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1. I n t r o d u c t i o n  

The basic entity in complexity theory is a computat ional  problem which, from a math-  

ematical point of view, is simply a function F from finite binary strings to finite binary 

strings. To make some functions more intuitive these finite binary strings should some- 

times be interpreted as integers, graphs, or descriptions of polynomials. An important  

special case is given by decision problems where the range consists of only two strings 

usually taken to be 0 or 1. 

A function F should be realized by an algorithm and there are many ways to mathe- 

matically formalize the notion of an algorithm. One of the first formalizations which is 

still heavily used is that  of a Turing machine. However, since we in this paper  do not 

deal with the fine details of the definition, the reader might as well think of a s tandard 

computer  with a s tandard programming language. The only idealization needed is that  

the computer  contains an infinite number of words of memory, each of which remains of 

bounded size. The algorithm has some means of reading information from the external 

world and also some mechanism to write the result. Time is measured as the number of 

elementary steps. 

A finite binary string x in the domain is simply called the input, while the output  

is the final result of the computat ion delivered to the outside world. An algorithm 

solves the computat ional  problem F if, when presented x on its input device, it produces 

output  F(x). A parameter  that  is important  to measure the performance of the algorithm 

is the length of the input which simply is the number  of binary symbols in x. 

In complexity theory the basic notion of efficiently computable is defined as com- 

putable in t ime polynomial in the input length. The class of polynomial-t ime solvable 

decision problems is denoted by P. Establishing that  a problem cannot be solved effi- 

ciently can sometimes be done but for most naturally occurring computat ional  problems 

of combinatorial nature, no such bounds are known. Many such problems fall into the 
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class NP: problems where positive answers have proofs that  can be verified efficiently. 

Standard problems in NP are satisfiability (given a formula ~ over Boolean variables, is 

it possible to assign t ruth values to the variables to make ~ true) and the clique problem 

(given a graph G and an integer k, are there k nodes all of which are connected in G). 

These problems are traditionally, in computer science, denoted by SAT and CLIQUE, 

respectively. It is still unknown whether NP=P,  although it is widely believed that  this 

is not the case. It is even the case that  much work in complexity theory, and indeed even 

this paper, would have to be reevaluated if NP--P. 

There is a group of problems in NP, called the NP-complete problems and introduced 

by Cook [14], which have the property that  they belong to P if and only if NP=P.  Thus 

being NP-complete is strong evidence that  a problem is computationally intractable, 

and literally thousands of natural computational problems are today known to be NP- 

complete (for an outdated but still large list of hundreds of natural problems see [21]). 

SAT and CLIQUE are two of the most well-known NP-complete problems. 

Many combinatorial optimization problems have a corresponding decision problem 

which is NP-complete. For instance, consider the following optimization problem: given 

a graph G, determine the size of the largest set of nodes which are all pairwise connected 

in G. Since solving this problem implies solving CLIQUE, a polynomial-time algorithm 

always giving the correct optimum would imply that  NP=P.  Optimization problems 

with this property are called NP-hard (not NP-complete since they do not fall into the 

class NP as they are not decision problems). Solving NP-hard optimization problems 

exactly is thus hard, but in many practical circumstances it is almost as good to get an 

approximation of the optimum. Different NP-hard optimization problems behave very 

differently with respect to efficient approximation algorithms, and this set of questions 

forms a research area in its own. 

In this paper we study the possible performance of a polynomial-time approximation 

algorithm for the optimization version of CLIQUE, traditionally denoted Max-Clique but 

here we use the abbreviation MC. We demand that the algorithm, on input a graph G 

with n vertices, outputs a number that  is always at most the size of the largest clique in G. 

We say that  we have an f(n)-approximation algorithm if this number is always at least 

the size of the largest clique divided by f(n). The best polynomial4ime approximation 

algorithm for MC achieves an approximation ratio of O(n/(logn) 2) [12], and thus it is 

of the form n 1-~ This is not an easy result but  note that  an approximation factor of 

n is trivial since the clique cannot contain more than all n nodes and any set of a single 

node is a clique. On the negative side, there has been a sequence of papers, [11], [17], 

[2], [1], [8], [18], [9], [7], giving stronger and stronger inapproximability results based 

on very plausible complexity-theoretic assumptions. The strongest lower bound is by 
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Bellare, Goldreich and Sudan [7] who prove (under the assumption that  N P # Z P P ( 1 ) )  

that, for any e>0,  MC cannot be efficiently approximated within n 1/3-~.  We strengthen 

these results to prove that, under the same assumption, for any s>0 ,  MC cannot be 

efficiently approximated within n 1-~. Thus, MC is indeed very difficult to approximate. 

As in previous papers we use the connection, discovered by Feige et al. in their seminal 

paper [17], between multiprover interactive proofs and inapproximability results for MC. 

Let us briefly describe this connection. 

NP can be viewed as a proof system where a single infinitely powerful prover P tries 

to convince a polynomial-time verifier V that a statement is true. For concreteness let 

us assume that the statement is that  a formula ~ is satisfiable. In this case, P displays a 

satisfying assignment and V can easily check that  it is a correct proof. This proof system 

is complete since every satisfiable ~ admits a correct proof, and it is sound since V can 

never be made to accept an incorrect statement. 

If ~ contains n variables, V reads n bits in the above proof. An interesting question 

is whether we could restrict V to read fewer bits, the fewest possible being a number 

of bits which is independent of the number of variables in ~. It is not hard to see that 

this is impossible unless we relax the requirements of the proof. The proof remains a 

finite binary string, but we allow the verifier to make random choices. This means that  

given ~ we can now speak of the probability that V accepts a certain proof ~. When 

V was restricted to be deterministic this probability was either 0 or 1 while now it is a 

number in the interval [0, 1]. In this paper we assume that  if ~ is satisfiable then there 

is a proof that makes V accept with probability 1 while when ~ is not satisfiable then 

there is some constant s < 1 such that for any proof 7r the probability that V accepts 

is bounded by s. The parameter s is called the soundness of the proof and a 0-sound 

proof is a proof in the original sense of the word. Note that  this soundness probability is 

only taken over V's internal random choices and is true for any nonsatisfiable ~ and any 

attempted proof w. This implies that we can decrease this false acceptance probability 

to s k by using a verifier V (k) that runs the original verifier k times using independent 

random choices. 

It is an amazing fact, proved by Arora et al. [1], that  any NP-statement has a proof 

of the above type, usually called probabilistically checkable proof or simply PCP, where 

V only reads a constant, independent of the size of the statement being verified, number 

1 Apart from being an amazing proof of bits of the proof and achieves soundness s = ~ .  

system this gives a connection to approximation of optimization problems as follows (for 

(1) ZPP is that class of problems which can be solved in expected polynomial time by a probabilistic 
algorithm that never makes an error, i.e. only the running time is stochastic. The faith in the hypothesis 
NPCZPP is almost as strong as in NP~P. 
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details on the connection to MC we refer to [17]). 

Fix a formula ~ and consider the P C P  by Arora et al. We have a well-defined 

function acc(~), the probabili ty that  V accepts a certain proof 7. Consider max~ acc(~). 

If ~ is satisfiable this opt imum is 1, while if ~ is not satisfiable then the opt imum is at 

most s. Thus, even computing this opt imum approximately would enable us to decide 

an NP-complete question. It  turns out that  by choosing a suitable coding one can make 

max~ acc(~) be proportional to the size of the maximal clique in a graph G~. It  follows 

tha t  approximating MC within a factor 1/s  implies solving an NP-complete  problem, 

and hence the former must be NP-hard.  

Since we are aiming at rather  exact quanti tat ive results, all parts  of the above argu- 

ment have to be carried out in detail and optimized to identify the crucial parameters  to 

obtain the best possible results. This has already been done and, somewhat surprisingly, 

for clique the situation is not very complicated. 

The construction of G~ uses all the possible random choices made by V, and hence 

it is essential that  this number is polynomial, or, in other words, that  V only flips a 

logarithmic number of binary coins. Apar t  from this requirement, the only parameter  

that  mat ters  is the amortized free-bit complexity. To explain this concept let us give a 

small example. A common "subroutine" in a P C P  is to check that  a function g given by 

a table is a low-degree polynomial; in the simplest case a linear function. To be specific, 

assume that  the proof requires tha t  g is a linear function over GF[2] from {0, 1} n to {0, 1} 

and is thus given by 2 '~ bits. To check this, V can generate two random points, x and y, 

and check that  g(x)§ Thus Y reads the bits g(x) and g(y) recording 

their values and then checks tha t  g(x§ has the correct value. One can prove (see [6]) 

that  any g that  passes this test with high probabili ty is close to a linear function. This 

essentially means that  one can assume tha t  g is a linear function, and this can be used 

to prove correctness of the overall PCP. 

Now consider a general PCP. During the verification procedure V looks at a number  

of bits. Sometimes V has no idea what the value of the bit should be (as when reading 

g(x) and g(y) in the example) while some other times it is in a "checking mode" (as 

when reading g(x§ above) and knows what  to expect, and when the value is not as 

expected, V rejects the input. The number of questions of the first type is the number  

of free bits, and if we denote this number by f ,  the number of amortized free bits is 

f / l o g  2 s -1 where s is the soundness. One indication that  this is a natural  parameter  

can be seen from replacing V by V (k) as discussed above, i.e. running V k times with 

independent random choices. In this case f is replaced by k f  while s is replaced by s k. 
Thus the number of amortized free bits is preserved. 

The connection between inapproximabili ty and amortized free bits is now the fol- 
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lowing [17], [18], [9], [341: Suppose tha t  any NP-s ta tement  admits  a P C P  which has a 

polynomial-t ime verifier which uses logarithmic randomness and uses k amortized free 

bits. Then for any s>0 ,  unless N P = Z P P ,  MC cannot be approximated with n 1/(k+1)-~ 

in polynomial time. 

Bellare, Goldreich and Sudan [7] proved that  in fact we essentially have an equiva- 

lence in that  if it is NP-hard to approximate  MC within a factor n 1/(k+l) then NP has 

a proof system with essentially k amortized free bits. 

In this paper, for any ~>0,  we give a proof system which uses 5 amortized free bits. 

As discussed above, this gives an inapproximabili ty factor for MC of n 1-~ for any s>0 .  

This paper  is the final version of the results announced in [24] and [25]. 

Related results. The framework of PCPs  has lead to a number  of strong inapprox- 

imability results. For a good survey of the results we refer to [7], and let us here only 

mention a couple of the strongest results on some problems of general interest. Feige and 

Kilian [19] have used the results of this paper  to derive the same strong, i.e. factor n l -e ,  

inapproximabili ty results for chromatic number. Chromatic  number is the problem to 

color the nodes of graph G with the minimal number of colors such tha t  no two adjacent 

nodes have the same color. 

Set cover is another central problem and an instance of this problem is given by a 

family of sets Si contained in a universe X.  The task is to find the minimal size subcollec- 
S k tion ( i j ) j=l  tha t  covers X,  i.e. such tha t  each x E X  is contained in some S~j. A greedy 

strategy approximates this number within approximately l nn  (see, for instance, [27]) 

where n is the cardinality of X. This was proved by Feige [15] to be the best possible 

performance for an efficient approximation algorithm. 

There are many  NP-hard optimization problems which can be efficiently approxi- 

mated  within some constant cl but such that  there is another constant c2 for which the 

approximation problem is NP-hard.  For some problems, the gap between cl and c2 can 

be made arbitrari ly small. The latter is true for Max-E3-SAT (the problem of satisfying 

the maximal number of clauses in a CNF formula where each clause is of length exactly 3) 

and Max-Lin-2 (satisfying the maximal  number of equations in a linear system of equa- 

tions mod 2) where the cl and c2 both are essentially s and 2, respectively [26]. There are 

other problems where a gap remains between the two constants. Examples of such prob- 

lems are Max-Cut  (given a graph, parti t ion the nodes into two sets such that  a maximal  

number of edges go between the two sets) and Max-E2-SAT (analogous to Max-E3-SAT 

with the difference that  clauses are of length 2). For Max-Cut,  c1~1.074 [22] and 

22 1 7 - e ~ 1 . 0 6 2 5  [26], c 2 = s f - s ~ 1 . 0 4 7  [26], while for Max-E2-SAT, c1~1.138 [16] and c 2 = ~  

both for an arbi t rary e>0 .  
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Organization of the paper. In w we give some basic definitions and statements of 

prior works that are essential to us. In w we take the first steps towards the desired 

PCP  and recall the long code introduced in [7]. It is important to test the property that 

a given string is a correctly formed long code and in w we give such a test. It turns out 

to be essential that  this test can take into account side conditions, and thus the main 

result of this section is given in Theorem 4.17. In w we show how to use the constructed 

test as a subroutine to get the desired PCP for an arbitrary NP-statement. 

2. Def in i t ions  a n d  f o r m a l  s t a t e m e n t s  o f  p r io r  w o r k  

We consider binary strings. The length of a string x is denoted by Ixl and we also 

use absolute values to denote the size of other natural objects. In particular ITI is the 

cardinality of a set T. The notation O(f(n)) denotes any function which is bounded by 

cf(n) for some absolute constant c and all sufficiently large values of n. 

An assignment on a set U is an element of {0, 1} U. For two sets UCW and an 

assignment y on W we let Ylu be the induced assignment on U. For a set/~ of assignments 

of W we let 7rv(~) be the set of assignments on U that contain exactly Ylu for all yE~. 

A function f defined for assignments on U is automatically extended to assignments on 

W by letting f(Y)=f(Ylv). 
A Boolean formula is a CNF formula if it is a conjunction of disjunctions of literals, 

where a literal is a variable or a negated variable. Such a disjunction is also called a 

clause, and a formula is a 3-CNF formula if each clause is of length at most 3. 

We introduce some more notation as needed later but right now we turn to some 

basic definitions. 

2.1. Complexi ty  classes 

To define complexity classes we need to fix one formal model of computation. We let 

this be the Turing machine (for a definition see [30]), although any other formal model 

would do as well. Time is measured as the number of elementary steps of the machine. 

A language is simply a set of finite binary strings. An example is the set of satisfiable 

Boolean formulas under some suitable encoding. When speaking of Turing machines in 

connection with languages we say that a Turing machine M accepts an input x if and 

only if it outputs 1 on this input and otherwise we say that it rejects. We say that M 

accepts a language L if it accepts exactly the elements of L. The most basic complexity 

class is P. 
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Definition 2.1. A language L belongs to P if and only if there is some constant  c 

such tha t  there is a determinist ic Turing machine M tha t  on every input  x runs in t ime 

O(Ix] c) and accepts  L. 

Other  classes of interest in this paper  are NP  and ZPP. A probabilist ic Turing 

machine has the ability to select a r andom bit. This has become known as "flipping a 

r andom coin" and we use this terminology. The  ou tpu t  of a probabilistic machine is in 

general a r andom variable. For ZPP, however, the ou tpu t  is de termined by the input  

only. 

Definition 2.2. A language L belongs to ZPP  if and only if there is some constant  

c such tha t  there is a probabilist ic Turing machine M tha t  on input  x runs in expected 

t ime O(Ixl c) and ou tputs  1 if and only if xEL. 

Thus  for Z PP  the answer of the machine is always correct  while the running t ime is 

relaxed to be t rue  only in the expected sense. The  class N P  is usually defined in terms 

of nondeterminis t ic  Turing machines. Since we do not need the definition of nondeter-  

ministic computa t ion  while proof  systems play an essential role here, we choose to define 

NP  in terms of proof  systems, and hence we need a detour.  

A proof  system is defined th rough  a verifier V. It  is an efficient a lgori thm and thus a, 

possibly probabilistic, polynomial- t ime Turing machine. It  needs some mechanism to  

access the proof, and we allow V to  have access to one or more oracles. An  oracle r can 

be thought  of as a bit string, and the quest ion "i?" is s imply answered by the i th  bit 

of 7r. W h e n  we want  to emphasize the fact t ha t  V uses a part icular  oracle 7r we write V ~. 

Once the input  x and 7r are fixed we get a well-defined probabi l i ty  t ha t  V '~ accepts the 

input  x. If  V is determinist ic then it is either 0 or 1, while if V is probabilist ic it is a 

number  in the interval [0, 1]. 

Definition 2.3. A language L belongs to NP  if and only if there  is a determinist ic  

polynomial- t ime verifier V such tha t  for some constant  c the following is true. On  each 

input  xEL there is a proof  7r such tha t  V '~ accepts x in t ime at most  O(IxlC). If  x~L 
there is no 7r such tha t  V ~ accepts x. 

It  is not  difficult to  see tha t  PC_ZPPC_NP, and it is not  known whether  any o f  the 

inclusions is proper.  It  is s t rongly believed tha t  Z P P c N P ,  while the  relation between 

P and Z PP  is more open to  speculation. For a more complete discussion of complexi ty 

classes and related concepts  we refer to  [30]. 
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2.2. Probabilistic proof systems 

As discussed in the introduction we are interested in proof systems where the verifier is 

probabilistic. The simplest variant is a probabilistically checkable proof. 

Definition 2.4. A Probabilistically Checkable Proof (PCP) with soundness s for a 

language L is given by a verifier V with the properties: 

(i) For xEL there is a proof 7r such that V ~ outputs 1 on input x with probability 1. 

(ii) For x~L and all 7r the probability that V" outputs 1 on input x is bounded 

b y s .  

We are interested in efficient PCPs and hence we assume that V runs in worst case 

polynomial time. There are many other parameters of V of interest. We here only discuss 

the parameters relevant to our paper, and for a more complete discussion we refer to [7]. 

Definition 2.5. The verifier V uses logarithmic randomness if on each input x and 

proof ~r, V ~ flips O(log Ixl) random coins. 

When discussing the acceptance probability of V as a combinatorial problem it 

is natural to discuss all possible executions of V. The only parts of V that are not 

predictable are the random coins and the answers that  V gets from the oracle. These 

parameters completely determine whether or not V accepts. We call a sequence of oracle 

answers and random coins a pattern. We are only interested in patterns that cause V 

to accept. The key concept we need is that  of amortized free bits but first we need to 

define free bits. 

Definition 2.6. A PCP uses ~ f  free bits if for each sequence of random coins of V, 

there are at most 2 / different sets of oracle answers that complete an accepting pattern. 

In our protocols, the number of free bits is in fact rather simple to calculate. When 

V reads bits in the oracle, either he has no idea what to expect or he is checking that  a 

certain bit has a given value. The number of free bits is then simply the number of read 

bits of the first kind. We now proceed to define amortized free bits. 

Definition 2.7. The amortized free-bit complexity of a PCP with soundness s is 

defined as 
f 

l og ( I / s ) '  

where f is the number of free bits. 

As mentioned in the introduction amortized free bits is the key to inapproxima- 

bility of clique. The basic construction is from [17] while the current statement of the 
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connection is from [7],(2) but at least Theorem 2.8 can be extracted from [11], [34]. 

THEOREM 2.8 [7]. Suppose that any language in NP admits a PCP with a probabilis- 

tic polynomial-time verifier that uses logarithmic randomness and f amortized free bits. 

Then, unless N P = Z P P ,  for any ~>0, Max-Clique cannot be approximated within 
n 1 / ( l + f + ~ )  in polynomial time. 

If one is only willing to believe that  N P C P  then we have the following variant. 

THEOREM 2.9 [7]. Suppose that any language in NP admits a PCP with a probabilis- 

tic polynomial-time verifier that uses logarithmic randomness and f amortized free bits. 

Then, unless N P = P ,  for any ~>0, Max-Clique cannot be approximated within n 1/(2+/+~) 

in polynomial time. 

We also need what is generally called a two-prover one-round interactive proof. Such 

a verifier has two oracles but has the limitation that  it can only ask one question to each 

oracle and that  both questions have to be produced before either of them is answered. 

We do not limit the answer sizes of the oracles which we denote by P1 and P2. 

Definition 2.10. A probabilistic polynomial-time ~ r i n g  machine V is a verifier in 

a two-prover one-round proof system with soundness s for a language L if on input x it 

produces two strings ql(x) and q2(x) such that  

(i) for xEL there are two oracles P1 and P2 such that  the probability that  V accepts 

(x, Pl(ql(x)), P2(q2(x))) is 1, 

(ii) for x ~ L  and for any two oracles P1 and P2, the probability that  V accepts 

(x, Pl(ql(x)), P2(q2(x))) is bounded by s. 

Let us be more specific on the order of the quantifiers. The provers P1 and P2 

depend on x but  must be fixed before ql(x) and q2(x) are produced, and hence the answer 

Pl(ql(x)) only depends on x and ql(x), and in particular it is independent of q2(x). The 

similar statement is true for P2(q2(x)). 

Brief history. The notion of P CP  was introduced by Arora and Safra [2]. It was a 

variation of randomized oracle machines discussed by Fortnow, Rompel and Sipser [20] 

and transparent proofs by Babai et al. [4]. Multiprover interactive proofs were introduced 

by Ben-Or et al. [10], and all these systems are variants of interactive proofs as introduced 

by Goldwasser, Micali and Rackoff [23] and Babai [3]. 

(2) In  [7], only t he  conclusion t h a t  N P C c o R P  is given. It  is no t  difficult, as  in [34], to get  t he  
conclusion NP----ZPP. 
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2.3. E s s e n t i a l  p r e v i o u s  w o r k  

The surprising power of interactive proofs was first established in the case of one prover 

[28], [33], and then for many provers [5]. After the fundamental  connection with approx- 

imation was discovered [17] the parameters  of the proofs improved, culminating in the 

following result [2], [1]. 

THEOREM 2.11 [1]. For any integer k>~3 there is a constant ek<l such that any 

language in NP admits a P C P  with soundness ck and a probabilistic polynomial-time 

verifier V that uses logarithmic randomness and reads at most k bits of the proof. 

Note tha t  the soundness of any V can be improved by making d independent runs. 

This implies, in particular, that  Cdk~C d, and hence the constant ck can be made to go 

to 0 when k increases. The number of bits read cannot, unless P - - N P ,  be decreased to 2 

preserving the property tha t  V always accepts a correct proof of a correct NP-statement .  

This follows from the fact that  one can decide whether a 2-CNF formula is satisfiable in 

polynomial t ime (for a formal proof see [7]). 

Properties described by reading 3 bits of a proof can be coded by a 3-CNF formula 

where the variables in the formula correspond to the bits of the proof. The acceptance 

probabili ty of a proof is closely related to the number of clauses satisfied by the corre- 

sponding assignment, and in this case Theorem 2.11 can be rephrased. 

THEOREM 2.12 [1]. There is a universal constant e < l  such that, given an arbitrary 

NP-statement,  we can, in polynomial time, construct a 3-CNF formula ~ such that i f  

the NP-s tatement  is true then ~ is satisfiable, while i f  the NP-s tatement  is false, no 

assignment satisfies a fraction larger than c of the clauses. 

Subsequent work, [26], has shown that  this universal constant can be set to any 

constant larger than ~; however, we do not use this fact here. On the other hand it 

is convenient to work with a very uniform-looking formula ~. The following extension, 

based on results in [31], is found as Proposit ion 1 in [15]. 

THEOREM 2.13 [15]. There is a universal constant c< 1 such that, given an arbitrary 

NP-statement,  we can, in polynomial time, construct a 3-CNF formula ~, in which each 

clause is of length exactly 3 and such that each variable appears exactly 5 times, such 

that i f  the NP-s tatement  is true then ~ is satisfiable, while i f  the NP-s tatement  is false, 

no assignment satisfies a fraction larger than c of the clauses. 

Let us now turn to two-prover interactive proofs. Given a one-round protocol with 

soundness s we can repeat  it k times in sequence improving the soundness to s k. This 

creates many round protocols, whereas we need our protocols to remain one-round. This 

can be done by what has become known as parallel repetition, and this simply means 
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that  V repeats his random choices to choose k pairs of questions (q~i), q(i)~k and sends 2 ]i=1 

ql )i=1 to P1 and (q2) i=  to P2 all at once. V then receives k answers from each prover 

and accepts if it would have accepted in all k protocols given the individual answers. The 

soundness of such a protocol can be greater than  s k, but Raz [32] proved that ,  when the 

answer size is small, the soundness is exponentially decreasing with k. 

THEOREM 2.14 [32]. For all integers d and s< l ,  there exists Cd,s<l such that 

given a two-prover one-round proof system with soundness s and answer sizes bounded 

by d, then, for all integers k, the soundness of k protocols run in parallel is bounded 

above by c k 
d , s  " 

In fact it is sufficient for our main theorem tha t  the acceptance probability, for fixed 

s and d, tends to 0, arbitrari ly slowly, when k increases. We do not know of a simple 

proof of this fact and hence we might as well use the powerful Theorem 2.14. 

Finally, we need standard Chernoff bounds to estimate the probabili ty that  we have 

large deviations. Constants are of no great concern and we use Theorem 4.2 and Theo- 

rem 4.3 of [29]. 

THEOREM 2.15. Let p 4  �89 and let X1, X2, ..., Xn be independent Bernoulli random 

variables with Prob[Xi=l] =p for each i. Then for all 5, O~5~p, we have 

1 n Prob[ p   nJ4p 

3. F i r s t  s t e p s  t o w a r d s  a g o o d  p r o o f  s y s t e m  

We want to construct a proof system for an arbi trary language in NP. The basic steps in 

constructing such a proof system are rather  simple and let us give an overview. 

We star t  by a simple two-prover one-round protocol which is obtained more or less 

immediately from Theorem 2.13. We improve the soundness of this protocol by running 

several copies of it in parallel and using Theorem 2.14. It  is possible to t ransform this 

improved two-prover protocol to a P C P  simply by writing down prover answers of P1 

and P2 to all possible questions. The answers are, however, rather long and since the key 

quantity we want to keep small is the number  of (free) bits read, we write the answers 

in a more useful form by asking the prover to supply the value of all Boolean functions 

of these answers. This is the long code of the answers as defined in [7]. This enables 

V to access complicated information in a single bit. The fact that  we allow the proof 

to contain the answers of the provers in expanded form puts the extra  burden on V to 

check that  the these parts  of the proof are indeed a correct code of something. Once this 
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is established, though in a very weak sense, we prove that  this something would have 

enabled P1 and P2 to convince the verifier in the parallelized two-prover protocol with a 

substantial  probability. 

We follow the above outline and start  by describing the two-prover protocols. We 

are thus given an arbi t rary NP-sta tement .  

We translate, using Theorem 2.13, the NP-s ta tement  to a 3-CNF formula 99 with 

the properties given in that  theorem. Assume that  the resulting formula has n variables 

and hence m = h n  clauses each of length exactly 3. Suppose 99-=CIAC2A...ACrn, where 

Cj contains the variables Xa~, Xb~ and xcr Consider the following one-round two-prover 

interactive proof. 

Simple two-prover protocol. (1) V chooses j E  [m] and kC{aj, bj, cj} both uniformly 

at random. V sends j to P1 and k to P2. 

(2) V receives values for x~j, Xbj and xcj from P1, and for xk from P2- V accepts if 

and only if the two values for xk agree and Cj is satisfied. 

Before we proceed let us make an observation. Since each clause is of length exactly 

3 and each variable appears  in exactly 5 clauses, if V first chooses a random variable 

xk to send to P2 and next a random clause containing Xk to send to P1, he generates 

questions with exactly the same probabili ty distribution. 

PROPOSITION 3.1. If  any assignment satisfies at most a fraction c of the clauses 

of 99, then V accepts in the simple two-prover protocol with probability at most �89 

Proof. The answers by P2 define an assignment x ~ to all variables. Since the provers 

coordinate their strategies, P1 knows x ~ and it is now not hard to determine the optimal 

s trategy for P1. Whenever V chooses a clause tha t  is satisfied by x ~ P1 answers according 

to x ~ Whenever V chooses a clause not satisfied by x ~ to have any probabili ty of V 

accepting, P1 should not answer according to x ~ and to have minimal probabili ty of his 

answer being found inconsistent with the answer of P2, he should change the value of 
1 exactly one variable. The probabili ty of V rejecting in this case is exactly 5, and since 

x ~ (as well as any other assignment) satisfies at most a fraction c of the clauses, the 

probabili ty that  V rejects is at least � 8 9  The proposition follows. [] 

We now concentrate on the game consisting of u parallel copies of this basic game 

which we call the u-paraUel two-prover game. In this game V picks u variables (xik)~=l, 

and then uniformly at random for each k he picks a clause Cjk tha t  contains xik. The 

C u u ( Jk)k=l are sent to P1 while (Xik)k=l are sent to P2. The provers return values for 

the queried variables and V accepts if the values are consistent and satisfy the chosen 

clauses. The verifier can again be made to always accept when 99 is satisfiable, while the 
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acceptance probability in the case where it is only possible to satisfy a constant fraction 

of the clauses is, by Theorem 2.14 and Proposition 3.1, bounded by c u for some suitable 

constant c. Combining with Theorem 2.13 we get a result that  is central to us and hence 

we state it for later reference. 

THEOREM 3.2. There is a universal constant c< 1 such that, given an arbitrary NP- 

statement, we can, in polynomial time, construct a 3-CNF formula ~ such that when the 

u-parallel two-prover game is executed on ~ the following is true. I f  the NP-statement 

is true then the verifier can be made to always accept, while if  the NP-statement is false, 

no strategy of the provers can convince the verifier with probability larger than c u. 

We reserve, for the rest of this paper, c to denote the value of the constant in this 

theorem. 

To fix notation, let U= {xi~, xi2,..., x~ } be the set of variables chosen by V and sent 

C to P2, and W the set of variables in ( Jk)k=l and thus the set of variables to which PI is 

supposed to give a value. Typically, provided no variable is chosen twice, U is of size u 

and W of size 3u and we always have UC_ W. 

As discussed in the introduction to this section we want to replace this two-prover 

interactive proof by a PCP consisting of the answers of PI and P2 given in a more 

redundant form. 

Definition 3.3 [7]. The long code of a string x of length w is of length 2 2~. The 

coordinates of the code word are identified with all possible functions f :  {0, 1}w~-* {0, 1}, 

and the value of coordinate f is f (x ) .  

The long code is extremely wasteful but in our applications we have wE3u,  and 

since u is a constant, the size of the code word is also a constant. Consequently, the size 

of proof is just a constant times larger than the size that would have been required to 

simply write down the answers of P1 and P2. 

To see how useful this coding can be, let us give a simple test to check the PCP 

we have constructed. Thus the PCP is supposed to be constructed from a satisfying 

assignment x ~ and for each U and W as constructed above, it contains the long code of 

x ~ restricted to the set in question. Let us denote by AT the supposed long code on the 

set T. 

The simple PCP test(l). (1) Choose U by choosing u variables with the uniform 

distribution. For i = 1, 2, ..., l, choose a set Wi by uniformly selecting, for each variable xi~, 

a random clause Cjl containing xi~, and letting Wi be the set of variables in the u clauses. 

The constructions of the different Wi are done independently. 
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(2) Choose a random function f :{0,1}v~-*{0,1} and let gi=CjIACj~A...ACj~ ,. 
Accept if Av(f )=Aw,( f )  and Aw,(gi)=l for all i=1 ,2 , . . . , / .  Remember  tha t  f can 

be interpreted as a function on Wi by ignoring the coordinates not in U. 

It  is easy to see that  the simple P C P  test always accepts a correct proof. Also note 

tha t  the simple P C P  test uses only one free bit, as determined by Au(f), independent 

of the value of l. Now suppose that  the proof is correctly formed in the sense that ,  for 

every T, AT is the long code of some string x T, and that  the simple P C P  test accepts 

with probabili ty p. We claim that  for sufficiently large I this gives strategies for P1 and P2 

that  make the verifier accept with probabili ty at least i p  Since the latter is at most c ~ 
5 " 

we get that  the soundness of the P C P  is at most 5c ~, and thus the number of amortized 

free bits would be O(1/u) which can be made arbitrari ly small. 

The mentioned strategy for the provers is almost what one expects. P1, when 

asked W, answers x W. Note that ,  since by assumption l=Aw~ (gi)=gi(x W) whenever V 

accepts, we can assume that  x W satisfies the clauses used to construct W. The s t rategy 

for P2 is the optimal s trategy given the s t rategy of P1- In other words, given U, P2 con- 

siders all W that  could be asked in the same conversation. He knows the answer of P1 

in each case and simply chooses the assignment that  maximizes the probabili ty that  the 

verifier accepts. For completeness we analyze this s t ra tegy in Appendix A. 

The assumption that  each AT is a correct long code is extremely strong and crucial 

in the above analysis; there are incorrect proofs that  do not satisfy this description and 

are always accepted. One such incorrect proof is the proof where each bit is equal to 1. 

We conclude tha t  the property of being a correct code word is a crucial one. We 

next design a test to test exactly this property. 

4. T e s t i n g  a s u p p o s e d  long  c o d e  

Let us first make some minor changes of the notation used so far and also introduce some 

new notation. We want to analyze a supposed long code A: C0,1} 2"~ HC0 , 1}. We replace 

C0,1} by C - l ,  1} with - 1  taking the place of 1. With this correspondence exclusive-or 

turns into multiplication. Other logical operators,  like A, remain defined (but note that  

the A is not multiplication). Thus from now on, A: { -1 ,  1} 2~ ~-*C-1,1}. The inputs to A 

are thought of as functions C - l ,  1} ~ H C - 1  , 1}. A typical function is denoted by f and we 

also use vectors of functions denoted by ~ s f--(fi)i=l for some s. To distinguish a function 

f from the string of length 2 w which we use as an input to A, we denote the latter (f) .  

We let A operate on a vector of functions and we let A((f)) be the vector (A((fi)))i=l. 
We are also interested in functions B: C - l ,  1 ) ~ H { - 1 ,  1} which we think of as Boolean 
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predicates. Combining A and ; a s  above we get B ( A ( ( ; } ) )  which is a bit, and B o ; w h i c h  

is the function which on input x takes the value B(fl(x) ,  f2(x), ..., f , (x) )=B(;(x)) .  

We are interested in the property that  A describes a correct long code, i.e., tha t  

A((f))=f(z~ for some x0 and each f .  In other words, a long code is simply a point 

evaluation. When probing a supposed long code we use the terminology "A looks like a 

point evaluation at x ~ to denote the fact that  A( ( f ) )= f ( x  ~ for all queried f .  Thus a 

correct long code always looks like a point evaluation at the input which it codes. Our 

main test  of a long code is now rather straightforward. 

The complete nonadaptive testis ). (1) Pick, with the uniform distribution, s random 

functions fi: { - 1 ,  1}w~-*{-1, 1} and ask for (A((fi}))~=l. 

(2) For all Boolean predicates B of s bits ask for A ( ( B o ; ) )  and check that  

A ( ( B o ; } )  = B( .4( ( ;}) ) .  

First note tha t  for A to have any chance to pass the test it must be correct on the 

constant functions. This follows, since if B is identically one then B ( A ( ( ; ) ) ) = I ,  and 

hence A((Bo;))  must also take this value and B o ;  is the function which is constant one. 

Similarly for B being identically - 1 .  

We refer to the test as the CNA test(s)  and we claim that  it uses s free bits, as given 

by the queries for (A((fi)))~=l. This follows since the values of A((Bo;))  are known 

before the corresponding query is asked. 

When accessing an oracle a question is called nonadaptive if the decision to ask 

the question is independent of previous answers. In the CNA test, the verifier asks 

all possible non-adaptive questions to which it knows the answer given the information 

A(( f  }). Note, however, that  there are other questions one might ask since if A ( ( f ) ) = l  

then we should have A ( ( f A f ' ) ) = l  for any function f ' .  These questions are, however, 

adaptive and seem harder to analyze, and we do not know how to use them to simplify 

the current analysis. 

Let us first show that  if the test  accepts then the outcome looks like some point 

evaluation. 

LEMMA 4.1. Suppose that the CNA test(s) accepts using a specific set of random 
choices ;.  Then there is an input x such that A looks like a point evaluation at x. 

In other words, A( ( f ) )=f (x )  for all tested functions f .  

Proof. Since, in case of accept, all values are determined by A(( f  )), it is sufficient 

to find an x such that  f i(x)=A((fi))  for i=1 ,  2, ..., s. Suppose that  there is no such x. 

Let ai=A((fi)) and consider the Boolean predicate Ba(z)A(A~= 1 (z i=a i ) ) .  Then B ~ o ;  
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is a function which is identically false. This follows since, by our hypothesis, for each 

x there is an i such that  f i ( x )~A( ( f i ) ) ,  and this causes the i th  term in the expression 

for B( f ( x ) )  to be false. B~(A( ( f ) ) )  is, however, true and hence A ( ( B ~ o f ) ) = l  while 

B ~ ( A ( ( f  ) ) ) = - 1  and the test rejects. This is a contradiction. [] 

Before going into the analysis consider the following example. 

Example. For any three specific assignments x ~ x 1 and x 2 let 

A( (f)  ) = f ( x~  f ( x l  )G f(x2).  

This is not a correct long code and in fact it is not difficult to see that  any correct long 

code takes the same value as A for exactly half of the possible f .  Now consider what 

happens when we do the CNA test. Suppose that  f i ( x~  1) for i=1 ,  2, ..., s. Then 

this is also true for any B o f a n d  hence A ( ( f ) ) = f ( x  2) for all queried functions f .  Thus, 

with probabili ty at least 2 - s  the test accepts and the result looks like the long code 

for x 2. Similarly it is possible to get results that  look like the long codes for x ~ or x 1, 

respectively. 

Since we want an arbitrarily small number  of amortized free bits we cannot afford 

a failure probabili ty of 2 - s  when we are using s free bits (since this gives at least one 

amortized free bit). Thus, we modify the acceptance criteria by allowing the supposed 

long code to look like a small number of different correct long codes. The important  

proper ty  is tha t  this set S of possible long codes is small and that  it can be specified in 

advance before performing the test. In the above example we have S = { x  ~ x 1, x2}. 

Let us return to the main path. In the following theorem, C~,k (resp. De,k,s) is a 

constant depending on only ~ and k (resp. s, k and s). 

THEOREM 4.2. For any E>0 and positive integer k, for s~C~,k and w~D~,k,s, the 

following is true. For any A: { - 1 ,  1}2~--~{-1, 1} there is a set S containing at most 2 ~s 

points in { -1 ,  1} w such that when the CNA test(s) is performed, except with probability 

2 -ks, the test either rejects or the outcome is consistent with being a point evaluation at 

an element xES .  

The probability is taken over the random choices of the verifier performing the test, 

i.e. over the choice of random functions fi. 

Proof. Decreasing s only strengthens the conclusion since it decreases the allowed 

size for S, and hence we can assume tha t  ~<�89 We do not only assume tha t  s is 

sufficiently large compared to k and s but also compared to constants 1 and m to be 

introduced later. This can be done since the latter constants are made to depend only 
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on k and e. A constant denoted by cz,m depends in some way on parameters  m and 1 

but not on other parameters.  The value of cz,,, might change from line to line. 

The proof relies on Fourier transforms and we assume that  the reader is familiar 

with the basic concepts. In our setting,(3) the Fourier coefficients are defined by 

^ 2 TM 

As = 2 -  E A(( f ) )  H f(x), (1) 
f:{--1,1I'v ~-+{--1,1} xec~ 

where aC_{-1,  1} ~ and we also have Fourier inversion given by 

A(<:>)= E J~ H:(-)- 
~ C ( - - 1 , 1 }  w x e a  

By Parseval 's  identity and I A ( ( f ) ) l = l  for all f,  we know that  E ~  A ~ = I .  

First we note tha t  whenever the test  asks A about  a function f it also asks about  the 

function - f .  This implies tha t  it is optimal for the adversary to have A((f))=-A((-f)) 
since any violation of this causes immediate rejection. From this point on we assume(4) 

that  indeed A((f))=-A((-f)) is true for all f .  This implies that  A ~ = 0  for all c~ with 

I< even. This follows since the terms for f and - f  cancel each other in the defining 

sum (1). 

The set S is taken to be the points tha t  are elements in Fourier coefficients tha t  

have a large absolute value and correspond to small sets. To be more exact, 

S =  {x [3a ,  a ~ x ,  such tha t  I~1 ~< ZAA~/> t 2 - ~ } ,  (2) 

~ 2  where l is a parameter  (depending only on k and E) to be specified later. Since ~ ~=1 ,  

at most 2~s/-1 different a have ^2 -~s A~>>.12 , and since each a contributes at most 1 points 

to S, it follows that  S contains at most 2 ~ points as required by the theorem. 

4.1. C o n c e n t r a t i n g  o n  a spec i f ic  p o i n t  e v a l u a t i o n  

We want to analyze the probabili ty that  the CNA test accepts and is not consistent 

with a point evaluation at any point of S. Recall that  whenever the test accepts it is 

(a) The  se tup might  look a little bit  unfamiliar.  Normally, we deal wi th  functions f :  { - 1 ,  1}n~--* 
{--1, 1}, and then  

= E II  and = E ]o II  x,. 
x iCc~ aC[n] l e a  

In this familiar case we can view x as a function from In] to {--1, 1}. In the  present  si tuation,  however, 
the  argument  to  A is a function from { - 1 ,  1} w to { - 1 ,  1}, and thus  it is na tura l  t ha t  { - 1 ,  1} TM takes 
the  place of In] in the  definition of the  Fourier t ransform. 

(4) Technically this  is justif ied by modifying A to satisfy this  proper ty  and then  working wi th  t he  
modified A. 
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consistent with some point y (cf. Lemma 4.1). It is easier to analyze the probabili ty that  

for a fixed point y ~ S  the test is consistent with a point evaluation at y but not at any 

point of S. 

Whenever the outcome of the test is consistent with a point evaluation at x it is also 

consistent with a point evaluation at any point x I such tha t  f i ( x ) = f i ( x  ~) for all i. Since 

the f i ' s  are random functions we expect about  2 ~-~ such x' .  Thus, arguing informally, 

if we have probabili ty p of the test  accepting and not being consistent with a point 

evaluation at any point S, there should be a point y such that  the probabili ty of being 

consistent with a point evaluation at y but not at any point in S should be around p2 -~. 

Since p anyway is of the form 2 -ks for an arbi t rary k we lose little by replacing 2 -k~ 

with 2 -(k+l)s while the advantage of working with a specific y is significant. We make 

this argument formal. 

LEMMA 4.3. Let f = f l , f 2 , . . . ,  f~ be uniformly and independently selected random 

functions. The probability that there exists a vector b=(b l ,  ..., b~) such that 

f{x f = b)l < 2 

is bounded by 2s+12-2"~-(s+4). 

Proof. Fix any value of b. The probabili ty that  x satisfies f ( x ) = b  is 2 -~ and it is 

independent for different x. Thus we can apply the Chernoff bound (cf. Theorem 2.15) 

with n = 2  ~, p = 2  -~ and 5=2  -(~+1). Summing over all possible b', the result follows. [] 

Now assume tha t  we have probabili ty p of the CNA test(s)  accepting while not being 

consistent with any point in S. Then if p > 2  -k~, by Lemma 4.3 we can conclude that ,  for 

sufficiently large w (e.g. w > s + 6 + l o g  (ks)), we have probabili ty ~pl of the test accepting, 

not being consistent with any point in S and being consistent with 2 w-(s+l) different 

points. Now for any point y ~ S let P~ be the probabili ty that  the CNF test is consistent 

with y but not any point in S. It  follows that  

1 ~  , ~ w -  (s4-1) 

Y 

as each accept event described above is counted in at least 2 ~-(~+1) different Py's  and it 

happens with probabili ty at least ! p  Hence for some y we must have 
2 " 

Pu ~>P 2-(s+2) ~> 2-(k+2)s" 

We state this for future reference. 
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LEMMA 4.4. Assume that w>~w~,k. If  for any fixed y ~ S  the probability that the 

outcome of the CNA test(s) is consistent with a point evaluation at y but not with a 

point evaluation at any point in S is at most 2 -(k+2)~, then Theorem 4.2 follows. 

Fixing y~S,  we proceed to estimate the probability that  the CNA test(s) is consis- 

tent with y but not with any point of S. We represent the first event (i.e. the consistency 

of the test with point evaluation at y) by 

~ 4(<Bo/>)=0, (3) 
B 

where Iy is an indicator function defined by Iy((f>)= 1 if A( ( I ) )# f ( y )  and 0 otherwise. 

For technical reasons we only sum over those B which are unbiased, i.e. take the value 

one at exactly 2 s-1 points. This makes the sum only smaller and corresponds to allowing 

only unbiased B in the CNA test. Note that  for such a B, the function B o f  is a random 

function with uniform distribution. Of course, different B do not give independent ran- 

dom functions, but each function in itself is random. Denote by Y the random variable 

defined by the sum (3). Using 

ly((f}) = �89 

we show (below) that  the Fourier coefficients i~,y of Iy satisfy 

I o , y  1 ^ = ~(1-A{y}), (4) 

I c~ ,y  - -  1 ^ ----sA~A{y}, for any c ~ O ,  (5) 

where /S denotes symmetric difference of sets. A basic fact that  we will use many 

times is that  for a uniformly chosen function f ,  the f (x) ' s  are identical and independent 

random variables, each uniformly distributed in {-1,  1}. Thus, •y  [Ixe~ f ( x ) = 0  for 

every nonempty set a, and (4) and (5) follow. For example, for a # O ,  

]~,Y = 2 - 2 ~ ' ~  E (1-A(( f>)f (y))  H f (x)  
f : { - l , l }W~-~{-1,1} xea 

=-2-2w'12 E A((f>) H f (x )=-~A~z~{v} .  
f : { - - l , I } ~ H ( - - l , 1 }  mesA{y} 

Now 

Y =  S ]  = io,  II 8(;(x)) 
B B a x 6 ~  

1 

B ~ x6~ 
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We divide this last sum into three pieces. The first sum, E 1, is over those c~ with I~[~>/, 

the second, E 2, is over those (~ with [c~l</ and 4 2 >~12 -e*, and E 3 is over the rest, ~A{y} 
i.e. over ~ with ]c~l</ and fi2 <12 -~*. The random variable Y can now be writ ten 

as 
1 

Y =  ~ 2~_ ~ --~(YI+Y2+Y3), 

where Yi corresponds to the sum E i. In order for y to be a possible point of evaluation 

we need Y=O, and hence 

Y / ) ~  2~_1 for i = 1 , 2  or 3. 

Recall that  we are actually interested in the intersection of the event Y = 0  and the event 

that  the test is not consistent with any point evaluation in S. Thus, we may analyze the 

partial  sums, the Y,'s, assuming that  the latter event holds (i.e. inconsistency with S). 

Actually, we take advantage of this liberty only in the analysis of ]I2- Specifically, we 

use the fact that  in this case for every x C S there exists a query fi of the test so that  

fi (x) r f~ (y). In other words, for f~ selected by the test we have f (x )  ~ f (y) ,  for every x �9 S. 

4.2. Estimating Y1 

It  is not difficult to bound 

Y1 ~ E E Ac, A{y} I-[ B(?x)) 

since we can compute the second moment  almost immediately. 

LEMMA 4.5. 
( 2 s ' ~  2 

E(Y?) < (2 - ' s /n+2e-2S/~- ' ) .  \ 2 s _ 1 )  I 

Before we prove this lemma let us state the immediate corollary we really need. 

COROLLARY 4.6. For each integer k there is a constant Sk such that for / > 4 k + 9  

and s>.sk we have 

Prob I I 1 )  g" 2s_ 1 ~ 2-((k+2)s+1). 

Proof of Corollary 4.6. By Markov's inequality (applied to Y~), the probabili ty that  

YI>~X is at most X-2E(Y~) .  Substi tuting 

X = g -  2~_1 
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and the bound for E ( Y  2) given by Lemma 4.5, and doing a calculation, establishes the 

corollary. [] 

Proof of Lemma 4.5. 

z 
(for notational simplicity we skip the condition lal ~>l in the calculations) 

) = E  A~,A{y}Ao~=A{y} H BI(J~x)) H B2(f(x))  
B 1 , B 2  1, 2 xEot l  xEot2 

OLI~ O~2 B l a B 2  1 xC~ 

(6) 

is bounded by 2e -k22 (~+4). 

E 2~2 E E ( H  Bl( / (x) )B2( / (x) ) )  ~p,{y} 
c~ B 1 , B 2  xCot  

To estimate this we first establish 

LEMMA 4.7. For any function G that maps {-1 ,  1} 8 to {-1 ,  1}, the probability, 

over a random unbiased predicate B, that 

a(z)B(z) > k 
zr s 

Proof. We opt for a simple proof rather than the best bounds. Think of choosing an 

unbiased predicate B as first pairing the elements of { -1 ,  1} 8 into 28-1 disjoint pairs and 

then giving the value 1 to exactly one element in each pair. If both the pairing and the 

choice which variable gets the value 1 in each pair are done with the uniform distribution, 

we select a random B with the uniform distribution. Now fix any pairing and analyze 

the event in the lemma using only the randomness of the choice within the pairs. For 

a pair (x 1, x 2) the contribution to the sum in (8) is always 0 when G(xl)=G(x2), and 

otherwise it is either 2 or - 2  depending on the choice within the pair. Thus, the sum in 

(8) 

(7) 

We claim that  whenever Oll~Ol 2 the inner expected value is 0. To see this assume that  

x~ and x~ Then Bl(f(x~ has expected value 0 and is independent of all other 

variables that  influence the product. The case x ~  and x~ is of course symmetric. 

The remaining terms are 
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(8) is the sum of t random variables taking the values 2 and -2 with equal probability, 

where t is the number of pairs (xl, x 2) with G(xl)=-G(x2) .  The lemma now follows 

from Chernoff bounds (Theorem 2.15). Specifically, letting X~E{+2} denote the value 
of the i th pair, and using 1 r Xi = ~ (X i + 2), we have 

Prob [~-~X~i=l >7 k] = Prob [ i~l_lr _t Xi - ~1 ) ~k]2"e-[(k/4t)2tl/[41/2]K2"e-k22-(8+4)< , 

where the last inequality uses t ~ 2  ~-1. [] 

Let us resume the analysis of (7). Assume that for some (fixed) B1 and B2 

E BI(Z)B2(z) <23s/4. (9) 
z e { - - 1 , 1 }  s 

Then this is just another way of saying that for each xCa 

]E( B1 (f(x))B2 (f(x)))  ] ~< 2 - s / 4  , 

and since we have independence for different x we have 

E ( x n B l ( / ( x ) ) B 2 ( / ( x ) )  ) <~2 -'~ 

For fixed B2, the fraction of B1 violating (9), is, by Lemma 4.7, bounded by 2e -2s/2-4. 

Since lal ~>l for any term in (7) we get 

s 2 ^2 {9_ls/4 +_gp__2~/2-4.~ ~ 2 
E ( Y 1 2 ) < . E A ~ { y } ' ~  . . . .  /~2s--1] ' 

a 

2 s 
since (2~-~) is the number of unbiased B's and each term in (7) is bounded above by 1. 
Using }-].~ ^2 A s ~< 1, Lemma 4.5 follows. [] 

4.3. Estimating Yz 

Our second term Y2, which sums over a 's  of size at most l which correspond to large 

Fourier coefficients, is estimated by a worst case estimate, using the hypothesis that any 

element x E S  we have f (y)~f i (x)  (see above). The key fact is that  since we only use 

Fourier coefficients that  contain elements from S (defined explicitly to contain only the 

a 's  considered here), the summation over B creates a lot of cancellation. 
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LEMMA 4.8. For any integer l and c>O, there is a constant st,~ such that, for 

s>st,~ and any choice of f such that f ( x ) r  for any x e S ,  we have 

IY21 ~ ~ \2  ~-1] < 3 \2~-1]" 

Proof. Remember  that  

Y2: I I  B(?x)). (lO) 

Since y r  by the definition of S, for all a in the above sum y r  and hence y c a .  

We now have the following lemma. 

LEMMA 4.9. Let zl, z2, ..., z ~ e { - 1 ,  1} ~ be any values such that z ~ z j  for i ~ j .  Then 

if we sum over all unbiased predicates, 

B(z ) = ( -1 )  I-[ 2 +1-2i 2 ' (11) 
B i = 1  i = l  

if r is even, and otherwise the sum is O. 

Proof. The s ta tement  for odd r is obvious since the terms for the predicates B 

and - B  cancel each other. For even r, think of the sum in (11) as an expected value 

over a random unbiased B. Again pick a random B as in the proof of Lemma 4.7 by 

first randomly picking a pairing and then randomly giving one element in each pair the 

value 1 and the other the value - 1 .  If the r elements do not pair up, the expected 

value over the second random choice is 0, while if they do pair up, it is ( - 1 )  ~/2. To 

analyze the probabili ty that  the elements pair up we put the elements zi into pairs one 

by one. The element zl goes into some pair. The probabili ty that  its mate  is one of the 

z~ is ( r - 1 ) / ( 2 ~ - l ) .  This follows since there are 2 ~ - 1  possible partners of which r - 1  

are allowed. Assume that  zz did pair up with zj and consider any remaining zi. The 

probabili ty tha t  it pairs up is by a similar reasoning ( r - 3 ) / ( 2  ~ - 3 ) ,  and we continue in 

this way until all elements are paired up. The probabili ty that  this happens is 

r/2 
r + l - 2 i  

~I 2 ~ + 1 _ 2 i  ' 
i = 1  

and the lemma follows. [] 

Now, for any a in the sum (10) consider the set of values f (x )  for x E a .  Make these 

values pairwise distinct by simply erasing both elements of pairs tha t  are equal (this does 
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not affect the product), resulting in a set cdC_ct. Since f ( y ) # f ( x )  for any xEc~ where 

x Cy and y C c~, we get I~'1)2 (remember that  l a A  {Y}] is odd since otherwise A~zx{~} =0) 

and clearly I~'l~<t. Using Lemma 4.9 we see that  the maximal value (assuming l<~s) of 

]~B H~e~ B(f(x))l  is obtained for c~'=2, and we get 

~B 1 ( 2 s ) 2 1 - s ' ( 2 s  ) 
H B(Bx)) <. 5 : : - i  < " 
xEt~  

Substituting this in (10) gives 

]Y21~< E '2~a['21-s( 2s )2s-1 < E  /~2"21+ss-s() 

and Lemma 4.8 follows. [] 

4.4. Estimating Ya 

To estimate Y3 we calculate a high-order moment. As when calculating the second 

moment of I/1, many terms in the Fourier expansion do vanish due to the expected value 

being 0. The remaining sum is somewhat nontrivial and we use the properties of functions 

with the Fourier support concentrated on small sets. (Recall that  Y3 is the sum over c~'s 

of small size which correspond to small coefficients.) 

LEMMA 4.10. Let m be an even integer. Then for any integer l there is a constant 

Cl,m such that 

E(y~n)~Cz,m.(e_2s/2_4§ 2s ~m 
\2~-1] " 

Again we have an immediate corollary that  gives us what we really want. 

For any integers k,l, and e>0,  there is a constant Sk,l,e such COROLLARY 4.1 i. 

that for s>~sk,l,~ 
1 

Proof of Corollary 4.11. Analogously to the proof of Corollary 4.6, for any X, the 

probability that Y3>>.X is bounded by X - m E ( Y ~ )  for any even integer m. Now set 

1(2s 
X =  3 \2  s - l ]  and m > m a x ( 4 . ( k + 3 ) . E  -1, 16.(k+3)), 

apply Lemma 4.10, set s sufficiently large and make a calculation. [] 



CLIQUE IS HARD TO APPROXIMATE WITHIN n 1-e 129 

Proof of Lemma 4.10. We have 

E ( Y ~ )  = ~A{y} E Bi x , (12) 
c~l,c~2,-..,~m\i=l ~ B1,B2,...,Bm \ i = 1  xEc~i 

where the sum ranges over all ai  satisfying [ai[ < l  and .~2 A r . ~< 12-~s. 
ai lY~ 

m To analyze a generic term, set T =  Ui=l ai. We first claim tha t  if there is some xC T  

that  belongs to exactly one ai then the inner expected value is 0. This follows since in 

this case Bi( f (x ) )  is an unbiased random variable that  is independent of all other factors 

in the product. Thus, we are interested in sets a i  tha t  form a double cover (of T). By 

this we mean that  each xCT  appears in at least two different ai's. From now on we only 

sum over a i ' s  which form a double cover. 

LEMMA 4.12. If  ai form a double cover of T, then 

E E( f i  n Bi(f(x))) ~ (2-'T's/4-~-2m@le-2S'2-4)~ 2s ~m 
BI,B~ ..... Bm i=l~e~, \ 2 ~ - 1 ]  " 

Proof. This result is again based on the fact that ,  for almost all B1,B2,.. . ,Bm, 

E ( H { i l x c ~ }  Bi( f (x ) ) )  is exponentially small, and that  it is independent for different 

xCT. Consider any nonempty subset C of {1, 2, . . . ,m}. The probabili ty (over random 

unbiased B1, B2, ..., B,~) tha t  

E nBi(z) ~ 2  3s/4 (13)  

zc{-1,1}~ 

is bounded, by Lemma 4.7, by 2e -2~/~-4. Thus the number of Bi such tha t  (13) is violated 

for any C is bounded by 
2m+1e-2~/2 4~ 2s ~m 

" 

For any other sequences of Bi 's  we have 

for any xET. Since the values of f at different points are independent we have 

0: 
The lemma follows by summing the two terms. [] 
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We proceed to bound (12). We first est imate that  sum over even covers, i.e. those 

collections of ai  such that  each x is a member  of an even number of a~. For an arbi t rary 

function F: { - 1 ,  1 } 2 ~ H R  denote the sum 

m 

E H &  
O i l  Or2 m ~ 1 7 , . . . ~ C t  " ~  

by dcm(F)  when we sum over double covers, and by ecm(F) when we sum over even 

covers. We later apply the estimates with F ( ( f } ) = f ( y ) A ( ( f } )  which has F~=A~A{y}. 

LEMMA 4.13. For any func t ion  F such that F ~ = 0  for  I(~l>l, we have ecm(F)~< 

cm,~llFIl~'. 

Proof. Let F '  be the function with Fourier coefficients I/~1. Since 

Eft  H:(x>:, '~ 
f i = l  xEcti 

when a~ form an even cover, and this sum is 0 otherwise, we have 

ec,~(F) : 2 - ~  E E ,s H s(~) : 2 - ~  ,s  H s(x) 
f Ot 1 , O r 2  ~ . . . , O t  m - -  :]g E Clt i z X E O t  

2 -2`" ~ - ~ F ' ( ( f } )  ,n F '  m 
= = II lira, 

f 

where we are using the s tandard Lm-norm. However, when considering functions whose 

Fourier support  are on sets of constant size, the various Lp-norms are all related (this is 

Proposition 3 in [13]): 

LEMMA 4.14 [13]. For every constant  1 and m there is a constant  Cl,m such t h a t  

for  all funct ions  F with F a = 0  for  ](~l>l, we have 

IIFIIm <- c~,m" IIFII2. 

Lemma 4.13 now follows from Lemma 4.14, IIF'II2 = IIFII2 and the above reasoning. [] 

Next we do a similar est imate for double covers (remember that  constants Cm3 might 

change their value): 

LEMMA 4.15. For any func t ion  F such that F ~ = 0  for  Ic~l>/, we have dcm(F)~< 

Cm,~ llFIl'~. 

Proof. From the function F we probabilistically construct a different function F '  

such tha t  each te rm in the sum for dcm(F)  has a constant (depending on l and m) 
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probabili ty of occurring in the sum for ecm(F' ) .  We make sure that  [IF[[2 = [[F'[[2 while 

the sizes of the nonzero Fourier coefficients only increase by a factor of 2. 

The construction is as follows: Replace each x E { - 1 ,  1} w by two inputs x 1 and x 2. 

For each a we construct a r by, randomly and independently for each xEa ,  letting a ~ 

1 each. For example, a = { x , y }  may contain only x 1, only x 2, or both  with probabili ty 

be replaced by either of the nine sets {xl, yl},  {x2,y l} ,  {al, x2,yl} ,  {xl, y2}, {a2,y2}, 

{al, x2,y2}, {xl, yl, y2}, {x2,yl ,  y 2} or {xl, a2,yl ,  y2}. The mapping a l i a '  is injective 

and we define the function F ~ by its Fourier coefficients. We have 

f [F~[ i f / 3 = a ' ,  

/ 0 otherwise, 

and, in particular, F~ =0  for every/3 of size greater than 21. We claim tha t  each te rm in 

the sum for dcm(F) has a probabili ty at least (~_)mt/2 to appear  in the sum for ec,~(F') .  
m m Namely, suppose that  for a te rm Hi=I  Fa~,  (Oti)i=1 form a double cover of T. Clearly 

IT[ 1 T t ~rnl. Let be obtained from T by replacing each element x by the two elements 
I m x 1 and x 2. We claim that  the probabili ty tha t  (ai) i= 1 form an even cover of T ~ is at least 

(_~)mt/2. Since replacement is done independently for each x, we just need to establish 

that  the probabili ty that  both  x I and x 2 are covered an even number of times is at 

least 2 Take any two sets that  contain x (assume that  these are a l  and a2, and let 

a3, aa, ..., ar be all other sets containing x). Now there are four cases to consider, and 

for let us for brevity only consider one, the other cases being similar. Suppose that  a i 

i/>3 contain x I an odd number of times, and x 2 an even number of times. Then if a t 

contains both  elements, and a~ only x 2 (or the other way around), both  x I and x 2 are 

covered an even number of times. This happens with probabili ty 2 

To wrap up the proof, note that ,  by Lemma 4.13, for any F,  ec,n(F')~cm,2t  [[F '[[~= 

Crn,2t [[FII~ n, and by the above argument 

dcm(F) ~ (~)mt/2"E(ec~(F')). 

Thus adjusting the value of the constant ct,m, the lemma follows. [] 

Lemma 4.15 and Lemma 4.12 can be used to bound the part  of the sum (12) when 

[T] is large (see below). Next we address the case when ]T[ is small. 

LEMMA 4.16. We have 
m 

E I~]fil~z~{~} [<~cm,l,t2-(m-~t)~/2' (14) 
Ot l~Ot21. . .~Otrn i = l  

where the sum is over all (ai)i~l that form a double cover of some set of size t and such 

that [ai[<l and fl  2 <12 - ~  for i = 1 , 2 , . . . , m .  a~A{y} 
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Ol m Proof. The key to this proof is that  there are few such collections of sets ( i)i=l 
^ 

while Ac~A{y} are small, and as there are many factors in each product  this makes the 

total  sum very small. 

Consider the sum 
2 t  

O~ 1 >Or2 ~ - . .  ,13~2t  i = 1  

where the sum is over all 2t (ai) i= 1 that  form a double cover of some set of size t. By 

Lemma 4.15, with e(</))=I(y)A(</)), this is bounded by a constant et,z. Now for 

each double cover with m elements choose a double subcover of the same T with 2t 

elements. This is always possible. Since each A~zx{~) tha t  we are considering is bounded 

by (12-~) 1/2, the original double cover has weight (i.e. the value of the corresponding 

product) which is at most (12-~*) (m-2t)/2 times the weight of the double subcover. Each 

subcover of size 2t can occur for at most (~/i=0 (~)) m-2t original covers of size m. This 

follows since there are at most y~]i=0 (ti) subsets of T of size at most l, and hence at most 

tha t  many choices for each (~i- Hence we get the total  bound for the sum in (14): 

' ( : ) ;  (12-es ) (ra- 2t) /2 " ( E Ct'l < Ct'l'm 2-es(m-2t)12' 
" i=O 

and the lemma follows. [] 

Let us now conclude the proof of Lemma  4.10. We divide the sum (12) according 
T m to the size of =LJi=lC~i. Summing over T with ITl>>.lrn, we use Lemma 4.12 and 

Lemma 4.15, again with F({f))=f(y)A(<f)) (and y~ fi2 ~A{~} ~<1), to get the bound 

C le-2~/2-4+2-rns/16'( 2s ~rn ( 1 5 )  
, ,m ,  

for that  part  of the sum. Summing over T with ITI < lm,  Lemma 4.16 gives, together 

with the trivial estimate 

) E E g i ( f (x ) )  <<. t 2 s _ l f f  , 
B1,B2,...,B~ i = 1  C 

the bound 

c 2-r~s~/4 (" 2~ '~ m 
Z,m \ 2 s _ 1 )  �9 

Combining (15) and (16), Lemma 4.10 follows. 

(16) 

[] 
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4.5. C o n c l u d i n g  T h e o r e m  4.2 a n d  e x t e n d i n g  it  

We have already done all the work to prove Theorem 4.2. If Y = 0  and the CNF test is 

not consistent with any point in S, by Lemma 4.8, we need either 

Y l ~  2 s _  1 o r  I/3/> 5 2~_] . 

The sum of the probabilities of these two events is, by Corollary 4.6 and Corollary 4.11, 

bounded from above by 2 -(k+2)s. By Lemma 4.4 this is sufficient to prove the theorem. [] 

Theorem 4.2 is a powerful theorem as it stands but we require slightly more. In a 

protocol, establishing that  a table describes a correct long code is just testing a syntactic 

property, and what we really care about  is to establish that  the input for which we 

have this long code satisfies some properties of interest. In our case we are interested 

in establishing that  the input satisfies the chosen clauses and that  we have consistency 

between different long codes. It  turns out that  we can get these extra, and essential, 

properties by adding some extra probes to the table A. These extra  probes are not free 

(in the technical sense of the word), and hence do not cost us anything. 

We formalize the extra property that  we want to test  as h ( x ~  (i.e. h(x ~ is true) 

for some function h. It  turns out that  it is sufficient to make sure that  A(( f ) )=A( (g ) )  

for all queried f and all g with g A h = f A h .  We now give the extended test. 

The CNA test(s) with side condition h. (1) Pick, with the uniform distribution, 

s random functions fi: { -1 ,  1}w~-*{-1, 1} and ask for A((fi)) .  

(2) For all Boolean predicates B of s bits ask for A ( ( B o ; ) )  and check that  

A ( ( B o f } )  = B ( A ( ( f ) ) ) .  

(3) For any queried function f ask for A((g)) for any g such that  f A h = g A h .  Reject 

unless A(( I ) )=A((g ) )  for all such g. 

We now establish that  Theorem 4.2 remains true even in the presence of side condi- 

tions. 

THEOREM 4.17. For any ~>0 and integer k, for s>~C~,k and w>~DE,k,s, the fol- 

lowing is true. For any A: { -1 ,  1}2~-~{-1 ,  1} there is a set S containing at most 2 ~ 

points in { -1 ,  1} w such that, for any h, when the CNA test(s) with side condition h is 

performed, except with probability 2 -ks, the test either rejects or the outcome is consis- 

tent with being a point evaluation at an element x E S  with the additional property that 

h(x) is true. 
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The probability is taken over the random choices of the verifier performing the test, 

i.e. over the choice of random functions fi. 

We stress that  the set S is independent of the side condition h. 

Proof. The proof only requires a rather simple argument on top of the proof of 

Theorem 4.2. Again define the set S by (2) and define 

A'((f)) = 2 -H  E A((g)), (17) 
{g[ gAh=fAh} 

where H is the number of points satisfying h(x)=l,  and thus 2 H is the number of 

functions g appearing in the sum (17). Thus A' maps into [-1,  1] and the verifier rejects 

whenever it gets a value not of absolute value 1. The CNA test(s) with side condition 

h can be viewed as querying the function A'.(5) Thus we can repeat the proof of Theo- 

rem 4.2 and conclude that  the outcome is, except with probability 2 -ks, either that  the 

test fails or the outcome is consistent with a point evaluation at a point yES' where 

S'= {x l 3a , a ~ x, such that  Io~1 ~ lAA~ ~ 12-~s}. (18) 

From Lemma 4.18 below it follows that S'C_SN{xlh(x)=-l} ,  and this completes the 

proof of Theorem 4.17. [] 

^' ^ if aU xC(~ satisfy LEMMA 4.18. The Fourier coefficients of A' are given by A~=Aa 
h ( x ) = - l ,  and ^' A~=0 otherwise. 

Proof. Using (17), the definition of the Fourier transform and the Fourier inversion 

formula we have 

A'~' = 2-2~ E A'((f)) H f(x')  
f x 'E~ '  

=2- ( :~+H)  E E A((g}) H f(x')  
f {g[gAh=fAh} x'Ccd 

(19) 

Now suppose that  we have an x~ with h ( x ~  Consider a pairing of the functions g 

and g' where g'(x~ ~ while g'(x)=g(x) for all x r  ~ Then either both g and g' 

(5) We have  to ex t end  t he  C N A  tes t  by allowing the  values of t he  func t ion  A to be in [ - 1 ,  1], wi th  
t he  u n d e r s t a n d i n g  t h a t  t he  tes t  rejects  whenever  it sees a value which  does not  have  abso lu te  value 1. 
Th i s  changes  no t h i ng  since be ing  cons is ten t  wi th  a poin t  eva lua t ion  at  the  poin t  y is still equivalent  to 
Y = 0 .  
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belong or both  do not belong to the sum (19), and hence their contributions cancel each 

other and 

{glgAEh fAh}(x~c g(X)) =O. 
We can thus drop the terms with a containing an x such tha t  h ( x ) = l .  If, on the other 

hand, h ( x ) = - i  for each xEc~ then, since g ( x ) = f ( x )  for all such x, 

E If  (xl =2= II f(xl, {glgAh=fAh} xfc~ xGa 
and the sum (19) reduces to 

2-2"ZEro II f(x,), 
c~ f x ' E ~ A a '  

where we only sum over a ' s  with h ( x ) = - i  for each x C a .  Now using the fact that  

2 - 2 ~ E  H f ( x ' ) = l  
f x 'Gc~/ka '  

if a ~ = a ,  and 0 otherwise, the lemma follows. [] 

5. M a i n  t h e o r e m  

We want to prove 

THEOREM 5.1. For any 5>0  there is a P C P  for NP which uses logarithmic ran- 

domness and 5 amortized free bits. 

By Theorems 2.8 and 2.9 we have two immediate  corollaries. 

THEOREM 5.2. For any s > 0 ,  unless N P = Z P P ,  there is no polynomial-time algo- 

rithm that approximates Max-Clique within a factor n 1-~. 

THEOREM 5.3. For any s > 0 ,  unless N P = P ,  there is no polynomial-time algorithm 

that approximates Max-Clique within a factor n 1/2-E. 

Proof of Theorem 5.1. We can clearly assume 6~< 1 The P C P  follows closely the 

simple test discussed in w The modifications needed are tha t  we choose many functions 

on U and that  we use the CNA test(s)  with appropriate  side conditions to test  the 

supposed long codes on the sets Wi. We call it the FAF test as in Few Amortized Free 

bits. The test is applied to a 3-CNF formula ~, as given by Theorem 2.13, which has 

exactly 3 variables in each clause and such that  each variable appears  5 times. I t  tries 
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to distinguish the case when P1 and P2 can convince the verifier in the u-parallel two- 

prover game with probabili ty 1, and the case when they can only convince the verifier 

with probability c ~. The formula ~ is given by the clauses (Ci)iml and has n variables. 

The writ ten proof consists of, for each set T of size at most 3u, a table AT of size 2 21TI 

which, for a correct proof of a satisfiable ~, is the long code of the restriction to T of a 

fixed satisfying assignment. The value of the constant u is specified below. 

The FAF test(5). (1) Setting of parameter .  

�9 Set 1=[5-1] .  

�9 Set k=40/2.  

�9 Set s sufficiently large compared to 1 and k. In particular, s>C1/2,k where C1/2,k 
is the constant of Theorem 4.17, and s>sz where sl is the constant from Lemma 5.5 

below. 

�9 Set u sufficiently large compared to l, k and s. In particular, we need Theorem 4.17 

to be true with w=3u (so w~D1/2,k,s), and we also need c~<2 -a~ where c is the 

constant from Theorem 3.2. 

(2) Choose U by choosing u variables with uniform distribution. For i=1 ,  2, ..., 10/, 

choose a set Wi by, for each variable xik in U, picking, with uniform probability, a random 

clause Cj~ that  contains xik, and letting Wi be the set of all variables in the clauses. The 

constructions of the different W~ are done independently. 

(3) Choose lOls random functions gj: { -1 ,  1}g~-~{-1, 1}, j = l ,  2, ..., lOis, with uni- 

form distribution, and read 10is (Au((gj}))j=l. 
(4) Apply the CNA test(s)  with side conditions, to the supposed long code Aw~ on 

Wi for i=1 ,  2, ..., 10/. Tile side conditions are given by (gj(x)=Au((gj)))~~ and tha t  

(Cj~)~=I are all true. The functions gj are extended to Wi by ignoring all coordinates 

not in U. 

(5) Accept if and only if all tests accept. 

Note that  for a correct NP-s ta tement  we can easily construct a correct proof, i.e. fix 

one satisfying assignment x, and for each set U and W simply write down the long code 

of x restricted to that  set. It  is not difficult to see tha t  in this case the verifier always 

accepts. Note also that  the amount of randomness used by the verifier is logarithmic. 

Most of the randomness is used to choose the set U, and after this only a constant 

number  of random bits is needed to choose each Wi and the gj. We next turn to the 

free-bit complexity. 

LEMMA 5.4. The FAF test(5) uses 20ls free bits. 

A lois Proof. Reading ( u((gj)))j=l constitutes lOls free bits and the free bits in the 10/ 

applications of the CNA test(s)  total  another lOls free bits. [] 



CLIQUE IS HARD TO APPROXIMATE WITHIN n 1 - e  137 

The other crucial (and hard) part  of the proof of Theorem 5.1 is the soundness, and 

it is given below. 

LEMMA 5.5. For any integer 1 there is a constant sl such that for s>sz, if the 

FAF test(5) accepts with probability at least 2 -2~ then there are strategies for P1 and 

P2 in the u-parallel one-round two-prover protocol that makes the verifier accept with 
probability at least 2 -3~ 

We first claim tha t  Theorem 5.1 follows by Lemma 5.4 and Lemma 5.5. Note first 

that ,  by our choice of u, the soundness error of the u-parallel one-round two-prover 

protocol is smaller than 2 -3~ and thus the conclusion of Lemma 5.5 implies that  ~ is 

satisfiable. Thus it follows that  the soundness error of the FAF test(5) is at most 2 -2~ 

Using Lemma 5.4, the amortized number of free bits is at most 201s/(2012s)=1/l<~5, and 

Theorem 5.1 follows. [] 

Proof of Lemma 5.5. For each Wi we have, by Theorem 4.17 (with ~=�89 and 

k=4012), a set Sw~ of assignments on Wi of cardinality at most 2 ~/2 such tha t  if the 

test  does not fail then, except with probabili ty 2 -40/2s, the outcome of the test  is consis- 

tent with a point evaluation at some yESw~ tha t  also satisfies the side conditions, i.e. it 

~g ~101~ The satisfies the chosen clauses and takes the correct value under the functions ~ J J j= l .  

latter conditions, forcing Aw~((gj})=Au((gj)), play a key role below. We define a set 

which measures the amount of coordination among the different Sw~. 

Definition 5.6. For a set U let common(U) be the set 

{x[ P r w [ 3 y c  SwAy[u = x ]  >~ 2-2~ 

where W is chosen with the probability distribution tha t  is used to pick Wi in the FAF 

test((~). Here we only consider yESw tha t  satisfies the clauses used to construct W. 

Before we continue, let us give some intuition. We want to check consistency between 

the long code on U and the long code on W. As proved in [7], two-way consistency 

requires one amortized free bit. To get around this lower bound we use here one-many 

consistency. We have many tables (e.g. the long codes on W/ for i=1 , 2 ,  ..., 10l) which 

should be consistent with some other (i.e. the long code on U). We can now read a 

few bits (10ls) in the long code on U and check it against the many tables. If there 

were no consistency among the many tables, say that  they were random long codes, the 

probabili ty of acceptance would be around (2-1~176176176 which is smaller than  

we are aiming to prove. Thus, to have a good probabili ty of success, the long codes on 

Wi should have some common properties, and this is what  we use. 
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Note that  the long code on U merely produces a reference point and hence plays no 

essential role in the argument. This is natural since changing it to the long code of a 

random assignment changes the acceptance probability by at most a factor 2 -l~ Thus, 

the important parameter is not the behavior on U but rather the properties that  the 

long codes on Wi have in common. This reflects the central role of common(U). After 

this detour let us return to the main path. 

LEMMA 5.7. Suppose that common(U) is empty. Then the probability that the FAF 

test(5) accepts, given that U is chosen, is bounded by ct2 -4~ 

Proof. Remember that  if the test accepts then, except with probability 10/2 -4~ 

it is compatible with some yiESw, for all i=1,  2, ..., 10l. Thus we analyze the probability 

that  this happens and the test accepts given that  common(U) is empty. In this case 

there must be a collection i 10t (Y ESw,)i=l such that  for s o m e  b j ' s ,  

gj(y~)=bj for all l~<i~<10l and l<.j<.lOls. (20) 

We denote the vector of yi's by ~7, and we always assume that  yiESw~. We analyze the 

probability of (20) by first fixing ~7 and then analyzing the probability that  this particular 

$7 satisfies (20) for a random choice of functions gj. Consider the set 

n ~ i "~10l 
K(~) = (y u)i=l 

of projections onto U, keeping only one copy of each assignment if the several yi give the 

same projection. The condition (20) says exactly that every chosen gj is constant on the 

set K(g ) .  The probability that  this happens for an individual j is 2 -(IK(y)I-1), and thus 

the probability that  (20) is true for this g is 2 -l~ Thus the key is to analyze 

the size of K(~7). 

LEMMA 5.8. Suppose that common(U) is empty. Then 

Probw1,w2 ..... w~0~ [ min Ig(~) l  ~< 5/] ~< ct2 -95~2s. 
L ~TE Sw1 x. . .  x Sw lo  ~ 

i - 1  Proof. Let us first analyze the probability that  7~u(Sw~) intersects Uj=I 7lu(Swj). 
The latter contains at most 1012 s/2 elements (since ]Swjl<~2s/2). The probability of 

any single element occurring in 7rv(Sw~) is bounded by 2 -2~ (by the definition of 

common(U) and using that  this set is empty), and hence the probability of a nonempty 

intersection is bounded by 10/2 -191~. For there to exist a ffESw1 x... x Sw~o~ giving at 

most 51 different projections, it must be the case that  for 51 different i, ~rg(Sw~) (i.e. 

the set of possible projections of the i th  element in if) has a nonempty intersection with 
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i--1 
U j = I  7fU(SWj) (i.e. the possible projections of prior elements). The probability of this 

event is bounded by 

( 10l~ (c12_19ls)51 = C12_9512s, 
5z / 

and the lemma follows. [] 

Let us return to the proof of Lemma 5.7. There are at most (2s/2) 1~ ways of 

picking ~ESw1 • ... x Swlo~. Assuming that  ]K(~)I ~>5/+1, the probability that  an indi- 

vidual choice is compatible with the functions gj is bounded, by the reasoning above, by 

2 -1~ =2 -5~ Thus the probability that  any ~ is compatible with the choice 

of the gj 's is bounded by 25z~2 -5~ ~<2 -4512~. Since, by Lemma 5.8, the probability that  

any ~ satisfies IK(/~)I~5I is bounded by cl 2 -951~, we just add the two probabilities and 

Lemma 5.7 follows. [] 

To wrap up the proof of Lemma 5.5, let us now define a strategy for the provers in 

the u-parallel two-prover game. 

P~ simply answers with any element in common(U), while P1 answers with a random 

element of Sw.  If either of these sets is empty the corresponding prover gives up. As- 

suming that  the FAF test(b) accepts with probability 2 -2~ then, in view of Lemma 5.7, 

common(U) is nonempty with probability at least 2 -2~ - c l  2 - 4 ~  and let us analyze 

the probability that  the verifier accepts when this is the case. Suppose that  P2 answers 

with x U. Then, by the definition of common(U), the probability that  S w  contains an 

element y such that  y l u = x  U and such that  y satisfies the clauses Cjk is at least 2 -2~ 

The probability that  /'1 answers with such an element, given that  it exists, is at least 

i S w l - l >  2-~/2. Thus in the two-prover game we have an overall success probability that  

is at least 
(2-2012S--c12-4012s).2-201s.2-s/2 > 2 -30/2s 

provided s>st ,  and the proof is complete. [] 
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A p p e n d i x  A. Ana lys i s  o f  t h e  idea l i zed  p r o t o c o l  o f  w 

Set l=d logp  -1 where d is a constant to be determined. 

By assumption, Aw, is the long code of an assignment x W~ on Wi. We may assume 

without loss of generality that  x W~ satisfies the picked clauses (i.e. g~ (x W`) = 1), or else the 
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I )i=~, where W=(W1, . . . ,  Wz). test rejects anyhow. Let us consider the set Xu, W=(xW* v l 
The acceptance condition of the test (i.e. Aw,( f )=Ag( f )  for i=1 ,  ...,1) implies that  f 

is constant on Xu, ~.  The probability of this happening, for a random f ,  is 2/21xu, ~l. 

Thus the probability, p, that  the test accepts is at most 

2.Eu, w[2-1xv, wl 1. (21) 

Now for a fixed U let Pu denote the value 

max Prw [xWlu = x], (22) 
X 

where W is a random set constructed as in the simple test (i.e. a random extension of 

U to clauses). We claim that  Ev[Pu] is a lower bound on the acceptance probability of 

the two-prover proof system. This is shown by letting P1 answer according to the x W~'s, 
and P2 answer with the x which gives the maximum in (22). Thus, all that  remains is to 

lower bound Eu[Pu] as a function of p. Towards this end let us analyze the probability 

of acceptance in the simple test as a function of Pu. 
It is natural to study the size of Xu, W, and we analyze this by fixing U and picking 

the sets Wi at random one by one, investigating how the size of Xu, W grows. We define 

i ( zw,  i 
Xu, w = I u ) j = l ,  

i.e. the part of Xu, ~ obtained from the first i sets W/. Clearly i+1 _ X / [Xu, w I -  ] v, w l + l  unless 

X i ~ already contains x W~+~ Iv, in which case the two sets are equal. Since the probability 
U,W 

that  xw~+l[v take any fixed value is bounded from above by Pu, the probability that  

X i+1 - X  / is at most X i u,W'- v,~ [ u, W I.pv , which is smaller than �89 when [Xu, w[<~ l/2pv. We 

claim that  

Pr~[lXu, wl<~min(1,2-~u)J<~ 2-c' 

for some absolute constant c. This follows since for this event not to be true, events of 
X i+l X i the form , u,W,=, u,~" each occurring with probability at most �89 must happen at 

least 31 times in l tries. 

Thus, Ew[2-1x<~vl]<~2-d+max(2 -t/4, 2-1/2pu). Now, using (21), we have 

�89 ~ E ~  [2-IXu, w 11 < 2 -c/q-2 - l / 4  q - E u  [2-1/2pu], 

and setting the constant d (in the definition of l) sufficiently large, we conclude 

Eu[2-1/2PV]>p/2.5. Finally, using x>2 -1/~ for all x>0 ,  we have 

E~[pu] > �89 "Eu[2 -1/2pv] > �89 

and the proof is complete. 
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