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1. In tro d u c t io n  

Let Ad denote the class of all non-negative multiplicative functions g with the property 

that 

(i) 3A: g(pV) ~<A v (vCN, p prime), 

(ii) Ve>0 3 B = B ( e ) > O :  g(n)<~Bn ~ (heN). 

In 1980, Shiu [7] obtained a general upper bound for short sums of functions gEAd: 

Let c~, ~ E ]0, 1[ and let x, y satisfy x )  y )  x ~ . Then for positive integers a, q with (a, q) = 1 

we have 

E g(n)<< y e x p / E  g-~ )- } 
x<n~<x+y ~(q) log x " p • x  

n=a  (mod q) p~ q 

uniformly for l <. q<.x ~. 

This result has turned out to be very useful in a wide range of applications. A closer 

inspection of its proof reveals, in the case q=l ,  that 

(a) g needs only be sub-multiplicative, i.e. g(mn)<.g(m)g(n)  for ( m , n ) = l  with 

9(1)=1, 

(b) the constant implicit in the <<-sign depends only on A, B and a, 

(c) given c~, condition (ii) above need only hold for a particular e=e(c~). 

Shiu's result has been generalised by Nair [5] to sub-multiplicative functions of poly- 

nomial values in a short interval. 

In this paper, we weaken the property of sub-multiplicativity significantly to appre- 

ciably widen the range of application of such a result. Consider, for any fixed kEN, the 

class .Mk(A, B, e) of non-negative arithmetic functions F(nl ,  ..., nk) such that 

F ( m l n l , . . . , m k n k ) < . m i n ( A a ( m ) , B m ~ ) F ( n l , . . . , n k )  ( m : = m l . . . m k )  (1) 

for all k-tuples (ml,...,mk), (nl , . . . ,nk)  with ( m j , n j ) = l  (l~<j~<k). Here and in the 

sequel, ft(m) denotes the total number of prime factors of m, counted with multiplicity. 
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Such functions F need not be multiplicative or even sub-multiplicative. For instance, 

the Hooley A-function (see [3], and Chapters 4, 6 and 7 of [2]) defined by 

~(n):=max ~ 1 
u E R  

din 
e = < d ~ e " +  1 

satisfies A(rnn)<~-(m)A(n) for ( m , n ) = l ,  where T(m) is the total number of divisors 

of m. Hence AEA//I(2, B, e) for any e>0 and suitable B=B(e). 
k Q Let Q~eZ[x] ( l<j~<k) be polynomials such that  Q=YIj=I r has no fixed prime 

divisor. Our main result (Theorem 1 below) is an upper bound of the form 

x<n~x+y p~x n~x 

uniformly for x~<~y<.x with x sufficiently large and where ~ and a can be arbitrary 

small positive real numbers satisfying certain conditions. Here g(m)= yQ (m) denotes the 

number of roots of Q in Z/mZ. The function v(n; F, ~) will be precisely defined in the 

next section--see (10) and (16)--and is linked to the decomposition of Q into irreducible 

factors in Z[X]. 

In the very special case k= 1 and Q irreducible, our bound reads 

F(n) y(n) (2) 
x<n~x...~y p~x x P n~x  n 

The essential novelty of such an estimate is immediately evident even in this simple 

situation. For instance, we may apply it with F(n)=A(n) t (t>0),  the result being that  

Y ~ ~(n)~e(~) (x ~< y < x). 
A(IQ(n)I) t <<~,t,Q ~ ,~<<.~ n 

x<n~x.+y 

When combined with existing bounds for the sum on the right-hand side [9], this yields 

A(iQ(n)l)t <<~,t,Q y(logx)2~-t-leV '{2t+~176176 (x---,c~). (3) 
x<n~w.+y 

Here and in the remainder of this paper we let log k denote the k-fold iterated logarithm. 

Let P+(n) denote the largest prime factor of the integer n, with the convention that  

P+(1 )=I .  By a modification of the argument described in [9], we can further show that  

(3) leads to the lower bound 
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for any irreducible QEZ[X] of degree exceeding 1, any hE]0, 2-1og4[ and any y=x 1/k, 
with arbitrary fixed kcN.(1) This seems to be the first result of this kind and it also 

mirrors the corresponding current best estimate over the long interval [1, x]. 

A seemingly more trivial application of (3) with t = l  and Q(X)=X is the estimate 

Z DER \ [ a j  [aj] 
D<d~2D 

which is obtained by bounding the expression on the left by ~--~<n~<~+y A(n). 

The uniformity with respect to the polynomial Q which we obtain in Theorem 1 

enables us to generalise the result to the variable n restricted to an arithmetic progression: 

this is Corollary 1. This derivation closely follows the corresponding argument in [5]. 

More involved applications of our main theorem are obtained by considering func- 

tions F in many variables. By way of example, let us take F1, F2 EA~I1 (A, B, ~), so that  

F(nl, n2)=FI(nl)F2(n2) lies in M2(A, B 2, r Our theorem yields that  

E FI(IQI(n)])F2(IQ2(n)I)<<Y 1-I (1-Q(-~P~)~ E v(n;F1F2,~) (4) 
x < n ~ x + y  p~x  Y / n ~ x  

where Q=QQ with Q=QIQ2. Here the quantity v(n; FIF2,Q) can be made explicit by 

introducing the decomposition o - r V  ~ h  into products of irreducible factors. Writing "~5--1 l h = l  *~h 
Q r iq~j h t~h:=t)Rh (l~<h~<r) and j=I-Ih=l,~h ( j = l , 2 ) ,  then we may take 

21,11h=l h ) l ~ I  /~h v(n;FiF2,~)= E Fl(l-Ih=lnh," "~h)F [~" n "Y2h~ Qh(nh) (5) 
nl ,...,n,.>/1 h = l  

n:l...nTr =n 

If, for instance, we choose F2 (n )= l  when P+(n)<~z and 0 otherwise, we obtain upon 

simplification and a further application of our Lemma 2 below that,  for any x > 0 ,  

e-XUy 
E FI([QI(n)I)<< E v(n;Fl,~) (6) 

~<n~<x+y (log x)a(Q1) ~<~ 
P+(IQ2(n)l)~z 

where ~(Q~) is the number of irreducible factors of Q1, and u-- (log x)/log z. The special 

case of (6) with QI(X)=Q2(X)=X, F I - 1  is only slightly weaker than the current best 

available estimate of Hildebrand [4] for the sum 

x ( n ~ x + y  
P+(n)<z 

see the remark in the end of w 

(1) A slightly more  precise s t a t emen t  is given in Theorem 2 below. 
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It may also be observed from (5) that for (Q1, Q2) = 1 the bound (4) simplifies to 

Y~ F~(IQ~(n)I)F2(IQ2(n)I) 
x<n~xWy 

<<Yp<~x-H (1 PQ~P))(1 PQ2(P)p ){n~<~x Fl(n)PQl(n)En n<<.x F2(n)OQ~(n)n }" (7) 

Choosing Q1 with QI(0) #0, Q2(X) = X  and F2(n) = 1 if P -  (n) >x, F2(n) =0 otherwise, 

we obtain from (7) that 

E FI(IQI(p)I)<< IQI(0)I Y H (1 ~Q~P)) E FI(n) QQI(n) 
x<p.<~+u ~(IQI(0)I)  l o g x  v~<~ ,~<~ n " 

When applied with F I = A  and Ql(n)=n+a, a#O, this yields in turn 

E A(p+a) << lal y A(n) (8) x<p<<.z+~ ~o(lal ) (logx)2 -<~xE n 

uniformly for l~<la ] ~<x. Let ~r(x; q, a) denote, as usual, the number of prime numbers 

p<~x with p-a (mod q). Since 

E (lr(x+y;q,a)-Tr(x;q,a)}=-- E E 1<~ E A(p--a), 
K<q~2K K<q~2K x<p~x+y x<p~x+y ql(p-a) 

we thus derive from (8) the striking bound 

max E {lr(x+y;q,a)-Tr(x;q,a)}<< y e~/(2+~176176 
KE~ K<q~2K 

valid uniformly in 1 ~la[~ x and x ~> 16. 

Throughout this introduction, we have sacrificed precision in the statement of our 

results in order to gain a clearer and more immediate presentation of the wide range of 

applicability of our main theorem. We should however emphasise that every estimate 

cited in this section is described in complete detail in w with all possible dependencies 

explicitly mentioned. 

2. N o t a t i o n  a n d  d e f i n i t i o n s  

On polynomials. We consider a finite number of polynomials QjEZ[X] ( l ~ j ~ k ) ,  with 

deg Qj =gj, and put 

Q=IIQ~= R~ ~, g:=degQ, rh:=degRh (l~<h~<r), 
j=l h=l 
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where r, k and '~h (1 ~< h ~< r) are positive integers and the Rh E Z IX] are irreducible over Q. 

We then write canonically 

! i  ~'~Jh (l~<j~<k) (9) 
h = l  

k r k where 7jh>>.O and note that g=~j=l  gJ=~-~h=l "/hrh" Clearly, we have ~/h=~j=l "~jh for 

all j .  We also introduce the square-free kernel of Q, 

Q*:= f I  Rh �9 
h = l  

For any polynomial TcZ[X],  let QT(n) denote the number of solutions of the con- 

gruence T(m)=-O (mod n). We define 

0:=pQ, p*:=OQ., Oh:=QRh ( l~<h~r) .  (10) 

Clearly, Q(p)= Q* (p) for any prime p. To preserve the uniformity of our results, we shall 

make the assumption that Q has no fixed prime factor, i.e. that 

p(p) < p for all primes p. 

We shall assume, implicitly, several familiar properties of the o-function. See e.g. 

[5, p. 258] for a list of such properties. 

We let D* denote the (non-zero) discriminant of Q*, and put D:=YIp~llD.,Q(p)r ~. 
Finally, we write IITII :=max/Icil for any TeZ[X] with T(x)=~i>~ o cix i. 

On arithmetic functions. P+(n), P-(n) denote respectively the greatest and the 

least prime factor of an integer n, with the convention that P+(1)=I ,  P-(1)=c~.  

f~(n), w(n) denote the number of prime factors of n, counted respectively with or 

without multiplicity, and we write ~(n) for Euler's function. 

By alb ~ (a, bcZ +) we mean that all prime factors of a divide b. 

For any A, B>~ 1, e>0 and k c Z  + we let Adk(A, B, e) denote the class of non-negative 

arithmetic functions F(nl,...,nk) in k variables satisfying (1) whenever (mj ,nj)=l  
(l~<j~<k). For such F, we may define a minimal function G=GF by 

G(nl, ..., nk) := max F(mlnl,  ..., mknk)/F(ml, ..., ink). (11) 
ml~l,... ,mk~l 

( m j , n j ) = l  ( l < j < k )  
F(ml,...,mk)~O 

We of course have the obvious properties that 

(mj ,n j )= l  (l~<j~<k) =~ F(mlnl,.. . ,mknk)<~a(ml,.. . ,mk)F(nl,.. . ,nk) (12) 
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and that 

G(nl, ..., nk) ~ min(A a(n), Bn ~) (nl >1 1,..., nk >~ 1, n = nl ... nk). (13) 

But we also note that  G is sub-multiplicative with respect to each variable, that  

GEA, tk(A, B, E) and that  

G(nl, ...,nk) <. I I  min(A ~, Bp~). (14) 
p~llnl...nk 

When k=l  we simply write 2~4(A,B,s) for ,t~41(A,B,~). We also denote by A,~ 

the class of functions f which belong to A,t(A, B, E) for some A~>I and every E>0 with 

corresponding B : B ( ~ )  >~ 1. 

Special notation. Because of the frequent interplay between algebraic properties of 

the polynomial Q and arithmetical properties of the functions F and G, it is convenient 

and natural to introduce the following notation. Let k, r and 7jh (l~<j~<k, l ~ h ~ r )  be 

defined as in the above sub-section on polynomials. Given r natural numbers nl ,  ..., n~, 

we put 

ny':= n h'yjh (l~<j~<k), n " : = H n } =  n l  h 
h = l  j = l  h = l  

This arises from the fact that  if, for some integer n, we have nh=Rh(n) ( l ~ h ~ r ) ,  then 
I I I I ~5=Q~(n) for all j and n"=Q(n). Observe that if ah=bhch ( l~h~r), then %-bjej 

( l~<j~k)  and a"=b"c". Given any function H of k integral variables, we define an 

associated function H of r variables by the formula 

H(n l ,  ..., n~) := H(n~, ..., n'k). (15) 

Given a k-tuple Q := (Q1, ..., Qk) of polynomials satisfying the assumptions described 

above, an arithmetic function in k variables FEA, Ik(A, B, ~) and an r-dimensional vector 

0 := (el, . . . ,  0~) 

whose components e h ( l<~h~r)  are arithmetic functions in one variable, we put  

v(n;F,Q,O)=v(n;F,O):= E t F(nl,...,nr) 
01(n1). . .0r(nr) 

n 1 . . .  n r 

(16) 

where, here and in the sequel, we let the dagger indicate that  an r-fold sum is restricted 

to pairwise coprime variables which are in turn coprime to D*. 
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Note that v(n; F,O) only depends on Q via D* and the exponents ~/jh occurring in 

the canonical decompositions of the Qj as products of irreducible factors. 

A useful role is also played by the multiplicative functions fh(n)=fh(n, ~) defined 

for each h =  1, ..., r by 

{ A ~Th if p > A 1/~, 
fh(p ~) :---- 

Bp v~hE i fp<~A 1/~. 

A property that  we shall make use of on more than one occasion is that  

G(nl,  ..., n~) <<. I I  fh(nh) (El >~ 1,..., n~ >/1) (17) 
h = l  

where G=GF is the function defined by (11). This follows immediately from (14) on 

observing that  

min(A~,Bp~)<~ ~ fh(p~h) (v~>l) 
h = l  

for all r-tuples (vl, ..., v~) such that  ~-~.h=l ?hVh=V. 
We finally observe that  if k=r and "~jh=hjh (with Kronecker's notation), then for 

any (El, ..., n~)E(Z+) k, we have 

nlj=nj (l~<j~<k) and n"=nl . . .nk .  

This corresponds to the situation where the Qj are irreducible over Q and pairwise 

coprime. 

3. R e s u l t s  

We now state our main theorem, from which all other results in this paper follow in a 

relatively simple way. 

THEOREM 1. Let k be an arbitrary positive integer and let Q jcZ[X ]  (l~<j~<k) be 
k such that Q=I-Ij=IQj has no fixed prime divisor. Denote by g the degree of Q, by 

r the number of irreducible factors of Q and put p=pQ. Then for any A>~I, B>~I, 
0< <i/sg 2, 0<5<1 and F e M k ( A , B ,  we have 

F(JQl(n)j,...,IQk(n)j)<<y H ( i  -Q(p) ) Z v ( n ; F , o )  (18) 
x<n<~xq-y p<<.x " P n<<.x 

uniformly for x~coHQH ~ and x4g2E<<.y<~x. The implicit constant in the <<-sign depends 
at most on A, B, ~, 5, k, r, g, D and the constant co depends at most on A, B, ~, 5, 
k, r and g. The terms ~:=(Pl,  ..., Yr), v(n;F,~) and D are as described earlier. 
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As we remarked in the introduction, the uniformity with respect to the coefficients 
of the polynomials in Theorem 1 furnishes ipso facto the generalisation to arithmetic 
progressions. 

COROLLARY 1. Let A>~I, B>~I, 0<~<l/8g 2, 0</3<1, 0<5~1/2g, and r,k be ar- 

bitrary positive integers. Let FEA~Ik(A, B, ~ 5 )  and QjeZ[X] ( l< j<k)  be such that 
k Q : I ] j = I Q j  has no fixed prime divisor. Let a, qCZ +, with a~q, (q,Q(a))=l. Then we 

have 

E F(IQl(n)],'",]Qk(n)l)<<Y- I I  ( 1 - ~  !)  E v(n;F,o) (19) 
x < n ~ x + y  q p~x  n ~ x  

n--a (mod q) p{q ( n , q ) : l  

uniformly for x>~cl[lQ[I 2~, x49%~y<~x, l<~q~y 1-~ with ~:--(Q1,.--,Q~). The implicit 

constant in the <<-sign depends at most on A, B, ~, /~, 5, k, r, g, D. The constant Cl 

depends at most on A, B, ~, 5, k, r, g. 

The two following corollaries provide simplified versions of the upper bounds in 
Theorem 1 and Corollary 1 when the polynomials Qj are pairwise coprime. 

COROLLARY 2. Let the hypotheses of Corollary 1 hold and assume furthermore that 

the polynomials Qj ( l~ j~k)  are irreducible and paivwise coprime. Then we have 

F(IQ~ (n)I, ..., IQk(n)l) 
x < n ~ x + y  

n=a (mod q) 

(20) k 

<< -Y I-I ( 1 -  Q'~(p p{ ) E F ( n l ' " " n k ) ~  ~j(nj) 
q p<<.x nl...nk~x j : l  nj 

p{q (n~,Dqnj)=l ( l ~ i < j ~ k )  

in the same ranges and under the same uniformity conditions. 

COROLLARY 3. Let k be an arbitrary positive integer and let QjEZ[X] (l~<j~<k) 
k be pairwise coprime polynomials. Assume that Q=I~j=I QJ has no fixed prime divisor. 

Let g:=degQ. Then for any A>~I, B>~I, 0<e<l/8g 2, 0<5~<1 and FjE.M(A,B,  �89 

( l~ j~k) ,  we have 
k k 

E I-I Fj(lQj(n)l)<<y I I  ( 1 -  t~-~ ) )  I I  E 
Y (n) 3j(n) 

n 
x < n ~ x + y  j = l  p~x  j = l  n ~ x  

uniformly for x >/Co [[Q I I a and x 49% ~y<~ x. The dependencies of the various constants are 

as described in the statement of Theorem 1. 

We next combine Theorem 1 in dimension 1 for F(n)=A(n)  t with the best current 
estimates for long weighted averages of powers of the Hooley function [9]. Similar results 
could of course be derived for the generalised Hooley functions Ar(n)--see [2, Chapters 6 
and 7]. 
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COROLLARY 4. Let Q~Z[X] be irreducible with no fixed prime divisor. Then, for 
any t>~l and ~>0, we have 

y(logx)~(~)-lL(logx) v~+~ (x--~co) 
x<n<~x+y 

provided that x~<~y<~ x. Here fl(t):=2t-1 and/~(z)::ex/logziog2z (z~>3). 

The condition that  Q has no fixed prime divisor is actually redundant here since 

we are indifferent in this corollary to the precise nature of the implicit constant in the 

<<-notation. Also, using Corollary 2 instead of Corollary 3 as well as a messy but 

straightforward generalisation of Lemma 2.2 of [9], we could derive a corresponding result 

for any Q, not necessarily irreducible, namely 

A(IQ(n)l)t<< y(logx)'~Q(t)s176 (X--~CO), 
x<n<<.x+y 

r t with 7Q (t) := ~h= 1 { (% + 1) -- 1 } and some suitable constant B ( t ) - - o f  course a variant 

for arithmetic progressions is also available. We have refrained from proving the more 

general result since we only need Corollary 4 as stated in our proof of Theorem 2. 

Already in the very special case Q(X) =X, Corollary 4 implies a curious result which 

appears to be well beyond the reach of any exponential-sums method we are aware of. 

COROLLARY 5. Let ~E]0, 1[. Then we have, uniformly for D>~I, x~<<.y<~x, 

This is an immediate consequence of Corollary 4 since the left-hand sum above equals 

E 1_- Z 1< 
D<d~2D x /d<m~(x+y) /d  x<n~x+y dl n x<n~xWy 

D<d~2D 

For our next corollary, we introduce, in the summation conditions of Theorem 1, 

a supplementary constraint on the largest prime factor of the polynomial values involved. 

This provides a gain corresponding roughly to the probabilistic expectation. 

COROLLARY 6. Let the hypotheses of Theorem 1 hold, but with FC.A4k (A, B, �88 
instead of Fe2t4k(d,B,  �89 Furthermore, set ~':=)-~h=l ~h and let x > 0  be given. 
Then we have uniformly for x>~coIlQll ~, x4g2~ <~y<<.x and 2~/2g2C <~ z<~ x, 

~<,~<~+u p<~ \ - ---~ ] n<~ ~ v(n; F, ~) (2t) 

P+(IQk(n)[)<z 

where u := (log x ) / log  z. 

We now insert Corollary 4 into the technique of [9] to obtain a lower bound for the 

greatest prime factor of polynomial values in certain short intervals. 
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THEOREM 2. Let QcZ[X] be irreducible and put P~,u:=P+(1-I~<~<~+~ Q(n)) for 

x>>.l, y>>.l. Let k>~g be an arbitrary positive integer. Then, for any a < 2 - 1 o g 4  and 

y=x  9/k we have 

P~,y >yexp{( logx)  ~} (x > xo(a,Q)). 

It would of course be desirable to relax the shape condition on y in this result. This 

would apparently require a completely different approach. 

As observed earlier, we can also use the flexibility of the hypotheses in Theorem 1 

to restrict the summation variable n to prime values with the expected saving. 

THEOREM 3. Let the hypotheses of Theorem 1 hold and assume furthermore that 

Q(0)#0.  Then we have 

IQ(0)l Y H (1-Q-~)-)  y ~  v(n;F,Q) (22) 
F(IQx(p)I, ..., IQk(P)l) << ~.o(tQ(O)l) "log x 

x<p<~z+y p<~x n<~x 

uniformly for x~>c0[[QH 6 and x a92e <<.y<.x. The dependencies of the implicit and explicit 

constants are the same as in Theorem 1. 

In the special case k = l ,  Q ( X ) = Q I ( X ) = X + a ,  a#O, we get the following result. 

Let A ~ l ,  B~1,  0<r 0<8<1 and F e A d ( A , B ,  �89 Then we COROLLARY 7. 

have 
y ~  F(ip+al) << lal y F(n) 

x<p<~x+y n<~x 

uniformly for x>/cola] 8, where the implicit constant in the <<-sign and the constant co 

depend at most on A, B, ~, 5. 

Specialising in the above F = A ,  Hooley's function, and appealing to the necessary 

weighted average estimate for A(n) ([9, Lemma 2.2]), we obtain the following. 

COROLLARY 8. We have 

A(ip+al) << lal Y A(n) << y___y_/:(logz)r ) 
~<p,<~+~ ~(lal----5" (l~ n~<z y ~  n logx 

uniformly for 1 <~ ]a] <~x, x~<<.y<<.x. 

This estimate averages well over a. We can also use the same procedure as in 

Corollary 5 to derive an average version of the Brun-Titchmarsh theorem which is, to 

our knowledge, far beyond the scope of other available techniques. We recall the classical 

notation 

7r(x;q,a)= y ~  1. 
p<.x 

p-~a (mod q) 
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COROLLARY 9. Let ~6]0, 1[. Then we have, uniformly for K>~I, xE<~y~x, 

m a x  
K 6 R +  

E {Tr(x+y;q,a)--Tr(x;q,a)}<< y /~(logx) ~J~+~ �9 

K<q<~2K 

We can also take, e.g., a = - N  and F equal to the characteristic function of those n 

with P - ( n ) > x  in Corollary 7. This provides a Goldbach-type upper bound with one of 

the primes in a very short interval. 

COROLLARY 10. Let eE]0, 1[, 5e]0, 1]. Then we have, uniformly for N>~ I, x>~ N 5, 
x~ ~y<~ x, 

N y 
E 1 < < - - .  

pWq=N ~o(N) (log N) 2' 
x<p~x+y 

where p and q denote prime numbers. 

4. P r o o f  of T h e o r e m  1 

In this section we assume throughout that the hypotheses of Theorem 1 are fulfilled. The 

proof will require two preliminary estimates. 

LEMMA 1. Let O h ( l ~ h ~ r )  denote multiplicative arithmetic functions such that 

~ IOh(P~-I)--Oh(P~)[ <<1 ( l~h<r) .  (23) 
p" 

p ~ x v ~ l  

Define ah(n):=Qh(n)Oh(n) (l~h~<r). Then we have uniformly for x>0 

Ev(n;F,a)<<Ev(n;F,#). (24) 
n~x  n~x  

Proof. Write Oh(n)=~-~d[,~ Ah(d), so that Ah is multiplicative and, by (23), satisfies 

IAh(p~')l 
E E  p ~ < < l  ( l < h < r ) .  (25) 
p~x v~ l  

Writing in (16) each nh as nh=mhdh and interchanging summations, we obtain that the 
left-hand side of (24) equals 

Er fl Ah(dh) 
dh "71 ~Yr d 1 ...dr ~x h=l 

E t F(dlml, ..., drmr) f l  Qh(dhmh) 
mh re'Y1 ~Tr ~/~ql ~ffr h = l  

1 . . . . . .  r ~ - l - 1  . . . .  r 

(mh,dj)=l ( l ~ h < j ~ r )  
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We further decompose each rnh as mh=thlh where thld~ and (lh, dh)=l .  Then dhrnh = 

dhthlh with (lh,dhth)=l, and correspondingly d'hm'h=d'ht'ht'h with (t'h,d'ht'h)=l. Using 
(12) we thus obtain the upper bound 

lh ah 3"1 ?r l 1 . . - I t  ~ X  h = l  ~'z ~-- ~'z ~r  d z ..,dr <.x/ l  t -..lr h = l  

with 

H(dl,. . . ,dr):= E ~ G(dltl, drtr) f I  Qh(dhth) 
"'" th 

t z , . . . , t r  h = l  
thld~ ~ 

Using the observation (17) and extending the inner d-sum to infinity, we simplify this to 

""' ~ dt 
"Yl wr h = l  h = l  d • l  11 , . . Iv ~ X  

r id  ~ 

Each inner sum over d and t is 

< I (F)I pj 
p " v = l  j>/v  

if e.g. e<l/g.  This easily follows from the bounds 

sup 0n << 1, fh(p j) <~ (B+I )  min(A,p~) TM 

and (25). The proof of Lemma 1 is therefore complete. 

LEMMA 2. Set 7:=~h=l Let OheA4 (l~<h~<r), x>0 .  Then we have uniformly 
for x>~z>~4 TM 

E v(n; F,O) << e - ~ "  E v(n; F,O), (26) 
n>x n<~z 

P + ( n ) ~ z  

where u:= (log x) / log z. 

Proof. The result is trivial if F(1, ..., 1)=0, for (12) then implies that F vanishes iden- 

tically. We may hence assume without loss of generality that F(1, ..., 1)>0, and indeed 

that F(1, ..., 1)= 1 since, otherwise, we may consider instead the function F* (n l, ..., nk):= 
F(nl, ..., nk)/F(1, ..., 1), which also belongs to .A/[k(A, B, e). 
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Let j3 satisfy 0<~ < 1 /7-2~  and put J~h :=fl'~h. The quantity on the left-hand side 
of (26) does not exceed 

E ~ F(nl ,  . . . ,nr)l~I ~)h(nh___~)(n~l...n~r~)~ 
"rl -y~ h = l  nh X 

/$1 , - . n  r ~ X  

P+(nl...nr)~z 

~<x -~ E ~ F(nl , . . . ,n~) f l  0h(nh)n~ h 
nh h �9 

P+(nl ...nr)~z h = l  

Let Ch be the multiplicative function defined by Ch(p~)=pZh~(1--p--~h), SO that 
n~h -- X-" --Z-~dl~ r Writing nh=mhdh ( l ~ h ~ r ) ,  substituting nh ~h by ~dhl~h Ch(dh) and 
inverting the order of the summations, we get the bound 

dh ' mh  P+(dl...d~)~z h=l P+(ml...mr)~z h = l  

Now write mh = lhth with (lh, dh) = 1 and th]d~ so that dhmh = lhthdh with (lh, thdh) = 1. 
The bound is therefore 

Z t 1EI lh P+ (!1 ,..l~) ~z h=l P+ (l)~z 

with 

~ : =  ~ t  ~I r  E G ( t l d l ' " " t r d r )  I I  gh(thdh) 
dh th ' g+(dl,..d~)~z h = l  tlldT,,,.,t~ld ~ h=l 

where, for each h, ghEJ~ is the sub-multiplicative function defined by (11) for k = l  and 

F-~Oh@J~. Using the bound (17), we obtain that 

S<. II E E Ch(d)fh(td)gh(td) 
td 

h=l P+(d)~z t]d~176 

~Ilp~<~{ ~l ~o Ch(PV)fh(P-V+J)gh(PV+J) 1 

= l~I I I  { 1+ ~ fh(pv)gh(p€ } p ~  << 1, 
h=lp~z = 

provided we choose J~h "( 1 -  2~h.  This inequality holds if we take fl:= x / log  z and z ~> 4 ~ 
since E< 1/Sg 2 < 1/8"y and log 4> 4. 
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We have thus shown that  

v(n; F, O) << e -€ ~ ~(~; F, 0). (27) 
n>x P+(n)~z 

P+(n)~z 

Let K denote a large constant and put w=z WK so that  l<~w<.z. In the sum on the 

right, we may decompose uniquely n=ab with P+(a)<w, w<P-(b), P+(b)<~z. By (12), 

(16) and (17) we readily obtain that  

v(ab;F, 8)<.v(a;F,O) E t  fl(bl)...f~(br) 
bl... b~ 

from which we infer in turn by a s tandard computation(2) that  

v(n;F'8)<<Ke-xU Z v(n;F,8). 
n>x P+(n)<~ w 

P+ (n)<~ z 

If W <2,  this simplifies directly to the required bound. Otherwise, we use (27) with x =  1 

and u=K to obtain that  

Z v(n;F,O)<<.~-~v(n;F,O)+ ~ v(n;F,O)<<.2~-~v(n;F,O) 
P+(n)~w n~z n>z n~z 

P+(n)~w 

for sufficiently large K.  This implies the required bound and finishes the proof of 

Lemma 2. 

Completion of the proof of Theorem 1. As in the proof of Lemma 2, we may as- 

sume that  F(1,  ..., 1)=1.  We also suppose that  x is sufficiently large in terms of all the 

parameters  on which the implicit constant of (18) is allowed to depend. 

For each nE(x, x+y], let ~n denote the largest of the integers ~ such that  

an(e):= l-I p ~<x3~2~. 
p~<~ 

We put an:=an(~n), bn:=[Q(n)[/an, qn:=P-(bn), q~(n)[[n. Of course, we have 

anq~ ('~) > x3g 2E (28) 

(2) Involving, in particular, the fact that ~-:~b fh(b)/b<<K1 for all h, l~h~r. 
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and P+(a~)<qn. Define 

ah~:= H By, bhn:_~ H pV (1 ~ h ~ / ' ) ,  

pU]]Rh(n) pU]]Ru(n) 
P<~n P>~n 

so that a~=l~h= 1 ~h and bn=Hh=l "yh r ahn r bhn. From (9), we deduce that 

a j , : =  H p " = f i  "~'~ ' �9 IfI I ahn ' bJ n '=  H pU= ah n'Y~h 
p~llQj(n) h=l p~[lQ~(n) h=l 

P~n P~n 

We furthermore observe that 

and that 

Put 

F i i ..., i i aknbk ) 
_<: t t t i 
-.~ F(aln, ..., akn) G( bln, ..., bkn) 

=F(aln, . . . ,arn)G(bln,  ...,brn) 

G(bln, ..., bTn) < min{A a(b~), Bb~5/3}. 

(l~<j~<k). 

(29) 

(30) 

1 �89 C1 :~ 3g2r ~2 :~ ~CI, ~3 :-~ 

We split the integers of (x, x+y] into four disjoint classes, according to the conditions: 

(C1) an <.x ~2, qn>X ~3, 
( C 2 )  an~X ~2, qn~X es, 

(C3) xE2<an<x ~l, P+(an)<w, 
( C 4 )  xS2<an<X ~1, P+(an)>w, 

where w is a parameter to be chosen later. Let Si (1 ~<i ~<4) denote the contribution from 
the integers of Ci to the left-hand side of (18). 

Estimation of $1. We have P-(bn)=qn>x ~3 for nr and so 

x e3~(bn) <bn < IQ(n)l << HQIIXg<~<X g+l/5. 

Hence ~2(b~)<<l. From (29) and (30) we therefore obtain that 

S1 << ~ F(ml ,  ..., mr) E 1. (31) 
~i "yr <~e 2 x<n~x+y m 1 . .-mr --z~ 

mhlRh(n ) ( l < h < r )  
P- (Q* (n)/ml...mr)>x e3 

Consider the inner sum. When r = l ,  i.e. Q*=R1, Brun's sieve easily yields the estimate 

<<~11 px(ml) H ( I - O ( P ) )  ' 
p~xr P 
p{ml 

since y /m l  >x ~.  For further details of this argument see e.g. [5, p. 264]. 
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If r~>2, we must proceed more carefully, employing an argument analogous to that  

of [8, Lemma 3.4]. Since Rh and R4 have no common zero for hr there exist U, VEZ[X] 

such that  

Rh(X) V(X) + P~(X) Y(X) = nhi, 

where T4hi is the resultant of Rh and P~. Hence (mh, mi)lTr whenever mhlRh(n), 
m~lR~(n ) and hr Further, if I)(T) denotes the discriminant of a polynomial T, we 

have that  :D(RhRi)=:D(Rh):D(Ri)T~i and hence (rnh, rni)ll)(RhRi). Since RhRilQ*, 
we have that  ~)(RhRi)I:D(Q*)=D* and so (mh,mi)lD* for any h#i. Proofs of these 

algebraic facts may be found e.g. in [6, pp. 443-453]. 

Writing mh=nhdh (l~<h~<r) where dh:=(mh,D*), we have (mh, rni)ldh and so 

(nh,ni)=l for hr We estimate the inner sum of (31) by replacing the conditions 

mhlRh (n) by nhlRh (n) and observe that the sum is empty unless all dh divide D. Since 

the nh are pairwise coprime and y/(nl ... n,-)>~y/an>~x ~2/2, Brun's (or Selberg's) sieve 

yields the estimate 

~I((Y E I'I fh(dh) E "~ F ( n l , . - - , / t r ) 1 ~ I  Oh(?2h'------~) 1-I ( 1 - L O ( p ) ) '  
dl]D ..... d~]D h=l nl ..... n.  h=l  nh p<~r P 

P { ~rtl.. Jrt r 

where we have used (12) and (17). Since O(p)<~min(g,p-1) by our assumption that  Q 

has no fixed prime factor, the last product is 

<<:__~k f i  (~o(nh)nh / ~g YI (1-O(P)).p 
_ p~xe3 

Hence, writing 

Oh(n):=(~(n)/n) g, ah(n):=Rh(n)Oh(n) ( l ~ h ~ r )  (32) 

we obtain 

Since Oh(n) trivially satisfies the requirements of Lemma 1, we obtain that  this bound is 

compatible with (18). 

Estimation of $2. Let nEC2. Then we see from (28) that  Q(n) must be divisible 

by a prime power qe>x~l-~2=x e2 with q<~x ~3. Hence there is an h, l~h~r,  such that  

q~[Rh(n) with q~>~qe/r>~x3e3. Let v(q) denote the least integer such that  q~(q)>x 3~3. 
Then v(q)~> 3 and q~(q)-l~ x3~3 so q'(q)~ q4e3 ~ y. Since q~(q) lQ* (n) we may hence write 

Su <. 2 n<<.2~:max g(IQl(n)l , ..., IQk(n)l ) E q~.(q) 
q<~x~Z 
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With the bound F([Q1 (n)[, ..., [Qk (n)[) < G([Q1 (n)[, ..., [Qk (n)I) <.B[Q(n)[~5/3, we deduce 

that  

$2 << IlQll~/3x ~13 y X3e3 X ea << yx -e/3, (33) 

taking account of the assumption that  [[Q[[ <.x 1/~. Now we note that  the right-hand side 

of (18) is >>y/(logx)g since v(1; F; 9)=F(1 ,  ..., 1)=1 and O(P)<g for all p. Hence the 

estimate (33) for $2 is also of the required order of magnitude. 

Estimation of $3 and $4. We begin by an estimate which is common to $3 and $4, 

For all n in C3UC4, we have 

b~ = IQ(n)J/a~ < (g+ l )HQll(2x)g/x ~ <~ x g+l/~. 

Since 

P+(a~) n(b~) < P-(b~) n(b~) <. bn, 

we deduce from (30) that  

G(bl~, ..., b~)  << x E(~), 

with 

E(a) :=min{gr s/logP+(a)}, s :-- (g+l/5)logA. 

Therefore, using (12), we may write 

s~+s~  << ~ ~(~ ,  , ~ ) x  ~(~'') ~ 1 (34) 
"rl "~r ~1 x < n ~ x - k y  T~ 1 ..,T~,~ ~X 

mh[Rh(n)  ( l ~ h ~ r )  
P -  ( Q* (n ) /ml , , . var )> P + (ml.,.n~r) 

Employing the sieve as in $1 to bound the inner sum, we arrive at 

$3-l-$4 << y E v(n;F'6)xE(n) H (1--O(P---~)~' 
x~2/Dr<n<xel p<P+(n) \ P / 

(n,.t~)=l 

(35) 

where a = ( a l ,  ..., err) is defined by (32). Moreover, $3 and $4 correspond respectively to 

the extra conditions P+ (n) <~ w, P+(n) >w. 
Since we have F(n l ,  ..., nr) ~<G(nl, ..., nr) <~Bn~/3<<x ~/3, and Qh(nh) <~g~(~) when 

(nh, D) = 1, we may write, using the trivial bound of 1 for the product over p in (35), 

,or h 1) 
h = l  rth nl~'-'~nr Tt~X 

z~/D~ <n'' <~x~l P+ (n) <~ w 
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where we have used the fact that 1-I~=1 nh >>-(Hh=l n'h '~)l/g >>XC3/g. We now choose 

w := 2AgDr4 (~+1)/c2. (36) 

This implies that the last sum over n is <<(logx) TM, and in turn shows that $3 is of the 

required order of magnitude. 

It remains to estimate $4. We consider the sub-sum of (35) corresponding to 

P+(n)>w, which we expand by writing n=q~'m with P+(m)<q. We observe that 

v(n;F,a)<~(Ag/q)~'v(m;F,a) by (12) and (13), and hence we get 

with 

S3<< y H (1 -  P(P) )T3 
p<~z P 

w<q<.x el q<p<.x P x~2/qVD <'irt<~xE1/q v 
v ~ l  P+(m)<~q 

The last product over p is clearly <<(logx/logq) g. For each given q and v, the inner 

m-sum may be bounded by applying Lemma 2 with x = i s + l ) / ~ 2  and then Lemma 1, 

having checked that our choice for w guarantees that w>4 xg. We obtain 

l ' lo  q / l ~  x~g {AgeXD"~ ~ 
T3<< E x- / g [ - -  | | - ] E v(m;F'Q) 

~o<q<~ ~ \ log q ] \ q m<~ 
v~>l 

<< E X - 1 / 2 1 ~  
q E vim; F,Q) << E vim; F, La). 

q<~ x m<~ x m<~x 

This is also compatible with (18) and therefore completes the proof of Theorem 1. 

5. Proofs  of  Corollaries 1 and  2 

Put n=mq+a and define Pj EZ[X] by 

Pj (X) = Qj (qX + a) 

Then 

F(IQI (n)I, ..., IQk(n)l) 
x(n<~x-}-y 

n--a (rood q) 

(l~<j~<k). 

E F(IPlim)I' "'" IPkim)l)" 
(x--a) /q<m<.(x--a) /q- i -y/q 

(37) 
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Put P:=P1 ... Pk and denote by P* the square-free kernel of P. Since each Rh(qX§ 
is also irreducible, we have that 

P*(X) = f l  Rh(qX+a) = Q*(qX+a). 
h=l 

Let ~]j (l~j<~g*) be the zeros of Q*. Then the zeros of P* are (~?j-a)/q ( l ~ j ~ g * )  and 
thus, denoting by D~ the discriminant of P*, we have 

D~ =(ag*qg*)2(g*-l) H (71Jq a ~?i-a) 2=qg*(g*-i)D*" (38) 

l~i<j<~g* q 

A simple computation using (q,Q(a))=l shows that if y~ is the rho-function for 

Rh(qX+a) then for p prime and l<<.h<<.r we have 

8~(p)=0 ifplq,  
! v Qh(P )=Qh(P ~) i fp{q ,v>~l ,  

so that, writing L0t--LOp, 

P' (P) = 0 (ifplq), p'(p~)=&(p~) ( i fp{q,v~>l) .  

These facts imply that P has no fixed prime divisor. Moreover, setting ~=(p~, ..., 8~), 
we may write 

H ( 1 -  P'(P)) = H (1-Q(P--A~<<II(1-e(P)], 
p<~(x-a)/q P p<.(x-a)/q \ P ] p<..x \ P ] 

P{q P~q 

since (x-a)/q>>xZ--see [5, Lemma 2 (i)] for more details of this argument. By (38), we 

also deduce that 

DI:= II II 
p~'[ID~ p%D~,p{q 
d(p)#O d(p)#O 

and hence DIlD. A final observation is that 

v(n; F, 0')= 
n<~(x--a)/q 

H P~ = H P~ 
p~llD*,p~q p%D*,p{q 

d(p)#O e(p)#O 

v(n; F, O) <- v(n; F, 
n<<.(x--a)/q n<<.x 

(n ,q)=l  (n,q)=l 
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We can now apply Theorem 1 to the right-hand side of (37) (with r in Theorem i replaced 

by �89 to deduce that 

E F([QI(n)]'""]Qk(n)[)<(Y-H(1-~(p)) E v(n;F,Q) 
x<n<~z+v q p<.x P n<~x 

n=a (mod q) pr (n ,q)=l  

provided that (i) y/q>~{(x-a)/q} 49%~/2, (ii) y<<.x-a and (iii) x>~collPIi ~. It remains 

to confirm that these conditions hold. Now 

(x_a)292e~3qX-2g2e~ << y~/2y(X-~)(1-2g2e~) <~ yX-~/2 <~ y, 

SO (i) holds. Next, using IIPH <qgllQII and x>~clllQI126, we have that x>~cxllPII2~q -2g~. 
Hence xq>~cl I lPl12~ and thus x2>~cl I IPII2~. So the choice cl = c~ suffices to confirm (iii). 

Finally, for (ii), it is easily checked that if x-a<y<~x then we have the trivial estimate 

E F([Pl(m)l'""[Pk(m)l)<<( y 
2(x--a)/q<rn<<.(x--a)/q+y/q 

X-aq +1)IIPII 
y l -~  

<< IIPII ~616 
q 

q \  x / q 

which is smaller than the required bound. The proof of Corollary 1 is thus complete. 

Corollary 2 follows immediately from Corollary 1 on noticing that,  when the Qj are 

irreducible and mutually coprime, we have k=r, 7j=l and n'j=nj for all j .  

Proof of Corollary 3. 
defined by 

6. P r o o f s  o f  C o r o l l a r i e s  3 a n d  4 

A quick computation confirms that the function F of k variables 

k 
F(nl, ...,nk) = H Fj(nj) 

j=l 

belongs to A4k (A, B k, �89 Further the coprimality condition enables us to write each Qj 

as Qj --I-I r j_ 1< h~<rj R~ h where rk =r is the number of irreducible factors of Q = l--[h=1 R~ h. 

Hence, in the notation of w 

{ "fh if r j_l  < h <~ rj, 

3'jh ---- 0 otherwise, 
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for each j E [1, k], and with ro :=0. Thus with ~h'=QRh, we obtain that  

k f i  v(n;F,#)= E~ k (I-IFj(yirh=ln:h)) Qh(nh) 
n~l.. .nk =n j = l  h----1 7th 

-~ n~l.. .nk =n J= h=l  n h  

k 

<" H E t Fj(l~j-,<h<~j n~hh) H Oh(nh) 
n h  

j = l  ~ j - i +  1 "yvj~ r j_ l<h<.r j  
nVj_lW1...nrj ~ x  

(39) 

At this stage, we observe that  for all j E [1, k] and any nh >1 1 (rj-1 < h<.rj) we have 

r I  QQ~(1-Ir~-l<h<<'Tjn~hh) Qh(nh) <~ (40) 
h=l  n h  H r j _ l < h < r j  n~h h 

To see this, consider a typical prime p dividing Ylrj_l<h<<.r~ nh. Then, since the nh are 

mutually coprime, there is a unique index, say l, such that  pint, and p~nh for h#l. 
Let p~llnt. The contribution of p~ to the left-hand side of (40) is 

pC, pC, 

since p~D and :D(RI)[D=T)(Q). The contribution of pc` to the right-hand side of (40) is 

pc̀ ~z E p ~ / - ~ l  >~ ' 
r j_ l<h~<r j  

where the equality is a classical fact about polynomial congruences--see e.g. [8, equa- 

tion (2.11)]. Here and in the sequel we let [u] denote the smallest integer larger than or 

equal to u. This implies (40). 

Inserting (40) into (39), we obtain 

v(n; F, o) -< I I  n 
j = l  n<.x 

and the result now follows from Theorem 1. 

Proof of Corollary 4. We have (see e.g. [2, Lemma 61.1]) 

A(mn)~<T(m)A(n) ((re, n)=1), 
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Hence, given arbitrary ~0 E ]0, 1 [, we have A t r A,4 (2 t, B, e0) for some B = B (t, eo) ~> 1, and 

we are in a position to apply Corollary 2, which implies that  

E A(IQ(n)I)t<<Y 1-I ( 1 - 0 ~ ) )  E A(n)to(n)'n 
x<n~xWy p~x n<~x 

Now Lemma 2.2 of Tenenbaum [9] states that  

A(n)te(n) 
n 

n<~x 

<< (log x)~(t)/:(log x) v~+~ 

and combining this with the classical estimate 

1 
I ' I  1 - 0  ) << log''~ 
p<~x 

completes the proof of Corollary 4. 

7. Proof of Corollary 6 

As in the proof of Lemma 2, we assume F(1,. . . ,  1)=1. We next note that  we may 

then restrict to the case when z>~zo with arbitrary large z0=z0(x, e, 5,g). Indeed, when 

2~/292~<~Z<Zo, the left-hand side of (21) is trivially <<(logx) ~ which is of smaller 

order of magnitude than the right-hand side. 

L e t / 3 : = x / l o g  z and let x(n) denote the completely multiplicative function defined 

by X(p)=p ~ if p<<.z, X(p)=l  otherwise, and put 

Fl (nl, ..., nk ) := F(nl, ..., nk ) x(nk ). 

We have x(n)=n f~ when P+(n)<.z. Since [Qk(n)]>>x for x<n<<.x+y, the sum on the 

right-hand side of (21) is 

<<x-~ E Fl(lQl(n)l'""lQk(n)l)=e-XU E Fl(IQl(n)l'""IQk(n)l)" 
x<n<~x+y x<n<~x+y 

With a suitable choice of z0, we have /3<~2E5, and it may be readily checked that  

FxEA/lk(Ae x, B, �89 We may hence apply Theorem 1 to Fx, with the result that  

Z FtLQ't")I'""IQ~(")')<<ue-~"II (1-~ E v(n;F1,R). 
x<n<~x+y p<.x n<~x 

P+ (IQk(n)l)<~z 
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Hence it only remains to prove that 

E v(n; F1, ~) << E v(n; F, ~). (41) 
n<<.x n<<.x 

TO this end, we apply Lemma 1 with Oh(n)-----x(n) "Yk~ (1 <~h<~r), observing that, with the 

notation of Lemma 1, v(n; F1, ~)=v(n; F, a) for all n. We have for each h 

]Oh(pu--1)--Oh(pU)] l--p--# 
E ~ ,  pV = E - - < < ~ E  l~ <<1. 
p<x v~l p~z PZ--#-- 1 p~z P 

By Lemma 1, this implies (41) and thus completes the proof of Corollary 6. 

Remark. In the case k = l ,  Ql(n)=n, F = I ,  Corollary 6 yields 

�9 (x+y, z) ye 

for all fixed x>0 ,  x~<.y~x and z>~4 ~/c. An inspection of the proof shows that, if 

we make explicit the dependence upon x, the same technique will furnish a bound of 

the  type <<yu -~ ,  where c=c(e), provided, say, z~>(logx) 2. Such a result, which could 

similarly be derived in the general situation considered in this paper, is comparable with 

the best known upper bounds for the number of integers free of small prime factors in 

short intervals, due to Hildebrand [4]. However, the results in [4] are valid without any 

lower-bound restriction on the variable y. 

8. P r o o f  of  T h e o r e m  2 

We write Q(n)=anbn with P+(an)<Cy<P-(b,~) for some large C. We have 

~ '  log ]Q(n)[ ,.~ yg log x = ky log y 
x<n~x+y 

and 

E lOgan = E I~ = (l+o(1))ylogy 
x<n~x+y p~Cy 

pV<~x 

by the prime ideal theorem. Hence, since y=x g/~, 

E l~ ~ {k-l-~-o(1)}ylogy. (42) 
x<n~x+y 

There is a constant A0 such that bn<~Aoxg=Aoy k. Hence, if C is large enough, the 

condition P-(bn)>Cy implies ~(bn)~<k-1. Moreover, if Q(n) has a divisor in (�89 y], 
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then bn<~2Aoxg/y=2Aoyk-l<(Cy) k-l, so f~(b,~)~k-2. Thus, letting HQ(x,y) denote 

the number of n C (x, x§ such that  Q(n)-O (mod d) for some dE ( ly ,  y ] ,we  obtain 

E logb~ < (k-1)(logP~,y){y-HQ(x,y)}+(k-2)(logP~,y)HQ(x,y). 
x,(n~x-{-y 

Taking (42) into account, we get for large x 

exp SQ(x, y) log y }. (43) 

This is a short-interval analogue of an inequality of Erd6s and Schinzel [1] and constitutes 

the basis of our method. It seems that  a new idea would be required to relax the shape 

condition imposed on y in the theorem. 

We need a lower bound for HQ (x, y) and proceed as in [9], using Corollary 4. Writing 

A(m, Y):~dlm, y/2(d~y 1, we have for any positive 7 

HQ(x,y) >1 (log x) -v ~ AOQ(n)l,y ). (44) 
x<n~x-by 

/",([Q(n) l,y)~(log x)n 

Let us write the last n-sum as S 1 -  $2 with 

$1-= ~ A(lQ(n)[,y)>~ E OQ(d)[d]~�89 E eQ-(dd)>>Y' 
x(n~x-.ky y/2(d~y y/2,(d~y 

using again the prime ideal theorem as in [9, Lemma 2.1]. Then, for any 7>0,  we have 

$2= Z A(iQ(n)l'Y)<~(l~ E A(IQ(n)[)I+~" 
x,~n~x-]-y x<n~xq-y 

z~(Iq(n)l,u)>(log ~), 

We choose 7 >log 4 - 1  and define e >0 by the relation 2e= (1+7) / log 4. Applying Corol- 

lary 4 with t =  l + e ,  we obtain S2<<y(log x) -0+~ with 

a ---- l + 7 E - f ~ ( l + e )  = 2{2 6 log(2 ~) - 2  ~ +1} > O. 

Thus S2=o(y) and, by (44), 

HQ(x, y) >> y/(log x) n. 

By (43), this implies P~,y>yexp{(logx) ~-vl} for any 71>7 and large x. The required 

result follows since 7, and hence 71, may be taken arbitrarily close from log 4 - 1 .  
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9. P r o o f  of  T h e o r e m  3 

We may plainly assume that Co ~> 1 and F(1, ..., 1)= 1. We first observe that it is sufficient 

to bound the sub-sum of (22) where the variable p is further restricted by the condition 

p ~ Q(0), Indeed, the complementary contribution may be trivially bounded above by 

w([Q(O)[)B sup ]Q(p)[~/3. 
x<p~2x 

Since ]Q(O)I<.[[Q[[<~z!/~ and IQ(p)]<.l[Q]](2x)g, the above bound is, for x>~xo(5), 

~< B (log x)(2gxa+l/~) ~/3 ~B (log x) x ~(g+l)/a << V~- 

This is (with a lot to spare) of smaller order of magnitude than the right.hand side 

of (22). 

Let x ( n ) = l  if P-(n)>x, and x(n)----0 otherwise. We set 

Fo(nl,...,nk+l)=F(ni,..,,nk)x(nk+l). 

It is readily checked that our hypothesis on F implies that F0 EA/[k+I (A, B, �89 

Since Q(0)r none of the Qj(X) is equal to X, so 

k 

:=x H Qj(x) 
j = l  

has degree g + l  and has r + t  irreducible factors Rj(X) ( l~ j~<r+ l ) ,  with Rr+I(X)=X. 
Of course IIQII=IIQ]]. We set ~ : - - ~ ,  0:=(~1, ..., pr+l) and note that Qr+l--1. 

Now we make the observation that if the variable of summation n in Theorem 1 is 

restricted to values coprime to a fixed integer, say q, then the implicit constant in the <<- 

sign only depends on Dq :=D/(D, q). This may be easily checked by taking into account 

the extra condition ( n, q)=l in the sieve arguments employed for the upper bounds of 

$1, $3, Sa in w so we omit, the details. 

Let / )*  denote the discriminant of (~))*. Then 5* =a2. Q*(0)2D *, and hence Dq I D 

when q=Q(O). It follows that Theorem 1 (suitably modified as indicated above) yields 

the bound 

E F([QI(p)[,..,,IQk(p)])~< E F~ 
x~p~x-by x<:n~xq-y 
p{ Q(o) ,~ { Q(O) 

p<~x n<~x 
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fore 

It remains to evaluate the right-hand side in terms of Q and v(n; F, 0)=v(n; F, Q, 0). 

We first note that ,  plainly, ~(p)=l§ if p{ Q(0) and ~(p)--Q(p) if plQ(O). There- 

~<II(1-h(~))<<II(1-~)II(1-e(P-2)~<<IQ(~ (1-~-~ 2) 
p~<x k p ] ~(IQ(0)]) logx H 

p ~ x  ; p ~ x  
p{Q(0) 

Next, we observe that  v(n; Fo, O, 0) < Edln v(n/d; F, Q, 0) x(d)/d, and hence 

n<<.x d<<.x n<~x n<~x 

since X(1)=I  and x(d)=O whenever 2<.d<.x. 

This completes the proof of Theorem 3. 
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