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1. I n t r o d u c t i o n  

A linear recurrence sequence of  order t is a sequence {un}ncz  of complex  number s  

sa t i s fy ing a re la t ion  

Un~---ClUn_l-~- . . .~-CtUn_ t (Tte ~) (1.1) 

with  t > 0 and fixed coefficients c1, ... , ct, bu t  no re la t ion  wi th  fewer t h a n  t s u m m a n d s ,  i.e., 

no re la t ion  ~ un ---- c l u n -  1 +... + ct_ ] u n -  t + 1. This  impl ies  in pa r t i c u l a r  t h a t  the  sequence is 

not  the  zero sequence,  and  t h a t  ctr The  companion polynomial of t he  re la t ion  (1.1) is 

~iP ( Z ) ~-- Z t - c 1  z t -  l _ . . . _  Ct. 

Wri te  
k 

p(z) = II(z- 0 (1.2) 
i=1 

with  d i s t inc t  roo ts  c~1, ..., ak .  The  sequence is said to  be  nondegenerate if no quot ien t  

~i/c~j ( l ~ i < j < ~ k )  is a root  of 1. The  zero multiplicity of the  sequence is the  number  of 

n E Z  wi th  Un=O. For an i n t roduc t ion  to  l inear  recurrences  and  exponen t i a l  equat ions ,  

see [10]. 

A classical  t heo rem of Skolem Mahle r  Lech [4] says t h a t  a nondegene ra t e  l inear  

recurrence  sequence has  finite zero mul t ip l ic i ty .  Schlickewei [6] and  van der  Poo r t e n  and  

Schlickewei [5] der ived  uppe r  bounds  for the  zero mul t ip l i c i ty  when the  me mbe r s  of the  

sequence lie in a number  field K .  These  bounds  d e p e n d e d  on the  order  t, the  degree 

of K ,  as well as on the  number  of d i s t inc t  p r ime  ideal  factors  in the  decompos i t i on  of 

the  f rac t ional  ideals  (c~) in K .  More  recently,  Schlickewei [7] gave bounds  which depend  
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only on t and the degree of K.  The linear recurrence sequence is called simple if all 

the roots of the companion polynomial are simple. Evertse, Schlickewei and Schmidt [3] 

showed that  a simple, nondegenerate linear recurrence sequence of complex numbers has 

zero multiplicity bounded in terms of t only. The purpose of the present paper  is to show 

that  this holds for any nondegenerate sequence. 

THEOREM. Suppose that {un}ncz is a nondegenerate linear recurrence sequence 

whose companion polynomial has k distinct roots of multiplicity ~a.  Then its zero multi- 

plicity is under some bound c(k,a).  We may take 

c(k, a) = exp((7ka)Sk~). (1.3) 

Our value for c(k, a) is admit tedly rather  large; but it is preferable to give some value 

at all, rather than to say that  "c(k, a) is effectively computable".  No special significance 

attaches to the numbers 7 and 8 in (1.3), which could easily be reduced. In the case of a 

simple linear recurrence, a = l ,  and our bound (1.3) is of the same general shape as the 

one given in [3]. 

COROLLARY. The zero multiplicity of a nondegenerate recurrence sequence of order 

t is less than 

c(t) = exp exp exp(at  log t). (1.4) 

Proof. This is certainly true when t = l  or 2. When t ) 3  we note that  k ~ t ,  a<.t, so 

that  the zero multiplicity is 

<~ e(t, t) = exp((7t t) st~ ) = exp exp(8t t (t log t +log 7)) 

< exp exp(t at) = exp exp exp(3t log t). [] 

At the cost of some extra  complication, the logt in (1.4) could be replaced by an 

absolute constant. 

It  is well known that  a recurrence with the companion polynomial (1.2) is of the 

form 

un= Pl (n)a~ +... + Pk(n)c~'~ 

where Pi is a polynomial of degree ~ a i -  1. The zero multiplicity therefore is the number 

of solutions x E Z  of the polynomial-exponent ia l  equation 

Pl (x ) (~+. . .+Pk(x )a~  = 0. (1.5) 

Given a nonzero k-tuple P = ( P 1 ,  ..-, Pk) of polynomials with 

deg  P~ = t~ (i = 1, . . . ,  k) ,  



T H E  Z E R O  M U L T I P L I C I T Y  O F  L I N E A R  R E C U R R E N C E  S E Q U E N C E S  245 

set 

a = l + m a x  ti, (1.6) 

k 

t =  t ( P ) =  E ( t i+ l ) .  (1.7) 
i = 1  

Our Theorem and its Corollary can now be formulated as follows. Suppose that o~1,... , oz k 

are in C x, with no quotient c~i/c~j ( iCj)  a root of unity. Then the number of solutions 

x E Z  of (1.5) does not exceed c(k,a) or c(t). 

A first, intuitive response to an equation (1.5) probably is that  if all quotients ai /a j  

( i r  are "large" or "small", the summands in (1.5) will have different magnitudes when 

x is outside a limited range, so that  there will be few zeros. As is basically known, and 

as we will explain again in w the Theorem can be reduced to the special case when 

a l ,  ..., ak and the coefficients of the polynomials P1, ..., Pk are algebraic. The intuition 

can then be put into the more precise form that  there should be few solutions if the 

(absolute logarithmic) heights h(ai /a j )  ( l <~ i, j <<. k; iCj )  are not too small. As will be 

shown in w this intuition is correct. Note that  h(ai /aj)>O precisely when ai /a j  is not 

a root of 1. A major  difficulty now comes from the fact that  when ai /a j  is of large 

degree, the height, though positive, may be quite small. 

The idea to overcome this difficulty is as follows. Write 

and set 

a 

P (x)=Za jxJ-a (i= 1,...,k), 
j = l  

k 

Nj (Xl,  ..., Xk) = E aijXi 
i = 1  

The equation (1.5) may be rewritten as 

( j  = 1, ..., a). 

~-~ Nj(oz~, ..., oL~)x j-1 = 0. (1 .8 )  
j = l  

Suppose that  o~1, . . . ,  Oz k and the coefficients aij lie in a number  field K of degree D, and 

let ( ~ ( ~  ( a - - l ,  ..., D) signify the elnbeddings Kr Then, in an obvious notation, 

(1.8) gives rise to 

N ( ( ( _(o)x~_j-1 (a 1, . . . ,D).  ~ ) , o ~ ) x , . . . , ~  k j,~ = 0  = 
j = l  
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For each a, this is a linear equation in 1, x, ..., x a - i .  Hence given embeddings ~rl, ..., aa, 

we obtain a system of linear equations whose determinant  must vanish, i.e., 

Nj(o,), (~,)x a(~,)x,, (1.9) [0~1 ' " ' "  k } l l ~ i . j ~ a  ~-- O. 

This equation is of purely exponential type, i.e., the coefficient of each exponential is 

a constant, and hence can be dealt with by methods developed elsewhere, e.g., in [3]. 

A difficulty in dealing with (1.9) is that  the determinant  is likely to have many  exponen- 

tials 

g l  """  Z a  ] 

with nonzero coefficients. A possible advantage for us is that  when D is large, there will 

be many a-tuples or1, ..., ua, hence many equations (1.9) at our disposal. 

A needed auxiliary result which may be of independent interest will be t reated in 

an appendix. 

Let us finally introduce the notation 

to mean that  c~, fl are in C x and that  o / d  is a root of 1. 

2. Special ization(l)  

Let Q be the algebraic closure of Q in C. Let X, Y be algebraic varieties in C k defined 

over Q. It is well known that  when X \ Y  is not empty, i.e., if there is a point a E C  k 

lying in X \ Y ,  then there is in fact a point flG(~ k lying in X \ Y .  Moreover, when X is 

irreducible and of degree A, there is such a point fl with degree d(f l ) :=  [Q(fl):Q] ~ A .  

When V is an algebraic variety defined over Q and V \ Y  is not empty, write 6(V\Y)  

for the minimum degree of the points f l G ~  k in V \ Y .  Write 6(V\Y)=cxD when V \ Y  is 

empty. 

LEMMA 1. Let X, Y, 1/1, V2, ... be algebraic varieties defined over Q, and set 17= 

Un%l Vn" Suppose that #(Vn\Y)-~cc as n--+oc, and that X \ ( Y U F )  is not empty. Then 
there is a point ~CQ k with 

f i e  X \ (YUV) .  (2.1) 

Proof. There is an irreducible component  X '  of X such that  X~\(Yt2IJ) is not empty. 

Let A be the degree of X ~, and ]?a the union of the varieties V~ with 6(V~\Y)<.A. 

(1) Some resu l t s  of  th i s  and  the  nex t  two sect ions first appea red  in an  unpub l i shed  manusc r ip t  of  
Schlickewei, Schmid t  and  Waldschmid t .  Added in proof .  This  work has  now been  publ ished:  Zeros of 
l inear recurrences.  Manuscr ip ta  Math. ,  98 (1998), 225 241. 
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Whereas 1,' is not necessarily a variety, )?A certainly is, and hence so is YUI;A. Since 

X'\(YUlZzx) is not empty, there is by what we said above a point ~cX ' \ (YUI2A)  with 

degree d(/~) ~< A. This point cannot lie in a set V,~ \ Y  with 5 (V,~\Y) > A, and hence cannot 

lie in Y U Y. [] 

When Oil, ...,oz a in C x are given, and when xEZ,  the equation (1.5) is linear in 

the t =  (tl + 1) +.. .  + (tk + 1) coefficients of the polynomials P1, -.., Pa of respective degrees 

<~tl,...,ta. Hence when Z is a subset of Z, the totali ty of equations (1.5) with x c Z  

defines a linear space in these coefficients. This linear space is r  precisely when 

c~ = (a l ,  ..., aa)  lies in a certain algebraic variety X = X (Z, t l, ..., tk). Thus when a l, ..., c~k 

are nonzero and if (1.5) holds for xEZ,  then ~ c X \ Y  where Y is given by a l  ... ak=O. 

Let ~m(X) be the ruth cyclotomic polynomial, and (Pro(x, y)=yr its ho- 

mogeneous version. For l<.i<j<.k, let V/j,~ be the variety in C a defined by q~m(ai, a j ) = 0 .  

Then 5(Vijm\Y)=r Now if, in addition to the condition on c~ given above, we have 

O~r for iCj ,  then c~r Uj U m Y i j m ,  s o  that  ~ E X \ ( Y U I 2 ) .  By Lemma 1, there 

is a ~ E Q  a with (2.1). This ~ has nonzero components w i t h / ~ i ~ j  for iT~j, and there 

are polynomials P1, ..-, ~5a of respective degrees ~ t l ,  ..., tk, not all zero, so that  

= o 

for xE Z.  

It  is therefore clear that  in proving our Theorem, we may suppose from now on 

tha t  a l ,  ..., ak are algebraic. They will lie in some number field K.  The equation (1.5) 

with x E Z  is linear, with coefficients in K,  in the coefficients of P1,---, Pk, and if these 

equations have a nontrivial solution, they have a nontrivial solution with components 

in K. 

In summary:  We may suppose that al,.. . ,  ak and the coefficients of P1,..., Pk lie in 

a number field K. 

3. A s u r v e y  o f  s o m e  k n o w n  r e s u l t s  

We will quote a few facts which will be used in our proof of the Theorem. 

LEMMA 2. Let al , ..., O~q, al , ..., aq be in C x, and consider the exponential equation 

ala~+...+aqaq =0 .  (3.1) 

When c~iT~aj for i ~ j  in l <.i,j<.q, the number of solutions x c Z  is less than 

A(q) = e x p ( ( 6 q W ) .  
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Proof. This  follows immedia te ly  f rom T h e o r e m  1.2 in [3].(2) [] 

A solution x of (3.1) is called nondegenerate if no subsum vanishes.  

LEMMA 3. Again let oo,...~C~q,al, ...,aq be in C x, but this time suppose C~l~...~(~q. 

There are 
B(q) ----q 3q2 

vectors c (~) =(c~ ~), ..., c~ w)) ( w = l ,  ..., B(q) ) such that for any nondegenerate solution of 

(3.1), the vector (o~, ..., % )  is proportional to some vector e (~'). 

Proof. We m a y  suppose  t ha t  q > l .  Set t ing n = q - l ,  b i=-ai /aq,  ~i=(c~i/Ctq) x 

( i=1 ,  ..., n),  we obta in  

b~(~+...+bn~n = 1 (3.2) 

where  (1,. . . ,  ~n are roots  of 1. By  a recent result  of Ever tse  [2] which improves  on earlier 

work of Sehlickewei [81, the equat ion  (3.2) has at  mos t  B ( n + l ) = B ( q )  solutions in roots  

of uni ty  where  no subsum of bl~l+...+bn(,~ vanishes. Given such a solution ~1,-.- ,(n, 

the  vector  (a~, ..., aq)  is p ropor t iona l  to (~1,---, ~n, 1). [] 

A solution X = ( X l ,  ..., Xq) of an equat ion 

alx l  +... +aqXq = 0 (3.3) 

is called nondegenerate if no subsum vanishes.  

LEMMA 4. Let F be a finitely generated subgroup of ( c x ) q = C X x . . . x C  x of rank r, 

and let al, ...,aq be in C x. Then up to a factor of proportionality, (3.3) has at most 

C(q, r)  = exp( ( r  + 1)(6q) 4q) (3.4) 

nondegenerate solutions x E F. 

Proof. This  is just  a homogeneous  version of a t heo rem in [3]. Again set n = q - 1 ,  

b i=-ai /aq,  and write yi=xi/Xq ( i - -1,  . . . ,n).  T h e n  (3.3) becomes  

blyl +...+bnYn = 1, (3.5) 

and (Yl, .-.,Yn) lies in a group F '  of rank  ~<r. By  T h e o r e m  1.1 of [3], (3.5) has a t  most(3)  

exp((r+ 1)(6rip n) < C(q, r) 

(2) Added in proof. The estimate in the final version of [3] is slightly better. 
(3) Added in proof. Again the estimate in the final version of [3] is better, but effects no essential 

improvement of our main results. 
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solutions (yl, .-., Yn) E F ! where no subsum of blYl+... +bn Yn vanishes. Since xi = yiXq, 

the lemma follows. [] 

Let h(xl : . . .  :Xq) denote the absolute logarithmic height of a point X : ( X l :  ... :Xq)  

in projective space I?q-1 (Q). Let b in (X1 ,  ...~ Xn) be the inhomogeneous height of a point 

x E Q  n, so that hin(xl, ..., xn) = h ( x l :  ... :xn : 1). Given a number a E Q ,  there should hope- 

fully be 11o confusion writing h(a)=hin(O~)=h(a: 1). 

When x = ( x l ,  ..., Xq), Y=(Yl, ..., Yq), set 

x * y  = ( X l Y l ,  ...,Xqyq). (3.6) 

LEMMA 5. Let q > l  and F be a finitely generated subgroup of (~x)q of rank r. 

Then the solutions of 

Zl + . . .+zq = 0, (3.7) 

with z=(zl , . . . ,Zq)=X*y where x E F ,  yE(Q•  q and 

h(y) < 4-~ h(x), 

are contained in the union of not more than C(q,r) proper subspaces of the ( ( q -1 ) -  

dimensional) space defined by (3.7). 

Proof. Set n = q - 1 .  The lemma is an immediate consequence of the following in- 

homogeneous version. 

LEMMA 5'. Let F be a finitely generated subgroup of (~x)n of rank r. Then the 

solutions of 

z l+. . .+zn = 1, (3.8) 

with z = ( z l ,  ..., z n ) = x * y  where xCF,  y E Q  n and 

1 h i n ( X )  ' ( 3 .9 )  hin(Y) < ~ n  2 

are contained in the union of not more than C(n, r) proper subspaces of ~n. 

This is a variation on Proposition A of [9]. In that  proposition, the bound on the 

number of subspaces depended on the degree of the number field generated by F. But in 

contrast to our estimate C(n, r), that  bound was not doubly exponential. 

Proof of Lemma 5'. In the proof of Proposition A we distinguished three kinds of 

solutions. 

(i) Solutions where some yi--0, i.e., some zi=0.  These clearly lie in n subspaces. 
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(ii) Solutions where each Yi 5 0, and where hin(X)>2n log n. These were called large 
solutions in [9], and it was shown in (10.4) of that paper that  they lie in the union of 

fewer than 
230n2(21n2)" 

proper subspaces. 

(iii) Solutions where each y i # 0  and where bin(X)~<2n log n. These were called small 

solutions in [9]. Here we argue as follows. We have hin(Y)<~(2nlogn)/(4n2)<log2 by 
6 x (3.9). Then each component has hin(Yi)<log2, and since Yi Q , we have y i = + l .  The 

equation (3.8) now becomes 

•177177 = 1. (3.10) 

The group P' generated by F and the points (• ..., •  again is finitely generated, and 

of rank r. By Proposition 2.1 of [3], the solution of (3.10) with ( i x 1 ,  ..., •  P' lies in 

the union of not more than 

exp((4n) an. 2 ( r+  1)) 

proper subspaces of Q~. 

Combining our estimates we obtain 

n+ 23~ (21n2)~ +exp( (4n)an. 2 ( r + l ) )  < C(n, r). [] 

LEMMA 6. 

for xEZ. 

Let /9, b in Qx be given. Then there is a uEZ such that 

h(b/3 x-u) > �88 h(/3)Ixl 

This is the case r = n = l  of Lemma 15.1 in [9]. For the convenience of the reader, 

we will present the proof of our special case. 

Proof. We may suppose that  h(/3)>0. Let K=Q(b,/3) and M be the set of places 

of K.  With v C M we associate the absolute value I " Iv on K which extends the standard or 

a p-adic absolute value on Q, as well as the renormalized absolute value II" IIv = (]" Iv) dv/D, 
where D = d e g K  and dv is the local degree belonging to v. Then when c~EK x, 

1 
h(ct) = Z max(0, log [[a[Iv ) = ~ E II~ [la[lv[ 

v6 M v6114 

by the product formula. Hence 

1 
h(b/3X) = 2 Z Ii~ rlblF~+xlog [I/311~1. 

v6~l 
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Defining 

for ({, ~)ER ~, we have 

1 
g'(~' ~)= ~ Z ]~log ]l/311v+~log [[b[l~ I 

v E M  

r 1)=h(b~), r ). (3.11) 

The function r has r ~+~')<~(~,  C)+r ~'), as well as r A~)=[A[r ~) 
for AER. The set ~ C R  2 consisting of points (~, ~) with r ~)~< 1 is convex, symmetric 

about 0, closed, and it contains 0 in its interior. But it may be unbounded. 

When �9 is unbounded, there is some (~0, ~0)~ (0, 0) with ~(~0, ~0)=0. Since ~(1, 0)= 
h(/~)>0, we have ~0r By homogeneity, there is some ~1 with r On the other 
hand, when �9 is bounded, hence compact, pick (~0, ~o) in k~ with maximal possible ~0. 

Writing ~0 as ~0=~0~1 we obtain ~0(~1, 1)E~, hence ~0~(~, 1)<1. 
Let (~, ~) be given. When ~ is unbounded, ~ ( ~ ,  ~)=1~[~(~, 1)=0<r ~). When 

is bonnded, we have ~(~1,  ~) = I~1~(~1, 1) < K[/~0 <g)(~, ~), with the last inequality due 
to homogeneity and the maximality of ~0- Taking the difference of (~, ~) and (~1, ~), we 
obtain ~ ( ~ - ~ ,  0) ~<2~(~, ~), and hence 

I~-C~alh(~) < 2r C) 

by (3.11). Setting ~=1 and replacing ~ by xEZ, we have 

11x- llh(9). h(b/3 x) = r  1) 

We pick uEZ such that ~ l = - u + #  with [#[<�89 Then 

1 1 h(b~ x-~) >~ ~[x-u-~llh(/~)= llx-p[h(~ ) ~ ~h(~)[x[. [] 

4. C o n s e q u e n c e s  o f  h a v i n g  s o m e  h e i g h t  h(ai/aj) n o t  t o o  s m a l l  

Define the degree of the zero polynomial to be -1.  Given a k-tuple P=(P1,--. ,  Pk) of 

polynomials where degPi=t~ (i=1, ..., k), define t(P) by (1.7), and set 

t*(P) = l + m a x  ti. 

Note that a zero polynomial does not contribute to t(P). 
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LEMMA 7. Consider the equation (1.5), i.e., 

P l ( x )~+. . .WPk(x )c~  -- O, (4.1) 

where (C~l,...,(~k)c(Qx) k and where each Pi is nonzero and has coefficients in ~. Sup- 

pose that t(P)~>3 and that 

ma x h(a~: a j )  >/h, (4.2) 

where 0<h~<l. Set t = t ( P ) ,  t*= t*(P) ,  

E--16t2.t*/]i, F=exp( (6 t ) s t )+5ElogE.  

Then there are k-tuples 

P(W)=(P~W),...,P(W))~(O,...,O) ( l < w < F )  

of polynomials with 

degP(W)~t i  ( l ~ w < F , l ~ < i < k ) ,  

deg.kP(w)<tk ( l ~ w < F ) ,  

such that every solution xEZ  of (4.1) satisfies 

for some w in l <<. w<F.  

Proof. 

P:W)(x)~7 +.. .+P~W)(x).~ = o 

Suppose uEZ, and set y=x+u.  Then (4.1) may be rewritten as 

P1 (Y - u) a l  ~ a~ +... + Pk (Y--u) a~- ~ m y = O, 

which is the same as 

with 

Ql(y)a~ +... +Qk(y)(~ -- 0 

(4.3) 

(4.4) 

Q ~ ( u )  = P ~ ( y - u ) ~ ; "  ( i  = 1, . . . ,  k ) .  

Suppose our assertion is true for (4.4), with polynomial k-tuples Q(W)= (Q~),---, Q(W)) 

(1E w < F).  Thus every solution yC Z of (4.4) satisfies 

Q(W), ~ u -  _~(w)~ ~ay_O (4.5) 
1 (Y) l • 1 7 7 1 6 2  (Y) k - -  



for some w. 

We therefore may make a change of variables x~--~y=x+u. 

We may suppose that  h(al:a2)~>h. Write 

Pi ( x ) = aio + ai l x + ... + ai,ti x tl . 

Pick u according to Lemma 6 such that  

h~ y_~ ~_~, ( a L t ~ ( a l y - U ~  l h ( a l )  1 [al,tloz I :a2,t2a2 ) = h >~ lyl/> 5lyl. 
\ a2,t2 \ &2 / / 4 -~2 

Setting 
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But then x = y - u  satisfies (4.3) with P(W) (x )=Ql~ ) ( x+u)a  ~ ( i=1,  ..., k). 

Qi(y) = P i ( y - u ) a i  -~ = bio+bily+.. .  +bi,t,Y t~, 

we have bl , t l=al , t la~ ~, b2,t2=a2,t~o~2 u, so that  

h(bl,tla~ : b2,t~a~) >1 �88 hlyl (4.6) 

for ycZ .  

The equation (4.4) is of the form 

(b lo§  +. . .+(bko+bkly+. . .+(bk, tkytk  )aYk =0 .  

Some coefficients may be zero; omitting the zero coefficients we rewrite this as 

(bloY~~ +. . .+(b~oY~~ =0 .  

Let q be the total number of (nonzero) coefficients here, and consider the following vectors 

in q-dimensional space: 

' Y Y.. . ,b'koa~,.. . ,bk,t~a~), X =  (bloctl, ..., bl, t lal ,  
ytk ). 

(4.7) 

y = (  yViO ,.-., ytl ,..., yVkO ,..., 

Our equation becomes 

Z l + . . . + Z q = O  

with Z = X * Y = ( X 1 Y 1 ,  . . . ,XqYq). Here X lies in the group F of rank r~<2 generated by 

the points (b~0 , ..., bl,tl,. . . ,  b~o, ..., bk,tk) and (cq, ..., cq, ..., ak, ..., ak). Further 

h(X)/> Y" ~ �88 I (4.8) h(bl,tloq, b2~t2 o~2) 
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by (4.6). On the other hand, YEQ q, in fact YE(Q• q when y#0 ,  and h(Y)~<t*log lYl 
since each ti <~ t*. Therefore when 

lyl/> 2E log E, (4.9) 

so that  lY] >1 (32q2t*/h) log(16q2t*/h) in view of q<.t, then 

and 

16q2t * 
[Yl > ~ log lyl, 

1 h 1 
h(Y) ~< t* log lYl < ~ lYl - 4q 2 ~ lYl ~< 4q---2 h(X) 

by (4.8). Invoking Lemma 5, we see that  for such y the vector Z is contained in the 

union of at most 
C(q, 2) < exp((6q) 5q) ~< exp((6t) 5t) (4.10) 

proper subspaees of the space (4.7). Consider such a subspace ca Z1 +... +cqZq =0 (where 

(el, ..., Cq) is not proportional to (1, ..., 1)). Taking a linear combination of this and (4.7) 

we obtain a nontrivial relation ' clZl+...+Cq_lZq_l=O. But this means exactly that  y 

satisfies a nontrivial equation 

Q,I(y)oLY-~-...-~-Q,k(y)OLYk =0, (4.11) 

where deg (~i <~ ti (i = 1, ..., k -  1), deg Qk < tk. 

There are not more than 5 E l o g E  values of y where (4.9) is violated. For fixed y, 

and since t~>3, there will certainly be polynomials ~)1,-.., Qk, not all zero, with (4.11) 

and the same restriction on their degrees. Altogether we get fewer than F polynomial 

k-tuples Q=(Q1,.. . ,(~k), where F is the sum of the right-hand side of (4.10), and of 

5E log E. [] 

Lemma 7 gives us a possible opening to prove our Theorem. Note that  each p(w) 

has t (P  (w)) < t (P ) ,  so that we can start induction on t = t ( P ) ,  provided (4.2) holds with 

some h = h ( t ) > 0  independent of the degrees of a l ,  ..., ak. But in general such a condition 

(4.2) will be hard to satisfy. 

5. A proposit ion which implies the Theorem 

An n-tuple of linear forms M1, . . . ,  Mn in a variable vector X will be called linearly 

independent over Q if there is no y=(Yl,  .-., yn)EQn\{0} such that  we have identically 

yiMl(X)-4-... + yn~In(X) =0.  
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PROPOSITION. Suppose that linear forms M1, ..., Mn in X =(X 1 ,  ..., Xk) have alge- 

braic coefficients and are linearly independent over Q. Let al , . . . ,ak be algebraic and 

have a i ~ a j  when i r  Consider numbers xCZ for which 

M l ( O ~ ,  .. . ,  o ~ ) ,  ..., Mn(a~ , . . . , a~ )  (5 .1 )  

are linearly dependent over Q. These number fall into at most 

H(k, n) = exp((Tkn) 6k~ 

classes with the following property. For each class C, there is a natural number m such 

that 

(a) solutions x, x' in C have x--x '  (rood m), 

(b) there are i , j  with h ( a ~ : ( ~ ? ) ) 5 ,  where 

t~ = h ( k ,  n )  = e - l ~  (5.2) 

We will now deduce the Theorem. We are concerned with (1.5), where we write Pi 

in the form 

Pi(x ) - - - -~a i j x  y-1 (i = 1,..., k) 
j = l  

with a = l + m a x i  degPi.  Define linear forms 

k 

Nj(X)  = E aijXi ( j  ---- 1,..., a) 

- M~(a~,..., k ) = 0 .  
r = l  -- 

(5.4) 

i=1 

in X = ( X 1 ,  ..., Xk). Then as already noted in the Introduction, (1.5) may be written as 

~-~ Nj  (OLd,..., old) x j -1  = O. (5 .3 )  

j = l  

Here N1,..., Na are not necessarily independent over Q. Let n be the maximum number of 

independent ones among them. There are linear forms M1, . . . ,  Mn, linearly independent 

over Q, such that  
n 

N j ( X ) = E c j ~ M ~ ( X  ) ( j  = 1,. . . ,a) 
r = l  

with rational coefficients cir. Then (5.3) becomes 
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There  are less t han  a numbers  x where  

a 

E c j ~ x J - I = O  (r  = 1 , . . . ,n) .  
j = l  

For the  other  solutions of (5.4), the  n numbers  in (5.1) are l inearly dependen t  over Q. By  

the  Propos i t iom these numbers  fall into at  mos t  H(k, n) classes. Let  us look at  solutions 

in a fixed class. 

W h e n  x0 is a solution in the class, every solution in the class is of the  type  x--xo + m z  

with zCZ.  In t e rms  of z, the  original equat ion  (1.5) becomes  

=0, (5.5) 

where Pi(z) xo =ai Pi(xo+mz),  ~ i = ( ~  (i--1,. . . ,k).  But  now for some i , j ,  

We will prove t ha t  when t ( P ) = t ,  the  equat ion  (1.5) has at  most  

Z ( t ,  k a) ~-- exp( t (7ka)  7k~ ) (5.6) 

solutions x. We clearly m a y  suppose  t ha t  k~>2, t~>3. We will prove our assert ion by 

induct ion on t in 3<<.t<~k a. We app ly  L e m m a  7 to (5.5). Since t*(P)~<t,  n<<.a, we have 

E <<. 16t3/h(k, n) <<. 16k3ae 1~ < e 13k2~ 

5 E  log E < 65k 2~- e 13k2a < e 18k2a , 

a 5 k  a F <<. exp((6t)5t)+exp(18k 2~) <~ exp( (6k  ) ) + e x p ( 1 8 k  2a) < exp((7ka)Ska).  

By  L e m m a  7, each solution of (5.5) satisfies an equat ion  with  a po lynomia l  vector  p ( w ) =  
(p(~) ,  p(w)~ 1 --., - k j r (0, ..., 0) wi th  1~< w < F having t (P(~) )  < t. By  induct ion on t, each such 

equa t ion  has a t  mos t  Z ( t -  1, k a) solutions. We therefore obta in  

< a+H(k ,  n) F.  Z(t  - 1, k a) 

<< a+exp((Tkn) 6k~ + (Tka) 5k~ ) - e x p ( ( t -  1)(7ka) 7k~ ) 

< exp(t(7ka) 7ka ) = Z(t,  k a) 

solutions, es tabl ishing (5.6). 

Since tK~k a, the  number  of solutions of (1.5) cer ta inly  is 

k a < exp((Tka) s ). [] 
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where 

fi(x) = ailaxl +... +ai,q~a~,q~ 

f(x)  = fi(x) +...+ fg (x) 

(i = 1, ..., g) 

with ql §247 =q and 

oLij ~ O~ik 

Ozij ~ O~irk 

LEMMA 8. All but at most 

solutions xEZ of f (x )=O have 

fx(x) . . . . .  fg(x) = O. 

when l<.i<.g, l<.j,k<.qi,  

when l <. i r  <.g, l <<.j<~qi, l <<. k<<.qi,. 

G(q) = exp((Tq) 4q) (6.3) 

We will say that  the equation f ( x ) = 0  splits into the g equations (6.4). 

Proof. The lemma is nontrivial only when g~>2; and then q=q(f)>~2. We proceed 

by induction on q. When q=2 and g--2, we have in fact f(x)--aa~l+b(~l with abr 

and au~C~21. There can be at most one x E Z  with f ( x ) = 0 .  

We now turn to the step q -  1--+q where q~>3. Observe that  (a~, ..., a~) lies in a group 

F of rank r~<l. By Lemma 4, there are at most C(q, 1)=exp(2-(6q) 4q) vectors c (0 =  

(c~ 1), ..., c~Z)), l<~l<C(q, 2), such that  for every nondegenerate solution x e Z  of f ( x ) = 0  

we have (c~, ..., a~) proportional to some c (z). Thus the quotients (ai/aj) x depend only 

on l. But since g~>2, some a i / a j  is not a root of 1, so that  for given l, there can be at 

most one solution x EZ. 

When x is a degenerate solution of f (x)=0,  there is a nontrivial parti t ion of {1, ..., q} 

into subsets {il, . . . ,  in}, {jl,---,j,~} (with n+m=q) such that  

ail~Xl § =O, aj l~l  §247 

(6.2) 

(6.4) 

6. Splitting of exponential equations 

Let nonzero hi, . . . ,  aq, oq, . . . ,  OLq be given. We consider the function 

f (x)  = ala~ +...+aqa~. (6.1) 

We group together summands aia~ and aj~ w h e r e  ai~e~j. After relabeling, we may 

write (uniquely up to ordering) 
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There  are < 2  q-1 such part i t ions.  But  each par t i t ion  yields nonzero f*, f** with 

i f(x) = f**(x)  = 0, (6.5) 

and with  f*+f**=f,  as well as q(f*),q(f**)<q=q(f) (where q(f) is the  number  of 

nonzero sumInands  of a funct ion f ) .  Wri te  

f*(x)= f;(x)+.. .+ f~(z), 

f** (x) = f{* (x) +. . .  + f * *  (x), Jg  

where f/*, f** are linear combina t ions  of CtXl, ..., aiXq. By induction,  all bu t  a t  mos t  

2G(q-1) solutions of  (6.5) have 

f * ( x )  = 0 (1 ~<i ~<g), 

f~**(x) = 0 (1 ~<i~<g), 

hence (6.4). The  number  of except ions to (6.4) therefore is 

< exp(2(6q) 4q) +2qG(q- 1) 

< exp(2(6q) 4q) + 2 q exp((7q) 4q-4) 

< exp((Tq) 4q) = G(q). [] 

A s u m m a n d  aict~ in (6.1) will be  called a singleton if OLir j for every jCi,  1 ~ j  <.q. 
Then  one of the  g s u m m a n d s  in (6.2) equals just  a i c~ ,  and hence has no zero. We 

therefore  obta in  the following 

COROLLARY. Suppose that f as given by (6.1) contains a singleton. Then f ( x ) = 0  

has at most G(q) zeros xEZ. 

The  aij (l<~j<<.qi) occurr ing in fi  are all ~ to each other.  However,  given a solut ion 

x of fi(x)=O, there  may  be a subsum of fi which vanishes.  We will refer to such a 

possible phenomenon  as a subsptitting. I t  causes considerable compl ica t ions  in our  p roof  

of the  Theorem;  in par t icular ,  it necessi ta tes  the  Appendix .  

A solution x of fi(x)=O where no subspl i t t ing  occurs  is called a nondegenerate 
solution. To ease notat ion,  let us suppose  t ha t  f i tself as given by (6.1) has ~ 1 ~ . . . ~ c % .  

By L e m m a  3, there  are vectors  e (~~ (1 <~w <~B(q)) such tha t  for a nondegenera te  solution, 

(aT, ..., c%) is p ropor t iona l  to some e (~). 
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7. A l g e b r a i c  n u m b e r s  h a v i n g  m a n y  c o n j u g a t e s  w h i c h  are ..~ to  each  o t h e r  

Throughout,  a,/3, % ~ will be in ~x .  

LEMMA 9, (i) ~ is an equivalence relation on ~ x .  

(ii) I f  a~/3, ~/~5, then a~:~/35. 

(iii) I f  az~/3 ~ for some l cZ\{0} ,  then a~/3. 

(iv) I f  c~/3  and a is an embedding of Q(a,/3) into Q, then a (a )~a( /3 ) .  

Note that  (i) has already been tacitly used above. 

Proof. Let T C Q  x be the torsion subgroup, i.e., the group of roots of 1. Then a~/3  

precisely when a,/3 have the same image in the factor group QX/T. This implies (i), (ii). 

When ~ZcT for some ICZ\{0}, then ~CT; and this implies (iii). Finally, if ~ETMQ(a,/3) 

and ~ is an embedding of Q(a,/3) into Q, then ~ (~)cT;  and this yields (iv). [] 

LEMMA 10. Let /3 be of degree d, and S={/311],...,/3 [d]} the set of its conjugates. 

Partition S as 

S =  SIU. . .US m 

into equivalence classes under ~.  Then(4) d = m n  with some nEZ,  and 

ISll . . . . .  ISml = n .  

Pro@ Let G be the Galois group of K=Q( /3  [~1, ...,/3[dl). When crcG, let a(Si)  be 

the set of elements a(/3[al) where/3 [al runs through Si. By (iv) of the preceding lemma, 

G permutes the sets $1, ..., S,~, i.e., G acts on the m-element set E={S1,  ..., S,~}. Since 

G acts transitively on S, it acts transitively on E. Given Si, Sj and a c G  with a(S i )=Sj ,  

we have IS,~l=lcr(Si)l=lSjl. Therefore $1, ..., S.m have some common cardinality n, and 

d = ran. [] 

Lehmer's conjecture says that  if /3~1 is of degree d, then h( /3) )Cl /d  with an absolute 

constant c1>0. The best that  is known in this direction is Dobrowolski's [1] estimate 

h(/3)>~(c2/d)(log + log+ d/log+ d) 3, with the notation log+~=max(1, log~). According to 

1 We will use the slightly weaker version Voutier [11], we may take c2=~. 

1 
h(/3) ) ~au a)''"~ (7.1) 

The following lemma can sometimes be used in place of Lehmer's conjecture. 

(4) The number n here and in n03), nK(/3) below should not be confused with the number n in the 
Proposition. 
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LEMMA 11. Let ~ be as in Lemma 10, and suppose/~1.  Then 

1 
h(/~) ~ ~a[t g ~3" (7.2) 

Proof. In the notation of Lemma 10, we may suppose that  t3ES1. Let 7i ( i=1,  ..., m) 

be the product of the elements of Si, i.e., 

7~= I I  ~[~]" 

Then G permutes 71~ .--, 7m, so that every conjugate of 71 is among 71~ .-, 7m- We may 

infer that 71 is of degree ~<m. Moreover, 71# I, for otherwise/~n~71 ~ i~ and hence/~ i~ 

against the hypothesis. Therefore h(71)~l / (4m(log+m)3) .  But 

h(71) < E h(~[~]) = ]S1]h(/~) =nh(/~). 
~[a] 6S1 

We may conclude that  
1 

h(fl)/> h(71)n ~> 4d(log+m) 3" [] 

Henceforth we will use the notation n(/~)=n where n is as in Lemma 10. Suppose 

that  Q( /~ ) cK  where K is of degree D. Let ~-+~(~) ( a - - l ,  ..., D) signify the embeddings 

Kr Then each /3 [a] (l~<a~<d) occurs D/d times among ~(1)...,/~(D). Therefore 

among ~(1) ---, ~(D) there are 

~(~)  := Dn(9) 

elements which are ,~ to each other. Note that  D=mnK(~) .  We immediately get the 

following 

COROLLARY. h(~) ~> 1/(4d(log + (D/nK(~)))3). 

Again let ~ be as in Lemma 10, and suppose $1 = {~[11, ..., ~[nl }. So ~[11, ..., ~[r~l have 

a common absolute value b, and we may write 

~[il=b.e 2'~i~ (i = 1, . . . ,n) (7.3) 

with 0 ~< 0i < 1. The differences 0i - 0j are rational, since ~[il/~[Jl ~ 1. 

More generally, let R={01,... ,  0n} be a system of reals such that  each difference 

0 ~ - o j c Q ,  but O i - ~ j ~ Z  when i ~ j .  Let rij be the denominator of Oi-Oj, i.e., the least 

natural number such that rij(#i--~j)E~. Given xEN, let ui(x) be the number of j in 

l ~ j ~ n  with rij]x. The system R will be called homogeneous if ul(x) . . . . .  un(x) for 

xEN. 
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LEMMA 12. Let {/311],...,/3 [n]} be as above, and LO1,...,aOn defined by (7.3). Then 

R={~I , . . . ,  Qn} is homogeneous. 

Proof. Write vi(x) for the number of j in l<~j<<.n with r i j : x .  Since u i (x)= 

~ylx  vi(y), it will suffice to check that Vl(X) . . . . .  vn(x). Since 13[i]/13[J]=e2~ir~J/r~J with 

gcd(rij, r~j)=l ,  we have ri j=x precisely when/3[q//3[J] is a primitive x th  root of 1. 

Given i and x set v=vi(x), and suppose that/3[q//3 [tk] (l~<k<~v) is a primitive x th  

root of 1 for v distinct numbers 11, ..., l~ in l<.l<.n. 

Let G ~ be the subgroup of the Galois group G of ~(/3[q, ..., /3 [d]) which permutes 

/3hi ...,/3In] i.e., which acts on Sl={/3b],...,/3[n]}. Since G acts transitively on S and 

permutes $1, ..., Sm, the group G' acts transitively on $1. Now let j in l<~j<<.n be given, 

and pick aGG'  w i t h  O'(~[i]):/~ [j]. We have a(/~[zk])--/~ [Z~]- where 11,' ..., l~' are v distinct 

integers in l< . l~n .  Further 

9L J /gN  

are primitive xtt~ roots of 1. Therefore vj (x)~> v =v~ (x). By symmetry, vi (x)=Vy (x), and 

the lemma follows. [] 

When c~,/~, 7 are in Q• or more generally in C • write 

G(o~ : ,8 : "7) (7.4) 

for the subgroup of C x generated by c~//3 and a/7- Clearly G(c~:/3:7) is finite precisely 

when c ~ / 3 ~  7. With /3 and $1={/3[q, ...,/3[ hI} as above, a triple of integers i,j, h in 

l<~i,j, h<.n will be said to be c-bad if 

ic(,~[~t :/3[J] :/~[h])l ~< on. 

In the notation of (7.3), this happens precisely when 

lcm(r~j,rih) <.on. 

Now let l~>3, and consider/-tuples of integers Ul, . . . ,  U 1 in l<.u<.n. Such an/- tuple  will 

be called c- bad if some triple u~, uj, Uh with distinct i, j, h in 1~<i, j ,  h ~<l is c- bad, i.e., if 

it has 

IC(gEH : 9EH: 9E~"1)1 ~< on. 

Since R : { L 0 1 ,  . . . ,  ~0n} is homogeneous, and by the Corollary of the Appendix, 

the number of c-bad l-tuples is < c1/213n 1. 
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Suppose again that  Q(/3)CK and that  ~-+~(a) (o=1 ,  ..., D) signify the embeddings 

K~+C. There are nK(~)=nD/d  numbers # in 1,.<p,.<D such tha t /3 (" )E{~ [1], ...,fi[nl}. 

Let Ad be the set of these numbers. Given I~>3, an l-tuple #1, .-.,#l of numbers in 34 

will be called e - b a d  if there are distinct numbers i, j, h in l<~i,j, h<~l such that  

[a(/3 ("~):/3("~):/3("~))1 ~< en. 

Since for each u in l<~u<~n there are D/d numbers # in Ad with ~(~)=/3[~], and since 

nK(/3)=nD/d, we see that  the number of c - b a d  l-tuples of numbers in Ad is less than 

c1/213nK(fi) t. (7.5) 

Here Ad is typical of a subset of {1, ..., D} such that  the numbers/3(~) with # c A d  make 

up an equivalence class under ~.  Any such set M has ]AJI=nK(/3). We have 

LEMMA 13. Let 3/IC{1 .... ,D} be such that the numbers/3(~) with # E M  make up 

an equivalence class under ~ of the numbers /3 (1), ...,/3 (~ Then the number of c - b a d  

l-tuples #1, ...,#l with piE.It4 ( i=1,  ...,1) is less than (7.5). 

8. T w o  e a s y  l e m m a s  

Let K be a number field of degree D, and let ~ - ~ ( ~ )  (o=1 ,  ..., D) signify the embeddings 

K~-+C. When a = ( a l ,  ..., a n ) E K  '~, set a(~)=(a~ ~ ..., a(~ ~)) (o=1 ,  ..., D). 

LEMMA 14. Suppose that a S K  n. Then the vectors a (~ (o=1 ,  ..., D) span a rational 

subspace of K n. 

Proof. This is well known. D 

LEMMA 15. Suppose that a C K n c C  n but a ~ T  where T is some subspace of C n. 

Then there are at least D/n  integers c~ in l <~cr<~D with a(~){tT. 

Proof. We will first suppose that  al ,  ..., an are linearly independent over Q. If  the 

lemma were false for a, there would be a set of more than  D -  D/n  vectors a ~ in T. Since 

T r  n, it will suffice to show that  any set of more than ( 1 - 1 / n ) D  vectors a (~ spans C n. 

So let AC{1,  ..., D} be given with IAI>(1-1 /n)D,  and let B be the complement 

of A, so that  IBI <D/n.  Since al ,  ..., an are linearly independent over Q, the vectors a (~ 

(o r - l ,  ..., D) span C n. We may suppose without loss of generality that  a (1), . . . ,a  (n) are 

linearly independent. Suppose tha t  K is generated by c~, i.e., K = Q ( a ) .  Let G be the 

Galois group of its normal closure Q(ct (1), ..., c~(D)). For gEG we have g(c~(~))=c~ (~ 

where l~, . . . ,Dg is a permutat ion of 1, . . . ,D.  Given o and r ,  there is a gEG with 
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~rg=r; in fact, the number of such gEG is IGI/D. Given a, the number of gEG with 

~gEB is IGI.II31/D. The number  of gEG such that  at least one of l~, . . . ,ng is in B 

is <~IGI.IBIn/D<IG I. Hence there is a gEG such that  lg,...,ng all lie in A. Since 

a (~), ..., a (~) are independent and g(a(~))=a(~) (i---1, ..., n) with lg, ..., n~ in A, the vec- 

tors a (~) with cTEM indeed span C n. 

This takes care of the case when al,.. . ,an are linearly independent over Q. In 

general, we may suppose that  al, ..., a~ are linearly independent over Q, and that  
?. 

aj : E cijai (r < j <~ n) 
i = l  

with rational coefficients cij. Since a ~ T ,  there is a relation ?lXl+...+%~x~=O valid 

on T, such that  ~/la1+...+~/~a~7~O. But then 

/ f "/l al +... +"/r ar ~ 0 

! n with 7i=~/i+y~j=~+l cijTj. Thus /L=(a l ,  ..., a~) does not lie in the space T ' c C  r defined 

by ' 7 1 x l + . . . + % x ~ = O .  By the case of the lemma already shown, there are at least 

(~ (~) a (~} ~ T .  D/r>~D/n integers cr with ~i(~)~T ', so tha t  71ai +...+%~a,~ ~0 ,  and hence [] 

9 .  N o n v a n i s h i n g  o f  d e t e r m i n a n t s  

After the preliminary work of the preceding sections, we can finally commence with the 

proof of the Proposition. We first dispose of two simple cases. 

(a) When k = l ,  Mj(X)=b jX ,  and the linear independence condition means that  

bl, ..., bn are linearly independent over Q. Then for any ~r  in particular for ~ = a ~ ,  the 

numbers Ml(~)=bl~,  ..., Mn(~)=b~ are linearly independent over Q. 

(b) When n = l ,  M l ( X ) = a l X l + . . . + a k X k  is not identically zero, and furthermore 

Ml(a~,  ..., ct~)=0 becomes a la~ + . . . + a k a ~  =0.  By Lemma 2, this equation has at most 

A(k) <~ H(k, 1) 

solutions. We now put each solution into a class by itself. Hence in each class we may 

choose m arbitrari ly large, in particular so large that  some h (~n :  c ~ ) ~  h(k, 1). 

We may then suppose from now on tha t  k~>2, n~>2. Again K will be a field contain- 

ing ~1, ..., ~k and the coefficients of our linear forms. Again we set D = deg K ,  and ~ ~-~(~) 

( a = l ,  ..., D) will signify the embeddings KL-~C. When M j ( X ) = a u X I + . . . + a k j X k  , set 
(~) _ (~) - (~) -~  _ ( ~ ) _ _ / - ( o )  ~(~)~ 

M) ( X ) - a l j  Xl+. . .+akj  Ak. We will write ai=(ail, ...,ain) and ~i - t a i l  , '",ain )" 
Now if the n numbers (5.1) are linearly dependent over Q, we have 

ylMi( ;, ..., + y n  ..., = 0 
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with Yl, .-.,Y~ in Q,  not  all zero. Then  for a = l ,  ..., D, 

�9 "~Cg k ) - ~ . ' . ~ Y n " ~ n  \~1 ~'"~C~k ) ~ - 0 .  

Therefore the matr ix  with rows 

(M}f)(a~f)~, (o)x, az(~)t ,(f)~ (~  (a  1 , . . . ,D)  
""~Otk ) ~ ' " ~ n  \ ~ 1  , " '~O~k  ) )  ---- 

h a s  rank < n .  Let :D(a~, ..., an;  x) be the de terminant  formed from the rows a~, ..., (rn of 

tha t  matrix;  then 

D(a~, . . . a n ; x ) = 0 .  (9.1) 

L E M M A  1 6 .  

k k 

D ( a l , . . . , a n ; X )  = E E A(a!f~)  _(~,)~/~(fl)  a!f,,)~ ~ (9.2) "'" k z l  ' ' " ' d i n  ) [ ( ~ i l  "'" Zn ] ' 

i 1 = 1  i ~ = l  

~(fl) a! f~) When where A(a!  aa) a(a")~ is the de terminant  of  the matr ix  with rows ai~ , ~ 

M1, ..., l~4n are linearly independent  over Q,  this de terminant  is r  for  certain o-1, ..., O" n 

and il, . . . ,in. 

Proof. Since M(~)(a~ f)~, (f)x, (~) ( f )x_  _ a ( f ) a ( f ) ~  . . . ,a  k )=-a]j a] t . . . t  ~,j k , we see tha t  

~)(O'1~ ...~ O'n; X) 

a(O~)~ (Ol)X- - -a( f l )a( f l )X  
11 (Yl ~- . . . - t -  k l  k 

a l l  oz 1 t . . . t a k l  O~ k 

"" a l n  ~1 t " ' t a k n  k 

( f i n )  ( f i n )  x - -  - -  ( f n ) a ( f n ) X  
�9 "" a l n  ~1 t ' " t a k n  k 

K-"_  /~(~) ^(f~)~ . . . .  (f~)~ /~(f=) ~,(f~)~• • ,~(~)x~ 
= / ' ~  ~r I.ttl,~r(1)tx 1 -V--.-Vt~k,zr(1)u~ k ) -.- ~,t~l,Tr(n)tX 1 T . . . . .  k,Tr(n)~k ] 

7r 

where ~ runs th rough  the permuta t ions  of 1, ..., n, and where ~ is the sign of ~. We 

obta in  

k k 

~ ) ( S r l ~ " " S r n ; X ) =  E Z OL!al)x O l ! a n ) x E ~  a(al) a(an) �9 "" ~1 "'" ~ " i1 ,~(1)"" i~ ,~ (n )  
i l  ~ ] i n = l  7r 

k k 

= E E A(a!a~) _(a~) , [_(f l )  agfn)]x "'" \ Zl ' " " f i n  )(Util "'" zn ] "  
i1=1 in=l  

Given i, the vectors ~(f) ( a = l ,  ..., D) span a subspace Si of C n which is rat ional  et i 

by L e m m a  14. We claim tha t  when M1, ..., Mn are linearly independent  over Q, then 
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$1 -~--.. ~- Sk = Cn. For otherwise, there  is a nontr ivial  relat ion Yl X1 +. . .  +y,~ Xn = 0 valid 

on S1 +. . .  + Sk, with coefficients Yl, ..., Yn in Q. Since ai E Si, we have yl ail  -~-..- -~- Yn ain-- 0 
( i = l , . . . , k ) ,  which leads to ylMl(X)+...+ynMn(X)=O, against our assumption.  Now 

cn=sI+...+Sk is spanned by the vectors al ~) ( i=1 ,  ..., k; a = l ,  ..., D) ,  hence is spanned 

by certain vectors ~(~ ~(~ But  then  A ( a  !al) a ! ~ ) 3 - ~ 0  []  
d i l  ' " " '  O l i n  " \ ~1  ' " ' ' '  ~ n  ] /  " 

Changing our notat ion,  suppose tha t  

A(a(~l)~ ul , ..., a ( ~ ) )  ~ 0 .  (9.3) 

The  n- tuple  ul ,  . . . ,u~ will be fixed from now on. By relabeling embeddings,  we may 

suppose tha t  r l = l .  In view of (9.3), a (~)~ does not lie in the space spanned by the 

vectors a (1)ul , a(~-3)u3 , ..., a (rn)~ . By Lemma  15, there  is a subset $2 of {1, ..., D} of cardinal i ty  

[S2[~D/n such tha t  ~(~) does not  lie in this subspace when a C $2; thus 

A ( a  (1) a (a) a (r3) a(~ ")) # 0 
\ U l  , U 2 ' U 3 , - - ' ,  

when aES2 .  When  n > 2 ,  we continue as follows. Let  a2CS2 be given. T hen  a (~3).~ does 

not lie in the space spanned by a (1) a (~) a (~4) a (~'~) By L e m m a  15, there  is a set ~ 1  , ~ 2  , U 4  , " " ,  U n  �9 

$3(a2) C {1, ..., D} of cardinal i ty ~D/n such tha t  a(~ does not  lie in this subspace when 

a E  33(a2).  Thus  

A(a(1) a (~) a(~3) a(~)  a ( ~ ) ~ 0  
, ~tt 2 , U 3 ' U 4 ' ' ' ' ,  U n ] 

when cr2E$2, o-3ES3(o-2). 
Continuing in this way, we inductively construct sets $2, $3(cr2), ..., Sn(a2, ..., ~rn-1) 

of cardinality at least D/n, such that Sj (~2, ..., ~j- i) is defined when 

O'2 C S2, O'3 C S3 (~72) , ..., G j _ l C ~ j _ l ( ( T 2 , . . . , ( T j _ 2 )  , (9.4) 

and such tha t  

when 

A ( a  (1) a(~2) a ( ~ ) ] # 0  
\ U l  ' U 2  ' " ' "  U n  / 

(9.5) 

a2eS2, a 3 e $ 3 ( a 2 ) ,  ..., aneSn(O'2,...,Crn--1). (9.6) 

10. Select ion of  exponent ia l  equat ions  

It will be convenient to set 

A(a.1,'",crn)=A(a!,~l) ~ (O'n) ~ 
�9 \ ~1  ' " ' "  ~ t i n  ] ~  

\ ~l~...,~n 

. A (  O-1, "'', O'n ) ~___ OL!O-1) . ! O - n )  

',, i l ,  ...,~n 



266 w.M. SCHMIDT 

and when o '---(al  .... , o'n), 

E .. Z . 
i1=1 i n = l  \ ~l,-.-,?~n \ \ ~l~.-.~.n 

Then  (9.1) becomes 

fa(x) : 0 .  (10.2) 

Here f~  is of the  type  f considered in w According to L e m m a  8, the  equat ion  (10.2) 

will split, wi th  up to G(q) exceptions.  The  number  q=q(ar)  of nonzero s u m m a n d s  in 

(10.1) has q<~k n, so t ha t  spl i t t ing occurs  wi th  a t  most  G(H n) exceptions.(5) In principle,  

we can  do this for any o~ wi th  l<~ai~<D (i=l .... ,n), which should give us a lot of 

informat ion.  However,  if we carr ied out  this spl i t t ing for every n- tup le  ~,  the  n u m b e r  

of except ions would depend on a factor  involving the degree D,  which we have to  avoid. 

We therefore  have to select a small  set of n- tuples  a for which we will s tudy  (10.2). 

Let  $ be the  set of n- tuples  er---(al,  a2, ..., an)  with a l = l ,  and with  a2, . . . ,  ~  satis- 

fying (9.6). W h e n  a 6 $ ,  the coefficient 

A (  al,' ' ,a'~ ) 
?~i ~ " ' ~  U n  

in (10.1) is nonzero,  so t h a t  not all coefficients of f~  vanish. We will restr ict  ourselves 

to a C $ ;  but  the  set S is still too large and will have to be pared  down. 

As in (6.2), we m a y  write f,,=f~,l+...+f,,,g(,,). Here we m a y  suppose  t ha t  f ~ l  has 

the  s m n m a n d  
A ( ~  "'" ~ ) (.A ( a z '  "'" ~ "~'~ z . (10.3) 

\ ttl~ ...~ Un ttl, ...~ %tn/ /  

Let  Z(er) be  the  set of n- tuples  ( i l , . . . ,  in) wi th  

A (  ~1' "''' ~n ) r (10.4) 
il, ..., in 

( ~ r l ' " " O - n )  ~ . . A ( ~  (10,5) 
A il,...,in \Ul,...,Un " 

Clearly (ul , - . . ,  Un) E Z ( ~ ) ,  and 

(10.6) 
il,...,in \ \ ~l,...,in (i ...... i~)ez(~) 

(5) When the linear forms ~//1, ..., bin come from a polynomial vector P with t (P)= t, an estimate 
q<~c t with an absolute constant c may be shown to hold, enabling one to replace log t in (1.4) by a 
constant. 
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We will first deal wi th  the case where [Z(o ' ){=l  for some ~rES. T h e n  f~,l equals 

(10.3), so t ha t  f~  contains a singleton. I t  suffices in this case to restr ict  ourselves to 

(10.2) wi th  this par t icular  er. By  the  corollary to L e m m a  8, (10.2) has at  most  

G(q(o')) <~ G(k ~) <~ H(k, n) 

solutions x. Here we put  each solution in a class by itself. We can choose m so large 

t ha t  some h(ce'~:a~)>~l~(k,n). 
We m a y  then  suppose  f rom now on tha t  Iz(~r)l>l for each a E S .  The  number  

of  n- tuples  ( i l ,  . . . , in)  is k n, and  the  n u m b e r  of  sets of such n- tuples  is 2 k~. Therefore  

the  number  of possibili t ies for Z ( a )  is < 2  kn. Given al ,o-2, . . . ,o-n-1 with  O-1=1 and 

O-2, ..., a n - 1  satisfying (9.6), there  is a set g ( a l ,  c,2, ..., O-,~- ~) such t ha t  Z(o-1, ..., O-~- 1, O-~)= 

Z(c~l, ..., O-~-1) when c~,~ lies in a subset  S ' ( a 2 ,  ..., O-n-l) of 8~(o-2, ..., a ~ - l )  of cardinal i ty  

I~/(O'2 ,  "", O-n--1)l > 2--kn I~n (O'2,-- ' ,  O'n)[ > D n  -1" 2 -k'~. 

Given O-1,O-2,...,O'n_ 2 wi th  O-1=1 and a2, . . . ,o- , , -2 sat isfying (9.6), t hen  there  is a set 

Z(o-l,o-2,. . . ,a,~-2) such tha t  Z ( a l , . . . , o - ~ - 2 , o , ~ _ t ) = Z ( a l , . . . , o - ~ - 2 )  when  O-~-1 lies in a 

subset  $'~_1(cr2, ..., O-n-2) of Sn-1(O'2,-.., O'n-2) of cardinal i ty  >D/(n.2k~). After  carry ing 

out  n - 1  such steps,  we obta in  a set 17 of n- tuples  (il ,  .-., in), as well as sets 

S~, S~(a2), ..., 

where  S5(a2, ..., O-j-l) is defined for 

Each of the  sets (10.7) has cardinal i ty  

D > 
n.2k,, - 

Fur ther ,  when S '  consists of a wi th  O-,=1 and 

then  
= z  

for cer tain i l ,  ..., ij-1. 

s"  (o-2, ..., (10.7) 

. . . ,  O'n E S/(O-2,  .--, O-n-- 1), 

(10.8) 

when o ~ C $ ' .  (10.9) 

For 2~j~n, let Tj be the set of numbers ij#uj in l~ij4k such that 

(il,..., i j_l,  ij,   a+l, ..., un) c z (10.10) 

(When  j=n, (10.10) becomes  (il ,  ..., i n - l ,  i n ) e Z . )  
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LEMMA 17. Suppose ijE'~j. Then 

h ( a~j ~ > 1 
\ c~u3 / k 6n deg(aij/a~,j )" 

Proof. In view of (10.5), which holds for any n-tuple (il, ..., i~)e:/;, 

j4((Yl,"',(Yj,(YjTI,'",CYn) ~A((Yl,..., (yn) 
\ il,...~i2~uj+l,...,Un \Ul~...~tn 

for o- E S ~. Thus 

OL! O'1) OL!OrJ)(~(Cr3+l) {:]~(ITn) ~ (y(O'1) OL(~176 OL(O'n) 
Z I " '"  Zj U j +  1 " '"  U n - - U  1 " '"  U j  Uj+I "'" ~n 

which is 
( ( ~ i J ~ ( ( Y J ) ~ ( O L U ~  ( f f l )  . . .  (OLu3--1 ~ (O'j-1) . ( 1 0 . 1 1 )  

This holds when a l = l ,  a2CS~, ..., ajCSj(as,.. . ,aj_1). Let such a~_,...,aj_1 be fixed, 

and let oj range through Sj(a:, . . . ,O ' j - -1 ) .  Then the right-hand side of (10.11) is fixed, 

so that  the number of (aij/au,) (~') ( a = l ,  ..., D) which are ~ to each other is at least 

ISj(a2, ..., a j-1)l  >D/(n'2kn). In other words, in the notation of w 

aij ~ D nK > - -  (10.12) 
\ a u j  / n-2 k" " 

Since ij 7s and hence a i j / a  w ~1,  the corollary to Lemma 11 yields 

1 1 

\ a u j /  4(log(n.2k"))3deg(aiJctuj) > k6n d e g ( a i J a u j )  ' 

on recalling that  k~>2, n~>2. [] 

For 2 ~ j ~ n ,  let Tj* be the set of numbers aij/a~, with ijETj. Say Tjj*={/~I, ...,~r}- 

Clearly r<k; possibly r=0 ,  and Tj* is empty. We had seen in (10.12) and Lemma 17 

that  
D 

> (s : 1 , . . . ,r)  (10.13) 

and that  

Set 

1 
h(/3s) > k6 ~ deg 13s (s : 1, ..., r). (10.14) 

l = 3 k  (10.15) 

Recall the definition of the group G(a:/3:7) in w 
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LEMMA 18. Suppose 
D > e 4k2n. (10.16) 

Let 2<<.j<~ n, and let (71, '",(7j--1 with (71=1, (72ES; , . . . , ( 7 j_ lCSj_1( (72 , . . . , (T j_2 )  be given. 
Then there is a subset " " Sj = S j  (al,...,(Tj-1) of S}(al , . . . ,a j_ l )  of cardinatity 

Isj'((7~, ..., (Tj-~)l = l ,  

such that 

IG(/~r :/~!~) :/3!~)) [ > e-gk2~ deg/~ (s = 1,.. . ,r) (lO.17) 

for any triple of distinct numbers r r w in $~'((72, ..., cry-l). 

Proof. For brevity, write 8~=$~((72,...,(7j-1). When r=O, the condition (10.17) is 

vacuous. Since Sj has cardinality >D/(n .2k" )>3k~=l  by (10.8), (10.16), it certainly 

contains a subset S~' of cardinality l. 

Now suppose that  r > 0. Set 

c = e -sk2~. (10.18) 

Note that  
2r (n.2 kn)l < c1/2.54k3n+Ze3k2~ = 54k3,~+le-k2" < 1 (10.19) 

since k~>2, n~>2, and that 

212(n.2k") l < 18k2ne 3k2~ < D (lO.2O) 

by (10.16). 
Let /3sCTj* be given. We had seen in (10.11) that  the numbers fl!~ with aC 

Sj((72, .-.,(7j-1) were all ~ to each other. So let A~ be the set of all the (7 in 1-~<(74D for 

which fl~~ is ~ to these numbers. By Lemma 13, the number of ~-bad l-tuples #1, ---, #z 

in A4 is less than 
cl/213nK(~,) 1 ~ cl/213Dl. (10.21) 

In particular, the number of C-bad gtuples #1,..., #z with each #.i in Sj is less than (10.21). 

So far, /3~CTjj* was fixed. The number of /-tuples #l,-.-,#z in S~ which are c -bad  for 

some/~,, l ~ s ~ r ,  is 1(o)  <<. rel/213D ~ < el/2kl3D l< ~ ~ (10.22) 

by (10.19). The number of l-tuples of numbers #1,---, #t in Sj of which at least two 

numbers are equal is 

1 < 
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by (10.20). On the  other  hand,  the  number  of a l l / - t up l e s  #1,-. . ,  #l in Sj  is 

D l 
'Sj (O'2, -.-, O'j- 1 ) I /~  (n.--- ' [~) �9 

C o m p a r i n g  this wi th  (10.22), (10.23), we see t h a t  there  is an l- tuple Pl , . . . ,  P~ of dist inct  

number s  of Sj  which is not  e - b a d  for any of/31, . . . , /3, .  By  definition, this means  t ha t  for 

any three  dist inct  numbers  i,j, h in l<~i,j, h<~l, we have 

]G(/3~m) : 3("r fi(uh)]l > r = e (deg /3s )D- lnK( /3s )  

c deg/3, 9k2n 
> n . 2 k ~  > (degl3~)e-  

by (10.13), (10.18). 

We now set Sj ' (a2 ,  ..., a j _  x )=  {#1,---, #z}- Then  indeed for any three  dis t inct  num-  

bers  r  in S j ' ( . . . )  we have (10.17). [] 

The  condit ion (10.16) on D can always be achieved by enlarging the field K, if 

necessary. We will assume from now on tha t  (10.16) holds. 

Remark. W i t h o u t  (10.16) we might  not produce  an l- tuple #1, ..., #l of distinct inte- 

gers. This  really would not  make  much difference. Note  tha t  if we enlarge K ,  there  m a y  

be several embedd ings  ~: K'---+C whose restr ict ions to  the  field genera ted  by c~1, ..., c~k 

and the  coefficients of M1, ..., Mn are equal. 

We now define S" to be the  set of n- tuples  a =  (c~l , ..., a ,  0 wi th  a 1 = 1 ,  cr2ES; ~, 
a3 E $~ (az),  ..., crn E $~ (a l ,  ..., a n -  a ). We will deal wi th  the equat ions  (10.2) where  cr E S". 
The  number  of these equat ions  is 

15"1 = U -1 < 3n-k '~ ,  (10.24) 

hence is bounded  independent ly  of D. 

11. C o n c l u s i o n  

As noted above,  each equat ion (10.2) splits, wi th  at  mos t  G(q)<<.G(k n) exceptions.  If  we 

car ry  this out  for each e r E S " ,  we get 

<. IS"]G(k n) < 3nkn2exp( (Tkn)4k") < exp((Tk~) 5kn) (11.1) 

exceptions.  We put  each except ional  x into a class by itself. As we have noted  before, 

we then  can make  m so large t h a t  h(c~:c~} '~) ~> h(k, n). 
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For nonexceptional x, each equation (10.2) with erCS" splits, so that  x satisfies 

f~l(X) = 0 (O" ~ S"). 

We write this out in detail: 

Z 
(il ..... i~)cz \ il , . . . , in \ \ i l , . . . , in 

(11.2) 

=0 .  (11.3) 

Here in each summand we have (10.4), (10.5). One of the summands has (it , . . . , i ,~)= 

(Ul,...,Un). A natural impulse would be to apply Lemma 3 to (11.3). But not so 

fast: x might be a degenerate solution of (11.3), i.e., the unpleasant phenomenon of 

subsplitting might occur. 

Given i rES"  and given a solution x of (11.3), there will be a subset Z(er, x ) C g  

containing (ul,..., u~) such that  

E z2k(tTI'""~ 
\ il,...,in / \  (il,...i~)cz(~,x) 

a l '  ""' o'n ) )  x = 0 ' i l ,  ...,in (11.4) 

but that  splits no further, i . e . ,  that  no subsum of (11.4) vanishes. Since the coefficient 

A ( ~ l , ' " , a n ~  r 
\Ul, ..., Un / 

by (9.5), ~ve have necessarily ]Z(~r, x) l> 1. 

There are fewer than k ~ tuples i= ( i l ,  ..., in)#(ul ,  ..., Un). Hence given al ,  ..., a n - l ,  

there will be an n-tuple 

i = i ( ~ y l ,  . . .  o-n--l, X) 7 ~ ( U l , . . - ,  Un) 

such that  iEZ(o',x) for at least 1/kn=3 of the numbers a~E$;~'(o.2,...,cT~_z). Let 

S,*(a2,... ,an-z,x) consist of 3 such numbers an. Next, given 0"1,...,0"n-2, there will 

be an n-tuple 

i(al,  ..., an-2, x) 

such that  i(o'l,...,cr~_2,o-~_l,x)=i(O'l,...,an_2,x ) for at least 3 of the numbers o'n-1- 

And so forth. We obtain n-tuples 

i(x), i(a2,x), ..., i(o-2,. . . ,an-l,x) 

and 3-element sets 

* * * ~ X) S 2 ( X ) ,  S 3 ( ~ 2 , X ) ,  . . . ,  S ~ (  2 , . . . , ~ n - - 1 ,  



272 w.M. SCHMIDT 

with the following property. Let S*(x) consist of c r=(a l ,  ..., an) with 

O'1=1 , O-2 e $~ (X), (73 e $~ (if2, X), ..., ~ n C S * ( ~ 2 , . . . , ~ T n - l , X ) .  

Then 

i(x) eZ(a,x)  (11.5) 

when crC$*(x).  

Now let N be a system of 3-element sets S~, S~(a2), ..., S*(al,...,a~-l), where 

S;(O'2,...,O'j_I) is defined when ~r2eS~, 0 " 3 e ~ ( 0 2 ) , - . . ,  (7j--leS;_l(a2,...,grj--2), and 

where S]  (a2, ..., crj_l) C $~'(a2, ..., Cry_l). The number of possible choices for $~ is ~< l 3. 

The number of choices for S~(a2) is also <<.l 3, but carrying this out for each a2E$~,  

we get ~</3.3 choices. The number of choices for all the sets S~(a2,ad) with a2ES~, 

o-3E$~(~2)  , is ~<13.3.3 etc. Thus the number of possibilities for a system 2 is 

<~ 1 3 . 1 3 3 . . . . . 1 3 n - 1  < 13". 

When i is an n-tuple and E a system as above, let C(i, E) be the class of solutions 

x with i ( x ) = i  and 

= * * * * O" N ( x )  . . ,  

whenever 

The number of classes is less than 

..., O'n ~ S* (0"2, ..., O'n_l) .  (11.6) 

n 3 ~ n n 3 ~ k .l = k  (dk)  (11.7) 

We will now study solutions in a given class C(i, E). Let j = j ( i )  be the number such 

that  

i = ( i l ,  ---, i j ,  U j + l , . . .  , Un)  

and i j T s  j . 

would give 

Poss ib ly  in~Un, SO that  j=n. But we cannot have j = l ,  for then (10.5) 

and hence -(~1)~_ (ol) which cannot happen when il # u l .  Therefore t X i l  ~ I A ' ~  1 

2<~j<~n. (11.8) 

\ ~1~ U2~ ,--~ Un \ Ul~ U2, -'-7 ?~n 
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For xcC(i,  E), and a with O'1-----1 and (11.6), the equation (11.4) becomes 

A ( ~ l ' " " ~ 1 7 6 1 7 6  x + i  (O'l '""Gn)(. ,4(O-l '""~Tn)) x 
\Ul,...,Un Ul,...,Un il,...,in \ \ il,...,in (11.9) 

(+possible further t e rm s )=  0. 

We will now restrict a with (11.6) even further. We fix a l = l ,  a2, ..., aj-1 arbitrarily 

such that  (11.6) holds, in so far as it applies to them. We let ~rj vary in S](a2, ..., cry-l), 

so that  ~ry assumes three values r162 Given a choice of oj,  we again fix aj+l, ...,Crn 
such that  (11.6) holds. Thus we now have three n-tuples a ,  which we will denote by 

ar162 We will study (11.4), which is the same as (11.9), for these three choices 

of a .  

The number of possibilities for each of Z(o'r x), Z(ago, x), Z(o',,, x) is < 2 kn. We 

subdivide the class C(i, E) into 

2 akn (11.10) 

subclasses C(i, E,Ir such that  Z(ar  x )=Zr  Z(a r  x)=Zgo, Z(o'~o, x)=Zoo in the 

class. Let qr qgo, q~o be the number of nonzero summands in (11.9) with a = a r  aV;, a~,  

respectively. Each of these numbers is ~< k n. 

No subsum of (11.9) vanishes. Hence we may apply Lemma 3. Fix a = a r  for the 

moment. Let A~ (x) be the vector in qr with components 

( A ( ~ x , ' " , ~  x 
\ il,...,i,~ / /  

where (il,...,i,~)EZr According to Lemma 3, there are vectors c (~) (l<~w<~B(qr 
such that  A,,(x) is proportional to some c(~ w) for every solution x. We subdivide 

C(i, P,, Zr ggo, Z~) according to the c~ ~) (w= 1,..., B(qr to which A~ (x) is proportional. 

In fact we do this for ar as well as for ago, a~o, so that  we divide into 

<~ B(qi,)B(qgo)B(q,,) <~ B(k~) a 

subclasses. Thus altogether, by (11.7), (11.10), the number of subclasses (which we will 

call "classes" from now on) is 

< k'~(3k'~)3n.2ak'~B(kn)3 < (3k~)3~+1.23k~. (kn)9 ken 
(11.11) 

< k 12nk2~ < exp(12nk2n+l). 

Considering only the two components of A~,(x) highlighted in (11.9), we get 

(.('l "n)y=..(.('l "n)y 
\ il,...,in \ \Ul,...,Un 
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- _ - (~ ' ) _ - ( " ) l ;  : ~. (,~)- 
when r r= r162  where ( ; r 1 6 2  - - c ( r  t L l ~ . . . ~ * n } / C o -  [ / Z l ~ . . . ~ / Z n )  

By our definition of j ,  this gives 

for o '=o '0 ,  or 

in a given class is fixed. 

( ( • , )  _(oj)~ = er ') a(~J)V 
Cgi 1 "'" c t i j  ) "'" u j  J 

- -  ~ C r  - -  . . .  - -  

An analogous relation holds when r162 or at=ar~. Taking quotients we obtain 

( ( % 1 % ) ( + ) ~ z  cr 
= 

Now ai~/a~5 is one of the numbers j3~ in Tj*, so that  we may write 

Similarly (/3!+)/fl~))~=c4)/c ~. Hence if x , x '  lie in our class, then 

fl~+) ] = \fl.l~) ) = 1. 

So if IG(fl!r162 we obtain x=_x ' (mod m). On the other hand, m >  

e-9k2ndegfls by (10.17), so tha t  in view of (10.14), 

e-9k~"_-~ok:" h(k,n). 
h(G") =-~h(fl=) > k 6 ~ > e  = 

But fl~ is the quotient of two numbers c~ilc~j, so that  h(aT~:aj~)>t~(k, n). 

So how many classes do we have? Adding (11.1) to (11.11) we obtain indeed at most 

exp((7k'~) 6k" ) = H(k ,  n) 

classes. [] 

Appendix:  Denominators  of  certain rational numbers 

Consider a system R=-{pl,  ..., Qn} of real numbers whose differences & - p j  lie in Q, but 

not in Z when i ~ j .  We will briefly refer to such a set of reals as a system. Let rij be 
_ _  ! I the denominator of P i - P j ,  so that  & - p j - r i j / r i  j with r O >0  and gcd(rij ,  r i j ) = l .  In 
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particular, r i i = l  (l~<i~<n). We would like most of these denominators to have order of 

magnitude at least n. Given c>O, let No(e) be the number of pairs i , j  in l<~i,j<~n with 

l'ij ~ gn.  

Is there a function 6(c) (independent of n and of R) which tends to 0 as e--+0, such that  

No(e) K 5(c)n2? (A1) 

The answer to this question is negative: Let R={O, I/n, ..., (n-1)/n}.  In this case 

No(e)=nN'(e) where N'(e) is the number of integers i, l<~i<~n, with gcd(i,n)>>.l/e. 
Now N'(e)=n-N"(e)  where N"(e)  counts the number of integers i, l<~i<~n, with 

gcd(i, n) < 1/e. Clearly 

H 0-p-*). 
pin 

p>~lle 

Hence let n----nm be the product of the primes p in 1/e~p~rn. Then when rn~rno(e), 
we have N'(c)< 1 N0(c)> 1 2 ~n, and hence N ' ( c ) >  1 ~n, ~n , which is inconsistent with (A1). 

Not to give up, we write N(c)  for the number of triples i,j, k in l<<.i,j, k~n  with 

lcm(rij,  rik ) <~ on. (A2) 

I conjecture that there is a function 5(e) (independent of n and R) which tends to 0 as 

e--+0, such that  

N(e) ~< 5(e)n 3. (A3) 

I cannot prove this conjecture, unless we make an extra assumption on the system R. 

Given xEN and l<~i<~n, write ui(x) for the number of integers j, l<~j<~n, with 

r i j  [ X. 

We call R homogeneous if for every x, the number u~(x) is independent of i; say u i (x )=  

u(x). For example, R={0,  1/n,..., (n-1) /n}  is homogeneous. Another example is the 

system R,~ consisting of the numbers i /m with l<<.i<<.m, g c d ( i , m ) = l ,  so that  Rr~ has 

cardinality n = r  for in this case, if i /m and il/m are in Rr~, say i'=-ki (mod m), 

then rij=ri,j, where f is the integer in l<.j'<.m with f - k j  (mod m). Occasionally 

we will write uin(x) and uR(x) to indicate that  our functions come from a particular 

system R. 
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THEOREM A. Suppose O < x < l .  Then when R is homogeneous we have 

N(e) ~< ~ ( 2 - x ) e X n  3. (A4) 

Thus in this case we may take ( ~ ( e ) = ( ( 2 - ~ ) e  x in (A3). It may be shown that  when 

the denominators rij are all powers of a fixed prime p, and when R is homogeneous, 

then N(e)~<e2n 3. Therefore (A4) may perhaps be replaced by N(e)<~co(x)e~n 3 for 

0 < x < 2 ,  and possibly even for x = 2 .  To carry out the proof of Theorem A, we will need 

a somewhat more general theorem. Let R={0~, ..., O,~}, S={Ol ,  " " ,  O'n} be homogeneous 

systems. We will call R, S isomorphic, and write R,.~S, if uR(x)=uS(x) .  

THEOREM B. Let R={Ol,...,On} , S--{Crl,...,O-n}, T----{rl,...,rn} be homogeneous, 

and isomorphic to each other. Suppose that all the differences Oi-ffj, Oi--Tk lie in Q. 

Let aij be the denominator of O~-aj, let bik be the denominator of Oi-7k, and N(e) 

the number of triples i, j, k in l <<. i, j, k <~ n with 

lcm(aij, bik) <<. en. (A5) 

Th~n (A4) holds for x in 0 < x < l .  

The proof of Theorem B will proceed via a series of lemmas. Let R={01, ..., Qn} be 

a homogeneous system. Note that  rijCN is least such that  ri j(~i-Oj)EZ. When x~N,  

write 0i ~ Oj if rij I x, i.e., if x (0i - 0j) E Z. Clearly ~- defines an equivalence relation among 

the elements of R. Thus R splits into equivalence classes, where each class contains u(x) 

elements, and the number of classes is v(x):=n/u(x) .  

When R={Ol,  ..., 0n}, S = { a l ,  ..., am}, write R x s  i f x (o~ -a j )EZ  for l<.i,j<~n. The 

relation ~ for systems is symmetric and transitive but not reflexive, since not necessarily 

R ~ R .  But when R ~ S ,  then R x  S X  R, hence R ~ R .  When R X  R, then O~=01+(a~/x) 

with a i cZ ,  but when iC j  we have O i - O j = ( a i - a j ) / x ~ Z ,  so that  ai~aj  (rood x), and 

therefore R has cardinality IRI ~<z. 

LEMMA A. Let R be homogeneous, xEN, and let R1,...,Rv be the equivalence 
X 

classes with respect to x .  Then R ~ - R r  (l<<.r<<.v), but R ~ R s  when rCs.  The sys- 

tems R1, ..., Rv are homogeneous and isomorphic to each other. When R ~ R  and xlm, 
then v <<. m/x .  

Furthermore, if S is homogeneous and isomorphic to R, with equivalence classes 

S1,...,Sv, then R1 . . . . .  Rv~S1 . . . . .  S~. Given l<<.r<~v, there is at most one s with 
R~ x Ss. 

Proof. We have x ( Q i - 0 j ) E Z r  when Oi, ojER~, and therefore R~Z=-R~. But when 
2? 3:  

@iCRr, OjCRs with rT~s, then Oi~Qj, and hence R~7~R~. Now suppose that  Oi, Oj 
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Y 
are in Rr. Then 0i--Loj when ri j lY.  But since rijlx, this holds precisely if  r i j lY  I where 

y' = gcd(y, x). Conversely, if p~ C R~, Loj E R and rij l Y', then rij I Y and rij I x, hence aoj ERr.  

Therefore 
R T  R T  ! R ! 

We may conclude that  R~ is homogeneous with uR~(y)=uR(y'). Therefore R1 . . . . .  R~. 

When RmR and xlm , each pi=~l+ai/m with aiCZ. Now if piER~, cycR~ with rr 

then x(~i-~j)=x(ai-aj) /mCZ,  so that  ai~ay (mod m/x). This shows that  the number 

v of classes R1, ..., R~ has v <~m/x. 
When S is homogeneous with R ~  S, each equivalence class $1,..., S, is homogeneous, 

and uS ~ (y)=uS(y')----uR(y'), so that  indeed $1, ..., Sv are isomorphic to R1, ..., Rv. When 
x x x 

R~-Ss and Rr=St, then Ss-St ,  so that  s=t. [] 

Write c(x,  p) = ( 1 - p ~ - U ) - i  

LEMMA B. 

: I-[  p). 
Plm 

Suppose that we are in the situation of Theorem B, and that 

R ~ S ~ T .  (A6) 

Then 
N(~)  < c (x ,  m ) c X n  3. 

Since for any systems R, S, T as in Theorem B there is an m G N  with (A6), and since 

c(x, m ) < ( ( 2 - x ) ,  this lemma implies Theorem B. 

Proof. When r e = l ,  we have ~)i-pyGZ for l<.i,j<~n, but pi-Qjr for i# j ,  and 

therefore n =  1. Then (Ah) cannot hold unless ~/> 1; but then N ( c ) =  1 ~< c x = c ( x ,  1)c ~. 13. 

It  will therefore suffice to prove the lemma for 

m = plmo 

where p is a prime, p~mo,/>0, assuming that  the lemma is true for too. 

We may apply a common translation to R, S, T. Hence we may suppose tha t  all the 

elements of R, S, T lie in m - l Z .  Set 

Xq=mopl-q=mp -q (O<~q<~ l). 

X l  
Let R1, ..., Rvl be the equivalence classes of R with respect to -=. Thus vl=v(xl), and 

each Rr  ( l~ r~<vl )  has U(Xl)=n/vl elements. By Lemma A, we have Vl<~m/xl=p. 
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X2 
Given a class Rr,  we split it into subclasses Rr.1 , . . . ,R , - .v2  with respect to - .  Since 

Xl 
R~---Rr, we have v2 ~ X l / X 2  = p .  Moreover,  since R~ ~ R r ,  (1 ~ r ,  r '  ~ v l ) ,  the number  v2 

is by L e m m a  A independent  of r in l<~r<~vl .  Note tha t  R splits into the classes l~rl,r 2 
X2 

(1 ~ rl ~ Vl~ 1 ~r2 ~ V2) with respect to --, and these VlV2 systems R m,,.2 are isomorphic 

to  each other. Suppose now tha t  l < q ~ l ,  and tha t  we have defined systems R m ..... ~-1  
Xq--1 

for l ~ r i  ~v i  ( i =  1, ..., q - 1 ) ,  these being the equivalence classes of R with respect to - . 
Xq 

A system R m ...... q_~ splits into classes R m ...... ~ - l , ~  ( l~rq~Vq)  with respect to --. Here 

Vq~p, and Vq is independent  of r l ,  . . . ,  r q - 1 .  The v l  ... Vq systems R m ...... ~ are all isomor- 
Xq 

phic to each other,  and they are the equivalence classes of R with respect  to -=, so tha t  

V ( X q ) = V l  ... Vq. Each R m ...... ~ contains n / ( v l  ... Vq) elements. In this way, we eventually 

const ruct  systems R ......... ~ for 0 < q ~ 1 and 1~< ri ~ vi ( i =  1, ..., q). W h e n  q=0 ,  a no ta t ion  

~ 1  . . . . . .  q will s imply mean R. 

In complete analogy, we construct  systems S~ 1 ...... q and Tt l  ..... t~, where again 

l ~ s i ~ v i  and l<~ti<~vi ( i =  l, ..., q) , with the numbers  v l , . . . , V q  the same as above by 

L e m m a  A, and since R ~ S , , ~ T .  Fur thermore  

R , . 1  . . . . . .  q "~ Ss l  ...... ~ ~ Tt l  ..... t q  

for any r l, ..., rq, s 1, . . . ,  Sq, t l, ..., tq under  consideration. 

If  we have 
Xq Xq 

R,, 1 ...... ~ - S s ,  ..... ~ - T t l  ..... t~ (A7) 

for some l ~ q < ~ l  and r l ,  ..., rq, S l ,  ..., Sq, tl .... , tq, then 

Xq--I 2:q--1 
R r ,  ...... q-1 ---- S s  ....... q_, --  T t ,  ..... tq- l"  (A8) 

W h e n  q - - l ,  then (A8) is to be interpreted as R x = _ ~  which is cer tainly t rue by (A6) 

and since x 0 = m .  On the other  hand, when (A8) holds, then  by L e m m a  A the  number  

of triples rq, Sq , tq  with (A7) is ~ V q  (since there are vq choices for rq).  Write Wl for the 

number  of triples r l , s l , t l  such tha t  (A7) holds for q = l .  By what  we have just  said, 

wl ~ v l .  Suppose tha t  w l , . . . ,  Wq-1  have been defined such tha t  the number  of 3 ( q - 1 ) -  

tuples r l ,  ..., r q - 1 ,  s l ,  ..., Sq-1, t l ,  . . . ,  t q - 1  with (A8) equals w l  ... Wq-1 .  Then  let Wq be a 

number  such tha t  the  number  of 3q-tuples r l , . . . ,  rq, S l , . . . ,  Sq, t l ,  ..., tq with (A7) equals 

Wl ... W q - l W q .  In part icular,  when w l  ... Wq-1  =0 ,  then (A8) never holds, hence (A7) never 

holds, and we set w q = O .  In  this way Wq is uniquely defined, and O~Wq~Vq for q = l ,  ..., I. 

For convenience we will write r = ( r l ,  ..., rl), s =  ( 8 1 ,  . . . ,  Sl), t = ( t l ,  ..., tt). There  are 

( v l v2  ... vt) 3 triples r, s, t .  For 0 ~ q ~  l, let Cq be the set of triples r, s, t for which q is the 

largest integer in O ~ q ~ l  for which (A7) holds. In part icular,  Co consists of triples where 

(A7) does not  hold for q = l .  
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The number of 3q-tuples rl , . . . ,rq, . . . , t l , . . . , tq with (A7) is Wl...Wq. Therefore Ct 

has cardinality 

ICzl = W l . . .  w~. (A9) 

When q< l, the number of 3(q+ 1)-tuples rt, ..., rq, rq+l, ..., tl ,  ..., tq, tq+l with (A7) equals 

3 On the other hand, the number of 3(q+l)- tuples  where (A7) holds with W 1 ... W q V q +  1. 

q + l  in place of q is Wl ... WqWq+l. Therefore the number of (q+l)- tuples  with (A7), but 

not (A7) with q + l  in place of q, is wl-..Wq(V3q+l--Wq+l). Given such a 3(q+l)- tuple ,  

the number of choices for rq+2, ..., rl, ..., tq+2, ..., tl is (Vq+2 ... vl) 3 (to be interpreted as 1 

when q = l -  1). Therefore 

3 ICql=Wl...Wq(Vq+l-wq+l)(Vq+2 ...vl) 3 ( O ~ q < l ) ,  (A10) 

with the right-hand side to be interpreted as (v~-wl)(v2. . .vz)  3 when q=0,  and as 

w 1-.- wt-  1 (v~ - wl ) when q = l - 1. 

We now insert a sublemma to Lemma B. Given r, s, t, write N(r ,  s, t; e) for the 

number of triples i , j , k  with L)iCRr, (TjCS~, ~-kCTt having (A5). 

LEMMA C. Suppose that r, s, t is in the class Cq. Then 

N(r ,  s, t; e) ~ c(x, mo)cXn3p(q-l)x(Vl ... V l )  ~ - 3 .  

Pro@ Numbers ~ c m - l Z  may uniquely be written as 

~= ~ + ~  =~'+~"' m0 

say, where y, zCZ and O<~z<p ~. Accordingly, when 0i ERr, write pi=p~+p~'. But rn0=x~, 
m0 

so that  Qi-~ 0i* for p~, ~)i*cRr, and therefore 6" is the same for every O~ERr. Using the i 
same argument for Ss, Tt, we have 

I I I  I I I  I I I  

for (~i , (7j ,Tk)CRrXSsxTt .  Since r ,s ,  tCCq, we have Xq(Oi-aj)=rnopl-q(oi-(Tj)cZ,  
therefore pl--q(~H --(7") C•, and also pl-q(QH _~_,,) Eg. On the other hand, when q< l, then 

(A7) does not hold with q + l  in place of q, so that  not both Xq+l(O~-(Tj), Xq+l(Q~--vk) 

lie in Z, and hence not both pl-q-l(Q,,•,,), pl-q-l(Q,,_T,,  ) lie in Z. We may infer that  

the respective denominators a" and b" of ~"- (7"  and 0 " - T "  have 

lcm(a", b") =pZ-q. (Al l )  
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Let R' r be the system consisting of the ~)~ where QiERr, and define S s , T  ~ '  ' similarly. 
Then ' ' ' ,~_o ,%o , R r ~ R r ,  S s~Ss ,  T ~ T t ,  so that ' ' ' R r = S s = T~. When Rr,-~Ss ~T~. Furthermore 

! I I I I l I I I (pi, a j , ' r k )ERr•215  let aij,bik be the respective denominators of pi-crj; ' pi-Ti~. 
I II I II I I Then ai j=ai ja  , bik=bikb . By (Al l )  and since P~aijbik , 

lcm(aij, bik ) = pl-q lcm(a'ij, ' bik). 

The condition (A5) therefore becomes 

! ! ~ . . ,  lcm(a,j, bik ) ~ cpq-tn = epq-tvl ... vz(n/vl  vt). (A12) 

We supposed Lemma B to be true for too. We apply this case of the lemma to Rr, S ~ , T ~ '  ' 

with r ... vl in place of c, and observe that  these three systems each have cardinality 

n/ (v l  ... vl). Therefore N(r ,  s, t; c), which is the number of triples (Oi, o-j, 7k) e R ,  x S, x Tt 

with (A5), satisfies 

N(r ,  s, t; ~) <. c(x ,  ~7~O)(gpq-lvl ... V l ) ~ ( n / V l  ... Vl) 3 

: C(>~, m o ) ~ n 3 p ( q - I ) X ( v l  ... v l )  ~ - 3 .  

This completes the proof of Lemma C. [] 

We now continue with the proof of Lemma B. Clearly 

N(c) = ~--~ ~-~ ~--~ N(r ,  s, t; r 
r s t 

so that by Lemma C, 

! 

N(e) ~< c(x,  mo)cX n3(vl ... vt) X-3 Z ICqlP(q-l)x" 
q=0 

Here Wq enters in the formulas (Ag), (A10) for ICq_ll, ICqh ..., ICll. When Wq increases, 

then ICq_ll decreases (or remains constant), whereas tCql, ..., IC~I increase (or remain 

constant), but the sum ICq_l]+lCql+...+lCt] certainly is constant. Since the coefficient 

p(q- l - t )~ of ICq_ll in the above sum is smaller than the coefficients of ICql, ..., ICtI, the 

sum can only increase when Wq increases. Since we had O<<,Wq<~Vq, we may replace Wq 

by Vq (q= l ,  ..., l). In this case the sum becomes (starting with the term q=l)  

731 ... Vl'~-(Vl . .-Vl--1)( v3 -- Y l )P  -~-~- (731---Vl--2)(V3--1--Vl--1)v3p -2~c 

-~-...-~-V 1 (V 3 --V2) (V 3 ... y l )3p - - ( l - 1 )~ -~ (V  3 - -Vl )  (V2 ... Vl)3p - l X .  

We may infer that  

N(r ~< c(x, too)r (vl, ..., vl) <<, c(x,  mo)r  vt) 
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where 7=c(x,p)=(1-p'-2) -1 and 

f~(Vl, ...,Vl) 
vl)~_2(~+v~-i v2-1-1 v 2 2 - 1  

. . . .  (Vl - -~ - - v l 2 +  - t, p~ p2~ p3~r 
(Vl_lVl)2+.." V~--I(v2...V/) 2) + p l~ -  

We claim tha t  in the domain l<~Vq~p ( q = l ,  ...,l), we have 

f~(vl,...,vl)<~7=c(~v,p), (A13) 

and this will finish the proof of Lemma B, hence of Theorem B. Here (A13) will be 

shown by induction on I. Hence we will assume that  /=1 ,  or that  />1  and (A13) has 

been established for I - 1 .  When vl-1, ...,v] are given, fT(vl, ...,vl) is of the form 

AvT + Bv7 -2 

with positive coefficients A, B. This function in vl >0  is first decreasing, then increasing, 

so that  its maximum in any closed interval of positive reals is taken at an end point. 

F o r / = 1  we have f~(1)=7 ,  f~(p)=l+7pX-2-p-2<l+Tpx-2=7, so that  in l<<.Vl<<.p we 

have indeed f~/(vl)<~7. W h e n / > 1  we have by induction 

f.y(Vl,...,vz_~,l) = (Vl""vl-1)x-2( 7-~ v2-1-1p2x +"'+~-v21--1(vl'"vl-1) 2) 

~< f~(vl, ..., vl-1) ~< 7, 

f~(vl,...,Vl-l,p) = (vl""vl-1)~-2(1+Tp~-2-P -2~ v~-l-lpx ~...+ ~v21-1 (vl ...vl-1) 2) 

<<. f~(vl, ..., vl-i) <<. 7, 

since l + T p X - 2 - p - 2 <  7. Our claimed est imate (A13) follows. [] 

With  a view to application in the main part  of the paper, we will now formulate a 

corollary to Theorem A. When R is a system as above, we will say that  a triple of integers 

i , j ,k in l<<.i,j,k<~n is e-bad if (A2) holds. Note that  this property is independent 

of the ordering of the triple. Let l~>3, and consider /-tuples of integers Ul, . . . ,ul  in 

l~<Ul, ..., ul ~< n. We call such an / - tup le  e-bad if some triple ui, u j, uk with distinct i, j ,  k 

is e-bad. 

COROLLARY. Suppose that /~={~01, ..., ~On} is homogeneous. Then for any I>~3, the 
number of e-bad l-tuples ul, ..., ul is 

<el/213n 1. 
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1 Proof. By the case • =  ~ of Theorem A, the number  of e-bad triples is 

Hence given a triple i, j ,  k with 1<~ i < j  < k<~ l, the number  o f / - t up l e s  ul ,  ..., ul for which 

u i , u j , uk  is c-bad is <3cl /2n3.nl -3=3~1/2n z. The number  of triples i , j ,  k in question 

is (~), so tha t  the number  of ~ -bad / - tup les  is 

/ l ' ~  1/2 / cl/213nl" 
~ 3 ~ 3 ) e  n < [] 
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