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1. I n t r o d u c t i o n  

1.1. The operator 03+03+03  a was considered--to my knowledge--for the first time in 

1913 in N. Zeilon's article [20], wherein he generalizes I. Fredholm's method of construc- 

tion of fundamental solutions (see [5]) from homogeneous elliptic equations to arbitrary 

homogeneous equations in three variables with a real-valued symbol (cf. [20, II, pp. 14 22], 

[6, Chapter 11, pp. 146-148]). An explicit formula for a fundamental solution was given 

in [19]. The objective of this paper is to generalize the calculations in [19] to the op- 

erators 03+0~+03+3a010203, a C R \ { - 1 } .  As discussed below, this class of operators 

comprises all real homogeneous cubic operators of principal type in three dimensions. 

According to Newton's classification of real elliptic curves, the non-singular real 

homogeneous polynomials P(~) of third order in three variables are divided into two 

types according to whether the real projective curve {[~]Ep(R3):  P(~)=0} consists of 

one or of two connected components, respectively. (For ~ c R n \ { 0 } ,  [~] E P ( R  n) denotes 

the corresponding projective point, i.e., the line {t~: tER}. )  In Hesse's normal form, all 

non-singular real cubic curves a re - -up  to linear transformations--given by 

Pa(~)  3 3 3 = ~1 +~2 +~3 +3a~1~2~3, a ~ R \ { - 1 }  

(cf. [3, 7.3, Satz 4, p. 379; English transl., p. 293], [4, w (10), p. 39], [17, w p. 19]). Let 

Xa :=  { [~] E P (R 3): Pa (~) = 0 } denote the real projective variety defined by Pa. For a > - 1, 

X~ is connected, whereas, for a < - l ,  X~ consists of two components (cf. Figure 1). The 

corresponding operators Pa(O) also differ from the physical viewpoint: For a < - 1 ,  every 

projective line through [1, 1, 1] intersects Xa in three different projective points, and thus 

P~ is strongly hyperbolic in the direction (1, 1, 1) ([1, 3.8, p. 129]); for a > - l ,  Pa is not 

hyperbolic in any direction, nor is it an evolution operator (cf. [15, Example 1, p. 463] 

for the case of a=0) .  
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Fig. 1. {(~1,~2): [~1,~2, 1]EXa} for a=--2 and for a----0. 

1.2. In w of this paper, we shall define the fundamental solution E~ of Pa(O) 
as Fourier transform of the homogeneous distribution which is of order - 3  and has 

vp(1/Pa(W)) E D'(S u) as its restriction to the sphere. From theorems on the wave front set 

of the Fourier transform of a homogeneous distribution ([11, Theorems 8.1.8, 8.4.18]), it 

immediately results that the (analytic) singular support of Ea is the dual (see [1, p. 154]) 

of Xa, i.e., 

s ing  s u p p  E a  = s i ng  s u p p  A Ea --  { t V r a ( ~ )  : ~ E a 3, Pa(~) = 0, t E a } .  

By the classical Pliicker formulas (cf. [9, p. 280]), [sing supp Ea\{0}] is an algebraic curve 

of degree 6. Its complexification has nine cusps, three of which are real in correspondence 

with the three flexes of Xa (cf. Figure 2). Explicitly, we have singsuppEa={xER3: 
Aa(x)=O}, where 

Aa(x) ::3a(a3 +4)x21x~x2 +4(a3 + l) (x 13x23 ..[_XlX33 3 ~_X2X3 ) 3  3 

.+6a2 x l  x2X3 (x 3 q-x 3 + x 3) -- ( X 3 q-X 3 + X 3 )  2 . 
(1) 

If a < - l ,  then P~ is hyperbolic with respect to (1, 1, 1), and 

Wa:--{xER3:Aa(x)--O, xl+x2-Fx3~O} ( a < - l )  (2~) 

consists of two conical surfaces which are the respective duals of the two components 

of Xa. Let Fa denote the unique flmdamental solution of P~(O) with support in {xER3:  

xl +x2 +x3 ~>0}. Then Ea = �89 (F~-Fa), where the superscript v indicates reflection with 
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1 Fig. 2. { x E W a : X l - t - x 2 n L x 3 = I }  for a = - 1 0  and for a = g .  

X l ~ X 2  

X l ~ - X 3  

respect to the origin. Further, we denote by K~ the propagation cone of P~ with respect 

to (1, 1, 1), i.e., 

K~ := dual cone of the component of (1, 1, 1) in {x E R 3 : Pa(x) r 0} 

= convex hull of Wa. 
(3) 

From the Herglotz-Petrovsky-Leray formula (cf. [1, 7.16, p. 173]), we infer that  F~ has 

a Petrovsky lacuna (in the sense of [1, p. 185]) inside the cone 

L~:={xEK~:Aa(x)>O} (a < -1 ) .  (41) 

Hence Wa consists of OK~ and of OLd, which bound a convex and a non-convex cone, 

respectively (cf. Figure 2). 

If a > - l ,  then still E~ has lacunas inside La and -L~ ,  where now we define 

La := component of (1, 1, 1) in {x E R3: Aa(x) > 0} (a > - 1 )  (42) 

and 

Wa :-- OLa ( a > - l ) .  (22) 

In both cases, the fundamental solutions E~ are constant inside L ,  and -La, and we 

represent these constant values as complete elliptic integrals of the first kind. Finally, we 

show in w that E~ is continuous outside the origin. 

1.3. In w we shall derive an explicit representation for E~(x) by elliptic integrals 

of the first kind. Following N. Zeilon, we introduce first one of the complex zeros of the 

rational integrand in the Herglotz-Petrovsky-Leray formula as a new variable, and, using 

a substitution (also indicated by N. Zeilon already), we transform the resulting integral 
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into Weierstrass' canonical form. Then we use the addition theorem for the ~function 

and the qualitative information from w in order to find a real-valued representation of 

Ea symmetric in the variables xl,x2,x3.  The final result is contained in the following 

theorem. (Y denotes Heaviside's function and ~- the Fourier transform, cf. 1.4.) 

THEOREM. Let a E R \ { - 1 } .  The limit 

T~ := lim Y(]~+~3+~33+3a~l~2~31-~) 
e".~0 ~13 +~23 + ~ 3  + 3 a ~ 1 ~ 2 ~ 3  

defines a distribution in 8'(R3). If Ea:=(i/27~)3JzT~, and A~, W~, L~ and, for a < - l ,  

Ka are as in (1), (21), (22), (41), (42), (3), respectively, then: 

(a) Ea is a fundamental solution of 0~ +0~ +03 +3a010203; 

(b) Ea is homogeneous of degree 0: 

(c) Ea is odd and invariant under permutations of the co-ordinates; 

(d) sing supp Ea = sing supp A Ea = W~ U - 14a; 

(e) E~ is continuous in R3\{0}; 

(f) /f  a < - l ,  then E~=�89 Pa(O)Fa=~, suppF==K~; 

(g) E~ is constant in La and in - L , ,  and the values EalL= are given by the following 

complete elliptic integrals of the first kind: 

1 ~c du 
a > - l ,  

EalLa = 1 f ~  2du 
] _ ~  ~ ( - ~ ,  a < -1,  

4v~ 7I 

where pa(U):=4(a3 + l)u3 +9a2u2 +6au+ l and Q is the smallest real root of pa(U); 
(h) Let xCUa, where Ua:=R3\(LaU-La) if a > - l ,  and Ua:~-ga\(na[.JWa) if 

a < - l ,  and denote by z(x) the only simple real root or, if x belongs to one of the co- 

ordinate azes, the triple root O, respectively, of the cubic equation 

Qa(x, z):= da(x)z3 +9(ax2 ~-x2x3)(ax2 A-XlX3)(ax2 A-xlx2)z2 

2 2 2 2  3 3  3 3  3 3  +[9a XlX2X3-4-6a(xlx2+xlx3-4-x2x3)+3XlX2X3(X3-bx3+x3)lz (5) 
2 2  2 3 3  3 3  3 3 + 3axl x2x 3.4-xl x 2 + Xl X 3 + x2x 3 = O. 

Then z is a real-analytic function in Ua; and 

sign(~Sa (x)) 
E ~ ( x ) = � 8 9  

4v/5 ~ 
~ z(x) du 

 /pa(U) 

where P~ (x):= 3[(a 3 - 2)o+a 2] xlx2x3 - (3a~+ 1)(x 3 +x2 3 +x3). 



FUNDAMENTAL SOLUTIONS OF. CUBIC OPERATORS IN THREE DIMENSIONS 2 8 7  

Remark. Before proceeding, let us comment  on some of the properties of the poly- 

nomial Qa, which, outside the lacunas, yields the level sets of Ea. 

First, if qi denote the coefficients of Qa with respect to z, i.e., 

3 

Q a ( x , z )  = E q i ( a , x ) z  i, 
i=0  

then 
30q3 10q2 1 0 q l  

q3 = Aa, q 2 - 4  Oh' qx = 3" Oa , qo = -~" O~. 

Second, let us investigate the relation between Qa and pa,/ha. We note tha t  all qi 
belong to the four-dimensional subspace V spanned by 

B l ( X )  2 2 2 3 3 3 3 3 3 ~- X l X2X3, B 2 ( x ) = Xl  X 2-~-xl x 3 ~ - x 2x 3 ,  

U 3 ( x )  = Xl X2X3(X31"~x3-}- x33) , U 4 ( x ) =  (X3 ~-X3-~-X3) 2 

in the complex vector space of all symmetric  polynomials in zl ,  z2, x3 of degree six. The 
4 closure Ca of {[Qa(z, z)] : z E C }  in P (V)  is a cubic curve: Qa(x ,z )=~i=l  l~i(z)Bi(x) 

with 

/~1 (z) = 3a(a  3 +4)  z 3 + 9(a 3 + 1) z 2 + 9a2z+3a, 

/~2 (z) = 4(a 3 + 1)z 3 + 9a2z 2 + 6 a z +  1, 

/~3(Z) = 6a2z3+9az+3z, 

/~4(Z) = - -Z  3. 

The square polynomials make up a quadric curve S in P(V) ,  namely 

4 

S = cl~ ~ {[Pz(x)2] : z c C } = { [i~_l Cti Bi(x)] : ct2 --O' ct2-4cq c~4 =O } 

The curves Ca and S meet at [Qa(X, Z)] for those z for which pa(z)=0, since/32=pa and 

/32--4/~1r = (12aza+9z2)132. 

The polynomial /ha(x) fulfills Pa(x)2=4(a3+l)Qa(x, ~), and hence I/ha(x)2] is just one 

of the three intersection points of Ca and S. 

For a discussion of the zeros of Qa(X, z) with respect to z, we refer to 3.4. 

1.4. Let us establish some notations. We consider R n as a Euclidean space with 

the inner product x.y:=xlyl+. . .+xny~ and write Ix]:= XvrX~. S n-1 denotes the unit 
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sphere {c0 �9  laJl=l} in R ~ and da the Euclidean measure on S =-1. We write P(V) 

for the projective space corresponding to the vector space V (over R or C, respectively), 

and [4] � 9  for the projective point corresponding to ~ �9  V\{0}. By 

/ 
we denote the Cauehy principal value. 

When we make use of the theory of distributions, we adopt the notations from [11], 

[13], [18]. In particular, the Heaviside function is abbreviated by Y, i.e., Y ( t ) = l  for t > 0  

and 0 else, and (~, T) stands for the value of the distribution T on the test function ~. 

We use the Fourier transform 5 c in the form 

:= fexp( - ix .~ )02 (~ )d~ ,  ~ � 9  S ( R n ) .  
J 

2. Singular support and lacunas of  Ea 

2.1. Let us repeat first some elements from [19, w If P is a real-valued, homogeneous 

polynomial of principal type in n variables and of degree m, then ~5:=vp(1/P(w))E 

79'(S ~-1) defined by 

/ q~, vp 1 

solves the division problem P(w).(I)=l on the sphere S n- t ,  and 

solves the division problem P(~).T=I in R ~. Hence E:=(im/(27r)n).~T is a fundamental 

solution of P(O). Theorems 8.1.8, 8.4.18 in [11] yield the representation 

W := sing supp E = sing supp A E = (tVP(~) : ( e R ~, P(()  = 0, t �9 R} 

for the singular support of E. 

2.2. Let us prove next, similarly as in [1], that,  for P as above and odd n, the 

Petrovsky condition on lacunas is valid (cf. [1, 10.3, p. 185]). First, radial integration in 

the Fourier integral for E yields Borovikov's formulas (cf. [2, (br), (bB), p. 204; English 

transl.. (5c), (bd), p. 16], [7, Chapter I, 6.2, (5), (6), p. 129]): 

(_1)(~_,)/2 
! <f m> n, 

= ( - 1 )  (6) 

2(2 )n_ m < n ,  
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where ~ E S ( R  n) and g2:=vp(1/P(w)) as in 2.1. 

Let x E R ~ \ W and set 

X vx(~):=vP(r ~ER '<. 

If c is a small positive number, then P(w•163 for all wES ~-1 (since x~W) ,  and 

1 ) ( 1  1 ) l li m r 1 + 1 lim ~- �9 
=7~-0\P(~)+i~ P(~-i~ =2~-0 P(~+iTv~(~)) P(~-~(w)) 

If P is hyperbolic in the direction 0 and if F denotes the unique fundamentM solution 

of P(O) with support in {xER~: O.x>~O}, then 

with k~=lims~0 1/P(w+icO)E~)'(S n-l) (cf. [12, Theorem 12.5.1, p. 120], [16, Proposi- 

tion 1, p. 530]), and hence g g = } ( ~ + ( - 1 ) m ~ )  and E = I ( F + ( - 1 ) m F ) .  

On the other hand, for arbitrary P as in 2.1 and for a multi-index vEN~ ~ which 

satisfies n-m+ ]~] >0, we obtain from (6), by differentiation, 

O'E(x)- ( - 1 ) ( n - 1 ) / 2  lira ~ - -  6(n-m+lvl-1)(w'x) . 
4(2~)--, .-~o~, F(~• 

Note that  the two limits l i m ~ o  P(w• -k exist in :D'(S n-2) if 

S.~-2 { ~ S  ~-~ 0} x :---- : (x)'X ~ 

and kEN (cf. [1, p. 121]). Therefore, 

i ( X "Vw) ~n--m-kl~'--l( LO~ ) d~Tx(W) O~"E(x) : ( _ l ) ( n  1)/2 ]ira E - ~  P(a~• Ixl 
4(27r) n-1 ~--o • s~ -2 

(_1)(.-~)/. f (  ~ ,~-'~+'~'-'(r d~(~) lira i 

4(27r) n-1 ~-+0 
S~ -2 

r~ - -2  where ~•177 and da~ is the surface measure on S~ . Let ~?~(~) be the 

Leray form on {~EC~: ~.x=0},  i.e., 

n 

d(~ '  x)/~ ?Tx (~) = E ( -  1 ) J -  l~J d~l A.. . /kd~j-1/kd~jq-1A.. . /~d~n q- 0(~. x), 
j : l  
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~x(~) being the restriction of ~)x(~) from C n to {~EC'~:~.x=0} and O(~.x)-+O for 

~. x-+ 0, and put 

: =  

Then r induces a holomorphic (and hence closed) ( n -  2)-form on Ux := { [i] E P ( C  n) : 

~ .x=0 ,  P ( r  which we denote by [g'x,,], and 

O'E(x)-(-1)(~-l)/24(27r)n_ 1 j f  [~:x.,], (7) 

where c~ is the homology class of the (n-2)-chain  s~.~ + s-~-~.~, the cycle Sx,e being given 

by 
s~,~: Sx~-2-~ Vx, ~ +  [~+i~Vx(~)], 

n--2 and r is small. (We choose ~ as orientation on S~ .) Essentially, the representation 

in formula (7) is equivalent to [1, (7.17'), p. 173] (cf. also the proof on p. 176) or to [12, 

(12.6.10)'", p. 131] for hyperbolic operators. Due to (7), E coincides with a polynomial of 

the degree m - n  in those components of R'~\ W which contain a point x with vanishing Cx 
in the homology group H,~-2(Ux). This is precisely the Petrovsky condition for lacunas. 

2.3. We apply the foregoing discussion to P~ (~)'-:~13 +~23 ~-~33 +3a~1~2~3, a e R \ { -  1 }. 

In this case, (I) is odd and thus A~-+(I)(~/I~])]~[ x is analytic in A = - 3 .  Hence T~:= 

(I)(~/]~[)]~[ -3 and Ea:=(i/27r)3jZT~ are also odd and homogeneous of the degrees - 3  

and 0, respectively. As in [19, 2.2], we obtain Ta=lim~%0 Y(]Pa(~)I-c)/P,(~). 
For x=(1 ,1 ,1 ) ,  all the three zeros of Pa in { [~ ]Ep(c3 ) :~ -x=0}  are real. In fact, 

they are given by [ -1 ,0 ,  1], [0, 1 , -1] ,  [1,-1,0].  Moreover, Sx,c and Sx,~ coincide since 

Vx(-O:)=vx(w). Hence c~ in 2.2 vanishes (cf. [1, (6.26), p. 167] and Figure 3), and Ea is 

constant in the two components of R 3 \ ~ a  containing (1, 1, 1) and - (1 ,  1, 1), respectively, 

i.e., in L~ and in -La.  Of course, in the hyperbolic case a<-l ,  moreover Ea vanishes 

in R 3 \ ( K ~ U - K ~ ) ,  the so-called trivial lacuna (cf. [1, p. 115]). 

In order to obtain an equation for the wave front surface W~, we take into ac- 

count that W~ is the set of x where the two equations ~-x=0,  P~(~)--0 have multiple 

solutions [~]cp(R3) .  Hence W~ is the zero set of the discriminant of the polynomial 

Pc(U,--(UXl+X3)/X2, 1) with respect to u. This discriminant is 27A~(x)/x 6 with A~ as 

in (1). 

2.4. Let us calculate next the constant values Ea]L.. Upon application of some ob- 

vious estimates and of Lebesgue's dominated convergence theorem (cf. [19, 2.2]), formula 

(6) implies that E ,  is a locally integrable function given by 

j(~p~ sign(uxl "~- VX2 ~-X3) 1 lim du dv. (8) 
Ea(X) ---- - ~ 2  ~'~0 (u.v.1)[>e Pc(u, v, 1) 
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Fig. 3. T h e  p a t h  sx,e in { [ ~ ] C p ( c 3 ) : ~ . x = 0 }  for x = ( l .  1. 1,. t e a c h  x denotes  one of the  

three  real zeros of Pa in the  complex  project ive line considered.)  

Employing the substitution w=u+v, we infer 

/? ( Ea(1, 1, 1) -- 1 s ign(w+ 1)dw "du 
87r 2 ~ ~ 3u2(w-a)-3uw(w-a)+w3+l" 

The quadratic polynomial of u in the last integral has no real zeros if and only if 

(w-a)(w3+3aw~+4) is positive, and the inner integral yields 

in this case and 0 else, i.e., 

27c s i g n ( w - a )  

v~ v/(w-a)(w3+3aw2 +4) 

1 /_~ sign((w+l)(w-a)) dw 
Ea(1 , 1, 1)--  4V~7~ ~ [(w-a)(w3+3aw2+4)]l+/2' 

where x+ := Y (x) x for x E R. With  p~ (u) := 4(a 3 + 1) u 3 + 9a 2u 2 + 6au + 1, the substitution 

u = 1 / ( w -  a) furnishes 

C 1 sign(l+u(a+l))pa(u)+l/2du. Ea(1, 1, 1) - 4V/~Tr 

The discriminant of Pa is -24 .33-(a3+1) ,  and hence Pa has one or three real roots 

according to the sign of a + l .  

If a > - l ,  then the only real root ~ of Pa satisfies - 1 / ( a + l ) < ~ < 0 ,  since p a ( 0 ) = l  

and pa(-1/(a+l))=-3/(a+l)  2. Thus l + u ( a + l ) > 0  i f p a ( u ) > 0  and 

1 fo ~ du (a> -1). 
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Pa(O)<O, If a < - l ,  then Pa has three real roots, say ~)<a<T. From p a ( 0 ) > 0 ,  t 

p~(0)>0, and p~(-1/(a+l))<O, p'a(-1/(a+l))=-6(a-2)/(a+l)<O, p~(-1/(a+l))= 
- 6 ( a - 2 ) 2 < 0 ,  we conclude that  O<p<a<7-<-l/(a+l), and thus again l + u ( a + l ) > 0  

if pa(u)>O. By [10. 222.2b], this implies 

1 [ f ~  L ~ ] du 1 / ~ 2du (a < - 1 ) .  

2.5. Let us finally show in this section that  Ea is continuous outside the origin. 

From formula (8) we infer (substituting w=u+v for v as in 2.4) 

Ea(x)- 1 ( l_ ~ sign(u(zl-x2)+wx2+x3)du 
87r2 dw 3u2(w_a)_3uw(w_a)+w3 + l. 

For real values a,/3, ?, 5, [10, 131.3] yields 

1 l l n  '2+ct6+ fl2X/~-a~' , aT</~  2, 

OLU 2 -}- 2flu + ̂ / sign ct �9 arccot (/3 sign(a) + _ _ _ _  a5 "~ 

In our case, ~2-a"?=-3(w-a)(w3+3aw2+4) and 5=(WX2"~-X3) / (X2- -X l ) .  If XlCX2, 
then Lebesgue's dominated convergence theorem can be applied in order to show that  

Ea is continuous in x. Since (1, 1, 1)~14~, we conclude, by the symmetry of E~ with 

respect to the co-ordinates Xl, x2, x3, that Eo is continuous in R3\{0}. 

Let us note, by the way, that, for a = - l ,  P~ decomposes: 

P-~ (~) = (~1 +~2 +~a)(~ +~2 +~_~1~2_ ~1~a-~2 ~a). 

From this factorization, one can see that  lim~..~oY(lP_l(W)l-c)/P_l(w ) diverges in 

:D/($2), and hence E-1 is not defined. But it is easy to check that  

sign(x1 ~-x2 -l-x3) ln(x 2 _{_3;2 jr_x32 --XlX2 --XlX3 --x2x3) 
1245~ 

is a fundamental solution of P-I(O). 

3. Representat ion of Ea by el l ipt ic  in tegra l s  

3.1. Let us consider now formula (7) in the case of P=Pa and xCKa\La. Then Pa 
has two complex conjugate zeros in {[(] c p ( c 3 ) :  ( . x=0} ,  say p,p. The residue theorem 
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implies 

1 f~[g?x,j] 
OjEa(X)= i6~2 

= + ~ (Res [~bz,j]- Res~ [g?x,j]) = + 12re Im (Resp [~)x,j]), 

where r Using C1 as variable on {~EC3: ~'X=0,~3:l } yields suc- 
cessively 

1 det(~,x,d~),  ~(~) = 

1 
% ( ~ ) l r  ~,z, -x~d~/x2 - 

0 
1 

Res [~b,,a] = Res(~b~,a[r - 
p yl x2R'(yl)' 

d~l 

X2 

where I~(U):=Pa(U,--(UXl+.~)/X2,1) and p=[yl,Y2,1]. Next we substitute A by Yl 
X3 (cf. [20, p. 16]) in the integral Ea(x)=f (OaE~)(Xl, x2, A) dA. From 

Pa(Yl,-(ylXl-]-'~), 1) = 0  
x2 

=:~ (O1Pa-Xl O2Pa) dyl =02pa d/~ 
X2 / X2 

dA x2 dyl x2 dyl 
R'(~I) (o~Po)(yl,y2,1) 3(y~+ay~) 

we infer 

Ea(x)=constant• ~--~ Im f~ dyl 
(~) y~ +ayz ' 

where ~(x) is a path in the Riemannian surface {(yl, Y2)EC2:Pa(Yx, Y2, 1)=0} ending at 

the point (yl(x), y2(x)), which fulfills yl(x)xl+yz(x)x2+x3=O, and Imy l (x )>0 ,  say. 

Let us observe that  

f~._ m @1 3 dyl 
Y2q-aYl OPa(yl, Y2, 1)/Oy2 

dyl Ady2 
= - 3  P.R. \ P~(yl, y2 ,1 ) )  

spans the space f~l (X~) of holomorphic 1-forms oil the elliptic curve X~:={[4] E p ( c 3 ) :  

P , ({ )=0}  (with the co-ordinates p1={1/C3, y2={2/~a), and that  Ea can be expressed 

more symmetrically as Ea(x)=cons tan t  + (1/6rr)f[,(x)l f~" (Here P.R. denotes the Poin- 
car6 residue map as in [9, pp. 147, 221].) 
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The elliptic integral above is transformed into standard form with the help of the 

substitution w=(l+y2)/yl (cf. [20, p. 60]). In fact, 

y3+y3+l+3ayly2=O ~ (y~+ay2)dyl+(y22+ay1)dy2=O 

dw - dy2 (1+y2) @1 
Yl Y~ 

dy~ 
- 2 2 [y31+y3+2aylY2+y2+ayl] 

(Y2 +ayl)Yl 

_ ( l+y2-ayl)(1-y2) dyl 
- -  2 2 (Y2 +ayl)Yl 

dyl y~ dw 
y +ayl (l+y2-a l)(1-y2) 

and, on the other hand, 

(w_a)(w3+3aw2+4)_ l+y2-ayl  y4 [(I+y2)a+3ayl(I+Y2) 2+4y3] 

_ l+y2-ayl  
y4 [(l+y2)3+3ayl(l+y2)~-4(l+Y~) -12ayly2] 

= -3  (l+y2-ayl)2(1-Y2)2 

Hence we obtain 

Ea(x) = constant + 2 @ 3  ~ Re f~_s dw . 
) ~/(w-a)(w3+3aw2+4) 

As in 2.4, we eventually transform this elliptic integral into Weierstrass' form by setting 

u=l / (w-a) .  This furnishes 

]~a(X) : constant =t= 1 ~  Re f] -1 / (a+l)  du 
j~(~) ~ - ~  

1 ~ du 
= c o n s t a n t + ~ R e  (~) ~ 

(lo) 

where Pa is as in (g) of the Theorem, and u(x) is determined by the equations u(x)= 
1/(w(x)-a), w(x)=(1-~-y2(x))/yl(z), yl(X)Xl-l-y2(x)x2~-x3=O , P,~(yl(x),y2(x),l)=O, 
and by the condition Imyl (x )>0 .  

3.2. In order to obtain an integral representation of Ea over a path on the real axis, 

let us employ the addition theorem of Weierstrass' p-function, i.e., 

. . 1 / ' p ' ( s ) - p ' ( t ) ~  2 (11) 
= 7 ) '  
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cf. [8, 8.166.2]. Since ~J(s)=v/4p(s)3-g2~9(s)-g3, we have 

[]~  f ~ l  du = ~  du (12) 
+ X/4U 3 - g 2 u - g 3  ~/4u  3 - g 2 u - g 3  

if ~(s)=~r ,  p ( t ) = T  and ~(s+t)=z, which, by (11), amoun t s  to  

Z =  
(4a~- - g2)(a  + T) - 293 - 2 V/4a 3 - g2 a - g3 v/4T3 - g2 ~- - g3 

4(cr-~-)2 

Here we suppose  t ha t  (r#7- are sufficiently large real numbers .  By a shift of the in tegra t ion 

variable,  the following slightly more  general  addi t ion t heo rem ensues f rom (12): 

(13) 

where q(u) = ~u  3 +/~u 2 + 7u + 5, c~ > 0,/3, 7, 6 E R ,  a, ~- E C,  Re a, Re 7- are sufficiently large, 

a#T, and 

Z= 

We app ly  formula  (13) to (10) wi th  q=Pa, a=u(x) and w=u(x). This  yields 

1 fzz ~ du Ea(x)--constanti~--~ (x) (14) 

wi th  
z(x) --- 4(a3 + 1 ) u ~ ( u + ~ t ) +  18aZufi + 6 a ( u + f i ) + 2 -  2 v/pa(u)pa(~) 

4 ( a 3 + 1 ) ( u - ~ )  2 

_ 2(a3+l)(w+@-2a)+(w-a)(@-a)(w+2a)(@+2a) -S  
2(a3+ 1)(w-@) 2 

wherein u----u(x) and w=w(x) are specified at  the end of 3.1, and 

(15) 

S : =  v / ( w -  a) (w 3 + 3aw 2 + 4)(w - a ) (~3  + 3a~2  + 4).  (16) 

3.3. Let  us next  derive the  cubic equat ion  (5) for z(x). Since 

xiYi(X)+x2y2(x)+x3=O and Pa(Yl(X),y2(x),l)=O~ 

yl(x) is a root  of the  following cubic po lynomia l  in u: 

x~ Pa(u, -(UXl + X3)/x2, 1 ) = x 3 ( u 3 + l ) - ( U X l + X 3 ) 3 - 3 a x ~ u ( u x l + x 3 ) .  
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This implies that  
l+y2(x )  Xl X2 --X3 - _ _  § 

yl(X) X2 X2Yl(X)  

is a solution of the cubic equation 

B(w)  := (x 2 +x2x  3 + x  2) w 3 --~ 3(x1:c2 +XlX3 - a3~2 x3)w 2 

+ 3Xl(Xl- -ax2--ax3)w+(x2--x3)2--  3ax 2 = 0 .  

Furthermore, B ( w ) = 0  implies 

3 ( w - a )  2 (2xl +wx2 +wx3) 2 
(w- -a) (w3+3aw2+4)  = (X2 --x3) 2 ' 

and thus, for w = w ( x ) ,  the square root S defined in (16) fulfills 

S = 3 ( w -  a ) ( ~ -  a)(2xl +wx2 + tu/3)(2Xl -l- tOX2 -~- ?~X3) (17) 
2 

We now consider B as a polynomial over K : = Q ( a .  xl ,  x2, x3), assuming a, Xl, x2, x3 

transcendental over Q. If L is a splitting field of B over K,  then B has three roots 

Wl, w2, w3 in L, and z(x)  is, according to (15) and (17), a rational function of wl, w2 

say. Although the dimension of L over K is six, z(x)  satisfies a cubic equation over 

Q(a,  x~, x2, x3), since z(x)  is mapped  to itself by that  element of the Galois group of L 

over K which exchanges wl and w2 (cf. [14]). 

In order to determine the cubic equation for z(x)  over K ,  we first express z(x)  in 

(15) by w3. Since Wl, w2, w3 are the roots of B, we have 

Xl~2-'~-XlX 3 - - a x 2 x 3  
?/)l-}-W2 ~ --W3--3 

XS-P X2 X3-Y- 2g ~ 

and 

x l ( x l - - a x 2 - - a x 3 )  
W i W  2 ~- --W3(Wl-.~W2)-I- 3 x~ +x2z3+x~ 

Inserting these equations into (15) and (17), and making use of B(w3)=0,  a symbolic 

calculation program yields 

' ~ x 3 ) w 3 - - 3 a x 2 x 3 - - X l (  2+ 3)(x2-- 3) (18) Z ( X ) =  X2X3(X2+X2X3 2 2 2 X X X 2 

If N and D denote the numerator  and the denominator,  respectively, of the quotient 

in (18), then z(x)  is a root of the resultant of B(w3) and D z - N  with respect to w3, 

which resultant is - 3 3 2 2 ( x 2 - x a )  (x2+ 2x3+z3 ) Oa(x, z ) .  
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3.4. Let us finally verify the representation of Ea announced in (h) of the Theorem. 

Define 
{ R 3 \ ( L ~ U - L ~ ) ,  a > - l ,  

Ua := Ka\(LaUWa), a < -1, 

and consider xE U~. The discriminant of Qa(x, z) with respect to z is 

27(x~_ x3)2 ( x l -  x3 ) 3  32 (x 23_x3)2A~(x), 

and this is negative in U~ except for the planes Xl=X2, Xl=:;c3 and x2=x3.  Hence 

Q~(x, z) has exactly one real root z(x) if xE U~ and x does not belong to one of these 

planes. When x2=x3, say, then there is a double root z=-x2/(xl+ax2) (note that  

A~(-a, 1, 1)=0, so xl+aX2r and since the discriminant of OQ~(x, z)/Oz is 

36(x 3 -  x~) 2 (xl + ax2)4x22 , 

and (1, 1, 1) belongs to La, w e  have precisely one simple zero except on the co-ordinate 

axes. This simple zero is real-analytic in the whole set Ua, for if say X l = l  and x2=x3 is 

small, we have just given the double zero explicitly, and it follows that  the simple zero 

is also analytic there. If c and 5 are small enough, it follows that  the simple zero z can 

be continued uniquely analytically to {(x2, x3)EC2: 0< Ixal<e, Ix2 -x31 <5}, and since it 

is bounded, it extends analytically also to x3=0.  Therefore, if z(x) is defined as in the 

Theorem, then it is a real-analytic function of x E Ua. 

If 0 denotes the smallest real root of p~ (cf. 2.4), then a calculation shows that  

Qa(x, O)- 4 ~ ) '  Pa(X) := 3[(a3-- 2)g+a2]xax2x3--(3ao+ l)(x31+x3 +x33). 

Hence z ( x ) = o  if Pa(x)=0 .  Let us investigate /5 .  From (3aL)+l)2=--4(a3+l)L) 3, we 

conclude that  s ign~)=-s ign (a+1)  and that  3 a g + l # 0  for a E R \ { - 1 } .  Hence 

(a3-2)L)+a 2 
/5~ = - ( 3 a g +  1)Pa, 5 : =  3 a o + l  ' 

and we have to decide on the sign of 5+1.  Using two values of a, say a = 0  and a / ~ - l ,  

and the continuity of o(a), we obtain that  3 a o + l  is always positive, b=5 is a root of 

the resultant 

4(a 3 + 1)(b 3 +3a2b 2 -  3ab+a a +2) 

of the two polynomials p~ (u) and (3au+ 1)b+ (a 3 -  2 )u+  a 2 with respect to u, and there- 

fore 5 5 - 1  when a # - l .  A test on two values of a as above reveals that  5+1  is negative, 

and hence Xa always consists of two components. 
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Fig. 4. Wa (solid) and Xa (dashed) on the plane Xl+X2+x3=l for a=-10 and for a=2. 

The curves [Wa\{0}] and Xb intersect on the lines [t,t, 1], t c R ,  if and only if the 

resultant of Aa(t, t, 1) and Pb(t, t, 1) vanishes. This resultant is given by 

108(b 3 + 3a2b 2 - 3ab+ a 3 + 2) (a 3 + 3ab- 2) 3, 

and thus [Wa\{0}] and Xa touch at points on the three projective lines xl=x2, xl=x3 and 

x2 =x3. Using two values of a as above then shows: If a > - l ,  then the convex component 

of Xa lies inside [La\{0}], and the non-convex component belongs to [Ua]; if a < - l ,  

then the convex component of Xa belongs to [U~], and the non-convex component lies 

in P ( C a ) \ [ K , ]  (el. Figure 4). 

Next let us discuss the behaviour of z(x) for x tending to OUa from inside U~. Evi- 

dently, z(x)--+ 4-oc, and we can decide on the sign of the limit by noticing that  it coincides 

with the sign of Q,(x,O) since A~(x)<0 in U~. For x=(-a,  1, 1)EOLa, Qa(x,O)=a3+l, 
and hence 

z(x) ~ ~ oc, a > -1,  

t --~C, a< --1, 

if x-+OLa from inside Ua. On the other hand, if a < - i  and x=(0 ,  0, 1), then z ( x ) = 0 < f l  

a n d / 5 ~ ( x ) = - ( 3 a 0 + l ) < 0  (whereas P a ( - a ,  1, 1)>0),  and this implies that  z(x)--+-oc if 

x-+OKa from inside Ua, a < - l .  Hence, for all xEU~, z(x)>~O if a > - l ,  and z(x)<~O 
if a < - l .  From this we conclude that  f 2 ( X ) d u / ~  is real-analytic in except 

possibly on Xan[U~]. A Taylor series argument as in [19, Remark] shows that  

fz(r du 
sign(Pa(x)) ]~ 
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is real-analytic on X a n  [Ua] also. 

Combining now the continuity of Ea in R 3 \  {0}, the values of Ea lEo calculated in 2.4, 

the limit behaviour of z(x) on the border of Ua analyzed above, limx-+OKo E~(x )=0  for 

a < - l ,  and the representation of Ea in (14) with the principle of analytic continuation, 

furnishes a proof of the assertion (h) of the Theorem. 
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