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I n t r o d u c t i o n  

1. This work is a continuation of our previous work "Blowup of small data solutions for a 

quasilinear wave equation in two space dimensions" [6]. We consider in both quasilinear 

wave equations in R 2+~, 

where 

L(u)-O2u-Axu+ Z g~jOkuO2j u=O' (0.1) 
O~i , j , k~2  

k x0=t, z=(xl,x2), g~j=gj~. 
We assume that  the Cauchy data are C ~ and small, 

u(x, 0 )=  e u ~ 1 7 6  0~u(x, 0) = eu~ +~2u~ +..., (0.2) 

and supported in a fixed ball of radius M. 

We could with minor changes handle as well more general equations of the form 

o~u-~xu+Z 9,j(vu)0~ju = 0, (0.1') 

with g~j (0)=0, because cubic and higher-order terms play no crucial role in the blowup. 

We restrict ourselves to (0.1) because previous papers used here have been written in 

this framework, and also for simplicity. 

Following [10], we define 

g(w) = Z gik ~i~j  wk, (0.3) 
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where 

r =  2 ~ ,  Xl = r  cosw ' x2=rsinw 

are the usual polar coordinates in space, and 

w 0 = - l ,  ~ l = c o s w ,  ~2=s inw.  

Our aim is to study the existence of smooth solutions to this problem, more precisely 

the lifespan T~ of such solutions and the breakdown mechanism when these solutions 

stop being smooth. In space dimensions two or three, this problem has been introduced 

and extensively studied by John (see his survey [12] and the references therein), then by 

Klaincrman [13], [14], H5rmander [10], [11] and many authors. Using some crude approx- 

imations by solutions of Burgers' equation, HSrmander [10] has obtained in dimensions 

two and three explicit lower bounds for the lifespan. The result in dimension two is 

l iminf sT~/2/> (max g(w)O~R(1)(a,w) ) -1 -To. (0.4) 

Here, the "first profile" R (1) is defined as 

1 ~ 1 [R(s,w,u~)_OsR(s,w, uO)]ds, (0.5) R ( 1 ) ( ~  2 V ~  ~>a 

where R(s, w, v) denotes the Radon transform of the function v, 

= f lcos +x:sin = v(x) R(s, dx. 

It was suggested in [11] that  these lower bounds should be sharp. 

In our previous work [6], we were able to prove actual blowup only for the special 

example of (0.1), 

(O~-A)u = (0tu)(02u). 

It was not clear then whether this result was likely to be true in fact for the general 

equation (0.1), or if it was a consequence of the special structure of the nonlinear terms. 

In the present work, we prove that  actual blowup takes place at the suggested time for 

a general equation (0.1), (0.2) (see Lifespan Theorem 1 of Part I). The only assumption 

we need is the "generic" condition on the Cauchy data: 

(ND) The function -g(w)0a2R (1) (Or, W) has a unique strictly negative nondegenerate 

minimum at a point (c~0, Wo). 

In fact, Theorem 1 shows that  the full formal asymptotic lifespan computed in [3] is 

the asymptotic expansion of the true lifespan T~. Moreover, the method of proof yields 
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an accurate description of the behavior of V2u close to the unique blowup point M~ at 

time t=T~: it is a geometric blowup of cusp type, according to the terminology of [4] 

(see Geometric Blowup Theorem 2 of Part I). 

Hence, geometric blowup of cusp type seems to occur quite often at times equal 

to the lifespan for quasilinear hyperbolic equations. We hope that  further work will 

confirm this view (see [8] for a discussion of the stability of this pattern and [7] for a 

short discussion of other possibilities). 

2. The method of proof relies on the blowup techniques introduced in [4]: we show 

there how to construct blowup solutions by solving in smooth functions a nonlinear 

system called blowup system. In [6], the special structure of the nonlinear terms in (0.1) 

made it possible to eliminate unknowns and reduce the nonlinear blowup system to a 

scalar third-order equation. The improvement of the present paper over [6] is so to speak 

of "algebraic" nature: we display in the general case, using the genuine nonlinearity 

g(wo)r implied by (ND), decoupling properties of the linearized blowup system (and 

only at the linearized level) which allow one to find solutions and prove tame estimates: 

these results are explained in Theorem 3 of Part II. Let us emphasize that  this blowup 

theory has nothing to do with perturbation problems or asymptotic analysis; its only 

connection with problem (0.1), (0.2) is that,  blankly applied to this problem after an 

adequate preparation using some asymptotic analysis, it yields the solution. For clarity, 

we develop in Part II the blowup theory for a second-order general quasilinear equation. 

In Part III, we consider the application of this theory to (0.1), (0.2), and review step by 

step the proof of [6] to indicate how it extends to the general case: surprisingly enough, 

only minor changes are needed in the estimates; the approach of the determination of 

the lifespan as a free boundary problem remains unchanged. We hope that  this theory 

will extend to systems, and will be a tool to approach such problems as the stability of 

blowup and so on (see [8] for results in this direction). 

I. Resu l t s  for t h e  n o n l i n e a r  wave  e q u a t i o n s  

Consider the problem (0.1), (0.2) (already outlined in the Introduction) of a quasilinear 

wave equation in two space dimensions with small compactly supported Cauchy data. 

Recall the normalized variables usually used: 

a = r - t ,  w, T----gt 1/2. 

Using the function g and the first profile R (1) (defined in (0.3) and (0.5)), we make the 

following "generic" assumption on the Cauchy data: 
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(ND) The function -g (w)O2R fl) (~, w) has a unique strictly negative nondegenerate 

minimum at a point (ao, To). 

We have then the following theorem. 

LIFESPAN THEOREM 1. The lifespan Te of the classical solution of (0.1), (0.2) 

satisfies 

f~ ----- E(Te)1/2 = ~0 + O(E). (1.1) 

Moreover, there is a point M~--(xe,:Fe) such that, for t>~T3E -2 (0<T0<~0) and c small 

enough, 

(i) the solution u is of class C 1 and lUlc~ ~Cr  2, 

(ii) the solution u is of class C 2 away from Me with lUlc2~CE 2 there, and satisfies 

C 
IV~u( �9 ,t)lL~ ~< ~ - t '  (1.2) 

1 1 
IO~u(. ,t)JL~ >1 -C 'T~- t "  (1.3) 

As in [6], let us remark that the full asymptotics of Te and of the location of Me 

has been already computed in [3]; the one term asymptotics of (1.1) is only given for 

simplicity. 

Close to the point Me, we have a much better description of u, given by the following 

theorem. 

GEOMETRIC BLOWUP THEOREM 2. There exist a point -Me=(~te,Te), a neighbour- 

hood V of ff/Ie in {(s, w, T): sER ,  w 6 S  1, 7-<.~e}, and functions r v, wCC3(V) with the 

following properties: 

(i) The function r satisfies in V the condition 

r  r  ,~ (~ ,~ ,~ )=Me,  
(H) 

r  V~,~(r  V ~ (r >> 0. 

(ii) w s = r  and vs(~Ie)r I f  we define the map 

r ~, 7) = (o = r ~, 7), ~, ~), 

we have o(~)=(Ix~l-T~,x~/Ix~l,~)==_~e. The function u verifies near Me 

u(x, t) = r - ~  G ( r - t ,  w, r 
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where G is defined near ~I~ by 

G(r =w. 

Finally, the functions r  are of class C k if s~<sk. 

It  is of course understood, in Theorems 1 and 2, that  the dependence of the various 

objects on s is "uniform": the points M~ and 214~ depend continuously on e, the neigh- 

bourhood V can be taken as the intersection of a fixed set with {T~<~}, the functions 

r v, w are uniformly bounded in C 3, the strict inequalities in (H) are uniform, etc. 

Exactly as in [6], we see that  the blowup of V2u only comes from the singularity of 

the mapping (I) at the point/14~; according to (H), this singularity is of cusp type (in the 

usual sense of classification of mappings): this is exactly what is called in [4] a "geometric 

blowup of cusp type".  Taking into account the fact that  equation (0.1) has no special 

structure in its nonlinearity (in the sense that  the coefficients g~j are arbitrary),  this result 

seems to indicate that  geometric blowup of cusp type occurs very often for quasilinear 

hyperbolic equations. We hope that  further work on various other equations or systems 

will confirm this view (see [7] for a short discussion of more complicated cases). 

We can easily deduce from Theorem 3 the following corollary, which we can view as 

some "blowup criterion" (see [15] or [7]): 

COROLLARY. Assume that the data of a solution u of (0.1) satisfy (ND) and that 

c is small enough. I f  u is smooth for t < T ~ T ~  and, for some C, 

IV2u( - ,t)LL~ ~< C, 

then T <T~. 

We wonder if it is possible to prove such a s ta tement  directly by some "functional 

analysis" method. 

II. Blowup of  a quasilinear second-order equation 

This section is self-contained. In Par t  III ,  we will explain how to use this theory to obtain 

the results of Par t  I about quasilinear wave equations. 

We have developed in [4] a general theory of "blowup solutions" and "blowup sys- 

tems".  However, we do not know in general how to solve the blowup system of a given 

equation or system. We were able to solve this blowup system only in the special cases 

considered in [5] and [6]. 

If we start  with a second-order scalar equation, we can of course write it as a first- 

order system to which the theory of [4] applies, but this is rather  tedious: we develop 
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here along the same lines another approach, in which we keep in sight as far as possible 

the scalar character of the original equation. 

Let us consider, in some domain of R "  with coordinates (xl,  ..., xn), the quasilinear 

equation 

P(u) =- E pij(x, y, u, Vu)O~ju+q(x, y, u, Vu) = 0. (2.1) 

Here, we set for simplicity xl=x,  y=(x2, ..., x~), Vu=(O~u, Oyu). We will also use the 

notations 

O=(O, 02,...,On), q~ = ( -1 ,  02r ..., 0he). 

We introduce the change of variables 

~(~,u)=(z=*(s,u),y) (2.2) 

and the new functions 

~(s,y)=~(r v(s,~)=(0~u)(r (2.2') 

Note that  necessarily w~=r We set then ` 4 - w ~ - r  and call the equation .4=0  the 

"auxiliary equation". 

In this section, as in [6], we have in mind the construction of singular solutions of 

P(u) =0; thus we are interested in points (s, y) where r =0  and v~ ~0,  because (O~u)((P) = 
V s ( g s  1 . 

1. The following elementary proposition describes the blowup system of P. 

PROPOSITION AND DEFINITION II.1. With the above notations, we have 

(vu) (~) = 0w-  $v, 
(vs) 

Vs 
P(~)(~) = E E + n ,  

with 

n = E pij (r y, w, Ow-r162162162 +q(r y, w, Ow-r 

We call the system 

g = 0 ,  ~ = 0 ,  ` 4 = 0  (2.3) 
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the "blowup system", the first equation of (2.3) the "eikonal equation", the second equa- 

tion the "residual equation". To any smooth solution of (2.3) corresponds through (2.2') 

one or several singular solutions of (2.1) (depending on the branch of inverse of �9 we 

choose), and such solutions are called "(geometric) blowup solutions". 

Remark. If r v, w are smooth functions solutions of the blowup system, only the 

second-order derivatives of u may blowup at a point where r =0. This is in accordance 

with what we expect from a quasilinear second-order equation. 

The equation $ = 0  has a simple geometric interpretation: if we set formally 

= ( r  y),  y),  

we have 
1 

Hence $ = 0  is equivalent to 

~ p~j (x, y, u, W ) ( 0 ~ ) @ r  = 0, 

that  is, the (singular) Lagrangean manifold A= (x, y, Vr  is characteristic for the lin- 

earized equation of (2.1). 

2. Linearization of the blowup system. To compute the linearized blowup system, 

we must introduce some notations. We set, for arbitrary smooth functions r v, w, 

(E (2.4) 
Zl= ~-~pij(r Q= ~piyO~y, (2.5) 

aij =Oxpij+O~pijv+OvupijOv, ao = E aij~)iCj, bo=E0up i j~ ) i~ ) j ,  

Co : E KijOuPiJ +Ouq, 

c~ = ~ K~jOVup~j +Owq, 

c2 : E Kijaij +Qv+Oxq+O~qv+OvuqOv, 

a l=Tv~-Zlr  a2=ao+elr162 

It is understood here that  the summations are taken for all i, j ,  and that  Pij and its 

various derivatives are taken at (r y, w, Ow-r 

With these notations, we list first certain technical identities. 
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LEMMA I1.2. We have the identities 

Z2A+boA-E~ = al, 

QA + cl OA + coA-  Tr = Zl Vs + ( a2-ao )vs -e2r 

We denote now by 

the differential of C at the point (r v, w), and similarly for R and .A. 

The following proposition describes the linearized system of the blowup system. 

PROPOSITION II.2. We set ~=(v-vr  and have then 

(i) 8'(q~, ~), ~b)=-'-/i~+Zl(b+Z2~+aor 

(ii) TC'(q~, ~, ~b)=Q~- Z,i~+ClO~+co~+c2r (ao -a2)i~, 

(iii) A'(r ~), ~b) =k~ + v ~ r  0~). 

The straightforward computation is left to the reader. 

Remark. In establishing the blowup system (2.3), we keep in mind that  (I), v, w can- 

not be separately determined, because we can always replace (I) by (I)(Ih ((Ih being a 

diffeomorpism), and then replace v ,w by v((Ih),w((I)a). What  we need here is that  (I) 

should be of corank one wherever it is not invertible. The choice (2.2) is then no restric- 

tion and has the advantage of being simple and leading to (relatively) easy computations. 

Of course, the structure of the linearized blowup system also reflects this indeterminacy 

between (I), v and w. Generally speaking, if u((I,)=w, we have ~((I))+ut((I))(P=~b, hence 

~b-u'((I,)(~ is indeed the "good unknown" for the linearized system (this fact has many 

applications in nonlinear problems involving free boundaries, see for instance [1]). Here, 

2 is this good unknown, because v=(O~u)((P). 

Finally, let us compute (P~ZI: we find 

\ j > l  i>1  i>1  
j > l  

On the other hand, if p=~p~j (x ,  y,u, ~Tu)~j  is the principal symbol of the linearized 

equation on a solution u corresponding to a solution (r v, w) of the blowup system, we 

have on A 

- ~ r  = - P l l +  Pl jCj ,  - P l j  + Pijr  �9 
i>l 

The eikonal equation 

j : > l  i,j>l 
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shows that in fact 

O'Z1 = -r gp. 

3. The genuinely nonlinear case. Let us consider now a smooth solution (r v, w) of 

the blowup system in a domain D. 

Definition II.3. If the function 

3`= ~ Ook~p~(~, y, ~, v, Oy~--vOy~)~k 

does not vanish in D, we say that  we are in the genuinely nonlinear case. 

This terminology is justified by the following fact: for a blowup solution such as u, 
the main contribution to the matrix u" at the blowup point is given by the matrix of rank 

one ~tq~ (see also Proposition 2.2.1 of [4]); hence 3`r asserts the effective dependence 

of the symbol ~pijr on Vu in the relevant direction - r  (it is the same situation as 

that  described by Lax for first-order systems). In this case, we can express ~) in terms of 

r i according to Proposition II.2. The remarkable fact is that  the resulting system in 

r i almost decouples, as indicated in the following theorem. 

THEOREM 3. For the linearized system of (2.3), we have, in the genuinely nonlinear 
case, the identities 

~l ~- ZlZs-r [ciCsO+l (aoCs+ ZlCs)Z2] z -  [CoCs+ ~(aoCs+ ZlCs)l z 

al [ ] +a~+ ~-z~r Z~+(a~-ao)~-c~r aoa~ $ (2.6) 
3' 

= - r r~' + ( z~ + a2) .4' - ~ (ao 0~ + Z~ r E', 

J:2=--Z2r162 ~3`)-3`c2]r 

+Z1Z2~-3`clO~+(a2-ao-Z;3`)(Z2~+bo~)+Zl(bo~)-3`Co~ (2.7) 

The point of this theorem is that ,  thanks to Lemma II.2, the coefficients a l  and a2 

of the terms involving Z1r and q~ in the first equation are small if $, ~ ,  .4 and their 

derivatives are small. In a Nash Moser scheme aimed at solving g =0 ,  ~ = 0 ,  A=0,  we 

could view these terms as "quadratic errors". However, we cannot just neglect them, 

because this would correspond to solving the linearized system up to quadratic errors 

divided by r which is not acceptable in the framework of smooth functions. 
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In applications, we will solve exactly the equations 

�9 1 
~'1 = - r  (Zl + a 2 ) h -  -~(aor162 

~2=(Zl+a2-ao-Zl-~)]- '~g.y 

in some domain D, and then determine ~) by the equation $'=]. For the functions r ~), 

thus obtained, we have then 

$'(q~,~),~b)=], n ' = g ,  (Zl+a2)(A'-h)=o. 

If the geometry of D and the boundary conditions are appropriate, this will yield .A~=h, 

and the linearized system is exactly solved. 

I I I .  A p p l i c a t i o n  t o  q u as i l i n ea r  wave  e q u a t i o n s  w i t h  smal l  d a t a  

In this part, we apply the theory of Part  II to equation (0.1). The surprising fact is that,  

with the help of this theory, the proofs of Theorems 1 and 2 for the general case require 

only a little extra work compared to the proof of [6]. Thus this part is divided into three 

sections: 

(i) First, we recall the general strategy of the proof of [6]. 

(ii) Second, we point out the differences between the general case at hand and the 

special case of [6]. 

(iii) Finally, we scan the proof of [6], step by step, to explain what minor modifica- 

tions have to be done to get a complete proof of the general ease. 

The idea of the proof is to construct a piece of blowup solution to (0.1) in a strip 

- C o E r - t E M ,  T3s-2<.t<~T~, 0 < 7 0 < f 0 ,  

close to the boundary of the light cone. This gives an upper bound for the lifespan, 

which turns out to be the correct one. Of course, this is not surprising, because the first 

blowup of the solution is believed to take place in such a strip, and not far inside the 

light cone. The proof of the theorems is thus devoted to this construction, which is done 

in four steps. 

Step 1. Asymptotic analysis, normalization of variables and reduction to a local 
problem. We choose a number 0<T0<?0 and use here asymptotic information on the 

behavior of u for r-t>~-Co and Et 1/2 close to ~'0. Thus, we are far away from any 

possible blowup at this stage, because of (0.2). According to [1], the solution in this 
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domain behaves like a smooth function (depending smoothly also on e and e 2 In e) of the 

variables 

G = r - - t ,  al, T = g t  1/2. 

This is why we set 

~(~, t) = ~ a ( ~ ,  ~ ,  7) .  

Writing equation (0.1) for G in these new variables, we are left with solving a local 

problem for G in a domain 

-Co <~ a <~ M, To <<. ~-<<. r 

where r  1/2 is still unknown. At this stage, we have a free boundary problem, the 

upper  boundary of the domain being determined by the first blowup time. 

Step 2. Blowup of the problem. To solve the free boundary problem of Step 1, we 

introduce as in (2.2) of Par t  II  a singular (still unknown) change of variables 

�9 : ( s , ~ ,  ~ ) ~  (o  = r  ~ ) , ~ , ~ ) ,  r  = 8. 

The idea is to obtain G in the form 

G(~) =w 

for smooth functions r and w, and arrange at the same t ime to have Cs vanish at one 

p o i n t / ~ = ( m E ,  r of the upper  boundary of the domain. Thus, we will have 

and the technical condition (ii) of Theorem 2 gives G~(O)=v ,  hence 

a . . ( r  =vs/r 

We see that  u, Vu will remain continuous and that  V2u will blowup at some point, in 

accordance with the expected behavior of u. 

Note that  instead of looking for a singular solution G of the normalized original 

equation as in Step 1, we are now looking for a smooth solution (r v, w) of the blowup 

system. However, we cannot just solve for T close to To: we have to reach out to a t ta in 

a point where Cs=0. 

Finally, introducing an unknown real parameter  (corresponding to the height of the 

domain), we can reduce the free boundary problem at hand to a problem on a fixed 

domain. 
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Step 3. Existence and tame estimates for the linearized problem. The genuinely 

nonlinear character of the problem (in the sense of Definition II.3) is implied by the 

condition (ND). The theory of Part  II (Theorem 3) tells us that  in this case, the linearized 

blowup system decouples approximately. This allows us to obtain existence of a solution 

and tame estimates by doing so for a scalar third-order equation, as in the special case 

of [6]. The (unknown) point where r vanishes is a degeneracy point for this equation. 

Energy estimates can then be obtained using an appropriate multiplier. 

Step 4. Back to the solution u. Having w and 0, we deduce G and thus obtain a 

piece of solution ~ of (0.1) with the desired properties. It remains to prove that  g = u  

where ~ is defined, and that  u does not blowup anywhere else. 

We indicate now the two main differences between the present work and [6]: 

(i) In the special case of [6], the full blowup system could be reduced to a single 

scalar third-order equation on r Here, this is no longer possible, but the theory of Part  II 

(Theorem 3) shows that  the linearized blowup system almost decouples into an ordinary 

differential equation and a scalar third-order equation, very close to that  of [6]. 

(ii) We do not assume g(w)~O as in [6]. The condition (ND) only tells us that  g(w) 

will be nonzero for w close to wo. Thus we have to localize the (global in w) estimates of 

[6] to prove estimates for the linearized blowup system in a local domain of appropriate 

geometry in s, 7 and w. 

Everything else is essentially the same, in particular, the analysis of the nondegem 

eracy condition (H) and the "fundamental lemma" are unchanged. 

We proceed finally with the step-by-step analysis of the modifications of the proof 

of [6]. 

Step 1. Asymptotic analysis, normalization of variables and reduction to a local 

problem. The asymptotic analysis "close to the boundary of the light cone" is exactly 

the same as in [6]. It leads us to set 

g 
u(x,  t) = 7) 

with 

r = l x l ,  x=r(cosw,  sinw), a = r - t ,  T = s t  1/2. 

We fix 0<7"0<~0 (see (0.4)). Results from [2] indicate that close to TO, G behaves 

essentially as a smooth function of its arguments (uniformly in ~). We start from time 

To to reach the actual (unknown) blowup time TE, which we expect to be close to ~0- 

In fact, 7o will have to be chosen very close to ~o, as will be explained in w of Step 2. 

For completeness, though it is not really necessary, we indicate the expression of 

L(u) in the normalized variables a, w, 7. 
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PROPOSITION III.1. Set 

~=(0 , - s in50 ,  cosw), c-0=(0, cos50, sin50), ~=(-1 ,cos50,s inw),  R=T2+c2a .  

Then, for a smooth function q of its arguments, 

R1/2  C2 ~L(u)- R1/~oLa+~2-iTr~ o~,a--R-z~o~a+~q(~,50,~,a, va  ) 

k [~kO~G+ ~k 5 k + 

(1.1) [ ) ~ ~ ~ . -  50~50 +50j5 0 02 G X ~i~jO2G~-S 2 Cdz503 35d* 02wG-~ 2T 

~o 6 ~  ~ o ~ c *  ~ j  02c~l ~ . ( c ) .  

We want to solve the equation P (G)=0  in an appropriate subdomain of 

with two trace conditions on {~-=T0} corresponding to that for u and G supported in 

{~<M}. 

Step 2. Blowup of the problem and reduction to a Goursat problem on a fixed 

domain. 

1. Formal blowup. The equation P (G)=0  computed in (1.1) is of the form (2.1) 

studied in Part II, with 

x=~,  y=(50,~), u = a ,  ~(s,50,~)=G(r ~(s,50,~)=a~(r 

It is of course very tedious to compute the blowup system explicitely, and we need not do 

that. It is enough to see what happens for e=0. Equation (1.1) reduces then to Burgers' 

equation 

-oL a+ g(50)( o~a) ( oL a), 
and we have 

Hence 

$=r 7 ~ = - v , ,  A = w s - r  

Z1=07,  Z2=0,  Q = 0 ,  y = - g ( w ) .  

The linearized blowup system is (still for e=0) 

s = q~ + g ~ ,  r~ ~ = - 0 ~ ,  A ' =  i8 + v 8 r  r  
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Since g(w0)r we are in the genuinely nonlinear case in a domain where w is close 

enough to cOo, which we will always assume in the rest of this work. The identities of 

Theorem 3 read, for ~=0, 

~)ST " " ! ! r  JT'l : OTZ.s-+-(Vsq- g )~)Tq-Vsrr162 -}-Orc4 q - - -  r t (2.1.1) 

�9 T'2 =4),'r =Org'+gn'.  (2.1.2) 

Finally, we need to know the main terms (that is, the s2-terms) of Q: they are 

~=(ko~- 1 =) Q= \ 4T r ~ 0 ~  q-O(g4). (2.1.3) 

2. Reduction to a free boundary Goursat problem. 

2.1. A local solution of the blowup system. By the implicit-function theorem, we 

can solve in r the equation 

~ p~j (r ~, T, a(r ~, T), va ( r  ~, T)) &$j = 0 

in the form 

r = E(w, r,  r r (2.2.1) 

We can solve locally in s and 7 close to T0 the Cauchy problem (2.2.1) with initial value 

r w, To)=s. Calling r the obtained solution, we set then 

It follows that  

Hence the eikonal equation and the auxiliary equation are satisfied, and so is the residual 

equation. 

2.2. Straightening out a characteristic surface. We will see in Step 3 that  solving 

the linearized system reduces essentially to solving the main term in ~1 (Theorem 3) 

whose principal part is 

z~O~-r 
As in [6], in order to obtain a characteristic Goursat problem, we consider the "nearly 

horizontal" surface E={T=r through {r=ro , s=M} which is characteristic 
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for this operator taken on r ~, O. We perform then in the nonlinear blowup system the 

(known) change of variables 

where X is zero near one and one near zero, and 7 >0  is small enough. 

We now work in a subdomain of 

X<~M, 0 ~< T ~< T = r  

w of [6] has no equivalent here, so we jump to 

2.4. Construction of an approximate solution in the large. For s=0 ,  the exact solu- 

tion r Vo, Wo of the blowup system is 

r  To), ~o=O~R(1)(X,Y,~-o), ~o=R(1)-lgT(O~R(1)) 2. 

Gluing together r Vo, Wo with the true local solution r ~, ~ yields as in [6] an approx- 

imate solution ~(0)V(0), ~(0) for which s  These right-hand sides 

are smooth, flat on { X = M } ,  zero near {T=0},  and vanish for s=0 .  

2.5. The condition (H). For the sake of completeness, and because it is an essential 

point, we repeat here what has been said in w of [6]. 

We say that  r satisfies the condition (H) in a domain D bounded below and above 

by {T=0}  and { T = T }  if r  vanishes (appropriately) only at some point M - - ( m , T )  

of D. More precisely, in D, 

r  r  ~ ( X , Y , T ) = M ,  
(n) 

r  Vx ,Y(r  V~i ,y( r  

The approximate solution ~(0) from w satisfies, thanks to (ND), this condition (H) at 

t ime 

= To = ( -  inf -gO2R (1) (X, Y, TO)) - 1  ---- "~0 --To" (2.2.3) 

3. Reduction to a Goursat problem on a fixed domain and condition (H). 

3.1. Reduction to a fixed domain. Exactly as in [6], to be free to adjust the height 

of the domain, we perform a change of variables depending on a parameter A close to 

zero: 

X = x ,  Y = y ,  T = T ( t , A ) - - t + A t ( 1 - x l ( t ) ) ,  (2.3.1) 
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where X1 is one near zero and zero near To, and To is defined in (2.2.3). We hope that  

the reader will not confuse these coordinates with the original coordinates! To describe 

the fixed domain Do in which we will work, we first consider the following picture in the 

plane {x=M}:  

(i) Fix wl small enough to have g # 0  for wo-wl ~<w~<Wo+Wl. 

(ii) Fix 0<z~< 1-2 ar6, and consider the points Ij with coordinates 

Ii=(y=wo-wl,t=O), /2 : (020 ~-021,0), I3=(bOo-bol~-To/v, To), 

I4=(wo+wl-To/u, To), I5=(wo-w14-2To/,,O), I6=(wo4-wl-2To/t~,O). 

We choose ~0--TO SO small that  1 2 U<~T 6 and 0 < T o = ~ o - 7 0 <  ~ ~uwl, so that  (wo, 0) lies 

in the interior of the segment I516. For some large constant Ao, we denote by /90 the 

cylindrical domain 

Do = { -Ao  ~< x ~< M, (y, t) E (Ili31412)}. 

For technical reasons, our actual domain Do wilt be a slight modification of Do: for some 

~/1 >0, consider the lines 

~1 , { t  T/1 61= { t=O,y-(wO-Wl)=--~(x-M)}  52=_ =O,y-(wo+Wl)= w ( x - M )  }. 

The domain Do is the domain bounded by the planes x=-Ao,x=M, t=O,t=To, the 

plane containing ((5t, Ilia), and the plane containing (52, I214); these planes have normal 

n~: = (-~71, +u, 1). It is understood that  Ao and small r/1 are chosen such that  r satisfies 

(H) for a point M interior to the upper boundary of Do. 

We denote now by ~(k, r v, w) the nonlinear equation $ of the blowup system trans- 

formed by the two successive changes of variables (2.2.2) and (2.3.1); we use similar nota- 

tions for the other equations. Our aim is to solve the new nonlinear system in (A, r v, w) 

in the domain Do, starting with 

A (~ = 0, r = ~(o), v(O) = ~(o), w(O) =,~(~ 

Since the solution we start from has already all the good traces on { x = M }  and {t=0},  

we need only solve the linearized system in flat functions. 

3.2. Structure of the linearized system. By the same lemma as in [6] (Lemma 3.1 of 

Par t  III), we have, with q=O~T/OtT, the identity 

Oag+ 0r g(r q) + Ov g( vtq) + Ow g( wtq) = q~ , 

and similarly for the other equations. Thus the linearized system 

(A)'=h 
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can be written 

v, w)= 

and similarly for the other equations. Here, 

~ = $ - ~ q C t ,  V =  i j -  iqvt , lJV = ~b- ~qwt , Z = lfV- v~, 

and (E ~) denotes the linear system obtained from the linearized blowup system (Propo- 

sition II.2 of Part II) in the original variables s, w, T by the two successive changes of 

variables (2.2.2) and (2.3.1). As in [6], we neglect the "quadratic errors" q~L and so on. 

The idea for adjusting J~ is the following: once ~ is known, we want to have r 1 6 2  

satisfy again condition (H) for some point on the upper boundary of our fixed domain Do. 

This can be achieved by picking up ~ appropriately; this is what we call the "fundamen- 

tal lemma" (see w167 3.3 and 3.4 of [6]). Note that,  at this stage, it is the nondegeneracy 

condition (ND) which ensures the stability of the vanishing pattern of Cz under pertur- 

bations. The iteration scheme is identical to that  of [6, w which we do not repeat here. 

Hence, it is enough to solve the transformed linear system 

~ / ) = ] ,  (7~'~)=g, (A'~--)=]~ (2.3.2) 

in Do. 

Step 3. Existence and tame estimates for the linearized problem. 

1. Structure of the linearized system. In order to write down the transformed lin- 

earized system, let us denote by ZI ,0~-S ,Q,  and so on, the transformed operators of 

Z1,0s, Q, and so on. We n o r m a l i z e  Zl to have it be Ot for ~=0, so that  (as in [6]) 

Z=Ot+S2zoOy, S=Ox+~2soOt, 

and the transformed linearized system has the form 

Z S 2 + ~  2 (Sr247 -}-0~1 Z~-1-0~2~ "~ ]1, 

2 2 2 2 2#  Z ~ + ~ l Z ~ + ~ 2 ( b + ~  Z H 2 + ~  ~30~2+~ 11(2)=]2. 

(3.1.1a) 

(3.1.1b) 

Here, 

(i) ll(Z), l~(Z) are linear combinations of VZ and Z, while H is a linear combination 

of Z and 0y, 

(ii) N=N1Z2+2c2N2ZOy+N302y, with 

1 +0(c2), N3 -- OtT 
N1 = 4(OtT)(mo+T(t, A)) (zo+T(t, •))3 - t - O ( c 2 ) '  
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(iii) all the coefficients of Z, S, N, ll, l~, H,  and also the a 's  and the fl's, involve at 

most third-order derivatives of 0, w and second-order derivatives of v. 

Finally, remember that  in the process of solving the blowup system, we linearize 

only on functions for which 

(3.1.2) {t=0} is characteristic for ZS+~2(Sr 
(3.1.3) the coefficients a l  and a2 can be made arbitrarily small. 

Note also that  Do is an influence domain for Z, so that  solving (3.1.1) yields exact 

solutions of the linearized system (2.3.2), in accordance with w of Part  II. 

2. Energy inequality for the linearized system. We replace ~2 by r and set 

= ZSZ+r162  

We set Z=Z]r in the linearized system (3.1.1), so we have now to solve the system 

Pk-~Ell(Zk)-~-OllZ~-ol2~ = ]1, (3.2.1~) 

Z2~+~lZ~+~2~+cZHZk+r -- ]2. (3.2.15) 

There are two main differences with the treatment of [6]: first, we do not have to solve 

only for P,  but for a coupled system; second, we want to prove estimates in Do, and 

hence we have to check that  the geometry of Do is correct. 

With the notations 

A = S r  5 = T o - t ,  g = e x p h ( x - t ) ,  p2=St'g, I ' Io=I ' IL~(Do),  

we have the following energy inequality. 

PROPOSITION 3.2. Fix #>1 .  Then there exist ~o>0, ao>0 ,  r  ho and C > 0  

such that, for all smooth r v, w satisfying (H), (3.1.2) and 

I r 1 6 2 1 7 6 1 7 6 1 7 6  <<. 

for all O<<.r h>~ho, if ]al]+]aul<<.ao, we have the inequality 

h]pSZk]2 ~_ hlpg2kl~ ..~hlpOyZkl2 ~_E2 / ~/z-lg(S~)(1 +Sh)102k] 2 

+]pZ ~l~ + h]p~] 2 <~ CIp]l ]2 +Ch-  l [p ]2]~. 

Here, the functions k, ~ are supposed to be smooth and to satisfy (3.2.1) and 

k(x,  y, O) = k , (x ,  y, O) = k**(x, O) = O, 

(3.2.2) 

k(M,y, t )=O, ~(x,y,O)=(Pt(x,y,O)=O. 
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Proof. (a) We first extend the proof of (4.2.2) of [6] to our domain Do. All we 

have to do is to check the sign of the boundary terms on the part of the boundary of 

Do which we have not already checked, that  is, on the "lateral" planes with normals 

n+=(-~l , -4-u ,  1). We assume that  ~ is small enough to have ~h-es0~>0. Using just u 

here instead of ]r to stick to the notations of [6], we see that  twice these terms on the 

plane with normal n+ is the integral of 

(1 +r u)a(SZu) 2 + (Z2u) 2 [(-71 +cs0) (d -Ea(Sr  ) +r162 + gl  (1 +r 

+ (Oy Zu) 2 [r162 +ezo u)(-dN3 + r - 2c3c(Sr uN2 + ~(7/1 - r162 - c)] 

+ (O2u)2e2N3c(Sr +r + 2 (Z2u)(SZu)r162 +eZou)N1 +eg2u] 

+ 2e(Z2u)(Oy Zu)[(~h - r r162 + u(Sr - ecN1)] 

+2e(SZu) (OyZu)[(1 + r u)eN2a(Sr +,(a(Sr - c)] 

+2e(SZu) (OUyu)c(1 +ez0~)+2r  2 (Z2u)(02u)Nlc(Sr  ) (1 + Ez0 v) 

+4r  3(0yZu)(0 2u)N2c(Sr 

With the same choices a=A-15~g, c=c'5Ug, d=-d'5Ug as in [6], we can write these 

terms as a sum of two squares and two quadratic forms as follows: 

=(l+Ezou)a[SZu+~(SO)(Nl~ l+~zou]~N2u ~Z2u 

. . . .  [/p(N3 -ct) +~N2"~ OyZu+Ect(SO)O2u] j 
~ t ~ ) ~  l~ezou 

+r162162 ) [02u - EN2u Z2u 

+ 5Ug(~/1 - es0)[(d' +r 2 + 2~2N2 (Z2u)(OyZu) +~ (N3 - c')(OyZu)2] 

+~5~g(Sr [ ( -d 'N]  + O(e))(Z2u) 2 - (2L, d'N3 + O(r Zu) 

+ (d'N3 + 0(~))(OyZu)2]. 

The first quadratic form in the factor of 771-~s0 is clearly positive for small ~. The 

second is positive for small e only if L,2<-N1/N3: taking into account the explicit form 

of N1 and N3, and the choice of L,, this condition is satisfied for small ~. The boundary 

terms on the other plane for which u is changed into -~, are handled similarly. 

We have thus proved that  the energy estimate (4.2.2) of [6] about the operator ~5 is 

valid in a local domain such as Do. 
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(b) We combine now this estimate with the standard estimate for Z: 

h[pv[~ <~ ClpZv[~, v(x,y, O) = O. 

We write (3.2.15) in the form 

Z(Z~+sHZk+s~3O2k) = -/3~ Z~-/32~-r 2, Z]k-sl[(Zk)+]2, 

and obtain then 

[PEI~ <~ Ch-lEo, 

with 

and 

= Z~+cHZk+e~sO2k 

Eo = IP]212 § ]PZ'~I~ § IP<~I~ +~=([PVZkl 2 + [PO2yk[~ + I p V k l 0 2 )  �9 

For some small ~2 >0 to be chosen, we also obtain 

U2 [pZ'~]~ <~ ~?2Ch-1 EO § CE2 Ipvzkl~ + c~2 s 2 IpO~ k l~. 

Using the inequality on/3 ,  we have now 

hlpSZkl~ +hlpZ2kl~ +~hlpOyZkl~ +c2 ipO~k[ 2 

<~ CI]ll~ +c~2lpVZkl~ +CIp,~l~ +co~(Ipfi-,l~)+E21po~kl~). 

Adding (3.2.3), (3.2.4) and (3.2.5), we first choose c~0 and Y2 such that  

Coz2 § < 1, 

then choose h0 big enough to absorb all the remaining terms such as 

on the left-hand side of the inequality. 

(3.2.3) 

(3.2.4) 

(3.2.5) 

3. Higher-order inequalities. This section is entirely identical to the corresponding 

section of [6]: Lemma IV.3.1, which is a lemma o n / 3  remains valid, and Lemma IV.3.2 is 

simplified because there is no Z to the left of [K,/3]. On the other hand, the commutation 

of factors such as K with (3.2.1)5 only produces harmless terms. As in [6], we see that  

we can obtain a control in the ~ s  without decreasing s with s, but only by increasing h. 

The statement corresponding to Proposition IV.3.2 of [6] is here 

[] 
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PROPOSITION 3.3. There exist 70>0, c~0>0, an integer no and c0>0 such that for 

smooth functions r  w satisfying (H), (3.1.2) and 

Ir  r + Iv-v  (~ [co + [ w - w  (~ Ico ~< 70, 

and all integer s, if [ch[+[c~2[<~c~0 and O<~E<~EO, there exists Cs>0 for which we have 

the inequality 

l&ls+lTls+121.~ <~ C[l( j ,~ ,h) is+~o+(l+I(r  h)l~o]. (3.3.1) 

Here, the functions ~), V, 2 are supposed to be smooth and fiat on {t=0} and {x=M},  

and satisfy the transformed linearized system (2.3.2). 

4. Existence of fiat solutions. It is a consequence of the solvability of j5 in flat 

functions. 

PROPOSITION 3.4. Let r  c~i,a2 and ~ satisfy the assumptions of Proposi- 

tion 3.3. Then for all smooth f l , s  fiat on {t=0} and {x=M},  there exists a unique 

smooth solution of (3.2.1), fiat on {t=0} and {x=M}.  The corresponding smooth and 

fiat ~?, V, 2 satisfy the tame estimate (3.3.1). 

Proof. First, we extend the fields Z, S, the operator 15 and the various coefficients of 

(3.2.1) to transform (3.2.1) into a system global in w, with the same properties as (3.2.1). 

In particular, we assume that  we can solve the extended/5 in smooth flat functions as 

in Proposition IV.4 of [6], and that  we have the same estimates. 

Next, we use the following fixed point scheme: 

~]~(n+l) _F~ll(Zk(n))§ (oqZ+~2) ~(n) = ]1, 

ZE (~+~) +~Z~(") +~(~)+~[~0~ ,  Z] k(~) +~li(zk(~)) = ]2, 

with, as before, 

[~(~) = Z+(~) +cHZ]c(n) § c~30y2 k(n). 

We start from ]~(o)----0, (b(0)=0. We denote by ]]-]] the norm whose square is the left- 

hand side of (3.2.2), where we put an additionnal coefficient 72 in front of the terms 

involving ~), and by II]' ]][ the norm 

IIl(k,,i,)lll ~=ll(k,`i,)ll2+lpEIo ~, k=z(F+EHZk+e1330~k .  

We prove, exactly as in the proof of (3.2.2), that  for an appropriate choice of 72 and h0, 

we have the contraction (K0 < 1) 

Q~+I <~ KoQn, 
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with 
Qn+l = rll(k(~+l)-k(n), ~)(n+l)_~<~>)lll. 

Moreover, by commuting factors K = T  l, l<<.s, as in [6], we obtain the same type of 

inequalities with a control of the sum of the norms of the terms 

(K(]~(n+l)- ]~(n)), K((p(~+l ) -  ~(n))) 

for the various K of order at most s. Thus we see that  the sequence of smooth and flat 

functions ]~(n)(p(n) converges in all H s to a unique smooth and flat solution of (3.2.1). [] 

Step 4. Back to the solution u. 

1. The constructed piece of solution belongs to u. In the previous sections, we have 

obtained a solution ~, r v, w of the blowup system in a domain Do, with r satisfying 

the nondegeneracy condition (H) and r vanishing at a point M~. The two changes of 

variables (2.2.2) and (2.3.1) being close to the identity when E is small, the transformed 

domain D1 of Do back to the original blowup variables s, w, ~- is as closed as we want 

to Do. We extend D1 down to the plane {~-=T0} in a domain D2 which is now bounded 

by vertical and horizontal planes, 

- A o  <~ s ~ M, TO <<. T ~ ~ ,  

and by two lateral surfaces as close as we want to planes with normal n• iv, 1) 

(see w of Step 2). Recall that  D2 contains on its upper boundary the i m a g e / ~  of 

M~ where Cs vanishes. We can now "recur" this domain, that  is, find a subdomain D3 

of D2 with a simpler geometry, but still containing the crucial p o i n t / ~ :  we replace the 

lateral surfaces by planes with normals (0, i v ,  1). The image D4 of D3 by �9 is again a 

cylindrical domain (with a trapezoidal basis in (w, 7)) that  we can recut as in [6] into a 

domain 

- A o + C ( T 2 - T ~ ) < . a < ~ M ,  To<<.r<~, 

which is also laterally bounded by planes with normals (0, +v, 1). We denote by M~ 

the image o f / ~  by O. The image D5 of this domain in the original variables (x, t) is 

an influence domain for the linearized equation of (0.1) on ~t=(~/rl/2)G, thanks to the 

choice of v and C big enough. Thus, by uniqueness, the constructed piece of solution 

in D5 coincides with the true solution u of the Cauchy problem, whose second-order 

derivatives blowup at M~. 

2. The function u does not blowup anywhere else. The proof is completely analogous 

to that  of [6]: we extend first, in a strip close to the light cone, the obtained function 
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G globally in w to  an approximate  G which blows up only a t / ~ .  Then  we extend this 

approximate  G into the  interior of the light cone, and complete the proof  by the s t andard  

energy inequality argument .  
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