Fundamental solutions of real homogeneous cubic operators of principal type in three dimensions

by

PETER WAGNER
Universität Innsbruck
Innsbruck, Austria

1. Introduction

1.1. The operator $\partial_{1}^{3}+\partial_{2}^{3}+\partial_{3}^{3}$ was considered - to my knowledge-for the first time in 1913 in N. Zeilon's article [20], wherein he generalizes I. Fredholm's method of construction of fundamental solutions (see [5]) from homogeneous elliptic equations to arbitrary homogeneous equations in three variables with a real-valued symbol (cf. [20, II, pp. 14-22], [6, Chapter 11, pp. 146-148]). An explicit formula for a fundamental solution was given in [19]. The objective of this paper is to generalize the calculations in [19] to the operators $\partial_{1}^{3}+\partial_{2}^{3}+\partial_{3}^{3}+3 a \partial_{1} \partial_{2} \partial_{3}, a \in \mathbf{R} \backslash\{-1\}$. As discussed below, this class of operators comprises all real homogeneous cubic operators of principal type in three dimensions.

According to Newton's classification of real elliptic curves, the non-singular real homogeneous polynomials $P(\xi)$ of third order in three variables are divided into two types according to whether the real projective curve $\left\{[\xi] \in \mathbf{P}\left(\mathbf{R}^{3}\right): P(\xi)=0\right\}$ consists of one or of two connected components, respectively. (For $\xi \in \mathbf{R}^{n} \backslash\{0\},[\xi] \in \mathbf{P}\left(\mathbf{R}^{n}\right)$ denotes the corresponding projective point, i.e., the line $\{t \xi: t \in \mathbf{R}\}$.) In Hesse's normal form, all non-singular real cubic curves are-up to linear transformations-given by

$$
P_{a}(\xi)=\xi_{1}^{3}+\xi_{2}^{3}+\xi_{3}^{3}+3 a \xi_{1} \xi_{2} \xi_{3}, \quad a \in \mathbf{R} \backslash\{-1\}
$$

(cf. [3, 7.3, Satz 4, p. 379; English transl., p. 293], [4, §7, (10), p. 39], [17, §1.4, p. 19]). Let $X_{a}:=\left\{[\xi] \in \mathbf{P}\left(\mathbf{R}^{3}\right): P_{a}(\xi)=0\right\}$ denote the real projective variety defined by P_{a}. For $a>-1$, X_{a} is connected, whereas, for $a<-1, X_{a}$ consists of two components (cf. Figure 1). The corresponding operators $P_{a}(\partial)$ also differ from the physical viewpoint: For $a<-1$, every projective line through $[1,1,1]$ intersects X_{a} in three different projective points, and thus P_{a} is strongly hyperbolic in the direction $(1,1,1)\left(\left[1,3.8\right.\right.$, p. 129]); for $a>-1, P_{a}$ is not hyperbolic in any direction, nor is it an evolution operator (cf. [15, Example 1, p. 463] for the case of $a=0$).

Fig. 1. $\left\{\left(\xi_{1}, \xi_{2}\right):\left\{\xi_{1}, \xi_{2}, 1\right] \in X_{a}\right\}$ for $a=-2$ and for $a=0$.
1.2. In $\S 2$ of this paper, we shall define the fundamental solution E_{a} of $P_{a}(\partial)$ as Fourier transform of the homogeneous distribution which is of order -3 and has $\operatorname{vp}\left(1 / P_{a}(\omega)\right) \in \mathcal{D}^{\prime}\left(\mathbf{S}^{2}\right)$ as its restriction to the sphere. From theorems on the wave front set of the Fourier transform of a homogeneous distribution ([11, Theorems 8.1.8, 8.4.18]), it immediately results that the (analytic) singular support of E_{a} is the dual (see [1, p. 154]) of X_{a}, i.e.,

$$
\operatorname{sing} \operatorname{supp} E_{a}=\operatorname{sing} \operatorname{supp}_{\mathrm{A}} E_{a}=\left\{t \nabla P_{a}(\xi): \xi \in \mathbf{R}^{3}, P_{a}(\xi)=0, t \in \mathbf{R}\right\}
$$

By the classical Plücker formulas (cf. [9, p. 280]), [sing supp $\left.E_{a} \backslash\{0\}\right]$ is an algebraic curve of degree 6. Its complexification has nine cusps, three of which are real in correspondence with the three flexes of X_{a} (cf. Figure 2). Explicitly, we have $\operatorname{sing} \operatorname{supp} E_{a}=\left\{x \in \mathbf{R}^{3}\right.$: $\left.A_{a}(x)=0\right\}$, where

$$
\begin{gather*}
A_{a}(x):=3 a\left(a^{3}+4\right) x_{1}^{2} x_{2}^{2} x_{3}^{2}+4\left(a^{3}+1\right)\left(x_{1}^{3} x_{2}^{3}+x_{1}^{3} x_{3}^{3}+x_{2}^{3} x_{3}^{3}\right) \\
+6 a^{2} x_{1} x_{2} x_{3}\left(x_{1}^{3}+x_{2}^{3}+x_{3}^{3}\right)-\left(x_{1}^{3}+x_{2}^{3}+x_{3}^{3}\right)^{2} . \tag{1}
\end{gather*}
$$

If $a<-1$, then P_{a} is hyperbolic with respect to $(1,1,1)$, and

$$
\begin{equation*}
W_{a}:=\left\{x \in \mathbf{R}^{3}: A_{a}(x)=0, x_{1}+x_{2}+x_{3} \geqslant 0\right\} \quad(a<-1) \tag{1}
\end{equation*}
$$

consists of two conical surfaces which are the respective duals of the two components of X_{a}. Let F_{a} denote the unique fundamental solution of $P_{a}(\partial)$ with support in $\left\{x \in \mathbf{R}^{3}\right.$: $\left.x_{1}+x_{2}+x_{3} \geqslant 0\right\}$. Then $E_{a}=\frac{1}{2}\left(F_{a}-\widetilde{F}_{a}\right)$, where the superscript ${ }^{-}$indicates reflection with

Fig. 2. $\left\{x \in W_{a}: x_{1}+x_{2}+x_{3}=1\right\}$ for $a=-10$ and for $a=\frac{1}{3}$.
respect to the origin. Further, we denote by K_{a} the propagation cone of P_{a} with respect to $(1,1,1)$, i.e.,

$$
\begin{align*}
K_{a} & :=\text { dual cone of the component of }(1,1,1) \text { in }\left\{x \in \mathbf{R}^{3}: P_{a}(x) \neq 0\right\} \\
& =\text { convex hull of } W_{a} . \tag{3}
\end{align*}
$$

From the Herglotz-Petrovsky-Leray formula (cf. [1, 7.16, p. 173]), we infer that F_{a} has a Petrovsky lacuna (in the sense of [1, p. 185]) inside the cone

$$
\begin{equation*}
L_{a}:=\left\{x \in K_{a}: A_{a}(x)>0\right\} \quad(a<-1) \tag{1}
\end{equation*}
$$

Hence W_{a} consists of ∂K_{a} and of ∂L_{a}, which bound a convex and a non-convex cone, respectively (cf. Figure 2).

If $a>-1$, then still E_{a} has lacunas inside L_{a} and $-L_{a}$, where now we define

$$
\begin{equation*}
L_{a}:=\text { component of }(1,1,1) \text { in }\left\{x \in \mathbf{R}^{3}: A_{a}(x)>0\right\} \quad(a>-1) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
W_{a}:=\partial L_{a} \quad(a>-1) \tag{2}
\end{equation*}
$$

In both cases, the fundamental solutions E_{a} are constant inside L_{a} and $-L_{a}$, and we represent these constant values as complete elliptic integrals of the first kind. Finally, we show in $\S 2$ that E_{a} is continuous outside the origin.
1.3. In $\S 3$, we shall derive an explicit representation for $E_{a}(x)$ by elliptic integrals of the first kind. Following N. Zeilon, we introduce first one of the complex zeros of the rational integrand in the Herglotz-Petrovsky-Leray formula as a new variable, and, using a substitution (also indicated by N. Zeilon already), we transform the resulting integral
into Weierstrass' canonical form. Then we use the addition theorem for the \wp-function and the qualitative information from $\S 2$ in order to find a real-valued representation of E_{a} symmetric in the variables x_{1}, x_{2}, x_{3}. The final result is contained in the following theorem. (Y denotes Heaviside's function and \mathcal{F} the Fourier transform, cf. 1.4.)

Theorem. Let $a \in \mathbf{R} \backslash\{-1\}$. The limit

$$
T_{a}:=\lim _{\varepsilon \searrow 0} \frac{Y\left(\left|\xi_{1}^{3}+\xi_{2}^{3}+\xi_{3}^{3}+3 a \xi_{1} \xi_{2} \xi_{3}\right|-\varepsilon\right)}{\xi_{1}^{3}+\xi_{2}^{3}+\xi_{3}^{3}+3 a \xi_{1} \xi_{2} \xi_{3}}
$$

defines a distribution in $\mathcal{S}^{\prime}\left(\mathbf{R}^{3}\right)$. If $E_{a}:=(i / 2 \pi)^{3} \mathcal{F} T_{a}$, and A_{a}, W_{a}, L_{a} and, for $a<-1$, K_{a} are as in $(1),\left(2_{1}\right),\left(2_{2}\right),\left(4_{1}\right),\left(4_{2}\right),(3)$, respectively, then:
(a) E_{a} is a fundamental solution of $\partial_{1}^{3}+\partial_{2}^{3}+\partial_{3}^{3}+3 a \partial_{1} \partial_{2} \partial_{3}$;
(b) E_{a} is homogeneous of degree 0;
(c) E_{a} is odd and invariant under permutations of the co-ordinates;
(d) $\operatorname{sing} \operatorname{supp} E_{a}=\operatorname{sing} \operatorname{supp}_{\mathrm{A}} E_{a}=W_{a} \cup-W_{a}$;
(e) E_{a} is continuous in $\mathbf{R}^{3} \backslash\{0\}$;
(f) If $a<-1$, then $E_{a}=\frac{1}{2}\left(F_{a}-\breve{F}_{a}\right), P_{a}(\partial) F_{a}=\delta, \operatorname{supp} F_{a}=K_{a}$;
(g) E_{a} is constant in L_{a} and in $-L_{a}$, and the values $\left.E_{a}\right|_{L_{a}}$ are given by the following complete elliptic integrals of the first kind:

$$
\left.E_{a}\right|_{L_{a}}= \begin{cases}-\frac{1}{4 \sqrt{3} \pi} \int_{\varrho}^{\infty} \frac{d u}{\sqrt{p_{a}(u)}}, & a>-1 \\ -\frac{1}{4 \sqrt{3} \pi} \int_{-\infty}^{\varrho} \frac{2 d u}{\sqrt{p_{a}(u)}}, & a<-1\end{cases}
$$

where $p_{a}(u):=4\left(a^{3}+1\right) u^{3}+9 a^{2} u^{2}+6 a u+1$ and ϱ is the smallest real root of $p_{a}(u)$;
(h) Let $x \in U_{a}$, where $U_{a}:=\mathbf{R}^{3} \backslash\left(\bar{L}_{a} \cup-\bar{L}_{a}\right)$ if $a>-1$, and $U_{a}:=K_{a} \backslash\left(L_{a} \cup W_{a}\right)$ if $a<-1$, and denote by $z(x)$ the only simple real root or, if x belongs to one of the coordinate axes, the triple root 0 , respectively, of the cubic equation

$$
\begin{align*}
Q_{a}(x, z):= & A_{a}(x) z^{3}+9\left(a x_{1}^{2}+x_{2} x_{3}\right)\left(a x_{2}^{2}+x_{1} x_{3}\right)\left(a x_{3}^{2}+x_{1} x_{2}\right) z^{2} \\
& +\left[9 a^{2} x_{1}^{2} x_{2}^{2} x_{3}^{2}+6 a\left(x_{1}^{3} x_{2}^{3}+x_{1}^{3} x_{3}^{3}+x_{2}^{3} x_{3}^{3}\right)+3 x_{1} x_{2} x_{3}\left(x_{1}^{3}+x_{2}^{3}+x_{3}^{3}\right)\right] z \tag{5}\\
& +3 a x_{1}^{2} x_{2}^{2} x_{3}^{2}+x_{1}^{3} x_{2}^{3}+x_{1}^{3} x_{3}^{3}+x_{2}^{3} x_{3}^{3}=0 .
\end{align*}
$$

Then z is a real-analytic function in U_{a}, and

$$
E_{a}(x)=\left.\frac{1}{2} Y(-1-a) E_{a}\right|_{L_{a}}+\frac{\operatorname{sign}\left(\widetilde{P}_{a}(x)\right)}{4 \sqrt{3} \pi} \int_{\varrho}^{z(x)} \frac{d u}{\sqrt{p_{a}(u)}}
$$

where $\widetilde{P}_{a}(x):=3\left[\left(a^{3}-2\right) \varrho+a^{2}\right] x_{1} x_{2} x_{3}-(3 a \varrho+1)\left(x_{1}^{3}+x_{2}^{3}+x_{3}^{3}\right)$.

Remark. Before proceeding, let us comment on some of the properties of the polynomial Q_{a}, which, outside the lacunas, yields the level sets of E_{a}.

First, if q_{i} denote the coefficients of Q_{a} with respect to z, i.e.,

$$
Q_{a}(x, z)=\sum_{i=0}^{3} q_{i}(a, x) z^{i}
$$

then

$$
q_{3}=A_{a}, \quad q_{2}=\frac{3}{4} \cdot \frac{\partial q_{3}}{\partial a}, \quad q_{1}=\frac{1}{3} \cdot \frac{\partial q_{2}}{\partial a}, \quad q_{0}=\frac{1}{6} \cdot \frac{\partial q_{1}}{\partial a} .
$$

Second, let us investigate the relation between Q_{a} and p_{a}, \widetilde{P}_{a}. We note that all q_{i} belong to the four-dimensional subspace V spanned by

$$
\begin{array}{ll}
B_{1}(x)=x_{1}^{2} x_{2}^{2} x_{3}^{2}, & B_{2}(x)=x_{1}^{3} x_{2}^{3}+x_{1}^{3} x_{3}^{3}+x_{2}^{3} x_{3}^{3}, \\
B_{3}(x)=x_{1} x_{2} x_{3}\left(x_{1}^{3}+x_{2}^{3}+x_{3}^{3}\right), & B_{4}(x)=\left(x_{1}^{3}+x_{2}^{3}+x_{3}^{3}\right)^{2}
\end{array}
$$

in the complex vector space of all symmetric polynomials in x_{1}, x_{2}, x_{3} of degree six. The closure C_{a} of $\left\{\left[Q_{a}(x, z)\right]: z \in \mathbf{C}\right\}$ in $\mathbf{P}(V)$ is a cubic curve: $Q_{a}(x, z)=\sum_{i=1}^{4} \beta_{i}(z) B_{i}(x)$ with

$$
\begin{aligned}
& \beta_{1}(z)=3 a\left(a^{3}+4\right) z^{3}+9\left(a^{3}+1\right) z^{2}+9 a^{2} z+3 a \\
& \beta_{2}(z)=4\left(a^{3}+1\right) z^{3}+9 a^{2} z^{2}+6 a z+1, \\
& \beta_{3}(z)=6 a^{2} z^{3}+9 a z+3 z \\
& \beta_{4}(z)=-z^{3} .
\end{aligned}
$$

The square polynomials make up a quadric curve S in $\mathbf{P}(V)$, namely

$$
S=\text { closure of }\left\{\left[P_{z}(x)^{2}\right]: z \in \mathbf{C}\right\}=\left\{\left[\sum_{i=1}^{4} \alpha_{i} B_{i}(x)\right]: \alpha_{2}=0, \alpha_{3}^{2}-4 \alpha_{1} \alpha_{4}=0\right\}
$$

The curves C_{a} and S meet at $\left[Q_{a}(x, z)\right]$ for those z for which $p_{a}(z)=0$, since $\beta_{2}=p_{a}$ and

$$
\beta_{3}^{2}-4 \beta_{1} \beta_{4}=\left(12 a z^{3}+9 z^{2}\right) \beta_{2} .
$$

The polynomial $\widetilde{P}_{a}(x)$ fulfills $\widetilde{P}_{a}(x)^{2}=4\left(a^{3}+1\right) Q_{a}(x, \varrho)$, and hence $\left[\widetilde{P}_{a}(x)^{2}\right]$ is just one of the three intersection points of C_{a} and S.

For a discussion of the zeros of $Q_{a}(x, z)$ with respect to z, we refer to 3.4.
1.4. Let us establish some notations. We consider \mathbf{R}^{n} as a Euclidean space with the inner product $x \cdot y:=x_{1} y_{1}+\ldots+x_{n} y_{n}$ and write $|x|:=\sqrt{x \cdot x} . \mathbf{S}^{n-1}$ denotes the unit
sphere $\left\{\omega \in \mathbf{R}^{n}:|\omega|=1\right\}$ in \mathbf{R}^{n} and $d \sigma$ the Euclidean measure on \mathbf{S}^{n-1}. We write $\mathbf{P}(V)$ for the projective space corresponding to the vector space V (over \mathbf{R} or \mathbf{C}, respectively), and $[\zeta] \in \mathbf{P}(V)$ for the projective point corresponding to $\zeta \in V \backslash\{0\}$. By

$$
\oint
$$

we denote the Cauchy principal value.
When we make use of the theory of distributions, we adopt the notations from [11], [13], [18]. In particular, the Heaviside function is abbreviated by Y, i.e., $Y(t)=1$ for $t>0$ and 0 else, and $\langle\varphi, T\rangle$ stands for the value of the distribution T on the test function φ. We use the Fourier transform \mathcal{F} in the form

$$
(\mathcal{F} \varphi)(x):=\int \exp (-i x \cdot \xi) \varphi(\xi) d \xi, \quad \varphi \in \mathcal{S}\left(\mathbf{R}^{n}\right)
$$

2. Singular support and lacunas of E_{a}

2.1. Let us repeat first some elements from [19, §2]. If P is a real-valued, homogeneous polynomial of principal type in n variables and of degree m, then $\Phi:=\mathrm{vp}(1 / P(\omega)) \in$ $\mathcal{D}^{\prime}\left(\mathbf{S}^{n-1}\right)$ defined by

$$
\left\langle\varphi, \operatorname{vp} \frac{1}{P(\omega)}\right\rangle:=\lim _{\varepsilon \searrow 0} \int_{|P(\omega)|>\varepsilon} \frac{\varphi(\omega)}{P(\omega)} d \sigma(\omega), \quad \varphi \in \mathcal{D}\left(\mathbf{S}^{n-1}\right),
$$

solves the division problem $P(\omega) \cdot \Phi=1$ on the sphere \mathbf{S}^{n-1}, and

$$
T:=\operatorname{Pf}_{\lambda=-m}\left[\Phi\left(\frac{\xi}{|\xi|}\right)|\xi|^{\lambda}\right] \in \mathcal{S}^{\prime}\left(\mathbf{R}^{n}\right)
$$

solves the division problem $P(\xi) \cdot T=1$ in \mathbf{R}^{n}. Hence $E:=\left(i^{m} /(2 \pi)^{n}\right) \mathcal{F} T$ is a fundamental solution of $P(\partial)$. Theorems 8.1.8, 8.4.18 in [11] yield the representation

$$
W:=\operatorname{sing} \operatorname{supp} E=\operatorname{sing} \sup p_{\mathrm{A}} E=\left\{t \nabla P(\xi): \xi \in \mathbf{R}^{n}, P(\xi)=0, t \in \mathbf{R}\right\}
$$

for the singular support of E.
2.2. Let us prove next, similarly as in [1], that, for P as above and odd n, the Petrovsky condition on lacunas is valid (cf. [1, 10.3, p. 185]). First, radial integration in the Fourier integral for E yields Borovikov's formulas (cf. [2, (5г), (5b), p. 204; English transl.. (5c), (5d), p. 16], [7, Chapter I, 6.2, (5), (6), p. 129]):

$$
\langle\varphi, E\rangle= \begin{cases}\frac{(-1)^{(n-1) / 2}}{4(2 \pi)^{n-1}(m-n)!}\left\langle\int \varphi(x)(\omega \cdot x)^{m-n} \operatorname{sign}(\omega \cdot x) d x, \Phi(\omega)\right\rangle, & m \geqslant n \tag{6}\\ \frac{(-1)^{(n-1) / 2}}{2(2 \pi)^{n-1}}\left\langle\left\langle\varphi(x), \delta^{(n-m-1)}(\omega \cdot x)\right\rangle, \Phi(\omega)\right\rangle, & m<n\end{cases}
$$

where $\varphi \in \mathcal{S}\left(\mathbf{R}^{n}\right)$ and $\Phi:=\operatorname{vp}(1 / P(\omega))$ as in 2.1.
Let $x \in \mathbf{R}^{n} \backslash W$ and set

$$
v_{x}(\xi):=\nabla P(\xi)-\frac{x}{|x|^{2}}(x \cdot \nabla P(\xi)), \quad \xi \in \mathbf{R}^{n}
$$

If ε is a small positive number, then $P\left(\omega \pm i \varepsilon v_{x}(\omega)\right) \neq 0$ for all $\omega \in \mathbf{S}^{n-1}$ (since $x \notin W$), and

$$
\Phi=\frac{1}{2} \lim _{\varepsilon \rightarrow 0}\left(\frac{1}{P(\omega)+i \varepsilon}+\frac{1}{P(\omega)-i \varepsilon}\right)=\frac{1}{2} \lim _{\varepsilon \rightarrow 0}\left(\frac{1}{P\left(\omega+i \varepsilon v_{x}(\omega)\right)}+\frac{1}{P\left(\omega-i \varepsilon v_{x}(\omega)\right)}\right)
$$

If P is hyperbolic in the direction θ and if F denotes the unique fundamental solution of $P(\partial)$ with support in $\left\{x \in \mathbf{R}^{n}: \theta \cdot x \geqslant 0\right\}$, then

$$
F=\frac{i^{m}}{(2 \pi)^{n}} \mathcal{F}\left({ }_{\lambda=-m}^{\operatorname{Pf}}\left[\Psi\left(\frac{\xi}{|\xi|}\right)|\xi|^{\lambda}\right]\right)
$$

with $\Psi=\lim _{\tilde{\varepsilon} \searrow 0} 1 / P(\omega+i \varepsilon \theta) \in \mathcal{D}^{\prime}\left(\mathbf{S}^{n-1}\right)$ (cf. [12, Theorem 12.5.1, p. 120], [16, Proposition 1, p. 530]), and hence $\Phi=\frac{1}{2}\left(\Psi+(-1)^{m} \breve{\Psi}\right)$ and $E=\frac{1}{2}\left(F+(-1)^{m} \breve{F}\right)$.

On the other hand, for arbitrary P as in 2.1 and for a multi-index $\nu \in \mathbf{N}_{0}^{n}$ which satisfies $n-m+|\nu|>0$, we obtain from (6), by differentiation,

$$
\partial^{\nu} E(x)=\frac{(-1)^{(n-1) / 2}}{4(2 \pi)^{n-1}} \lim _{\varepsilon \rightarrow 0} \sum_{ \pm}\left\langle\frac{\omega^{\nu}}{P\left(\omega \pm i \varepsilon v_{x}(\omega)\right)}, \delta^{(n-m+|\nu|-1)}(\omega \cdot x)\right\rangle
$$

Note that the two limits $\lim _{\varepsilon \searrow 0} P\left(\omega \pm i \varepsilon v_{x}(\omega)\right)^{-k}$ exist in $\mathcal{D}^{\prime}\left(\mathbf{S}_{x}^{n \sim 2}\right)$ if

$$
\mathbf{S}_{x}^{n-2}:=\left\{\omega \in \mathbf{S}^{n-1}: \omega \cdot x=0\right\}
$$

and $k \in \mathbf{N}$ (cf. [1, p. 121]). Therefore,

$$
\begin{aligned}
\partial^{\nu} E(x) & =\frac{(-1)^{(n-1) / 2}}{4(2 \pi)^{n-1}} \lim _{\varepsilon \rightarrow 0} \sum_{ \pm} \int_{\mathbf{S}_{x}^{n-2}}\left(-\frac{x}{|x|^{2}} \cdot \nabla_{\omega}\right)^{n-m+|\nu|-1}\left(\frac{\omega^{\nu}}{P\left(\omega \pm i \varepsilon v_{x}(\omega)\right)}\right) \frac{d \sigma_{x}(\omega)}{|x|} \\
& =\left.\frac{(-1)^{(n-1) / 2}}{4(2 \pi)^{n-1}} \lim _{\varepsilon \rightarrow 0} \sum_{ \pm} \int_{\mathbf{S}_{x}^{n-2}}\left(-\frac{x}{|x|^{2}} \cdot \nabla_{\zeta}\right)^{n-m+|\nu|-1}\left(\frac{\zeta^{\nu}}{P(\zeta)}\right)\right|_{\zeta=\zeta_{ \pm}(\omega)} \frac{d \sigma_{x}(\omega)}{|x|}
\end{aligned}
$$

where $\zeta_{ \pm}(\omega)=\omega \pm i \varepsilon v_{x}(\omega)$ and $d \sigma_{x}$ is the surface measure on \mathbf{S}_{x}^{n-2}. Let $\eta_{x}(\zeta)$ be the Leray form on $\left\{\zeta \in \mathbf{C}^{n}: \zeta \cdot x=0\right\}$, i.e.,

$$
d(\zeta \cdot x) \wedge \tilde{\eta}_{x}(\zeta)=\sum_{j=1}^{n}(-1)^{j-1} \zeta_{j} d \zeta_{1} \wedge \ldots \wedge d \zeta_{j-1} \wedge d \zeta_{j+1} \wedge \ldots \wedge d \zeta_{n}+O(\zeta \cdot x)
$$

$\eta_{x}(\zeta)$ being the restriction of $\tilde{\eta}_{x}(\zeta)$ from \mathbf{C}^{n} to $\left\{\zeta \in \mathbf{C}^{n}: \zeta \cdot x=0\right\}$ and $O(\zeta \cdot x) \rightarrow 0$ for $\zeta \cdot x \rightarrow 0$, and put

$$
\psi_{x, \nu}(\zeta):=\left(-\frac{x}{|x|^{2}} \cdot \nabla_{\zeta}\right)^{n-m+|\nu|-1}\left(\frac{\zeta^{\nu}}{P(\zeta)}\right) \eta_{x}(\zeta)
$$

Then $\psi_{x, \nu}$ induces a holomorphic (and hence closed) ($n-2$)-form on $U_{x}:=\left\{[\zeta] \in \mathbf{P}\left(\mathbf{C}^{n}\right)\right.$: $\zeta \cdot x=0, P(\zeta) \neq 0\}$, which we denote by $\left[\psi_{x, \nu}\right]$, and

$$
\begin{equation*}
\partial^{\nu} E(x)=\frac{(-1)^{(n-1) / 2}}{4(2 \pi)^{n-1}} \int_{c_{x}}\left[\psi_{x, \nu}\right] \tag{7}
\end{equation*}
$$

where c_{x} is the homology class of the ($n-2$)-chain $s_{x, \varepsilon}+\overline{s_{x, \varepsilon}}$, the cycle $s_{x, \varepsilon}$ being given by

$$
s_{x, \varepsilon}: \mathbf{S}_{x}^{n-2} \rightarrow U_{x}, \quad \omega \mapsto\left[\omega+i \varepsilon v_{x}(\omega)\right]
$$

and ε is small. (We choose η_{x} as orientation on \mathbf{S}_{x}^{n-2}.) Essentially, the representation in formula (7) is equivalent to $\left[1,\left(7.17^{\prime}\right)\right.$, p. 173] (cf. also the proof on p. 176) or to $[12$, $(12.6 .10)^{\prime \prime \prime}$, p. 131] for hyperbolic operators. Due to (7), E coincides with a polynomial of the degree $m-n$ in those components of $\mathbf{R}^{n} \backslash W$ which contain a point x with vanishing c_{x} in the homology group $H_{n-2}\left(U_{x}\right)$. This is precisely the Petrovsky condition for lacunas.
2.3. We apply the foregoing discussion to $P_{a}(\xi):=\xi_{1}^{3}+\xi_{2}^{3}+\xi_{3}^{3}+3 a \xi_{1} \xi_{2} \xi_{3}, a \in \mathbf{R} \backslash\{-1\}$. In this case, Φ is odd and thus $\lambda \mapsto \Phi(\xi /|\xi|)|\xi|^{\lambda}$ is analytic in $\lambda=-3$. Hence $T_{a}:=$ $\Phi(\xi /|\xi|)|\xi|^{-3}$ and $E_{a}:=(i / 2 \pi)^{3} \mathcal{F} T_{a}$ are also odd and homogeneous of the degrees -3 and 0 , respectively. As in $[19,2.2]$, we obtain $T_{a}=\lim _{\varepsilon \searrow 0} Y\left(\left|P_{a}(\xi)\right|-\varepsilon\right) / P_{a}(\xi)$.

For $x=(1,1,1)$, all the three zeros of P_{a} in $\left\{[\zeta] \in \mathbf{P}\left(\mathbf{C}^{3}\right): \zeta \cdot x=0\right\}$ are real. In fact, they are given by $[-1,0,1],[0,1,-1],[1,-1,0]$. Moreover, $s_{x, \varepsilon}$ and $\overline{s_{x, \varepsilon}}$ coincide since $v_{x}(-\omega)=v_{x}(\omega)$. Hence c_{x} in 2.2 vanishes (cf. $\left[1,(6.26)\right.$, p. 167] and Figure 3), and E_{a} is constant in the two components of $\mathbf{R}^{3} \backslash W_{a}$ containing ($1,1,1$) and $-(1,1,1)$, respectively, i.e., in L_{a} and in $-L_{a}$. Of course, in the hyperbolic case $a<-1$, moreover E_{a} vanishes in $\mathbf{R}^{3} \backslash\left(K_{a} \cup-K_{a}\right)$, the so-called trivial lacuna (cf. [1, p. 115]).

In order to obtain an equation for the wave front surface W_{a}, we take into account that W_{a} is the set of x where the two equations $\xi \cdot x=0, P_{a}(\xi)=0$ have multiple solutions $[\xi] \in P\left(\mathbf{R}^{3}\right)$. Hence W_{a} is the zero set of the discriminant of the polynomial $P_{a}\left(u,-\left(u x_{1}+x_{3}\right) / x_{2}, 1\right)$ with respect to u. This discriminant is $27 A_{a}(x) / x_{2}^{6}$ with A_{a} as in (1).
2.4. Let us calculate next the constant values $\left.E_{a}\right|_{L_{a}}$. Upon application of some obvious estimates and of Lebesgue's dominated convergence theorem (cf. [19, 2.2]), formula (6) implies that E_{a} is a locally integrable function given by

$$
\begin{equation*}
E_{a}(x)=-\frac{1}{8 \pi^{2}} \lim _{\varepsilon \searrow 0} \int_{\left|P_{a}(u, v, 1)\right|>\varepsilon} \frac{\operatorname{sign}\left(u x_{1}+v x_{2}+x_{3}\right)}{P_{a}(u, v, 1)} d u d v \tag{8}
\end{equation*}
$$

Fig. 3. The path $s_{x, \varepsilon}$ in $\left\{[\zeta] \in \mathbf{P}\left(\mathbf{C}^{3}\right): \zeta \cdot x=0\right\}$ for $x=(1.1 .1$. . Each \times denotes one of the three real zeros of P_{a} in the complex projective line considered.)

Employing the substitution $w=u+v$, we infer

$$
E_{a}(1,1,1)=-\frac{1}{8 \pi^{2}} \int_{-\infty}^{\infty} \operatorname{sign}(w+1) d w \oint_{-\infty}^{\infty} \frac{d u}{3 u^{2}(w-a)-3 u w(w-a)+w^{3}+1}
$$

The quadratic polynomial of u in the last integral has no real zeros if and only if $(w-a)\left(w^{3}+3 a w^{2}+4\right)$ is positive, and the inner integral yields

$$
\frac{2 \pi}{\sqrt{3}} \cdot \frac{\operatorname{sign}(w-a)}{\sqrt{(w-a)\left(w^{3}+3 a w^{2}+4\right)}}
$$

in this case and 0 else, i.e.,

$$
E_{a}(1,1,1)=-\frac{1}{4 \sqrt{3} \pi} \int_{-\infty}^{\infty} \frac{\operatorname{sign}((w+1)(w-a)) d w}{\left[(w-a)\left(w^{3}+3 a w^{2}+4\right)\right]_{+}^{1 / 2}}
$$

where $x_{+}:=Y(x) x$ for $x \in \mathbf{R}$. With $p_{a}(u):=4\left(a^{3}+1\right) u^{3}+9 a^{2} u^{2}+6 a u+1$, the substitution $u=1 /(w-a)$ furnishes

$$
E_{a}(1,1,1)=-\frac{1}{4 \sqrt{3} \pi} \int_{-\infty}^{\infty} \operatorname{sign}(1+u(a+1)) p_{a}(u)_{+}^{-1 / 2} d u
$$

The discriminant of p_{a} is $-2^{4} \cdot 3^{3} \cdot\left(a^{3}+1\right)$, and hence p_{a} has one or three real roots according to the sign of $a+1$.

If $a>-1$, then the only real root ϱ of p_{a} satisfies $-1 /(a+1)<\varrho<0$, since $p_{a}(0)=1$ and $p_{a}(-1 /(a+1))=-3 /(a+1)^{2}$. Thus $1+u(a+1)>0$ if $p_{a}(u)>0$ and

$$
\left.E_{a}\right|_{L_{a}}=-\frac{1}{4 \sqrt{3} \pi} \int_{\varrho}^{\infty} \frac{d u}{\sqrt{p_{a}(u)}} \quad(a>-1)
$$

If $a<-1$, then p_{a} has three real roots. say $\varrho<\sigma<\tau$. From $p_{a}(0)>0, p_{a}^{\prime}(0)<0$, $p_{a}^{\prime \prime}(0)>0$, and $p_{a}(-1 /(a+1))<0, p_{a}^{\prime}(-1 /(a+1))=-6(a-2) /(a+1)<0, p_{a}^{\prime \prime}(-1 /(a+1))=$ $-6(a-2)^{2}<0$, we conclude that $0<\varrho<\sigma<\tau<-1 /(a+1)$, and thus again $1+u(a+1)>0$ if $p_{a}(u)>0$. By [10. 222.2b]. this implies

$$
\left.E_{a}\right|_{L_{a}}=-\frac{1}{4 \sqrt{3} \pi}\left[\int_{-\infty}^{\varrho}+\int_{\sigma}^{\tau}\right] \frac{d u}{\sqrt{p_{a}(u)}}=-\frac{1}{4 \sqrt{3} \pi} \int_{-\infty}^{\varrho} \frac{2 d u}{\sqrt{p_{a}(u)}} \quad(a<-1)
$$

2.5. Let us finally show in this section that E_{a} is continuous outside the origin. From formula (8) we infer (substituting $u=u+v$ for v as in 2.4)

$$
E_{a}(x)=-\frac{1}{8 \pi^{2}} \int_{-\infty}^{\infty} d w \oint_{-\infty}^{\infty} \frac{\operatorname{sign}\left(u\left(x_{1}-x_{2}\right)+w x_{2}+x_{3}\right) d u}{3 u^{2}(w-a)-3 u w(w-a)+w^{3}+1}
$$

For real values $\alpha, \beta, \gamma, \delta,[10,131.3]$ yields

$$
\oint_{\delta}^{\infty} \frac{d u}{\alpha u^{2}+2 \beta u+\gamma}= \begin{cases}\frac{1}{\sqrt{\left|\beta^{2}-\alpha \gamma\right|}} \cdot \frac{1}{2} \ln \left|\frac{\beta+\alpha \delta+\sqrt{\beta^{2}-\alpha \gamma}}{\beta+\alpha \delta-\sqrt{\beta^{2}-\alpha \gamma}}\right|, & \alpha \gamma<\beta^{2} \\ \frac{\operatorname{sign} \alpha}{\sqrt{\left|\beta^{2}-\alpha \gamma\right|}} \cdot \operatorname{arccot}\left(\frac{\beta \operatorname{sign}(\alpha)+\alpha \delta}{\sqrt{\alpha \gamma-\beta^{2}}}\right), & \alpha \gamma>\beta^{2}\end{cases}
$$

In our case, $\beta^{2}-\alpha \gamma=-\frac{3}{4}(w-a)\left(w^{3}+3 a w^{2}+4\right)$ and $\delta=\left(w x_{2}+x_{3}\right) /\left(x_{2}-x_{1}\right)$. If $x_{1} \neq x_{2}$, then Lebesgue's dominated convergence theorem can be applied in order to show that E_{a} is continuous in x. Since $(1,1,1) \notin W_{a}$, we conclude, by the symmetry of E_{a} with respect to the co-ordinates x_{1}, x_{2}, x_{3}. that E_{a} is continuous in $\mathbf{R}^{3} \backslash\{0\}$.

Let us note, by the way, that, for $a=-1, P_{a}$ decomposes:

$$
P_{-1}(\xi)=\left(\xi_{1}+\xi_{2}+\xi_{3}\right)\left(\xi_{1}^{2}+\xi_{2}^{2}+\xi_{3}^{2}-\xi_{1} \xi_{2}-\xi_{1} \xi_{3}-\xi_{2} \xi_{3}\right)
$$

From this factorization, one can see that $\lim _{\varepsilon \backslash 0} Y\left(\left|P_{-1}(\omega)\right|-\varepsilon\right) / P_{-1}(\omega)$ diverges in $\mathcal{D}^{\prime}\left(\mathbf{S}^{2}\right)$, and hence E_{-1} is not defined. But it is easy to check that

$$
\frac{\operatorname{sign}\left(x_{1}+x_{2}+x_{3}\right)}{12 \sqrt{3} \pi} \ln \left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-x_{1} x_{2}-x_{1} x_{3}-x_{2} x_{3}\right)
$$

is a fundamental solution of $P_{-1}(\partial)$.

3. Representation of E_{a} by elliptic integrals

3.1. Let us consider now formula (7) in the case of $P=P_{a}$ and $x \in K_{a} \backslash L_{a}$. Then P_{a} has two complex conjugate zeros in $\left\{[\zeta] \in \mathbf{P}\left(\mathbf{C}^{3}\right): \zeta \cdot x=0\right\}$, say p, \bar{p}. The residue theorem
implies

$$
\begin{aligned}
\partial_{j} E_{a}(x) & =-\frac{1}{16 \pi^{2}} \int_{c_{x}}\left[\psi_{x, j}\right] \\
& = \pm \frac{i}{4 \pi}\left(\operatorname{Res}_{p}\left[\psi_{x, j}\right]-\underset{\bar{p}}{\operatorname{Res}}\left[\psi_{x, j}\right]\right)= \pm \frac{1}{2 \pi} \operatorname{Im}\left(\operatorname{Res}_{p}\left[\psi_{x, j}\right]\right)
\end{aligned}
$$

where $\psi_{x, j}:=\zeta_{j} \eta_{x}(\zeta) / P_{a}(\zeta)$. Using ζ_{1} as variable on $\left\{\zeta \in \mathbf{C}^{3}: \zeta \cdot x=0, \zeta_{3}=1\right\}$ yields successively

$$
\begin{gathered}
\tilde{\eta}_{x}(\zeta)=\frac{1}{|x|^{2}} \operatorname{det}(\zeta, x, d \zeta) \\
\left.\eta_{x}(\zeta)\right|_{\zeta_{3}=1}=\frac{1}{|x|^{2}} \operatorname{det}\left(\zeta, x,\left(\begin{array}{c}
d \zeta_{1} \\
-x_{1} d \zeta_{1} / x_{2} \\
0
\end{array}\right)\right)=-\frac{d \zeta_{1}}{x_{2}}, \\
\operatorname{Res}_{p}\left[\psi_{x, 3}\right]=\operatorname{Res}_{y_{1}}\left(\left.\psi_{x, 3}\right|_{\zeta_{3}=1}\right)=-\frac{1}{x_{2} R^{\prime}\left(y_{1}\right)},
\end{gathered}
$$

where $R(u):=P_{a}\left(u,-\left(u x_{1}+\lambda\right) / x_{2}, 1\right)$ and $p=\left[y_{1}, y_{2}, \mathbf{1}\right]$. Next we substitute λ by y_{1} (cf. [20, p. 16]) in the integral $E_{a}(x)=\int^{x_{3}}\left(\partial_{3} E_{a}\right)\left(x_{1}, x_{2}, \lambda\right) d \lambda$. From

$$
\begin{aligned}
P_{a}\left(y_{1}, \frac{-\left(y_{1} x_{1}+\lambda\right)}{x_{2}}, 1\right)=0 & \Rightarrow\left(\partial_{1} P_{a}-\frac{x_{1}}{x_{2}} \partial_{2} P_{a}\right) d y_{1}=\frac{\partial_{2} P_{a}}{x_{2}} d \lambda \\
& \Rightarrow \frac{d \lambda}{R^{\prime}\left(y_{1}\right)}=\frac{x_{2} d y_{1}}{\left(\partial_{2} P_{a}\right)\left(y_{1}, y_{2}, 1\right)}=\frac{x_{2} d y_{1}}{3\left(y_{2}^{2}+a y_{1}\right)}
\end{aligned}
$$

we infer

$$
E_{a}(x)=\mathrm{constant} \pm \frac{1}{6 \pi} \operatorname{Im} \int_{\gamma(x)} \frac{d y_{1}}{y_{2}^{2}+a y_{1}}
$$

where $\gamma(x)$ is a path in the Riemannian surface $\left\{\left(y_{1}, y_{2}\right) \in \mathbf{C}^{2}: P_{a}\left(y_{1}, y_{2}, 1\right)=0\right\}$ ending at the point $\left(y_{1}(x), y_{2}(x)\right)$, which fulfills $y_{1}(x) x_{1}+y_{2}(x) x_{2}+x_{3}=0$, and $\operatorname{Im} y_{1}(x)>0$, say.

Let us observe that

$$
\Omega:=\frac{d y_{1}}{y_{2}^{2}+a y_{1}}=\frac{3 d y_{1}}{\partial P_{a}\left(y_{1}, y_{2}, 1\right) / \partial y_{2}}=-3 \text { P.R. }\left(\frac{d y_{1} \wedge d y_{2}}{P_{a}\left(y_{1}, y_{2}, 1\right)}\right)
$$

spans the space $\Omega^{1}\left(X_{a}^{c}\right)$ of holomorphic 1-forms on the elliptic curve $X_{a}^{c}:=\left\{[\zeta] \in \mathbf{P}\left(\mathbf{C}^{3}\right)\right.$: $\left.P_{a}(\zeta)=0\right\}$ (with the co-ordinates $y_{1}=\zeta_{1} / \zeta_{3}, y_{2}=\zeta_{2} / \zeta_{3}$), and that E_{a} can be expressed more symmetrically as $E_{a}(x)=$ constant $\pm(1 / 6 \pi) \int_{[\gamma(x)]} \Omega$. (Here P.R. denotes the Poincaré residue map as in [9, pp. 147, 221].)

The elliptic integral above is transformed into standard form with the help of the substitution $w=\left(1+y_{2}\right) / y_{1}$ (cf. [20, p. 60]). In fact,

$$
\begin{aligned}
y_{1}^{3}+y_{2}^{3}+1+3 a y_{1} y_{2}=0 \quad & \Rightarrow \quad\left(y_{1}^{2}+a y_{2}\right) d y_{1}+\left(y_{2}^{2}+a y_{1}\right) d y_{2}=0 \\
& \Rightarrow \quad d w=\frac{d y_{2}}{y_{1}}-\frac{\left(1+y_{2}\right) d y_{1}}{y_{1}^{2}} \\
& =-\frac{d y_{1}}{\left(y_{2}^{2}+a y_{1}\right) y_{1}^{2}}\left[y_{1}^{3}+y_{2}^{3}+2 a y_{1} y_{2}+y_{2}^{2}+a y_{1}\right] \\
& =\frac{\left(1+y_{2}-a y_{1}\right)\left(1-y_{2}\right)}{\left(y_{2}^{2}+a y_{1}\right) y_{1}^{2}} d y_{1} \\
& \Rightarrow \quad \frac{d y_{1}}{y_{2}^{2}+a y_{1}}=\frac{y_{1}^{2} d w}{\left(1+y_{2}-a y_{1}\right)\left(1-y_{2}\right)}
\end{aligned}
$$

and, on the other hand,

$$
\begin{aligned}
(w-a)\left(w^{3}+3 a w^{2}+4\right) & =\frac{1+y_{2}-a y_{1}}{y_{1}^{4}}\left[\left(1+y_{2}\right)^{3}+3 a y_{1}\left(1+y_{2}\right)^{2}+4 y_{1}^{3}\right] \\
& =\frac{1+y_{2}-a y_{1}}{y_{1}^{4}}\left[\left(1+y_{2}\right)^{3}+3 a y_{1}\left(1+y_{2}\right)^{2}-4\left(1+y_{2}^{3}\right)-12 a y_{1} y_{2}\right] \\
& =-3 \frac{\left(1+y_{2}-a y_{1}\right)^{2}\left(1-y_{2}\right)^{2}}{y_{1}^{4}} .
\end{aligned}
$$

Hence we obtain

$$
E_{a}(x)=\mathrm{constant} \pm \frac{1}{2 \sqrt{3} \pi} \operatorname{Re} \int_{\gamma(x)} \frac{d w}{\sqrt{(w-a)\left(w^{3}+3 a w^{2}+4\right)}}
$$

As in 2.4, we eventually transform this elliptic integral into Weierstrass' form by setting $u=1 /(w-a)$. This furnishes

$$
\begin{align*}
E_{a}(x) & =\text { constant } \pm \frac{1}{2 \sqrt{3} \pi} \operatorname{Re} \int_{u(x)}^{-1 /(a+1)} \frac{d u}{\sqrt{p_{a}(u)}} \tag{10}\\
& =\text { constant } \pm \frac{1}{2 \sqrt{3} \pi} \operatorname{Re} \int_{u(x)}^{\infty} \frac{d u}{\sqrt{p_{a}(u)}}
\end{align*}
$$

where p_{a} is as in (g) of the Theorem, and $u(x)$ is determined by the equations $u(x)=$ $1 /(w(x)-a), w(x)=\left(1+y_{2}(x)\right) / y_{1}(x), y_{1}(x) x_{1}+y_{2}(x) x_{2}+x_{3}=0, \quad P_{a}\left(y_{1}(x), y_{2}(x), 1\right)=0$, and by the condition $\operatorname{Im} y_{1}(x)>0$.
3.2. In order to obtain an integral representation of E_{a} over a path on the real axis, let us employ the addition theorem of Weierstrass' \wp-function, i.e.,

$$
\begin{equation*}
\wp(s+t)=-\wp(s)-\wp(t)+\frac{1}{4}\left(\frac{\wp^{\prime}(s)-\wp^{\prime}(t)}{\wp(s)-\wp(t)}\right)^{2}, \tag{11}
\end{equation*}
$$

cf. $[8,8.166 .2]$. Since $\wp^{\prime}(s)=\sqrt{4 \wp(s)^{3}-g_{2} \wp(s)-g_{3}}$, we have

$$
\begin{equation*}
\left[\int_{\sigma}^{\infty}+\int_{\tau}^{\infty}\right] \frac{d u}{\sqrt{4 u^{3}-g_{2} u-g_{3}}}=\int_{z}^{\infty} \frac{d u}{\sqrt{4 u^{3}-g_{2} u-g_{3}}} \tag{12}
\end{equation*}
$$

if $\wp(s)=\sigma, \wp(t)=\tau$ and $\wp(s+t)=z$, which, by (11), amounts to

$$
z=\frac{\left(4 \sigma \tau-g_{2}\right)(\sigma+\tau)-2 g_{3}-2 \sqrt{4 \sigma^{3}-g_{2} \sigma-g_{3}} \sqrt{4 \tau^{3}-g_{2} \tau-g_{3}}}{4(\sigma-\tau)^{2}} .
$$

Here we suppose that $\sigma \neq \tau$ are sufficiently large real numbers. By a shift of the integration variable, the following slightly more general addition theorem ensues from (12):

$$
\begin{equation*}
\left[\int_{\sigma}^{\infty}+\int_{\tau}^{\infty}\right] \frac{d u}{\sqrt{q(u)}}=\int_{z}^{\infty} \frac{d u}{\sqrt{q(u)}} \tag{13}
\end{equation*}
$$

where $q(u)=\alpha u^{3}+\beta u^{2}+\gamma u+\delta, \alpha>0, \beta, \gamma, \delta \in \mathbf{R}, \sigma, \tau \in \mathbf{C}, \operatorname{Re} \sigma, \operatorname{Re} \tau$ are sufficiently large, $\sigma \neq \tau$, and

$$
z=\frac{\alpha \sigma \tau(\sigma+\tau)+2 \beta \sigma \tau+\gamma(\sigma+\tau)+2 \delta-2 \sqrt{q(\sigma) q(\tau)}}{\alpha(\sigma-\tau)^{2}}
$$

We apply formula (13) to (10) with $q=p_{a}, \sigma=u(x)$ and $\tau=\overline{u(x)}$. This yields

$$
\begin{equation*}
E_{a}(x)=\mathrm{constant} \pm \frac{1}{4 \sqrt{3} \pi} \int_{z(x)}^{\infty} \frac{d u}{\sqrt{p_{a}(u)}} \tag{14}
\end{equation*}
$$

with

$$
\begin{align*}
z(x) & =\frac{4\left(a^{3}+1\right) u \bar{u}(u+\bar{u})+18 a^{2} u \bar{u}+6 a(u+\bar{u})+2-2 \sqrt{p_{a}(u) p_{a}(\bar{u})}}{4\left(a^{3}+1\right)(u-\bar{u})^{2}} \\
& =\frac{2\left(a^{3}+1\right)(w+\bar{w}-2 a)+(w-a)(\bar{w}-a)(w+2 a)(\bar{w}+2 a)-S}{2\left(a^{3}+1\right)(w-\bar{w})^{2}} \tag{15}
\end{align*}
$$

wherein $u=u(x)$ and $w=w(x)$ are specified at the end of 3.1 , and

$$
\begin{equation*}
S:=\sqrt{(w-a)\left(w^{3}+3 a w^{2}+4\right)(\bar{w}-a)\left(\bar{w}^{3}+3 a \bar{w}^{2}+4\right)} . \tag{16}
\end{equation*}
$$

3.3. Let us next derive the cubic equation (5) for $z(x)$. Since

$$
x_{1} y_{1}(x)+x_{2} y_{2}(x)+x_{3}=0 \quad \text { and } \quad P_{a}\left(y_{1}(x), y_{2}(x), 1\right)=0
$$

$y_{1}(x)$ is a root of the following cubic polynomial in u :

$$
x_{2}^{3} P_{a}\left(u,-\left(u x_{1}+x_{3}\right) / x_{2}, 1\right)=x_{2}^{3}\left(u^{3}+1\right)-\left(u x_{1}+x_{3}\right)^{3}-3 a x_{2}^{2} u\left(u x_{1}+x_{3}\right) .
$$

This implies that

$$
w(x)=\frac{1+y_{2}(x)}{y_{1}(x)}=-\frac{x_{1}}{x_{2}}+\frac{x_{2}-x_{3}}{x_{2} y_{1}(x)}
$$

is a solution of the cubic equation

$$
\begin{aligned}
B(w):=\left(x_{2}^{2}+x_{2} x_{3}+x_{3}^{2}\right) w^{3} & +3\left(x_{1} x_{2}+x_{1} x_{3}-a x_{2} x_{3}\right) w^{2} \\
& +3 x_{1}\left(x_{1}-a x_{2}-a x_{3}\right) w+\left(x_{2}-x_{3}\right)^{2}-3 a x_{1}^{2}=0
\end{aligned}
$$

Furthermore, $B(w)=0$ implies

$$
(w-a)\left(w^{3}+3 a w^{2}+4\right)=-\frac{3(w-a)^{2}\left(2 x_{1}+w x_{2}+w x_{3}\right)^{2}}{\left(x_{2}-x_{3}\right)^{2}}
$$

and thus, for $w=w(x)$, the square root S defined in (16) fulfills

$$
\begin{equation*}
S=3 \frac{(w-a)(\bar{w}-a)\left(2 x_{1}+w x_{2}+w x_{3}\right)\left(2 x_{1}+\bar{w} x_{2}+\bar{w} x_{3}\right)}{\left(x_{2}-x_{3}\right)^{2}} \tag{17}
\end{equation*}
$$

We now consider B as a polynomial over $K:=\mathbf{Q}\left(a, x_{1}, x_{2}, x_{3}\right)$, assuming a, x_{1}, x_{2}, x_{3} transcendental over \mathbf{Q}. If L is a splitting field of B over K, then B has three roots w_{1}, w_{2}, w_{3} in L, and $z(x)$ is, according to (15) and (17), a rational function of w_{1}, w_{2} say. Although the dimension of L over K is six, $z(x)$ satisfies a cubic equation over $\mathbf{Q}\left(a, x_{1}, x_{2}, x_{3}\right)$, since $z(x)$ is mapped to itself by that element of the Galois group of L over K which exchanges w_{1} and w_{2} (cf. [14]).

In order to determine the cubic equation for $z(x)$ over K, we first express $z(x)$ in (15) by w_{3}. Since w_{1}, w_{2}, w_{3} are the roots of B, we have

$$
w_{1}+w_{2}=-w_{3}-3 \frac{x_{1} x_{2}+x_{1} x_{3}-a x_{2} x_{3}}{x_{2}^{2}+x_{2} x_{3}+x_{3}^{2}}
$$

and

$$
w_{1} w_{2}=-w_{3}\left(w_{1}+w_{2}\right)+3 \frac{x_{1}\left(x_{1}-a x_{2}-a x_{3}\right)}{x_{2}^{2}+x_{2} x_{3}+x_{3}^{2}}
$$

Inserting these equations into (15) and (17), and making use of $B\left(w_{3}\right)=0$, a symbolic calculation program yields

$$
\begin{equation*}
z(x)=\frac{x_{2} x_{3}\left(x_{2}^{2}+x_{2} x_{3}+x_{3}^{2}\right) w_{3}-3 a x_{2}^{2} x_{3}^{2}-x_{1}\left(x_{2}+x_{3}\right)\left(x_{2}-x_{3}\right)^{2}}{4\left(x_{1} x_{2}+a x_{3}^{2}\right)\left(x_{1} x_{3}+a x_{2}^{2}\right)-\left[\left(x_{2}^{2}+x_{2} x_{3}+x_{3}^{2}\right) w_{3}+x_{1} x_{2}+x_{1} x_{3}-a x_{2} x_{3}\right]^{2}} \tag{18}
\end{equation*}
$$

If N and D denote the numerator and the denominator, respectively, of the quotient in (18), then $z(x)$ is a root of the resultant of $B\left(w_{3}\right)$ and $D z-N$ with respect to w_{3}, which resultant is $-\left(x_{2}^{3}-x_{3}^{3}\right)^{2}\left(x_{2}^{2}+x_{2} x_{3}+x_{3}^{2}\right)^{2} Q_{a}(x, z)$.
3.4. Let us finally verify the representation of E_{a} announced in (h) of the Theorem. Define

$$
U_{a}:= \begin{cases}\mathbf{R}^{3} \backslash\left(\bar{L}_{a} \cup-\bar{L}_{a}\right), & a>-1 \\ K_{a} \backslash\left(L_{a} \cup W_{a}\right), & a<-1\end{cases}
$$

and consider $x \in U_{a}$. The discriminant of $Q_{a}(x, z)$ with respect to z is

$$
27\left(x_{1}^{3}-x_{2}^{3}\right)^{2}\left(x_{1}^{3}-x_{3}^{3}\right)^{2}\left(x_{2}^{3}-x_{3}^{3}\right)^{2} A_{a}(x),
$$

and this is negative in U_{a} except for the planes $x_{1}=x_{2}, x_{1}=x_{3}$ and $x_{2}=x_{3}$. Hence $Q_{a}(x, z)$ has exactly one real root $z(x)$ if $x \in U_{a}$ and x does not belong to one of these planes. When $x_{2}=x_{3}$, say, then there is a double root $z=-x_{2} /\left(x_{1}+a x_{2}\right)$ (note that $A_{a}(-a, 1,1)=0$, so $\left.x_{1}+a x_{2} \neq 0\right)$, and since the discriminant of $\partial Q_{a}(x, z) / \partial z$ is

$$
36\left(x_{1}^{3}-x_{2}^{3}\right)^{2}\left(x_{1}+a x_{2}\right)^{4} x_{2}^{2}
$$

and $(1,1,1)$ belongs to L_{a}, we have precisely one simple zero except on the co-ordinate axes. This simple zero is real-analytic in the whole set U_{a}, for if say $x_{1}=1$ and $x_{2}=x_{3}$ is small, we have just given the double zero explicitly, and it follows that the simple zero is also analytic there. If ε and δ are small enough, it follows that the simple zero z can be continued uniquely analytically to $\left\{\left(x_{2}, x_{3}\right) \in \mathbf{C}^{2}: 0<\left|x_{3}\right|<\varepsilon,\left|x_{2}-x_{3}\right|<\delta\right\}$, and since it is bounded, it extends analytically also to $x_{3}=0$. Therefore, if $z(x)$ is defined as in the Theorem, then it is a real-analytic function of $x \in U_{a}$.

If ϱ denotes the smallest real root of p_{a} (cf. 2.4), then a calculation shows that

$$
Q_{a}(x, \varrho)=\frac{\widetilde{P}_{a}(x)^{2}}{4\left(a^{3}+1\right)}, \quad \widetilde{P}_{a}(x):=3\left[\left(a^{3}-2\right) \varrho+a^{2}\right] x_{1} x_{2} x_{3}-(3 a \varrho+1)\left(x_{1}^{3}+x_{2}^{3}+x_{3}^{3}\right)
$$

Hence $z(x)=\varrho$ if $\widetilde{P}_{a}(x)=0$. Let us investigate \widetilde{P}_{a}. From $(3 a \varrho+1)^{2}=-4\left(a^{3}+1\right) \varrho^{3}$, we conclude that $\operatorname{sign} \varrho=-\operatorname{sign}(a+1)$ and that $3 a \varrho+\mathbf{1} \neq 0$ for $a \in \mathbf{R} \backslash\{-\mathbf{1}\}$. Hence

$$
\widetilde{P}_{a}=-(3 a \varrho+1) P_{\tilde{a}}, \quad \tilde{a}:=-\frac{\left(a^{3}-2\right) \varrho+a^{2}}{3 a \varrho+1}
$$

and we have to decide on the sign of $\tilde{a}+1$. Using two values of a, say $a=0$ and $a \nearrow-1$, and the continuity of $\varrho(a)$, we obtain that $3 a \varrho+1$ is always positive. $b=\tilde{a}$ is a root of the resultant

$$
4\left(a^{3}+1\right)\left(b^{3}+3 a^{2} b^{2}-3 a b+a^{3}+2\right)
$$

of the two polynomials $p_{a}(u)$ and $(3 a u+1) b+\left(a^{3}-2\right) u+a^{2}$ with respect to u, and therefore $\tilde{a} \neq-1$ when $a \neq-1$. A test on two values of a as above reveals that $\tilde{a}+1$ is negative, and hence $X_{\tilde{a}}$ always consists of two components.

$$
a=-10
$$

Fig. 4. W_{a} (solid) and $X_{\tilde{a}}$ (dashed) on the plane $x_{1}+x_{2}+x_{3}=1$ for $a=-10$ and for $a=2$.
The curves $\left[W_{a} \backslash\{0\}\right]$ and X_{b} intersect on the lines $[t, t, 1], t \in \mathbf{R}$, if and only if the resultant of $A_{a}(t, t, 1)$ and $P_{b}(t, t, 1)$ vanishes. This resultant is given by

$$
108\left(b^{3}+3 a^{2} b^{2}-3 a b+a^{3}+2\right)\left(a^{3}+3 a b-2\right)^{3}
$$

and thus $\left[W_{a} \backslash\{0\}\right]$ and $X_{\tilde{a}}$ touch at points on the three projective lines $x_{1}=x_{2}, x_{1}=x_{3}$ and $x_{2}=x_{3}$. Using two values of a as above then shows: If $a>-1$, then the convex component of $X_{\tilde{a}}$ lies inside $\left[L_{a} \backslash\{0\}\right]$, and the non-convex component belongs to $\left[U_{a}\right]$; if $a<-1$, then the convex component of $X_{\tilde{a}}$ belongs to $\left[U_{a}\right]$, and the non-convex component lies in $\mathbf{P}\left(\mathbf{C}^{3}\right) \backslash\left[K_{a}\right]$ (cf. Figure 4).

Next let us discuss the behaviour of $z(x)$ for x tending to ∂U_{a} from inside U_{a}. Evidently, $z(x) \rightarrow \pm \infty$, and we can decide on the sign of the limit by noticing that it coincides with the sign of $Q_{a}(x, 0)$ since $A_{a}(x)<0$ in U_{a}. For $x=(-a, 1,1) \in \partial L_{a}, Q_{a}(x, 0)=a^{3}+1$, and hence

$$
z(x) \rightarrow \begin{cases}\infty, & a>-1 \\ -\infty, & a<-1\end{cases}
$$

if $x \rightarrow \partial L_{a}$ from inside U_{a}. On the other hand, if $a<-1$ and $x=(0,0,1)$, then $z(x)=0<\varrho$ and $\widetilde{P}_{a}(x)=-(3 a \varrho+1)<0$ (whereas $\widetilde{P}_{a}(-a, 1,1)>0$), and this implies that $z(x) \rightarrow-\infty$ if $x \rightarrow \partial K_{a}$ from inside $U_{a}, a<-1$. Hence, for all $x \in U_{a}, z(x) \geqslant \varrho$ if $a>-1$, and $z(x) \leqslant \varrho$ if $a<-1$. From this we conclude that $\int_{\varrho}^{z(x)} d u / \sqrt{p_{a}(u)}$ is real-analytic in [U_{a}] except possibly on $X_{\hat{a}} \cap\left[U_{a}\right]$. A Taylor series argument as in [19, Remark] shows that

$$
\operatorname{sign}\left(\widetilde{P}_{a}(x)\right) \int_{e}^{z(x)} \frac{d u}{\sqrt{p_{a}(u)}}
$$

is real-analytic on $X_{\tilde{a}} \cap\left[U_{a}\right]$ also.
Combining now the continuity of E_{a} in $\mathbf{R}^{3} \backslash\{0\}$, the values of $\left.E_{a}\right|_{L_{a}}$ calculated in 2.4, the limit behaviour of $z(x)$ on the border of U_{a} analyzed above, $\lim _{x \rightarrow \partial K_{a}} E_{a}(x)=0$ for $a<-1$, and the representation of E_{a} in (14) with the principle of analytic continuation, furnishes a proof of the assertion (h) of the Theorem.

Acknowledgements. I would like to express my gratitude to Norbert Ortner for many fruitful discussions. I am also indebted to Reinhold Meise for the invitation to an Oberwolfach conference, which invitation was the starting point for my dealing with the problem analyzed in this paper. I am especially grateful to Lars Hörmander for many suggestions and, in particular, for the remark following the Theorem in 1.3.

References

[1] Atiyah, M. F., Bott, R. \& GÅrding, L., Lacunas for hyperbolic differential operators with constant coefficients, I. Acta Math., 124 (1970), 109-189.
[2] Borovikov, V. A., Fundamental solutions of linear partial differential equations with constant coefficients. Trudy Moskov. Mat. Obshch., 8 (1959), 199-257 (Russian); English translation in Amer. Math. Soc. Transl. Ser. 2, 25 (1963), 11-66.
[3] Brieskorn, E. \& Knörrer, H., Ebene algebraische Kurven. Birkhäuser, Basel, 1981; English translation: Plane Algebraic Curves. Birkhäuser, Basel, 1986.
[4] Burau, W., Algebraische Kurven und Flächen, Vol. I. de Gruyter, Berlin, 1962.
[5] Fredholm, I., Sur les équations de l'équilibre d'un corps solide élastique. Acta Math., 23 (1900), 1-42.
[6] Gårding, L., Mathematics and Mathematicians: Mathematics in Sweden before 1950. Amer. Math. Soc., Providence, RI, 1998.
[7] Gel'fand, I. M. \& Shilov, G. E., Generalized Functions, I: Properties and Operations. Academic Press, New York, 1964.
[8] Gradshteyn, I. S. \& Ryzhik, I. M., Tables of Integrals, Series, and Products. Academic Press, New York-London-Toronto, 1980.
[9] Griffiths, P. \& Harris, J., Principles of Algebraic Geometry. Wiley, New York, 1978.
[10] Gröbner, W. \& Hofreiter, N., Integraltafel, Teil 2: Bestimmte Integrale, 5th edition. Springer-Verlag, Vienna, 1973.
[11] Hörmander, L., The Analysis of Linear Partial Differential Operators, Vol. I. Grundlehren Math. Wiss., 256. Springer-Verlag, Berlin, 1983.
[12] Hörmander, L., The Analysis of Linear Partial Differential Operators, Vol. II. Grundlehren Math. Wiss., 257. Springer-Verlag, Berlin, 1983.
[13] Horváth, J., Topological Vector Spaces and Distributions, Vol. I. Addison-Wesley, Reading, MA, 1966.
[14] Kaplansky, I., Fields and Rings, 2nd edition. Univ. Chicago Press, Chicago, 1972.
[15] Meise, R., Taylor, B. A. \& Vogt, D., Continuous linear right inverses for partial differential operators of order 2 and fundamental solutions in half spaces. Manuscripta Math., 90 (1996), 449-464.
[16] Ortner, N. \& Wagner, P., On the fundamental solution of the operator of dynamic linear thermoelasticity. J. Math. Anal. Appl., 170 (1992), 524-550.
[17] Prasolov, V. \& Solovyev, Y., Elliptic Functions and Elliptic Integrals. Amer. Math. Soc., Providence, RI, 1997.
[18] Schwartz, L., Théorie des distributions, nouvelle édition. Hermann, Paris, 1966.
[19] Wagner, P., A fundamental solution of N. Zeilon's operator. To appear in Math. Scand.
[20] Zeilon, N., Sur les intégrales fondamentales des équations à charactéristique réelle de la Physique Mathématique. Ark. Mat. Astr. Fys., 9:18 (1913-14), 1-70.

Peter Wagner

Institut für Mathematik und Geometrie
Universität Innsbruck
Technikerstrasse 13
AT-6020 Innsbruck
Austria
wagner@mat0.uibk.ac.at
Received August 10, 1998

