend on zy and Ry provided that we normalize the measure replacing A(K) by
A(K)/A(Byp) in this formula.

For £>0 small enough there exists M >0 so large that

CoC _
Ms @

where Cy comes from the statement of Lemma 3.2.2, and furthermore, for any cube I C €Y/
of diameter <& one can find zp, Rg such that diam I=2Ry and ICByC By C. Then,
by Theorem 1.2.6 and Lemma 3.2.2 we get

CCoA(Bo) _ _A(Bo)

AINE(v,1,8)) _ . MBo)
<€ MaxID) S

AT Y6

cap(INE(v,1,6),B1) <

By the choice of By the quotient A(Bp)/A(I) depends only on the dimension of the space,
and thus the result follows.

3.3. Proof of Theorem A

To finish the proof we need one more lemma.

LEMMA 3.3.1. Suppose that a compactly supported measure pu on Q is locally dom-
inated by capacity (i.e. it satisfies (3.1.2)). Then there exist A; >0, so€N such that for
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any s>sg and any j>s+n we have
pi(E) < Ay pi(I') cap(E, Brr),

for ECIccl, IeBy, I'eB,_;.

Proof. Let us note that I’ is the unique cube from B,_; which is concentric with I.
Since p has compact support one may choose sg so that if supp uNI#@ for some 1 €B;,
then By C . First we shall estimate y; in terms of fi;:=p*p;, where p; is a smoothing
kernel defined as follows. Denote by d; the diameter of a cube belonging to B;. We
require that a radially symmetric non-negative function g;€ C§°(B(0,2d;)) be constant
on B(0,d;) and furthermore that

/ 0;jdA=3 and o;dA=1.
B(0.,d;) B(0,2d;)

Then for any x€Ie€B; we have I C B(z,d;), and so

) M)
(B(z,d;))  2MBl(z,d;

5(0) = [ 0s(a~v) duw) > 55 (@)= A7 (). (331)

By the choice of p;,

fij(E)< sup p(E-z), (3.3.2)
|z|<2d;

where E—z:={z:2=y—z,y€E}. Finally, if j>s+n then for any I €B;,
I+B(0,2d;)C I'.
Hence, applying Theorem 1.2.5 we find an independent constant As such that
cap(E—z,Br) < Ascap(E, Br), ECI, |z|<2d;. (3.3.3)

Combining the estimates (3.3.1), (3.3.2), (3.3.3) and (3.1.2) one obtains

pi(E) < Azfi5(E) <A2| Tupd w(E-x)
| <2 7

< AAy sup u(I')cap(E—z, Bp) < 32" AAy Az (I) cap(E, Br),
|z|<2dj

which is the desired conclusion.

We proceed to complete the proof of Theorem A. Recall that it is enough to show
(3.2.1). Given £>0 apply Lemma 3.2.2 to find s so large that

cap(E(v, 3a)NI, Br) <k, (3.3.4)
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whenever I€B, and E(v,3a):=U;ep, {2€1:v(z)<sup;v—3a}, where vePSH(Q) is
such that —~1<v<0.
Put b(I):=supj u, b;(I):=supu; and choose jo>s+n such that
b(I)<bi(I)+3a, I€Bs, j>jo.
Then for j> jo,

E;=FEj(a)={uj<u—a}CF;:= Igs {zel:ui(z) <bj(I)—3a}. (3.3.5)

Hence by (3.3.4), cap(F}, Br)<e, and further, by applying Lemma 3.3.1 we get
pi (F5NI) < Av i (I') cap(Fj, Br) < Arepi(I').

If we sum up these inequalities over all I€B; then, recalling that u(Q2)<1 and using
(3.3.5), we finally arrive at

13 (Ej(a)) < pi(Fy) <37 Ase.
This gives (3.2.1) and completes the proof.

3.4. Proof of Theorem C

To avoid some technicalities we shall work under an extra assumption that v; is uniformly
bounded. How to get the general case is explained at the end of the proof. Let us first
show the following stability result.

THEOREM 3.4.1. v=(limsupv;)*.
The theorem will follow from the following two lemmata.

LEMMA 3.4.2. For any t>1 and a>0,
lim (dd°vx)"™ =0,
k=00 Jy (k,a,1)
where V(k,a,t):={vp<tv—a}.

LEMMA 3.4.3. For any t<1 and a>0,

lim (dd°v)" =0,
k=00 Jy (k,a,1)

where V(k,a,t):={tv<vi—a}.

Proof of Lemma 3.4.2. We fix t and write for brevity V(k,a):=V (k,a,t). Note that
if the statement holds for some ag then it is also true for a>ag. So we may feel free to
decrease a if necessary. Keeping this in mind one can fix £>0 and b>a so close to a that

/ (dd°v)" <¢ (34.1)
V{k,a)\V(k,b)
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for infinitely many k from a preassigned subsequence.
Using Theorem 1.2.8 choose an open set U such that v|g\p is continuous and

/ (dd°vs)" <e and / (dd°vg)" <€ (3.4.2)
U U

for any k.
Denote by V’(k, a) the union of cubes belonging to By and contained in V(k,a)UU.
Let us first prove that

lim (dd®v)™ =0. (3.4.3)
k=00 JV (k,a)\V(k,a)

Let E(6,k):=Uep, {2€I:sup;v—uv(2z) 26} We shall see that if I€ By and I¢V'(k,a)
then
INV(k,a)C[V(k,a)\V(k,b)JUE(6, k)UU (3.4.4)

for some §>0 and k large enough.
Indeed, for some k; and any x,y€ I\U, I € B, k>k;, we have by continuity of v|o\y

b—a
lv(z)—v(y)| < b:= a1 (3.4.5)

Suppose now that I€By, k>k;, and that there exists zp€ I\(UNV(k,a)). Take
any z€I\[E(6,k)UU]. To verify (3.4.4) we need to show that z¢V (b, k). Indeed, since
2¢ E(6, k), we have vg(z)>vk(20)—6 and, due to (3.4.5), v(2)<v(zp)+6. Therefore

v(2) —tv(z) Z vk (z0) —tv(20)—6(t+1) 2 —a—6(t+1) = —b,

and so (3.4.4) follows.

Increasing k; if necessary and applying Corollary 3.2.3 one obtains
/ (dd°vi)"<e / (ddvg)™, k>k. (3.4.6)
INE(8,k) I '
Since by (3.4.4),
[V (k,a)\V'(k,a)] C [V (k, a)\V (k, b)]UE(6, k) U,

(3.4.3) follows from (3.4.1), (3.4.2) and (3.4.6).
Recall that, by the construction of (dd°vy)™, we have

/ (ddvs)" = / (ddvi)™.
V' (k,a) V'(k,a)
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From this and the comparison principle one infers that

g / (dd°v,)" < / (ddvp)" < / (ddcve)™ + / (dd°vg)"
V(k,a) V(k,a) V'(k,a) V(k,a)\V’'(k,a)
- / (dd°v,)™+ / (dd°ve)"™.
Vi(k,a) V(k,a)\V'(k,a)
Hence
(t—1) / (dd°ve)™ — / (dd°vs)™ < (¢"—1) / (ddevs)"
V' (k,a)\U U V(k,a)

< / (ddvi)™
V(k,a)\V'(k,a)

By (3.4.3) the right-hand side tends to 0 as k— o0, which forces the left-hand side to
have non-positive upper limit. Thus by invoking (3.4.2) and (3.4.3) once more the lemma
follows.

Proof of Lemma 3.4.3. The proof is similar to the preceding one. Formula (3.4.1)

/ (dd°vs)™ < e. (3.4.1")
V(ka\V(kb)

Instead of (3.4.4) we now prove

can be replaced by

I\[E(6,k)UU) C V (k, a) (3.4.4)

for any I€ By, such that (I\U)NV (k,b)#@. The proof is analogous to the one of (3.4.4).
So, if V'(k) denotes the union of cubes from I€ By satisfying (I\U)NV (k,b)#£@
then V/(k)CV(k,a)UUUE(6, k) and, obviously,

V(k,a)C V'(k)U[V (k, a)\V (k, b)]UU.

These inclusions combined with (3.4.1'), (3.4.2) and (3.4.6) lead to

/ (dd°v)™ > / (ddCvy)" / (dduy)" / (dd°v)"
V(k,a) V'(k) U E(6,k)

> / (dd°ug )" —2e = / (dd°vs)" —2¢
V' (k)

V(k)

2/ (ddcvs)"—/ (ddcvs)"—/ (dd°vs)™ —2¢
V(k,a) WV (k,a\V(k,b)] U

2/ (ddvs)™ — 4e.
V(k,a)

(3.4.7)
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On the other hand by the comparison principle,

/ (ddvo)" <t / (ddv,)", t<l. (3.4.8)
V(k,a) V(k,a)

The inequalities (3.4.7) and (3.4.8) are contradictory for sufficiently small &£ unless
WMk o0 [y (1 gy (dd°s)" =0, which gives the result.

Proof of Theorem 3.4.1. First, let us verify (limsupuvg)*<v. Set w=(limsup vg)*.
Suppose that the statement were not true. Then for some z €2 and £>0 we would have
v(z0) <w(2p)—3e. Since the inequality is valid on a set of positive Lebesgue measure in
any neighbourhood of 2, and the set where w>limsupv; has measure zero one may
also suppose that w(zg)=limsupwvg(2p). By the upper semicontinuity of v we have
v<v(z())+%5 on a ball B=B(zp,r). Apply the comparison principle to obtain

i (et 9)" < /G ()

where G, ={v<vg+¢} and ¢ is a strictly psh negative function in Q with ¢>—3e and
dd°¢>68, §>0, B(z):=dd®|z|>. Then GLCCQ. Since vgv(zo)—f-%e on B we get by
the Hartogs lemma vg<vg(z0)+€ for k>kg. Then by the mean value inequality for
subharmonic functions vy >vk(20)—¢ on a subset F of B such that 2A(Fx)>A(B).

For z€ F}, and k large enough,

vi(2) 2 vk(20) —& > w(20) — 26 > v(20) +€ > v(z) + 3¢

Thus Fi, CGy and so the left-hand side integral exceeds
/ (dd°¢)">6™ | B"> %6"/ 8" = const > 0.
Fy Fy, B

This leads to a contradiction as the right-hand side tends to 0 when k— o0, by Lemma
3.4.3.

The proof of the reverse inequality is analogous with the roles of vy and v inter-
changed. To get vy <v(zg9)+¢ in a neighbourhood of 2y the Hartogs lemma is used. To
draw the final conclusion we now apply Lemma 3.4.2. The details are given in [Ko2].

REMARK. In the proof of Theorem 3.4.1 we do not really need to know that vy is
uniformly bounded.

Proof. In the general case only the inequality (3.4.2) requires an explanation.
Let V(k,s) denote the set {vx<~—s} and put By(s):={I€Bx:sup;vg=>—s}. Then
for I€ By (s) we get by applying Theorem 1.2.6 and Theorem 1.2.11

v (INV (k, s?)) < Crvr(I) cap(INV (k, s), Br) < Cz"Tk(I) (3.4.9)
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where C1, C; are independent constants and v stands for (ddvg)™.
On the other hand, for €B;\Bi(s) we have ICV(k, s}, and using Theorem 1.2.11
one finds a constant Cs such that
C
cap(KNV (k,s),) < ?3
where K:=supp (dd°v,)". Hence (recall that —1<v<0),

ddv,)" = /dd“v "
= 5 f @

I1EBK\Bx ()

< / (dd®v,)™ < cap(KNV{(k,s),0) < %
KNV (k,s) s

This combined with (3.4.9) provides s so large that

/ (ddvg)" < ie
{ve<—s}

for all k. Then, choosing U with cap(U, 2)<&/2s™ one obtains, by the definition of the

relative capacity,
dde Ve \? £
( -—) <cap(U,Q) < 5—,
Un{ve>—s} s 2s

/ (ddCvg)" = / (ddCug)"+ / (ddor)" <e.
U Un{vg=~—s} Un{vy<—s}

COROLLARY 3.4.4. Let T be a current of the form

and so

dd’o AddgaN...Add0n, 0s€PSH(Q), —1< g5 <0.

Then

lim T=0
k—oo Jv(k,a,t)nK

for Vi{k,a,t)={vy<tv—a}, t>1, a>0.

Proof. For fixed a and t set p=a{p1+02+...+0n—1) and Gg={vx<tv+p}. Then,
by the hypothesis, —(1+n)a<p<—a. Therefore V(k, (n+1)a,t)CGrCV (k,a,t). Apply
the comparison principle to obtain

/ T< / (dd°(tv+0))"
Vit IVt
< / (dd°(t-+0))" < / (dd°ve)".
Gy, V(k,a,t)

The statement now follows from Lemma 3.4.2, which says that the right-hand side of the
above inequality tends to zero as k—o0.

Now we are in a position to prove the crucial lemma.
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LEMMA 3.4.5. Suppose that (3.2.1) is not true, and so, after passing to a subse-

quence, we have

/ (ddCUj)" > Ag, Ag>0, ag>0.
E;(ao)

Then there exist a, >0, Ay >0, k1>0 such that

/ (dd®v; )" ™A (dd k)™ > A, k> k1, 5> 5(k). (3.4.10)
E; (am)

Proof. We shall proceed by induction over m. For m=0 the statement holds by the
hypothesis. We assume that (3.4.10) is true for some fixed m<n and now we shall prove
it for m+1.

Let us observe that by the Chern-Nirenberg-Levine inequalities there exists C>0
such that

/Tgc (3.4.11)
Q

for currents T which are wedge products of dd°v;,ddu and dd°vjir (defined below).
Indeed, all the functions u,v;, v,k are bounded from below by —1 on'a compact subset of
Q and maximal away from this set. Take a defining function for 2 which does not exceed
—1 on the compact set. We can now extend u, vj, vz by this function to a neighbourhood
of Q, and thus by Theorem 1.2.3 the inequality (3.4.11) follows.

Let us denote by T=T(j, k,m) the current (dd®v;)" ™ 'A(dd°vk)™ and set vjz:=
max(v;, vk —2¢) for some fixed €>0.

Using quasicontinuity of u and v (Theorem 1.2.8) we choose an open set U such
that

€
cap(U,Q) < T (3.4.12)
and both u and v are continuous on Q\U. Then for j>jo and k>ky we have
max(v;,vx) Sv+e and  u; <ute, (3.4.13)

on Q\U. Indeed, the inequalities are valid in a neighbourhood of 9Q because all u;
(or v;) are bounded from above by the maximal function in Q with boundary data ¢
(or 0). On the remaining part of Q\U one obtains (3.4.13) by the Hartogs lemma, since
due to Theorem 3.4.1, v=(limsupv;)*. Set

J'(j,k):=/Q(u——uj)dd°vjk/\T,

J(], k) Z=/(U~Uj)ddcvaT, j>j0, k> k.
Q
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Using the inequalities vy —v,x<2¢, |vk|<1, (3.4.11) and integration by parts we can
estimate the difference of those integrals in the following way:

TG, k)= TG, k) = /Q (056 —vg) dd*(u—1;) AT
:/(vjk—vk) ddCuAT+/(Uk—Ujk)ddCUjAT
Q Q
< / (v —vk) dd°unT+2¢ / dd°u; AT
Q Q
< / ok || ddeunT + 2 / dd®(u-+u;) AT
{’Uk<’vj—26} Q

</ ddcu/\T-i-/ dd°unT +4eC.
{ve<v; —2e\U U
The second term on the right-hand side is bounded from above by
/ (dd(u+v;+vg))" <3"cap(U,Q) <e.
U

As for the first one, we shall make use of Corollary 3.4.4. We need to know that
{vk<v;—2e\UCV (k,a,t) for some t>1, a>0. Recalling (3.4.13) one obtains v; —2e<
v—e< (1+3¢)v—3e on Q\U. Thus {ve<v;—2e}\UCV (k, 3¢,1+ ). Applying Corol-
lary 3.4.4 one can find k; >kg such that

J'(, k)= I (4, k) S4(C+1)e. (3.4.14)

In the next step we shall estimate J'(j, k) from below. Using the second inequality of
(3.4.13) we have

TG, k) > am /

dd°vg AT —¢ /
Ej(am)

dd°vj AT — / dd°v; AT
O\U U

(3.4.15)
>am/ ddvx NT —e(C+1).
E;(am)
Furthermore,
/ ddcvjk/\T2/ ddcvjk/\T
E;(am) E;(am)N{v;>vr—2e}

=/ ddc’llj AT

Ej(am)N{v;>vi—2¢e} (3 4 ]_6)

Z/ ddc’l)j/\T——/ ddcvj/\T
Ej(am) U

- / ddcvj AT.
(Ej(am)N{v; v —2e Y\U
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To estimate the last integral we again apply Corollary 3.4.4. Using (3.4.13) we get
{vj<vk—2eN\U c{v;<v—e}C{v;<(1+3e)v—3¢}. Therefore, given k one can find j(k)
such that for j>j(k)

ddc’l)j AT S £.
(Ej{am)M{v; <vr—26H\U
Hence, according to the induction hypothesis one obtains from (3.4.16)

/ ddvix AT 2 Am—2e, > j(k).
Ej(aM)
Plug it into (3.4.15) to get

J'(4,k) > am(Am—26)—£(C+1), j>j(k).

Thus, if we start with € small enough, we may conclude from (3.4.14) and the above
inequality that
TG, k)2 YamAm, k> ki, 5> 5(K). (3.4.17)

Fixing d>0 one can estimate J(j, k) from above:

1GR< [

ddcvaT+d/ ddc’l)k/\TS/ dd°vp AT+ dC.
{u; <u-—d} Q {

u;<u—d}
Setting am+1:=d=am A,,/4C in the last formula and combining it with (3.4.17) we finally
arrive at
ddcvk/\TziamAmzzAm+ly k>k1,j>j(k),
Ej(am+1)

which concludes the proof of the inductive step. Thus the lemma follows.

Now we shall prove Theorem C reasoning by contradiction. So, suppose that the
hypothesis of Lemma 3.4.5 is valid. Then using its statement for m=n we can fix k>k;
such that

/ (ddvR)" > An  if §> j(K).
E:i(an)

Since, by the construction, (ddvy)™< M 3™ for some M >0, one infers from the last
inequality that
ME@)> Mt [ (ddou)> 2, 5> 5(6),
Ej(an) M,

which contradicts the fact that u;—u in L .. This completes the proof of Theorem C
modulo the additional assumption. To dispense with the extra hypothesis one should re-
place vy, in Lemma 3.4.5 by functions wy := max (v, Cv) with Cv<infq v on supp (dd®v)™.
Lemma 3.4.5 still holds true in that case, but the argument completing the proof of
Theorem C needs to be modified since wi are not smooth. Fortunately, due to Corol-
lary 3.4.4 we have (dd°wy)"=(ddvy)™ away from a set of arbitrarily small measure
(dd°vi)™ provided k is large enough. We refer to [Ko2| for details.
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REMARK. Theorem C remains valid in a pseudoconvexr domain, provided that there
exists o solution to the homogeneous Dirichlet problem for the Monge—Ampére equation
with the given boundary data.

Proof. Let us consider an exhaustion sequence of smooth strictly pseudoconvex sets
Q;7Q. Fix €, and a decreasing sequence ¢;z, k=1,2, ..., of continuous functions on
0€); such that limg_,o @k | v, where v again denotes the given subsolution. Theorem C
now provides u;x solving () in Q; with boundary data equal to ¢;;. By the convergence
theorem uj:=lim | u;x solves (dd°u;)"=dp in ©; and hence, via the comparison principle,
uj2v in ;. In particular, the last inequality holds on 9%;_1. So, again applying
the comparison principle, u;>u;_1 on Q;_;. Thus we have shown that u; is (locally)
increasing. By the convergence theorem, u=(supwu;)* is the solution of (x) in . The
extra hypothesis ensures that u satisfies the boundary condition. (I overlooked that point
in {Ko2].)

COROLLARY 3.4.6. If Q is strictly pseudoconvex and v1, ..., v, EPSHNL>®(Q) then
there exists u€ PSHN L™ (Q) matching any prescribed continuous boundary data and such
that (dd®u)"=ddvi A...Add vy,

Proof. The Monge-Ampeére mass of v; +...+v, obviously exceeds the given mea-
sure u. Take a sequence of cut-off functions x;T1 in Q and solve (*) for x; du and given
boundary data ¢. The solutions u; produced in this way decrease to a psh function u
which is bounded from below by —(||v]|+|l¢||) and solves (x).

The Monge-Ampere operator is well defined for psh functions which are locally
bounded outside a compact subset of Q (see [D1], [D2], [P]).

COROLLARY 3.4.7. If vePSH(Q), ve L2 (Q\E), ECCQ with lim,_,, v(z)=p(x)

loc

for x€0R, and if a Borel measure p satisfies u(E)=0, dp<(dd®v)™, then there exists
uzv solving

ue PSHN LS (Q\ E),
(ddu)™ = dp,
lim, o u(z)=@(x) forze€dq.

Proof. Denote by U, the set {v<-—s}, s=1,2,..., and solve the Dirichlet problem
(*) for measures p,:=pi|o\y,. The solutions are denoted by u,. Then by the comparison
principle, us 2max{v, —s}, and so u=lm | u, is the desired solution.
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3.5. Measures admitting solutions to the Monge—Ampére equation
Theorem B follows easily from Lemma 2.3.1.

Proof of Theorem B. Due to Lemma 2.3.1, |lu||p~ is bounded by a constant de-
pending on A and h. The change of the normalizing condition u(0)>-1 into [du<1
is harmless, since by shifting the origin if necessary one can obtain the lower bound for
u(0) also in that case.

We need to prove the continuity of . To do this we shall apply Lemma 2.3.1 again.
Since ¢ is continuous one can find for any given d>0 a compact K C 2 such that u; <u-+d
on 9K, where u;j:=u*wj; is the standard regularization sequence for u. Then the sets
{u;>u+2d} must be empty for j large enough. Otherwise, by the formulas (2.3.4) and
(2.3.5), their capacity would be bounded away from zero in contradiction to Corollary
1.2.10.

Corollary 3.1.3 has been proved in §2.5.

Proof of Corollary 3.1.4. First we shall prove the statement under the assumption
that p has compact support in 2. Define a regularizing sequence of measures p; by
fixing weC°(B), a radially symmetric non-negative function with [wdA=1 (here B is
the unit ball in C"), and setting

Wi =wji*i,
where
wj(2) = 72 w(j2).

By Theorems A and B it is enough to find jo>0, A>0 such that for any compact
set KCQ the following inequalities hold:

i (K) < Acap(K,Q)h™!((cap(K, )"V, 5> o (3.5.1)
PROPOSITION 3.5.1. If ECCS is regular then for any d>1 there exists ty such that
cap(Ky, Q) <dcap(K,Q), |y <to,

where KCE is reqular and K,:={z:z—ycK}.

Proof of Proposition 3.5.1. For KC E define wy(z):=uk, (z+y), where ug, is the
relative extremal function of K. For any ¢ such that O<c<% define Q.={ug<—c}. By
continuity of ug one can fix to>0 such that if |y|<to and z€Q./, then z+y€. Then

()._{max(wy—c,(1+2c)uE)(:c), T €Qe/2,
T ar20usa), £¢ 00,
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is a well-defined plurisubharmonic function in Q. Since KCE and w,=—1 on K one
concludes that g=wy —c in a neighbourhood of K. Hence by Theorem 1.2.4,

cap(K,Q) > (1+20)_"/I{(ddcg)" = (1+2c)_"‘/K(ddcwy)"
— (14+20)~" /K (dd°uxe,)" = (1420) " cap(K,, ).

Thus the proposition is proved.

To complete the proof of Corollary 3.1.4 let us fix a set E and a positive number jg
such that the above proposition holds with E:=[J > jo SUPP 14 CC Q, jo>1/to, and d=a™.
By the assumptions there exists Ag>0 such that

1(K) < Ag cap(K, Q) h~ ((cap(K, Q))~1/™).
Hence for j>jo we have by Proposition 3.5.1 and the extra assumption on A

pi(K)< sup p(Ky)< Ao sup cap(Ky,Q)h_l((cap(Ky,Q))_l/")
ly|<1/3 lyl<1/j
< Aod cap(K, ) h™* ((dcap(K, 2))~/™)

< Agdbcap(K, Q) h™" ((cap(K, ) /"),

Setting A:=Aga™b we verify in this way that p; satisfy (3.5.1) for j>jo, with the
constant A independent of j. Thus by Theorem B the family of solutions of (x) for u;,
J>Jo, is uniformly bounded. So one can apply Theorem A to get the conclusion.

To verify the statement for an arbitrary measure u note that by the above argument
the solutions exist for x; du, where x; is a non-decreasing sequence of smooth cut-off
functions, x; T1 in . Moreover, the L°°-norms of those solutions are uniformly bounded
by a constant depending only on A. Hence the result follows by applying the convergence
theorem.

Let us point out some families of measures that fulfil the hypothesis of Corollary
3.1.4. Recall that the p-Hausdorff content of a set ECR™ is given by

Hy(E)=inf 3 1P,
jed
where the infimum is taken over all coverings of E by unions of balls B(a;, ;).

COROLLARY 3.5.2. Let y be a Borel measure in Q satisfying the inequality

WE)<C / T (B()) dnos(z), >0,
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where C is an independent constant, z=(z1,2')€CxC""! and
E(2):={zn€C:(n,7 )€ E}.

Then one can solve the Monge-Ampére equation (x) for p.

Proof. 1t follows from Corollary 1.3.1 via the following proposition which shows that
both assumptions on u are satisfied in this case.

PRrROPOSITION 3.5.3. If p is as in Corollary 3.5.2 then for any cube ICBrCf{}
(Br as defined in §3.1) we have

u(E)éCO(cap(E,BI))Z, ECIL

Proof of Proposition 3.5.3. By the hypothesis,
WE)<C [ A BE) N <C [ Fhn(BE) X,

Applying [Ts, proof of Theorem II1.19] and recalling that for n=1 the capacity Tr
and the logarithmic capacity are equivalent (see e.g. [Ta]), one can estimate H, /o, (E(2'))
by the capacity Tr(E(2')) (R=radius of By):
Ch

ﬁp/%(E(zl)) < _—lom- (3.5.2)

Now, following the argument from the proof of Lemma 2.5.1 we get the conclusion.

REMARK 1. We are free to choose the coordinate system in § to meet the require-
ments on u in Corollary 3.5.2.

REMARK 2. The surface measure of a smooth compact real hypersurface satisfies the
assumptions of the last corollary.

The method of the proof of Corollary 3.5.2 works also for some other measures as
long as their one-dimensional slices are dominated by capacity. This is the case, for
instance, when a measure yu is upper bounded by the Lebesgue measure of the totally
real part R™ of C™:

1(E) < const-Ar-(ENR™).

Then instead of (3.5.2) we use the well-known inequality between the length of a subset
of the real axis and its logarithmic capacity (see [Ts]).

In §2.5 we gave further examples of measures for which () is solvable (clearly, M
should now be replaced by Q).
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