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1. I n t r o d u c t i o n  

This paper is a study of the complex Monge-Amp~re operator (ddC) n. Let ~ be an open 

and bounded subset of C '~. If u jCC2(~) ,  l ~ j ~ n ,  then the Monge-Amp~re operator 

operates on (ul , . . . ,un) and equals ddeulA...AddCun, where d=O+O and d~=i(O-O). 

If also each uj is plurisubharmonic, then dd~ulA...Addr is a positive measure. This 

operator is of great importance in pluripotential theory, where it plays a role similar 

to that of the Laplace operator in classical potential theory. The Laplace operator 

is a linear, second-order differential operator and thus is defined on all distributions 

on ft, while the complex Monge Ampere operator is non-linear and cannot be defined 

on all plurisubharmonic functions on gt, cf. [14], [20] and [8]. Moreover, the operator is 

discontinuous in the weak*-topology, cf. [9]. 

On the other hand, it was shown by Bedford and Taylor [2] that (dde) n is well- 

defined on all locally bounded plurisubharmonic functions. The problem of extending 

the domain of definition beyond PSHNL~o e and describing the corresponding range has 

been studied by several authors: [2], [3], [8], [13], [15], [16] and [17]. See [1] for a survey 

on pluripotential theory. In particular, w of that paper contains a discussion of the 

domain of definition for (dd~) n. In this paper, we define certain classes gp and 9Cp of 

plurisubharmonic functions, and study the complex Monge-Amp~re operator (ddC) ~ on 

them. 

We prove: 

(1) $p and 9Cp are convex cones (Theorem 3.3). 

(2) (dd~) ~ is well-defined on s (Theorem 3.5). 

(3) The comparison principle is valid in ~'p (Theorem 4.5). 

Our main result is to be found in w where we study the Dirichlet problem and give 

a complete description of (dd~p) ~, p ~ l  (Theorem 5.1). 

The remaining sections are based on the results from w 



188 U. CEGRELL 

In w we consider the Dirichlet problem for s and also prove a decomposition the- 

orem for positive and compactly supported measures. The last two sections are devoted 

to the Dirichlet problem with continuous boundary data. 

It is a great pleasure to thank Eric Bedford, Norman Levenberg and the members 

of the pluricomplex group in Umes for many fruitful comments. 

2. T h e  classes s a n d  .~'p 

Let ~ be an open, bounded, connected and hyperconvex set in C '~, n~>2, i.e., there is 

a continuous plurisubharmonic function h on ~ with (zEl~:h(z)<c} relatively compact 

in ~ for all c<0. We denote by Co the class of negative and bounded plurisubharmonic 

functions ~ on ~ such that  lim~_~ ~(z)=0,  V~e0gt, and f(dd%o)~<+c~. 
Then s is a convex cone, for if ~ , r163  then f~=~r162 for some ~, 

l <a<2, 

~(ddC(q~ J~_c,r far 

3~ f ( d d ~ )  ~ + (ddr162 ~, 

by the comparison principle. Cf. [3], [7]. 

Remark. Integration by parts in the class Eo is justified by the finite-mass assump- 

tion, cf. [12]. 

Definition 2.1. Given a Borel subset E of ~t, we define the relative extremal plurisub- 

harmonic function for E (relative to ~) as the smallest upper semicontinuous majorant 

h*E(Z ) of 

hE(z) := sup{~(z) E PSH(~) : - 1  ~< ~v ~< 0, ~ ~< - 1  on E}. 

Remark. The set {hE<h'E} is pluripolar, cf. [3]. 

Definition 2.2. For every p/>l, we define s (=Ep(~)) to be the class of plurisubhar- 

monic functions ~ on ~ such that  there exists a sequence ~jEE0 with ~vjx,~, j---~+cr 

and supj f ( -  ~j ) P ( dd c ~j ) n < + oc. If also ~j can b e chosen so t hat s upj f ( dd ~ ~j ) ~ < + c~, 
we say that  ~Ch~-p. 

Note that  EoCJZpCEp, Yp>~l, and that  JZqCJrp if q>p by Hhlder's inequality. 
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In the unit ball, the classical energy of a function ~CEI is 

/ 1))'~-'. 

By Theorem 3.2 below, this can be estimated by a power of f - q o ( d d ~ )  '~, so all func- 

tions in ~1 are of finite classical energy. We may say that  the functions in E1 are the 

plurisubharmonic functions of finite pluricomplex energy. 

Example 2.3. Consider ~ = B ( 0 , 1 ) ,  the ball of radius 1, and v ~ = - ( - l o g l z [ ) ~ +  

(log2) ~, 0 < a < l .  Then 0>~v~ePSn(~) and 

(ddCv~) n = noLn (1-o~)( - log [z])n(a-1)-ldlog [z]AdClog ]z[A(ddClog [z]) ~-1, 

where d log [z [A d ~ log ]z [A (dd ~ log [z ])n- 1 = c dV/[z [2,~, c a positive constant. 

Thus v~E~p if and only if 

j'o 12 (-logr)~Pr 2n-1 
(_ logr)n(l_~)+lr2 n dr < +co, 

which is true exactly when 

Thus v~C~p r n/p+n>a.  

n ( 1 - a ) + l - a p  > 1. 

3. T h e  o p e r a t o r  (ddC) n is well-defined on ~p 

In this section, we extend the domain of definition of (ddC) n to Cp. 

LEMMA 3.1. If vECo then 

f (-qo)n+l(ddCv)n<~ (n+ 1)] [sup(-v)]n/(-qo)(dd~qo) n, 

Proof. Cf. [4]. 

THEOREM 3.2. Suppose u, vECo. If p>>.l then 

(-u)  p(ddcu)j A (ddCv) n-j 

f f \p+~ / f \~+~ 

where Dj,p equals p (p+j ) (n - j ) / (p -1 )  for p> l, and 1 for p=l. 

Proof. Cf. [12], [18]. 

v~c Eo. 

O<<.j <<. n, 

[] 

[] 



190 u. CEGRELL 

THEOREM 3.3. The classes CB and ~p are convex cones. 

Proof. If c~>0 and UCEp, then obviously c~uCEp. 

If u, VCCp we have to prove that  u+VEEp. Suppose that  uj'Nu, vj 'Nv as in the 

definition of gp. We have to estimate 

( -u j  - vj )P ( dd ~ (uj +vj )) n. 

Using H51der's inequality, it is enough to estimate terms of the form 

/(-uj)P(ddCuj)~A(dd vj) '~-~, <. s <~ n, 0 

and 

/(-vj)P(ddCuj)~A(dd vj) '~-~, <. s <. n. 0 

These terms can be estimated by 

/ (-uj)P(ddCuj) n and /(-vj)P(ddCvj) n 

using Theorem 3.2. 

But these two sequences are uniformly bounded by assumption. The statement 

about $-p follows now from the calculation in w 

The proof of Theorem 3.3 is complete. [] 

LEMMA 3.4. Suppose that ueCp (or ~p), 0)vEPSH(F t ) .  Then w=max(u,v)eEp 
(or 

Proof. Suppose that uj'Nu as in the definition of Cp. Pu t  wj=max(uj,v).  Then 

J(-wj)P(ddCwj)n <~ f (-uj)P(ddCwj)~ 

by Theorem 3.2. Therefore 

/ (-wj)P(ddCwj)n <~ D(P,+')/ ' / (-u,)P(dd'uj)  n. 

Since UCgp, the right-hand side is uniformly bounded, which proves the lemma. [] 
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THEOREM 3.5. Suppose go~uj'%u, j-++oo, and 

f (-uy(dd~uj) ~ < +oo.  s u p  

Then (dd%j) n is weakly convergent and the limit is independent of the particular se- 
quence. 

Proof. Let e>0  and O~xeC~(fl) be given. Define ~=supsupp x Ul (which we assume 

to be <0). For each j ,  find O<rj<rj_l so that  

1 rj < dist({uj < ~6}, CFt) 

and 

/ x(ddCurj)n_/x(ddCuj)n < E, (1) 

where ur~ (z)=f uj (z+rj~) dV(~) (and where dV is the normalized Lebesgue measure on 

the unit ball). 

Then uj<~u~j and u~j is continuous and plurisubharmonic on {uj<�89 Define 

~j (z )=max(u~ +6, 2uj). Then {~j} is decreasing, ~j E gp by Lemma 3.4 and 

sup f (-~tj)P(ddCttj) n < +co. 
J J 

We now claim that  limj__.+o~ f x(ddWtj) n exists. If we can prove this, the proof of 

the theorem is complete, since e>0  in (1) is arbitrary. 

We first note that  g=limj__.+~ ~ j ~ - c ~ .  For let h be an exhaustion function in go 

for f~. Then 

/ (-~t)p(ddch)n=j~+oolim/(-~tj)P(ddCh) n 

(2) 
/ f \~ -~ , /  f \,,7-,, <~ Do,psuptJ(-~y(dd~,)n ) tJ(-hF(dd:h)n) <+co. 

Now, since ~j is continuous near supp X, 

/ )l(dd=~j) ~-  / )c(dd= max(~ , , - k ) )n  

- +~f<-~ x( dd: max( ~,, -k  ))~ - +:f >-~ X( d+ max( ~+, - k ))" 
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<~ j f  x(ddCuj)n§ x(ddCmax(~j,-k)) n 

~< ~supx j_a>~k kP[(dd~uj)n +(ddCmax(uj' -k)  )'~] 

sup X f < - - ~  {(-~)P(ddC~j)n+( - max(~j , -k) )P(ddCmax(~j , -k) )  n} 

sup X f (_~j )P(dd~j ) ,  ~< ~ const, sup 

by Theorem 3.2. This completes the proof of Theorem 3.5, since we have by [2] that  

(ddSmax(~j,-k)) n converges weakly for each k. 

Definition 3.6. For UEEp, we define (dd~u) n to be the non-negative measure found 

in Theorem 3.5. 

THEOREM 3.7. / f  ujCEp, u jTu ,  j--*+oc, then uCs and 

(ddCuj)n--+(ddCu) n, j---~+cc. 

Proof. Since u=max(u, ul), UECp by Lemma 3.4. We can now use the ideas of 

Theorem 3.5, together with the monotone convergence theorem in [3], to prove Theo- 

rem 3.7. [] 

THEOREM 3.8. If uCC1, then fu(dd~u)'~>-oc, and if vjEPSH(f~), O>~vj"~u, 
j--.+oc, then f vj(ddCvj)n'~ f u(ddCu) '~, j--o+oc. 

Proof. Since uEC1, it follows from Lemma 3.4 that  vjEC1, VjEN, and there is a 

decreasing sequence uj EC0 with 

lim uj -- u 

Then 

f 
and sup ] -uj  (ddCuj) n = ~ < +oc. 

J J 

max(uj, Vk)(ddCmax(uj, Vk)) n >//uj(ddCuj) n >1 -a ,  Vj, k E N, 

so it is enough to prove that 

lim Juj(ddCuj)n=/u(ddCu) n. 
j~+c r  

We have for k>~j, 

f -uj(ddCuj)n <~ J-uj(dd~uk) ~ 

= f~ -uj(dd~uk)n+/ -uj(dd~uk) n 
j >~--e J u j  < - e  
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for ~ > 0. Here 

J~uj>_ -uj(ddCuk)n = Jfuj>~_ - sup(uj, -~)(ddCuk)n 

~ ( ~  - sup(uj, -~)(ddC sup(uj, -~) )n)~-~-~ ( ~  -uk(ddCuk )n) ~--~ 
1 

<~ e ](ddCuj)  n Ol n/(n+l) "~ O, e-"'> O, 

It follows from the proof of Theorem 3.5 that  

l i m  f -~tj(ddC~tk) n ~ ~ - u j ( d d C ? . t )  n. 
k~,+c~ Juj ~ -e  

On the other hand, since - u j  is lower semicontinuous, 

Therefore, f uj (ddCu) n = limk--,+cr f uj (ddCuk) n, Vj. 
Now 

lim f uj(dd~uj) ~>1 lim lim /uj(ddCuk) ~ 

: / u(dd~u)~ >~ k--~+~lim J[ u(dd~uk) n 

- / / lim uj(dd~uj) '~. = k--,+~ j - - , + ~ l i m  lim uj(dd~uk) ~ ) J~+~ 

Hence limj__,+~ f uj (ddCuj) n = f u(ddCu) ~, which completes the proof. [] 

Remark. The analogue of Theorem 3.8 for p>  1 will be given in Theorem 5.6. The 

main difference is that  for p =  1, when - u ~ - v ,  integration by parts gives 

/(-u)(dd~u)'~ ~ /(-v)(ddCv) n, 

i.e., the constant D0,1 in Theorem 3.2 equals 1, but for l < p < c o ,  we only know that  

D0,p~>l. 

We conclude this section with a few additional properties of Cp. 
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LEMMA 3.9. Suppose hjEC0, 

S hj(ddChj) n ---* O, 

Then there is a subsequenee { hk~ } such that 

E hkj E s 

j--,oc. 

Proof. Suppose that  hkj, 1 ~<j ~ N ,  are chosen such that  

N 
> - 1 .  

Choose hkN+l such that 

s N+I / N+I /n 
E hkj ddC E hkj > - 1 ,  
j : l  j=l 

that  is, 

) S (  N-pI\n S / N+I n hk,(dd~Ehk, + hkN+l d d ~ E h k , ) > - l .  
j=l -- j=l j=l 

Note that  the first term is the sum of f ~N=l hkj(dd ~ ~-]N_I hkj) n and terms of the form 

f ~ N  1 hk~ (dd c ~; -1  hk~)n-PA (ddChkN+l)P, p/> 1. The first term is strictly greater than 

- 1  by assumption and all the others together with the second term can be choosen as 

close to zero as we wish by Theorem 3.2. 

In particular, we can choose hN+l so that  

N+I N+I /~ 
iEhks(dd'Ehk, > - 1 .  

j=l j=l 

h It follows that  --~-~j=l hkj EEl. 

PROPOSITION 3.10. Suppose that E is a pluripolar subset of ~. 
r  such that Ec{%0=-oo} .  

[] 

Then there is a 

S( 1 ddChoj)n<~, j E N ,  

Proof. Choose a sequence of relatively compact open subsets Oj such that  every 

point of E is in all but finitely many Oj, and such that  
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where hot is the relative extremal plurisubharmonic function for 0j. We extract a sub- 

h sequence of ( or such that  h=~-~, hokjC$1, which is possible by Lemma 3.9. It follows 

that  E c { h = - o e } .  [] 

Example 3.11. We construct a function ~/Cgp\~p, Vp~>l. Let ~t=B be the unit ball 

and define ~j=max(log ]zl , -1/2J) .  Then f - ~ j ( d d ~ T j ) n = c / 2  j, where O<c=f(ddC~/j) n 

and 7 = E k = l  ~ max(log Izl,--1/2Jk)Egl for some subsequence (2'k)k=l~ by Lemma 3.9. 
C m Note also that  f ( dd  (Ek=l  max(log Izl, - 1 / 2  jk))n =mc by Stokes' theorem, so "y~t ~1. 

Since 0~>7~>-1, it follows that ~/Es Vp>~l. 

LEMMA 3.12. Suppose that UCgl, where ~ is a strictly pseudoconvex domain. Then 

lim u(z) = O, V{ E 0~. 

Proof. Define limz--.~ u(z), ~E0~. 

Then "y is upper semicontinuous and less than or equal to zero. If there is a point 

~0 where ~/(~0)<0, then we can find a continuous function h on 0~ such that  "y~<h~0 

and h(~o)<0. Then there is a unique plurisubharmonic function v continuous up to the 

boundary, with vanishing Monge-Amp~re mass and equal to h on 0n.  Let uj Cgo, uj---~u 

as in the definition of u. 

Then limj_~+~ max(uj,  v) Egl, so limj__.+~ max(uj,  v) =max(u, v) =VEgl.  By The- 

orem 3.8, 

lim ] - max(uj,  v)(ddCmax(uj, v) ) '~ = O, 
j -~+oc  J 

but 
f 

0 <~ ] - max(uj,  v)(dd~max(uj, v)) n 

is increasing in j ,  so max(uj,  v ) - 0 ,  Vj, which is a contradiction. [] 

4. The comparison principle is valid 

Here, we prove that  the comparison principle is valid in 5~p. In particular, this means 

that  we have uniqueness in 9~p for the Dirichlet problem we are going to study in w 

LEMMA 4.1. Let U be an open subset of ~ and assume that u, vEgp, u=v  near OU. 

Then 

Proof. 
u~ and v~. 

Choose U~CC U so that  u=v  near OU ~, and consider the usual regularizations 

If ~>0 is small enough, v~--u~ near OU, and if x E C ~ ( U  ~) with X=I  near 
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{U~V~} then f x(ddCu~)~=f u~ddCxA(ddCu~)n-l=f v~ddCxA(ddCu~)n-l=f x(ddCv~)n 
since ddCx=O where v~r Hence 

/ x(dd~u)n= / x(dd~v)n, 

s o  

LEMMA 4.2. If u, vC~'p and if u<.v on f~, then 

~ (dd~u)n >~ ~ (dd~v) n. 

Proof. Let uj and vj be as in the definition of 9Cp and let hEEoAC(~). Then 

<. ~-h(ddCu)'~+ lim ~h -h(dd~uj)n 
j--~+oo > - e  

<~ ~ -h(ddcu)n+e j--.+oolim ~(ddCuj) n. 

If we let e tend to zero, we get that  

~-h(ddCv)n <~ ~-h(dd~u) n. 

To complete the proof, we let h decrease to -1 .  [] 

LEMMA 4.3. Suppose that we have WECp, wj'~w, j---*+oo, as in the definition of Ep. 

If 0~>u, vEPSH(~) then 

f{ (dd~w) n <. lim f (dd~wj) ~, (3) 
u<v} j--*oo J{u<v} 

and if u>~v near Oft then 

f~,,+~o (,~d~)" ~> 3~m+o~ ,,~,,+~v~ f (dd~) ", V~>O. (4) 

Proof. 
since 

Let (5>0 be given. Since u and v are quasicontinuous ([3], [7, p. 37]), and 

sup f (-~j)'~(dd~j) n < + ~ ,  
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it follows from Proposition 3.10 that  there is an open set O~ with supj fo~ (ddCwJ) n<~, 

and there are two continuous functions fi and ~5 such that  {ur  U {v ~ }  C O~. Therefore 

and 

and so 

and 

{u < v} c {,0, <,~} u oe c {u < v} u o,~ 

{u+~ ~< v} c {~+~ ~<,~}uo,5 c {u+c ~< v}UO~, 

f~ (,t,~)o.< f (,~,~)o ~ lira f~ (d,~wj) " 
u<v} J {.fi<'~}uO~ j--*+oc ,5<-~}uO~ 

~< li_m_m / (dd~y)'~<~ ~ f (dd=wj)'~+& 
j--*+c~ u<v}uO~ j +oc J {u<v} 

Also, if u~v near the boundary of ~ then 

{u+e ~< v} c c  

j +oo j{~+~<,,} j +oo.]{,i+~.<<~} 

<. f (,~,~o~)o+ e.< f (,~,~o,,.,)"+ 2~. 
J {a-l-e~<~} d{u-f-e<~v} 

Therefore 

f{ (ddCw) n <~ lira f (ddCo.)j)n+~ 
u+e<v} j-~+c~ J {u+~<v} 

l im f (ddC(.,dj)n.-~-~ f (ddC(.,d)n-t-3~. [] 
j--*+co J {u+e~v} J {u+edv}  

LEMMA 4.4. Let p>~l and suppose u, vE~p. Then 

~N<v} (dd~v)n <~ fJ {u<v}(dd~u)n" 

Proof. Let vj~,~v, ujN~u as in the definition of ~'p, and choose an open set (.0~ as 

in the previous proof with supj fo~ [(dd~uj)n+(ddCvj) ~] <5. Using (3) of Lemma 4.3, we 

get 

/ ,im Z ~<v} j-.+---~ ~<~} (dd~vj)~ 

~< lim l~m [ (dd~vj)n<~ lim lim f (dd~vj) n. 
k +~  J{~k<~} j~+oo j__.+~ k~+oc J {uk <v~ } 
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By Lemma V:3, p. 42, in [7], this can be estimated by 

lim lim f (dd cuk)~ <~ lim lim f (dd cuk)~ 

lim lim f ( dd~uk )~ + 5 
j~+cr k~+c~ j (u<. vj }nco~ 

( (aden)n+26+ aim f g(dd uk) n 

< _ ~<<.,}(ddCu) n + 26 

+k--.+~lim ~(g-1)(dd~uk)nW/ (ddCu) n 

where g is any non-negative and continuous function which is bounded by 1 and equal 

to 1 close to the boundary of ~. In the second last step, we have used the estimate 

/ (ddCuj )n~/ (dd~u)  n, 

which follows from Lemma 4.2. To complete the proof, we let g tend to zero. [] 

THEOREM 4.5 (the comparison principle). Let p>/1 and suppose that u, vEJ:p with 
(dd~u)n<~(ddCv) n. Then v<u on ~. 

Proof. Since 12 admits  a continuous exhaustion function in ~0, there is to every 

point z0C~ a continuous exhaustion function P so that  (dd~P)n>~dV near z0, where 

dV denotes the Lebesgue measure. If there is a zoEl2 with U(Zo)<V(Zo), take ~ > 0  so 

small that  U(Zo)<V(Zo)+~?P(zo). Then the Lebesgue measure of T=(zE~:u<v+~P)  
is strictly positive, and so is fT(dd~P) n. 

By Lemma 4.4 we have that  

but the right-hand side is assumed to be smaller than  or equal to fT(dd~v) ~. Hence 

fT(ddCv)n+,nfT(dd~p)n<~fT(ddCv)n , so fT(ddCP)n=O, which is a contradiction. [] 

Remark. Except for the above result, Lemma 4.4 is sometimes also called "the com- 

parison principle". There is also a comparison principle for bounded plurisubharmonic 

functions: Suppose that  u and v are bounded plurisubharmonic functions which are con- 

tinuous and equal at the boundary of the domain ~. If (dd~u)n~ (dd~v) n on ~ then u>~v 
on ~. Cf. [6]. 
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5. The Dirichlet problem 

We now prove the main theorem of this paper. 

THEOREM 5.1. Let ~ be a bounded and hyperconvex set in C n, n>~2, p>~l and # 
a positive measure with finite total mass on ~. Then there is a (uniquely determined) 
function UE~p with (ddCu)n=# if and only if there is a constant A such that 

r r \~-~ 

Remark. Note that  if # is a measure satisfying (5) for some p~>l, then # puts no 

mass on pluripolar sets. 

LEMMA 5.2. Suppose that # is a positive and compactly supported measure satisfy- 
ing (5) with p>n/(n-1) .  If ujECoNC(~), uj--*uEPSH(~), j-~+cc, a.e. dV, and if 
supy f (ddCuj)'<+cc, then limj__.+~ f uj d#=f  u d#. 

Proof. Note that  limj__.+~ f u j  d#<~fud#, so it is enough to prove that  fud#<~ 
l i m j ~ + ~  fuy d#. For each N E N ,  write A~v={ZCsupp#:  uj < - N } .  Then 

/ f c n \  ~-~ ~ d # ~ J ' ( - h A ~ ) P d p ~ A ~ J  (ddhA~N) ) , 

where hE(Z) is the relative extremal plurisubharmonic function for E.  By Lemma 4.4, 

f~ (ddChAJN)n= JAJN f (dd~hAJN)n ~ J~2u~/N<hAjN(ddChA~N)n 
(6) 2'~ / 2n 

~ (ddCuj) n ~ -~-~o~, 

where ~ = s u p  f(ddCuj) n. Hence 

~ d# <<. A(2~c~) p/(~+p) N~p/(n+p ) . 

Since p>n/ (n -  1), ~/=np/(n+p) > 1. Therefore 

- -  --+ 0, N--+ +cr Z 
k ~ N  2k+l<uj  ~ - 2 k  k = N  

Thus 

(7) 
~ 2k+1 

<~ 2Nd#+A(2~)P/(n+P) E 2k~ ' N c N .  
k = N  
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In particular, supj f s  and we see that it is enough to prove that  

f - m a x ( u j , - N )  d#--~f - m a x ( u , - N )  d/~, j---,+co. In other words, we can assume that  

{uj } is uniformly bounded. 

In this case, since supj fu2d#<+oo, there is a vEL2(d#) and a subsequence uj~ 

so that  ( l / M ) ~ M l u j ~ - - * v  in L2(d#). Then there is a subsequence Mq such that  fq= 
Mq (1/Mq) ~'~.t=lUj~--~v a.e. d#, q-++oo. But fq--*u in L2(dy) so (supr>~qfr)*"~u every- 

where, and 

/ ( s u p f r ) * d # = / s u p f .  d # - * / v d # ,  q--~oc, 
r>/q r ~ q  

from the remark above and the fact that  f ~ v  a.e. d#. Thus we have fudl~--fvdt~= 
lim f uj~ d#. [] 

LEMMA 5.3. I f  w e  have that usEs uEPSH,  us---*u, s---*+oo, a.e. dV, 
s u p f - u s ( d d ~ u ~ ) n < + o o  and if f lu-u~l(dd~u~)n--*O, then (dd~us)n---*(dd~u) '~. 

Proof. We can assume f lu-u~l(ddCu~)n<l/s 2. Then, for O<~xeC~(O), 

f x(ddCuP-f  x(dd~u~) ~ 

J X [(dd ~u)" -(dd ~ (max(us + 1/s, u) - 1/s)) ~ 

+ (dd ~ (max(us + 1/s, u) - 1/s)) n - (dd~us)n] 

% / X [(dd Cu)n _(dd ~ max((us + 1/s, u) - l / s ) )  n] 

+ ~,+I/~<~X [(ddC(max(u~ + 1/s, u) - l / s ) )  n - (dd~u~) ~] 

<~ Jx[(ddCu)~-(dd~max((u~+l/s,u)-l/s))~] 

+ 2 s u p x  f (dd~u~) ~ . 
J u ~ + l / s < ~ u  

Since 

(ddCus) ~ I ]u-u,l(ddCu,) n --* 0, 
f <~ 8 

s + l /s<~ u J 

it is enough to prove that  

S - ~  + o o ,  

(ddC(max(u~ + 1/s, u ) -  l / s ) )  n --* (ddCu) n, s --~ +co. 
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Define g~ =max(u~ + 1/s, u) - 1/s. Then 

1 c n 
~g~<_N(ddCgs)n <~-~ / ( - u s ) ( d d  us) �9 

Hence fgs<_y(ddr uniformly in s when N--*+c~, so it is enough to prove that  

(ddr - Y )  ) ~ --+ (ddCmax(u, - g )  ) ~, s ~ +c~, r Y e  N. 

It follows from the construction of g~ that  

m a x ( g s , - N ) - - - + m a x ( u , - N )  

in Cn-capacity (cf. [21]). We can therefore apply Theorem 1 in [21] to conclude that  

(dd~max(gs, - N ) )  ~ --~ (dd~max(u, - N ) )  n, S ~ +C<), 

which completes the proof of Lemma 5.3. [] 

LEMMA 5.4. Suppose that U6s and that r is a negative, continuous and plurisub- 

harmonic function on ~. Then 

XA (dd~u)n = XA(ddCmax(u, r )n, 

where A = { z c ~ : u > r  

In particular, 

XA ( ddC u ) n << ( ddC max( u, ~) ) ) n . 

Proof. The lemma is trivially true when u is continuous. Let K be a given compact 

subset of gt, and (9 a relatively compact open subset of ~ containing K.  Following the 

proof of Theorem 3.5, given 5<0,  choose vj6s vj decreasing to max(u+5,  2u) on gt, 

and vj decreasing to u+5 on (9, and vj continuous on (9. Given e>0,  choose (91 open 

in (9, containing K,  and K1 compact in A N K ,  such that  

Then, with 

we have 

/( dd~hol\gl)n < e. 

A j = { z E O : v j  > r  

XAJ (ddCmax(vj, r  ) '~ = XAJ (dd%j) ~. 
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So 

and therefore, 

XKnA ( dd%j )n = XKnA ( dd ~ max(vj ,  r + 5)) ~, 

XAnK (dd ~ max(vj, r + 5)) n = Xo~ (dd~vj) '~ + (XAnK -- XO~ ) (dd%j)'~. 

Here, 

f (Xot-XAnK)(ddevj)  n ~ / --hol\K~ (ddCvj) ~ 

) 
~< const, c p/(n+v). 

Since Xol is lower semicontinuous, we can now use 

Xol (dd%j)n + (XAnK -- Xo~ ) (dd%j)n 

= HANK (dd ~ max(vs, r + 5)n 

= XK1 ( ddc max(vj,  ~, + 5)) n + (XAnK -- XKI )(dd ~ max(vj ,  r + 5)) n 

to conclude that  

where 

Therefore, 

Xo~ (dd%) n <~ XK~ (dd~max(u+& r  )'~ + d#E, 

XAnK(ddCu)n ~ XAnK(ddCmax(u, ~)) )n 

and the reverse inequality can be obtained in a similar way using 

Xgl(ddCvj)n + (XAnK--Xgl)(ddCvj)n 

= XAnK(ddCvj) n = XAng(ddCmax(v5, r  n 

= Xo~(ddCmax(vj, r ~+5)) n. [] 

Proof of Theorem 5.1. Suppose first that  p > n / ( n - 1 )  and that  tt has compact  sup- 

port  in ~t. For each s large enough, we consider a subdivision I s of supp # consisting of 
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s 1 s c.32'~s isomorphic, semi-open cubes I~ with side (~) ,  l<j<c32n~. By [6] or [11] we can 

find usCPSH(~)@C(fi) with 

lim u8 (z) = 0, V~ e 0fl, 
z---*~ 

and ) 1 (ddCus) ~ = d# XI; ~ dV, 

where ds--(�89 length of side of I], and where dV is the Lebesgue measure. Using the 

super mean-value property for superharmonic functions, we have 

/-us(dd~us) n ~< c o n s t . J  -us  d#, 

which is uniformly bounded since f(ddCus)n=#(1)<+c~, as already noted in (7) in the 

proof of Lemma 5.2. It follows from (2) that 

f -us dV < +c~, V~' CC 12, s u p  
s J R t  

u c~ so we can pick a subsequence ( sj)j=l, again denoted by (us), u s ~ u e P S H ( ~ ) ,  s--*+c~, 

a.e. dV. Since u=limj__.~(sup~>j us)* we have that UE~l. Define 

1 ~ [u(x+~)-us(x+~)[ dV, 

where B(r) is the volume of the ball with radius r. Then 

B(nds) L" Vs(x) d#(x)~< const . /V~(x)d#(x) .  j ds 

Now, 

1 J(lr lu(x+~)-us(x+~) I dV Vs(x)-~ B(nds) ]<rid. 

- -  B(nds)l ~i ,<.nd~ lu(x+~)-supuj(x+~)+supuj(x+~)-us(x+~)IdV j>~s j>~s 

1 ~i (supuj(x+~)-u(x+~)) dV 
E B(nds~ I<nd.  j~s 

l j(i, s u p u j ( x + ~ ) d v - l j ( ,  us(x+~)dV 
+S(nds--~ i~ndsj~s S(nds-----~ [<nds 
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1 f [(supuj(x+~))*-u(x+~)]dV 
<<" B(nds-----~ Jill<rids j>~s 

1 J~l( (supuj(x+~))*dV-us(X). + B(nd~-----~ i<~,,d~ j>~ 

It follows now from monotone convergence and Lemma 5.2 that 

/ V~(x)dl.t(x)---~O, s---~+oo, 

and then from Lemma 5.3 that  

(ddCuj) '~ ---, (ddCu) n, j ~ +c~. 

But (dd~u~)n--+#, s--*+oc, by construction, so it= (dd~u)'L 
It remains to prove that  UEEp. Define XN as the characteristic function for 

{zEfl:u>~-N}.  

By what we have just proved, we can find ~NESrl with 

(ddCcpN) n = XN(ddCu) n. 

By Lemma 5.4, ~ N / > m a x ( u , - N ) ,  so it follows from Lemma 4.2 and from Theorem 3.3 

in [10] that  ~NEE0. Thus 

/ (--~N )P(ddC~N )n = / (--~N )PXN(ddCu)n 

] f(-~N)P(ddcu)n / f \~-~p <~ ~A tJ ( -~N)P(dd~N)~  ) �9 

Therefore 

f (--~pN)P(ddC~pN)n <~ A('~+p)/n, 

so limN-~+or ~NE$'p and u=limN__++or ~N by Theorem 4.5. 

Suppose now that  p>~l. Fix q>n/(n-1) and choose 

n 

f f \,,Tq ) 
where K is the support of #. Define 

/ r \ ~--~ 80 ~ .j~ M= {~>~O:supp~,cK, f (-~)'d~,<~ E[J(-~)~(dd~) ") , v~c 
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If L c K  then, by Theorem 3.2, (ddChL)nEM, so if G is any Borel subset of K with 

v(G)=0 for all uEM,  then G is pluripolar. 

Fix 0 r  and define 

= I v  ~> 0 : v(1) = 1, supp v c K, R 

, 

where T=sup{v(1):  vEM}. Then 

(T-v(1))uo+vo(1)v 
E R  

Tu0(1) 

for all uEM.  Obviously, R is a weak*-compact convex set of probability measures. By a 

generalization of the Radon-Nikodym theorem in [19], there is a vER, fELl (dr)  and a 

positive measure us which is orthogonal to R, such that  

#= f du+u~. 

Note that  if u (G)=0 for all uER, then G is pluripolar. 

From the remark after Theorem 5.1, # has no mass on pluripolar sets, so us=0 and 

# = f d v .  We have already proved that there is, to every N, a unique 

UNE ~q 

with (ddCug)n=fydv where fg=in f ( f ,  N). Then UN~Uy+ 1 by Theorem 4.5, and re- 

peating the corresponding argument above, we conclude that  limugE$-p, which com- 

pletes the proof if # has compact support. 

Finally, if only #(1)<+oc,  consider XkN#, where 

kN = {Z E a : dist(z, ~f~) >~ 1/g} ,  

and repeat the argument above. 

The "only if" part of Theorem 5.1"follows from Theorem 3.2, which completes the 

proof of Theorem 5.1. [] 

COROLLARY 5.5. Suppose that # is a positive and compactly supported measure such 

that 
/ f ~ n\  pI'~ 

h,.) ) , v / , :cca,  

for some p > l  and some A. Then there is a uE~l  with (ddCu)n=#. 

Proof. With notations as in Lemma 5.2, it follows from the inequality (6) and the 

assumption that  
1 

d# <. A(2'~ a) p/(n+p) Nnp/(,~+p) . 
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Therefore, the crucial inequality (7) holds true and the proof of the corollary can be 

completed using the first part of the proof of Theorem 5.1. [] 

We can now prove a generalization of Theorem 3.8. 

THEOREM 5.6. Suppose that uEJ:l and p > l .  / f  f(-u)P(dd~u)~< +cc then uEJ:p, 

and conversely, if uE.Tp then there exists a decreasing sequence ujEEo with l imuj=u 

and 

lim I ( - u y ( d d % ) " =  " < j--*+cc J J 

Furthermore, if {vj} is any sequence of functions in go, decreasing to UEgp, then 

sip f (-vy(ea%) < 

Proof. The last statement follows from the proof of Lemma 3.4. Suppose UE~p. 

Since ( -u)  p is lower semicontinuous, f(-u)P(ddCu)'~<+oc. 

Suppose that  uESrl and f(-u)P(ddCu)n<+cc. With notations as in Lemma 5.4, we 

use Theorem 5.1 to find UNECO, (ddCug)~=XAN(dd~u) n. Since uEJCl, UN decreases to 

u by Theorem 4.5. Now, 

/(-UN)'(ddCuN)n=/(-UN)PXAN(ddcu)n---* /(-u)P(ddCu) n, N ~ + o c ,  

by monotone convergence. Therefore, uE~'p and the theorem is proved. [] 

THEOREM 5.7. Suppose that # is a positive and compactly supported measure on 

12cC '~, n>~2. If  there is a constant A so that for some p~ l, 

/ ( -~)Pd# / f N~-~4z~ 

then there is a u6~p with 
(dd~u) n = #. 

Furthermore, if O<~fELP/(P-1)(d#) then there is a ve.~l with 

(ddCv) n -= f d#. 

Proof. It follows from Theorem 5.1 that  there is a uE~-i with 

( ddCu) n = #. 
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NOW, 

/ , .  . .  

by Theorem 3.8 and HSlder's inequality. It follows that  

/(-u)P(ddCu)n <~ ( /  d # ) + A  (n+l)/'~, 

so Ue~p by Theorem 5.6. Now, if O<.feLP/(P-1)(d#), 

. 

(/I >I, > )- (/ .,+:>,.) " <. A 1/p - ~  d'~ n f . 

So another application of Theorem 5.6 completes the proof. 

207 

[] 

6. Some applications 

PROPOSITION 6.1. Let ~ be a hyperconvex domain. Suppose that # is a positive measure 
with finite mass on [2 such that #<~(ddCr n, where r is a bounded plurisubharmonic 

function on [2. Then there is a uniquely determined bounded plurisubharmonic function 
qaEJrl with (ddCqo)n=#. 

Remark. This is Theorem A in [15] in the case of boundary data  zero. See also 

Theorem 8.1. 

Proof. It is no restriction to assume -1~<r  Consider hy=max(@,Nh) where 

h6C0 is an exhaustion function for [2. It follows from Theorems 3.2, 3.4, 4.5 and 5.1 that  

there is a uniquely determined r  with (ddCCg)n=XANdl ~, where 

A N =  {ZE[2 : Nh < - I } .  

Then 

so limN-++oo CNC~IOL ~176 since we have assumed that  # has bounded total mass. [] 

Next, we extend Theorem 5.1 to Ep, p/>l. 
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/ (-uj)P(ddCuj) n 

Therefore, 

THEOREM 6.2. Let f~ be a hyperconvex domain and suppose that # is a positive 

measure on ~ such that (5) holds for some p>/1. Then there is a uniquely determined 

UCSp with (ddCu)'~=#. 

Proof. Let (Kj)~= 1 be an increasing sequence of compact subsets of fl with 

Uj~=~Kj=~. It follows from (5) that  there is a uniquely determined u j � 9  with 

(dd~uj)n=XKj d#. Then uj is a decreasing sequence of functions in .Tp and it follows 

from Theorem 5.6 that  

lim u j = u E S p  
j--,+oo 

and (ddCu)~=#. 

Let now h be a continuous exhaustion function for fl in $0 and define 

Am = {z �9 fl : v > - m ( - h ) l / P } ,  

where vEEp and (ddCv)'~=#. We have then by Lemma 5.4, 

XK, XA,~ d# <<. (ddCmax(v, - m ( - h ) l l P )  ) n. 

Thus 

V(xK, x..., 0) max(v, -m(-h)l/"), 

where U(XK~XA,,,d#, 0) denotes the unique function in Eo with 

( ddcU (xK~ XA~ d#, 0 ) ) '~ = XK~ XA,~ d#. 

(See w for this notation.) 

Therefore, U(XK~XA,~d#,O)>~Uj>~V for all m, so u>~v. In other words, if VEEp, 

(ddCv)'~=d#, then u~v .  It remains to prove the reverse inequality. 

We know from Lemma 5.4 that  

(ddCmax(v , -m(-h) l /P) )  ~ = XA.~(ddCv)n+ X{v<<_m(_h)l/p}(ddCmax(v,-m(-h)l/P)) n. 

Write 

#m = X{v<~-m(-h)l/p}(ddCmax( v, - m ( - h ) l / P ) )  n 

and gm = U(#m, 0). Then by the comparison principle, 

max(v, - m ( - h )  1/p) ) u+gm for all m )  1, 
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and it is enough to prove that 

lim gm:  0 a.e. dV. 
?7%---',00 

Define Um=(Sup{gj:j ~>m})*. Using Theorem 3.4, we have for any j>~m, 

/(-Um)P(ddCUm) n <~ mP f (-h)(ddCUmF <<. mP/(-h) d~j 

<~ ( ~ )P / (-v)P(ddCmax(v, - j ( -h) l /P)  )'~ <. eonst. ( ~ ) p. 

Therefore, (dd~Um)n=O, so since Um is a bounded plurisubharmonic function with 

boundary values equal to zero, Urn=O, which completes the proof of the theorem. 

We conclude this section with a decomposition theorem for positive and compactly 

supported measures. 

THEOREM 6.3. Suppose that # is a positive and compactly supported measure in a 
hyperconvex domain ~. Then there exist r O<~f cLl(  (ddCr ) ~) and a positive mea- 
sure ~8 carried by a pluripolar set, such that #=f(dd~r In particular, if # van- 
ishes on all pluripolar sets, then there is an increasing sequence of measures (dd~uj) n 
tending to # as j--~+oc, where ujECo. 

Proof. It follows from the last part of the proof of Theorem 5.1 that there exist 

~E~p, O<~f~Ll((dd~) '~) and v~, carried by a pluripolar set, with #=f(ddC~)~+v~. 
Since # has compact support, it is no restriction to assume that (dd~) "~ has compact 

support. Consider 

g = (__~)--1 6 PSH(~) ML~o~(~). 

Then a calculation shows that (-~)-2~(dd~)'~const.(dd~g)n, and since (ddC~) n has 
compact support, we can modify g outside the support of (ddr ~ so that gEE0. By 

Proposition 6.1, there is a CEE0 with (-~)-2n(dd~)n=(dd~r n, which gives #=  
2 n  c n f ( - ~ )  (dd r +v~. 

Finally, if # vanishes on all pluripolar sets, vs=0. Use Proposition 6.1 to solve 

uj E E0, (dd~uj) '~ - - inf ( f ( -~)  2n, j)(ddCr ~. [] 

7. The  Dirichlet  problem wi th  smoo th  b o u n d a r y  d a t a  

In this section, we use the results from the previous sections to study the Dirichlet 

problem with smooth boundary data. 
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Let ~ be a bounded pseudoconvex domain and assume that f is a continuous real- 

valued function on 012. We are going to define classes Up(f) of plurisubharmonic func- 

tions and study the problem when there is a vE~-p(f) with 

{ lim~__,(v(z) = f((), V~ E On, 
(ddCv)n=# o n a .  (S) 

In particular, we will prove that if fl is strictly pseudoconvex, then there exists a uniquely 

determined vEh~p(f) satisfying (8) if and only if # satisfies (5). 

Suppose first that  # is a positive measure on f~ such that the class of plurisub- 

harmonic functions 

B(#,  f )  = {vE PSHML~oc(12): (ddCv) n >~ iz, li---~ v(z) <. f(~), V~E 0fl} 
z---*( 

is non-empty. Then 

V(#, f )  = sup{v :v E B(#,  f )}  E B(#,  f ) ,  

cf. [10]. Sometimes we also write U(#, 0) for the solution obtained in Theorem 5.1. Also, 

if 12 is strictly pseudoconvex and if #=gdV, where 0<~gEL2(fl), then U(gdV, f) solves 

(8) and is continuous on ~, cf. [11]. If f~ is smoothly bounded and strictly pseudoconvex, 

fEC~ and if 0<r  for some r  then U(gdV, f ) E C ~ ( f i ) ,  cf. [5]. Then, 

by Lemma 4.2, 

(ddC(V(O, f ) + V ( 0 , - f ) ) ) ' ~  < fa(adc(g(dV, f)+V(dV, _f)))n < +OC, 

SO g(o,f)+U(O,-f)EC0, and if r #~<(ddr '~, then 

~ (dd~U(#, f) ) n< . ~ (dd~(~+U(O, f) ) n< . ~ (ddC(~o+U(O, f)+ U(O, - f )  ) )~ < +cx) 

since g0 is a convex cone. Thus, if ~EC0 and (dd~o)'~>>.#, we have U(O,f)>.U(#,f)>>. 
~ + U ( 0 ,  f )  and U(#, f)+V(O,-f)EC0. This leads us to the following definition. 

Definition 7.1. Suppose that fl is a hyperconvex domain. We consider functions 

fEC(Ol2) such that limz--.( U(0, f)(z)=f(() for all (E0f~. For such functions we then 

denote by C0(f) (or Yrp(f)), p>~l, the class of plurisubharmonic functions u such that 

there exists r (or 9rp) with 

U(0, f ) />  u/> ~o+ V(0, f ) .  (9) 

This can be thought of as a type of analogy with the Riesz decomposition theorem 

of a subharmonic function as a sum of a potential and a harmonic function. 

Remark. Note that  since go (or Up) is convex, so is C0(f) (or 5rp(f)). 
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THEOREM 7.2. The Monge-Amp~re operator (dd~) n is well-defined on jZp(f) for 
all p~ 1. 

Proof. It is no restriction to assume that  f~<0. Let UE~p(f) be given. Then there 

exists ~EgVp such that  

U(0, f ) />  u ~> ~+V (0 ,  f ) .  

The sequence of functions max(u,~j+U(O,f)) in go(f) decreases to u, where ~j de- 

creases to ~ as in the definition of ~'p. Let now {uj}Cgo(f) be any given sequence 

decreasing to u as j--++c~. Let K be any given compact subset of ~ and choose c so 

large that  U(O,f)>c~ on K.  Then u>~(c+l )~  near K,  so vj=max(uj, ( c + l ) ~ j ) E $ 0  

and vj decreases to max(u, ( c + l ) ~ ) C ~ p ,  j--++c~. It follows now from Theorem 3.5 that  

(dd~vj) n converges weakly, j--*+c~, and since K is an arbitrarily chosen compact set, 

(dd~uj) n converges weakly, j--++cc, which proves the theorem. [] 

To make sure that  limz--.~ U(0, f)(z)=f(~), U(#, f )+U(O,- f )ego and to avoid reg- 

ularity problems, we assume in the rest of this section that  gt is a smoothly bounded 

strictly pseudoconvex set and that  f c C ~ ( ~ ) .  

LEMMA 7.3. Let p>~l and assume that u, vEJ:p(f) satisfy u=v near 0~. Then 

Proof. The proof of Lemma 4.1 applies. 

LEMMA 7.4. Let p )  l and assume that u, VE~p(f) satisfy u<~v on 12. Then 

~ (dd~u)n >~ s (dd~v) n. 

[] 

Proof. Suppose that  uj<<.vj, uj'%u, vj~.~v, j--++cc, as in the definition of ~'p(f), 

and assume that  hEgo. 
If l<.p<.n, then 

f h(ddCuj)PA(ddCvj) n-p ~ /h(ddCuj)p-lA(ddCvj) n-p+1, 

so in particular, f h(ddCuj)~<, f h(ddCvj) n. 
For, by Stokes' theorem, 

0 = f hd~uj A (dd~uj)p-lA(dd~vj) n-p 
Jo 

= f A + f (dd v ) 
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Thus, 

~ h(ddCuj)PA(dd~vj) n-p = _ ~ dujAdChA(dd~uJ)p-lA(dd~vj )n-p 

= J~ uj ddChA (ddCuj)P-1A (ddCvj)n-P 

- foa uj dCh A (dd~uj)P- 1A (dd~vj)~-P 

= ~ uj dd~h A (dd ~ uj ) p - 1A (dd ~ vj ) n-p 

- foa vjdChA(dd~uj) p-lA(dd~vj) '~-p 

= Jn uj ddCh A (ddCuj)P- IA (dd~vj)n-P 

- / ~  dvj Ad~hA (dd~uj)P-lA (dd~vj) "~-p 

- f~ vj ddr A (ddCuj)P- 1A (dd~vj)n-P 

<. - J dvj Ad~hA (dd~uj)P- ~A (ddCvj)n-P 

= j h(ddCuj)P-lA(ddCvj) n-p+l, 

where we have used that  uj---vj =f  on OFt. Hence, 

/ -h(dd~v)  "~ <~ lim J-h(dd~vj) '~ <~ lim /-h(dd~uj)  n 

~ / -h(ddCu)n § ~ lim /_E<h(ddCuj)'~ 

[ f 
J ~  j J 

But since we are assuming that  supj f(dd~uj)"<§ it follows that  f-h(dd~v)"<. 
f-h(dd~u) n, so letting h ~ - l ,  we get the desired conclusion. [] 

LEMMA 7.5. Let p>~l. If u, vE~p(f), then 

f{~<.}( ddCv) '~ <. ~N<v}(ddCu)n. 
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Proof. The proofs of Lemmas 4.3 and 4.4 go through without changes. We only 

need to observe that  u + U ( 0 , - f ) ,  v+U(O, - f )E~p ,  so Theorem 3.2 gives 

f(-~)[(dd~u)'~+(dd%) ~] < eonst ( f  /'~ -~ (dd~+)n]  , V~ c 8o. [] 

THEOREM 7.6. Let p>~l and suppose that u, vCJrp(f) satisfy (ddCu)n~ (ddCv). Then 

v<.u on ~t. 

Proof. The proof of Theorem 4.5 goes through if we use Lemma 7.5 instead of 

Lemma 4.4. [] 

THEOREM 7.7. Let Q be a smoothly bounded, strictly pseudoconvex domain in C n, 

n~2,  p>~l, # a positive measure on t2 with finite mass and fEC~(Ot~). Then there is a 

uniquely determined UE~p(f) with (ddCu)n=# if and only if there is a constant A such 

that 
f /(-~)Pd,~A~/(-~)P(ddC~) n) , V~OE~O. (5)  

Proof. Suppose uE.Tp(f), (dd=u)"=#. Then U(0, f )  ~>u~>++ U(0, f )  for some ++~'p, 

so O~u+U(O,-f)>~++U(O,f)+U(O,- f) .  By Lemma 3.4, u+U(O,- f )E~p,  since we 

have ~+U(0 ,  f ) + U ( 0 , - f ) E S r p .  Therefore, (ddr satisfies (5), and since 

#=(ddr162 so does #. Thus (5) is a necessary condition for the 

Dirichlet problem (8) to have a solution. To be able to complete the proof of Theorem 7.7 

we need two lemmas. [] 

LEMMA 7.8. Suppose that # is a positive measure with compact support in ~ such 

that # satisfies (5) for some p>n/ (n -1 ) .  Assume that ujCCo(f)AC(~), uj--+ucPSH(fI) 

a.e. dV, j--*+c~, and that supj f~(ddCuj)~< +oo. 

Then limj_++~ f uj d # = f  ud#. 

Proof. Since ujCCo(f), we have already found that  (dd~(uj+V(O,-f)))~ satisfies 

(5) and so does (dd~uj) n. It follows then from Theorem 5.1 that  (dd~U((ddr 0)) ~=  

(dd~uj) ~. Again, 

f (dd~(uj+U(O,-f))) ~ < f (ddC(uj+U(O,-f)+U(O,f))) ~ 

<3~[f (dd%)~+ f (dd~176 1 , 

SO 

sup j (d+(u~+U(O,-f ) ) )~  = ~ < +~. 
J 
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It follows from Lemma 5.2 that  

f J ~ j  

which proves the lemma. [] 

Note also that  it follows from (7) in Lemma 5.2 that  

P p (3o 2k+l 

2k~ J J k = l  

where ~/=np/ (n + p). 

LEMMA 7.9. Suppose that u~Ego(f)nC(~), u~--~uEPSH(~), a.e. dV, s--*+oc, 
sup~ fa -us(ddCus)n < +oo, and that fn lu-u~l(ddCus)n---~O, s--*+oc. 

Then (ddCus) ~ tends weakly to (ddCu) n, s--*+oo. 

Proof. The proof of Lemma 5.3 applies. [] 

End of the proof of Theorem 7.7. Assume that  p>n / (n -1 )  and that  # has compact 

support. We can then copy the proof of Theorem 5.1 to find u~ E PSH(f~), u~---* u C PSH (f~), 

a.e. dV, s--*+oo, (dd~u~) n converges weakly to #, 

f -us(ddCus) n <~ const s u p  
d 

and 

U(O, f)  >~ u~ ~ U( (ddCu,) n, O) + U(O, f ) ,  

where l i m ~ + ~  U((ddCu~) n, O) =wEgVv. Therefore, u=l im,_~+~ u~C.~p(f) and U(O, f)>~ 

u>~w+U(O, f). If we form 

x dV, 
V~(x)-  B(nd~) t<nds 

as in the proof of Theorem 5.1, then it follows from monotone convergence and Lemma 7.8 

that  f~V~(x)d#(x)-*0, s--*+oc, and then from Lemma 7.9 that  (ddCu~) n tends weakly 

to (dd~u) ~, s~+cc .  
Assume now that  p~> 1. Let Kj be an increasing sequence of compact subsets of 

:r K f~ with Uj=I j = f L  By Theorem 6.3 there exist ~bjcg0 such that  XKj d#=gj(dd~r '~ 
for some O<~gjELl((dd~r We have already proved that  there exist u~CCo(f) with 

(ddCu~)n=inf(gj, s)(dd~r n. Then 

U(O, f )  ~> u~ ~> U(/z, 0)+ U(O, f ) ,  
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so lim,_~+~u~=ujEJCp(f), and finally u=limj_~+~ujC~Cp(f) since we know from The- 

orem 5.1 that  U(#,O)CJCp. Since (ddCuj)~=XKjd#, it follows that (dd~u)n=d#, which 

completes the proof of Theorem 7.7. [] 

Remark. It follows from Lemma 3.12 that lim~__.( U(#, 0)(z)=0,  V~e0fl,  so we have 

solved the Dirichlet problem (8). 

8. T h e  Di r i ch le t  p r o b l e m  with  continuous boundary data 

In this last section, we consider the Dirichlet problem (8) for continuous boundary data 

on hyperconvex sets. 

First, we prove that Theorem A in [15] can be deduced from Theorem 7.7. 

THEOREM 8.1. Suppose that fl is a bounded pseudoconvex domain, fEC(Of~), and 
that # is a positive measure on fl, such that U(#,f)EPSHNL~(fl) and such that 
lim~__.~ U(#, f )  (z) =lim~_~ U(O, f)(z)=f(~), V~E0f/. 

Then for every positive measure u dominated by #, (dd~U(u, f ) ) n = u  and U(u, f) 
satisfies the inequality U(O, f) >~U(u, f) >~U(#, f). 

Pro@ Suppose 0~<u~<#. It is no restriction to assume that u has compact sup- 

port, since u can be approximated by an increasing sequence of compactly supported 

measures. Assume first that f~ is smoothly bounded and strictly pseudoconvex, and 

that f c  C ~ Then, by considering U(u, f)+U(O, - f )  we see that B(u, 0) r  so 

U(u,O)ego and u<.(dd~U(u,O)) n, and so u satisfies (5) for any l~<p<+oc,  by Theo- 

rem 3.2. By Corollary 7.10, there is a uniquely determined v, namely v=U(u, f), with 

(dd%)'~=u and lim~__.e v(z)=f((),  V~e0a .  

Assume now that fl is pseudoeonvex and let (flJ)~=l be an increasing sequence of 

smoothly bounded strictly pseudoconvex domains with Uj~_l f~j = f~, where supp u c c  f~l- 

Since each fj=g(o,f)[oaj is upper semicontinuous, there exist f~kEC~(Of~j) with 

f jk"~ f j ,  k ~ +co. By the first part of the proof, there exist uniquely determined functions 

ujkEPSHNL~(flj) with (dd~ujk)~=u and lim~_~ ujk(z)=fjk(~), V~COflj. 
Also, U(u, f)lflj <.Ujk since 

lim U(v, f)(z) <. ~im U(O, fjk)(z) = fjk(~), V~e Oflj. 
z--~ 

Since Ujk".~uj, k--*+c% we have (ddCuj)n=u and U(#, f)~<U(u, f)~<uj ~<U(0, f j )  on f~j. 

Finally, Uj+llOaj <~ U(O, fj)Ionj = U(0, f)Ioaj  =fj, so (uj)j~=l is a decreasing sequence; 

since (ddCuj)n=u and U(0, f)~>uy ~>U(#, f ) ,  the proof of the theorem is complete. [] 
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THEOREM 8.2. Let f~ be a bounded hyperconvex domain in C n, n>~2, p>~l, 

# a positive measure with finite mass on fL Then, to every fEC(Of~) such that 

limz--.~U(O,f)(z)=f(~) for all ~EOf~, there is a function uEJ:p(f) with (dd~u)n=Iz 

if and only if there is a constant A such that 

(5) 

Thus 

AN= {ZE~:  qo > - N }  

and 

kN = {z E AN: dist(z, Cf~)/> l /N} .  

Then there is a uniquely determined qOgEEo with 

(ddCqoN) n = XAN d#. 

(ddC(qoN+ U (O, f )  ) )n ~ XAN dlz 

and l imz~(~N+U(O, f ) (z )=f(~) ,  for all ~e0f~. It follows from Theorem 8.1 that  

(dd~U(XA~ d#, f))n=XA~d #. Thus 

U(O, f )  >~ U(X.A2v d#, f)  >~ ~+U(O, f ) ,  

and since U(XA~ v d#, f )  is a decreasing sequence of functions in Eo, it follows that  

lira U(XAN d/z, f )  = u E .T'p(f) 
N -..* oo 

and (dd~u)~=# by Theorem T.2. [] 

Proof. By choosing f=O, it follows from Theorem 3.2 that  (5) is a necessary condi- 

tion. To prove that  (5) is sufficient, we first note that  it follows from Theorem 5.1 that  

there is a qoEbvp with (ddC~)'~=#. Define, as in Lemma 5.4, 
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