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1. I n t r o d u c t i o n  

Throughout this paper M denotes a three-dimensional boundaryless compact manifold 

and Diff(M) the space of gl-diffeomorphisms defined on M endowed with the usual 

Cl-topology. A ~-invariant set A is transitive if A=w(x) for some xEA. Here w(x) is the 

forward limit set of x (the accumulation points of the positive orbit of x). The maximal 

invariant set of ~ in an open set U, denoted by A~(U), is the set of points whose whole 

orbit is contained in U, i.e. A ~ ( U ) = ~ i e z  ~i(U). The set A~(U) is robustly transitive if 

Ar is transitive for every diffeomorphism r CLclose to ~. 

A diffeomorphism ~EDiff(M) is transitive if M=w(x) for some xEM, i.e. if 

A ~ ( M ) = M  is transitive. Analogously, ~ is robustly transitive if every r gLclose to 

also is transitive, i.e. if A ~ ( M ) = M  is robustly transitive. 

In this paper we focus our attention on forms of hyperbolicity (uniform, partial and 

strong partial) of a maximal invariant set A~(U) derived from its robust transitivity. 

Observe that  U can be equal to M, and then ~ is robustly transitive. 

On one hand, in dimension one there do not exist robustly transitive diffeomor- 

phisms: the diffeomorphisms with finitely many hyperbolic periodic points (Morse~ 

Smale) are open and dense in Diff(S1). On the other hand, for two-dimensional diffeo- 

morphisms, every robustly transitive set A~(U) is a basic set (i.e. A~(U) is hyperbolic, 

transitive, and the periodic points of ~ are dense in A~(U)). In particular, every robustly 

transitive surface diffeomorphism is Anosov and the unique surface which supports such 

diffeomorphisms is the torus T 2. These assertions follow from [M3] and [M4]. 

In dimension bigger than or equal to three, besides Anosov (hyperbolic) diffeomor- 

phisms there are robustly transitive diffeomorphisms of nonhyperbolic type. As far as 

we know, three types of such diffeomorphisms have been constructed: skew products, 
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Derived from Anosov, and deformations of the time-T map X~ of the flow of a transitive 

Anosov vector field X. 

Before describing these examples let us recall that  the standard Derived from Anosov 

(DA) diffeomorphisms, defined on the two-torus T 2, are obtained via saddle-node bifur- 

cations of Anosov systems: the unfolding of the bifurcation leads to structurally stable 

maps (the DA-diffeomorphisms) whose nonwandering set is a source and a nontrivial hy- 

perbolic attractor,  see [Sm] and [W]. This two-dimensional construction can be carried 

to higher dimensions to get DA-diffeomorphisms which are robustly nonhyperbolic and 

transitive, see [M1] and [C]. 

Chronologically, the first examples of nonhyperbolic robustly transitive diffeomor- 

phisms were skew products. Such diffeomorphisms were constructed in the four-dimen- 

sional torus T 4 = T  2•  2 by perturbing the product of a DA-diffeomorphism and an 

Anosov one, see [Sh]. Nowadays we also know that  one can perturb the product of any 

diffeomorphism O having a hyperbolic transitive at tractor  Ar and the identity Id on any 

compact manifold to get G Cl-close to �9 x Id with a robustly nonhyperbolic transitive 

at tractor  Ac. Moreover, A t = A t ( U )  for some neighbourhood U, and At (U)  is robustly 

transitive. In particular, if �9 is Anosov (i.e. A r  then the perturbation G is robustly 

transitive, see [BD1]. 

All robustly transitive diffeomorphisms mentioned above (skew products and DA- 

maps) are nonisotopic to the identity, but there also are robustly nonhyperbolic transitive 

diffeomorphisms isotopic to the identity: Given any transitive Anosov vector field X let 

X~ be the flow of X at time T. Then one can perturb X~ to obtain a robustly transitive 

diffeomorphism, see [BD1]. 

In dimension bigger than or equal to three, besides the constructions above, one can 

also obtain robustly nonhyperbolic transitive sets (of semilocal nature) via cycles con- 

taining periodic points of different indices (dimension of the stable manifold), see [Dill, 

[Di2] and [DR]. 

The nonhyperbolic transitive sets A~ (U) quoted above always contain periodic points 

with different indices and coincide with the closure of their transverse homoclinic points 

(i.e. the transverse intersections between the invariant manifolds of a periodic point). 

The previous examples fit into the category which we call strong partially hyperbolic (see 

the definition below): there is a D~-invariant partially hyperbolic splitting of Th~,(u)M= 

E 8 | ~ with three nontrivial bundles, where E 8 and E ~ are hyperbolic directions 

(contracting and expanding, respectively) and E c is a nonhyperbolic central direction. 

On the other hand, recently, see [B] and [BV], there have been constructed examples of 

robustly transitive diffeomorphisms which do not admit three nontrivial invariant bundles 

(i.e. either E s or E ~ above is trivial). 
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It  is important  to mention tha t  in this paper  we are only concerned with transitive 

sets which are locally maximal. Notice tha t  one can also define transitive sets (in a robust 

way) as follows: given a hyperbolic saddle P of ~, for every r close to ~ define Er as 

the closure of the transverse homoclinic points of PC (Pc is the continuation of P) .  Such 

sets are transitive, but in general they fail to be locally maximal: in some cases sinks 

or sources accumulate to EC, see [BD2]. Even more, they do not admit  any nontrivial 

Dr splitting, see [BD2] and the constructions in [DU]. 

Our goal here is to characterize the forms of possible hyperbolicity for a maxi- 

mal invariant set A~(U) which is robustly transitive. We prove that ,  in the case of 

three-dimensional compact  manifolds, the robustly transitive sets A~(U) are generically 

partially hyperbolic. 

Now let us state precisely our results. We begin by giving some basic definitions. Let 

be a diffeomorphism and A a ~-invariant set. A splitting T A M = E |  is dominated if 

E and F are D~-invariant  and there are constants m > 0  and K <  1 such that  

D m - 1  II(D~m)lE~ll.ll((x~ ) )IF~(~>II<K f o r a l l x e A .  

A D~-invariant  bundle E defined on A is uniformly contracting (resp. expanding) if 

there are C > 0  and 0 < A < I  such that  for every n > 0  one has 

IlDx~n(v)[[ ~C~llvll (resp. IID~-~(v)ll <c),~llvll) for all xeA and veE.  

The set A is uniformly hyperbolic, or shortly hyperbolic, if there is a D~-invariant  splitting 

T A M = E |  such tha t  E is uniformly contracting and F is uniformly expanding. The 

splitting E |  is called (uniformly) hyperbolic. 

The set A is partially hyperbolic if there is a dominated splitting E @ F  of TAM 

such that  either E is uniformly contracting or F is uniformly expanding. In the first 

case we write T A M = E S |  c~, otherwise we write E~@E cs. Notice that  we can have 

simultaneously both types of splittings, Th M = E ~' @ E ~ = E ~ | E ~ .  Then, taking E r 

E ~ E  cs, one has a DT-invariant  splitting TAM=E~@E~@E ~, with three nontrivial 

directions, where E ~ and E ~ are uniformly hyperbolic, and we speak of strong partial 

hyperbolicity, see the precise definition below. 

Given an open subset U of M let 

T(U) = {~ e Diff(M) : h~ (U) is robustly transitive}. 

By definition T(U)  is open. In the case of transitive diffeomorphisms we let : r = q - ( M )  

(i.e. 7" denotes the set of robustly transitive diffeomorphisms). Our main result is 
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THEOREM A. Let U be an open subset of a compact boundaryless three-dimensional 

manifold M. There is an open and dense subset .4(U) of T(U) such that A~(U) is 

partially hyperbolic for all ~E.A(U). 

Observe that  this statement is trivial when A~(U) is finite (actually, in this case 

A~(U) is hyperbolic). Hence, from now on we assume that  Av(U) is infinite. 

Theorem A admits a stronger version in the case of transitive diffeomorphisms. 

We say that  a transitive diffeomorphism is partially hyperbolic if the whole manifold is 

partially hyperbolic. We prove the following 

THEOREM B. Every ~ E T  is partially hyperbolic. 

At least in their full scope, these results do not extend directly to higher dimensions. 

For dimension strictly bigger than three, there are se t s /4  of robustly transitive diffeo- 

morphisms such that  every diffeomorphism ~ in/4 does not admit a partially hyperbolic 

splitting, see [BV]. Actually, for such ~ one cannot identify any hyperbolic direction. 

However, we expect that  an appropriate reformulation of Theorems A and B holds in 

any dimension: we conjecture that  the robustly transitive sets A~(U) generically admit 

a dominated splitting. 

Next we state stronger versions of Theorems A and B which relate the types of hyper- 

bolicity of Av(U ) (uniform, partial and strong partial) to the indices and the eigenvalues 

of the periodic points of A~(U). We also state the connection between approximation by 

homoclinic tangencies (associated to points in A~(U)) and the lack of uniform or strong 

partial hyperbolicity. 

For ergodic properties of partially hyperbolic systems we refer the reader to [BV]. 

See [GPS] for results in the conservative case. 

Finally, in the context of vector fields defined on three-manifolds, we first observe 

that  every Cl-robustly transitive flow is Anosov, see [Do]. On the other hand, every 

robustly transitive set (a priori different from the ambient manifold and containing sin- 

gularities) is partially hyperbolic, see [MPP]. 

Before stating new results let us recall a result due to R. Mafi~ that  holds in any 

dimension. By a robust property of ~ we understand a property of ~ that  holds for every 

r in a Cl-neighbourhood ])~ of ~. 

THEOREM ([M3]). Let A~(U) be a robustly transitive set. Then the following three 

conditions are equivalent: 

(1) all the hyperbolic periodic points of A~(U) are robustly hyperbolic, 

(2) the set A~(U) is robustly uniformly hyperbolic, 

(3) all hyperbolic points of A~ (U) have robustly the same index. 
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This theorem means that  in our context the relevant case for proving Theorems A 

and B is exactly the nonhyperbolic one, that  is, when A~(U) contains robustly hyperbolic 

points with different indices. So, in the remainder of this section we will assume that  

A~(U) is robustly nonhyperbolic. 

In this paper we consider two special types of partially hyperbolic sets: strong 

partially hyperbolic and volume-expanding/contracting in the central bundle. Let us 

state these definitions precisely. 

Let ~CDiff(M).  A ~-invariant set A~, is strong partially hyperbolic if there are a D~o- 

invariant splitting of TAM=ES| where the bundles E ~ and E ~' are nontrivial 

and hyperbolic (uniformly contracting and expanding, respectively), and constants C >  0 

and 0 < A < 1, such that  

< CAnllv*]] .llvcl], 

IIO o ( >  -n(vD II �9 IIO   n(v )ll C nllvUll. IIv ll, 

for all n>0 ,  viEEix, i=s,c,u. 

A partially hyperbolic set A~ expands (resp. contracts) volume in the central bundle 
if E c is volume-expanding (resp. -contracting). By a volume-expanding bundle F of A~, 

we mean a Dqo-invariant bundle F such that  there are constants C > 0  and a > l  such 

that  

IJaCF(x)(~k)l >Ca k for all x c A ~ ,  k~> 1, 

where JaCF(x) ~ denotes the Jacobian of ~ in the bundle F at x. We say that  a Dqo- 

invariant bundle F is volume-contracting if it is volume-expanding for ~-1.  

As we have mentioned, a partially hyperbolic set can also be hyperbolic. Here, to 

avoid misunderstandings, we adopt the following convention: the partially hyperbolic 

sets we consider are genuinely partially hyperbolic, meaning that  their central directions 

are nontrivial and nonhyperbolic. 

Given y)ET(U) the set A~,(U) has robustly real eigenvalues if there is a gl-neigh - 

bourhood b/~, of ~ such that  for every r and every periodic point PEAr all the 

eigenvalues of D p r  n a r e  real (n is the period of P).  Consider the subset P(U) of T(U) of 

diffeomorphisms ~ such that  A~, (U) has robustly real eigenvalues and hyperbolic points of 

different indices (i.e. A~,(U) is not uniformly hyperbolic). When U=M we let 7)='P(M). 

THEOREM C. The set A~(U) is strong partially hyperbolic for all qocP(U)Ncl(U). 

In the case of transitive diffeomorphisms we have a stronger version of the previous 

result: 
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COROLLARY D. Let ~E7 ).  Then ~ is strong partially hyperbolic. 

The existence of periodic points with complex (nonreal) eigenvalues prevents the 

existence of a splitting having three nontrivial directions (recall that  we are considering 

three-manifolds). Theorem C means that  the existence of such points with complex 

eigenvalues is the unique obstruction for the strong partial hyperbolicity. The next 

theorem says that  if the nonhyperbolic set A~(U) has complex eigenvalues then it satisfies 

a stronger form of partial hyperbolicity: the central bundle is either volume-expanding 

or -contracting. 

Let ~ c T ( U ) .  The set A~(U) has complex eigenvalues if there is some periodic point 

PEA~(U)  such that  Dpy~ n has two eigenvalues with the same modulus (n is the period 

of P).  We denote by ];(U) (resp.)2) the subset of T(U) (resp. 7-) of diffeomorphisms 

such that  A~(U) (resp. ~) is not uniformly hyperbolic and has complex eigenvalues. 

THEOREM E. Let ~ be a diffeomorphism in A(U) that can be approximated by 

diffeomorphisms in ~)(U). Then the central bundle of TA~(u)M is two-dimensional and 

volume-expanding/contracting: if TA~(u)M=ES@E cu then E cu is volume-expanding, 

and if TA~(u)M=E~@E ~ then. E c~ is volume-contracting. 

In the case of a transitive diffeomorphism Theorem E can be read as 

COROLLARY F. Let ~ET- be a diffeomorphism which can be approximated by diffeo- 

morphisms in ~;. Then ~ is partially hyperbolic and volume-expanding/contracting in 

the central bundle. 

Note that  since Av(U) is not uniformly hyperbolic it contains points of indices one 

and two. Our proof shows that  all periodic points with complex eigenvalues have the 

same index. 

Finally, the following corollary gives the connection between the absence of strong 

partial and uniform hyperbolicity and the approximation by homoclinic tangencies. Re- 

call that  a hyperbolic periodic point P has a homoclinic tangency at x if the invariant 

manifolds of P have a nontransverse intersection at x. 

COROLLARY G. Let ~C~4(U) be such that A~(U) is neither strong partially hyper- 

bolic nor uniformly hyperbolic. Then ~ can be approximated by some r with a homoclinic 

tangency associated to some hyperbolic periodic point in Ar 

Let us observe that  in dimension bigger than two the existence of homoclinic tan- 

gencies does not lead to creation of sinks or sources, and thus homoclinic tangencies are 

not an obstruction for transitivity. We remark that  Corollary G can be formulated in 

the case of transitive diffeomorphisms. 
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In view of the results above, let us summarize the different types of robustly transitive 

sets A~(U) in three-manifolds. For that  let P(Q) denote the set of periodic points of Q 

in A~(U). We also consider the subsets PR(Q) (resp. Pc(Q)) of P(Q) of points having only 

real eigenvalues of different moduli (resp. having two eigenvalues of the same modulus, 

this case including periodic points with eigenvalues of multiplicity bigger than one and, 

obviously, periodic points with complex (nonreal) eigenvalues). 

(1) Suppose that  A~(U) is hyperbolic. Then Pc(Q) is robustly empty if and only if 

for every r Cl-close to Q the set Ar has a hyperbolic splitting with three nontrivial 

directions. 

(2) Suppose that  A~(U) is robustly nonhyperbolic. Then 

�9 A~(U) contains (robustly) points of indices one and two, 

�9 A~(U) is (robustly) nonstrong partially hyperbolic if and only if Q can be approx- 

imated by diffeomorphisms r with P c ( r 1 6 2  

�9 A~(U) is robustly nonstrong partially hyperbolic if and only if Q can be approx- 

imated by a diffeomorphism r with a homoclinic tangency (associated to some point 

of P(r 

As we have mentioned, the unique surface which supports robustly transitive diffeo- 

morphisms is the two-torus. This means that  Cat least for surfaces) the existence of 

such transitive diffeomorphisms gives some topological information about the surface. 

For higher dimensions we would like to know if it is possible to deduce some topological 

information about the ambient manifold M from the existence of robustly transitive 

diffeomorphisms. In the case of three-manifolds, we study the connection between the 

existence of transitive diffeomorphisms in M and the growth of the fundamental group 

of M. As an application of Theorem B, we obtain an obstruction for the existence of 

robustly transitive diffeomorphisms on manifolds with finite fundamental group. The 

formulation of this obstruction depends on the integrability of the central bundle: note 

that,  to the best of our knowledge, it is an open question whether the central bundle is 

necessarily integrable, even in the simplest case of three-manifolds. 

Let E~(Q)| i=s or u, be a partially hyperbolic splitting of M for QcDiff(M), 

where Ec(Q) has dimension two. The splitting is dynamically coherent if there exists a 

foliation 9re(Q) tangent to E~(Q). Notice that,  by the hyperbolicity, Es(Q) or E"(Q) 

(according to the case) is integrable, and then one can define the stable/unstable folia- 

tion ~i(Q), tangent to Ei(Q), i=s, u. 

THEOREM H. Let M be a three-dimensional boundaryless compact manifold. Sup- 

pose that M supports a robustly transitive diffeomorphism having a dynamically coherent 

splitting. Then the fundamental group ~h(M) is infinite. 
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Let us say a few words about the organization of this paper. The main step of our 

constructions is the following preliminary result: 

THEOREM 1.1. There is a residual subset T~(U) of T(U) such that for every 

~ET~(U) the set A~(U) has a partially hyperbolic splitting TA~(u)M=Ei(~)| 

i=s or u, where Ei(~) is one-dimensional and uniformly hyperbolic. 

We give an outline of the proof of this theorem in w In w we introduce the 

different types of perturbations that  we use in this paper (perturbation of the derivative 

and creation of cycles). Theorem 1.1 is proved in w which is the main and the longest 

section of this paper. This section is divided in three parts: estimates on the eigenvalues 

(w angular estimates of the bundles (w and construction of uniformly dominated 

splittings (w Finally, in w we prove the theorems in this introduction by using 

Theorem 1.1. 

Acknowledgments. The authors are grateful to Ch. Bonatti, J. Palis, M. Sambarino, 

M. Shub, and M. Viana for many useful and encouraging conversations. The authors 

acknowledge the warm hospitality of IMPA (Rio de Janeiro, Brazil), Departamento de 

Matem~tica of PUC-Rio (Rio de Janeiro, Brazil) and IMERL (Montevideo, Uruguay) 

while preparing this paper. Finally, we also thank the referee's suggestions for improving 

the presentation of this paper. 

2. Out l ine  of  th e  proof  of  T h e o r e m  1.1 

To explain the main ideas and difficulties of the proof of Theorem 1.1 (actually, the key 

result in this paper) let us begin by saying a few words about a stronger two-dimensional 

version of our result. From now on fix the open set U and denote by P(~)  the set of 

periodic points of ~ in U, and by PR(~) the subset of P(~)  of periodic points having all 

eigenvalues real and different in modulus. 

THEOREM ([M3]). Every Cl-robustly transitive set A~(U) of a surface diffeomor- 

phism ~ is a basic set (hyperbolic, locally maximal, and with dense periodic points). 

Let us assume that  A~(U) is infinite, otherwise, as we have mentioned in the intro- 

duction, the result is immediate. To prove the result it is enough to see that  P (~ )  is 

robustly hyperbolic, or equivalently (due to the fact that  we are in dimension two) that  

the number of sinks and sources is finite and constant in a neighbourhood of ~. From 

the transitivity and since we are assuming that  A~(U) is infinite, in our case this number 

is zero. Arguing by contradiction, if P (~ )  is not hyperbolic then one gets an elementary 
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bifurcation of some periodic point (saddle-node, flip or Hopf). In dimension two, such 

bifurcations lead to the creation of new sinks or sources, contradicting the fact that  the 

number of sinks and sources is locally constant. We also observe that  in dimension two 

homoclinic tangencies generically lead to the creation of sinks or sources, see [PV]. Thus, 

in the case of surface diffeomorphisms, such bifurcations are also forbidden. 

In higher dimensions the examples quoted in the introduction show that  a robustly 

transitive set A~(U) can be nonhyperbolic and its periodic points can bifurcate. More- 

over, one can also have homoclinic tangencies. Actually, the main difficulty in the proof 

of Theorem 1.1 arises from the fact that  in dimension three the list of forbidden bifur- 

cations of points in A~(U) is rather limited: Hopf bifurcations and sectionally expan- 
sive/dissipative homoclinic tangencies (i.e. homoclinic tangencies associated to periodic 

points such that  the modulus of the product of any pair of eigenvalues is bigger/less than 

one). Let us observe that,  for example, sectionally dissipative homoclinic tangencies 

imply the creation of sinks, see [PV], and thus they are forbidden in our context. 

The proof of Theorem 1.1 is by contradiction: assuming that  A~(U) is not partially 

hyperbolic we create either a sink or a source in U. Since A~(U) is infinite this contradicts 

its robust transitivity. Let us now be much more precise and sketch some key ideas and 

ingredients of our proofl 

An important difficulty in the proof is to find a suitable candidate for the role 

of D~-invariant splitting over A§ For that  we first restrict our attention to the 

diffeomorphisms ~) such that  PR(~) is dense in A~(U), and prove that  such diffeomor- 

phisms are generic in T(U) (see Lemma 4.2). For points PcPR(~) there is a splitting 

TpM=E~,OE~,OE~ with three nontrivial directions (E~ is the eigenspace associated 

to the eigenvalue Ai(P), where ]As(P)[<[Ac(P)[<IA~,(P)I). The problem now is to ex- 

tend this splitting to the closure of PR(~).  Unfortunately, in general, such an exten- 

sion does not exist, for instance, if P ( p )  contains a point with some complex (nonreal) 

eigenvalue. Using E~,, E~ and E~, we define two new splittings, TpM=E~,@E~, '~ and 
147ij--147i r~ ~UJ TpM=E~GE~, ~, where ~p-~p~.~,~p. We show that  at least one of these two splittings 

is uniformly dominated. Then, by [M2], one can extend such a splitting to the closure 

A~(U) of PR(~) (again, if there are periodic points with complex eigenvalues it is not 

possible to extend simultaneously both splittings). 

The key for obtaining the uniform dominance is to have an appropriate control 

of the angles between these bundles. More precisely, we prove that  if both families of 

angles {a(E~,, E~U)}p,~(~) and {a(E~, E~S)}p~(~), a(E, F) denoting the angle between E 

and F ,  are not uniformly bounded away from zero, then after a perturbation of ~ we get 

r and points P and QEPR(r  (with the same index, say 2), homoclinically related and 

such that  (~(E~(r E ~ ( r  and a (E~( r  E ~ ( r  are both small. These features lead 
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to the creation of sinks (if I)~s(P)ikc(P))~,(P)l<l) or sources (if 1A8(P)Ac(P)A,(P)]>I) 
in U, see Proposition 4.8. In a few words, to obtain the sinks/sources, we first use 

the angular estimates to get a heteroclinic tangency. Associated to such a tangency we 

get a saddle-node R (i.e. a periodic point having a unique eigenvalue in the unit circle, 

moreover such an eigenvalue is 1) such that  1~8 (R) I< 1=~r < I)~,,(R)I and a(E~, E~) 
is arbitrarily small. After a new perturbation, we create either a sink or a source. We 

point out that  such sinks/sources are not explicitly associated to a tangency. 

In this paper we explore the correlation between the dominance (also expansion/con- 

traction of the derivative) of a splitting and the estimates on the angles between the 

bundles of the splitting. We show that  at least one of the splittings we are considering 

(either E s |  r or E ~ |  c~) is uniformly dominated, see Proposition 4.23. For example, 

if E~@E ~ is not uniformly dominated then, after perturbation, one obtains a splitting 

such that  the angle between the E ~ and E c" is arbitrarily small. 

Suppose now that ,  for instance, {E~@E~=}pR(~) is uniformly dominated. Then one 

can extend such a splitting to a uniformly dominated one defined on the whole A~(U). In 

w we see that  the ergodic closing lemma, see [M3], and the uniform dominance of the 

splitting imply the uniform hyperbolicity of E ~. This means that  E~| ~ is partially 

hyperbolic. 

In our proof we use some ideas introduced by Marl6 in [M3] considering families 
of periodic linear maps, see w Given ~ such that  Prt(~) is dense in A~(U) we take 

the family of periodic linear maps D(~)={Dp~v}pepR(~). The robust transitivity of 

A~(U) allows us to deduce some properties for families of linear maps B={Bp}pep~(~) 
close to :D(~). Given BpEB, write Bp=B~.-,(p) ... Bp (n is the ~-period of P)  and let 

)%(Bp), )~c(Bp) and )%(Bp) be the eigenvalues of Bp,  I:~(BP)I<~I:~=(BP)I<~IA=(BP)I 
(two of them may be nonreal). If )~i(Bp) is real, Ei(Bp) denotes its eigenspace. In 

this case, let EkJ(Bp), k, j#i ,  be the Bp-invaxiant space that  does not contain Ei(Bp). 
Notice that  if )~k(Bp) and Xj(Bp) are both real then EkJ(Bp)=Ek(Bp)@EJ(Bp). 

We prove that  families B close to :D(~) satisfy the following conditions (see Propo- 

sition 4.7 and its proof): 

(1) Either E~(B)@E~'~(I3) is defined for all/~ close to :D(~v) (i.e. E~(Bp)@E~(Bp) 
is defined for all BpEB), or E"(B)@EC~(B) is defined for all B close to :D(~o). 

(2) Assume that  the splitting E~(I3)OE~'(I3) is defined for all B close to 7?(qo). 

Then the angle o~(ES(Bp), ECU(Bp)) is uniformly bounded away from zero (BpCI3 and 

B close to Z)(~)). 

Finally, we see that  these properties (definition of the splitting and angular esti- 

mates), which hold for families of periodic linear maps B close to D(~o) (thus indexed by 

PR(qv)), are passed on from B to diffeomorphisms r close to ~. Observe that  since the 
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periodic points of Q bifurcate, a priori Pr t ( r  has nothing to do with Prt(Q). Hence, the 

previous assertion is not at all trivial. 

3. P e r t u r b a t i o n s  o f  dif feomorphisms 

The existence of a partially hyperbolic splitting for a robustly transitive set A~(U) arises 

from the fact that  it is not possible to perturb the diffeomorphism Q to create sinks or 

sources in U. In this section we introduce the two types of Cl-perturbations that  we use: 

perturbation of the derivative and creation of cycles. 

3.1. P e r t u r b a t i o n  o f  derivatives: linear maps  and di f feomorphisms 

We begin by recalling a result due to Franks (see Lemma 3.1 below) which will enable us 

to perturb the derivative of a diffeomorphism qa at any xEA~(U) along a finite segment 

of its Q-orbit (preserving such a segment of orbit). Typically, we will apply this lemma to 

periodic points of Q: given PEP(Q) and a neighbourhood V of the Q-orbit of P there is 

r gl-close to Q, preserving the Q-orbit of P and coinciding with Q outside V, such that  

the derivative D e  at any r  is the product of Dqa with some matrix close to 

the identity. As a consequence of this result we get that  the moduli of the strong stable 

and unstable eigenvalues of points in P(Q) are both uniformly bounded away from 1, see 

Lemmas 4.5 and 4.6. 

LEMMA 3.1 (Lemma 1.1 of [F] and Lemma II.2 of [M3]). Given qaeDiff(M) and 

a neighbourhood Ll of Q in Diff(M) there is r  such that for any finite set F= 

{x~,x2,...,xn}CM, neighbourhod U of F, and linear maps Li:Tx, M--~T~(x,)M with 

IILi--Dx~QII<r there is CeLt such that 

(1) r for all xcFU(M\U) ,  and 

(2) D ~ r  for every i=l,.. . ,n. 

This lemma plays a key role in our proof, and it will allow us to move back and 

forth between the spaces of linear maps and of Cl-diffeomorphisms: Roughly speaking, 

consider a diffeomorphism Q and a point P of Q-period m. Then to eax:h family of linear 

fA .Im-1 such that  every Ai is close to D~(p)Q we associate a diffeomorphism maps t ~Ji=o 
r close to Q, preserving the Q-orbit of P,  and such that  D~,(p)r and vice versa, 

to each r close to Q and each periodic point of r we associate a family of linear maps 

(the family of derivatives along the orbit). For that  we introduce the notion of family of 

linear maps. 
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A family - 3" "4-(Ai )3"el,~ez of linear maps is periodic if for each "yEI there is n3" such 
3" __ 3' that  A i + n - A  i for every i. The eigenvalues (resp. eigenspaces) of the periodic sequence 

A3"- 3" -(A~ )~ez are the eigenvalues (resp. eigenspaces) of the product A3" A7 de- i q - n ~ - - I  "'" ~ ' 

noted by Ak(A3") (resp. Ek(A3")). 
Two periodic families of linear maps ,4= 3" - (Ai)TEI, iEZ  a n d  B - { B  i }~ez, iez are e-close 

if they have the same period and 

sup IIB~-ATII < ~. 
3"EI 
iEZ  

Given a family of periodic linear maps - 3" , 4 - (A ,  )3"eI, iez then an ,4-invariant splitting 

E(,4)| is a family of splittings (E:| such that  A:(G~i)=(G~+I) and 

G ~ - i + n - G i  for each i, G = E , F .  An ,4-invariant splitting E(,4)GF(,4) is uniformly 
dominated if there are m and AE(O, 1) such that  

rn--1 m - - 1  --1 

for all 7 E I  and iEZ.  Finally, the angle of the splitting E(,4)OF(,4) is 

co(E(,4), f( ,4)) = inf{a(E/~, F/~), 3, E I ,  i E Z), 

where a(E~, F/~) denotes the angle between E~ and F/~. 

Given ~eT(U)  we define PR(~) as the subset of periodic points of A~(U) having 

only real eigenvalues of different moduli. We have the following result whose proof we 

postpone to w (see Lemma 4.2). 

LEMMA. Consider the subset 7~ of diffeomorphisms ~ in T(U) such that PR(~) is 
dense in A~(U) and every periodic point P of PR(~) is hyperbolic. Then 7~ is residual 
in T(U). 

This lemma means that  to prove Theorem 1.1 it is enough to consider diffeomor- 

phisms ~ such that  PR(~) is dense in A~(U). For such a ~ consider the periodic family 

of linear maps 
~(~)  ~ = { D p } i e Z , p E p R ( ~ ) ,  D~p =D~,(p)~. 

For :D(~) we have the T)(~)-invariant splittings 

Esc(z)(~))OE~'(Z)(~)), ES(1)(~))eECU(Z)(~)), 

where EJ(:D(~)) is the family of one-dimensional eigenspaces E~(~) associated to the 

eigenvalue )~j(P) of Dp~ n, n is the ~-period of P (j=s,c ,u) ,  and Ek~(z)(~)) is the 

family of spaces {Ekp~(~)=E~@)eE~p@)}pep~(~). 
Our goal is to prove that  either E~(:D(~))@E~'(:D(~)) is uniformly dominated, or 

E~(:D(~))| is uniformly dominated. 
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3.2. C r e a t i o n  o f  cyc les  

The next lemma which we borrow from [H] allows us to create homoclinic/heteroclinic 

cycles associated to points in P(~) .  Observe that  Lemmas 3.2, 3.3 and 4.5 below hold 

in any dimension. 

Before stating the lemma let us recall that  if P is a hyperbolic periodic point of a 

diffeomorphism ~ then for every r close to ~ there is a hyperbolic periodic point PC close 

to P (given by the implicit function theorem). This point is called the continuation of P 

for r 

LEMMA 3.2 ([H]). Let ~EDiff(M),  and let P and Q be hyperbolic periodic points 

of ~. Suppose that there are sequences of points (xn) and natural numbers (kn) such 

that 
(Xn)--*pUEWU(P) and ~kn(Xn)--~qSEW~(Q). 

Then there is r arbitrarily C 1-close to ~ such that 

# 0, 

where PC and Qr are the continuations of P and Q for r 

From now on we denote by A ~ B  the transverse intersection between A and B. Let 

us now state the following result that  follows from Lemma 3.2: 

LEMMA 3.3. Let P and Q be hyperbolic points in P(~), ~ E T ( U ) ,  such that 

index(P)/> index(Q). 

Then there is r close to ~, CET(U), such that 

(a) if index(P)-- index(Q) then Ws(Pr162 and W~'(Pr162 

(b) if index(P)>index(Q)  then Ws(Pr162  and there is 

such that 

x E W~(Pr162 

TxW~(Po)+ T~WS(Qr = TxW~(Pr162 

i.e. x is a point of quasitransverse intersection. 

Here PC and Qr are the continuations of P and Q for r This lemma also holds 

for the homoclinic case P=Q. 

Proof. Let us suppose that  P and Q have different indices. The case index(P)=  

index(Q) follows analogously. We first claim that  there is r close to ~ such that  W~(Pr 

and WU(Qr have a nonempty transverse intersection. 
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To prove the claim notice that  dim(Ws(P))+dim(W'~(Q))=4>3, and thus if 

Ws(P)MW~(Q)r after perturbing ~ one can get a transverse intersection between 

these invariant manifolds. So let us assume that  W'(P)MW~'(Q)=o. By the transitiv- 

ity of A~(U), there is xcA~(U)  with a dense orbit in A~(U). Thus there are sequences 

(ni) and (mi), ni,mi---*oc, with mi>ni, such that  

~ n ' ( x ) - ~ P  and ~m'(x)-~Q. 

Hence, for fixed fundamental domains D ~ of WI~r ) and D ~ of WI~r there are new 

sequences, say (~i) and (mi), ~i -*oc,  ~ - - f i i + k ~ ,  ki>0,  such that  

~(x)=p~---*d~ED ~ and ~fl~'(x)=~flk'(pi)---~dUEDU. 

Applying Lemma 3.2 to (p,) we get r  close to ~ such that  

Ws(Pr162 

After a new perturbation, if necessary, we get a transverse intersection. Moreover, such 

a transverse intersection persists for every e E T ( U )  close to r This ends the proof of 

the claim. 

Since, r C T(U), applying the above argument to W ~' (P~o) and W ~ (Qr we obtain 

r  close to r with Wu(Pr162162 Since 

dim(W~ (P~))+dim(W~(Qr )) = 2 < 3, 

in this cause we obtain (after a new perturbation if necessary) a quasitransverse intersec- 

tion instead of a transverse one. Clearly, r162  satisfies the conclusions of the lemma. 

The proof of the lemma now is complete. [] 

4. P r o o f  of  T h e o r e m  1.1 

As mentioned in the introduction the first difficulty to prove the theorem is to find a 

suitable candidate for the role of partially hyperbolic splitting of TA~(u)M. To obtain an 

appropriate splitting we first focus our attention on the periodic points of Ar having 

real eigenvalues with different moduli, i.e. on the subset PR(r of P(r  For points 

in PR(r one has the splitting TpM=E~p(r162162 with three Dr 

one-dimensional directions, corresponding to )~s(P), At(P) and )%(P). 

We now prove the genericity (in T(U)) of the diffeomorphisms r such that  PR(r 

is dense in Ar see Lemma 4.2. In w167 and 4.3 we deal with the problem of how to 

extend this auxiliary splitting, defined only on PR(r to the whole he(U) .  To prove the 

density of PR(r Lemma 4.2, we need the following result: 
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LEMMA 4.1. There is a residual subset 7r of Diff(M) such that for every CE 

z e n T - ( v ) = n o ( V )  one has: 

(a) the periodic points of r are dense in Ar 

(b) every periodic point of he(U) is hyperbolic. 

Proof. Using that Ar for some x and the robust transitivity of Ar 

we get that Ar is generically the closure of the periodic points of r contained in it, 

see [P]. Moreover, by the Kupka-Smale theorem, all periodic points of r are generically 

hyperbolic. [] 

Given a point P denote by Hp the set of transverse homoclinic points of P (the 

transverse intersection between the invariant manifolds of P). Consider the set 

T~R(U) = {r  PR(r is dense in Ar 

and Hp is dense in Ar for all PEP(C)}. 

Let Syp P(r be the subset of hyperbolic points of P(r and let 

Hyp PR (r = Hyp P(r N PR (0). 

LEMMA 4.2. The set ~R(U) is residual in T(U). 

Proof. Let us first prove the generic density of PR(r in he(U). For each n 6 N  

consider a finite covering B,~ of M by open balls Bn(w) of radius 1/n. Let 

T~n = {r E T(U): Bn(w)NAr ~ 0 ~ Bn(w)nHyp PR(r r 0}. 

By definition, TUn(U) is open. We claim that it is also dense in T(U). This claim implies 

that PR(r generically is dense in Ar just consider the residual subset n n n ~ ( V )  

of T(u). 
Fix n, Bn(w)6Bn and r162 Suppose that B~(w)NAr162 By Lemma 4.1 

we have HypP(r162 We prove that r can be approximated by some ~ with 

Hyp PR(~)NBn(w)~O. This implies the density of 7~n(U) in T(U). 

Suppose that our claim does not hold. Note that if P has two real eigenvalues of 

the same modulus then one can perturb r to obtain a hyperbolic periodic point with 

three real hyperbolic eigenvalues of different modulus. Thus we can suppose that every 

periodic point P of r in Bn(W) has a complex (nonreal) eigenvalue A. 

Take a periodic point P of r (which for simplicity we will assume to be fixed) 

and suppose, for example, that [A[<I. After a perturbation we can suppose that r is 

linearizable in a neighbourhood V c U  of P and that Ws(P,r and W~(P,r have a 

nonempty transverse intersection. The last assertion follows from Lemma 3.3. 
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Take a point xEV of transverse intersection between Wl~oc(P) and W~(P). Let 

y=O-Z(x)eW~oc(P)NY. By replacing x (resp. y) by some forward (resp. backward) 

iterate 2=Or(x)  (resp. 9 = r  with big t, we can assume that  

T~W~(P)~-E~ and T~W~(P)~-E~ ~, 2=2,9, (4.1) 

where ~ means tha t  the two spaces are close. After a new per turbat ion we can suppose 

that  T~Wu(P) and T~W~(P) are parallel to E~  and E~  ~, respectively. 

Consider a normal basis {v, w, w • } of TyM (resp. {vl, wl, wl x } of TeM) where w, w • 

are orthogonal vectors in TgW~(P) and veTgW~(P) (resp. w~, w~ are orthogonal vectors 

in TeW~(P) and v~ETeW~(P)). In these coordinates the derivative DgOm: TgM--*TeM, 
where m=2t+l, is of the form 

D#r  TM= al l  a12 , A =  . 
\ a21 a22 

621  a22 

Observe that  we can take (and we do) w and w • such tha t  A(w) and A(w • are also 

orthogonal. 

There is a sequence of diffeomorphisms r162 such that  every Ok has a periodic 

point Qk of period rk-=nk+m such that  rk---+oO, Qk---*hc, r for every O<<.i<<.nk, 
and r 9. We claim tha t  after a new perturbation,  if necessary, we can assume 

that  

DQ~r = [)~[nkw and DQkr = IAl'~kw • 

To prove the claim recall tha t  the eigenvalue A of Dpr is complex and that  w_Lw • and 

A(w)•177 After a new perturbation,  we can assume that  DpOk has a complex 

eigenvalue Ak with argument Ok such that  nkOk is the angle between A(w) and w. On 

the other hand, since r  there are matrices Jk---~Id such tha t  

DQk Or~ = Jk" a l l  h i 2  �9 

a 2 1  a 2 2  

Thus, by the choice of Ok, in the basis {v, w, w• one has 

0 0 )  
DQkr ~ =Jk" aml)~l '~ 0 , Jk- -*Id  as k--*oc, 

o bml l 

where am and bm are real numbers independent of k and n, and A~ is the expanding 

real eigenvalue of Dpr  Using Lemma 3.1 we per turb each Ok at r  ~ r  k \ ]---- k 
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to obtain a sequence r162 such that Qk is a periodic point of period rk=nkq-m of ~bk 

with derivative 

f cm.~ ~ 0 0 '~ 
DQkr162 | O aml,k, nk 0 ) . 

\ o  o bmlAl 
(4.2) 

Hence DQk~b~ k has three real eigenvalues of moduli different from one. After a new 

perturbation the moduli of the three eigenvalues are all different. By construction Qk c 

Ack(U ) and, if k is big enough, its orbit intersects Bn(w). This implies that CkCI~,(U). 

Finally, by construction, r which gives the density of 7~,(U) in T(U). This ends 

the proof of the first part of the lemma. 

The second part of the lemma follows similarly: given any periodic point PcP ( r  

and a ball Bn(w) of the covering Bn of M intersecting Ar we use Lemma 3.3 to 

perturb r and obtain a homoclinic point of P in B~(w). [] 

Let us make the following remark to the proof of the lemma before that will be used 

in the proof of Lemma 4.14. 

Remark 4.3. The numbers am and bm in equation (4.2) are independent of n and k. 

4.1. Es t imates  on the  eigenvalues 

Our next step is to get some estimates on the eigenvalues of the periodic points of a 

robustly transitive set Ar Let P be a periodic point of period k of r i.e. r  
and r  for all 0<i<k .  Denote by As(P), Ac(P) and )~(P) the three eigenvalues 

o f  Dpr k, where 

I)~(P)I < I)~r ~< I)~,(P)l. 

Take r Since we are assuming that Ar is infinite, the robust transitivity of 

Ar implies the following result (whose proof is trivial) which we will use repeatedly. 

FACT 4.4. Let r Then r has neither sinks nor sources in U. Moreover, 

IA~(P)I < 1 < ]A~(P)I for every PEP(C). 

We begin by obtaining some estimates on the strong stable and unstable eigenvalues 

of points PEP(C) which ensure that the moduli of these strong eigenvalues are uniformly 

bounded away from 1: 
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LEMMA 4.5. Let CET(U). There is 5>0 such that 

IAs(P)l <~ (1-6)  k < (1+5) k ~< tA,(P)I 

for every PEP(C)  of period k. 

Proof. The proof is by contradiction. Suppose contrary to our claim that  for every 

n > 0  there is P~EP(r  of period m~ such that  

Suppose, for instance, that  the first inequality holds for infinitely many n. Taking a sub- 

sequence, if necessary, we can assume that  

(1F 
[As(Pn)] > 1 -  foreverynand(P,~)---~QEhr 

If the mn are bounded by some m then Q e P ( r  and its period k is less than m. Thus, 

by construction, I As (Q)]/> 1, contradicting Fact 4.4. 

Hence we lose no generality assuming that  (mn)-*oo. For each big n, using Lem- 

ma 3.1, we have r close to r preserving the C-orbit of pn such that  

1 
D c i ( P " ) r  -- 1 - 1/n DCj(p , ) r  

By construction, r162 Thus CnET(U) for every big n, and ]As(P~,r But 

Fact 4.4 prevents such a possibility. This completes the proof of the lemma. [] 

Finally, the estimates on the strong stable and unstable eigenvalues above can be 

translated into the context of families of linear maps as follows. 

Given a family of periodic linear maps 13 close to ~D(~o) and a periodic point PEPR (~o) 

of period k, consider the linear map ] ~ p = B ~ - ,  (e) . . .  Be,  and denote by As(Be), Ac(Bp) 

and Au(Bp), ] A s ( B e ) i <  ]Ac(Bp)] • IAu(Bp)I, its eigenvalues. 

Using Lemmas 4.4 and 3.1 we get uniform estimates on the strong stable and unstable 

eigenvalues of families B close to :D(~o), ~oET(U): 

LEMMA 4.6. Let ~oETC(U). There is 6>0 such that for every family of periodic 

linear maps B close to 2)(~o) one has 

IAs(BP)I ~< (1-6)  k < (1+6) k ~< IA~(Bp)I 

for every BpEB and PEPR(~o) of period k. 
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4.2. Angular estimates 

In what follows we focus our attention on the residual subset of q-(U) given by 

T~(U) =T~R(U)MTC0(U), TCR(U) and T~0(U) as in Lemmas 4.2 and 4.1, respectively. 

As above, given two linear spaces E and F let a(E, F) denote the angle between E 

and F. Also, recall that given a family of linear maps B and a splitting E(B)@F(B), 

ao(E(B) ,F(B))  denotes the angle of the two bundles of the splitting E(B)@F(B), see 

w 

PROPOSITION 4.7. Let CET~(U). Then there are constants C, 6>0 such that 

�9 either Es(B)| is defined and ao (ES(B) ,E~(B) )>C for every family of 

linear maps B such that IlB-z)(r <(~, 

�9 or E~(B)GEr is defined and ao(E~(B),E~8(B))>C for every family of linear 

maps B such that IIB-Z)(r 

The main step of the proof of the proposition is the following result: 

PROPOSITION 4.8. Let CET~(U). There are C>0 and a Cl-neighbourhood ld of r 

such that for every CEb/ one of the two possibilities holds: either a(E~,(r E ~ ( r  

for every PR(r or a (E~(r162  for every PEPR(r 

4.2.1. Proof of Proposition 4.8. The proof of this proposition is by contradiction. 

If the result is false then there are sequences of diffeomorphisms r 1 6 2  and of points 

P~, Q,~EPR(r such that 

a(E~(r162 < 1/n and a(E~.(~bn),E~.(r < 1/n. (4.3) 

Remark 4.9. To state Proposition 4.8 we prove that the existence of the sequences 

in (4.3) leads to the creation (after perturbation) of either sinks or sources in Ar 

contradicting Fact 4.4. 

Take points Pn and Qn as above and let tn and rn be their periods. We begin by 

observing that tn, r~---~co. Suppose for instance that (t,~) does not go to infinity. Taking 

a subsequence, if necessary, one gets Pn---~PEPR(r One has a(E~(r E~,~(r 

which prevents a(E~,n(r E~(r  This proves our assertion. 

Now, since tn and r=--*co, from Lemma 4.5 one gets 

I~(P~)l, IA~(Qn)I~O and [A~(Pn)l, IA~(Qn)l~. 

Our next step is to see that we can take (after a perturbation) the points P~ and Qn 

having the same index. 
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LEMMA 4.10. Let *Pn, Pn and Q,  be as in (4.3). After a perturbation of Cn we 

can assume that P,, and Q,  have index 2 for n large enough. 

Remark 4.11. The arguments in the proof of the lemma show that  one can also take 

both points with index 1, or Pn with index 2 and Q,~ with index 1. 

Proof. We prove the lemma for the points P,~ (for the Qn one argues analogously). 

Consider perturbations of the derivative of D e  at Pn and Qn. It is important to note 

that  Lemma 3.1 allows us to find such perturbations at Pn and Q~ simultaneously (for 

the same diffeomorphism). 

If there are infinitely many Pn with index 2 we are done. Thus, we lose no generality 

assuming that  every Pn has index 1. For each r162 close to r let 

P~'n(r = { P c  PR(r : P has index 1 and a(E~,(r E~o~(r ~< 1/n}. 

Write 

U 
n>~no 

Since the periods tn tend to infinity and every pn is hyperbolic, for each n there is a 

neighbourhood Vn (r of r such that 

P)C(r for (4.4) 

We claim that  there are diffeomorphisms (,~-~r and points P~EP~'n(~n) such that  

Clearly, the lemma follows from the claim: applying Lemma 3.1 to gn we obtain a new 
o z ( E S  [ c t  "~ c u  I sequence ~--~r  such that  and , So it remains 

to prove the claim. 

We argue by contradiction. Assume that  the claim is false. Then for a fixed n0 (big) 

we get # > 0 such that  

IAc(Pr r  (1+#) k, where k is the period of PC, 

for all r close to r and every PC c ( P~ ) l ' n ~ 1 6 2  This assertion follows from Lemma 3.1 

by arguing as in the proof of Lemma 4.5. Now, recall that  ]A,(Pn,r t~ and 

I A~ (Pn, Cn)l > (1 +6)t~ (see Lemma 4.6). By Lemma II.9 in [M3] (which, in a few words, 

asserts that  robust hyperbolicity of periodic points implies that the angles between the 

stable and unstable bundles are bounded away from zero) there is 3,>0 such that  

E ~u > a ( E ~ ( r  pr 7 for all r close to r and every PcE(P~)I 'n~ 
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Taking n>l/~/one has P~n( r  for all %b close to r contradicting (4.4). This ends 

the proofs of the claim and of the lemma. [] 

The next step in the proof of the proposition is to get a saddle-node periodic point R 

such that a(E~({),  E~({)) is small. We use the following claim whose proof we postpone 

until the end of this section. 

CLAIM 4.12. Suppose that r and that Pn and Qn are the periodic points of 

Cn in (4.3), Pn and Qn with index 2. Then there are sequences of diffeomorphisms (r 

r  and r162 and of points RnEPR(r of period kn, such that 

(1) max{a(E~{~(r E~( r  a ( E ~ ( r  E~.(r ~< 1/n, 

(2) ~ ( a n ,  r and 

(3) k n - ~ .  

We begin by stating the following algebraic fact that will be frequently applied to 

the characteristic polynomial of the derivatives of periodic points. 

FACT 4.13. Consider sequences of real numbers (an), (~An) and ((n) such that 

(1) P ( n r - ~ ,  

(2) l<g<lanl/I/An[ for some constant K .  

For each ~>0 consider the sequence of polynomials 

"Pn,e(X) = (X--an)(X--(~Zn-~-E(n(/An--an) ) )--C~nan(/An--O'n). 

Then there is Sn, [r such that the roots/An(r and crn(sn) of 7~n,~(x) are 

both real and satisfy 

I/An(~n)l----lan(~n)l---- ~ .  

Proof. If the product an#n is positive, just take 

2gl~Onl --/An--On 
~ : ~(/An--an) ' 

Then the roots of the polynomial Pn,~(x) are 

/An(~n), an(~n) : +X//Anan �9 

Otherwise, if the product is negative, let 

/An + a n  

On-- (n(/An__an)' 

Now the roots of the polynomial are 

1 

1 

~n(~), ~(~) = •  
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This completes the proof of the fact. [] 

Now we complete the proof of Proposition 4.8. For simplicity let us write hi(n)--  

A~(R~,r i=s,c,u. Since Ar one has (generically) two possibilities: either 

1A~ (n) A~ (n) A~ (n)[ = I A~ (n) A~ (n)[ > 1 or [As (n) Au (n) l < t for infinitely many n. Suppose, 

for instance, that the first possibility holds. 

In TR, M consider an orthonormal basis Bo(n) such that there are eigenvectors v~(n), 
vS(n) and v"(n) associated to A~(n), As(n) and A,(n), respectively, with coordinates (in 

the basis Bo(n)) 

v~(n)=(1 ,0 ,0 ) ,  vS(n)=(an, l,0), v~(n )= (~ ,O 'n ,1 ) .  

By the DR~(r of the ER,~(r one has (in the basis Bo(n)) 

Di%(r ) =  As(n) T3(n) , 

0 A~,(n) 

where T3(n) = (Au(n)-As(n))7~.  

By Claim 4.12, a ( E ~  (r E~(r  < 1/n--*O, and thus 

~.~+~-~ 

Suppose first that "y2--*oc. By Lemma 3.1, given e > 0  we can perturb r at 
- 1 (  R "~_,t~k,~- I n ~ ~J--~'~ (Rn) to get r such that CsJ,,~(R,~)=r for every j and 

(i~ Dr162162162 , where I~ = 1 . 

Then 

i Tl(n) T2(n) 
DR.(r k" = I~.Dr162162 ~-1 = As(n) T3(n) 

~ s ( n )  ~ . ( - - ) + ~ ( ~ )  

The characteristic polynomial of DR,~(r k'~ is of the form (1-x)P~(x). 
Fact 4.13 to 7)~(x), with 

(1) an=A~(n),  

(2) ,n=~s(n), 
(3) [a,~[/[#,~[=[A,~(n)l/[As(n)[---*oo (recall that  k,~--~oc and Lemma 4.5), and 

(4) ~=e~ ,  I~nl-~ ,  

. 

Applying 
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one gets ~ 0  such that the eigenvalues of DR~(r are Al(~n)=l, A2(s~) and A3(s~), 
where 

[A2(~)l = [A3(~n)l-- V/IA~(n)As(n)[ > 1. 

Thus we can perturb r (big n) to get r  with a repeller at RnEAr con- 

tradicting Fact 4.4. This completes the proof of the proposition when [7~1--~o~. 

Suppose now that 7~ is bounded; thus Z~-~oc and then a ( E ~ ,  E~)--~0 as n--~oc. 

By Claim 4.12, a ( E ~ ,  E ~ ) - ~ 0 ,  and hence c~(E~, E~)--~0. 

In E ~ : = E ~ e E ~  let us consider an orthonormal basis {v~(n),v• Since 

c~(E~, E~)--~0 there is an eigenvector vS(n) of As(n) of the form 

vS(n)-=vU(n)+x~v• Xn--*O as n--~oo. 

Now, consider the basis B~(n)={v~(n), v~(n), v• In this basis, 

1 0 0 / 

D ~k,~ , [ t t 3 ( n ) [  ___+ OO" R o ~  = 0 A~(~) ,3 (n)  , , ~ ( ~ ) = ~ s ( ~ ) - ~ ( ~ )  
0 0 ~s(n) ~ 

As before, using Lemma 3.1, for a fixed r we perturb r at r to obtain r 
with i _ i r162 for all i satisfying 

Dr (R~)(r = I~- DCg ~ (R,~) Cn, 

I~ as above. Then 

(i ~ DR~(r k~ =IE'Dr162162 "~-1 = A u ( n )  

~s(n) 

0 

, 3 (n )  /" 
~#3 (n) +)% (n) ] 

As before, applying Fact 4.13 to the characteristic polynomial o f  DR,~(r k'~, one has 

D /.~k~ ~ Al(C~)=l, A2(eu) and A3(n), where ~--~0 such that the eigenvalues of R~ '~ ,n J  are 

IA2(e~)l = ]A3(e~)] = x/IA~(n)As(n)] > 1. 

Thus, perturbing r (big n) one gets CE:Y(U) with a repeller at RnEAr contra- 

dicting Fact 4.4. This completes the proof of Proposition 4.8 assuming Claim 4.12. So 

it remains to prove the claim. 

Proof of Claim 4.12. Take periodic points Pn and Qn of Cn with index 2 satisfying 

1 1 8 C U  ~ C B  ~(E~, (r Ep~(r < - and ~ ( E ~ ( r  E ~ ( r  < -. 
n n 
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By Lemma 3.3 we can assume that  Pn and Q,~ are homoclinically related (their invariant 

manifolds meet transversely). Thus there are segments of arcs 7~ C W = (P~, Cn) and disks 

5~CWs(Pn,r such that  

~ U S 8 7m Wloc(Qn, Cn), 5m ---* Wloc(Qn, ~bn), m --~ cr 

Since a ( E ~ ( r  E~=(r  1/n, there is a homoclinic point xn associated to P,~ such 

that  the angle between T~W~(Pn,  r and T~W=(P~, Cn) is small (less than 2In). Ap- 

plying Lemma 3.1 to xn and considering suitable compact parts of the invariant manifolds 

of Pn, we can perturb Cn to get a diffeomorphism ~n with a homoclinic tangency at xn 

(associated to Pn). In this way we get a point of quadratic contact xn between W ~ (Pn, ~n) 

and W=(P,~,~n). Now, from [R] and a standard argument on unfolding of homoclinic 

tangencies, we get ~= (close to ~,~) with a periodic saddle-node R,~ (associated to the 

tangency of W s (Pn, ~n) and W ~' (Pn, ~,~)) with eigenvalues Ac (n)= 1, ]As (n)]< 1 <lA~, (n) I. 

Moreover, this saddle-node can be chosen arising from some periodic point of a horse- 

shoe such that  the angles between their invariant manifolds are small. Observe that  such 

horseshoes appear in the unfolding of a tangency. Thus we can assume that  

E u ,~ E = ECS, , cs nn(~n) Qn(~n), R. t~ 'd  "~ E~.(~n)  and c~(E.~.(~n), E~n(~n)) is small. 

This completes the proof of the claim (and thus the proof of Proposition 4.8). [] 

4.2.2. Proof of Proposition 4.7. We divide the proof of the proposition into two 

steps: existence of the splittings and estimates on the angles. 

First step: Existence of the splittings Es(B)OE~(B)  or E~(I3)@ECS(B). 

LEMMA 4.14. Let PEP(C) ,  gZET(U), such that 

(1) P has index two and P E P c ( r  (i.e. P has two contracting eigenvalues of the 

same modulus), 

(2) the set of transverse homoclinic points of P is not empty. 

Then given 6>0 there are ~ET(U)  close to r and REP(~)  with 

a(E~(~), E~U (~)) < 6. 

Remark 4.15. The lemma holds for periodic points having an expanding complex 

eigenvalue. In this case one gets c~(E~(~), E~S(~v))<(f. 

Proof. Suppose that  PE U (which for simplicity we assume to be a fixed point) has 

a pair of contracting nonreal eigenvalues. The case in which the eigenvalues are real (one 

eigenvalue with multiplicity two or different eigenvalues with the same modulus) follows 
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analogously. Let As, Ac and ~ ,  IA~I--IAcI<I<I~I, be the eigenvalues of Dpr As in the 

proof of Lemma 4.2 we construct diffeomorphisms r r r having periodic points Q k 

(in the continuation of some horseshoe of P) of period rk=nk+m (nk--~oc) such that 

the derivative nQkr ~k is (see equation (4.2)) 

0 0)  
o bml.X~l ~'` 

for some big k. Consider the basis {v, w, w • in the proof of Lemma 4.2 and unit 

vectors v~, wi and w/• in the directions of DQk r k (v), DQk r (w) and i • DQkr ). Using 

Lemma 3.1 we get ~k preserving the r of Qk such that 

1 
D~t(Qk)~k(wi)- lam]l/rk Dr162 

1 
n~(Qk)~k(w~ ) -  ibmll/~ Dr162 ), 

nr (Q~)~k (vi) = nr  (Q~) ~k (vi). 

Since am and bm are independent of rk (see Remark 4.3), and r~ can be taken arbitrarily 

big, every ~k is close to ek and (c? 0 0) 
DQk~ * = + IA~ ]  ~k 0 . 

o :LI.X~l '-~ 

For a fixed 5>0, a new application of Lemma 3.1 gives diffeomorphisms ~k,z, ~k,~-~k as 

5--~0 +, preserving the ~k-orbit of Qk, with 

( i 0 0 )  0 ) 
D Q k ( ~ )  = 1 .DQk(~ k) = • nk • nk . 

0 1+~ 2 0 ~l.X~lnk(l+6 2) 

A straightforward calculation now shows that the eigenspaces E~(~k,~) (associated to 

• nk) and E~k(~k,~) (associated to :E[A~[ nk) of DQ~ (~ )  are spanned by 

(0, 1, :t:5) and (0, 1, 0). Thus the angle between E~k(~k,~ ) and E~k(~k,~ ) is of order of 5. 

This ends the proof of the lemma. [] 

The proof of Lemma 4.14 provides immediately the following remark which we will 

use in the proof of Proposition 4.23. 

Remark 4.16. Under the hypotheses of Lemma 4.14, let ~ p  be any horseshoe (non- 

trivial hyperbolic set) containing P. Then the periodic point R of ~ in Lemma 4.14 such 

that a(E~(p), E~U(~o)) is small can be taken in the continuation Ep(~) of Ep. 
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LEMMA 4.17. Let CETi(U). Then 

�9 either E~(B)@EC~'(B) is defined for all B close to/9(r 

�9 or E~(B)@E~(B) is defined for all 19 close to 19(r 

Proof. The first step to prove the lemma is to see that  for every B close t o /9 ( r  at 

least one of the splittings E~(B)(gE ~' (B) and E u (B) |  ~ (B) is well defined. The second 

step is to prove that  we can take the same type of splitting for all B close to :D(r 

First part of Lemma 4.17: Existence of splittings. We argue by contradiction. 

Suppose that  there are families B arbitrarily close to :D(r such that  the splittings 

E~(13)| and E~(B)(gE~S(B) are both not defined. Then there are sequences 

B~--~:D(r and (P,~) and (Qn), P,~,QnEPR(r such that  for each n there are 

(Bp~)~ez, (BQ,) /ez  EB,~ such that  

(1) Eel(Pp,)  is not defined; thus Pp,  has a complex (nonreal) contracting eigen- 

value, 

(2) E~*(BQ,,) is not defined; thus BQ,~ has a complex (nonreal) expanding eigen- 

value. 

Using the correspondence between di~eomorphisms and linear maps in Lemma 3.1, 

we get diffeomorphisms ~ - - + r  such that  P,~ and Q~ are periodic points of ~= with 

Dp~r t€ BO~,-~(p~) ... Bp~ and ~ - = DQ,%~ -- B~o,n-~(Q,) ... B ~ ,  

where tn and r,~ are the periods of Pn and Qn- In particular, Dp~r t~ (resp. DQ~r has 

a contracting (resp. expanding) complex eigenvalue. Using Lemma 3.3 we can assume 

that  the sets of transverse homoclinic points of Pn and Qn are both nonempty. 

Lemma 4.14 and Remark 4.15 imply that  there are sequences of diffeomorphisms 

~On--*r and periodic points P~ and ( ~ E  P(~o,~) such that  a ( E p  (~n), Ep~(~n))<l/n and 

ct( E~n( qon ), E~U ( qon ) ) < 1/n, contradicting Proposition 4.8. 

Second part of Lemma 4.17: Splitting of the same type. We prove that  either 

ES(g)eEC~(g) is well defined for all B close to i9(r or E~'(B)@ECS(B) is well de- 

fined for all B close to :D(r that  is, we can take the same type of splitting for every 

family of linear maps close to :D(r If not, there are sequences B,~, Cn--*/)(r such that  

(1) it is not possible to define Es(B~)(gEC~'(Bn); then there are P,~EP}t(r and 

BRaE 13n with a contracting complex eigenvalue, 

(2) it is not possible to define E~'(Cn)@E~S(Cn); then there are QnEPR(r  and 

CQ~E C,~ with an expanding complex eigenvalue. 

Now, using Lemma 3.1 and recalling that  we can perform the perturbations at P,~ 

and Qn simultaneously, arguing exactly as in the first part of the proof of the lemma 
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(existence of the splittings) we get diffeomorphisms ~bn--+r and points Rn, Tn E PR(r 

such that  

1 1 
a (E ,~( r  E~U (r < - and a(E~(~bn), Ec~(~bn)) < - ,  

n n 

contradicting Proposition 4.8. This concludes the proof of Lemma 4.17. [] 

Second step: Angular estimates. To obtain the uniform angular estimate suppose, 

for instance, that  E*(B)| is defined for every B close to 7)(r 

LEMMA 4.18. Suppose that Es(B)| is defined for every B close to 7)(r 

Then there is C > 0  such that ao(E*(B),Er for every 13 close to 7)(r 

Proof. We argue by contradiction. Suppose that  for every C > 0  there is B 

close to 7)(r such that  ao(E*(B),E~(B))<C. Then one gets B,~-+7)(r such that  

c~0(E*(Bn), E~*(Bn))<l/n. Thus there are periodic points P~E PR(r and linear maps 

BpEl3n such that  
1 ee(ES(Bp~), Ecu(Sp~)) < - .  (4.5) 
n 

We now use the following fact: 

FACT 4:19. Let CET~(U) such that for every family of linear maps 13 close to :D(r 

the splitting E~(B)GECU(B) is defined. Then 

for all PEPR(r  

Proof. The idea of the proof is that  if IA~(Bp)I=lAc(Bp)l, then we can perturb r in 

such a way that  the continuation of some RE PR(r has a contracting complex (nonreal) 

eigenvalue. This contradicts the fact that  E~(B)@ECU(13) is well defined for all B close 

to 7)(r 
To prove the fact we argue by contradiction. Suppose that  [As(Bp)I=IAc(Bp)I for 

some Bp E 13, 13 close to 7)(r Since, by hypothesis, ES(Bp)@ECU(Bp)is defined, A~(Bp) 

and A~(Bp) are both real. If A~(Bp)=A~(Bp), we perturb Bp to obtain a family C close 

to 7)(r such that  Cp has a complex (nonreal) contracting eigenvalue, contradicting the 

hypothesis of the lemma. So it remains to consider the case A~(Bp)=-A~(Bp). First, 

by Lemma 3.1, there is ~o close to r such that  Dpqo=Bp. Using the arguments in the 

proof of Lemma 4.2, we get r close to ~o (hence close to r and a periodic point R~, 

which is the continuation of some REPR(r  (R in the homoclinic class of P),  with a 

contracting (real) eigenvalue of multiplicity two. After a new perturbation, we get ~ such  

that  R~ has a Complex (nonreal) contracting eigenvalue. This provides C close to 7)(r 
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such that  CR=-DR~ ~, and thus with complex contracting eigenvalues. Thus the splitting 

E~(C)| is not defined. [] 

We claim that  we can also suppose that  the eigenvalues Ac(Bp~) and A,~(Bp~) of 

the points Pn in (4.5) are both real (and thus with different modulus). If Ac(Bp~) and 

A~ (Bp~) are complex the arguments in the proof of Lemma 4.2 give ~ close to r and a pe- 

riodic point Re which is the continuation of some RnE PR(r with three real eigenvalues. 
s c u  B Moreover, ER,(r  ) is close to f~(Sp~)  (resp. E~R~WJr~/'~ is close to E ( p ~ ) ) .  This gives 

families Cn of periodic linear maps close to :D(r such that  a(E ~ (Cn.), E~'~(Cn.))<2In 

and CR~ has real eigenvalues. This completes the proof of the claim. 

We are now ready to finish the proof of Lemma 4.18. Let v~ be a unit vector 
V n V n which spans Ei(Bp~), i=s, c, u. Take a normal basis { u, v~, u }, where v~ is orthogonal 

ECUl B ~ n _  n n a n to t P~). In this basis v~-(a~,,a~, 3), a~r  We have two possibilities: either 

a~r  or not. Note that  since a(S~(Up.) ,  S ~ ( B p . ) ) - * 0  then 

n \ 2  / n \ 2  
a u ~ ! a c 

In the first case, arguing as in the proof of Proposition 4.8, we get C close to :D(r 

having two contracting eigenvalues of the same modulus, contradicting Fact 4.19. 

In the second case, a(E~(Bp~), E~'(Bp~)) is small. Again as in the proof of Propo- 

sition 4.8, there is C close to B such that  Cp. has eigenvalues A1, A2 and Ar with 

IAII=IA21. If IAc(Bp~)l>l then, from Lemma 4.6, IAll=IA21<I, contradicting Fact 4.19. 

Suppose now that  ]Ac(Bp.)l< 1. Consider an isotopy (Lt)te[o,~] from Bp~ to Cp~ preserv- 

ing the central direction EC(Bp~), i.e. n~ L~--Cp~ and Lt(vc)=Bp~(Vc). Using L t 

we define in the natural way a parametrized family of periodic linear maps / : t  close to B. 

Let 

# = inf{t C [0, 1] : L t has two eigenvalues with the same modulus}. 

By hypothesis, #~<1. Moreover, by construction, IA~(L~p.)I=]A~(Bp.)I=IA~(L~,)I<I, 

contradicting Fact 4.19. This ends the proof of the lemma. [] 

Now the proof of Proposition 4.7 is complete. 

4.3. Uniformly dominated splittings 

In view of Proposition 4.7, we have that  for every r in the residual subset R(U) of 

T(U) there are C > 0  and (f>0 such that  either (~o(ES(B), Ec"(B))>C for every family 

of periodic linear maps B 5-close to :D(r or ao(E'~(B), EC~(Y))>C for every family of 
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periodic linear maps B &close to T)(r In the sequel let us assume that we have fixed r 
and that the first possibility holds: 

ao(ES(B), Ec~(B)) > C for all B &close to 7:)(r (4.6) 

Our goal is to prove that if (4.6) holds and E s (r E c~ (r is (hyperbolically) dominated 
on the period (see Lemma 4.24 below) then the splitting is uniformly dominated. 

Let us begin with the following two-dimensional lemma about perturbations of linear 
maps. 

LEMMA 4.20. Consider sequences of (2 x 2)-diagonal matrices {(A~,m)~_l }-~>o, 

' bi,m ' 
such that 

(a) I-Ii~l Ai,m=A-~ =Id:~ for every m, 

(b) there is a constant c>0 such that c-l<~[ai,ml, Ibi,ml<.c, for every i and rn. 

Then given e>0 and ~ > 0  there is rno such that for every m)rn0  there are families 
of triangular matrices - m (Ai,m)i=z satisfying 

(i) [[Ai,m-Ai,m[[<e for every O~i~rn, and 
(ii) either 

i = 1  i = 1  

o r  

_ + 1  A o , 
~_H1A~'~( 0 t = ( ; )  and ~ ~ , m ( 1 t = ( 0 1 /  

for some K with IKl>>.x. 

Proof. Consider perturbations Ai,m and Ai,m of Ai,m of the form 

ff[i,m (ai; rn ~i'rn(~m~ 2~irn: (ai 'm 0 ) 
= bi,ra ] '  ' ~i,mSm bi,m ' 

for s o m e  ~i,m,~i,m=-t-1 and 5m>~0 to be determined later. Arguing inductively and 
m 1 m bearing in mind that l-L=1 ai,m = and I-Ii=1 bi,m =-t-1, a straightforward calculation gives 

( ; )  m ( 1 0 )  
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where 

*m ~-- E ai,m 6,,~6j,m bi,m = ' = 5m aj,~ 
j = l  " " i = j + l  j = l  a j , m  " i = j + l  ~,m . .  j = l  

and 
m 

 j,m= 1-I b',m 
i = j + l  ai ,m 

We choose (inductively) the  6j,m such t h a t  

, m  

Similarly, we have 

m j - 1  (~m~j,rn ai,m = S i n e  bj ,m 

j = l  -- i--  1 j = l  ' z 1 j = l  

and 
ej,,. m 

^ "1-1" ai, m 
Cj,m = H bi ,m" 

i = j + l  

l~3,ml = 1~3,m1-1. 

T h a t  is, 

Notice tha t ,  by construct ion,  

- -  > 0  and ' ' > 0 .  
a j , m  bj,rn 

Consider  now the  sums 

j = l  a j , m  ' j = l  bj ,m 

Since the  lay,m[ and  [bj,m[ are bounded,  we have t h a t  these  sums cannot  be  bounded  

simultaneously.  Suppose,  for instance,  t ha t  the  first one is not  bounded.  T h e n  there  is 

m such t h a t  Sr~ > 2x/e. 
Observe  t h a t  ~,,~=6,~Sm. Thus  tak ing  5mC(x/Sm, �89 we have 
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Clearly, by the definition of -dj,m, 

(;) (10) (0)( ) 
J=: J=: 4-1 ' 

By the definition of 5m one gets II_~j,,~-Aj,,~II < : .  Now it is enough to take Zij,m=fij,,~. 

This completes the proof when Sm is not bounded. 

Finally, if Sm is bounded then Sm is not bounded. Then the proof of the lemma 

follows as before by considering lower triangular matrices instead of the upper triangular 

ones. [] 

We have the following reformulations of the previous lemma and of Proposition 4.7 

in terms of cone fields whose proofs are immediate. 

LEMMA 4.21. Let ( (Ai,m)~m:)m>~O be families of linear maps satisfying the hypothe- 

ses of Lemma 4.20. Consider any pair of cones C h and C v around i=(1,  0) and j= (0 ,  1), 

respectively, such that i~C v and j~C h. Then the perturbations (Ai,m) in Lemma 4.20 

can be taken satisfying 

(a) either ]-Lm=l .di,m(C h) CC v, 

(b) or H~=:Ai,~(C")CC h. 

LEMMA 4.22. There are ~-,6>0 such that for every family of linear maps 13 b-close 

to / ) ( r  it holds 

ES(BP) ~ C~(ECU(Bp)) 

for every PEPR(r Here C~(F) denotes the cone field of size ~- around F. 

Denote by 

P~(r  = { P 6  PR(r of period m ~> n}. 

PROPOSITION 4.23. Assume that hypothesis (4.6) holds. Then there is no such that 

the D@-invariant splitting (E~(@)OE~"(r162 is uniformly dominated for every 

CeTZ(U) close to r 

Proof. We first prove the dominance in the period for periodic points: 

LEMMA 4.24. Under the hypothesis of Proposition 4.23 there are A, 0 < A < I ,  and 

no such that 

IIDxCnlE~(r II'NDr162162 < An for every x 6 P~t~ of period n ~ no. 

Proof. We argue by contradiction and suppose that  the lemma is false. Then 

there are sequences of points Pm6PR(r  Pm of period n, , ,  and of increasing numbers 

(k,~)---*l- such that  

D ~ . E..~ (4.7) [[ p~r ~[Ep..(r ~,~.,,(p~)(r > (kin) n'~ for all m. 
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On the other hand, from Lemma 4.6, 

IlDPmr ~< ( l - a ) " =  I1~'11, 

II (Dp,, ,r (V u ) II 4 (l+a)--"~ IIv" II, 

Now, if km is close enough to 1 one has 

( 1 - ~ ) " ~  < k~ ~. 

Therefore, there is wEE~,,~(pm) , [Iv ~ I] = Ilwll = 1, such that  

Let 

V u E E~,~m(pm) .  

IIDp~ r II(DP~ r (w)II = (k~) -~. 

T,,~ = ( k,~ ) 1/ " ' '  , 7,~ ---+1 as m ---* oo . 

(4.s) 

(4.9) 

B - 1  u 1 (w) . . . .  ( ) 

p,~ = I IBr  BP. , (v * ) l ] .  (4.11)  

For each 0 ~< j ~< n m -  1 consider the linear space Ej  spanned by v~ = Be  j - ,  (pro)"" BPm (vS), 
w~=Br ... Bp , , (w ' ) ,  and its normalized basis flj, 

Zj = {v;/ll~; II, ~'j/llw'j II }. (4.12) 

In the sequel we will focus our attention on the space Ej.  Recall that  a(ES(B) ,  ECU(13))> 

C > 0  for every 13 close to :D(r see (4.6). Thus, there is a metric gl, equivalent to the 

initial metric of M, such that  for every 0 ~ j  ~< n m -  1 the vectors v~ and w~ are orthogonal, 

and ]]v~l]l=Hv~l I and ]lw~Hl=]]w~l[ (][. II1 denotes the norm associated to gl). In other 

words, in the metric gl the basis flj is orthonormal. From (4.11), the restriction of 

Tm=Br ... Bp,,, (in the basis flo and f ln~) is 

(1 ~ 0) 
T m =  H Tim:Eo--*E,~,~, ~ = # ~ I d  + Id + Ti ,~=Br  

i = 0  ' + 1  

and write 

We now perturb the derivative of D e  along the orbit Pm, r  ..., r  multi- 

plying the action of the derivative Dr162 in the direction Dp,., ,r  (without 

modifying the derivative in the direction spanned by Dp.,~r by the factor ~-m. In 

this way we obtain families 13m-*:D(r such that  

I lB ,~ , , , - , (p , , )  ... BP, , (vS) l l  �9 I I B ~  .-. B~,2 , ,_ , (p , , )  (w) I I  = 1. (4 .1o )  

Take the unit vector w'EECU(Bp,,,) in the direction 
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We now apply Lemmas 4.20 and 4.21 to the sequence Ti,m. Consider the spaces Ej,  

j = 0 ,  ...,nm, spanned by v~ and w~ (see (4.12)). For a fixed T>0 satisfying Lemma 4.22 

we consider the cone fields (see Lemma 4.21) 

g'(Bp,~) = [g~-(E~(Bp,~))] ~ and gh(Bp,~) = [C~-(E~(Bp~))], 

(A c denotes the complement of A) and the matrices (Ti,m). Suppose, for instance, that  

we can perturb the (T~,m) according to case (a) in Lemma 4.21. By perturbing B (which 

is close to :D(r along the segment of C-orbit {I'm, r .-., r we obtain g 

close to B such that  

(1) CCj(p~)Ej=Ej+I, 
(2) E~(Ccj(p,~))=E~(Br for every j ,  

(3)  Cr where Ti,m is the perturbation of Ti,m in Lemma 4.21. 

Therefore, 

(4)  l l j = 0  ~ r  E j = l l i = l - L i , m  = m. 

On one hand, by Lemma 4.22 and by definition, 

Es(Cr C [C~-(EC~'(Cr162 ~ = C~'(Cr for all 0 ~<j ~ nm. 

On the other hand, let C : C r  Cpm and take a unit vector v~ in the strong 

unstable direction of Pro. Recall that  we are assuming that  the (Ti,m) can be perturbed 

according to (a) in Lemma 4.21. Since these matrices are triangular (expressed in the 

basis ~j={v~, Dp,~r we have that  in the basis {v~,w',v~} the linear map C is 

given by 

c(v ) =  .v3, 

= x ,  v3 

C(v ) = Asv  + KC(w') = Asv  + Kxlv  + Kx2w', 

where Ixll and Ix21 are both small (this follows from the fact that  the modulus of C(w') 
is of order of IAsl, that  also is small). Observe that  the angle between v~ and w' is 

uniformly bounded from below for all m (otherwise, using that  IA~,l--*c~ and IAsl--~0 we 

get a contradiction). So after a change of metric (of bounded size) we can assume that  

the basis ~={v~, w', v~} is orthonormal. 

Observe that  As is an eigenvalue of C. Consider an eigenvector associated to )~s of 

the form (a, b, 1). A straightforward calculation shows that  

K x 1  
b -  - -  

X1 --  )~s " 
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That  is, if K is sufficiently big, we have 

C~.~-,(p~) ... Cp..(E~(Cp..) ) = E~(Cr C C,(E~u(Cr 

contradicting Lemma 4.22. This completes the proof of Lemma 4.24. [] 

We now finish the proof of Proposition 4.23. We argue by contradiction. Suppose 

that  {E~(r162162 is not uniformly dominated for all n. Then there are se- 

quences of points P m 6 P R ( r  Pm of period nm, nm--*oo, and of increasing numbers 

( k m ) ~ l -  such that  

UDp.,~)mlE~,(r162162 I >kin for all m. (4.13) 

We claim that  we can take the points Pm in the sequence with periods nm>m for 

infinitely many m (then, taking a subsequence we can suppose that  nm>m for all m). 

We prove this claim by contradiction. Suppose that  nm ~<rn for every m sufficiently big. 

Then m=knm+r,~, l~<k, O<<.rm<nm. We have 

km< IiDp,,,r162 
k, n r n  8 

k ~  -1 ~.. -1 (4.14) 
• II(Dp.~r ) IE%. ,II'II(Do~-,~(p.)C)IE~ . . . .  II 

tp m ( P r r t  ) w ~ P m  ~ 

<~ (A)kn''llDo~--(P.)r T M  IE$~..(~.)I1" II (Do~-,~(P.)r ~')-1 [E~ . (~ . ) I I ,  

where the last inequality follows from Lemma 4.24. This equation gives 
km 

Since km-~l ,  0 < A < I  and nm-~oc,  this implies that  rm--~oc. Now it is enough to take 

~b~mk(Pm) instead of Pra and m=rm <nm (i.e. reindex the sequence) in the definition of 

dominance. This ends the proof of the claim. 

For each km consider the point Pm of period nm>m in (4.13). Take a>km such 

that  

a-lllvll ~ IlnxC• ~ ~llvll 
Since nm>m, from Lemma 4.24 for each m there is tin, for all x E M  and vETxM. 

m<.tm <nm, such that  

a -3 <<. a-2km <~ IIDP.. Ctm (v s) ]1" II (DR., Ctm )-1 (w)[I ~< ~2km <~ a3 

for some unit vectors w'-E c'~ and v~EE;,  Since the angle between E~(r  and %btm(p,n ) 
EC=(r is uniformly bounded from below, using Lemma 3.1 and arguing as in the proof 

of Lemma 4.24 we get families of linear maps Bm-~:D(r such that  

]] Br -.. BPm(v~) ]I" I] (B,p,m(p,~)... Bp.~ )-1 (w)I] = 1 

for some unit vectors vSEES(Bp.,) and wEECU(Bct.,(pm)). Arguing as in the proof of 

Lemma 4.24 this leads to contradiction. This completes the proof of Proposition 4.23. [] 
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4.4.  E n d  o f  t h e  p r o o f  o f  T h e o r e m  1.1 

We are now ready to construct a partially hyperbolic splitting for Thr for every 

r in 7-4(U) close to r By Proposition 4.23, {E~,(g,)@E~'~(r162 is uniformly 

dominated. Proposition 1.3 in [M2] allows us to extend this splitting to a uniformly 

dominated one defined on the closure of P~t~162 whichis A~(U) (recall that  CeZe(V)). 

We also denote these extensions by E8(r and EC"(r 

The hyperbolieity of E ~ (~b) follows from the ergodic closing lemma (see Theorems A 

and B in [M3]) and Lemma 4.5 by using standard techniques (see the proof of Theorem B 

in [M3]). Moreover, by the dominance of the splitting E ~ (r174 E ~" (r E ~ (r is the strong 

stable bundle. This completes the proof of Theorem 1.1. 

5. P r o o f s  o f  t h e  t h e o r e m s  

5.1. P r o o f  o f  T h e o r e m  A 

It is enough to see that  given any CE74(U) and its partially hyperbolic splitting from 

Theorem 1.1, say TxM=E~(r174162 xEAr one can extend it for every r in a 

neighbourhood Vr of r in T(U). Then it is enough to consider A(U)=[-JcEn(v)12r To 

get the neighbourhood 12r first define the map 

�9 : T(U) ~ P(M), ~ H Ar 

where P(M) denotes the set of subsets of M endowed with the usual Hausdorff metric. 

By the definition of A~ (U) and the continuity of 4, we have that  if A~ (U)C VC U for some 

neighbourhood Y of A~(U), then the same holds for every qo close to ~ (i.e. A~(U)cV). 
This means that  the map �9 is upper semicontinuous in T(U). 

Due to the partial hyperbolicity of (E~(r162 there is an extension 
8 C " of it, say (E x(r x(r defined on a small neighbourhood W of he(U) such 

that  in the coordinates induced by (Esx(r174162 the matrix De m (m as in the 

definition of partial hyperbolicity) is of the form 

hi,1 L01,2 ~01,3~ (a2,2 a2,2~ 
D ~ r  P2,1  a2,2  a2 ,2 |  , A =  

! \a3,2 a3,3/ 
L03,1 a3 ,2  a3,3 ! 

where 

al,l . l lA-1II < x <  1 and max{Qi,j}<<min{al,1, II(A)-III} for all xEW. 
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By the upper semicontinuity of gt we have 

A~(U) = ~(r  C W for every r close to r 

E ~ E ~ Using the splitting ( ~(r ~(r which is not necessarily Dr one has 

01,2 ~)1,3 a' ' 
D x C m  [ t a t t At= 2,2 a2,2 

: c~ 2,2 a2,2 , a t �9 
3,2 3,3 

k e3,1 a t  ' a '  3,2 0"3,3 

By continuity, if r is close to r one has 

Since 

max{ O~,j } << min{a], 1, 11 (A') -1 ]l }. 

al,1. IIA-1[[ < x <  1 

we obtain a Dr dominated splitting of r E~(r162 in the maximal in- 

variant set of r in W, which is exactly Ar see [HPS] for details. 

Finally, by construction and the CLproximity of r to r the bundle E~(r is uni- 

formly hyperbolic. This completes the proof of Theorem A. 

5.2.  P r o o f  o f  T h e o r e m  B 

We begin by explaining the obstruction for extending the splitting in Theorem A, defined 

only for diffeomorphisms in the open and dense subset .A(U) of T(U), to the whole 7"(U) 

when U~M. The obstruction arises from the fact that  the map ~HA~(U)  is (in general) 

only upper semicontinuous. Clearly, if U=M this map is constant, cp~--+A~(M)=M, and 

hence continuous. In other words, given ~e(7-(V)\A(V)) and xEA~(U) a priori we do 

not know if there are diffeomorphisms ~onE.A(U) and points x,~EA~(U) such that  

= l i m ~ n  and x = l i m x n .  

When U=M, since A ~ ( M ) = M ,  this property holds automatically. 

Take ~ e T  and a sequence ~n---*T, ~nCT~=~(M),  7~(U) as in Theorem 1.1. For 

each n and yePR(~On) define m~,~'(y) by 

m~(y)=min{m: D k 8 D k -1 o~ />m}, II ~W.IE~(~o.)II'II(~,pn) IE ~(~)(~,.)11 < �89 for all k 

m~(y)=min{m: k D k-1 c, IIDy~OnlE~(~)ll'll(y%~) IE ~,~,(~)11 > �89 for all k>/m}. 

Finally, let 

m~'" = sup{m~'~(y): y e PR(p~)}. 

Since we have, by Theorem 1.1, that  at least one of the splittings E~(cpn)@E~'(~n) and 
u cs s ~ is finite. E (~n) |  (~,~) is uniformly dominated, then for each n, either m n or m,~ 
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LEMMA 5.1. There is a subsequence (nk) such that either (m~k) or (m~k) is uni- 

formly bounded from above. 

Proof. The lemma follows from the arguments in Proposition 4.23. If the lemma is 

false, taking n big enough one gets r close to ~,~, and points P and Q in PR(r such 

that  a(E~(r162 and (~(Eb(r162 are both arbitrarily small, contradicting 

Proposition 4.8. [] 

Observe that,  in view of Lemma 5.1, there are i=s  or u, and a subsequence {nk} 

is bounded. So let us assume (taking a subsequence if necessary) that,  such that  m~k 

for instance, m~<m<cx) for all n. So we get m such that  

rn 1 P R ( ~ )  and (5.1) I l n y ~  IE~(~)ll'll(ny~nm)-ll ~(~)(v~)ll < ~ Y Er for all E (big) n. 

Since PR(~n) is dense in M, given x, taking a subsequence if necessary, we can suppose 

that  there are x n E P R ( ~ )  with x~-~x. Now let 

E l ( ~ ) = l i m E ~ ( ~ n )  and E 2 ( ~ ) = l i m E ~ ( ~ ) .  

Next we extend the splitting to the whole v-orbit of x. Now (5.1) implies that  the 

splitting is uniformly dominated. Thus, it is the unique D~-invariant splitting of type 

ES@E ~ over the ~p-orbit of x. In other words, E~=E~ and E2=E~ ~. 

Finally, as in the proof of Theorem A we have that  E ~ (~) is uniformly hyperbolic 

(contracting). This completes the proof of Theorem B. 

5.3. P r o o f  of  T h e o r e m  C: s t r o n g  p a r t i a l  h y p e r b o l i c i t y  

Take r and suppose that  it satisfies (4.6): 

(~(E~(r162 >~C>O for every xEAr (5.2) 

Our goal is to prove that,  under the assumptions of Theorem C, the same kind of angular 

estimates hold for the splitting E ~ (r ~s (r Observe that  the arguments in the proof 

of Proposition 4.7 and Theorem 1.1 imply 

LEMMA 5.2. Let r Suppose that there are C and ~>0 such that every 

family of linear maps B 5-close to 7)(r satisfies 

C > 0. 

Then (E~(r  e E y  (r162 c a n  be extended to a partially hyperbolic splitting defined 

on the whole Ar 

By Lemma 5.2, Theorem C follows from the following claim: 
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CLAIM 5.3. Let ~EP(U) .  Then there are C,~>O such that 

C 

for every family of linear maps B 5-close to T~(~). 

Before proving the claim let us end the proof of Theorem C. By Lemma 5.2 and 

Claim 5.3 we have two partially hyperbolic splittings in A~(U), 

E~(~)| and E~(~)| 

where 

Now take 

d im(E~(~) )  = d im(E~(~))  = 2. 

E~(~o) = E~(~)n E~(~o), 

which is D~-invariant and one-dimensionai. Then 

TA~,(u)M = E~(~o)@E~(~)@E~(~). 

Finally, ES(:)  (resp. E~( : ) )  dominates EC(~o). This follows from the dominance of ES(~) 

(resp. E~(~)) over EC~(~) (resp. ES~(~)). This means that A~(U) is strong partially 

hyperbolic. 

This ends the proof of the theorem for diffeomorphisms in P(U)MT~(U). Now the 

proof of Theorem 1.1 allows us to extend this bundle with three invariant directions to 

.A(U) (which is open and dense in T(U)). 
To prove the claim first observe that  if ~EP(U)  and PEP(~) ,  then by Fact 4.19, 

]Ai(P,~o)Ir for a l l i ~ j ,  i , jE{s,c,u}.  (5.3) 

We argue by contradiction. If the claim is false, using Lemma 3.1, we get diffeomor- 

phisms ~ n - - ~  (~nEP(U)NT~(U)) and points PnEPR(~n) with a(E~,~(~n), E~(~,~))--*0. 

Suppose first that  there are infinitely many P~ with index two. We have (see 

Lemma 4.2) that  there is a (nontrivial) transverse intersection between Ws(P,~, ~n) and 

W~'(P~, ~n). Then, as in the proof of Claim 4.12, we perturb ~ to obtain a tangency 

associated to P~. Now the unfolding of this tangency leads to the creation of periodic 

points with complex (nonreal) eigenvaiues (see [PV] for details), contradicting (5.3). 

So we are left to consider the case in which every Pn (big n) has index one. First 

recall that  we are assuming that  c~(E~(~),  E ~ ( ~ , ~ ) ) > C > 0  for all xEA~,(U),  see (5.2). 
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Therefore, ol(EU(~n),ECS(~n))---~O implies that a(E~(qo,0, E~(~n))--*0. We now have 

two possibilities: 

I)~(P~, w=)l 
(1) IAc(Pn,~On)l § 

])t=(Pn, ~on)] is uniformly bounded from above. (2) I~c(P~, ~n)l 
In the first case, using Fact 4.13 and Lemma 3.1, we get r close to ~n such that 

I~  (P~, Cn)l = I)~ (Pn, Ca)l, which contradicts (5.3). 

Finally, if Is is uniformly bounded, we apply Lemma 3.1 to 

perturb (/9 n through the orbit of Pn to get Cn with IA~(Pmr162 contra- 

dicting (5.3). 

5.4. P r o o f  of  Corol lary D 

The corollary follows applying the arguments in the proof of Theorem B to the splittings 

E~ | E c~ and E~ O E cs. 

5.5. Proofs  of Theo rem E and  Corol lary  G 

We divide the proof of the theorem into two parts: approximation by homoclinic tan- 

gencies (which will imply the corollary) and expansion/contraction of the volume. 

5.5.1. Approximation by homoclinic tangencies. Proof of Corollary G. By hypothe- 

ses there are r close to ~, and P and QcHypP(r  of indices 2 and 1, respectively, such 

that Q has an expanding complex eigenvalue (recall Remark 4.15). The next lemma 

immediately implies the corollary. 

LEMMA 5.4. Let r be as above. Then given any RCHyp P(r of index two there is 

r close to r with a homoclinic tangency associated to Re,  where Re is the continuation 

of R f o r e .  

Proof. By Lemma 3.3 there is ~ close to r such that 

(1) WS(R~, ~) and W~(Q~, ~) have a nontrivial transverse intersection, and 

(2) W~(R~, ~) and WS(Q~, ~) have a point of quasitransverse intersection. 

Since Q~ has an expanding complex eigenvalue, W~(R~, ~) spirals around W~(Q~, ~). 

Finally, since WU(R~, ~) and WS(Q~, ~) are quasitransverse we can perturb ~ to obtain 

with a homoclinic tangency associated to Re. [] 

5.5.2. The bundle E c~ is volume-expanding. Proof of Theorem E. The theorem 

follows immediately from the proposition below. 
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PROPOSITION 5.5. Let qoEA(U). Then we have: 

(1) if TAr(v)=ES(~)@EC~'(qo), then E c ( ~ ) = E ~ ( W )  is volume-expanding, 
(2) if TAr(v)=E~'(~)@E~S(qo), then E~(qo)=E~S(~) is volume-contracting. 

Remark 5.6. This proposition does not hold (in general) if WET'(U). To see this ob- 

serve that  in such a case there are two possible choices for the central bundle, either 

EC=E ~s or E~=E c~. Now just take qo having a fixed point P of index two with 

IA~(P))%(P)I<I (then E~=E ~' is not volume-expanding), and a fixed point Q of in- 

dex 1 such that  ])k (Q) As (Q) l > 1 (then E ~ = E ~s is not volume-contracting). 

Proof. Let us suppose, for instance, that  we have TAr(U)----ES(qo)@E~(qo) �9 The case 

TAr (v) = E ~ (qo) @ E cs (~) follows similarly. 

To prove that  the Jacobian of q0 is expanding in the central direction let us first 

observe that  I Jac~o~ qol> 1 for every PEP(qo), that  is, I,k~(P)A~(P)l>l. This is trivial for 

points P with index 1. We claim that  this inequality also holds for points of index 2. 

Suppose contrary to our claim that  there is P with index 2 such that  I,k~(P),kc(P)l< 1. 

By Lemma 5.4, after a perturbation, we can assume that Ws(P, qo) and W~(P, ~) have 

a homoclinic tangency. Such a tangency is sectionally dissipative (the modulus of the 

product of any pair of eigenvalues is less than one), and thus its unfolding leads to sinks 

in U (see [PV]), contradicting Fact 4.4. 

Assume by contradiction that  E~(q0) is not volume-expanding. Then there are 

sequences x~EA~(U), knEN and T,~, with k,~---~oc and Tn--*l +, such that  

I Jac~:(~k~)l < T~ n, 

where Jac~U(~ k) is the Jacobian of D~p~[E~. In other words, one has 

kn--1 
1 cu k---~ ~ l~ < log(T~). 

i=0 

Note that  we can take kn such that  ~J(x~)r for all j ~ i ,  j ,  iE{0,. . . ,k~}. Thus 

for each n we can consider the Dirac measure ~,~ supported on the segments of orbits 

{xn, ..., ~k"(x,O}. Taking a subsequence we can suppose that  (~f~) converges to an in- 

variant measure # such that  

f log I Jac~U(~)l d#(x) <~0. 

Using the ergodic decomposition theorem, one gets v (ergodic and ~-invariant) such that  

f log I Jac~*'(~o)l du(z) <~ O. 
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By the ergodic closing lemma [M3], given e>0  there is r close to ~ and a C-periodic 

point y such that  
1 m~- i  

m~ E l~ Jac~C(y) (r < e, 
i = 0  

where ra~ is the period of y. Observe that  m~--~oo as e-~0. By Lemma 3.1, taking e>0  

arbitrarily small and m~ big, we get r close to r such that  Cm~ (y)= y and 

In other words, 

m e  --1 

1 E l~162 <0.  
m e  i = 0  

cu  m e  [Jacy ( r  

This last inequality means that  y is a sectionally dissipative periodic point of r Now 

the proposition follows from the comments above. E] 

5.6. P r o o f  o f  T h e o r e m  H 

Let TcDif f (M) be a robustly transitive diffeomorphism. If ~ is Anosov (uniformly 

hyperbolic) then M = T  3 and we are done, see IN]. Otherwise, by Theorem B, T has a 

partially hyperbolic splitting, say E ~ (~) |  c~' (T). By hypothesis, E ~ (T) and E c~ (~) are 

both integrable. Denote by 9v~(~) the integral foliation of E~(T), i=s or cu. 

We argue by contradiction. Suppose that  ~rl(M) is finite. By the C~ theorem 

(see [CL]), ~c~,(~) has a compact leaf F.  Moreover, the strong stable foliation 9v~(~) is 

transverse to F.  Taking a convenient finite covering/~ of M (for instance the universal 

one) we can suppose that  the lift F of F is orientable, and that  the lifts 9~(T) and 

5 ~ (~) of ~'~ (~) and ~ (~), respectively, are transversally orientable. Moreover, since 

the covering is finite, one has that  F is compact. 

We claim that  there is a curve a which intersects /~ transversally infinitely many 

times (always with the same orientation). Now, using this curve, it is not hard to 

construct infinitely many closed curves that  are not homotopic to each other. But this 

is impossible when 7rl(M) is finite. 

Let us now prove the claim. We first take r close to ~ such that  PR(r is hyperbolic 

and dense in M, see Lemma 4.2. Then there is a periodic point P of r such that  its strong 

stable manifold W~(P,  r which is part of a leaf of ~'~(r intersects F (transversally). 

Let us first suppose that  P has index 1. Thus we have W~(P, r r From 

Lemma 4.2, P has a homoclinic transverse point. Then, by the )~-lemma, W~(P,r 

accumulates onto itself. This implies that  W" (P, r intersects F infinitely many times. 
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Take as a the lift of W*(P, r Since the covering is finite one has tha t  c~ intersects/~ 

(transversally) infinitely many  times. 

Finally, suppose that  P has index 2. Since r is not hyperbolic there is a periodic 

point Q of r with index 1. By Lemma 3.3 we can assume that  WS(Q, r and W~(P, r 

meet transversally, and that  W~(Q, r and Ws(P, r intersect quasitransversally. This 

means that ,  generically, W*(Q, r accumulates on W**(P, r Thus, W*(Q, r  

F transversally. Now we can construct the curve ~ as before. This ends the proof of the 

theorem. 
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