
Acta Math.,  181 (1998), 283 305 
@ 1998 by Inst i tut  Mittag-Lemer. All rights reserved 

Lax equations, weight lattices, 
and Prym-Tjurin varieties 

ANDREW MCDANIEL 

Georgetown University 
Washington, DC, U.S.A. 

b y  

and LAWRENCE SMOLINSKY 

Louisiana State University 
Baton Rouge, LA, U.S.A. 

In troduct ion  

The importance of juxtaposing the two approaches to integrable s y s t e m s - - b y  Lie algebras 

and by algebraic curves - -was  laid out by Adler and van Moerbeke [AM1], [AM2]. This 

paper  illuminates the interplay of these two ingredients. First, the line bundles on the 

algebraic curves that  give the evolution of the system are shown to be pullbacks of the 

line bundles of the Borel-Weil theory. Secondly, the Weyl group action on the Jacobian 

of the master  spectral curve (see [MS1], [MS2]) picks out a sub-abelian variety. We show 

that  the flow of the system takes place in this sub-abelian variety. In the periodic Toda 

lattice, for example, this result applies to F4 and the E-family as well as the bet ter  

understood A, B, C, D, and G2. This paper  is the conclusion of the series [MS1], [MS2]. 

Here is the setting. Start with a Lax equation, dA/dt= [A, B]. The functions A(s, t) 

and B(s, t) depend on the t ime t and on a parameter  s whose domain is an algebraic 

curve P.  The values of A and B lie in a finite-dimensional Lie algebra and [A, B] is their 

Lie algebra bracket. Part  of the message of [AM1] and [AM2] is that  many  integrable 

systems can be writ ten in the form of a Lie algebra-valued Lax equation with a parameter .  

As is discussed below, we can construct a flow on the Jacobian of the spectral curve which 

is the normalization of the curve defined by det o(A(s)) - z = 0 .  This matr ix  spectral curve 

may have several components. Our main theorem considers the flow on the spectral curve 

associated with the smallest representation as given by the recipe of van Moerbeke and 

Mumford [MM]. 

MAIN THEOREM. Let 9 be a simple Lie algebra and P a compact Riemann surface. 

Suppose that the pair A, B: P x R - - ~  satisfies dA/dt= [A, B] and that 

(1) A, B have entries of the form E ci(t)mi(s), a finite sum, where ci(t) is C 2 and 
mi(s) is meromorphic, 
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(2) A(s,O) is regular for some sEP, and 

(3) the flow in the Jacobian of a spectral curve associated with the smallest repre- 

sentation is absolutely continuous. 

If 9 is of type A, B, C, D, E6, or ET, then the flow is in the Prym-Tjurin variety 

Tur ~ Y.  

If P is the Riemann sphere, then the flow is in the Prym Tjurin variety Tur ~ Y.  

The condition on the entries is that  they keep the same form as they evolve. The 

Lax equation need not be completely integrable, although completely integrable systems 

provide the motivation for this work. Also the flows on the Jacobian need not he linear, 

although the raison d'@tre for transforming the flow A(t) to a flow on the Jacobian of 

a spectral curve is that  for many integrable systems the flow does linearize there. The 

P rym Tjurin varieties of the theorem were introduced by Kanev [K] and a detailed 

analysis is given in [MS2]. 

For a Lax equation and for each finite-dimensional representation Q of the underlying 

Lie algebra 9, the characteristic polynomial d e t ( Q ( A ) - z I )  is independent of time. The 

characteristic polynomials define a collection of spectral curves which is analyzed in 

[MS1]. Here the te rm spectral curve is used for a connected component  of a spectral  

curve defined by a characteristic polynomial. There is a master  spectral curve Y on 

which the Weyl group W acts and the other curves are all abstract ly Y/S~ for some 

weight A where S~ is the subgroup of W tha t  stabilizes A. More detail is found in w 

which provides the notation and background for this paper. 

The motion of the system is given by the eigenvectors of o(A) which form a line 

bundle on the appropriate  spectral curve and, by pulling back, a line bundle on the 

master  spectral  curve. w examines the line bundles that  give the flow of the system. 

A flow in the space of line bundles on the master  curve is produced for each weight. These 

flows are shown to be pullbacks via a t ime-varying map of the bundles over projective 

homogeneous spaces that  occur in the Borel-Weil theory. This ties the flows on the 

algebraic curves to the Lie theory. 

Adler and van Moerbeke also observed that  the symmetries of the algebra are re- 

flected in symmetries of the algebraic curves. They observed that  for some systems of 

type B, C, or D the flow took place in a P rym and that  the G2-periodic Toda flow 

was in a subtorus of a Prym.  In [MS3] this subtorus was identified as a Prym-Tjur in .  

The symmetries of the Lie algebra show up most plainly in the tangent space at the 

trivial line bundle in the Jacobi variety of the master  spectral  curve. This is the home 

of the derivatives of the flows corresponding to the various representations of the al- 

gebra. We consider the flows from the component  of the spectral curve of the various 

finite-dimensional representations tha t  arise from the highest weight. The tangent space 
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is a complex Weyl group representation and a major result in this paper is that  the 

derivatives at time t = 0  of these flows form a copy of the weight lattice as an integral 

W-representation. It is by considering all the flows at once that  it is seen that  any given 

flow is in a Prym Tjurin. This result is contained in w The Prym-Tjur in  varieties 

under consideration were analyzed in terms of W in [MS2]. w contains a summary. 

The second author wishes to thank Mark Adler and Pierre van Moerbeke for being 

hosts to him at Brandeis University during a sabbatical semester. Both authors thank 

Mark Adler for suggested revisions of this paper. 

1. N o t a t i o n  a n d  b a c k g r o u n d  

We let G denote a simply-connected complex semi-simple Lie group with Lie algebra 1~. 

H is a Cartan subgroup (a maximal torus as G is semi-simple) with Lie algebra 0. 

W denotes the Weyl group, W=-NH/CH, the normalizer of H modulo the centralizer 

of H. Since G is semi-simple, CH = H .  A choice of Weyl chamber determines a basis 

of simple roots A and a (pair of) Borel subgroup(s), B + (and B - ) .  The real span 

of A = { a l , . . . , a r }  is a Euclidean subspace of the dual vector space ~* of the Cartan 

subalgebra 0 with inner product ( . ,  �9 ) given by the dual of the Killing form. The weight 

lattice is {ACO* 12(,~, a)/(a, a) c Z  VaCA}. The Weyl group W acts on the weight lattice 

by the coadjoint action (nH'A)(X)=),(Adn-1 X) for XEI?. The stabilizer in W of a 

weight A will be denoted S~. 

Let g, denote the regular elements in the algebra g. Let 7r: G/H x 0, ~ g ,  be given by 

zc(gH, h) =Ad~ h. This map is a regular cover with group of covering translations W. The 

action is given by (nH).(gH, h)=(gn-lg, Adn h) for nENH. Let A be a morphism from 

an irreducible algebraic curve P to a Lie algebra g with im(A)n g, r ~. Then A - l ( g , )  is 

a Zariski-open set in P (i.e. a P-finite set) denoted P, .  We call P the parameter space 

as it is the domain for the spectral parameter  occurring in the Lax equation. 

If • is a representation then the curve {(s, z)CP x C I det(QA(s ) - z )  =0} is in general 

reducible and decomposes via the dominant weights. These pieces are independent of 

the representation in that  they depend only on the weights. If m~ is the multiplicity of 

the weight ,X in 0 then 

d e t ( 0 A ( s ) - z )  = II(P~(S, z)) m~ 

where A runs through the dominant weights (see [MS1]). 

Let Ya denote the normalization of the variety defined by p:~(s, z)=0.  This is the 

notion of spectral curve used by V. Kanev [K]. These curves themselves may decompose. 
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In [MS1] the irreducible components were referred to as the spectral curves and a complete 

classification was given. Let Yx. be the inverse image of P. in Ya. 

Let Y. be the pullback of 

G / H x b .  

P. , g ,  

and so Y. is a principal W-bundle. Let Y be the completion of ]I.. From Theorem 13 

in [MS1] and its proof, we have: 

PROPOSITION 1. If A is a weight then Y:~. ~- Y./S~. Moreover, Y:~. is the pullback of 

P. 

(G/H x O.)/Sx 

We use Ya and Y/S~ interchangeably. Note that if Sa and Sv are conjugate sub- 

groups of W then Ya ~ Yv as quotients of W-bundles and as varieties. 

Call Y the master curve. We introduce some notation associated with Y and Ya. Let 

the composite Y. --*G/H x I1, --*~. be h. Given a weight A, the composite Aoh: Y. - , C  will 

be denoted ya. This map is meromorphic on Y and descends to ya: Yx--*C. The action 

of W on the curve Y induces an action on the meromophic functions via (w.f)(y)= 
f(w 1.y). If wEW and f~ is a 1-form then let w.ft=w-l*ft. In this way W acts on 

H 1 (Y; (.9). 

PROPOSITION 2. I f  w E W  then w.y~=yw.;~. 

Proof. If y E Y then 

(w.y~)(y)=yx(w l(y))=Aohow-l(y)=Aow-loh(y)=(w.)O(h(y))=yw.a(y). [] 

Let J a c X  be the Jacobian of a curve X. If X is irreducible, J a c X  denotes Pic~ 

the space of holomorphic line bundles with Chern class zero. An element of P ic~  

is determined by the divisor of a meromorphic section. We also view the Jacobian as 

Cg/L via the Abel Jacobi map from the divisors of degree zero. Let wl,...,wg be a 

basis for the space of holomorphic differentials and a~=(wl,...,wg). Let cl,...,c2g be 

cycles that represent generators for the homology group Hi(X,  Z). The integrals fc~ a~ = 

( L i  COl '""  fci COg) generate L. If :D is a divisor, then the Abel Jacobi map sends it to f v  a3. 
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If G is a group that  acts on X,  then G acts on the holomorphic differentials, Jac X,  

and T~ Jac X.  The action is given by 

(/~ /~ (F ~ f ~  W "  091, . . . ,  02g z 021, . . . ,  a Jg  ---- . . . ,  . 

A Prym-T ju r in  variety is an abelian variety that  arises from a self-correspondence on 

a curve that  satisfies a quadratic polynomial. A P rym variety is a special case that  comes 

from a double cover and satisfies x2=  1. In [K], P rym-T ju r in  varieties were identified in 

the Jacobians of some spectral  curves. This was generalized and expressed in terms of 

group theory in [MS2]. In particular, if A is a weight then there is a P rym Tjurin Turx YC 

JacY.  These respect the action of the Weyl group, w.TurxY=Tur~.xY. There is a 

correspondence P;~=~ew(A, w 1A)w such tha t  P~: JacY--~Tur~ Y. Now, PxEZ[W]. 

If M is a C[W]-module, then P),:M---+M. If M is not 0* |  then the map is zero. If 

M is O*| then Px is a multiple of the projection onto the l-dimensional subspace 

containing the weight A. The subspace T~ Turx YCT~ J a c Y  is the image of Px, and so 

consists of one dimension for each occurrence of I)*| in T~ Jac Y. It  is 

Te Tur~ Y = 1~ CA C (~  [J*| C Te JacY. 

2. Weight bundles and highest-weight flows 

The motion of the Lax equation dA/dt = [A, B] is given by the changing eigenvectors of 

matr ix  representations of A. For each t ime and each weight A, associated eigenvectors 

give a line bundle s  on the master  spectral curve Y. Just  as the spectral curves have 

a representation-free description via G/H x ~. and a representation-reliant description 

via determinants,  so too do these t ime-dependent line bundles have two descriptions, one 

via characters and one via eigenvectors. The main theorem of this section states that  the 

eigenvector bundles of the highest-weight representations are pullbacks of weight bundles, 

L ~(G/B~). This is stated in Theorem 12. Several definitions are required for a precise 

statement.  

For a simply-connected reductive Lie group G, an integral weight A determines a 

character A on H by A(h)=e ~(l~ The function h(h)  is well-defined although log is 

multivalued (see IV, pp. 357 358]). Suppose that  K C G is a closed subgroup that  contains 

H and that  A extends to a homomorphism A: K--*C*.  

Definition. L~ or L~ (K) is the complex line bundle on G/K which is the quotient 

of the following left K-act ion  on the trivial bundle G • C: 

]~-(g, z) ---- (g]~-l, A(k ) - l z ) .  

We call these bundles weight bundles. 
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The case K = H  is important  for integrable systems since G / H  is the generic adjoint 

orbit, while K = P ,  a parabolic subgroup of G, has the advantage that  G / P  is a projective 

variety. For each weight A of the simple Lie algebra ~ with chosen Car tan  subalgebra [~, 

let B~ be a positive Borel subgroup relative to a choice of Weyl chamber in which 

is a dominant weight. There is a parabolic subgroup P~ of G given by P~=B~S~B~. 

Even though B~ depends on a choice if A is not regular, P~ is completely well-defined. 

Although the bundle L~ depends on the particular extension of A to K, the following 

lemma shows tha t  the extension is unique if K is a parabolic. These are the bundles 

that  the Borel-Weil theorem handles. The following lemma is well known. 

LEMMA 3. For any weight A, let S~ be its stabilizer in W. Let P be the parabolic 

subgroup P = B S ~ B .  Then the character A:H-- -C*  defined by A(h)=e ~(l~ extends 

uniquely to a character (i.e. a homomorphism to C*) on P. 

Proof. The Levi decomposition P =  U x L expresses P as the semi-direct product  of 

its unipotent radical U and a reductive subgroup L called a Levi factor. There is a 

unique choice of L containing H.  Since U is contained in the commuta tor  subgroup 

[P, P] of P,  any character on P must be trivial on U. On the other hand, since U is the 

normal subgroup in the semi-direct product P=U>4 L, any character on L extends to P 

by letting it be trivial on U. The factor L is a direct sum of simple subgroups and an 

abelian subgroup. Since each simple subgroup is its own commutator ,  any character on 

P must be trivial on the simple summands.  The abelian summand is contained in H on 

which A is already given, so we see that  if A has an extension to P,  it is unique, and that  

A will have an extension if it acts trivially on the intersection of H with any of the simple 

summands  of L. Now the group S~ is a direct sum of reflection groups inside W. Let 

be the set of simple roots {ai ] ri(A)=A} where r iCW is the reflection in the hyperplane 

perpendicular to ai .  The reflections (I) generate S~. Each ai  corresponds to a dot in the 

Dynkin diagram for G. Let I be a subset of (I) corresponding to a connected component  

of the full subdiagram of the Dynkin diagram whose vertices correspond to the elements 

of (I). Then the group W1 generated by the reflections (ri  ] i C I} is the Weyl group of one 

of the simple summands of L, namely the summand whose Lie algebra is generated by the 

root spaces in f~ belonging to the roots { •  Since W~cS~, S~ acts irreducibly 

on the Car tan subalgebra bI of the simple summand $I. For XEOI, from the invariance 

of A under S~ we have 

1 1 
;,(x)- IWll ~ (w.~)(x)- IW/I ~ ),(w.X)= :~(o) =o. 

w E W I  w E W  I 

This shows that  A acts trivially on each HNSI ,  and thus extends to P.  Details support ing 

this description may be found in [H, pp. 183-185]. [] 



L A X  E Q U A T I O N S ,  W E I G H T  L A T T I C E S  1 A N D  P R Y M  T J U R I N  V A R I E T I E S  289 

LEMMA 4. If both L~(K) and L~(K) are defined, then L~+~(K) and L~(K)| 
are isomorphic as holomorphic vector bundles. 

Proof. First note that  e (x+7)0~ h) _e)~(log h)e~,(log h) for hE b. So if A and F are char- 

acters on K which extend to those determined by A and 3' on H,  then A.F extends to K ,  

the character on H determined by A+~,. The proof of the lemma is a check that  the map 

((g, z), (g,w))~-~(g, zw) is a well-defined isomorphism from L~QL~ to i~+~,  where the 

elements in each of the line bundles are given by representatives in G • C. For an al- 

ternative pair of representatives with the same first entry, (gh, A(h)z), (gh, F(h)w) maps 

to (gh, A(h)zF(h)w)=(gh, A.F(h)zw), which equals (g, zw) in ix+~.  The map is clearly 

one-to-one and onto. [] 

PROPOSITION 5. The line bundles La(K) are all distinct topologically as bundles 
over the base G / K. 

Proof. If r]: G/H-~G/B, then rfl: H2(G/B)-~H2(G/H) is an isomorphism, since 

B/H, the fiber of rh is contractible. Now, H2(G/B)=A, the weight lattice, and 

cl(Lx(B))=A. Therefore, cl(La(H))=cl(u*(L~(B)))=U*(cl(La(B))) are distinct for 

all A. [] 

PROPOSITION 6. The action of the Weyl group W on G/H induces an action on 
the set of line bundles L~(H). This action is w.L~=Lw.~. 

Proof. For each nENH we define a bundle map fn: L~(H)--~LnH.~(H) covering the 

action of nH on G/H. The fn give the action of W on the L~(H). 
Let fn(g, z)=(gn -1, z) where (g, z )cGx C represents a point in L~(H)=(Gx C)/H 

while (gn-i,z) represents a point in LnH.~. We will show that  this action is well- 

defined. An alternative representative (gh, e ~(l~ goes to (ghn -I ,e ~0~ 

(gn-l(nhn-1), e~(l~ Now, e (~H''~)(l~ =C (n l(l~ "dl~ for any "~EP. 

Hence the alternative representative maps to (gn-~(nhn-1), e(nH'~)(l~ which 

is equivalent to (gn -1, z) in LnH.;~(H). [] 

The weight bundles over G/H form a Z[W]-module. Addition is by tensor product 

and the W-action is induced by the group action described above. 

PROPOSITION 7. The assignment ),~-*L~(H) is a homomorphism of Z[W]-modules. 

Proof. By Lemma 4, L~+~(H)=L~(H)| By Proposit ion 6, w.L~(H)= 
Lw.;~(H). [] 

In defining L~(B) the equivalence relation used is (gb, z )~ (g ,  A- l (b )z )  instead of 

(gb, z),~(g,A(b)z). This choice is consistent with the mechanics developed in [AM1], 
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JAM2] and [G]. However, it is not consistent with most presentations of the Borel 

Well theorem. In our context the theorem states that  if Q is the representation with 

highest weight A then the space of holomorphic sections of L~ (B) is the representation t~. 

A step in the proof of the Borel Well theorem is to realize L:~(B) as the pullback of the 

hyperplane bundle. We require this construction and now describe it. 

View C P  N-1 as the space of complex lines through the origin in C N. The hyper- 

plane bundle over C P  N-1 has for its fiber over a line in C N the linear functionals on 

tha t  line. In the correspondence between line bundles and equivalence classes of divisors, 

the hyperplane bundle is the line bundle whose corresponding divisor class is the set of 

hyperplanes. It  is the only bundle o v e r  C P  N-1 with Chern class 1 and we denote it 

(-OcpN-1 (1). The dual of the hyperplane bundle is the canonical line bundle over C P  g-1 

whose fiber over a line in C N is tha t  line itself. The canonical line bundle is a subbundle 

of the trivial bundle C p N - 1  • C N. Denote it OcpN-1 ( -1 ) .  

If the irreducible representation of G with highest weight A has highest-weight vector 

v~ then P~=B+S:~B + acts on v~ by multiplication by the character A. Denote by 

[. ]: C N - - * C P  N-1 the map sending a point to the line it spans. 

LEMMA 8. Let Q be the irreducible representation of G acting on C N with highest 

weight )~ and highest-weight vector v:~. Then the line bundle L:~(P;~) is isomorphic to the 

pullback of the hyperplane bundle along the map G/P~--~CP N-1 that maps gP:~ to the 

line through ~(g)v:~. This map gives an imbedding of G/P~ into C P  N-1. Furthermore 

the pullback of the canonical line bundle is L_:~(P~). 

Proof. Let t~* be the representation dual to t~ and v*_~ the lowest-weight vector for t~*. 

The map of L~ to the hyperplane bundle given by 

(g, z)  H 

realizes L~ as a pullback of the hyperplane bundle. Here zQ* (g)v*_), means the restriction 

of this linear functional on C g to the line spanned by Q(g)v:~. 

We will check that  the map is well-defined. Any other representative for (g, z) has 

the form (gp, A(p)z). We already know that  Q(gp)v), and ~(g)v~, lie on the same line, since 

for a highest-weight vector O(p)v:~ =A(p)v~. Let kQ(g)v~ be an arbi t rary point on this line 

and ( . , .  } be the pairing of dual spaces. We must check that  (A(p)z0*(gp)v*_:~, kQ(g)vx)= 

(zQ*(g)v*~,ko(g)v~}. On the right, by definition, (Q*(g)v*,v)=(v*,Q(g-1)v), so that  

(z~* (g)v*_~, kQ(g)v~)=zk(v*_~, v:~). On the left-hand side is 

(A(p)zQ* (gp)v*_ ~,, ko(g)v~,} = A(p)zk (v*_ ~,, o( (gp)- l )o(g)v~,} = A(p)zk(v*_ ~,, Q(p-1)v~). 

But the action of p-1 on vx is multiplication by the number A(p) -1 so the two expressions 

for the map to the hyperplane bundle agree. The map gives an imbedding of G/P~ since 
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the stabilizer of [vx] under the action of G on CP N-1 determined by 0 is Px. The map 

of L-x(P)  to the canonical line bundle given by 

realizes L - x  as a pullback of the canonical line bundle. Suppose that  (gp, A(p) - l z )  is an- 

other representation of (g, z). Then its image is ([Q(gp)vx], zA(p)-lQ(gp)vx). Since A is the 

highest weight, 0(p) =A(p)vx.  Hence ([Q(gp)vx], zA(p) - i  o(gp)vx) = ([0(g)vx], zo(g)vx). [] 

The discussion now switches to describing the line bundles by means of representa- 

tions and eigenvectors of matrices representing the element A in the Lax equation. The 

following lemma is well known. 

LEMMA 9. Suppose that R is a smooth Riemann surface and that f: R---+CP N-1 is 

a meromorphic map in each coordinate, i.e. f= ( f0 , - - - ,  fn) in homogeneous coordinates 

with each f~ meromorphic. Then there exists a unique completion of f to f: R--~CP N-1. 

Proof. Suppose that  x ER is an isolated singularity and tha t  f j  has the largest- 

order pole among the fi's. Then in afline coordinates, (fo/fj ,  ..., fn/ f j ) ,  the map clearly 

extends since the singularities are removable. [] 

For a meromorphie map A: P---~I on the parameter  space, denote the induced map  

(see the diagram below) on the spectral curve Yx. as fi~x: Y:~ .~ (G/Hx  O.)/Sx and its 

composite with the projection to G/Px as u),: Yx.---~G/Px. By Lemma 9, ux extends 

uniquely to a map on Yx: 

x,x. > t L, / . ~  X O. ) / b ,X > t ,  /.~,X 

P. ~-g.. 

The function Y~.x is defined on Yx. as introduced in w For each point xCYx. with 

coordinates s and z=y~.x(x) there is a one-dimensional eigenspace of o(A(s)) in C N 

associated to the eigenvalue z, where 0 is the irreducible representation of g acting on 

C N whose highest weight is A and w is an element of the Weyl group. 

Definition. Suppose tha t  Q is an irreducible representation of ~ on C N with highest 

weight ~. The eigenvector mappings, denoted f~.;dY~--*CP N-l ,  are defined by the 

equation Q(A(s))fw.:~(x)=y~.:~(x)f~.x(x) for xCY;~, and f~.~: Y~.--~C N such that  f ~ . x =  
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The span of fw.x(x) is the one-dimensional eigenspace of p(A(s)) with eigenvalue 

yw.~(x). Consequently, f~.~(OcpN-l(+l))  is a bundle of eigenvectors. However, we 

shall follow the custom of other authors and use f~.~(OcpN-I(--1)), pulling back the 

hyperplane bundle instead of its dual, the canonical line bundle. 

L E M M A  10 .  The  m a p s  fw.~ are well-defined. 

Proof. Write z for the eigenvalue yw.~(x) of y(A(s)) and f for the eigenvector 

fw.~. The homogeneous coordinates of f :Y~.--~CP g-1 are minors of the map Y,x.--* 

MatN•  given by x--~Q(A(s))-z. The coordinates s and z on Y~. are meromorphic 

maps to P.  and C respectively, since Y~. is a Zariski-open subset of the zero set of the 

polynomial px(s,z). By assumption the map A:P--*Q(9.) is meromorphic. Hence f is 

meromorphic on Y~., and so extends to a map on Y:~ by Lemma 9. [] 

LEMMA 11. If W.A is a maximal weight for the irreducible representation Q, then 

the map fw.~: Y~--~CP N-1 factors through the map u~.~: Y~--~G/P~.~. 

Proof. It is sufficient to check this with domain Y~,. The weight w-A is in the 

dominant chamber for Pw.~. Let xCY~., s = ~ ( x ) ,  and z=y~.~(x). Write f l(x)=(gH, h) 

modS~,  which is in (G/H• Then A(s)=Adgh and z=w.A(h). Let v~.~ be a 

highest-weight vector of Q. Then Q(h)vw.~=wA(h)v~.~. It  follows tha t  

e(Ad 9 h)p(g)v~.~ = o(g)o(h)Q(9 1)Q(g)Vw.)~ = e(g)Q(h)vw.~ = zo(g)v,~.~. 

Since wA is dominant for P~.~, we have Q(gp)vw.~ =wA(p)Q(g)vw.~ for pEP~.~. Therefore, 

fw~(x)=[u~.~(x)vw.~]. [] 

The following theorem is our main theorem on eigenvector bundles. 

THEOREM 12. Suppose that )~ is a maximal weight for the irreducible representa- 

tion ~. The eigenvector bundle ]~(OcpN-I(--1)) is isomorphic to u*~(L_~(P~)). The 

pullback of the hyperplane bundle along the eigenvector map, f~ ( OcpN- ~ (1)), is isomor- 
phic to the pullback of the weight bundle along u~, u*~(L~(P~)). 

Proof. Take a choice of chamber so that  A is dominant.  The factorization of 

Lemma 11 applies. By Lemma 8, the pullbacks of Ocp~-~  ( - 1 )  and (._9cpN-~(1) under 

G/P~--~CP N-1 are L_~ and L~ respectively. Precomposing this map with u~ yields f~. 

The theorem follows. [] 

Definition. s denotes the bundle f~,((gcpN-~(1)) obtained by pulling back the 

hyperplane bundle along the eigenvector mapping f~:Y~--* C P  N- ~ or any of its pullbacks 

further up the hierarchy of spectral  curves. When it is necessary to be explicit which 

curve is the base of the bundle, denotations such as s or s will serve. 
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PROPOSITION 13. w.s163  

Proof. s  is the pullback of La(Bx) along the top row of the diagram 

Y, ~ ~ G/Bx 

)I, u~.x ~ G/B~.a 

while s (Y) is the pullback of L~.~(B~.~) along the bo t tom row. The map w: G/B~ 
G/Bw.:~ is induced from g~--~gn -x since gb~--,gbn-l=gn-l(nbn -1) and nB~n- l=B~.~.  

We check commutat iv i ty  on Y, and Y follows by continuity. If ~i(x)=(gH, h) for xEY, ,  

then u;~(x)=g modB~.  By the definition of Y,, A(nH.x )=(gn- lH ,  Adn h), so we have 

uw;~(w.x)=gn -1 modB~.~  for w=nH.  [] 

PROPOSITION 14. If  A and 7 are in the same Weyl chamber, then on the master 

curve Y the bundles s and s are isomorphic. 

Proof. For a Borel B all of A, % and A+~ are dominant.  Hence, 

u~ = u~ = u~+~: Y ---* G/B.  

By Lemma 4, L~+~(B)=L;~(B)@L.~(B), and so u*~+.~L~+~(B)=u*~L~(B)@u~L.~(B). 

The proposition follows from Theorem 12 and the definition of Z;~. [] 

The solution to a Lax equation dA/dt= [A, B] with a parameter  is a flow in the space 

of functions At from the parameter  space to 1~. The flow of the equation transforms to 

a flow on Pic Y~ by pulling the hyperplane bundle back along the associated eigenvector 

map  f~ (t). This flow may be translated to Jac Y~ beginning at the trivial bundle. The 

flow is linear when the system is algebraically completely integrable. 

Definition. Let ~:~(t)=E;~(t)|163 1CJaeY.  

~a(t) is defined for any weight A of 0- 

PROPOSITION 15. For any w E T  and any weight A, 

w . ~ ( t )  = ~ .~( t ) .  

Proof. The action on the left-hand side is the Z[W]-action on Jac Y =  Pic ~ Y. In fact, 

Z[W] acts on Pic Y too. Since multiplication by w distributes over addition, 

w.~( t )  =w.s -1. 

By Proposit ion 13 this equals 

s (t) | (s (0))-  1 = {w-X (t). [ ]  
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PROPOSITION 16. If ~ and ~/ are in the same Weyl chamber, then ~ x ( t ) |  

~+~(t)  in J a c Y .  

Proof. This follows from Proposition 14. [] 

If the previous proposition were known to hold for all pairs of weights, then combin- 

ing it with Proposition 15 would say that  the flows ~a (t) form a Z [W]-module isomorphic 

to the weight lattice. When the Z[W]-module of flows is isomorphic to the weight lattice, 

a consequence is that  each flow ~x(t) takes place in the P rym-T ju r in  variety Tura (Y). 

3. T h e  v e l o c i t y  v e c t o r  o f  t h e  f l ow  

The derivative of the Al-flow can be found in coordinates using a version of Theorem 5.3 

in [M, p. 71]. The idea is from lAg2,  pp. 322 323] which in turn utilizes [MM]. 
We introduce some notation followed by a list of technical hypotheses necessary for 

the intermediate results. Let A, B: P - - ' 9 ,  P a compact  Riemann surface. We will often 

refer to them as matrices, i.e. consider them in some finite-dimensional representation. 

Let X be the normalization of an irreducible component  of multiplicity 1 of the curve 

defined by de t (A - z I )=O.  Write 7r: X ~ P  for the projection. Denote by X ~  the set of 

points of X where either z=cx~ or one of entries of A or B has a pole (or both). Let 

JC be a finite set that  contains X ~ U T r - I A - ~ ( g - 9 . ) .  Let f be an eigenvector associated 

with X,  i.e. f is a column vector whose entries are functions on X and which satisfies 

the equation (AoTr)f=zf ,  which below we write A f = z f .  

HYPOTHESES. (1) The entries in A and B are meromorphic in s E P  and C 2 in 

time. 

(2) The set P~  = { s E P l a n  entry in A(s, t) or B(s,  t) is oc} is independent of time. 

(3) d A / d t = [ A , B ] = A B - B A  for t in a neighborhood of t = 0  and for all s E P - P ~ .  

(4) For some value of the parameter s, the matrix A(s, O) is regular. 

(5) The eigenvector f has entries that are C 2 in time on X - 2 ~  and meromorphic 

on X .  

The first four conditions are independent of the particular representation since a 

representation 0:9 --~Aut V is a complex linear map. Note tha t  the set X ~  c X  is inde- 

pendent of t ime under the hypotheses above. If z = c ~  then z = o e  for all t ime as z is a 

constant of the motion for a Lax equation. A -1 ( g - g . )  is independent of t ime since A is 

isospectral and 9. is a union of orbits. If  an entry has a pole then it is invariant under 

t ime by assumption (2). We consider a finite set that  contains X ~  U 7r- 1A- 1 ( 9 -  9.) since 

later we will wish it to be invariant under a group action. Also note tha t  X contains the 

branch points of X - ~ P .  
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THEOREM 17. Let dA/dt=[A,B] be a matrix equation satisfying the hypotheses 
above. Let :D(t) be the divisor (f(t)). If the restriction of ~P(t) to .Y is independent of 
the time t in some neighborhood of t=0 ,  then 

(1) the equation B f  + f = fA  defines a function A(t) :X--~C for t near O, and 
(2) for any holomorphic differential w on X, 

lim _1 f v ( t )w= - ~ Rpes(A(0)~) 
t--~0 t Jr(0) p ~ -  

where Resp denotes taking the residue at P of the differential. 

Before proceeding with the proof some remarks are in order. 

(1) The divisor ( f )  of a scalar-valued function is its zeros minus its poles. By the 

divisor T~=(f)  of a vector-valued function is meant the maximal divisor T~ such tha t  

:D~<(fi) for each of the components f~ of f .  This is because f is really a section of the 

eigenvector bundle and ( f )  is its divisor as a section. 

(2) The present variation of the theorem is limited to eigenspaces of dimension 1, i.e. 

the component  X has multiplicity 1. This restriction is not necessary, merely sufficient 

for the purposes of this paper. Theorem 5.3 of [M] does not have this restriction. 

Proof. Let a dot denote d/dt. Let X a = X - X .  
The equations ~J=-BU, U ( 0 ) = I ,  define an invertible matr ix  U(t) for small t which 

is C 2 on Xa since B is C 2 on X , .  Application of ~t=AB-BA,  ( u - l ) "  =-U-I~yu -1, 
and U = - B U  gives d(U-1AU)/dt=O. Hence A(t)=U(t)A(O)U-I(t). 

We verify tha t  B f + f  is an eigenvector of A(t) with eigenvalue z. Since A f = z f ,  
differentiating and plugging in the Lax equation gives A B f - B A f + A f = z ] .  Since 

B A f = B z f = z B f ,  we have A(Bf+?)=z (B f+] ) .  Thus (B f+])  is a multiple of f and 

so B f + f = A f  defines the function A(t). 

We shall find (define) a function ~?(t) with the property that  (~)a = T ~ ( t ) - 9 ( 0 )  where 

(~7)~ means the divisor of ~ restricted to X~. Since u-l(t)A(t)U(t)=A(0), i.e. A(t)U(t)= 
U(t)A(O), we have A(t)(U(t)f(O))=U(t)A(O)f(O)=U(t)zf(O)=z(U(t)f(O)). Therefore 

U(t)f(O) is a multiple of f(t). Define ~(t) by U(t)f(O)=u(t)f(t). 
This defines u ( t ) :X~-~C,  but since U is not defined off Xa, neither is ~?. Ob- 

serve tha t  U(t)f(O)=f(t)v(t) on X~, and for small t, U(t) is holomorphic and invert- 

ible. Hence the divisor of the section U(t)f(O) is the same as the divisor of the sec- 

tion f (0)  when the two are restricted to X~. Also (f(t)~(t))a=(f(t))a+(U(t))~. Hence 

(f(0))a  = (f(t))~ + (~(t))~ or ( -u ( t ) )~  = ( f( t ))~- (f(0))~ = ( f ( t ) ) -  (f(0))  since by hypoth-  

esis if(t)) and (f(0))  agree on )( .  We show that  ~=Au  on Xa. Differentiate U(t)f(O)= 
u(t)f(t) and plug in ~]=-BU to get -B(t)U(t)f(O)=iI(t)f(t)+~?(t)f(t). Substituting 
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U(t)f(O)=•(t)f(t) into this equation, it rearranges to -~( t ) (B( t ) f ( t )+f( t ) )=iI( t ) f ( t ) .  

Thus -~?(t)h(t)f(t)=il(t)f(t ). So on Xa, the holomorphic functions ~?(t)A(t) and //(t) 

agree. From this differential equation, z/(0)=l since U(O)f(O)=~(O)f(O), and U(0 )=I .  

Therefore r =A(O). 

We claim that  ~(t)=l+A(O)t+O(t2). This is the Taylor expansion for z/. It is 

sufficient that  ~? have a continuous second derivative. The differentiability of ~ is inherited 

from that  of f and B, via U. 

Now, ( 1 - A ( 0 ) t ) a = D ' ( t ) - D ' ( 0 )  where D'(0) is the divisor of poles and T)'(t) is the 

divisor of zeros on Xa of 1 -A(0) t .  We apply the following claim from p. 73 of [M]. 

Claim. T)'(t) and D'(0) have the same order and for any holomorphic differential w 

on X, 

f T)(t) f Dt (t)02 = + o ( t 2 ) .  
J'D(O) J'D'(O) 

Now compute 

1 fv ' ( t )  
lim - w. 
t--.0 t Jr,(0) 

The function 1 - A ( 0 ) t  has poles where A(0) does. At each point P E X ,  A(0) may have a 

pole of order r and, for small t, r nearby zeros. Call them Z1,..., Zr. By Abel's theorem, 

f ~ - -  Od. Jv'(o) ~ ..... z~ PEX 
By Lemma 20 of [MM], this limit is - ~pc~Resp(A(O)w).  [] 

The following formula is needed. 

LEMMA 18. For wC~I'~ f a function on Y,  and w c W  a covering translation, 

~s(fow.w) = Res (f.w-l*w). 
w(Q) 

PROPOSITION 19. Assume the hypotheses from the beginning of the section. Let 

be a finite W-equivariant set such that ~ x I ( X ) c Y .  Let z : Y - ~ C  be the composition of 

~x: Y - ~ X  with z: X - ~ C .  Let f: Y - ~ C  N satisfy ( A o u ) f = z f  and let D(t) be the divisor 

of the meromovphie section f(t) .  

Then 

(1) there is a unique time-dependent function )~: Y---*C such that B f + ]=)~ f ,  and 

(2) for any holomorphic differential w on Y,  

lira 1_ f ~ ( t ) w  = E R~s A(O)w. 
t~o t Jl)(0) Q r  
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Proof. First note that Y is an equivariant version of ~x  1 (X~) .  The unique function 

A is A=Aorcx where A is defined in Theorem 17. Write f l : X + C  for the function 

on X satisfying Afl=zf l .  Then f=floTrx. Let Dl(t)  be the divisor of f l .  Then 

D(t)=Trxl(Dl(t)) .  
The curve X is a quotient of Y by a subgroup of W; write X=Y/S.  The space of 

holomorphie differentials f~l,0(y) decomposes as f t l ,~  Ave Orr~:(f~l'~ where 

Ave: f~I,~176 is averaging over the orbit of the action of S. 

If co=rr)~? then 

1/~(t) ~/~l(t) =is I l i m -  co= ISI lim E RfisA(0)~= E R~sA(0)Tr~:r/, 
/;---+0 t J'D(O) t--+0 j-DI(O ) ~ 

P ~ X  QCY 

and the formula follows for wCTr)ftl'~ 
If w C ker Ave then 

liml[Z)(t)wj~(0) 1 1 g~es f u ~ ( t ) l S I  Ju~(0) - -==- 1 1 [~(t)Jz~(0) - = lim - . - -  w = lim t--,o t t--~o t t--,o t" IS [ 

On the other hand, 

g*a~ = lim 1 fv ( t )Av  e a~ = 0 
gcs t-~0 t J~(0) 

QCY 

and therefore 

R~s(A(0) ogow) (for g E S) 

QEY 

= E Res(A(0)(g-1)*w) (by Lemma 18) 
A 9(Q) 

QEY 

~--- ~ l~s ( /~ (0 ) (g -1 )*o3)  ( s ince  g ( Y ) = Y ) ,  

Q c Y  

1 E R ~ s ( ) ~ ( 0 ) ( g _ l ) , w ) =  E R~s(A(0)(Avew))=0.  
Qe~ Qe~ geS Qe~ 

So if wEker Ave then the equation holds. Since limt-m(1/t)f~((~ w and Y'~Qe~2 ResQ A(0)w 

are both linear in w, the result follows. [] 

4 .  W e d g e  r e p r e s e n t a t i o n s  

In this section, wedge representations are examined in order to obtain relations between 

the highest-weight flow vectors. The main result is the following proposition. 
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PROPOSITION 25. Suppose that the Lax equation dA/dt=[A,B] satisfies the hypo- 

theses from the beginning of w for each fundamental representation, and that for each 

fundamental wieght )~i the restriction of the divisor of f ~  to Y is independent of time 

for t in a neighborhood of O. Then the velocity vectors v~ satisfy the system of equations 

v;~ +ai(v~)  = - E Ai jv~,  where A~3 is the Cartan matrix, 

w .v~  = v ~  for all w~ S~.  

LEMMA 20. Let ~ be a dominant weight and 7 the highest weight of the represen- 

tation Q~AO~. Suppose that 7=)~+w.A. Let Y be a finite W-equivariant set containing 

~r 1(~). Additionally suppose that the hypotheses hold for the representation 0~, and 

that f~ is an eigenvector satisfying the conditions: 

(1) Q~(A)f~=y~f~ for all yEY.,  

(2) the entries of f~ are C 2 in the time t and meromorphic on the curve Y,  

(3) the restriction of the divisor of f~ to Y is independent of t. 

Define f7 to be the projection of f~A(f~ow -1) onto the summand of the represen- 

tation Q~A~, which is an irreducible module with highest weight % 

Then f7 satisfies the three conditions: 

(1) Q~(A)f~=y~f~ for all y e t . ,  
(2) the entries of f~ are C 2 in t and meromorphic on the curve Y,  

(3) the restriction of the divisor of f7 to Y is independent of t. 

Let A and F be defined by the equations 

Q~(B)f~+]~=Af~ for all yEY . ,  

07(B) IT+:~=FI~  for all y e Y . .  

Then F=A+Aow -1. 

Proof. Evaluate the equation Q~(A)f~=y~f~ at w- l (y ) .  Observe that 0h(A)= 

Q~ (A(7~(y)) is unchanged since ~(w- l (y ) )  =Tr(y), while y~ (w -l(y))  = (w. y~)(y) =y~.~ (y), 

using Proposition 2. Hence e~(A)(f~ow-1)=(y~.~)(fow-1).  

By assumption the highest-weight vector of ~A0~ is A+w.A. The wedge product 

f A ( f o w  -1) is an eigenvector of (O~AQ~)(A) since 

((Q;~A~;~)(A))(IA(fow-1)) = ~ ( m ) f  A ( f o w - 1 ) +  f Ae~(A)( fow -1) 

: (y),f)A(fow-l)+fAyw.),(fow -I) 

: (y),-i-yw.),)(fA(fow-l)) 

=y:,+~,.:,(fA(fow-l)) 

= y..:(fA(fow-1)). 
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Decompose 0x A 0x = 0r @ other. The restriction of the above formula to the 0s-summand 

gives O.~(A)f.~=ysf.~ for all yEY.. The vector fA(/ow -~) and hence its projection fz  

inherit the properties of being C 2 in t and meromorphic on Y from the same properties 

for fh- The third assertion follows from the fact that  Y is W-invariant combined with 

the third assumption about fh. 

We now show the last statement. Since 0h A 0h contains one copy of 0h as a summand, 

we may write fhA(f),ow -1) as (/0F). Then 

f~(y)  ]~(y) Oh/\e~(B)@(Y))( 0 ) + (  0 ) = r ( f ~ Y ) )  ' 

by Theorem 17. Switching notation, we have (oxAoh)(B)(f~Af~ow-1)+(f~Af~ow-1) "= 

r fhAfhow -1. 

Now, substitution of w - l ( y )  for y in 

#h(B)(~(y))/h(Y)+A(y) = A(y)A(y) 

combined with the observation that  7r(wy)=7~(y) gives 

Q;~ ( B)(Tr(wy) ) f Aow- l (wy) + ]how-  l (wy) = Aow-  ] (wy) f hOW- ] (wy). 

Since w is independent of time, (fxow-1)" :],koW -1 and 

Also, 

oA(B)fAow -I+(AOw-1)" =Aow-lAow -1. 

(OhAQh)(B)(A A Aow-1)+(A A fhOW-1)" 

= (Q~(B)A)AAow-l+AA@h(B)Aow-1)+AAAow-l+AA(Aow-1)"  

= (Qh(B)A+A)A(Aow-~)+AA(Oh(B)Ao~-~+(Aow-~) ") 

= (A+Aow-1)(f~Af~ow -1) (by the paragraph above). 

Therefore, F = A + A o w  -1. [] 

LEMMA 21. Let )~ be a dominant weight and 7 the highest weight of the represen- 

tation o~AQx. Suppose that 7=A+w.,~,  that the Qx-matrix representation of the Lax 

equation satisfies the hypotheses from the beginning of w and that the restriction of the 

divisor of fh to ~" is independent of time for t in a neighborhood of O. Let X~ and 

Xh be the highest-weight components of the spectral curves defined by Q~ and Q~. Let 
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A A A 

Y=TrxI(X~)UTr~I(XT) .  I f  v)~ and v 7 are the tangent vectors to the A- and "y-highest- 

weight flows on Y ,  then 

v~ = (e+w)v~, .  

Proof. The set Y is W-equivariant and allows application of Proposition 19 to both 

vx and vn. By Proposition 19, 

vT= E R~sFoyrx -~ 
QEY 

where F: X~-~C and A: Xx--~C are as in Lemma 20, and ~ is the vector of the ordered 

basis of holomorphie differentials on Y used for coordinates on the Jacobian. This 

expression is 

= E ResAoTrx~.a3+ E ResA~176 (by Lemma 20) 
Q ^ Q 

QEY QEY 

= E ResA~ ~ Res Ao~rx~.W*~ (by Lemma 18) 
Q _ w(Q) 

QEY QGY 

= E R~sAoTrx~.~+ E ResAoTrx~.w%3, 
^ ^ Q 

QEY QEY 

since w permutes the points of Y, and 

=- E ResAoTrx~.~+ E ResAoyrx~-w*~ Q Q 
Qc'2 Qc~2 

f 
D(t) fD(t) 

= lira ~ + lim ] w%3 (by Proposition 19) 
t-~o av(o) t--,o Jr(o) 

f 
:D(t) fD(t) 

---- lim ~ + w- lira / ~3, 
t~0 av(0) t--.o Jr(0) 

using the group action discussed in w 

= v~, +wv~, [] 

LEMMA 22. I f  A is the highest weight of the irreducible representation 0~ and # is 

any weight of ~ ,  then IIAIt>~II#II with equality only if  I~ is in the W-orbit  of A. 

Proof. The result follows from Humphreys, [HI, by combining Lemmas A and B of 

w with Theorem 20.2 (b) and Theorem 21.2. [] 
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PROPOSITION 23. If  Ai is a fundamental weight, then 

(a) every weight of Q~Ao;~ has height ~<2Ai-ai, 

(b) 2 A i - a i  is a weight of ox~Ao~ with multiplicity 1. 

Proof. Since ~ is irreducible, every weight of ~ has the form A{-~-~,kjaj for 

kj~>0. Moreover, if the kj are not all zero, then k~>0 since 

211/2 

y~i j#i 

and hence, by Lemma 22, is not a weight of O~. Also, ai(Ai)=Ai-ai  is in the W-orbit  

of A~, and hence is a weight of Q~. This shows that  Q~, not only has a highest weight 

A~ but also a second highest weight A~-a~, although it may not be dominant. 

The weights of Q~ A ~ are the sums of distinct weights of ~ (where a weight with 

multiplicity > 1 counts as two distinct weights). Since Qx~ has a highest weight and a 

second highest weight, their sum 2Ai -a i  is the highest weight of Q~ AOx~. The sum can 

only be obtained in one way, so 2Ai -a i  has multiplicity 1. [] 

The following recipe appears in [BE, p. 36]. In the recipe, (A~j) is the Cartan matrix. 

These values can be read off of the Dynkin diagram. If the nodes in the Dynkin diagram 

labelled i and j are not adjacent, then Aij is 0. If they are adjacent, then - A i j  is 1 

unless there is a multiple edge with an arrow pointing towards node j in which case - A i j  
equals the multiplicity of the edge. 

LEMMA 24. Let Ai be a fundamental weight and ai E W the corresponding reflection. 
Then A i + a i ( A i ) = -  ~ AijAj. 

Example. 

Above is the Dynkin diagram for Fa. The recipe gives the following set of equations: 

A1 +al(A1) = A2, 

A2+a2(A2) = A1 +2A3, 

A3-~-o-3(A3) = A2-[-A4, 

A4+~4(A4) = A3. 

We now prove the proposition stated at the beginning of this section. 

Proof of Proposition 25. From Proposition 23, the highest weight of pA~AQA~ is 

2Ai-ai=Ai+cri(Ai). Take 7=Ai§ in Lemma 21. This yields (e§ By 

Lemma 24, ~---  ~ AijAj and, by Proposition 16, vA~ +ai(v~)=-  ~ AijvA~. The second 

equation is Proposition 15. [] 
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5. Lat t i ce  o f  f low v e c t o r s  

THEOREM 26. Suppose that the Lax equation dA/dt = [A, B] satisfies the hypotheses from 

the beginning of w for each fundamental representation and that the restriction of the 

divisor of f ~  to Y is independent of time for t in a neighborhood of O. Then either the 

velocities v~ are all zero or the map from the weight lattice to the set of highest-weight 

flows given by A~--~v:~ is an isomorphism of Z[W]-modules. 

Proof. As a Z[W]-module, the weight lattice A is F / R  where F=Z[W][A1, ..., An] is 

the free module generated by the fundamental weights, and R =  <ai ( A i ) = -  ~ Aij Ay-)~i, 

aj(Ai)=Ai}. This presentation follows from the fact that  A is a free abelian group on the 

Ai and that  the ai generate W. Let MCT~ J acY  be the Z[W]-submodule generated by 

{VXl, ..., v~n }, the highest-weight flows of the fundamental weights. Now, F--~M defined 

by Ai~-~vx~ is an epimorphism. It factors through A--*M as the relations R are preserved 

by Proposition 25. If N c A  is any Z[W]-submodule, then A / N  is torsion as A |  and 

N Q C  are both O*| Since MCT~ J acY  is not torsion, A--~M is an isomorphism. 

If ~' is any weight, then we claim that  ~,Hv~. There is a w E T  such that  w"7 

is dominant, w-~'=}-~ a~A~ with a~>0. Then, w.~=~-~, a~A~-~-~ a i v ~ = v E a ~ = v w .  ~ by 

Proposition 16. So, ")'e---+w--lVw..7:V..f by Proposition 15. [] 

We now move from local to global results. We first discuss the question of when 

the eigenvectors satisfy hypothesis (5) from w The issue of the poles (or zeros) of these 

functions is more subtle than one might initially expect. If f = ( f l ,  ..., fN) is a tuple of 

meromorphic functions, then using Lemma 9 we get a holomorphic function into CP N-1. 

If the functions are C 2 in time then one can do this for each given time. However, there is 

no guarantee that  the extension is smooth or even continuous in t as the following example 

on C shows. Let f t (x )=[( t /x+x ,  1)]. fo(x)=[(x, 1)] so that  f0(O)=[(O, 1)], but f t(O)= 

[(t, 0)] and limt--+o ft(O)--[(1, 0)]. However, in the case of highest-weight eigenvectors of 

isospectral flows, we can only lose differentiability at points in Y. Let Y~=Y~-Y~ and 

P=Tr(Y~). As Y~ is a finite set that  is fixed over time, there is a map g(y, t) as in the 

Y~ " ~ (G / H•  ~ G/P~ c C P  N-1 

p , g.. 

Here Ya is the cover of the highest-weight component of multiplicity 1. Since Y:,--~P 

and ( G / H x b . ) / S a ~ g .  are covering spaces, g inherits its smoothness from A. The 

composition of the top row picks out the class of the eigenveetor in projective space; this 

is [f]. In homogeneous coordinates, the entries of f can be taken as ratios of minors of 

diagram 



LAX EQUATIONS, WEIGHT LATTICES, AND PRYM TJURIN VARIETIES 303 

p ( A ( s ) ) - z ,  viz., 

A i ,  I ' . . . ,  Z~i, 1 

is the eigenveetor. This is independent of the row as the first entry is normalized to 1. 

Since the multiplicity of ,~ is one, expansion of some row yields an eigenvector. Note tha t  

Ut in Theorem 17 and gt above are related by gtgol=Ut .  

If g has a representation in which all of the entries of ,4 and B are of the form 

Y~ ci(t)mg(z),  then the same holds for any other representation since the entries of the 

new representation are linear combinations of the old. We have shown 

LEMMA 27. Suppose that A, B is a Lax pair whose entries (in some representation) 

are of the form E ci(t)m~(s), a finite sum, where the ci(t) are C 2 in time and the rn~(s) 

are meromorphic on P. Then each highest-weight vector can be represented as a column 

vector whose entries are functions which are meromorphic on Y~ and C 2 in time off of 

a finite set Y~. 

THEOREM 28. Let g be a simple Lie algebra and P a compact Riemann surface. 

Suppose that the pair A, B: P • R---~ satisfies d A / d t =  [A, B] and that 

(1) A, B have entries of the form • c~(t)m~(s), a finite sum, where ci(t) is C 2 and 

rni(s) is meromorphic, 

(2) A(s, O) is regular for some s c P ,  and 

(3) the flow in the Yacobian of a spectral curve is absolutely continuous. 

Then the highest-weight flow f~ is in the Prym Tjurin variety Tur~ Y .  

Proof. Since the entries of the matr ix  have the form ~ c i ( t ) m i ( s ) ,  the set P ~  is a 

subset of the poles of the mi, a finite set. Therefore, the first four of the hypotheses 

from w are satisfied. These hold in every finite-dimensional representation of g. The 

fifth hypothesis holds by Lemma 27 for each highest-weight vector. 

Let r  be the absolutely continuous A-ftow in Jac Y, for A a fundamental  weight 

and Y the master  curve. Write r 1 6 2  where g: R--~T~ Jac Y. Then r  t gdt).  

Let Tr Jac Y = Tc Tur~ Y|  V,  pl:Tc Jac Y--~ V, and p2:T~ Jac Y--~ T~ Tur~ Y be the pro- 
t t 

jeetions. Then, ~b(t)=exp(f0 gopl dt) e x p ( f l  HoP2 dr) since Jac Y is an abelian group. 

If we write f~(t)  for the highest-weight eigenvector of this flow, then by Theorem 26, 

Hop(t) =0  at those times t when the restriction of the divisor of f~ to Y is independent 

of t ime for t in an open set. We claim that  { t lgop( t )~O } is a set of measure zero and so 

the highest-weight flow evolves in Tur~ Y. 

Consider a point of Y. Suppose that  it projects to (x0,z0) in the spectral curve 

of ~ .  The divisor of f may change at (x0, z0, to) if the poles or zeros of a minor of 

(A(x, t ) - z )  changes at to. Take y as a local coordinate about  y0=(Xo, zo). Expand an 
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entry fi (Y, t) = ( A ( x ,  t )  - z ) i , j / ( A ( x ,  t ) -  Z) l,j as a Laurent series about Y0 near time to, 

En>~M Kn(t)(Y-Yo)  n. The coefficient of (y-yo)  n is given by the integral 

Kn( t )=  L f i(y, t)  (y_yo)n_ 1 dy 

over a path a around Y0 on Y. Hence Kn(t) is continuous. Such a coefficient vanishes on 

a closed set, and so it is on the boundary of a closed set that  a pole or zero can appear 

or vanish. The boundary of a closed set has measure zero. Since Y consists of a finite 

number of points, the measure of the set of t such that the divisor of f is not constant 

on Y in a neighborhood of t is a set of measure zero in time. Therefore, r  Y 

for all time. [] 

In the interest of solving the differential equation, we would like to consider the entire 

curve defined by the characteristic polynomial of A. The flow will then reflect the motion 

of all the eigenvectors of A. In many cases the flow from the smallest representation is a 

highest-weight flow. We now prove the main theorem which is a corollary to Theorem 28. 

THEOREM 29. Let g be a simple Lie algebra and P a compact Riemann surface. 

Suppose that the pair A, B: P •  satisfies dA/dt=[A, B] and that 

(1) A, B have entries of the form E ci(t)mi(s), a finite sum, where ci(t) is C 2 and 

m~(s) is meromorphic, 

(2) A(s, O) is regular for some sEP, and 

(3) the flow in the Jacobian of a spectral curve associated with the smallest repre- 

sentation is absolutely continuous. 

If t~ is of type A, B, C, D, E6, or ET, then the flow is in the Prym-Tjurin variety 

Tur ~ Y.  

If P is the Riemann sphere, then the ]tow is in the Prym-Tjurin variety Tur ~ Y.  

Proof. In order to show that the eigenvector flow of the whole matrix is in the Prym 

Tjurin, we would, ostensively, need to consider all eigenvectors of the representation and 

not just the highest weight. We consider the matrix in the smallest representation of ~. 

The only weights are (possibly) the trivial weight and those in the orbit of the highest 

weight. The result holds for those in the orbit of the highest weight by Theorem 28. If 

the algebra is of type A, B, C, D, E6, or ET, then the smallest representation has no 

trivial weight and consists only of the orbit of the highest weight. This shows the first 

statement. The spectral curve for the zero weight is the curve P itself. So this flow is in 

the moduli space of bundles over P. If P is the Riemann sphere then the moduli space 

is trivial, i.e. a point. This shows the second statement. [] 
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