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1. I n t r o d u c t i o n  

Let f :  C ~ C  be the quadra t ic  po lynomia l  

/ ( z )  = e 2 " % + z  2, 

where 0 has cont inued  fract ion expansion 

O =  [al , a2,  a3,  ... ] = 
1 

a l  Zr 
1 

a 2 - ~ - - -  
a3 ~ . . .  

Assume tha t  0 is an  i r ra t ional  of b o u n d e d  t ype ,  mean ing  sup a i < o c .  T h e n  by a classical 

result  of Siegel, the map f is conformally conjugate  to a ro ta t ion  near  the origin [Si]. 

Research partially supported by the NSF. 
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The maximal domain D on which this conjugacy takes place is the Siegel disk for f ;  it is 

the component of the interior of the filled Julia set K ( f )  containing the origin. 

1 _2~e denote the critical point of f ,  let ci=fi(co), and let Let c 0 = - ~  

P ( f )  = {cl ,  cs,... } 

be the postcritical set. By work of Herman and Swi~tek, OD=P(f)  and OD is a quasicircle 

passing through the critical point. 

The behavior of f is dominated by the transition between linear and nonlinear 

dynamics that  occurs at the boundary of the Siegel disk. In this paper we study that  

transition and prove: 

THEOREM 1.1. The Julia set J ( f )  has Hausdorff dimension strictly less than two. 

THEOREM 1.2. If  0 is a quadratic irrational, then the boundary of the Siegel disk 

for f is self-similar about the critical point. 

Here is a more precise statement of the second theorem. Suppose that  0 is a quadratic 

irrational; its continued fraction expansion is then preperiodic, satisfying an+s =an  for all 

n>>0. For simplicity assume that  the period s is even. Then we find that  the periodicity 

of (an) allows one to construct a symmetry of f ,  namely a homeomorphism r C--*C 

satisfying 

r fa"(8+l)or 

for n>>0 and z near Co, where Pn/qn = [al, ..., an]. We show that  r stabilizes the Siegel disk 

and fixes the critical point; its complex derivative r exists; we have 0< [r < 1; 

and r behaves like a Cl+~-diffeomorphism near the critical point. 

Since r is contracting, all features of OD repeat at every scale, and the Siegel 

disk exhibits a self-similar shape (w For example, the successive closest returns of the 

critical orbit (Cq~) shadow geometric series converging to co. 

The dynamical system generated by f is also self-similar: when suitably rescaled, the 

maps (fqns+'(z)} converge exponentially fast to a self-similar family (g~(z)) of commuting 

holomorphic branched coverings of the plane (w Conceptually this means that  f is 

a t t racted to a fixed point of renormalization. 

For ~ of bounded type, we also prove that  a form of universality holds (w 

THEOREM 1.3. Let g: U-*V be a quadratic-like map with a fixed point of multi- 
pl ier  e 21riO. Then there is a conjugacy between f and g which is C l+a and conformal on 

the boundary of the Siegel disk. 

This result shows that  the fine-scale behavior of f]OD depends only on the combi- 

natorics of f ,  not on its explicit analytical form. For example, the Hausdorff dimension 
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of the boundary of the Siegel disk for ga(z):e2riOz~-z2-~-az 3 is constant for small values 

o f  a .  

In the course of the discussion, we also find (w 

(1) The Julia set of f is shallow (or porous): there is an E>0 such that  any r-ball 

in C contains an r disjoint from J(f).  On the other hand: 

(2) The critical point is a Lebesgue density point of the filled Julia set; in fact, 

area(B(co, r ) - K ( f ) )  = O(r  2+~) 

for some a > 0. 

(3) The dynamical system ($r(f), j ( f ) )  is uniformly twisting: at every scale near 

every point in the Julia set, one can find a degree-two branched covering h: U--*V with 

bounded geometry, contained in the full dynamics ( f - iof j ) .  

The golden mean. All these assertions apply to the golden mean Siegel disk, where 

0 _  5 -  1 (v/~ - 1 ) = [ 1 ,  1, 1, ...]; see Figure 1. The critical point is in the center of the picture, 

which depicts the filled Julia set in gray; the quasicircle bounding the Siegel disk is 

outlined in black at the lower left. 

We also show that  the boundary of the golden mean Siegel disk does not spiral about 

the critical point (Corollary 7.5). This means that  any continuous branch of a rg (z -c0)  

defined along 0 D - { c 0 }  is bounded. The same result holds whenever the continued 

fraction expansion of 0 has odd period. 

Empirically, the golden mean Siegel disk has the stronger property that  D contains 

a triangle with one vertex at co. 

Sources of rigidity. Convergence of the renormalized dynamics for the golden mean 

Siegel disk and its cousins may at first sight appear unrelated to considerations such 

as the dimension of the Julia set. In fact a principal goal of this paper is to give an 

explanation for convergence of renormalization directly in terms of the geometry of the 

filled Julia set K(f )  and its boundary J(f).  Here is a sketch of the argument. 

Since OD is a quasicircle, there is definite space inside K(f )  near every zCOD. 
The dynamics propagates this space throughout the Julia set, and we conclude that  

dim J(f)  <2 (Theorem 1.1). 

The picture is enhanced by the observation that  the critical point (indeed every 

zEOD) is a Lebesgue density point of K(f) .  To see this, note that  points just outside 

the Siegel disk must visit the critical point many times before they can escape to infinity. 

On each visit, there is a definite chance of landing in the preimage D I of D. Thus a 

random point close to OD has a high probability of eventually landing in D/, so the 

density of K(f)  tends to one. (The study of f near OD is facilitated by working in the 
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Fig. 1. The golden mean Siegel disk and blowup around the critical point 

linear coordinate system, a quasiconformal chart in which D is the unit disk, l iD is a 

rigid rotation, and the iterates of f are uniformly quasiregular.) 

Next we discuss universality. Consider a quadratic-like map g(z) with a fixed point 

of multiplier e 2~i~. By a basic result of Douady and Hubbard, g=r162 -1, where r is 

conformal on K(f). Measure-theoretically, the filled Julia set is sufficiently dense near 

zEOD that  the conformal behavior of r dominates; we conclude that  r exists and 

that  r is C 1+~ for some a > 0 .  
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P a r a l l e l s  

Infinitely renormalizable map Siegel linearizable map 

f(z)=z2+c, c E R  f(z)=e2'~i~ 2, 0 E R / Z  

Tuning invariant Continued fraction 

C=Sl*S2*83 ... O= [al, a2, ... ] 

Bounded combinatorics Bounded type 

P(f) = quasi-Cantor set P(f) = quasicircle 

Quadratic-like map Holomorphic pair 

Feigenbaum polynomial Golden mean polynomial 

( Z 2 , x + I )  (Sl, x+O) 
f~,  n = l ,  2, 4, 8,16, ... . f'*, n = l ,  2, 3, 5, 8,13, ... . 

(gr(f),  J(f)) is uniformly twisting 

The critical point of f is a deep point of K(f) 
Conjugacies are C 1+~ on P(f) 

T a b l e  2 

A similar argument provides smoothness of the conjugating map r between two 

renormalizations of f .  Thus OD is self-similar when 0 is a quadratic irrational (Theo- 

rem 1.2). To construct these renormalizations, which are variants of de Faria's commuting 

pairs [F], we use Fetersen's result on local connectivity of J(f) [Pe]. 

Finally we describe the limiting dynamics. By smoothness of r and a harmonic 

measure argument, one finds that  for i E Z, the rescaled first return maps fq~8+~ converge 

exponentially fast as n--*c~. Their limit gi: Wi--*C is an infinite-sheeted branched cov- 

ering of the plane, with OW~ as its natural boundary; moreover, gi can be expressed as a 

countable union of proper maps. We have gi+~=AogioA -1, where A is the linearization 

of r thus the limiting dynamical system is a fixed point of renormalization. By univer- 

sality, the same limit arises starting with any quadratic-like map with a fixed point of 

multiplier e 2~riO. 

Notes and references. Various forms of the universality and self-similarity results we 

establish here were conjectured and observed numerically more than a decade ago in the 

physics literature [MN], [Wi]. Petersen proved that  the Lebesgue area of J(f) is zero 

and that  J(f) is locally connected when 0 has bounded type [Pe]. On the other hand, if 

O=[al, a2, ... ] and an----~ sufficiently fast, then there is no Siegel disk, J(f) is not locally 

connected and Shishikura shows that  the Hausdorff dimension of J(f) is two [Sh]. The 

regime of unbounded type still presents many mysteries. 



252 c.T. MCMULLEN 

This paper is a sequel to [Mc4], which develops the theme of rigidity and inflexibility 

in conformal dynamics and hyperbolic geometry. Most of our results for the golden 

mean Siegel disk have parallels for the Feigenbaum polynomial f ( z ) = z 2 + c F  (the unique 

real quadratic polynomial such that  f n ( z )  is renormalizable for n = l ,  2, 4, 8, ... ). These 

parallel results are established in [Mc4] and are summarized in Table 2. 

A critical circle map is a smooth homeomorphism f :  S1---,S '1 with a single critical 

point. The self-similarity of Siegel disks is also related to convergence of renormalization 

for critical circle maps, studied in [F] and [FM]. 

I would like to thank de Faria, de Melo and Petersen for useful conversations about 

their work, and Petersen and the referee for helpful suggestions and corrections. 

2. R o t a t i o n s  o f  t h e  c irc le  

Let S I = R / Z ,  let 0E(0, 1) be an irrational number with continued fraction expansion 

O=[al,a2, . . .] ,  and let F:S1- -~S  1 be the rotation F ( x ) = x + O .  In this section we will 

briefly summarize some relations between the dynamics of F and the continued fraction 

expansion of 0. See [HW, Chapter X] for a detailed treatment of continued fractions. 

For x E S  1 let {x} denote the unique real number representing x in (_1 ,  �89 and let 

IIx[[=[{x}[ denote the distance from x to 0. 

Let 

P--" = [ a l , . . . ,  
qn 

denote the rational approximations to 0 (in lowest terms) obtained by truncating its 

continued fraction expansion. 

The points q,~O, n =  1, 2, ..., are successive closest returns of the origin to itself under 

rotation by 0. That  is, 

0 > Ilql01l > IIq2011 > Ilq30ll > ... 

and the q~'s can be defined inductively as the smallest integers so the above inequalities 

hold. 

The closest returns occur alternately to the right and left of the origin. In fact, 

(-1)n{q~O}>O, and the fractional part  is given by 

{qnO}=qnO-pr , .  (2.1) 

The an are related to qn and Pn by the recursive formulas 

Pn = anp,~- i -4- p n -  2, (2.2) 

qn = anqn--l + qn--2, 
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qnO 0 qn+lO 
[ 

F i g .  3. R e n o r m a l i z e d  r o t a t i o n  

where p_l /q_l=l /O and po/qo=O/1. Since an>~l, this recursion shows that  q~ grows 

at least as fast as the Fibonacci sequence 1, 2, 3, 5, 8, ..., and therefore qn-~c~ at least as 

fast as the n th  power of the golden mean. 

First return maps. For x, x'E S 1 with x r  �89 + x  ~, let Ix, x/] denote the shorter interval 

bounded by these points. (Note that  [x, x'] = [x', x].) 

Let In = [qnO, qn+10] be the interval bounded by two successive closest returns to the 

origin. Note that  0 lies in In. Let us consider the dynamics induced by the first return 

map on IN; that  is, for XEIn we consider the least i > 0  such that  Fi(x)EIn. The result 

is the renormalized dynamical system generated by the two transformations: 

Fq~: [0, qn+ l O] ---+ [qnO, Xn], 
(2.3) 

Fq'~+l : [qnO, 0] --* [Xn, qn+ l O], 

where Xn=(qn+qn+l)O. This pair of transformations is an interval exchange map; see 

Figure 3. 

The orbit of every point xCS 1 is dense, so x eventually enters IN. How long does it 

take to do so? We claim that  

Fi(x )=x+iOCIn  for somei ,  0 ~ i < q n + l .  

To see this, first choose j < 0 such that  FJ (x)E In. The generators of the renormalized 

dynamics (F  q~, F qn+l ) map IN onto itself, so we may apply them one at a time to replace 

j by j +qn or j +qn+l while keeping FJ (x)C In. When j first becomes nonnegative it lies 

in the range [0, q~+l) as claimed. 

Now let Jn be the interval centered in In with length IJnl=lI~l - Ilq~+10II. In other 

words, Yn excludes the outer halves of the two short black intervals appearing in Figure 3. 

We claim that  

Fi(x)=x+iOEJ,~ for somei ,  O<<.i<qn+qn+l. 
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To find Fi(x) with this property, begin by choosing j with 0 < j < q n + l  and FJ(x)CI,~. If 

FJ (x)C Jn we are done. Otherwise FJ (x) lies near one of the endpoints of In. If FJ (x) 

is closer to qn+lO, then FJ+q,(x)EJn, and since 

j+qn < qn+l +qn 

we are done. Finally if FJ(x) is closer to qnO, then both x+(j+qn+l)O and x+(j-qn)O 
lie in Jn; the first of these works if j<q,, and the second if j)qn. 

Univalent branches. We will eventually apply these results to the quadratic poly- 

nomial f ,  using the fact that  (F, S 1) is topologically conjugate to f on the boundary of 

the Siegel disk. In this application 0 c S  1 will correspond to the critical point of f ,  and 

we will be interested in constructing a univalent restriction of f i  sending x into In. Now 

the critical values of fi correspond to 0, 20, ..., iO; since i<qn+q,~+l, there are no critical 

values in the interior of the interval In, and therefore f-i lint(In) has univalent branches. 

The fact that fi(x) lands in the strictly smaller interval J~ provides Koebe space for the 

inverse univalent map. 

Bounded type. The orbits of a bounded type rotation are especially evenly dis- 

tributed. The following are equivalent characterizations of an irrational 0 of bounded 

type: 

(1) 
(2) 

The partial quotients an of 0 are bounded. 

The number 0 is Diophantine of exponent two; that  is, there is a C > 0  such that  

0 -  >q--g 

for every rational p/q. 
(3) The denominators qn increase no faster than a geometric series; that  is, qn < C  n 

for some C > 1. 

(4) Adjacent closest returns of F~(0) are approximately evenly spaced; that  is, 

Ilqn011 > IIq +1011 > CllqnOII 

for some C > 0. 

(5) For any k>0,  the orbit F~(0), i=1 ,  ..., k, cuts the circle into intervals of approx- 

imately the same size; that  is, the ratio of the longest to the shortest is bounded above 

independent of k. 

(6) We have IJ~l/llnl>c>o for all n. 

The constants appearing above can be chosen to depend only on sup an. 
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Preperiodic continued fractions. Finally we describe the self-similar behavior of 

rotations where the continued fraction of 0 is preperiodic. 

THEOREM 2.1. Let O=[aa,a2,...], where an+8=an for n>~N. Then there is a real 

number "yE(0, 1) such that 

{q~+~0} = (-1)~'y{qn0} 

for n>~ N.  

Proof. For any continued fraction, one has 

- 1  0 - 1  0 --qn--1 Pn-1 

by (2.2). In addition, it is easy to prove by induction that 

An(O1)-~(-1)nOlO2...On(Onl+l ) , 

where O~=[a~, ai+l, ai+2, ... ]. 

Now suppose that the continued fraction for 0 is periodic with period s. Then 

where "/=0102 ... 0~. Equivalently, 

( qn+S_qn+s_l Pn+s-l--Pn+s)(Ol)=(--1)s~/(--:: 1- P--nPl)(OI) " 

By (2.1), {q~O)=qnO-pn, so the theorem follows by multiplying through above. 

The preperiodic case is similar. [] 

Example. Let 0--[1, 1, 1, ...]=�89 ( v ~ - l )  be the golden mean. Then'),=0, (ql, q2, ...)-- 

(1, 2, 3, 5, 8, 13, ... ), and we have {qnO}=(-1)no n+l. In this example (or any other with 

period one) the closest returns occur along a geometric series. 

To obtain a more complete dynamical picture, for n~>3 define rn:qn-- l - -qn,  Ln: 
[rn+lO, r~O], and define the extended renormalization 7~.n(F) to be the pair of mappings 

Fq'~: [0, r~O] ~ [q~O, q~- l O] C L,~, 
(2.5) gq~+l: [rn+lO, 0] ~ [qnO, qn+10] C L,~. 

Then Ln D In and the maps above extend the interval exchange dynamics defined by (2.3). 
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The choice of the domains for F q" and F q"+l is dictated by branching considerations, 

again under the topological conjugacy between F and the quadratic polynomial f acting 

on the boundary of its Siegel disk. If x=O corresponds to the critical point of f ,  then the 

critical values of f f  on the boundary of the Siegel disk correspond to {8, 20, ..., iO}cS 1. 

Thus the interval [qn0, qn-10] comprising the range of F qn above is the maximal interval 

containing x = 0  and with no critical values in its interior. Similarly, the domain [0, rn0] 
is a maximal interval whose interior is disjoint from the critical points of F q~, and the 

same considerations dictate the domain and range of F q"+l. 

COROLLARY 2.2. The similarity x~-*(-1)~Tx sends Ln to Ln+s and conjugates 

T~n(F) to T~n+s (F) ,  for all n>~max (N, 3). 

Proof. This follows from the theorem and the fact that  x~-*ax conjugates rotation 

by t to rotation by c~t. [] 

The functional equation. The renormalization theory has a nice description on the 

universal cover of the circle. Let T ~ R  be the group of translations of the real line, let 

V = H o m ( Z 2 , T ) - ~ R  2 and let poEV be given by po(i,j)=iO+j. Then Po represents the 

combined dynamics of the rotation x ~ x + 8  and the deck transformation x H x +  1 acting 

on the universal cover of S I = R / Z .  

Let G ~ R *  be the group of similarities x~-~ax, and let TJ=V//G~-RP 1 be the quo- 

tient of the nontrivial representations under conjugation by G. Then GL2(Z)=Aut(Z  2) 

acts on ~d by [p] H [poA-1]; this agrees with its usual action on R P  ~ by fractional linear 

transformations. 

A representation [0] is fixed by A if and only if there is a similarity a c G  such that  

po A -1 = OZ~OOZ - I .  

This functional equation says that  the renormalized dynamical system poA -1 is just a 

rescaling of the original dynamical system 0. It can be compared to the Cvitanovid- 

Feigenbaum equation 

F P ( z )  = 

for unimodal maps, and the fixed-point equation 

~0o~.)~ 1 ~- OZ~OOZ - I  

for a hyperbolic 3-manifold which fibers over the circle, discussed in [Mc4]. 

THEOREM 2.3. Let 0 be irrational. Then the following are equivalent: 
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(1) [Q0] is fixed by an automorphism A # i d  in GL2(Z). 
(2) 0 is a quadratic irrational. 
(3) The continued fraction expansion of 0 is preperiodic. 

Proof. If A[Qo]=[Qo], then (0, 1) is an eigenvector for A, so 0 is quadratic over Q. 

A quadratic irrational has a preperiodic continued fraction [HW, w and by (2.4) 

a preperiodic continued fraction expansion gives a representation fixed by an automor- 

phism. [] 

3. Vis i t ing the  critical point  

We now turn to the study of the polynomial f(z)=e2~Oz+z 2, where 0=[al ,  a=, a3, ... ] is 

an irrational of bounded type. 

The usual notations A=O(B) and A ~ B  mean A<CB and B/C<A<CB,  for an 

implicit constant C. In this section, the implicit constants depend only on 0. (In fact, 

a detailed examination of the proofs shows that  the bounds only depend on sup a,~.) 

To study f we will use the Koebe distortion theorem, the Poincar4 metric and 

quasiconformal maps. See [Ahl], [Ah2], [LV] and [Me3, Chapter 2] for background on 

these methods. 

Metrics. We will use d(x, y) to denote the Euclidean metric in the plane, and du(x, y) 
for the hyperbolic metric on a region UC C. 

The Siegel disk. The filled Julia set K(f)  is defined by 

K(f)  = {z C C:  the forward orbit f(z), f2(z), f3(z), ... is bounded}; 

it is bounded by the Julia set J(f). The Siegel disk D of f is the component of the 

interior of K(f)  containing the origin. The critical point co lies in OD and OD=P(f). 
The central result which brings quasiconformal methods into play is 

THEOREM 3.1 (Herman-Swi~tek). The Siegel disk of f is bounded by a quasicircle. 

See [D], [He], [Sw]. 

For a pointed disk (U, u)C C, let 

in-radius(U, u) = sup{r: B(u, r) C U }, 

out-radius(U, u) = inf{r : B(u, r) D U}. 

The main result we will establish in this section is 
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S~ I 

Fig. 4. The region Ha (I) 

THEOREM 3.2 (Nearby critical visits). For every z E J ( f )  and r>O, there is a uni- 

valent map between pointed disks of the form 

f~:(u,y)-~(U,~o), i>~o, 

such that in-radius(U,y)•  and l y - z l=O(r ) .  

Thus the geometry of J ( f )  near the critical point is replicated with bounded distor- 

tion everywhere in the Julia set. 

The linear coordinate. By the Herman-Swi~tek Theorem, the Riemann mapping 

from (D, 0) to the unit disk (A, 0) extends to a quasiconformal mapping (I): (C, 0)--~ (C, 0). 

Let us normalize this mapping so that  (I)(c0)--1. It is useful to work in both the coordinate 

system z where f is conformal, and the coordinate system w=O(z)  where l i D  is linear. 

Since (I) is quasiconformal, many properties can be passed from one coordinate system 

to the other with a bounded change in constants. 

For clarity we will denote the domain and range of �9 by Cz and Cw respectively. 

We refer to w as the linear coordinate. In the w-coordinate system, D is the unit disk, 

and f :  Cw-~Cw is a map whose iterates f i  are uniformly quasiregular. 

We identify the circle S 1 = R / Z  with the unit circle in C~, via the map tHexp(2~rit). 

For two points x, x~CS 1 we continue to use the notation Ix, x t ] c S  1 to denote the shorter 

arc containing them. 

Define F: C ~ - ~ C ~  by F(w)=e2~iew. Clearly F i = f  i on D. We will see that  F i 

and f i  tend to be close near OD as well. To prove this, it is convenient to introduce some 

hyperbolic geometry. 

Let H denote the hyperbolic plane, bounded by the circle S~ .  For any closed interval 

I c S~,  let Ha ( I ) c H  be the region bounded by I and a circular arc with endpoints aI ,  

meeting S ~  in angle c~ (see Figure 4). For example, H~/2(I) is the half-space formed by 

the convex hull of I. 
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LEMMA 3.3. Let g: H~(I)--*H be a K-quasiconformal map which extends continu- 

ously to the identity on I. Then for all xCH~(I), ~<~, we have 

dH(g(x), x) < C, 

where C depends only on K,  ~ and ~. 

Proof. The image of OH~ in H is a quasiarc, converging radially to S ~  because 

/~<a. This implies that glH~ can be extended to a Kr-quasiconformal map h: H---~H 

with h i s  ~--id.  Such a mapping moves points only a bounded hyperbolic distance. [] 

Approximate rotations. Let 

12= C z - D  

denote the exterior of the Siegel disk in the plane. Let us say that  i f :  U--~V is an 

approximate rotation if U and V are disks in Cz, f f  is univalent and 

dn(f f  (x), Fi(x) ) = O(1) 

for all xE~NU. Of course f i (x )=Fi(x)  for x ! t~ ,  so this condition says that  f i  nearly 

matches up with the rotation F i throughout U. 

THEOREM 3.4 (Approximate rotations). For any r > 0  and zEP( f ) ,  there is an 
approximate rotation 

f f : (U,y)-~(V,  co), i>~O, 

such that [y, z] c U, m o d ( U - [ y ,  z]) >C:>0 and in-radius(U, z ) ~ r .  

Remarks. (1) The proof will also show that  f f i U  is an approximate rotation for 

j - - l ,  2, ..., i. 

(2) The notation m o d ( U - [ y ,  z]) denotes the conformal modulus of the annulus be- 

tween the arc [y ,z]cP( f )  and OU. The lower bound C for this modulus depends only 

on 0. It follows that  the hyperbolic distance du(y, z)--O(1).  

(3) One also has in-radius(U, y)• 
(4) The theorem easily implies a slightly stronger statement, namely that  U and V 

can be chosen as K-quasidisks, K = O ( 1 ) ,  with out-radius(U, z ) x r .  To see this, replace 

U by a large ball about y in the hyperbolic metric on U, and apply the Koebe distortion 

theorem. 

Proof. By general properties of quasiconformal mappings applied to the change of co- 

ordinates (I): Cz--*C~, it is sufficient to prove the theorem in the linear coordinate w. For 

example, a quasiconformal map H--~H is uniformly continuous in the hyperbolic metric, 
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~ V  

Fig. 5. An  app rox ima te  ro ta t ion  in t he  l inear coordina te  w 

so it suffices to verify the approximate isometry condition d~(ff(x), Fi(x))= O(1) using 

the hyperbolic metric coming from the w-coordinate. Similarly, if there are approximate 

isometries at every scale r in the w-plane, then the same is true in the z-plane. 

Letting w=(~(z), we now proceed to prove the theorem at every scale r about w. In 

this coordinate system, f I S I = F I S  1 is rotation by angle 0. Thus the results of w apply 

to the dynamics of f on S 1. 

The case r~>l can be handled trivially by taking y=co, U=V=B(w,  10r) and i=0 

(so f f=Fi=id) .  So assume 0 < r < l .  

Choose n such that IlqnOIl~r; this is possible because 0 has bounded type. For 

1 Next choose the least i~>0 such convenience, also choose n large enough that llqn~ll < ~. 

that 

if(w) E Jn C In -- [qnO, qn+lO] C S 1 �9 

The critical point of f is at angle zero on S 1, so c0CJn. 

As we saw in w f i  has no critical values in int(In) because i<q~+qn+l. Let V 

be the round disk orthogonal to S 1 and with V~SZ=int(In). Then there is a unique 

univalent branch 

f - i :  V.--, U 

such that f - i ( f f (w) )=w.  See Figure 5. 

Now consider the region Ha (1~)cf~ determined by the hyperbolic geometry of f~= 

C~-s (This region is constructed by lifting In to an interval on the boundary of 

the universal cover of f~, forming H~(~)  there and projecting down. We choose ~ small 

enough that the projection is an embedding.) One can find universal angles �89 

such that 

Y n ~  c H~(In) C H,(I~). 

Indeed, when II,~l is small, we have VcH~/2+~(I~). 
Since the iterates of f are uniformly quasiregular in the w-coordinate, the map 

f-~ is K-quasiconformal on Ha(In) with K--O(1). Furthermore, F ~ is conformal and 
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Fig. 6. A lemniscate models O(DUD') 

Fiof-i=id on In. Therefore Lemma 3.3 shows that  d~(Fi(x),fi(x))=O(1) for all 

xEUAf~. In other words, f i :  U--*V is an approximate isometry. By the same reasoning, 

fJlU is an approximate isometry for 0 < j < i .  

Finally, setting y=f-~(co), we show that  the annulus U- [w,  y] has definite modulus, 

and in-radius(U, w) •  To prove these statements, recall that  Jn is shorter than I,~ by 

a definite factor (because O has bounded type). Thus the annulus V-J ,~  has definite 

modulus. But 

mod(U-[w,  y]) ~> K - 1  mod(V-[f~(w),  co])/> K -1 m o d ( V -  J~), 

so U- [w,  y] has definite modulus as well, Similarly, in-radius(V, f~(w))~]I~]~r. From 

the quasiconformality of f - i  and the fact that  f IS 1 is an isometry, we conclude that  

in-radius(U, w) •  as well. [] 

The hyperbolic geometry of ~. By the thick part of ~ we will mean the region where 

the injectivity radius of the hyperbolic metric exceeds some small constant E0>0. Since 

is a punctured disk, its thin part is simply a standard horoball neighborhood of the 

cusp at z=oo. We choose Co small enough that  J(f) is contained in the thick part. 

The hyperbolic metric p~ in the thick part is comparable to the (1/d)-metric (cf. 

(Me3, Theorem 2.3]); that  is, 

Oh)" 

The pre-Siegel disk. Let ~ be the involution of the z-plane given by ~(z)=2c0-z.  This 

rotation about the critical point exchanges the two sheets of f ;  that  is, f(~(z))=f(z). 
Let D'=~(D) be the pre-Siegel disk. Then f(D')=D and DND'={CO}. 
The two quasidisks D and D' meet "radially" at co. More precisely, there is a 

quasiconformal homeomorphism of the plane sending DUD' to the region bounded by 

the lemniscate L = { z :  Iz2-11=1} (see Figure 6). Indeed, the critical value of f lies in 

the quasicircle OD, so f-I(OD)=O(DUD') is quasiconformally homeomorphic to the 

square root of a circle passing through the origin, which is L. Thus with respect to the 
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Fig. 7. Univalent maps near points in the boundary of the pre-Siegel disk D ~ 

hyperbolic metric on ~, the disk D '  is contained in a bounded neighborhood of a geodesic 

ray terminating at the critical point Co. 

With this background in mind we can now prove 

PROPOSITION 3.5. For any x in the thick part of 12, there is an embedded hyperbolic 
ball B centered at y, and an i~O, such that 

f ' :  (B,y)  -~ (B', CO) 

is univalent, diamfl B •  and d~(x, y)=O(1). 

Proof. In brief, B is constructed as follows. Apply the dynamics to rotate x until 

it is close to the pre-Siegel disk; then find a nearby point in OD'. After one iterate, the 

nearby point maps to OD, and after a suitable further iterate it rotates into a ball B '  

containing the critical point. The preimage of B'  near x is the desired ball B. 

For the detailed proof, we first suppose that  xEOD'. Let x ' :~(x)EOD=P(f) .  
For any r>0 ,  Theorem 3.4 (and the remarks following) provide a univalent map fi: 

(U', y')--~ (V, Co) such that  dv, (x', y') = O(1) and in-radius(U', y') ~out- radius(g ' ,  y') •  

With suitable r we obtain in-radius(U', y')• D') and out-radius(U', y')<d(y', D'). 

In particular, U' and D'  are disjoint. 

Now let (U,y)=(~(U'),~(y')). Then (U,y) also maps to (V, co) under f i ,  and 

UMD=O, so UC~.  Since ~ is an isometry, 

in-radius(U, y) x d(y, D) = d(y, 0~). 

But the hyperbolic metric on ~ is comparable to [dz[/d(z, 012), so there is a hyperbolic 

ball B of definite radius centered at y and contained in U (see Figure 7); by the Schwarz 

lemma, 

d~ (x, y) <~ dv (x, y) = dv, (x', y') = O(1), 
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U 

w P fi(w) 
Fig. 8. Pulling back from the cone at the critical point 

CO 

completing the proof of the proposition for xEOD ~. 
The general case of an arbitrary x in the thick part of ~ is conveniently visualized 

in the linear coordinate. 

For w �9 S 1, let "y(w) = {rw : 1 < r < oc} c C~ denote the ray joining w to infinity. With 

respect to the hyperbolic metric on ~t={w: [w I > 1}, this ray is a geodesic. Since D ~ tends 

to co radially, there is a C such that  

D' c K =  { w e ~ :  dg(w,'~(co)) < C}. 

By the first part of the proof, we may also choose C so that  the cone K is uniformly 

filled with hyperbolic balls (B, y) of definite radius mapping univalently over the critical 

point. See Figure 8. 

Given x in the thick part of ~, choose wcSI=OD so that  xCT(w). By Theorem 3.4 

there is a p E S  1 and an approximate rotation 

f i :  (U,p) --* (V, co) 

such that  21x-wl<in-radius(U,w ) and Iw-pl=O(Iw-xl). In particular, da(x,v(p))= 
O(1). But Fi(~(B))=V(CO), and since filU is an approximate isometry, we also have 

d~(fi(x),v(co))=O(1). Thus fi(x) is near the cone K,  so there is a hyperbolic ball 

(Bo, Yo)cKAV of definite radius with d~(x, B0)=O(1) ,  such that  fJ:  (B0, yo)---*(B~, co) 
is univalent for some j >0. Then f-i(Bo) contains a hyperbolic ball B of definite radius 

centered at y=f-i(yo), we have da(x, B)=O(1 ) ,  and 

/'+J: (B, y) (B', co) 

is the desired univalent mapping. [] 
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Expansion in the Julia set. To establish Theorem 3.2, we need to find disks mapping 

univalently over the critical point at every scale near every point in the Julia set. To 

populate small scales, we will use expansion relative to the hyperbolic metric on f~. 

Quite generally, for any polynomial map f :  C--*C with [P(f)[  >1, we have Iif'(x)[[ ~1 

with respect to the hyperbolic metric on C - P ( f )  (so long as f(x)~P(f)). Moreover, 

if xEJ(f), then either the forward orbit of x lands in P(f) or Hfi(x)]l--~cc. These 

statements follow from the Schwarz lemma, the forward invariance of P(f) and the fact 

that  J( f )c  U f- i (p(f)) .  See [Mc3, w 

In the case at hand, C-P(f)=f~UD. Of course fID is an isometry, but f expands 

the hyperbolic metric on ~. Note too that  J(f)cP(f)Uf~, so the orbit of a point in the 

Julia set can exit i2 only by landing in the boundary of the Siegel disk. 

For a vector v in the tangent space to a point zEC ,  we let Iv I and l(v) denote the 

lengths of v in the Euclidean metric and in the hyperbolic metric on C - P ( f )  respectively. 

We s e t / ( v ) = c c  if zEP(f). 
We may now complete the 

Proof of Theorem 3.2 (Nearby critical visits). Let zo=zEJ(f) and r > 0  be a given 

point in the Julia set and a given scale. Let v0ETzC be a vector with Iv0l =r, let zi=fi(zo) 
and let viETziC be the image of v0 under (fi),. Then 

l(vo) <~ l(Vl) ~< l(v2) ~<... and l(v~)--~ oc. 

We wish to find a univalent map fi:(U,y)-~(V, co) with in-radius(U,y)~.r and 

ly-zl=O(r). To do so, we distinguish three cases. 

Case I. l ( v 0 ) ) l .  (We include the case / (v0)=co ,  which arises when zoEP(f).) In 

this case, there is a point z'EP(f) with Iz-z'l=O(r), since the hyperbolic metric on 

at z is comparable to the (1/d)-metric. Applying Theorem 3.4, we obtain a univalent 

map f i :  (U, y)--~ (V, co) with in-radius(U, y)~r and ly-z'l=O(r). Then Iz-yI=O(r) and 

we are done. 

Case II. There exists a j such that l(vj_l)<<.e but l(vj)~ l. Here r  depends only 

on 0; its value is chosen below. 

By Case I there is a univalent map f i :  (U',y')-~(V, CO) with in-radius(U',y~)~Ivj[ 
and [y'-zj[=O([vj[). Replacing U' with a ball centered at y, we may also assume that  

diam(U')~lvj[. 
We claim that  (U', y') can be pulled back by f f  to yield the desired disk (U, y) for z0. 

To see this, first note that the condition 

Ivj-ll 
d(zj-1, P(f)) 
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implies that  there is a ball B j - l = B ( z j - 1 ,  s), disjoint from the postcritical set P ( f ) ,  with 

8xIVj_ll/~. Then f l B j _ l  is univalent. By the Koebe �88 B j = f ( B j _ I )  contains 

a ball of radius comparable to Ivjl/s centered at zj. Thus we may choose s sufficiently 

small (depending only on 0) such that  U ~ is contained well within Bj. 

Let f -J:  Bj--~Bo be the univalent inverse branch of f f  sending zj to z0. This map 

exists because Bj-1 is disjoint from P ( f ) ,  and because f :  Bj_I--*Bj is univalent. Let 

(U,y )=f -J (U' ,y ' ) .  By the Koebe distortion theorem, f - J  is approximately a simi- 

larity with factor IVol/Ivjl near zj. Since U' is contained well within By, we have 

in-radius(U, y)• Izo-yl=O(Ivol), and if+J: (U, y)--*(V, Co) is univalent. This com- 

pletes the proof of Case II. 

Case III. There exists a j such that e < / ( v j ) < l .  By Proposition 3.5, there is a 

centered hyperbolic ball (B, y') C ~ with diama (B) • 1 and da (zj, y') = O(1), such that  

i f :  (B, y')--*(B', co) is univalent. Let 7 be a minimaMength geodesic segment joining zj 

to B. Then ~UB is simply-connected and disjoint from P ( f ) ,  so it supports a unique 

branch of f - J  sending zj back to z0. 

Let (U, y) = f - J  (B, y'); then if+J: (U, y) ~ (V, co) is univalent. To complete the proof 

of this case, we just need to check that  in-radius(U, y)~lvol and Iz-yl=O(Ivol) .  Equiv- 

alently, in the hyperbolic metric on ~, it suffices to check that  da(z,y)=O(l(vo))  and 

in-radiusn ( U, y) • l ( vo ) . 

Now ( f -J) ' ( z j )  sends the vector vj with l (v j ) •  to the vector v0. Since we have 

diama(~UB)--O(1),  and the Julia set is contained in the thick part of ~, the map f - J  is 

approximately a contraction by the constant factor l(vo) on ~UB (cf. [Mc3, Theorem 3.8]). 

But the bounds provided for (B, y) by Proposition 3.5 then imply 

in-radiusa ( U, y) x l ( vo ) . in-radiusa (B, y ' ) • l ( vo ) 

and 

dn(z, y) • l(vo), dn(zj,  y') = O( l(vo) ) 

as desired. 

End of the proof. Since l(vj)--.oc, one of the three cases above must hold, and the 

proof of the theorem is complete. [] 

The argument above follows the proof that  there are "small Julia sets everywhere" 

for certain infinitely renormalizable quadratic polynomials, given in [Mc4, w 
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4. G e o m e t r y  o f  t h e  J u l i a  se t  

In this section we prove that  the dimension of the Julia set is less than two, that  the 

critical point is a deep point of K(f) ,  and that the full dynamics of f is uniformly 

twisting on J(f).  A more complete development of the ideas of shallow and deep points, 

geometric limits of dynamical systems and uniform twisting appears in [Mc4]. 

Dimension. The Hausdorff dimension of a compact metric space X, denoted 

H.dim(X),  is the infimum of those 6>0  such that X can be covered by balls B(xi,ri) 
with ~ r~ arbitrarily small. The (upper) box dimension is given by 

log N(X, r) 
box-dim(X) = lim sup 

r~0 log( l / r )  

where N i X  , r) is the minimum number of r-bails required to cover X. Let us identify the 

Riemann sphere C with the sphere at infinity S 2 for hyperbolic space H 3. A closed set 

A C S 2 is shallow if every point in its hyperbolic convex hull K C  n 3 is within a uniformly 

bounded distance of OK. (Such sets are also called porous.) 
A compact set A c C  is shallow if and only if for any zEA and r < l ,  there is a ball 

B disjoint from A with d i a m B ~ r  and d(z,B)=O(r). For example, any quasicircle is 

shallow. The inequality H .d im(X)4box-d im(X)  holds for any metric space, and it is 

easy to see that  box-dim(A)<2 if A c S ~  is shallow. 

THEOREM 4.1 (Dimension of J). The Julia set J( f)  is shallow, and thus 

H.d im(J ( f ) )  ~ box-d im(J( f ) )  < 2. 

Proof. Since the Siegel disk D is a quasidisk, it fills definite space at every scale 

around the critical point coEOD. More precisely, for any s < l  there is a ball BC 
B(CO, s) ND with diam B• 

Now consider a point zEJ(f )  and a scale r < l .  By Theorem 3.2, there is a univalent 

map 

(u, y) (y, co) 

with ly-zl=O(r) and in-radius(U,y)~r. Let s=in-radius(co, V). Choose a ball BC 
B(CO, s)AD with diam B• By the Koebe distortion theorem, f - i (B)  contains a ball 

B '  with diam B'• and d(y, B')=O(r). Since f~(B')CD, this ball is disjoint from the 

Julia set, and since d(z, B')<.d(z, y)+d(y, B')=O(r), we have shown that  the Julia set 

is shallow. 

As remarked above, the dimension bounds follow. [] 
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Deep points. Let A c S  2 be a compact  set with convex hull K c H  3. A point xE 

A c S  2 is a deep point of A if there is a geodesic ray "~: [0, r converging to x and 

parameterized by hyperbolic arc length, such that  

d(~/(s), OK) >1 es > 0 

for all s > 0. 

One can easily check tha t  x c A c C  is deep if and only if there is a 6>0  such that  

for all r < 1, 

B(y,s) c B(x,r)-h 

For example, a shallow set has no deep points. 

By the classification of stable regions, every point in the interior of K ( f )  lands in 

the Siegel disk D under forward iteration. Thus D acts like an at tractor.  Let 

K~(I) = {z C C :  d(f~(z),  D) < c for all n ~> 0}. 

Clearly K~ ( f ) c K ( f ) ;  it consists of points whose orbits stay near the Siegel disk. 

THEOREM 4.2 (Deep points). The critical point Co is a deep point of K ( f ) .  More 

generally, z is a deep point of K~(f)  for any z c P ( f )  and any ~>0.  

A point x E A c C  is a measurable deep point if for some 6>0  we have 

area(B(x,  r ) - A )  = O(r 2+~) 

for all r >0. This condition means that  the density of A in B(x, r) tends to 1 exponentially 

fast (it is bounded below by 1-CRY). 

The next result also appears  in [Mc4, Proposit ion 2.24]. 

PROPOSITION 4.3. If X is a deep point of A and OA is shallow, then x is a mea- 

surable deep point of A. 

Proof. Consider a square S of size r centered at x. Since x is a deep point, there is 

an a > 0  such that  every point of X = S - A  lies within distance r 1+~ of 0A. On the other 

hand, since 0A is shallow, there is a 6<2  such that  if we cut S into subsquares of size 

•  1+~, whose total  number is O(r -2~) ,  it only takes O(r - ~ )  of them to cover XMS. 

Thus the area of X N S  i s  O(r2+(2-5)a), and x is a measurable deep point. [] 

Since J ( f ) = O K ( f )  is shallow, we may deduce 

COROLLARY 4.4. A random z near the critical point has a high probability of lying 

in K ( f ) .  More precisely, there is a 6>0  such that for small r, we have 

area(B(co, r ) -  K ( f )  ) = O(r2+~). 

More generally one sees 
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COROLLARY 4.5. Every zcP(f)  is a measurable deep point of KE(f). 

Proof. Choose a smoothly bounded disk A with D in its interior, lying within an 

c-neighborhood of D and outside the part  of C - J ( f )  where the hyperbolic injectivity 

radius is less than one. Let KA(f)=A f-n(A). Then K~(f)CKA(f)cK~(f) for some 

6>0.  Since z is a deep point of K~(f), to prove the corollary it suffices to show that  

OKA(f) is shallow. 

Consider a point wCOKA(f) and a scale r < l .  We must find a ball disjoint from 

OKA(f), within distance r of w and with radius ~ r .  

By shallowness of the Julia set, there is such a ball B(zl, r l )  disjoint from J(f). 
1 If  B(Zl, ~rz) is disjoint from OgA(f) we are done; otherwise, there is a B(z2, 1 ~r l )  C 

B (Zz, rz) with z2 �9 OKA (f) -- J(f). Then f n  (z2) �9 om for some n. The ball U = B (z2, ~0 rz) 

has diameter less than one in the hyperbolic metric on C - J ( f ) ,  so fn]u is injective. 

Since OA is smooth, f n (V) -A  contains a ball B with diamBxdiamf'~(U), and by 

Koebe f-n(B)C U contains a ball B(z3, r3) disjoint from KA(f) with r3~r. [] 

Escape from the Siegel disk. To prove that  co is a deep point of K(f), we will analyze 

the orbit of a point z that  starts  near co but escapes to infinity. While the orbit is near D, 

it shadows a rotat ing orbit until it comes close to the critical point. As it passes the 

critical point, the orbit can move much closer to D, but it can only move farther away by 

a bounded factor. Thus before fi(z) can escape from the influence of D, it must make 

many visits to the critical point. It  turns out that  each visit results in definite expansion 

with respect to the hyperbolic metric on t 2 = C - D .  On the last visit, there is a point 

y '  in OD'=t(OD) at a bounded hyperbolic distance from fi(z). Pulling this point back 

by f - i ,  we obtain a point y �9  very close to z. This point limits the radius of a ball 

B(z, s)cB(co, r ) -K( f ) ,  and shows that  CO is deep. 

To measure the rate of escape from the influence of Siegel disk D, we will work in 

the linear coordinate w. Let L(w)=logd(w, D); that  is, 

n(w) = ~ l~  1)' Iwl > 1, 

( - o c  otherwise. 

If w�9 w is near D and filU is an approximate rotat ion (in the sense of w then 

L(fi(w)) = L(w)+O(1); 

while for all w near D we still have the weaker s ta tement  

L(f(w)) <. L(w)+O(1). (4.1) 
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To see (4.1), first note that  near the critical point (recalling that  Cl is the critical value), 

If(w)-ell ~ lw-col, 

because f is quasiregular and f l $1 is an isometry. (The branching behavior of f is 

similar to that  of the map (r, 0)~--~(r, 20) in polar coordinates.) If d(w, D)<<d(w, Co), 

then f is an approximate rotation at w, so L(f(w))=L(w)+O(1); otherwise d(f(w), D)< 
d(f(w), cl)• co)• D), which gives (4.1). 

Proof of Theorem 4.2 (Deep points). We will first prove that  every point of P(f) is 
a deep point of K(f), deferring the case of K~(f) to the end. 

We will actually show that  there is an a > 0  so that  for all z in the thick part of ~t, 

we have 

da(z,  g(f))  = O(d(z, D)~). (4.2) 

Since the Poinca% metric on ~ is comparable to the (1/d)-metric, this bound implies 

d(z, K(f))=O(d(z, p ( f ) ) l + ~ ) ,  from which it follows easily that  every point in the post- 

critical set is (uniformly) deep in K(f). 
Let us also remark that 

f :  ( C - D N D ' ) ~  ( C - D ) = ~  

is a covering map, and hence an isometry between the respective hyperbolic metrics. The 

inclusion between domain and range is a contraction, by the Schwarz lemma. The amount 

of contraction is bounded in terms of da(z,  D~). Thus the expansion of f ,  measured by 

IIf'(z)ll using the hyperbolic metric of ~ at both z and f(z), satisfies 

IIfl(z)ll > C(d) > 1, 

where d=dn(z, D'). Compare [Mc4, Proposition 4.4.2]. 

We now turn to the proof of (4.2). Let Zo=Z, and zj=fJ(zo) for j > 0 .  Applying The- 

orem 3.4 to the point p in P(f) nearest z0, we obtain an approximate rotation f i l :  U--~V 
such that  zoeU and dn(z~l, OD')=O(1). (Here we use the fact that  D'  converges radially 

to Co.) Then I I f ' (z i l ) l l>u>l ,  where ~ depends only on the rotation number 0. On the 

other hand, In(zj)-L(zo)l=O(1) for O<j<.il, and by (4.1) we have 

L(zil+l) ~ L(zo)+O(1). 

Now repeat the argument starting with zil+l, to obtain a second visit z~ 2 within a 

bounded distance of D/. Continuing in this way, we construct a sequence of visits z~ k 
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along which L(zik) increases at most linearly in k. The construction terminates when 

the orbit gets a definite distance from D, say when L(zik)>0. Because of the linear 

increase of L(zik), the sequence is defined at least for k - - l ,  2, ..., N where N• 
But L(zo)~ log d(zo, D) (by Hblder continuity of the quasiconformal map ~: Cz---*C~), 

and thus 

N~.lOg(d(zlD)).  (4.3) 

Since there are N - 1  visits past D t, we have Ilff~(zo)ll >~yN-1. Join ziN to a point 

y'EOD' by an arc ~' of hyperbolic length O(1). Then y'EK(f), and since ~/' is dis- 

joint from P(f) it lifts under f - iN  to an arc ~ joining z0 to yEK(f) with hyperbolic 

length O(~?-N). Thus by (4.3), 

d~(zo, K(f)) <<. d~ (z0, y) = 0(~? -g) = O(d(zo, D) ~) 

for some a > 0  depending only on 8. This completes the proof that  each point in the 

postcritical set is a deep point of K(f). 
To handle the case of K~(f) ,  we modify the construction so that  it terminates when 

L(zik) >M(s ) .  Then L(zj)<M(s)+O(1) for j - -0 ,  . . . ,  iN. For suitable choice of M(s) ,  this 

condition insures that  zj lies well within an s-neighborhood of D. Now each yj=fJ(y), 
j = 0 ,  ...,iN, is at a bounded hyperbolic distance from zj, so it too is no farther than r 

from D. Finally ffN(y)=y'EOD', so d(ff(y), D)=0)  for j>iN. Thus yEK~(f) and we 

have shown that  every point of P(f) is also a deep point of K~(f). [] 

To conclude this section we will prove 

THEOREM 4.6 (Uniform twisting). The holomorphic dynamical system (.~(f), J(f) ) 
is uniformly twisting. 

This theorem illustrates one of the parallels summarized in Table 2. Although the 

result is not used in the sequel, we include it because the same result holds for any 

infinitely renormalizable real quadratic map f(z)=z2+c with bounded combinatorics 

[Me4, w 

A dynamical system (~,  A) is uniformly twisting if there is robust nonlinearity at 

every scale about every point in A. This concept is naturally formulated in terms of 

geometric limits; a complete development appears in [Mc4, w For the purpose of the 

present discussion, we will simply state a sufficient criterion for uniform twisting. 

Let ~ /denote  the space of all holomorphic maps g: U ~ C  such that  U is an open set 

of C. We give ?-/the following (non-Hausdorff) topology: gn: U,~---*C tends to g: U ~ C  if 

for every compact KcU, we have KcUn for all n sufficiently large and gn--~g uniformly 

on K.  
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A A 

Given a rational map f :  C--*C, let 

Yz(f) = {g: U ~ C : for some i , j  >~ O, f iog= fJ} c T-l. 

PROPOSITION 4.7. Let A C C  be compact. Suppose that for any sequence 

An(z) = Oln(Z--fln) 

with an---~c~ and ~ncA, there exist gnE.~(f) such that after passing to a subsequence, 

A~og, oA~ 1 ~ h E 7-l, 

where h: U--~V is a nonconstant map with a critical point. 

Then (~( f ) ,  A) is uniformly twisting. 

This criterion reduces the proof of uniform twisting to 

PROPOSITION 4.8. For every x E J ( f )  and r < l ,  there is a proper degree-two map 

ge (f), 
g: (v, u) (y, v), 

such that V and Y are disks, g ' (u )=0 ,  in-radius(U,u)• v)• Ix-ul=O(r)  

and Ix-vi=O(r) .  

Proof. First assume x=co. Then g can be taken to be a first return map near the 

critical point. To make this precise, we prove the result in the linear coordinate w. 

Choose n such tha t  I]q,,Oii~r. Let V be the round disk orthogonal to S 1, meeting the 

circle in the interior of the arc [q,~O, qn+lO], and let i=qn+qn+l. Then f i  has a unique 

critical value vEV, with angular coordinate (q~+qn+l)O. Since 0 has bounded type, 

in-radius(V, v)• Let U be the unique component  of f - i ( V )  containing co. Then 

g = fi: (U, co) --+ (Y, v) 

is proper of degree two, and it is easy to see that  in-radius(U, co)• so the result is 

established for x-=co. Moreover, we can shrink U and V slightly so tha t  their diameters 

are comparable to r.  

To t reat  the case of an arbi t rary zEJ( f ) ,  we use Theorem 3.2 to find a univalent 

map  fJ :  (U, u)--* (V, Co) at scale r near z. Pulling back a map ~ = f i  which works at a scale 

s•  Co) near the critical point, we obtain a map g = f - J  ofi+j which works at 

scale r near z, completing the proof. [] 
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Proof of Theorem 4.6 (Uniform twisting). Given A,~(z)=a,~(z-~n) as in Proposi- 

tion 4.7, apply the preceding proposition with x=~n and r= l /an  to obtain a sequence 

of maps g~E~'(f)  such that 

h~ =A~og~oA~i: (U,~, un) ~ (V~,v~) 

is proper of degree two, h i (u,~) =0, in-radius(U, un) • in-radius(Vn, v,~) • 1, lu,~ I= O(1) and 

Ivnl=O(1). In the Carath~odory topology, a subsequence h,~ converges to a degree-two 

proper map h: (U, u)--~ (V, v) with h'(u)=0 [Mc3, Theorem 5.6], and the same subsequence 

tends to h in 7-/. [] 

5. Universality 

A polynomial-like map g: U-~V is a proper holomorphic map between disks in C, such 

that U is a compact subset of V. A quadratic-like map is a polynomial-like map of degree 

two. 

The filled Julia set K(g) is the set of points which never escape under iteration; it 

is defined by 

g(g) = N g-i(Y)  �9 
i 

Similarly, the postcritical set Pig) is the closure of the forward orbit of the critical points 

of g. 

Let gi: U~-~Vi, i=l ,  2, be polynomial-like maps of the same degree. A hybrid conju- 

gacy is a quasiconformal map r between neighborhoods of K(gi)  and K(g2), conjugating 

gi to g2, with 0r  a.e. on K(gi) .  We say that gi and g2 are hybrid equivalent if such 

a conjugacy exists. 

A fundamental result of Douady and Hubbard states that every polynomial-like map 

g is hybrid equivalent to a polynomial of the same degree. If K(g) is connected then f 

is unique up to conformal conjugacy [DH1, Theorem 1]. 

THEOREM 5.1 (Universality). Let ~ be an irrational of bounded type, and let g and h 

be quadratic-like maps with fixed points of multiplier exp(2ri~). Then: 

(1) there is a hybrid conjugacy r between g and h; 

(2) the complex derivative r exists for all zeP(g); and 

(3) there are M, (~, 5>0  so that for all zEP(g) and all t with Itl <5, we have 

r162 r ~<Mltl ~. (5.1) 

By the Whitney extension theorem [St, w we have: 
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COROLLARY 5.2. The derivative r is Hhlder continuous on P(g), and r 

extends to a continuous, CZ+~-function on the whole plane. 

COROLLARY 5.3. The Hausdorff dimension of P(g) is equal to that of P( f ) ,  where 
/(z) =e2~iOz+z2. 

Proof. By (5.1) a hybridconjugacy from f to g is bi-Lipschitz on the postcritical 

set, and such maps preserve dimension. [] 

We now proceed to the proof of Theorem 5.1. 

The quadratic-like maps g and h are each hybrid equivalent to a quadratic poly- 

nomial. It is not hard to see that  a hybrid conjugacy preserves the multiplier of any 

indifferent cycle; thus g and h are hybrid equivalent to f(z)=e2~ri~ 2, and hence to 

each other. 

For convenience we let r C--+C denote a quasiconformal map of the whole plane 

which restricts to a hybrid conjugacy from g to h. Let us say that  r is CZ+~-conformal 

at z if r exists and 

r  = r 

Thus (5.1) says that  r is uniformly Cl+~-conformal on P(f) .  

The following result appears in [Mc4, w 

THEOREM 5.4 (Boundary conformality). Let r C - + C  be a quasiconformal map 

with c~r on a measurable set ~, and let x be a measurable deep point of ~. Then r 

is Cl+a-conformal at x. 

COROLLARY 5.5. The hybrid conjugacy r is C 1+~ at the critical point co(g). 

Proof. By Corollary 4.4, the critical point co(f) is a measurable deep point of the 

interior of K ( f )  (since J( f )  has measure zero). This deepness property is preserved by 

quasiconformal maps (using e.g. the estimates of [As], so co(g) is a measurable deep point 

of ~ = i n t  K(g). But r is conformal on ~, so r is C 1+~ at co(g). [] 

One way to now complete the proof of Theorem 5.1 is to observe that  all points in 

P(f )  are measurable deep points of K ( f ) ,  with uniform bounds, so r is uniformly C 1+~ 

on P(f) ,  by an effective version of Theorem 5.4. We will proceed differently, however, to 

illustrate directly that  smoothness along the post-critical set is inherited from smoothness 

at the critical point. 

Distortion of triangles. Let 

Dt(z) = r162  
t 



274 C.T. MCMULLEN 

gi 

h i 

Fig. 9. Nearly similar triangles 

and define 
lOt(z) . 

sup ~ - 1 
Nt(z) = 1/2<1t/81<2 [ Ds(s) 

By a calculus argument (controlling log Dr(z) with a geometric series) one has 

LEMMA 5.6. Suppose that Nt(z)<Cltl ~ for all z in a compact set K and all t 

sufficiently small. Then r is uniformly C 1+~ on K. 

Now think of an ordered triple of points T=(a, b, c ) c C  as a triangle, with shape 

determined (up to similarity) by the ratio a(T)=(b-a ) / ( c -a ) .  Then 

Nt(z) ~ 2 sup la(r  
T 

where the sup is over all triangles T = ( z , z + t , z + s )  with la(T)l in [�89 So to show 

that  r is uniformly C 1+~ on P ( f ) ,  we need only check that  

l a ( r  = O(Itl ~) (5.2) 

when zEP( f )  and t is sufficiently small. 

To obtain this estimate, we will use the dynamics to move T and r close to the 

critical point. By the Koebe distortion theorem, the shapes of these triangles are almost 

preserved if the dynamics is univalent on a large neighborhood. On the other hand, r is 

smooth at the critical point, so the shape is nearly preserved there as well. See Figure 9. 

Completion of the proof of Theorem 5.1 (Universality). By Corollary 5.5, there is a 

t3>0 such that r is Cl+&conformal at the critical point co(g). 
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Consider a small s>0,  whose value is to be chosen shortly. Since g is hybrid equiv- 

alent to a quadratic polynomial, Theorem 3.4 provides an approximate rotation 

gi: (U, y) --~ (V, co(g)) 

with dv(y,z)=O(1) and in-radius(U,z)• 1-~. For small t, U contains a large neigh- 

borhood of T. 

Let T'=g~(T). Since diam(T)/d(T, OU)• ~, the Koebe distortion theorem shows 

l a ( T ' ) - a ( T ) l  : O(Itl~). 

Let T " : r  Since r is C I+z at co(g), we have 

Ja (T" ) -a (T ' ) l  : O ( (d(T ' ,  co(g))+ diam(T')) 1+~ "~ 

Because glP(g) is quasiconformally conjugate to a rotation, there is a 7 > 0  such 

that  diam(T')=O(diam(T)'O=O(ItlT). Since Itl~d(T,y)=O(diam(T)), Koebe again im- 

plies Itl~d(T ', co(g))=O(diam(T')). Combining these inequalities and choosing e suitably 

small, we obtain 

Ia(T")-a(T')I = O(ItlZ7-~(l+~)) = O(ItlZ~/2). 

Finally consider r Since r is K-quasiconformal, from diam(T)= 

O(It[~d(T, OU)) we deduce diam(r162 0r where ~l=~/K. Applying 

Koebe once more to the univalent map hi: r162 we conclude 

la(r - a ( T " )  I : O(Itln). 

All three bounds on the change in the similarity invariant are in terms of powers 

of Itl, so we obtain an a > 0  such that  la(r This establishes (5.2) 

and thereby completes the proof of Theorem 5.1. [] 

6. R e n o r m a l i z a t i o n  

In w we constructed renormalizations of rigid rotations on the circle. Since f lOD is 

topologically conjugate to a rotation, it too admits such renormalizations. 

In this section we show that  the renormalizations of f lOD can be complexified to 

yield holomorphic pairs (fq~: U1--* V, fq~+l : U2 --* V). These renormalizations are variants 

of the holomorphic commuting pairs introduced in [F]. We then use the results of w to 

study the Lebesgue density of the escape loci for these renormalized dynamical systems. 
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I1 c Is 

Fig. 10. A holomorphic pair 

Holomorphie pairs. Let gi: Ui---~V, i=1 ,  2, be univalent maps between quasidisks in 

C with UicV.  Each gi extends to a homeomorphism Ui-~V, which we denote by the 

same letter. 

We say that  (gl, g2) is a holomorphic pair if (as in Figure 10) 

(1) V-U1UU2 is also a quasidisk; 

(2) UinOV=Ii is an arc; 

(3) gi(Ii)cIiUI2, for i=l ,  2; and 

(4) U1AU2={c} is a single point. 

A holomorphic pair is designed to complexify the boundary dynamics of (gl,g2) on 

IiUI2. Note that  the interval IiUI2 inherits an orientation from V. 

Let us say that  a map between sets in C is quasisymmetric if it extends to a quasi- 

conformal homeomorphism of the plane. We next show that  boundary conjugacies can 

be promoted to the complex domain. 

THEOREM 6.1. Let r (11U 12) --~ (11U I~) be an orientation-preserving quasisymmet- 

ric map conjugating the boundary dynamics of one holomorphic pair (gl,g2) to that of 

another (g~, g~). Then r extends to a quasiconformal conjugacy r V--*V'. 

Proof. Choose any extension of r to a quasisymmetric map OV--~OV ~. Define r 

on OUi by r162 This definition is consistent with the values already 

specified on OUiAOV=Ii by the conjugacy condition on r An orientation-preserving 

quasisymmetric map between the boundaries of quasidisks extends to the interior, so 

we may further prolong r to a quasiconformal map r V - ~ V  t which is a conjugacy on 

0U1 [-J 0U 2 . 

Define r V--~V ~ by 

~(g~) -lor if xEUi ,  

r (x) -- [ r otherwise. 

Then r is quasiconformal, and it agrees with r on OV. Therefore ~1 is isotopic to 

r rel the ideal boundary of V. 
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The map (glUg2): (UIUU2)--*V is a holomorphic covering, and in the language of 

the appendix, (r r is a combinatorial conjugacy between (glUg2) and (g~Ug~). By 

Theorem A.1, there is a quasiconformal conjugacy r V--~V' with r162162 on OV. [] 

Siegel renormalization. Consider once again the quadratic polynomial f (z)= 
e27ri~ 2, where 0 has bounded type and p,~/qn--*O are its continued fraction approx- 

imants. Let c_i be the unique point in the boundary of the Siegel disk D such that 

fi(c_i)=co. 
We say that f is (qn, q~+l)-renormalizable if there is a holomorphic pair of the form 

(fan: U1 ~ V, fqn+l: U2 ~ V)  

such that 

(1) VND=O, 
(2) U1NU2--CO, the critical point of f ,  and 

(3) Ii=UiNOY=[crn, Co], while I2=U2NOV=[Co, c~+1]. 

(As before, [a, b] cOD denotes the interval of shorter length in the linear coordinate, and 

rn=q~-l-qn.) The boundary dynamics of (feb, fad+l) on I1UI2 agrees, in the linear 

coordinate, with the extended renormalization ~n(F)  discussed at the end of w 

THEOREM 6.2 (Siegel renormalizations). The map f(z)=e2~i~ 2 is (qn, qn+l)- 
renormalizable for every n>~3. 

These renormalizations are conveniently constructed using external rays. To apply 

this method we need the following result from [Pe]: 

THEOREM 6.3 (Petersen). The Julia set J( f )  is locally connected. 

By local connectivity, the Riemann mapping 

(c-A) (C-K(/)), 

normalized so that w(z2)=f(w(z)), extends continuously to a semiconjugacy S1---~J(f). 
The external rays Rt and equipotentials Cs are defined to be the images of the rays 

arg(z)--27rt and the circles Izl--exp(27rs) under w. (The term equipotential comes from 

the fact that Cs is a level set for the Green function of K(f).)  

Proof of Theorem 6.2 (Siegel renormalizations). Let Jn= [co, Crn] cOD. The critical 

value cl is disjoint from Un/>3 gn. 

Consider the annulus A between the boundary of the Siegel disk and a fixed equi- 

potential Cs, S>0. Let Rt be the external ray landing at the critical value cl. Let V be 
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Fig. 11. Renormalization of the golden mean Siegel disk 

a quasidisk obtained by removing from A a slight thickening of Rt. The thickening need 

only be small enough that OV is disjoint from every external ray landing in U jn. 

The critical point co lies in OV, but V itself is disjoint from the postcritical set. 

Thus every component of S-i(V) is a quasidisk mapping univalently to V, and there is 

one component touching each element of f-i(co). 
Let U,~ be the component of f-q~(v) with C_q,6OUn. The critical values of f i  are 

{cl, c2, ...,ci}, so [cq~,cq~_l] is the maximal interval around co in OD with no critical 

values of fq~ in its interior. We have fq"(Jn)=[cq~,cq,_~] (by the definition of r~), so 

U-nNOD=Jn. Since Uncf-q~(A-Rt) ,  Un lies between a pair of external rays landing 

in J~, and within the equipotential Cs, s=2-q-S. Therefore OU,~NOV=OU,~AOD=Jn. 
By similar reasoning, ~ and Un+l meet only at the critical point co. It is also easy 

to check that V-U,~UU,~+I is a quasidisk; for example, OU,~ and OUn+l meet nontan- 

gentially at the critical point because the quasidisk D'= ~(D) comes between them. Thus 

the holomorphic pair 

(fq'~: (.In ---* Y, fq,~+l: Vn+l-'-~ V) 

provides the desired renormalization of f .  [] 

Example. A (3, 5)-renormalization of the golden mean Siegel disk is depicted in 

Figure 11. The external ray Rt landing at the critical value cl enters at the bottom 

edge of the picture; it crosses the equipotentials C2-3 S and C2-5 z, where exp(27rS)--2. 

(The equipotential Cs is outside the frame.) Approximations to U3 and U5 appear to 
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Fig. 12. Schematic of the renormalization 

the left and right of the critical point respectively. The boundary of each approximate 

Un consists of external rays (landing at certain preimages of the critical point not on the 

boundary of the Siegel disk), several arcs running along preimages of aD, and the interval 

Jn in 0D. To obtain the actual renormalization, one must cut along slight thickenings 

of each external ray, as suggested in Figure 12. 

Escape loci. Let (g1,g2) be a holomorphic pair. Let U--UIOU2, and define 

g = (glOg2): U~ V. 

By analogy with a polynomial-like map, we define the filled Julia set of (gl, g2) by 

K(gl,g2)= N g-n(U)" 
n>O 

If (gl, g2) is a renormalization of f ,  then K(gl, g2)cJ(f) ,  because under iteration these 

points stay bound, but they never reach the Siegel disk D. In particular, the filled Julia 

set of a renormalization is nowhere dense and of measure zero. 

It is also useful to include points which escape from U but do so by landing within 

distance e of the "critical point" {c}-U1N U2. To this end we define 

K~(g~,g2)=K(gl,g~)u [J g-n(B(c,~)-U). 
n>0  

P R O P O S I T I O N  6.4. For any renormalization 

(fq~: Un--* V, fq~+l: Un+I--* V) 

of f ,  the critical point Co lies in the interior of DUD'UU1UU2. 

Proof. Since fq~ and fq'~+~ each map co into the interior of the arc OVNOD, a neigh- 

borhood of c in O(UIUU2) is contained in O(DOD'). [] 
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COROLLARY 6.5. For all e > 0  sufficiently small, there is a 6>0  such that 

ge(f)n(U1uU2) C K~(f  q", fq.+l ) C K (f). 

Proof. Let U=UIOU2. For e small enough, the part of V - U  within distance e of 

C=Co lies in the pre-Siegel disk D'. Thus points which escape from U by landing in 

B(c, ~) must also lie in K(f ) .  

Now consider a point z E K6 (f)M U that  escapes under iteration of the renormalized 

map, by landing at z ' E V - U .  By assumption z remains close to OD, and thus close to 

IIUI2, until the moment it escapes. Thus z' is close to fq"(I1)Ufq"+l(I2)=J. But J is 

contained in the interior of I1UI2, so V - U N J = { c } ,  and thus for 6 sufficiently small we 

must have z'E B(c, e). [] 

COROLLARY 6.6. The critical point co is a measurable deep point of 

DUD'Ug~( fq" , f  q'~+~) 

for every e>O. 

Proof. By Corollary 4.5, co is a measurable deep point of Ks(f) .  [] 

7. Self-similarity 

In this section we show that  the Siegel disk of f ( z )=e2~~ 2 is self-similar when 0 is 

a quadratic irrational. 

A succinct description of this self-similarity can be formulated as follows. Sup- 

pose that  0=[al, a2, ... ], where an+8=a,~ for all n>>.N. Let F(x)=x+O be the standard 

rotation on S I = R / Z .  By Corollary 2.2 there is a 7E(0,  1) such that  near x=O, the con- 

traction r  conjugates F q- to F q~+s for n>>0. The topological conjugacy 

from (S 1, F)  to (OD, f) ,  normalized to send x--0 to the critical point, transports g) to a 

quasisymmetric mapping r defined on a neighborhood of co in OD. Then we have 

THEOREM 7.1 (Self-similarity). The mapping r is Cl+C~-conformal or anticonfor- 

mal at the critical point. That is, for all z in a neighborhood of co in OD, we have 

~ co+)~(z-co)+O([z-co[~), for s even, or 

r  -- (co+~(~-- - : -cS)+O(Iz-col~) ,  for s odd, 

where a > 0 ,  )~EC and 0<l)~l<l .  

Here is a more complete statement which extends r to a conjugacy between holo- 

morphic pairs. By results of the preceding section, we may choose a sequence of renor- 

malizations 

(fq,~: U?---~ V n, fq~,+~: V;---~ V n) 
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for all n >~ 3. 

THEOREM 7.2. For any n>~max(N, 3), there exists a homeomorphism 

r V n ~ Vn+8, 

fixing the critical point co and conjugating the (qn, qn+l)-renormalization of f to its 

(qn+8, qn+s+l)-renormalization. For even s, the conjugacy can be chosen so that: 

(1) r extends to a quasiconformal map on VnUD, conformal on a neighborhood of 

co in D; 

(2) the extended mapping is Cl+a-conformal at the critical point; and 

(3) r is independent of n and satisfies 0<] r  

For odd s, ~b is orientation-reversing, and the same statements hold for r  

Proof. The idea is the same as that  used in the proof of universality: a conjugacy 

between two successive renormalizations is smooth at the critical point because it is 

conformal on a set of high density. 

We first assume that  s is even. 

Let U n = U~ U U~, and let L~ = U n NOD = [cr~, c~n+~]. Consider the dynamics in the 

linear coordinate system C~. On the disk {w: [w]~<l}, we have f (w)=F(w)=e2~iOw. 

The arc Ln is contained in the circle ]w[=l,  and the boundary dynamics of (fq% fq~+') 

is the same as tha t  of the extended renormalization ~,~(F) discussed in w By Corol- 

lary 2.2, there is a ")' C (0, 1) (depending only on 8) such that  the map ~b: L,~--~L~+s given 

by r  ~ conjugates Tr to nn+~(F). (Here r is normalized to fix the critical 

point, so r  

Since the linearizing map O:C~--~Cw is quasiconformal, r is quasisymmetric in 

the original coordinate C~. By Theorem 6.1, r extends to a quasiconformal conjugacy 

r V~ ~ V ~+~. 

Next we modify this conjugacy so that  it is conformal on a neighborhood of the crit- 

ical point in DUD ~. Since OlD is conformal, there is a quasiconformal map fl: D---~D, 

prolonging r on OVAOD, such that  fl(z) is conformal on a neighborhood of the critical 

point. Indeed, near Co we may simply take f l ( z )=O-z(O(z ) ' ) .  Conjugating by the invo- 

lution e: D-~D ~, we obtain a map fit: D ~__~D ~ which is conformal near Co and agrees with 

~b0 on a neighborhood of co in O(V ~ -  U~). Thus we may modify r to a quasiconformal 

map r Vn-"~Vn+s such that  

(1) r162  on UnUOV~; and 

(2) r  on a neighborhood of co in Y n - U  -a. 

The pair (r r is a combinatorial conjugacy between the two renormalizations, in 

the sense of the Appendix. By Theorem A.1, there is a quasiconformal conjugacy 

~2: V n ~ V nWs  , 
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Fig. 13. A neighborhood of the critical point 

equal to r on V " - U  ~. In particular, C is conformal on B(co,E)A(V-U) for some c>0.  

The points of conformality are invariant under the dynamics, so C is also conformal 

a.e. on Kr q=, fqn+~). (Since K ( f  q", fq"+l)cJ(f) has measure zero, almost every point 

in K~(f q", fqn+~ ) escapes through B(c, ~)- Un.) 
The extended map 

= CU~: VnUD ~ Vn+~UD 

is conformal on 

E = K~(f q', fq"+')U(B(co, E) A (DUD')) 

(see Figure 13). By Corollary 6.6, co is a measurable deep point of E, so ~ is C l+~- 

conformal at the critical point, by the Boundary Conformality Theorem 5.4. 

Since in the linear coordinate, r 1 is a contraction by 7, 0 < 7 < 1 ,  we have that  

0< It ' (co)l< 1. The germ of ClOD at  co is independent of n, so C'(Co) is also independent 

of n. 

Finally, when s is odd the map r L,~--*L,~+8 conjugating TEn(F) to 7~n+8(F) has the 

form r "y. Thus we may promote r to a quasiconformal conjugacy C(z) between 

(fq" (z), fq,+l (z)) and the complex conjugate dynamical system (fan+8 (2), fq,+s+l (2)). 
Then C(z) has the same properties enjoyed by C(z) for s even. [] 

Let 

{ CO+-~z~(CO)(z-CO), s even, 
A(z) = 0r  ~ (7.1) 

c 0 + - ~ ( c 0 ) ( - c o ) ,  s odd, 

denote the linearization of r at the critical point. 

COROLLARY 7.3. The blowups A-n(OD) of the boundary of the Siegel disk converge 
exponentially fast to an A-invariant quasicircle through oo, in the Hausdorff metric on 
compact subsets of the sphere. 
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Proof. Fix any conjugacy r as in the theorem and let A--Ir or I '(co)l, de- 

pending on whether s is even or odd. Then A<I.  For n>>0 choose a segment IcOD 
of diameter about A n such that  A-nI  is the component of A-n(OD)NB(CO, 1) passing 

through the critical point. Then r and since ~p is C 1+~, the Hausdorff distance 

dH satisfies 

dH(d-ni,  A-(n+z)~b(i)) << A-ndH(i, A-1%b(i)) = O(A-n (diam i ) l+a )  = O(Aan). 

Thus the blowups of OD converge exponentially fast at scale 1 around the critical point. 

A similar argument holds on the sphere. [] 

Using the fact that  r for all n>>O, it is also easy to verify 

There exist d0, . . . ,ds-1CC such that the closest returns of the COROLLARY 7.4. 

critical orbit satisfy 
Cq~ = Am(di)+O(Ico-cq~ I1+~), 

where n=-ms+i. 

Spiraling. A Jordan curve C in the plane spirals about cEC if any continuous branch 

of a r g ( z - c )  on C-{e}  is unbounded. The curve C does not spiral if and only if there 

exists an n such that  one petal of " Cv/-CZ~-c lies in a half-plane. 

COROLLARY 7.5. If the period s is odd, then the boundary of the Siegel disk does 
not spiral about the critical point. 

Proof. It suffices to show that  the Hausdorff limit X=limA-n(OD) does not spiral 

about co. Pick any point p in the limiting disk Do~-=intlimA-n(D), and let "TcD~ be 

a path joining p to A(p). Then 

~ = .~ U A(."7)U A2 ("),)U ... 

converges to co without spiraling, since alternate segments wind in opposite directions. 

Since 5 is disjoint from X, the latter does not spiral either. [] 

8. The limiting dynamics 

In this section we describe more completely the limiting dynamical system obtained by 

rescaling the first return maps around the critical point. As in the preceding section, 

f(z)=e2~ri~ 2, where 0=[al ,  a2, ...] and ai=a~+s for i>>0. 

Let bi, i c Z ,  be the unique sequence with period s that  agrees with ai for i>>0. Let 

Oi=[bi,bi+l, ...], and define ti so that  to=01 and ti=-Oi+lt~-l. 
Let A(z) be the linearization of the contracting self-similarity map given by (7.1). 

Let Doo C C denote limit of the rescaled Siegel disks; it is the unique quasidisk such that  

A -n  (D)--+ Do~ in the Hausdorff topology. 
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(2) 
(3) 
(4) 

(5) 
fast; 

(6) 

THEOREM 8.1 (Limiting dynamics). There exists a sequence of analytic functions 

gi: Wi--+C, i cZ ,  such that 

(1) Wi is an open disk with D ~ c W i c C ;  

OWi is the natural boundary of gi; 

gi is a a-proper branched covering of the plane; 

g~ (z)--- l i m . _ ~  A-no f q"~+, oAn(z); 

on each compact subset of Wi, this limit converges uniformly and exponentially 

for all zCWi, gi(z)=gb' logi_2(z)=A-logi+soA(z); and 

(7) there is a Riemann mapping D~---~H which conjugates the mappings (gi(z)) to 

the translations (Ti(z)=z +ti). 

Remark on universality. By the results of w any quadratic-like map h with a fixed 

point of multiplier e 27ri0 is Cl+~-conjugate to f on the boundary of its Siegel disk. Thus 

P(h) is self-similar about c0(h) with the same rescaling factor as P ( f ) ,  Corollaries 7.3, 

7.4 and 7.5 also hold for h, and the rescalings of h qn converge to the same dynamical 

system (gi) as above. 

Before embarking on the proof a few preliminaries are in order. 

Branched coverings and a-proper maps. Let g: X---~Y be a holomorphic map between 

Riemann surfaces. Then g is: 

(1) proper, if g - l ( K )  is compact for each compact K c Y ;  

(2) a-proper, if each component of g - l ( K )  is compact for each compact K c Y ;  and 

(3) a branched covering, if each y E Y  has a neighborhood V such that  g: U--*V is 

proper for each component U of g- l (V) .  

It is not hard to show that  each condition implies the next. Also, g is a-proper if 

and only if X and Y can be expressed as increasing unions of subsurfaces Xi, Yi such 

that  g: Xi--*Yi is proper (hence the terminology). The trigonometric function sin: C--*(~ 

is a branched covering which is not a-proper, because s in - l ( [ -1 ,  1 ] )=R is not compact. 

The maximal analytic continuation F of the Feigenbaum fixed-point, on the other hand, 

is a a-proper branched covering of the plane (cf. [Mc4, w The composition of two 

a-proper maps is also a-proper; this property fails for branched coverings. 

PROPOSITION 8.2. Let g: U--~C be a branched covering. Then every pEOU is a 

singular point of g. 

Proof. Suppose to the contrary that  there exists a pcOU and an analytic function 

h extending g near p. Then the branched covering condition implies that  g-l(h(p))  

accumulates on p, so h is constant, which is impossible. [] 
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Carathdodory convergence. A sequence of pointed open disks (U~, Un) in C converges 

to (U, u) in the Carathdodory topology if un--+u, and if for any Hausdorff limit K =  

lim(C-U,~k), U is the component of C - K  containing u. 

THEOREM 8.3 (Limits of proper maps). Let 

gn: (Un, Un) ---+ (Yn, Vn) 

be a sequence of proper maps between pointed disks, with deg(gn) <. d. Suppose that Un-+U, 

that gn converges uniformly to a nonconstant limit on a neighborhood of u, and that 

(Vn,v,~)--~(V,v). Then (Un, un) converges to a pointed disk (U,u), and gn converges 

uniformly on compact subsets of U to a proper map 

g: (u, u) (v, v) 

with 1 ~<deg(g) ~<d. 

Proof. By [Mc3, Theorems 5.2 and 5.6], we can obtain convergence of (U,~, un) and 

gn after passing to a subsequence. But any two subsequences have the same limit, by 

convergence near u. [] 

Harmonic measure and exponentially fast convergence. Let E c X  be a closed subset 

of a Riemann surface. The harmonic measure WE(Z) is the probability that  a Brownian 

path starting at z will land in E before exiting X. It is a harmonic function on X - E .  

If WE(Z)>0 then E has positive harmonic measure. The "two-constant theorem" controls 

a bounded holomorphic function on X in terms of its behavior on E. 

THEOREM 8.4. Let f: X - + C  be an analytic function, with If(z)l bounded by M on 

X and by m on E. Then If(z)l<<.Ml-~m ~ on {Z:WE(Z)>~}. 

See [Ah2, Theorem 3-2]. 

Let us say that  f n ~ f  exponentially fast on E if there exist C and A<I  such that  

sup [f~Iz)-f(z)[ < C~ n. 
E 

COROLLARY 8,5. Let f and <f~> be analytic functions, uniformly bounded on com- 

pact subsets of X ,  and suppose that fn--* f exponentially fast on a set E c X  of positive 

harmonic measure. Then fn-+ f exponentially fast on any compact subset of X .  

Of course the C and ), depend on the compact set in question. 

Proof of Theorem 8.1 (Limiting dynamics). To simplify notation, we will discuss the 

branched covering go: W0-~C in detail, the case of gi being analogous. 



286 C.T. MCMULLEN 

Let r D---*D be a self-similarity homeomorphism of the type provided by Theo- 

rem 7.2. That  is, for n>>0, r conjugates fqn to .fq,,+8 on a neighborhood of co, and 

•(z) = A(z) + O(Iz-coll+~). (8.1) 

We first show that  for z E D ~ ,  

lim A-nor  q'~" oA'~(z) 

exists, and the convergence is exponentially fast on compact subsets of D ~ .  Let D ~ =  

A-~(D) denote the n th  dilate of the Siegel disk, and let 

fo,n = A-n~ fq'~~ n: D,~ ~ D,~. 

Then 

Cn = A-n~176162176 ~ ~ D,~+I 

conjugates f0,n to f0,~+l on a definite neighborhood of Co; on the other hand, Cn con- 

verges to the identity exponentially fast by (8.1). Thus (fo,n(z)) converges exponentially 

fast on some compact ball B C D~r 

Now each f0,~ is a conformal rotation of a quasidisk, so it can be extended to a 

K0-quasiconformal map of the plane, where Ko is independent of n. By convergence of 

f0,n I B, the sequence (f0,~) is bounded and equicontinuous on compact subsets of D ~ .  

By Corollary 8.5 above, (f0,~) converges exponentially fast on compact subsets of D ~ .  

To proceed further we need some additional notation. For iEZ,  let 

di -- lim A -'~ (cq,s+ ,) E c~D~ 

denote the l imitingposition of the rescaled closest returns of the critical point (cf. Corol- 

lary 7.4). Then d~+,=A(d~), and {d~: icZ} is a finite union of geometric sequences 

converging to the critical point. 

Just as the boundary of the Siegel disk divides C into two domains, D and ~, 

the quasiarc OD~ divides C into two domains, D ~  and ~t~. Mimicking the notation 

[c4, cj] cOD, we let Ida, dj] cOD~ denote the unique quasiarc in OD~ with endpoints d~ 

and dj. 

We now extend the domain of convergence of A-nofq'~'oA n beyond D~r Let ~1= 

- S ,  where S is an arc (e.g. an external ray) connecting cl to c~ through ~. By cutting 

along S we make ~ simply-connected. Consider the open disk 

Vk,,~ = int A-~(DUgt'U[%,,_~, cq,,_,_,]), 
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obtained by joining D and ~t' together along an open arc in OD, then rescaling. Note 

that  Vk,nDD~. Picking basepoints pnEDn converging to pED~, we have 

(Vk,~, p,) --~ (Irk, p) = int (D ~  U ~ U [d-k, d-k - l ] )  

in the Carath~odory topology. Note that  the slit S moves off to infinity and disappears 

in the limit. There is a unique disk Uk,~DDn such that  

fk,n = A-% f q'" ~ Uk,n ---* Vk,~ 

is a proper map. (The disk Uk,,, is a component of the preimage of Vk,,~ under the map 
A-nofq~8 oAn.) 

We claim that  for fixed k, the degree of the proper map f~,k is eventually constant 

as n--*cc. Indeed, the domain and range of fk,,~ are simply-connected, so deg(fk,~) is one 

more than the number of its critical values. But the critical values of fk,~ correspond to 

a subset of the critical values {cl, c2, ..., cq,~ 8 } of fq'~% namely those lying in the interior 

of the arc [Cq,,,_k, Cq,,_k_l]. Since the continued fraction expansion of ~ is preperiodic, 

this subset has constant cardinality for all n sufficiently large, and thus deg(fk,n) is also 

eventually constant. 

Now we already have convergence of fk,n ID,~ as n---*cx~, so by Theorem 8.3 there is 

a pointed disk (Uk,p) and a proper map 

A: (uk,p)-, 

such that  fk,,~---*fk uniformly on compact sets of Uk as n--*ce. Each of these limits 

extends the domain of convergence of A-nof  q'~8 oA n. 

Clearly Vk,~CVk+I,,~ and thus VkcVk+I. Similarly UkCUk+l and fk=fk+llUk. 
Letting Wo=U Uk, and noting C =  u Vk, we obtain a branched covering 

go: Wo---' C 

by setting go = U f~. Since each fk is proper, the map go is a-proper,  and by Proposi- 

tion 8.2, OWo is its natural boundary. Since D~C U Vk, we also have D~CWo. Finally we 

have shown above that  A-'~of q~ oAn~go exponentially fast on compact subsets of D o ,  

so by Corollary 8.5 the convergence is also exponentially fast on compact subsets of W0. 

This completes the proof of statements (1)-(5) of Theorem 8.1. Statement (7) follows 

easily by a linear computation similar to Theorem 2.1. 
bi o To verify (6), we must show that  gi-1 g~-2 and A-logi+~oA are defined on Wi. First 

note that  
b l  o gi=g~_l gi-2 
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when restricted to D ~. Since each gi is a-proper, the composition on the right defines 

a branched covering of the plane, as does the map on the left. A branched covering of 

the plane admits no analytic continuation, so the domains of these two mappings must 

agree, and thus equality holds on W~. 

The same principle establishes the rescaling equation gi=A-iogi+8oA. [] 

A. Appendix: Promoting combinatorial equivalence to conjugacy 

Let X = A / F  be a hyperbolic Riemann surface, presented as the quotient of the unit 

disk by a ~chsian group F. Let 12cS i be the complement of the limit set of F. Then 

(AU~)/F is a surface with boundary ~/F,  the ideal boundary of X. 

Any quasiconformal homeomorphism between hyperbolic surfaces extends to the 

ideal boundary. 

Let Xi C X0 be a pair of complex 1-manifolds (perhaps disconnected) with each com- 

ponent hyperbolic, and let f :  Xi---*Xo be a holomorphic covering map. A combinatorial 

equivalence from f to another such dynamical system g: Yi-*Yo is a pair of quasiconfor- 

mal maps r X0--*Y0, i=O, 1, such that 

X1 f > X  0 

Y1 g " Yo 

commutes, and r is isotopic to r rel the ideal boundary of X0. If r162 then r is a 

quasiconformal conjugacy. 

THEOREM A.1 (Combinatorial promotion). Any combinatorial equivalence (r r 

is isotopic, tel ideal boundary, to a quasiconformal conjugacy r Moreover, r can be 

chosen to agree with r on X o - X i .  

Proof. The proof relies on some basic facts about natural extensions and quasicon- 

formal isotopies treated in detail in [DE] and [EMc]. 

Using [EMc, Theorem 1.3 and Proposition 2.3], the initial isotopy r [0, 1] xXo--~Y0 

may be chosen to be uniformly continuous in the hyperbolic metric. That is, we can 

arrange that 

dro (r r ~< 6(Is-tl), (A.1) 

where 5(r)--*O as r--*O, and distance is measured along the geodesic arc homotopic to 

the trace of the isotopy. 
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Roughly speaking, r gives a map on the "fundamental domain" X 0 -  X l ,  which is a 

conjugacy on the ideal boundary, so it can be pulled back repeatedly to obtain conjugacies 

on larger and larger regions. In the limit one obtains a conjugacy outside a region f~ 

mapped to itself by f .  A canonical representative of the map on ~ will automatically 

commute with coverings, and give a conjugacy there. 

More formally, let X~=f-n(Xo) and Yn=g-n(Yo). Then there is a unique extension 

of Ct to an isotopy defined for all tE[0, (x~) such that  

�9 .. X2 f >X1 f >X0 

�9 -- Y2 ~ >YI g >Yo 

commutes for t e [0, 1], and Ct (x )=  Cn (x) for t > n and x ~ X,~. Here we use the fact that  

the hyperbolic metric on Xn blows up at OXn to insure that  Ct(x) and Cn(X) agree there 

for te[n,n+l]. Indeed, we have 

dyo(r Cs(x)) .< 5(Is-tl) 

for xcX,, and s, t>~n, because the covering maps f and g are local hyperbolic isometrics. 

Since inclusions are contracting, (A.1) also holds for all s, t~>0 and xCXo. 
We have K(r162 for all n, and all Cn are in the same isotopy class, so after 

passing to a subsequence we can construct a limiting combinatorial equivalence 

(ao, a l )  = lira(Ca, r  

Here we use (A.1) to obtain, along a further subsequence, a bounded isotopy at =l im Ct+n 

connecting a0 to a l .  

Let f~ = int N Xn. Then a0 (x) = a l  (x) outside f~. Moreover, at stabilizes ~ and at In 
is an isotopy rel ideal boundary. On each component of ~, replace a0 with the unique 

Douad~Ear l e  map in the same isotopy class. (This map is obtained by lifting to the uni- 

versal covers, and applying the Douady-Earle  extension to the boundary values on $1.) 

Since f :  ~t--~ft is a holomorphic covering and the Douady-Earle  extension is natural, 

these replacements are compatible with the dynamics and the resulting map r is a 

quasiconforznal conjugacy. [] 

Remark. The dilatation of the conjugacy r is bounded in terms of K(r The only 

increase in dilatation comes by applying the Douady-Earle  extension. 

Examples. (1) Let f be a critically finite rational map on the sphere. Then f :  X1---~Xo 
is a covering map, where Xo=C-P( f )  and Xl=f-l(Xo).  In this setting, the notion 
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combinatorial equivalence was introduced by Thurston, who proved that combinatorially 

equivalent rational maps are eonformally conjugate, apart from certain Latt~s exam- 

ples [DH2], [Me3, w 

(2) A similar principle holds when P(f) is infinite. Namely, given a pair of isotopic 

quasiconformal maps r (C, P(f))~(C, P(g)), i=l, 2, with gor =r there is a quasi- 

conformal conjugacy in the same isotopy class. This principle is used by Sullivan in his 

proof of rigidity of the Feigenbaum polynomial [Su]. 

(3) Consider a holomorphic family f~(z) of rational maps such that the critical orbit 

relations are locally constant. By the theory of holomorphic motions, any two members of 

the family are combinatorially equivalent. Then they are also quasiconformally conjugate, 

by the theorem. Compare [McS, Theorem 7.1]. 

(4) If X0 is connected and X1 is a proper compact subset of X0, then f: X1--*Xo 
is an expanding conformal dynamical system. That is, IIf'll > c > l  in the hyperbolic met- 

ric on X0. This expansion implies, for example, that K(f)=Nf-~(Xo) is a compact 

nowhere dense set of Hausdorff dimension < 2. The theorem provides structural stability 

for these mappings, since it is easy to construct a combinatorial equivalence from f to a 

small perturbation g of f .  

(5) The mapping f(z)=z2+A/z 3, where )~ is small but not zero, is described in 

[Mc2]. For a suitable annulus A centered at zero, we have f-I(A)=IUOcA, where I 

and O are annuli covering A with degree 3 and 2 respectively. It is easy to construct a 

combinatorial equivalence from f: (I•O)--*A to g: (I'UO')-*A', where I', O' and A' are 

round annuli centered at z=O, g(z)=z 2 in O' and g(z)=A/z 3 in I'. Clearly K(g) is a 

Cantor set of round circles, so K(f) is a Cantor set of quasicircles. 

A rather different approach to this example appears in [Be]. 

A prototype of Theorem A.1 appears in [Mcl, Proposition 8.1]. 
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