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1. I n t r o d u c t i o n  

The occurrence of irreversible behavior in microscopically reversible systems is concep- 

tually well understood (see [Le] and references therein). However, from a mathematical 

point of view, our understanding of dissipative phenomena is still incomplete, and the 

status of non-equilibrium statistical mechanics is far from being satisfactory. In this pa- 

per we investigate the ergodic properties of some classical, dissipative dynamical systems 

with a finite number of degrees of freedom, near thermal equilibrium. In our models, 

dissipation arises dynamically from the interaction with some "large" environment, con- 

ventionally called the reservoir. Under appropriate conditions on its initial state, this 

reservoir acts as a pool of energy and entropy. It plays a dual role: On one hand, its abil- 

ity to absorb energy-momentum without substantial changes to its internal state gives 

the physical mechanism for dissipation. On the other hand, its large entropy content 

provides the fluctuations needed to prevent the small system from relaxing into some 

stationary state (see [KKS] for a study of the dynamics of finite-energy states in such 

coupled systems). 

For a large set of physically relevant initial conditions, the expected asymptotic 

behavior of the coupled system is qualitatively described by the zeroth law of thermo- 

dynamics. This empirical statement asserts that  a large system, left alone and un- 

der normal conditions, eventually approaches an equilibrium state characterized by a 

few macroscopic parameters such as temperature,  density, etc. (see [UF, Chapter 1] 

and [RS1, w Since the early days of statistical mechanics, the mathematical status 

of the zeroth law has been a much controversial subject and, starting with the famous 
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Fermi-Pasta-Ulam paper [FPU], the object of extensive numerical studies. We refer the 

interested reader to [C3P] and [P] for recent contributions. 

The systems we will consider consist of a "small" subsystem .A, with a finite number 

of interacting degrees of freedom, coupled to an "infinite" reservoir B. The reservoir 

is a thermodynamic limit of an assembly of harmonic oscillators, and its temperature 

1/~ is the average energy per oscillation mode. Let us suppose that  the systems ~4 

and B, initially isolated, start interacting. According to the zeroth law, the coupled 

system should evolve toward a joint equilibrium state. Since B is an infinite system, its 

temperature will remain constant and thermal equilibrium is achieved when the system .4 

reaches the temperature 1/t3 of the reservoir. This phenomenon is not only a fundamental 

experimental fac t - - i t  also underlies the very definition of the notion of temperature for 

the "small" system A. 

Assume for definiteness that  the system .A is a finite collection of weakly interact- 

ing particles confined to a finite box. Then a continual energy-momentum exchange 

with the reservoir will turn the motion of the individual particles into a random walk, 

a phenomenon known as "Brownian motion". If the reservoir is initially in thermal equi- 

librium, its strong statistical properties allow for a reduced probabilistic description of 

the dynamics of the particles based on a random integro-differential equation, namely 

the Langevin equation. It departs from the original Newton equation by the addition of 

two terms, a random force describing the direct action of the reservoir on the particles, 

and a dissipative term arising from the reaction of the reservoir to the presence of the 

particles. Dissipation generally depends on the history of the particles, and is responsible 

for hysteresis effects. In the usual discussions of the Langevin equation, these effects are 

eliminated by making appropriate assumptions on the form of the coupling of the particles 

to the reservoir. Under these assumptions, and after a simple renormalization process, 

the Langevin equation turns into a stochastic differential equation, and the motion of 

the particles becomes a (degenerate) Markovian diffusion in phase space. This limiting 

form of the Langevin equation was first studied by Ornstein and Uhlenbeck ([UO], see 

also [Wx]), and the resulting stochastic process is called the Ornstein Uhlenbeck process. 

The history of the Langevin equation is discussed in [LT] and [Ne]. By construction the 

OU process is Markovian. This brings the powerful Fokker-Planck equation into the 

game and reduces the ergodic theory of the Ornstein-Uhlenbeck process to the spectral 

analysis of some parabolic PDE (for a general discussion of these problems, see IT]). 

Our main motivation is to overcome the difficulties related to the presence of memory 

in the Langevin equation, and to develop tools for studying the ergodic properties of the 

Ornstein-Uhlenbeck process when the usual Markovian techniques fail. More precisely, 

the goal of this paper is twofold: 
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(I) To develop a general framework for the models described above, in the spirit of 

the Ford Kac Mazur philosophy (see [FKM] and [LT]). This starts with the definition 

of the phase space ~ and of the Hamiltonian H: G--~R of the system .A+I3. The corre- 

sponding thermal equilibrium state #Z (a probability measure on G) is then constructed. 

The associated Koopman space is the separable complex Hilbert space L2(~, d/zg). Ob- 

servables of the system are elements of the algebra L ~ (G, d#~). Admissible initial states 

which are "not too far" from thermal equilibrium are probability measures on G which 

are absolutely continuous with respect to pZ. We denote this class of states by ,.q~. The 

major problem centers around the existence and regularity properties of the Hamiltonian 

flow Et on G generated by the Hamiltonian H. We show that  this flow induces, via the 

usual formula 

U t F  = Fo7 : t ,  

a strongly continuous unitary group on Koopman's space. In particular, E t leaves the 

equilibrium measure #~ invariant. A reduced description of the dynamics of the system 

.4 is obtained by integrating out the variables of the reservoir in L~tF. If these variables 

are initially distributed according to a given probability law, then the reduced description 

is given by a random integro-differential equation: the "generalized" Langevin equation. 

(II) Once part (I) is completed, we have a specific class of systems for which we can 

formalize the problem of return to equilibrium (the zeroth law) in the following way. 

Definition 1.1. We say that  the combined system .A+B returns to equilibrium if the 

dynamical system (G, ~t, #g) satisfies 

lim f Fo~ t d#= f F d# ~, (1.1) 
t---*oe ~ ]  J 

for all # E $  z and FcL~(G, d#g). 

The second goal of this paper is to find sufficient conditions to ensure that  the system 

.A+B returns to equilibrium. To achieve this goal we invoke the spectral theory of dy- 

namical systems (also known as "Koopmanism", we refer the reader to [CFS], [M], [RS1] 

and [Wa] for details). This theory relates ergodic properties of (G, E t, pg) to the spec- 

tral properties of the Liouvillean s the skew-adjoint generator of Koopman's group Ltt. 

More specifically, it is known that  if s has purely absolutely continuous spectrum except 

for the simple eigenvalue 0, then return to equilibrium (or equivalently the strong mix- 
ing property) holds. Thus part (II) of our program reduces to the investigation of the 

singular spectrum of s 

In order to keep the size of this paper within reasonable limits, we will not discuss 

any applications of our results. However, in the forthcoming paper [JP1], we will give 
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important  physical examples where our general approach leads to the verification of the 

zeroth law. We also refer the interested reader to the letter [JP2], where we announced 

the results presented here for the simple model of a particle interacting with a phonon 

field at positive temperature.  

The paper  is organized as follows: In w we introduce the model and state our results. 

In w we give the proofs pertaining to part  (I) of our program. Finally w is devoted to 

part  (II). 
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2. M o d e l  a n d  r e s u l t s  

The small system .4 is described as follows. Its configuration space is a finite-dimensional 

connected manifold A/I. To avoid uninteresting complications we assume A~I to be of class 

C a with a piecewise smooth boundary. Its phase space is the cotangent bundle T*~4 

endowed with its natural  symplectic s tructure ~IA. We denote the points of T*A/[ by 

~= (q, p) and its Liouville measure by d~. The Hamiltonian HA of the system .4 is a 

C~-func t ion  on the interior of T 'A4 .  We assume that  exp(-~HA(~))cLI(T*./~4, d~) for 

each f~>0 and we denote by #~  the normalized Gibbs measure, 

zl 

For simplicity, we also assume tha t  the boundary of phase space (including the points at 

infinity) is appropriately screened by a soft potential barrier: 

(H1) For any real E the set KE-{~:HA(~)<~E} satisfies: 

(i) KE is compact, 

(ii) KENOT*M=O. 

We now set up the heat reservoir B. Let T / b e  a real Hilbert space and B a positive 

self-adjoint operator  on 7-/. We denote by [D(B)] the completion of the domain D(B) 
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in the norm [IBull. For simplicity, we use the same notation to denote both B and its 

extension to [D(B)]. Let 

~ s  --= [D(B)] | 

with the inner product 

((:) , -(U~,B~a')+(Tr, Tr'). 
,lr t 

We denote by r the elements of ~ s .  The Hamilton function of the free reservoir is 

1 r  H ' ( r  II (2.1) 

and therefore we will refer to 7-/s as the phase space of finite-energy configurations of 

the reservoir. This space, as a Hilbert manifold, is endowed with a weak symplectic 

structure, i.e., a densely defined non-degenerate 2-form 

a s ( r 1 6 2 1 6 2 1 6 2  w i t h L s -  _ B  2 0 " 

The operator Lu is skew-adjoint on ~ s  with domain 

The Hamilton equation corresponding to (2.1) and (2.2) is 

r 1 6 2  (2.3) 

and the corresponding Hamiltonian flow is given by the strongly continuous unitary group 

(see [RS3, w 
eL~t = ( c o s ( B t )  B -1 sin(Bt)'~ (2.4) \ -Bsin(Bt)  cos(Bt) ] "  

Later in this section we will give a precise description of the phase space and of the 

thermal equilibrium states of this dynamical system. Its ergodic properties, with respect 

to thermal equilibrium, are well known (see [LL] for example): If the spectrum of B 

is purely absolutely continuous, the flow (2.4) is Bernoulli, i.e., very strongly mixing. 

As soon as B acquires some point spectrum, ergodicity (and hence mixing) is broken. 

Since we want to ensure good mixing properties of the reservoir we assume that  B has 

purely absolutely continuous spectrum. The following argument, however, indicates that  

this may not be sufficient for our purposes: Let G c R +  be a spectral gap of B, an 

open interval such that  GNa(B)=O and OGcOa(B). It is a simple exercise to show 
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that  a generic, self-adjoint, rank-one perturbation of B has an eigenvalue in G, and thus 

generates a non-ergodic dynamics. Along the same lines one can show that  coupling such 

a reservoir to a finite collection ,4 of harmonic oscillators results in a non-ergodic system. 

This is obvious if the frequency spectrum of .A overlaps with the gap G. The previous 

argument shows that  it remains generically true in the fully resonant case. Therefore, 

in order to enforce some stability of the mixing behavior of the reservoir, we shall also 

assume that the spectrum of B has no gap. Equivalently, we may assume that  LB has 

purely absolutely continuous spectrum filling the entire real line. A simple extension of 

the above argument leads us to assume that  this spectrum also has uniform multiplicity. 

A simple way to formulate the above requirements is to invoke the Lax-Phillips 

theory (see [LP]), and make the following assumption on the propagation properties of 

this group (see [LT, w for a related discussion): 

(H2) There is a closed subspace D+ CT-IB such that 

(i) eis tD+cD+ for all t>~O, 

(ii) eis tn+={O},  
(iii) V t e a  eL~tD+=7-/B, 

where V denotes the closed linear span of a set of vectors. 

In the terminology of the Lax-Phillips theory, D+ is an outgoing subspace for the 

group e L~t (see [LP]). For the classical hyperbolic systems (the wave equation, Maxwell's 

equations, etc.), the existence of an outgoing subspace is a well-known fact. 

A consequence of the Lax-Phillips theory is the existence of an auxiliary complex 

Hilbert space I~, endowed with a conjugation C, and such that  T/B has the representation 

7-/B ~ L2(R, dw; [~). (2.5) 

Here, L2(R, dw; [~) denotes the real Hilbert space of square integrable, b-valued functions 

of w c R  satisfying f ( - w ) = C f ( w )  almost everywhere. In this new representation, the 

unitary group (2.4) acts as a multiplication operator 

(eLBt r = eiWt o(w), (2.6) 

and the symplectic form (2.2) becomes 

~B(r r = ( (iw)-l r r 

From now on we shall always work in the outgoing spectral representation (2.5). 

Remark. It is evident from (2.4) that  the reservoir is reversible: 

JBe LBt = e-LBt,]B, 
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with a natural time reversal 

In the spectral representation (2.5), the time-reversal operator becomes 

J•: r H jBr  (2.7) 

where j• is some unitary involution of I~. 

We now construct the phase space of the reservoir at positive temperature.  Let Ao 

be a positive, real, self-adjoint operator on the Hilbert space 0 such that  Ao ~ is Hilbert 

Schmidt for all s > l .  For the time being, the choice of this operator is arbitrary. Later, 

it will affect the class of allowed couplings. The operator 

A-(-02~+w2)1/2| (2.8) 

is self-adjoint and positive on ~ ,  and A -* is again Hilbert-Schmidt for s > l .  For s > 0  

we define the scale of spaces 

n a  - D(A,), 

equipped with the graph norm [Ifll*-IlA*f[[ �9 We further denote the dual of 7-/~ by 7-/~ *. 

The space 

/ - - - N ~ t L  
8 

with its natural locally convex topology, is nuclear. Its dual is given by 

1 8 
= U * G ,  

8 

and is endowed with the weak*-topology. As usual, we denote this duality by 

and we have 

r  = (r f ) ,  r E N ' ,  f c A f ,  

Arc  ~ C N", 

with dense and continuous inclusions. A simple calculation shows that ,  for fcAY, one 

has the estimates 
IleLntfIIs • Cs II/lls (t)Isl, (2.9) 

I] ( cLot- 1)/ll~ ~< C~ II fll~+~ (t) l~l i t ]~ 

for any s, t and O~<a~<l. Therefore, the unitary evolution e L~ t  extends to a continuous 

group of continuous transformations of iV', 

( ~ r  = r (2.10) 
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which defines the free dynamics on the full phase space Af' of the reservoir. 

A state of the reservoir is a Radon probability measure # on its phase space. Since 

any cylinder measure uniquely extends to a Radon measure on Af', Minlos' theorem gives 

a one to one correspondence between such measures and functions S:N'- -~C satisfying 

the three conditions: 

(i) S is continuous. 

(ii) S is normalized by S (0 )=  1. 

(iii) S is of positive type, namely 

~-~ S ( f i -  fj)2izj >~0, 
i , j= l  

for any n ) l ,  arbi t rary f l ,  ..., f n E N ,  and Zl, ..., znCC. 

The function S, the so-called characteristic function, is related to the measure # by 

- f e ~(s) du(r S(f)  

The thermal  equilibrium state of the reservoir 13 at inverse temperature /3  is the Gaussian 

measure/zg corresponding to 

S~(f)  = e -Ilfl12/23 (2.11) 

This formula can be established from the thermodynamic  limit of microcanonical or 

canonical ensembles associated to finite-dimensional approximations of the reservoir. 

A simple calculation shows that  for a Hilber t-Schmidt  operator T on ~B,  the fol- 

lowing holds: 

IIZr d#~(r =/3-1  Tr(T*T) < OK3. 

Applying this formula to A - s  we conclude that  for s > l  the norm I1r is finite with 

probabili ty 1. Thus 

supp(#g)  c 7-/~ ~ for s > 1, (2.12) 

a fact which will be used in the sequel. The Koopman space of the reservoir is the 

separable complex Hilbert space L 2 (AP, d#g), on which the dynamics is implemented by 

t ~ t  lgbF = Fo= B. (2.13) 

It  follows from the Fock representation of Koopman space (to be described in w that  

(2.13) defines a strongly continuous unitary group. Its skew-adjoint generator has a 

simple eigenvalue zero and absolutely continuous spectrum filling the imaginary axis. As 

already noted, hypothesis (H2) implies that  ~ is a Bernoulli flow on the measure space 
( / ' ,  



ERGODIC PROPERTIES OF CLASSICAL DISSIPATIVE SYSTEMS I 253 

We now describe the coupling of the system A to the reservoir. Its main feature is 

the linearity of the interaction energy in the field r which allows us to write a Langevin 

equation for the evolution of A. The finite-energy phase space of the coupled system is 

~~  xT-/u and its full phase space is 

- T*.M x A/". 

In the sequel we will also make extensive use of the (trivial) vector bundles 

6 s =- T*Ad x ~ .  

The total Hamiltonian is given by 

H(~, 0) - HA,ren (~) +HB (r +Ar (2.14) 

* Bc where A is a real coupling constant, a: T A/I---~7-/B a C~-sect ion of G sc (sc>0 will be 

specified later), and 

HA . . . .  (~) ~ H.A (~) -1- �89 ,,~2 II Ot(~ ) 112. (2.15) 

This is a convenient renormalization of the Hamiltonian of .4, obtained by Wick ordering 

the Gibbs Boltzmann factor e -r .... +xO(a)) =:e-~(HA+ae(~)): with respect to #~. The 

renormalization of H.4 is not necessary, but it ensures that  the stability of the system 

~4+B is not spoiled by the interaction, which greatly simplifies the discussion. 

The symplectic structure of the phase space C ~ is given by flA| and the equa- 

tions of motion are 

= LB ( r  A~(~)), (2.16) 

Here ZF stands for the Hamiltonian vector field on T*~4 generated by the Hamiltonian F.  

Denoting by (~, r the initial condition for (2.16), one easily obtains 

Ct( f )=r  (L~a(~,),e-C~(t-~-)f)clT (2.17) 

for the evolution of the reservoir, and 

~t=ZHA .... (~t)-)~ 2 D(t-'r;~,,&)d~-+),F(t;~t) (2.18) 

for the small system. Here 

F(t; ~) =~ Zr Ls,a)(~) (2.19) 
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is the time-dependent force field generated by the reservoir, and the kernel 

D(t; ~, ~') - - (  Lua(() ,  e-Lst  z~(~') ) (2.20) 

describes the forces due to the reaction of the reservoir to the system .A. If the initial 

state r of the reservoir is distributed according to a given probability law, then F(t; ~) 

becomes a random noise and the solution ~t=~t(~, r of (2.18) defines a family of sto- 

chastic processes on T*3d, indexed by the initial data  ~cT*Ad. Obviously, (2.18) is a 

generalization of the usual nangevin equation (see [Ne], [LT] and [JP2]). For simplicity, 

we will call it the Langevin equation. 

The following hypothesis is essential for the stability of the coupled system A+B: 

(H3) There exist constants C and D such that 

I]~(~) II~c ~< C(HA([) +D), 

for all ~CT*M, and some so>2. 

Remark 1. Here we see how the choice of the operator A0 in (2.8) determines the 

class of allowed couplings. Typically, the above condition imposes some regularity on the 

functions c~(~). 

Remark 2. In the following, we shall absorb the constant D in the definition of HA, 

and consequently assume that  hypothesis (H3) holds with D=0 .  

Our first result is an existence theorem for the solutions of the Langevin equation. 

We recall that  so>2 by hypothesis (H3), and that  #~ is the equilibrium state of the 

reservoir defined by (2.11). 

THEOREM 2.1. Suppose that hypotheses (H1) (H3) hold, and let s be such that 

O<<.s~sc-1. Then the Hamilton equation (2.16) defines a flow :zt on g s. For fixed 

tER,  the map (~ , r162  is of class e l ( F - s ) .  Moreover, (t,~,r162 is of 

class C l ( R x g - S ; g - s - 1 ) .  In particular, by (2.12), this flow is well defined on #g- 

almost all initial configurations of the reservoir. The C 1-map t~-*~t(~, r defines a family 

of stochastic processes on T*Ad (indexed by ~ET*AJ), which we collectively call the 

Ornstein Uhlenbeck process at inverse temperature ~. 

The Gibbs measure corresponding to the Hamiltonian (2.14) is given by 

d,,Z _ 1 e_~(~r ) d,,Z rc~ d,,Z[,~ 

and the associated Koopman space is 

~ _= L2(g, d#~). 
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Remark. A consequence of the renormalization (2.15) is that  the equilibrium mea- 

sure of .4 is not perturbed by the interaction, i.e., for any observable F depending only 

on ~, we have 

fFd.P=fFd.~.  
Our second result states the fundamental property of the map 

UtF =_ Fo "zt, (2.21) 

on the Koopman space. 

THEOREM 2.2. If  hypotheses (H1)-(H3) hold, then U t is a strongly continuous 

unitary grow on ~ .  In particular, the measure #~ is invariant under the Hamiltonian 

flow Et. 
Remark. Let us denote by C~(G -s)  the set of Cl-functions on G -s  which have 

bounded support with respect to the pseudo-norm 

e~(~, r =-- HA(~)+�89162 ~, (2.22) 

and uniformly bounded derivatives. Then, for any s>0 ,  the flow E t leaves C~(G -~) 

invariant. Furthermore, if s~>3, the generator of the group /4 t is essentially skew- 

adjoint on C~(6-~), provided 2<s<~sc 1. We will explicitly identify this generator in 

Proposition 3.5. 

Theorems 2.1 and 2.2 complete part (I) of our program. We now turn to part (II): 

The question of return to equilibrium formulated in Definition 1.1. We are not able to 

resolve this problem at the current level of generality, and we have to restrict ourselves 

to a special class of couplings which have finite rank in the following sense. 

Definition 2.3. The coupling a is called "simple" if, for some integer M, there exists 

a linear injection A: RM---+7-L~ such that  

a(~) = Au(~), (2.23) 

for some function ucC~ RM). 

Given the spectral representation (2.5) of ~ s ,  the operator A extends by linearity 

to a map from C M to the complex Hilbert space L2(R, dw)| Then the formula 

A(w)u=(Au)(w) ,  u e C  M, 

induces a family of operators A(w): cM-~I?. They satisfy the reality relation 

CA(w)ao = d ( - w ) ,  (2.24) 

where C is the conjugation on I? introduced after (2.5), and Co is the usual complex 

conjugation on C M. 
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Definition 2.4. We define the spectral strength of the simple coupling (~ to be the 

(M x M)-matrix-valued function 

T(co) = ( A(co)* A(co) ) 1/2. (2.25) 

By the previous discussion this is a positive, self-adjoint matrix which satisfies the reality 

relation T(-co)=T(co). Moreover, liT(co)II EL2( R, dw) holds by construction. 

Points coER at which the matrix T(w) becomes singular are bad since, at such 

frequencies, some modes of the reservoir decouple from the system ,4. Clearly, we cannot 

allow such singularities to occur on an open set, since this would have the same effect as 

the existence of a gap in the spectrum of the reservoir. In many physically interesting 

situations, however, one cannot avoid isolated singularities. To keep these bad frequencies 

under control we need some hypothesis. 

Definition 2.5. An isolated singularity cooER of the matrix T(co) is admissible if it 

has a regularizer, a matrix-valued rational function Go(co) satisfying Go(-co)=Go(~), 
and such that  

(i) +Wo are the only poles of Go, 

(ii) Go is non-singular in the closed lower half-plane, i.e., 

det(Go(co)) r  for Im(co) ~<0, 

(iii) IITG011cL2(R, dw), 

(iv) II(Ta0) -1 II 2 is locally integrable near +coo, 

(v) f _ ~  log If(ra0)-l l l  d~/(l+co2)<o~. 

Let us set our hypotheses on the coupling. 

(H4) The coupling is simple and its spectral strength T(co) is non-singular, except 

for a finite set of admissible singularities f~--{+col,. . . ,+coL}CR- Outside of f~, the 
function IIT-l(co)fl is locally integrable, and 

sup liT(co) 111 < ~ ,  (2.26) 
l~l>R Icol ~ 

for some R > 0  and v>0.  

Roughly speaking, the last condition ensures that  the Langevin process i t  is not 

"too smooth" as a function of t, see e.g. [DM], or equivalently, that  the system ,4 is 

"strongly coupled" to the high-frequency modes of the reservoir. 
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Remark. The requirement (2.26) is probably too strong. We conjecture that  our 

result still holds as long as IIT-l(w)II remains locally integrable and the "finite-entropy" 

condition 

F log det T(w) dw > - c ~  (2.27) 
c~ l + w 2  

is satisfied. Note that  violation of (2.27) leads to a deterministic noise in the Langevin 

equation, a circumstance that  radically changes the nature of the model. On the other 

hand, if the matrix T is a rational function of w, then the model becomes essentially 

Markovian and the techniques of IT] apply. 

The next hypothesis is a micro-reversibility assumption for the system .4+/3. Recall 

that  B is reversible, with a time reversal Ju given by (2.7). 

(H5) There exists an anti-symplectic involution ~- of T*~I  such that 

HA o T = Ha.  (2.28) 

Moreover, the coupling (2.23) is time-reversal invariant: 

uo~-= J, au and AJA = JuA,  (2.29) 

for  some involution JA of R M. 

Our last assumption deals with the kinematical structure of the coupling. To formu- 

late this hypothesis we need some further notation. Let us denote by { . , .  } the Poisson 

bracket on T*A4, and by P the corresponding Lie algebra of smooth functions, with the 

locally convex topology of uniform convergence of arbitrary derivatives on compact sets. 

For Qi CP,  we denote by Vi Qi the smallest closed sub-algebra containing all Qi- The 

Hamiltonian vector field generated by FE7 ) is written ZF. We also use the standard 

notation adF----{., F}  for the adjoint action of F C P .  Finally we shall say that  a sub- 

algebra P o C P  has full rank if, at each point ~cT*A/I, the set {ZF(~) :FCP0} spans the 

tangent space. 

(H6) Let P ,  be the sub-algebra generated by the set {(a, f ) :  fCT/B}. The Lie algebra 

V (2.30) 
n>~O 

has full rank. 

Intuitively, this means that  the random force in the Langevin equation can push the 

system .4 in all available directions of its phase space. In particular, hypothesis (H6) 

ensures that  the flows generated by HA and the coupling r  do not have common 

non-trivial invariant subspaces. If they do, then of course one cannot expect (1.1) to 

hold. 

The principal result of this paper is 
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THEOREM 2.6. Suppose that hypotheses (H1)-(H6) hold. Then, for any )~r the 

Liouvillean s (the skew-adjoint generator of the group Li t) has purely absolutely contin- 

uous spectrum, except for the simple eigenvalue O. 

It  is a well-known fact of abstract  ergodic theory that  return to equilibrium is equiv- 

alent to the strong mixing property, which is in turn a direct consequence of Theorem 2.6 

(see [CFS], [M] or [Wa D. 

THEOREM 2.7. Suppose that hypotheses (H1)-(H6) hold. Then, for any )~r the 

system .A + B returns to equilibrium. 

Remark 1. We emphasize that  these results are non-perturbative: They do not 

require the coupling A to be small. 

Remark 2. In a recent series of papers [JP3] [JP5], we have obtained similar results 

in the framework of quantum mechanics and for small coupling. 

3. Dynamica l  theory  of  Brownian  mot ion  

This section is devoted to the proofs of Theorem 2.1 and Theorem 2.2. We will use freely 

concepts and notation related to infinite-dimensional manifolds, as discussed for example 

in [Ru]. In particular, if E and F are Banach spaces, and U is an open subset of F ,  

we denote by CI(U; F) the Banach space of CI-functions f :  U--~F which have uniformly 

bounded derivatives: 

H f l l c , ( u , f )  ~ s u P { l l D k  f ( z ) l l  : x �9 U, k = O, ..., l}  < c~. 

With this definition, the class C~(~ -~) mentioned in the remark following Theorem 2.2 

can be written as the union of the spaces 

{fcCI(U; C):  supp f C U}, 

as U runs over M1 open sets of ~ - s  which are bounded in the pseudo-norm $~. 

Proof of Theorem 2.1. If dim(fl / i )=n,  then the set GS=T*Ad x~/~ is clearly a C a -  

manifold modeled on the Banach space R2nx  7-L~. We star t  by proving the existence of 

a local flow ~t. The only technical difficulty is the unboundedness of the operator  LB. 

To circumvent this problem we make the ansatz 

s = Si oe(O, t). (3.1) 
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Here, ~B is the evolution of the free reservoir, see (2.10). From (2.16), we get the non- 

autonomous equation of motion 

d e ( 0 , t )  = x(tloe(o,t) ,  

where the time-dependent vector field X is given by 

X(t; ~, r - \ Ae-L~tnt~c~(~) ] .  

A well-known trick transforms this equation into the autonomous system 

d 
- - O ~ = X o O  ~, (3.2) 
d~- 

where X is the vector field on R x ~ - s  given by 

1 
X(t'~'r ( X(t;~,r ) " 

One easily checks that,  for 0 ~< s ~< sc - 1, this vector field is of class C 1 (R x G-s).  It follows 

that  (3.2) has a local solution of the form 

or:  (t, ~, r H (t+~,  o(t ,  t + n  ~, r 

which is of class C I ( ] - T ,  T[ x U) for some neighborhood R x G-~ D V~(t ,  ~, r and for 

some T=T(t,~, 0)>0.  Using the estimates (2.9), one finally shows that  (3.1) defines a 

local flow for the original equation (2.16). 

To prove that  these local solutions can be globally extended, we derive an "energy" 

estimate. Starting from the fact that  

d 

and using (2.17), a first integration gives 

HA . . . .  ( ~t ) -- H A,ren ( ~ ) = -- A jfot dT r ( e- L B ~- J~ c~ ( ~" ) ) 

Then a few integrations by parts with respect to the variables a and 7 yield 

HA({t)-HA({) -A(r & ) -  �89 ~ II& II ~, (3.3) 
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where we used the definition (2.15) of the renormalized Hamiltonian, and introduced the 

auxiliary field 
t da  ~- 

Ct-- L dTe--L~'-~7 (r (3.4) 

Integrating (3.4) by parts and using the estimate (2.9), hypothesis (H3) and the fact that  

0~<s~<s~-l, we get the bound 

I1 ,11  c<t> sup 

Using the last inequality in (3.3), we obtain 

sup HA(~)  ~< C(HA(~)+�89162 2(~+'). (3.5) 

In a very similar way one gets, from (2.17), 

IlCtll _  c (  sup HA(G)+ �89162 (3.6) 
"l~-I~ltl 

Recall the definition (2.22) of the pseudo-norm gs. Combining equations (3.5) (3.6), we 

finally get that,  for O<.s<~sc-1, 

Es (~t, r ~ CEs(~, r 2s+4. (3.7) 

By hypothesis (H1), we conclude that  solutions of the Hamilton equation (2.16) cannot 

reach the boundary of the phase space in a finite amount of time. Therefore, these 

solutions can be extended to arbitrarily large times, and the flow --t(~,r162 is 

well defined for any t c R .  Its regularity properties follow from standard estimates. In 

particular, we shall need the fact that  the first derivative D~ t is uniformly bounded on 

any gs-bounded open subset of ~-s .  [] 

Proof of Theorem 2.2. We start with a simple change of variables which will play 

an important role in the sequel. To this end, let us define the map 

T: (~, r H (~, r =-- (~, r (3.8) 

Note that  the new quantity ~b is nothing but the total field, namely the sum of the 

reservoir field and of the particles' self-field. It is easy to show that,  for any s~>0, there 

exists a constant C > 0  such that  

1 
C~ ~< s -~ ~< CE~. 
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Therefore, T is a C~-diffeomorphism of G-~ which preserves boundedness with respect 

to the pseudo-norm g~. A simple calculation shows that,  in the new variables (~, ~p), the 

Hamiltonian becomes 

HoT-I(~, @) = HA(~)+ I~[[~[[2. 

Accordingly, the Gibbs measure #~ faetorises as 

Thus, in the new dynamical variables, we can write the see for example [G J, w 

Koopman space as 

~ = L 2 ( T ' M ,  dp~) |  L 2 (Af', d#~). (3.9) 

From formula (2.17) and definition (3.8) we get the following expression for the time 

evolution of the field: 

t d 
@t(f)=r (~a(~-) ,e  LB(t-~)f) d% (3.10) 

while the motion of the system .4 is governed by 

i t  = ZHA+~r (3.11) 

as one easily verifies from (2.18). In the sequel we will exclusively work in this new 

representation and, whenever there is no danger of confusion, we will not distinguish be- 

tween a quantity and the same quantity transformed by T. For example, the flow E t gets 

transformed into To=-toT -1 and inherits all the properties of the original Hamiltonian 

flow. We denote again the transformed flow and the corresponding Koopman group by 

F. t and N t respectively. 

We decompose the proof of Theorem 2.2 into the sequence of lemmas. 

LEMMA 3.1. If S>I ,  then the class C~(G -s) is dense in ~ .  

Proof. Since CI(T*AJ) is clearly dense in L2(T*Ad, dpZA), it suffices to prove that  

the class C1(7-/~ s) is dense in L2(Af ', d#~). Consider functions of the form 

-  (IIr e +(+), 

where X E C ~  (R) is non-negative and f C 7-t~. One easily checks that G C C~ (7~  s). If the 

function FEL2(N v, d#~) is orthogonal to all finite linear combinations of such functions 

then 

f = o, I1 11 _.) dp~(@) 
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for all f E ~ .  Without loss of generality, we may assume that  F is real-valued. Decom- 

posing F into the sum of its positive and negative parts, and applying Minlos' theorem 

to the two resulting integrals, we get that  F(~b)X(ll~bll2_s)=0 for all X. Since for s > l  the 

vector ~b #~-almost surely belongs to ?_/~s we conclude that  F = 0  almost everywhere. 

The result follows. [] 

LEMMA 3.2. If O<~s<~sc--1, then the class C~(g -~) is invariant under t4 t. 

Proof. Pick FEC~(g-~).  Since the derivative D ~-t is locally uniformly bounded, we 

only have to show that Fo~ t has bounded support. This is an immediate consequence 

of (3.7). [] 

LEMMA 3.3. If I <~ S<~ Sc--1, then t4 t is isometric on C~(G-s). 

Proof. By the group property and Lemma 3.2, it suffices to show that  

d I l U - ' F I I 2  ,=o = o, 

for any FEC~(G-~). Since the evolution of the free reservoir U~ is unitary (see (2.13), 

and the remarks that  follow it), this is equivalent to 

d iiFoO(t,0)ll 2 t=0 =0.  dat IlU~l'4-tFII2 t=0 = d-t 

Finally, since C~ is an algebra, it suffices to show that 

d / Foe(t ,  O) d S  t=0 = 0. (3.12) 

Note that  O(t, 0) is the inverse of the CLmap  O(0, t). A simple application of the inverse 

function theorem shows that  t~-*O(t, 0) is C 1 near t=0,  and that  

d e ( t ' 0 ; G ~ b ) , = 0 -  d e ( 0 , t ; G i p )  t o = - (  ZHA+~+(~)(~) ) .  
dt = \ .k da(~).ZH~+~(~)(~) 

Thus differentiation can be brought into the integral in (3.12). The resulting expression 

splits according to d=d.a| and we get 

where 

:r =2~A+IZ, 

ZA = . /dAF" ZH,~ + ~(a) d# ~, 

:Yr~ = ~ / ( dt~F, dAa" ZH ~+ :~W(~) ) d# ft. 
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To handle the first integral, we use the integration by parts formula 

which is easily proved for F, G in C 1 and F compactly supported. Taking into account 

the identity dH4.ZN4 =0, we obtain 

I.A = --/3)~ / (~, da. ZHa) d# ~. 

To handle Zm we use 

which follows from the usual integration by parts formula for Gaussian measures (see [OJ], 

for example). Using the identity d4~(a).Z~(~)=0, we get 

d# ~ , 

and (3.12) follows. [] 

LEMMA 3.4. If  So>2, then Li t extends to a strongly continuous unitary group on ~ .  

Proof. Fix s such that  l< s~<sc -1 .  By Lemma 3.1 and Lemma 3.3, the operator 

Lit extends to an isometry of ~ .  Since Lit inherits the group property from _~t it is 

actually a unitary group. Thus we have only to prove strong continuity on a total subset 

of ~ .  This is most easily done using functions of the type 

F = X(~)e i~(f), 

with xEC~(T*J t4 )  and fEAr.  [] 

The proof of Theorem 2.2 is now complete. In the following proposition we explicitly 

identify the generator of the group Lit. 

PROPOSITION 3.5. I f  2 < 8~8c--1, then the LiouviUean s is essentially skew-adjoint 

on C~(~-s), where it is given by the formula 

s ~b) = (dt3F(~, ~), Lts~)+ (dAF((, ~b)+,k(dt3F(~, ~p), d.4a(~)))'ZHA+X~b(~)(~). 

Proof. By Theorem 2.1 and the chain rule, if FcC~(Q -~) then FoE t belongs to 

C1 --,s b(g )nC~(Rxg-~+~)  . 



264 V. JAKSIC AND C.-A. PILLET 

Since G s+l is of full measure, l.~tF is #Z-almost everywhere differentiable with respect 

to t. Its derivative is given by 

~t u t r ( ~ ,  ~) = (/2F)o--t (~, r 

where 12 is given by the above formula. In particular, if FEC~(G-s),  t h e n / 2 F E ~  ~. On 

the other hand, i f / 2 F E ~  ~, then Taylor's formula gives the estimate 

~llbltF - F-t /2FII  <~ ,s 111(u't-I)/2FII ds. (3.13) 

Since the right-hand side of (3.13) vanishes as t--~O by strong continuity and the Lebesgue 

dominated convergence theorem, so does the left-hand side. We conclude that  C~(G -s) 

is a dense subspace of ~ which is invariant under /A t, and on which /~/t is strongly 

differentiable. The result follows from Theorem VIII.10 in [RS1]. [] 

We finish this section with a description of micro-reversibility, a property of the 

model which will play an important role in the sequel. By hypothesis (H5), the system A 

has a time reversal 7- (see (2.28)). Since the involution JB given by (2.7) clearly extends 

to N", the map 

j: H JB ) 

defines an involution of G, which is easily seen to be anti-symplectic: 

j*~"~A O~~B = --~"~A O~'~B. 

By construction Hoj=H,  and it follows (see e.g. Proposition 4.3.13 in [AM]) that  

~-toj : j o e  - t  

holds on G-s for 0~< s~< so-1 .  Time reversal is readily lifted to the Koopman space: The 

m a p  

j : F H F o j  

defines a unitary involution of ~ ,  which intertwines the forward and the backward 

evolution 
Jbl  t = U-  t j .  

4. Spec t r a l  th eo ry  of  the  Liouv i l l ean  

In this section we complete the proof of our main result, Theorem 2.6: We show that  

the only vectors in the spectral subspace ~sing associated to the singular spectrum of 
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the Liouvillean s are the constant functions. Our argument splits into the following 

conceptually and technically distinct parts: 

Dynamical reduction. We exploit the hypotheses (H2) (the Lax-Phillips structure), 

(H4) (simplicity of the coupling, and in particular the bound (2.26) on the spectral 

strength) and (H5) (micro-reversibility) to show that  a v e c t o r  lI/C~sing can only depend 

on ~ and finitely many field "coordinates" r 1 6 2  ..., (N=~(eN). We obtain an ex- 

plicit description of the subspace 7-/0C7-/t~ spanned by el, ..., eN. 

Elimination of the reservoir. We show that  the reservoir completely dominates the 

small-time dynamics on the subspace of functions ~(~1, .--, (N,~). Using the fact that  

the free evolution e i~ot has no invariant subspace in ~0,  we inductively eliminate the 

field variables ~. This is the weaker point in our proof: A more sophisticated argument 

should be able to eliminate infinitely many field modes r (see our conjecture in the remark 

following hypothesis (H4)). 

Kinematic reduction. The last step in the previous elimination process yields that  

~ing contains only functions of ~. We invoke hypothesis (H6) (kinematic completeness) 

to show that  it consists entirely of constant functions. 

To set up our notation, we start with a brief review of some basic facts of the theory 

of Gaussian random fields. We refer the reader to [GJ], [CFS] and IS] for details and 

additional informations. The complex Hilbert space ~ - L 2 ( A [  ', d#g) is isomorphic to 

the bosonic Fock space over 7-/B: 

~B -~ F('J-/B) = ( ~  FN(7-/B) = C@7-LBc@(7-/C@sT-Lc)@ " " ,  (4.1) 
N : 0  

where | denotes the completely symmetrized tensor product, and 7-/~ the c0m- 

plexification of 7-/B. This isomorphism is obtained by identifying the Wick monomial 

: r  .-. r  with fl|174 for any fl,---, f~ ET-/u. Recall that  the sec- 

ond quantization F(k) of a contraction k of ~ is the real contraction of F(7-/B) which 

acts on real elements of F N ( ~ )  as k|174 If e -At is a strongly continuous contraction 

semi-group, so is its second quantization. The generators of these two semi-groups are 

related by F(e--At)=e--dr(A)t, where dF(A) is the real operator acting on real elements 

of FN(7-/B) as A|174174174174174 For example, the Koopman 

group of the free reservoir is given by the second quantization of its Hamiltonian flow 

= r ( e - L B ' ) ,  

which is the unitary group of Bogoliubov transformations generated by dF(LB). It im- 

mediately follows from this representation and hypothesis (H2) that  the evolution of the 

free reservoir is a Lebesgue automorphism. 
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If ]C is a closed subspace of ~ s ,  we denote by Gtc the minimal a-field generated 

by {r  The conditional expectation with respect to Gt: is the orthogonal 

projection of ~g onto the subspace of Gtc-measurable functions. It is related to the 

orthogonal projection p from ~ s  onto/E by second quantization, i.e., one has 

E(.  I G,c) = r(p). (4.2) 

On the other hand, the operator dF(p) is the number operator associated to the 

subspace/E. It is a simple exercise to show that  

Ker(dr(p)) = Ran ( r (1 -p ) )  c Ran(r(p))  • (4.3) 

a fact that  will be useful later. Finally we recall that  there exists a unitary map 

F(~s)--~F(~)|  • which, under the identification (4.1), translates into an isomor- 

phism 

~ ~- L2(Af ', Gpc, dp~)| ', Gtc• d#~), (4.4) 

reflecting the Gaussian nature of the measure #~. 

4.1. D y n a m i c a l  reduct ion  

We now turn to the proof of Theorem 2.6. Taking into account the fact that  the coupling 

c~ is simple (recall Definition 2.3), we can rewrite the g)-dependent part of the driving 

force in the Langevin equation (3.11) as 

M 

F(t, ~t) = ~ r  ZQj (~t), 
j = l  

(4.5) 

where the uj form a basis of R M, and the Qj (~) are smooth coefficients. Let us introduce 

the notation I(s, t)-[min(s, t), max(s, t)]. It is apparent from formula (4.5) that,  at time 

tER,  the position of the Ornstein-Uhlenbeck process ~t(~, r depends only on its starting 

position ~ and on the field values r (f) for f E (e-LB~-Au : u E R M, ~- E I(O, t) }. 

Remark. By the last statement, we really mean that  ~t(~,r is measurable with 

respect to the minimal a-field generated by ~ and the ~( f ) .  We shall continue to use 

this abuse of language, leaving the simple measurability arguments to the reader. 

The previous observation is the starting point of the first part of the proof. In order 

to formulate its deep consequences we make the following definition. 
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Definition 4.1. To any closed interval I c R  we associate the subspace 

7-~I -- V e - L B t A R M  C ~t3. 
t G I  

Two immediate consequences of this definition are 

e-L'tT"[I = 7~I+t, (4.6) 

for any tER,  and the time-reversal covariance 

JsT-Q = 7-/-i. (4.7) 

The space ~ a ,  and hence 7-/~, are both invariant subspaces of e -LBt .  For fcT-/~, 

the equation of motion (3.10) immediately reduces to r162  If f c ~ I ,  on 

the other hand, the above considerations show that  ~t and Ct(f) depend only on the 

starting point ~ and on G~t,(o,~).,+,. Thus, according to (4.4), the Koopman space 

further factorises as 

~ -- (L2 ( T ' M ,  dp~A)| G~tR, dP~))| hf', Gnfi, d#~), 

with a corresponding factorization of the Koopman group 

~.~t = ~ [ t l L  2 (T*2ct ,dt t~) |  | b/~ [r(nh)" (4.8) 

Setting I=[0,  col in the previous argument shows that  F(7-/[0,~[) is invariant under the 

forward evolution, i.e., 

bttL2(T*A4,dSA)|174 for t ~>0. (4.9) 

The second factor in (4.8) describes the part of the reservoir which is left unperturbed 

by the interaction with the system A. Corresponding to (4.8), the dynamical system 

(T*Ad • z) decomposes into a direct product, the second factor of which is a 

Bernoulli flow. Therefore, we can concentrate on the first factor, which can be brought 

into a more explicit form with the help of the following result. 

LEMMA 4.2. Let us denote by MM(C) the set of (MxM)-matrices,  by C the 

lower complex half-plane and by H2(C -) the Hardy space of analytic functions on C - .  

Then there is a factorization 

A(w) = W(w)O(w), (4.10) 
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with the following properties: 

(i) The operator W(w): cM----~0 is an isometry, and the map 

W: L2(R, dxz; C M) --+ '~R, 

defined by (Wu)(w)=W(w)u(w), is an isomorphism. Here L2(R, dw; C M) denotes the 

real Hilbert space of square integrable, CM-valued functions u satisfying u(-w)=u(w). 

(ii) OEH2(C-)|  is an outer function, i.e., 

V e-iwto(w) CM = H2(C-)  |  (4.11) 
t~>o 

Moreover, it satisfies O(-w)=O(w). 

Proof. The proof of this lemma is a simple application of Wiener's factorization 

theorem [Wi] (see also [De] and [He, Lecture XI]). Recall that  ]]T(w)][cL2(R) by con- 

struction. Furthermore, hypothesis (H4) ensures that  

j lndet  T(w) > -c~.  
dw (4.12) 

l + w  2 

To see this, we break the above integral into several pieces. The integration over any 

finite interval disjoint from the singular set ~t gives a finite integral. The integration 

near infinity is controlled by the bound (2.26). Near an admissible singularity w0C~, we 

use the fact that  log det(T)=log det(TG0)-logdet(G0).  The first term is controlled by 

property (v) of the regularizer Go (see Definition 2.5). The second term gives a finite 

integral since det(G0) is a rational function. Thus (4.12) holds, and the hypotheses of 

Wiener's theorem are satisfied. 

A first factorization is obtained by the polar decomposition A(w)=WI(w)T(w), 

where Wx(w) is an isometry from C M to O, and T(w) the spectral strength (2.25). 

By Wiener's theorem, we further have T2(w)=O*(w)O(w), &here O is an outer func- 

tion belonging to H2(C -) |  (C). Applying the polar decomposition again we obtain 

T(w)=W2(~)O(w), where W2(w) is unitary. 

We claim that  it is possible to choose O in such a way that  

O(-w)  = O(w), (4.13) 

holds. To prove this, let us introduce the conjugation C0: u(w)~--~(-w) in the complex 

Hilbert space L2(R, dw)| M. Since T (w)=T( -w) ,  we can write 

CoW20Co = W20, (4.14) 
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from which we deduce, using the characterization (4.11) of outer functions, the relation 

CoW25oH2(C-)| M = W2H2(C-)| M. 

By a well-known uniqueness result for invariant subspaces (see the last lemma of Lec- 

ture VI in [He]), there exists a unitary R, independent of w, such that 

CoW2Co = WzR. (4.15) 

Inserting this relation in (4.14), we conclude that RO(-w)=O(w). On the other hand, 

multiplying (4.15) on both sides by 50, we obtain W2=50W250/~ which, together with 

(4.15), gives/~=R*. Now it is easy to verify that the outer function R-1/20(w) ht~s the 

property (4.13). 

Defining W(~)--WI(w)W2(w), we obtain the desired factorization. It remains only 

to show that W: [2 (R, dw; C M) --*?-/a is surjective. To this end, we introduce the conju- 

gation 5: f(w)~--~Cf(-w) in the complex Hilbert space 7-/u c =L  2 (R, dw)GO, and remark 

that (2.24) translates into CA=ASo. Since (4.13) gives 5 0 0 5 o = 0 ,  we conclude that 

CW=WSo. Clearly 7-ta is nothing but the subspace of real elements of 

7-{C=~ V e-iwtACM, 
t c R  

with respect to C. By our factorization we have 

and therefore 

~ C = w  V e-i~tO(~)cM=WL2(R, dw)| cM, 
t c lrt 

T/R = (1+C)7-/c = ( I+C)WL2(R,  dw)| M 

= W(I+5o)L2(R,  dw)| M = W]9(R,  dw; cM), 

as required. [] 

A characteristic property of outer functions which will be useful later is 

LEMMA 4.3. The function OEH2(C-)| is outer if and only if, for any 
FCH2(C )| the condition 

f j  llO-~(~)F(~o)ll 2 < oc dw 
o o  

implies O-*F6H2(C- )| 
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For a proof of Lemma 4.3, see for example [Ni, w From now on we shall consider 

only the reduced system in the representation induced by W. Equivalently, we set 

7-tB = L2(R, dw; cM) ,  

L~ = iw, 

~(~) = 0~*(~). 

The only point requiring some special care is the form of the time-reversal operator JB 

in this new representation. A simple calculation using equations (2.7) and (2.29) leads 

to 

(JBf) (w) = O(w) J.a O ( - w ) - i  f (_w) .  (4.16) 

The next result is a sharpening of the observation following (4.5). 

LEMMA 4.4. Let us denote by PI the orthogonal projection on TQ, and by EI = 

I|  the associated conditional expectation. Then the relation 

LI-tE[o,~[ Lt t = E[-t,~[ (4.17) 

holds for any t>/O. 

Proof. Using (4.6), 

relation 

one easily sees that (4.17) is equivalent to the commutation 

IV(0, t), E[o,~[] = 0, (4.18) 

for t~>0, where ~;(s, t)=Li~Lit-sLi~ t. This family of unitary operators satisfies )~(t, t )=I,  

)?(s, t))2(t, u)=];(s, u) and, by definition, (V(s, t)F)(~, r  X), with 

= e L " s r  

x ( f ) = ~ ( f ) +  A d eL'~r dT. 

It follows from the previous discussion that  if F depends only on ~ and r  with fET-li, 

then ]?(s, t )F depends only on ~ and g)(f) with fcT-liut(s,t). We can reformulate this 

statement as 

(1 - E ~ u i ( ~ , t ) ) V ( s ,  t) E~  = 0. 

Setting I =  [0, eel in the last identity and combining it with its adjoint leads to (4.18). [] 

We are now ready to prove the main result in the first part of our argument. 
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PROPOSITION 4.5. If ~singC~ ~ i8 the spectral subspace associated to the singular 

spectrum of the Liouvillean s then 

where 

~sing C L2 ( T ' A 4 ,  d#~A) | (4.19) 

?to - ?t[o,~[ • J~t [o ,~[ .  (4.20) 

Proof. We set ~z-=Ran(Ei).  Using the definition of E1 (in Lemma 4.4) and the fact 

that F(7-/)MF(7-/')=F(T/MT/'), we get 

L 2 ( T ' M ,  d#~A) | r (?-/o) = ~]_~,0] M ~[o,~ [. 

Since ~ '~s ing=~s ing ,  Relation (4.7) reduces the claim t o  ~singC~[o,oo[.  We shall prove 
• this by constructing an s subspace containing ~[o,~[, on which s has purely 

absolutely continuous spectrum. 

Let ~ + ~  denote the maximal s subspace of ~[o,~[: 

~ + ~  ~ i~ Ut~[o,~[ �9 
tER 

By (4.9), the subspace 

~[o,~[ ~= ~[o,~[O~+~ 

is simply s i.e., 

t ~  H ~[o,~[ c ~[o,~[ for t/> 0, (4.21) 

but has no non-trivial s subspace 

t -  = (4.22) u ~to,~t {o}.  
tGR 

Moreover, applying Lemma 4.4, we get 

V t -  • (4.23) H ~[o,~[ = ~+~.  
t c R  

Equations (4.21)-(4.23) show that ~[o,~[ is an outgoing subspace for the unitary group 

and the Lax-Phillips theorem allows us to conclude that its generator 
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has absolutely continuous spectrum, as announced. [] 

We finish the first part of our argument by deriving an explicit representation of 

the space 7-/0. Let f E ~ 0  be given, and set r - O - i f .  Then by (4.20) and Lemma 4.2, 

we have fETl[o,o~[cH2(C ) |  M. Since O(w) is an outer function, its determinant is 

outer and thus cannot vanish in C-  (see [He, Theorem 5 and Chapter 11]). Therefore, 

O(w) has an analytic inverse there, and 

r(w) e O(w) 1H2(C-)ecM (4.24) 

is analytic in C- .  Using again (4.20) and the explicit form of JB given in (4.16), we 

further obtain 

r(-w) C JAO(w) 1H2(C- ) |  (4.25) 

from which we conclude that r is also analytic in the upper half-plane C +. The following 

result shows that  r can be continued across the real axis as a meromorphic function. 

LEMMA 4.6. Assume that hypothesis (H4) holds. If fcT-lo, then the function 

r - O - i f  is meromorphic. Its poles belong to the singular set ~. Moreover, the order 

of a pole Wo of r does not exceed the order of the pole of the corresponding regular- 

izer Go. 

Proof. The proof is a simple adaptation of the argument of w in [LM]. Fix a point 

w0cR. If ~0E~, then let Go be a regularizer of T at w0. In the other case, set Go=-I. 

We claim that  q-Goar is continuous across the real line near w0. Postponing the proof 

of this claim, let us complete the argument leading to Lemma 4.6. Since the rational 

function Go 1 has all its poles in the open upper half-plane (Definition 2.5 (ii)), it follows 

that  q is analytic in a complex neighborhood U of w0. If w 0 ~ ,  the same is true for r. In 

the other case, by condition (i) of Definition 2.5, the only possible singularity of r=Goq 

in U is a pole at w0. Since w0cR was arbitrary, the proof of Lemma 4.6 is complete. 

We now turn to the proof of our claim. By condition (iii) of Definition 2.5, we have 

II (TGo) -1 ]I-1 < [ITG ~ IIe L2(R, dw), 

whereas condition (v) implies 

f~  ~~176  > -cr  
ll(TGo)-~]l - '  dw 

oc 1+ w2 

Therefore, by Szeg6's theorem (the scalar version of Wiener's factorization theorem), 

there exists an outer function hEH2(C -) such that  

Ih(w) I" II (TGo)-I  (w) II = Ih(w)l" Il Go l (w) o - l  (w)1] = 1 (4.26) 
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holds almost everywhere. By construction, g - h q = h G o l O - l f  is square integrable and 

Ilgll ~< ]Jill. Let us show that  gEH2(C ) |  M. Let us assume first that  I e H ~ ( C  )| M. 

Then h f c H 2 ( C - ) |  M and g=(OGo) - lh f  is square integrable. Since the rational 

function det(G0) has no zeros or poles in the lower half-plane (conditions (i), (ii) of 

Definition 2.5), it is outer. Thus Go, and hence OGo, are outer, and Lemma 4.3 shows 

that,  indeed, gEH2(C- ) |  M. A density argument extends this result to arbitrary 

f 6 H 2 ( C - ) |  M. 

To summarize, we have established that  

g 
q = ~ ,  

where geH2(C ) |  M and h e H 2 ( C - ) .  Moreover, h is outer and, by (4.26) and condi- 

tion (iv) of Definition 2.5, ]hi 2 is locally integrable near w0. We complete the proof of 

our claim by invoking the argument of [LM] mentioned above. [] 

We are now ready to write down the promised representation of 7-/0. 

PROPOSITION 4.7. Assume that hypothesis (H4) holds. Then 

Tlo = {Or E 7-lt3 : r is a real rational function of iw}. 

In particular, it follows from Lemma 4.6 that this space is finite-dimensional. 

Proof. The idea is simple: We prove that  r is polynomially bounded in a complex 

neighborhood of infinity, and invoke Liouville's theorem. 

For wEFt, let #(w) be the order of the pole of the regularizer at w. By Lemma 4.6, 

we can find a polynomial p, of order # ~ - ~ c ~  #(w), such that  

p r - p O  i f  

is entire for any fcT-/0. We first claim that  

q+ (w) -- (l +iw)- ' -~p(•  e H 2 ( C - ) |  M. (4.27) 

Indeed, q+ is analytic near the real axis and both ( l+iw)- 'O(+w) -1 and ( l+iw)-gr(•  

are uniformly bounded in a real neighborhood of infinity by hypothesis (H4). It follows 

that  q• is square integrable. Using (4.24), (4.25) and the fact that  ( l+iw)- ' - 'p(+:w)E 

H ~ ( C  ), we can write 

q+ = O - l h  +, 

J A q - = O - l h  , 
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with h • @H2(C-) |  M. Since O is outer, the claim now follows from Lemma 4.3. 

Next we show that  

q• 6 H 2 ({Im(0;) < �89 }) | M. (4.28) 

It follows from Lemma 4.6 that  these functions are analytic in the half-plane {Im(~)< 1}, 

and from the previous paragraph that they belong to the Hardy space of the lower half- 

plane. Thus it suffices to show that  they also belong to the Hardy space of the strip 
1 {0<Ira(o;) < 5 }. In this strip, a simple calculation shows that  

Since 

q•  "+~ 
\ 1 + i 0 ; ]  qT(_0;). 

( 1 - i w ~ ' + U c H ~ 1 7 6  �89 
l + i w ]  

the claim follows from (4.27). 

Finally it follows from (4.27) and (4.28) that 

p(+w)r(:k0;) = (1+i0;) , (0; - 1  

with g• E H2(C -) |  M. Thus the Cauchy integral representation 

1/5 p(+0;)r(4-0;) = (1+i0;) "+" d0;' 9+(0;') 
�9 1 " 

oo 0 ; _ 0 ; I  ~ ~ 

holds for w6 C - ,  and Cauchy's inequality yields 

Ir(+0;)p(• cIIg• I1"11+i0;I 

We conclude that  pr is a polynomial of degree less than or equal to p+# ,  as required. [] 

Remark. It is only in the proof of Proposition 4.7 that  we really need the full strength 

of the bound (2.26) in hypothesis (H4): The finite-entropy condition (4.12) and local 

integrability of lIT(O;) -1 II are sufficient for the other steps in our argument�9 

Notation. Let us denote the degree of a polynomial p by deg(p). We define the degree 

of a rational function r to be deg( r ) -deg(p) -deg(q) ,  where p and q are two polynomials 

such that r=p/q.  Since I r(w)l~_]0;I deg(T) at infinity, this definition is independent of the 

representation of r. The usual rules apply, e.g., deg(rl+r2)<<.max(deg(rl), deg(r2)) and 

deg(rl r2) = deg (rl) + deg(r2). 

Proposition 4.7 concludes the first part of the proof of Theorem 2.6: We have shown 

that  the singular spectrum of the Liouvillean s is entirely localized within the subspace 

L2(T*A4, d#~) |  where ?/0 is a finite-dimensional space. 
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4.2 .  E l i m i n a t i o n  o f  t h e  r e s e r v o i r  

In the second part of the proof, we show that  an invariant subspace of Lit lyi /g in 

L2(T*A/I, dp~)| must be entirely contained in L2(T*A/[, d#~A). The basic idea is 

that  the dynamics of the free reservoir, which has no non-trivial invariant subspace in 

F(~0),  completely dominates the evolution over very short time periods. 

We proceed by induction over the degree of the rational functions associated to the 

elements of 7-/0- To formulate our induction step we introduce the subspaces 

9~1 -- {Or E 7-/0 : deg(r) ~< l}. 

Clearly these subspaces form an increasing sequence 

{0} . . . . .  iR_~_I C9~_~ c ... c 9 ~ ,  . . . . .  ~ 0 .  (,1.29) 

Here is the main result of this subsection: 

PROPOSITION 4.8. I f  a subspace of L2(T*J~4,d#~A)QF(9~z) is invariant under the 

group Li t, then it is contained in L2(T*AJ, dp~)| 
To prove it, we shall need the following algebraic "synthesis" lemma. 

LEMMA 4.9. For any f cGt--iRtQg~l_l, there exists gEg~AD(iw)  such that 

f = rz iwg, (,1.30) 

where rz denotes the orthogonal projection on 9~1. 

Proof. We can rewrite (4.30) for the unknown function g as 

( iw-1)g= f - ( 1 - r l ) h ,  

rig = O. 

Thus a solution can be written as 

g = ( i w - 1 ) - l ( f - ( 1 - r ~ ) h ) ,  

provided h can be found such that  

r~( iw-1)- l (1-rz)h  =rl( iw-1)-~ f. 

We show that  this is indeed possible by proving 

rz(iw- 1) -1 f  E Ran(rl ( iw-1)- l (1-rz))  = Ker((1--rl)(iw§ l)-lrz) • 

Let ueKer((1-rz)( iw+l)- lr t ) .  Then v--(iw+l)-lrlur and iwv=rlu--veg~l. Thus 

vE ff~Z_lI| and 

(u, r, ( i T -  1)-1f)  -- - ( v ,  f )  = 0, 

as required. [] 

The next result provides the necessary control over the small-time dynamics. 
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LEMMA 4.10. Let q be an orthogonal projection in 7-l~ and G=-X(~)e ir with 
x E C ~ ( T * . M )  and fET-lB. Then, if (1-q)fED(iw), the function t~F(q)Ut(1-r(q))G 
is differentiable at t--0.  Its derivative is given by 

- dr(q)/A t ( 1 -  r (q))  G t=o = e-II(1-q)SII2/2Zx(i~(h ) +/3-1 (q f, h)) e i*(qS) 

_~_i/~/3-1{~, (Ct, (1--q)f)} (4.31) 

+iAx{H A + )up(qc~)+iA/3 -1 (c~, q f ) ,  (oq (1-q)f)}, 

for any t E R. By duality, 

where 

( r ( r l )  b/t (1 - F(rt)) G, O) = 0 (4.32) 

holds for any GE;~ ~ and in particular for G=X(~)e ~o(S), with x E C ~ ( T * M )  and f67-/B. 

We shall be more specific in the choice of f .  Fix hE| with IlhH=l. Then by Lemma 4.9 

there exists foEgl{AD(iw) such that  h=rtiwfo. We set f=k| with kEffll and 

0ER.  In the first part of our argument, f0 is fixed and 0, k are variables. We may 

invoke Lemma 4.10 with q=rl to derive (4.32) with respect to t at t=0.  Formula (4.31) 

generates several terms which we rearrange according to their dependence in 0 and k. 

This leads to the equation 

e -~176 f ( / 3 r  k))e-~*(k)F(r d/zZu (~p) = a+(b, k), (4.33) 
J 

and aEC,  bEg~l are independent of 0 and k. Letting 0---~oc in (4.33) leads to a = 0  and 

b=0. Therefore, (4.33) turns into 

((i•(h) +/3 -1 (h, k)) 5 ,  O) = 0, (4.34) 

where G_=xe i~(k). Next we use the fact that,  for an orthogonal projection q, one has 

dF(q) e ir = (i~p(qf)+/3 -1 Ilqfll2)e i*(S) . (4.35) 

where h-qiw(1-q) f .  

We postpone the proof of Lemma 4.10 to the end of this section. Formally, this 

proof reduces to a simple computation using the equations of motion (3.10), (3.11). 

The technical difficulty is to show that  F(q)btt(1-F(q))G is differentiable in ~ even if 

(1-F(q) )GqLD(s 

Proof of Proposition 4.8. Let �9 be an element of the invariant subspace. By hypo- 

thesis we have 

( 1 - V ( r z ) ) u t o  =0 ,  
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Multiplying (4.34) with (k, h), we immediately obtain 

(dP(p~)G, ~) = 0, (4.36) 

where Ph denotes the orthogonal projection on the subspace spanned by h. 

Since dF(ph) is self-adjoint on the space L2(T*A/I, d#~A)| and since the set 

of 0 for which (4.36) holds is a core of dF(ph) (see [RS2, Theorem X.49]), we conclude 

that  

d r ( p p , ,  =0 .  

By Lemma 4.9, this holds for any h E G l = ~ l Q ~ l _ l  . Therefore, if {hA} denotes an 

orthonormal basis of | we obtain 

dV(sz)~ = ~"  dV(p~)~, = 0, 
/t 

where st is the orthogonal projection on Gz. Applying (4.3) to the projection sz yields 

Ker(dr(st))=Ran(P(r, 1)), which leads to the conclusion 

( I - F ( r  1 1 ) ) 1 I / - - 0 .  

The proof is complete. [] 

As an immediate consequence of Proposition 4.8 we obtain the announced result: 

COROLLARY 4.11. The spectral subspace associated to the singular spectrum of the 

Liouvillean s satisfies 

asing c L2(T*M, d ~ ) .  

We conclude this section with the proof of our main dynamical estimate. 

Proof of Lemma 4.10. We start by deriving an expansion of Utxe it(f) for small t. 

I f xEC~(T*M)  then, by Theorem 2.1, lgtx(~, ~b) is differentiable for any fixed (~, ~b)(:G s 

( l < s < s c -  1). Equation (3.11) further yields 

d ggtX({, ~b) = l/lt{X, HA+k~b(a)}({, ~b), 
dt 

which clearly belongs to ;~ .  The same argument as in the proof of Proposition 3.5 (see 

(3.13)) yields that  xED(/ : ) .  Therefore, the formula 

U*x -- x + {x, HA + ;W,(~) } t + o(t) (r 

holds in ~ .  
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Next we turn to the field ~bt. Integration by parts in (3.10) leads to 

~t(f)  = ~(e-~tf)+),(c~(~t)-c~(~), f)+.~ (Ft_,(~,)-Ft_~-(~)) d~-, (4.38) 

where the function F is given by 

Ft(~) - a ( i ~ ( ~ ) ,  e - ~ t I ) .  

Let us denote by At the last term on the right-hand side of (4.38). We claim that  

I IAt l l=o( t ) .  Since 

At f0: --[- = (Lt '-t - I ) F ( : _ . ) t  dr, 

we immediately get the estimate 

fo e fo e IIAtll <~ I I ( U ' t - I ) F o l l  dT+ [[(blrt-I)(F(l_r)t-Fo)[[ dT. (4.39) 
t 

By Lebesgue's dominated convergence theorem, the first term on the right-hand side of 

inequality (4.39) vanishes as t ~ 0 .  To handle the second term, we use estimate (2.9) to 

get 

If(1-~-)t-Fol <~ cIIc~(~)ll2t. 

Finally, hypothesis (H3) and the fact that  HA is integrable lead to 

II ( u ' t  - i)(F(:_~-)t - Fo)II -- O(t), 

which concludes the proof of our claim. 

We are now ready to combine our two estimates. It follows from (4.38) and the 

above claim that  

Lltx eir = e-i)~(c~'f) (xe i)~(a'f)) (~t) eir ~ty) q- o(t). 

Since xei~(~, I )cC~(T*A4) ,  (4.37) further gives 

b/txe ir = ( x + t { x ,  HA+Xr f ) ,  HA+Ar ir162 + o(t). (4.40) 

Using the fact that,  for an orthogonal projection q, one has 

F(q) eir =e-II(1 q)fll2/2Zeir 
(4.41) 

r ( q )  e ~ ( I )  r  = e-li ( l -q ) f  II ~/2~ ( r  _ ir ((1 - q) g, f ) )  e ~ (q l )  , 
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we obtain from (4.40) 

F( q)Ut x e i*(/) = e-  J](1-q) /r]~/2Z (x + t {x, H A + )~r -iA/~-I ((1 -q)c~, f)} 

+iAtx{(a ,  f ) ,  HA +A~(qa) -iA/3 -1 ( (1-q)a ,  f )})e  i~(qe-~tf) + o',t). 

From this formula and (4.41) we get, after some tedious algebra, 

V(q) U t ( I -F(q) )Xe  ir 

= e-(ll/ll '-llq~-'~'q/)J~)/2~[(X+o(1))(N-1)-iAt(/3-1{X, ( (1-q)a ,  f)} (4.42) 

+ x{HA + Ar f ) ,  ((1-q)c~, f )})N] +o(t),  

where we have set 

N - -  e ir q)f)e Ifqe ~t(1-q)fl l2/2Be (qe- i~tqf 'qe-~t(1-q) f ) ) / f l .  

Since ( 1 - q ) f E n ( i w ) ,  we have 

qe-i~t(1 - q) f = - t h  + o (t), 

where h = q i w ( 1 - q ) f .  Therefore, 

e ir i~t(1-q)f) = 1 - i t r  

holds in ;~Z. From this we conclude that 

N = 1 - i t r  f )+o( t ) .  

Inserting the last estimate in (4.42) leads to the desired result. [] 

4.3.  K i n e m a t i c  r e d u c t i o n  

In the third and last part of the proof, we show that the only invariant subspace of It t in 

L2(T*~d, d#~) consists of the constant functions. We start by repeating the argument 

leading to (4.36), this time using q=O in Lemma 4.10. For A~0, this yields the formula 

({X, (~, f)}-/3x{H.4, (~, f)}, q)  = 0, (4.43) 

valid for any @ in the invariant subspace, xEC~(T*fl4)  and fET-/B. To clarify the 

meaning of (4.43) we associate, to each Fc~O, the operator 

nF: X ~-+ eZH~ {e--ZHAx, F}  = {X, F}  --/~X{HA, F}.  
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A simple calculation shows that  

so that  (4.43) becomes 

(LFX, 0~) = (X, {F, qJ}), 

{F, ~} = 0, (4.44) 

in distributional sense, with F=(c~, f ) .  By a well-known result ([HS, Theorem 8.3.1]), 

the wave front set of �9 satisfies 

WF(~)  C {(~, ~?) E T* (T*,t~4)\{0} : ~'ZF(~) =0}.  (4.45) 

Since LF maps C ~  into itself, and [LF, LG] =L{F,G}, we conclude that  (4.44), and hence 

(4.45), hold for any FCP~. On the other hand, since we are dealing with an invariant 

subspace, we can replace ~ by b/tk~ to obtain 

0 = (LFX, utq2) = (LI-tLFX, k~) = (LFX-t{LFX, HA+~((~)}-}-o(t), ~) 

= --t(LH~LFx, ~)+o(t), 

from which we conclude 

(L{F, HA}X, k~) -~ ( L F L H ~ X ,  ~ )  - ( L H ~ L F X ,  IW) = O. 

Iterating the last argument, we finally extend (4.45) to arbitrary F in the full-rank algebra 

of hypothesis (H6). It immediately follows that  WF(q~)=O, and therefore q~EC~(T*A4). 

Going back to (4.44) we have, for each ~ffT*A/t, 

d~P(~).ZF(~) = {q2, F}(~) = 0. 

Hypothesis (H6) yields now that  dq2=O, and hence, since A// is connected, �9 must be 

constant. The proof of Theorem 2.6 is complete. 
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