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1. I n t r o d u c t i o n  

In this paper we study one-dimensional Schrhdinger operators on the "half-line'. 

mainly discuss discrete operators on/2(Z+),  defined by 

We 

( Her ) (n) = r 1 6 2  1) + V(n) r (1.1) 

along with a phase boundary condition 

~(0) cos 0+r  sin 0 = 0, (1.2) 

where _ 1 ~ < 0 <  ~.1 The potential Y={Y(n)}~_ l_ is a sequence of real numbers. While 

we discuss such discrete operators, our main results (namely, Theorems 1.1 and 1.2 below) 

are also valid for their continuous analogs of the form -d2/dx 2 +V(x) on L2(R+), as long 

as the potential V(x) is such that  we are in the limit point case (so the operator is 

essentially self-adjoint). The proofs for the discrete and continuous cases are essentially 

the same. 

While we are mostly interested here in operators of the form (1.1), our core results 

are valid (and will be proven) for more general tridiagonal operators of the form 

( Ho r = a(n) r (n+ 1) + a(n-  1 ) r  1) + b(n) r  (1.3) 

where the b(n) are real numbers, the a(n) are real and a(n)r for all n. Moreover, 

we assume that  ~n~=l la(n)l-1--oo,  which is sufficient to ensure that  these operators 

are essentially self-adjoint [2]. The study of an operator of the form (1.3) along with 
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the boundary condition (1.2) is equivalent to the study of this operator with a Dirichlet 

boundary condition 

r =0 ,  r  (1.4) 

along with a rank-one perturbation at the origin 

b(1) --* b(1) -a (0)  tan 0. (1.5) 

Thus, without loss, we confine our discussion to operators of the form (1.3) acting on 

/2(Z+) (with Z+--{1, 2,3,...}, and thus a(n) and b(n) being defined for n=1,2,3,...) 
along with the boundary condition (1.4) (so these are simply semi-infinite tridiagonal 

matrices), and interpret the boundary phase 9 as the modification of b(1) given by (1.5) 

(where we are free to choose a(0), so we take a(0)=l ) .  Our He thus has the form 

b(1)- tanO a(1) 0 0 0 ... 

a(1) b(2) a(2) 0 0 ... 

0 a(2) 6(3) a(3) 0 ... 

H ~ =  0 0 a(3) 5(4) a(4) ... 

0 0 0 a(4) b(5) ... 

i : : : : "" 

For such operators, the vector 51 ("the delta-function at the origin") is cyclic, and 

so the spectral problem reduces to the study of the single spectral measure # =  #~1- The 

study of p is related to the study of the Weyl-Titchmarsh m-function, which coincides 

with the Borel transform of/~, namely, 

re(z) = [ d#(x) 
(1.6) 

J X--Z 

Our main goal here is to extend the Gilbert-Pearson theory of subordinacy [6], [5] 

(also see [10] for the discrete case), which relates spectral properties of the operator (1.3) 

to properties of solutions of the corresponding Schrhdinger equation 

a(n)u(n+ l)+a(n- 1) u ( n -  1)+b(n)u(n) = Eu(n). (1.7) 

Recall that  a solution u of (1.7) is called subordinate if 

lim [[U[[L = 0  (1.8) 
IIvllL 

for any other solution v of (1.7), where [[. [[L denotes the norm of the solution over a 

lattice interval of length L. That  is, we define 

I- [L]  

,,Ul, L "~ [n~= 1 ,u(n)[2 + (L-[L]) tu([L]+ l),2] 1/2, (1.9) 
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where [L] denotes the integer part of L. 

The Gilbert Pearson theory relates the Lebesgue decomposition of the spectral mea- 

sure # to subordinacy of solutions as follows: The absolutely continuous part of # is 

supported on the set of energies E for which (1.7) has no subordinate solutions. (In fact, 

this set of energies is, up to a set of both Lebesgue and spectral measure zero, the set 

where it has a finite non-vanishing derivative. That  is, it can be identified as the essential 

support of the absolutely continuous part of #.) The singular part of # is supported on 

the set of energies for which the solutions which obey the appropriate boundary condition 

(namely, a Dirichlet boundary condition) are subordinate. (Moreover, this set coincides 

with the set of energies where # has an infinite derivative, and can thus be identified as 

the essential support of the singular part of #.) 

Our primary purpose here is to provide tools for answering somewhat more delicate 

spectral questions. Explicitly, those arising when one tries to distinguish between differ- 

ent kinds of singular-continuous spectra based on the classification of singular-continuous 

measures with respect to Hausdorff measures and dimensions. Those questions are rel- 

evant to the study of quantum dynamics, as non-integral spectral Hausdorff dimensions 

are often connected with anomalous transport  properties (see, e.g., [13]). 

Given an He of the form defined by (1.3), and E E R ,  we let ul be the solution of 

(1.7) which obeys the Dirichlet boundary condition 

ul(O) ---- O, Ul(1) ---- 1, (1.10) 

and let u2 be the solution of (1.7) which obeys the (orthogonal) boundary condition 

u2(O) = 1, u2(1) = O. (1.11) 

Now given any ~>0, we define a length L(r ce) by requiring the equality 

1 
II lllL( >[lu llL( ) = (1.12) 

We note (see (1.15) below) that  at most one of either ul or u2 may be in /2  and so 

the left-hand side of (1.12) is a monotonely increasing continuous function of L which 

vanishes for L =  1 and goes to infinity as L goes to infinity. Similarly, the right-hand side 

of (1.12) is a monotonely decreasing continuous function of ~ which goes to infinity as 

goes to 0. Thus the function L(r is well defined (by (1.12)), and it is a monotonely 

decreasing continuous function which goes to infinity as E goes to 0. Our core result 

is the following inequality which relates the Weyl-Titchmarsh m-function (for z in the 

upper half-plane) to the solutions ul and u2. 
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THEOREM 1.1. Let He be of the form (1.3), and let E c R ,  e > 0  be given. Then the 

following inequality holds: 

5-v  IlulllL( ) 5+v  < - - <  
Im(E+i~)l Nu2]IL(~) ]m(E+ir 

From Theorem 1.1 (along with the theory of rank-one perturbations [18]), one can 

easily recover the original results of Gilbert-Pearson [6]. Moreover, our proof of this 

theorem is somewhat simpler than their analysis, so that  we obtain a simplification (on 

top of a strengthening) of their theory. This is enabled in part due to our definition of 

L(~) by (1.12). 

A particular consequence of Theorem 1.1 is 

T H E O R E M  1 . 2 .  

if and only if 

Let He be of the form (1.3), and let E e R  and aE(0 ,  1). Then 

# ( ( E - s , E + z ) )  
lim sup = 0 ( 3  

l iminf IIu~IlL = 0  
L--*c~ flU2 [l i  ' 

where j 3 = a / ( 2 - a ) .  

As we shall discuss in w properties such as singularity and continuity of measures 

with respect to dimensional Hausdorff measures are determined by local scaling properties 

of the kind that  appear in Theorem 1.2. Thus, this theorem provides an effective tool for 

the analysis of such properties for concrete SchrSdinger operators, as long as the nature 

of solutions of the corresponding SchrSdinger equations is sufficiently well understood. It 

can also be combined with two further basic facts. The first is the existence of generalized 

eigenfunctions [2], [14], [17], from which it is known that  for a.e. E with respect to the 

spectral measure #, the solution u I must obey 

lim sup llulLIL 
L--*oc L 1/2 in L 

and 

- -  < oc (1 .13)  

lira inf llu~llL L--*oo ~ < 00. 

The second is the constancy of the Wronskian 

(1.14) 

a(n)(u l (n+l)u2(n)-u2(n+l)ul (n) )  = 1 for all n, (1.15) 
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which implies that 

HUllILHU2HL >~ ~ la(n)l-l+(L-[L])la([L])] -1 . (1.16) 

As we shall see below, the combination of (1.13)-(1.16) with Theorem 1.2 leads to a 

number of fairly general results from which one can deduce spectral results using only 

partial information about the asymptotic behavior of solutions. 

As a primary example of using Theorem 1.2, we shall apply it to study a family of 

Schr6dinger operators of the form (1.1) with sparse barrier potentials. More explicitly, 

we consider potentials which vanish for all n outside a sparse (lastly growing) sequence of 

points {L~}~=I where IV(L~)l---~oa as n-~oc.  Simon Spencer [21] have shown that the 

Schrhdinger operators corresponding to such potentials have no absolutely continuous 

spectrum; and Gordon [7] has shown that if the I V(Ln)I grow sufficiently fast (compared 

to the growth of the Ln), then for (Lebesgue) a.e. boundary phase 0, the corresponding 

operators have pure point spectrum with exponentially decaying eigenfunctions (also 

see [11]). It is easy to see [22], however, that if the L~ grow sufficiently fast (compared 

to the growth of the IV(L~)I) then, for every boundary phase 0, the spectrum in ( -2 ,  2) 

is purely singular-continuous; and Simon [19] has recently shown that if the growth is 

even faster, then the spectrum in ( -2 ,  2) is purely one-dimensional, in the sense that the 

spectral measure does not give weight to sets of Hausdorff dimension less than 1. Here 

we will show 

THEOREM 1.3. Let a r  1). Let L~=2  (n~) and define a potential V(k) for k>0  

by V(L~)=LO-~)/2~; V(k)=0  if k~{Ln},~=l. For each OE(-�89 1 ~ ) ,  let Ho be the 

Schrhdinger operator on 12(Z +) defined by (1.1), (1.2). Then: 

(i) For every boundary phase 0, the spectrum of He consists of the interval [-2,  2] 

(which is the essential spectrum) along with some discrete point spectrum outside this 

interval. 

(ii) For every 0, the Hausdorff dimensionality of the spectrum in ( -2 ,  2) is bounded 

between dimensions a and/3-26/ (1+a) ,  in the sense that the restriction of the spectral 

measure to ( -2 ,  2) is supported on a set of Hausdorff dimension ~ and does not give 

weight to sets of Hausdorff dimension less than a. 

(iii) For Lebesgue a.e. 0, the spectrum in [-2, 2] is of exact dimension a, namely, 

the restriction of the spectral measure to [-2, 2] is supported on a set of Hausdorff di- 

mension (~ and does not give weight to sets of Hausdorff dimension less than a. 

Remarks. (1) The result only requires the L~ to be sufficiently sparse (namely, to 
n - - 1  grow sufficiently fast). The precise condition that our proof needs is that  nk=l Lk<L~, 
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where s can be chosen arbitrarily small for n sufficiently large. L n = 2  (n~) is just a 

particular choice for which this property holds. 

(2) As far as we know, Theorem 1.3 gives the first rigorous example of a Schrhdinger 

operator with non-trivial exact spectral dimension. 

The main results of this paper were previously announced in [8] (more explicitly, 

our Theorems 1.2 and 1.3 are essentially Theorems 1 and 2 of [8]). In a forthcoming 

paper [9], we will provide the technical details of extending the power-law subordinacy 

ideas introduced here to handle whole-line problems, and apply it to various quasiperiodic 

operators. The applications will include, in particular, the proof of zero-dimensionality of 

the spectral measure of the almost Mathieu operator for couplings above the critical (for 

all irrational rotations and all phases), and certain spectral continuity of the Fibonacci 

Hamiltonian. That is, proofs of Theorems 3 and 4 of [8]. 

The rest of this paper is organized as follows. In w we review some basic facts 

concerning Hausdorff measures and dimensional spectral properties. In w we prove 

Theorems i.i and 1.2. In w we discuss some general consequences of Theorem 1.2, and 

in w we prove Theorem 1.3. 

2. Dimensional spectral properties 

Recall that  for any subset S of R and a E  [0, 1], the a-dimensional Hausdorff measure, h a, 

is given by 

ha(S)- lim inf ~ Ib~l a, (2.1) 
~-*0 ~-covers 

where a (i-cover is a cover of S by a countable collection of intervals, SC ~J~--1 b~, such 

that  for each ~ the length of b~ is at most 5. (Technically, we consider h a as being 

defined by (2.1) also for real a outside [0, 1], but the resulting h a are trivial in such case.) 

h a, as defined by (2.1), is an outer measure on R, and its restriction to Borel sets is a 

Borel measure, h 1 coincides with the Lebesgue measure, and h ~ is the counting measure 

(assigning to each set the number of points in it), such that  the family {h a 1 0 ~ a ~ l )  

can be viewed as a way of continuously interpolating between the counting measure and 

the Lebesgue measure. Civen any Or R, there exists a unique a ( S ) E  [0, 1] such that  

h a ( S ) = 0  for any a>a(S), and ha(S)- -oc  for any a < a ( S ) .  This unique a(S) is called 

the Hausdorff dimension of S. A rich theory of decomposing measures with respect to 

Hausdorff measures has been developed by Rogers and Taylor [15], [16]. Here we only 

discuss a small part of it. A much more detailed description has been given by Last [13]. 

Given a,  a measure # is called a-continuous (ac) if p(S)=O for every set S with 

ha(S) =0. It is called a-singular (as) if it is supported on some set S with ha(S)--O. We 
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say that  # is one-dimensional (od) if it is a-continuous for every a <  1. We say that  it 

is zero-dimensional (zd) if it is a-singular for every a > 0 .  A measure # is said to have 

exact dimension a if, for every r  it is both (a-~)-cont inuous and (a+r 

Given a (positive, finite) measure # and aC [0, 1], we define 

D'~(x) = lim sup # ( (x -C ,  x+E))  (2.2) 
~-~0 (2e)~ 

and 

Too -- {x I D~(x) = oc}. 

The restriction # ( T ~ n  �9 ) =#as  is a-singular, and # ( ( R \ T ~ ) n  �9 ) - # a t  is a-continuous. 

Thus, each measure decomposes uniquely into an a-continuous part and an a-singular 

part: # = # a c + # a s .  Moreover, an a-singular measure must have D ~ ( x ) = e c  a.e. (with 

respect to it) and an a-continuous measure must have D~(x)<oc a.e. It is important to 

note that  D~(x) is defined with a limsup. The corresponding limit need not exist. 

Consider now a separable Hilbert space 7-/ and a self-adjoint operator H.  For 

each ~bCTY, we denote by #r the spectral measure for ~p (and H) .  We let 7Yac- 

{~]#r  is a-continuous} and T /a s~{~[# r  is a-singular}. 7-/ar and 7-/as are mutually 

orthogonal closed subspaces which are invariant under H,  and 7-I decomposes as 7-/= 

7-/~c| The a-continuous spectrum (0.~) and a-singular spectrum (o-~s) are defined 

as the spectra of the restrictions of H to the corresponding subspaces, and Oo.=o.~,cUo'as. 
Thus, the standard spectral-theoretical scheme, which uses the Lebesgue decomposition 

of a Borel measure into absolutely continuous, singular-continuous and pure point parts, 

can be extended to include further decompositions with respect to Hausdorff measures. 

As described in [13], the full picture is somewhat richer than discussed above. For 

every dimension aC(0,  1), there is a natural unique decomposition (of a o.-finite Borel 

measure # on R) into five parts: one below the dimension a, one above it, and three 

within it of which the middle one is absolutely continuous with respect to h a. Fur- 

thermore, this picture can be extended to consider more general Hausdorff measures 

(namely, ones that  do not come from a power law) and families of such measures--as  

originally discussed by Rogers-Taylor [15], [16]. All of these measure decompositions lead 

to corresponding Hilbert space spectral decompositions. An important  point for us in 

the current paper is that  continuity and singularity with respect to Hausdorff measures 

are completely determined from the a.e. local scaling behavior of the measure. Know- 

ing D'~(x) for every a in [0, 1] and a.e. x with respect to # completely determines p's 

decomposition with respect to dimensional Hausdorff measures. Knowing only the local 

dimension 
at,(x ) = lim inf log (# ( (x - r  x+E)))  (2.3) 

e-,o log e 
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(for a.e. x with respect to #) determines its decomposition with respect to Hausdorff 

dimensions. In particular, # is of exact dimension a if and only if a~(x)=a a.e. with 

respect to it. 

3. P r o o f  of  T h e o r e m s  1.1 and  1.2 

Let z=E§162 and consider the equation 

a(n) u(n+ 1) + a(n-  1) u(n-  1) + b(n) u(n) = zu(n). (3.1) 

It is known that for E>0, (3.1) has a unique (up to normalization) solution fi~ which is 

12 at infinity, and moreover, 
~z(1) (3.2) 

r e ( z ) -  ~z(0) 

We normalize fiz by letting fi~(0)=l, such that we have ~ ( 1 ) = - m ( z ) .  

By considering an/2-solution u in (3.1), multiplying both sides of the equation by 

u* (n) (the complex conjugate of u(n)), taking imaginary parts, and summing both sides 

from 1 to oc, we obtain the equality Im(a(O)u(O)u*(1))=r ~n~ [u(n)[ 2, which for U=~z 
implies 

Imm(z) 
- -  ~ I~z(n)l 2. (3.3) 

C 
n : l  

We also have 

LEMMA 3.]. For any n>0, fi~(n) obeys the equality 

n n 

~(n)=u2(n)-m(z)ul(n)- ir  E ul(k)~zz(k)§ E u2(k)~z(k), (3.4) 
k = l  k : l  

where ul and u2 are the solutions of equation (1.7) obeying the boundary conditions 
(1.10) and (1.11), respectively. 

Remark. Note that Ul and u2 in (3.4) are solutions of (1.7), namely, they solve (3.1), 

but with r  

Proof. Let O(n) be the right-hand side of (3.4) for n>0, and let ~(0):1.  By taking 

into account the Wronskian conservation (1.15), it is easy to verify that (9(n)}~_ 0 obeys 

a(n) ~ (n + 1) = - a ( n -  1)~ ( n -  1) + ( E -  b(n) ) 9(n) + ir (n) 

for any n>0. Since for n>0, 

a(n)~z(n§ l ) = - a ( n -  1) ~z ( n -  1)+(E+ir )~z(n), 

(3.5) 

(3.6) 
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and since (by (1.10), (1.11)) 9(0)=~z(0), 9(1)=~2z(1), we see by induction that  9(n)= 

753(n) for any n ) 0 .  [] 

Proof of Theorem 1.1. From (3.4) we see that  for any L > I ,  

[[~zNL ~ [[u2--m(Z)ulBBL-- 2CIlUlHLHU2HLB[~zBiL �9 (3 .7)  

By considering n=n( r  which implies 2~[[uliiLilu2i]n=l, we obtain 

2[l~zllL(~)/> Ilu2--m(z)ulllL(~). in.s) 

Squaring the two sides of (3.8) and noting that  by (3.3), 

II~zll~(~) < I[~zll~ - Im re(z), (3.9) 
s 

we obtain 
4 Im re(z) ~' 

> Iru~-.~(Z)Ul I1~(,) r (3.10) 

>1 Ilu~ ll~(~) + lm( z ) l~ llul ll~(~) -- 21m( z) l " llu211L(~) llul llL(~). 
Now by (1.12), we have II u2 II L (~) II u 111L(~) = 1/2 C, and so multiplying the two sides of (3.10) 

by 2e yields 

[lu~IIL(~) 15 IluxIIL(,) _ 2[m(z)l, (3.11) Simon(z) > II~IlIL(~-------~ + Ira(z) ilu~ilL(~) 
which implies 

IlullIL(~) 101m(z)[+ Ilu211L(~) 
Im(z)12 Ilu2 HL(~) IlUllIL(~ < 0. (3.12) 

Solving (3.12) as a quadratic inequality for the variable [m(z)l, one obtains 

( 5 - v ~ )  11~211L(~) ( 5 + v ~ )  Ilu211L(~) (3.13) 
Ilu~llL(~ < Im(z)l < IIUXHL(~ ) , 

from which Theorem 1.1 follows. [] 

Proof of Theorem 1.2. For any two functions f and g of ~, we write f ~ g  if there 

are positive constants C1 and C2 such that  C l f < g < C 2 f  for all ~>0. Using (1.12) and 

Theorem 1.1, we obtain 

el-~lrn(E+iE)l u ~-1 ~-111u211L(~) _/'llu2II~(~)'~ 2-~ (3.14) 
~11 211Le~)IluxlIL(~>II~IIL(~) \IlUXlIL(~------~] ' 

from which we see that  

l i m s u p e l - " l m ( E + i ~ ) l = o o  r  l iminf IlullIL(,) =0 .  (3.15) 
~-~0 L - ~  Ilu211~(,/ 

At the same time, it is shown in [4] that  

l imsupel-~[m(E+ie) l=oe r l i m s u p # ( ( E - e ' E + e ) ) = o c ,  (3.16) 

and so we obtain Theorem 1.2. [] 
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4. Some  consequences  of  T h e o r e m  1.2 

Our goal in this section is to discuss some consequences of Theorem 1.2 and the general 

principles (1.13)-(1.16) which permit one to deduce spectral results using only partial 

information about the asymptotic behavior of solutions. We start with 

COROLLARY 4.1. Suppose that for some /3>1 and every E in some Borel set A, 

(1.7) has a solution v obeying 
livll  

lim sup - ~ -  > 0, 
L---* c~ 

and let a--2/ ( l+f~) .  Then, for every ~>0, the restriction # ( A N . )  is (a+~)-singular. 

Proof. # is supported on the set of energies E for which ul obeys (1.13), and so we 

only need to consider such E. For every E E A ,  v is some linear combination of ul and u2, 

say v = aul + bu2, such that  for every L, I Iv II L ~< l al" I lul II L + I bl' I lu2 II L. For every E where 

(1.13) holds, we see that  we must have 550, and s o  Ilu2IIL~(llVttL-laI'IIUlllL)/lbl for 

every L. Thus, we must also have 

limsup Ilu2ll~ > 0 (4.1) 
L---*oo LZ 

for such E. Let ~>0 be given, and let 

a + e  l + � 8 9  1 (4.2) - > 

Then we see that  for a.e. E with respect to #(AA �9 ), there is a constant C such that  

CL 1/2 In L 
lim inf Ilul IlL ~ lim inf -- lim inf CL (1-~)/~ In L = 0. (4.3) 
L---*or ~ L---+oo L'Y~/2 L~oc 

By Theorem 1.2, this implies that  for a.e. E with respect to #(AN �9 ), D~+~(E)=oo, and 

so we obtain the corollary. [] 

It is often convenient, in one-dimensional spectral theory, to formulate results in 

terms of the (2 x 2)-transfer matrices (I)n(E) =--T~(E)T~_I(E) ... TI(E),  where 

E - V ( n )  a ( n - 1 )  ) 

Tn(E) =- a(n) a(n) . (4.4) 

1 0 

The On(E) are related to solutions of equation (1.7) by 

( u ( n + l )  ~ 
u(n) / =On(E)  (:((10))) ' (4.5) 
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and so 
~n(E) - - (u l (n+l )  u2(n+ l )  

ul(n) u2(n) )"  (4.6) 

With these notations, Corollary 4.1 can now be reformulated as 

COROLLARY 4.2. Suppose that for some/3> 1 and every E in some Borel set A, 

L 
1 

lim sup L-5 E JJ~-(E)I] e > 0, 
L - - * o o  n = l  

and let a=2/(1+/3) .  Then, for every ~>0, the restriction #(AN. )  is (a+~)-singular. 

Proof. From (4.6) we see that  

IIr l[ ~ < [ul(n+l)[2+]u~(n)t2+lu2(n+l)[2+[u2(n)[ 2, 

and thus 
L 

[ [~ ( E)  II ~ ~< 2(11~1[[~+1 + II~ II~+J. (4.7) 
n = l  

Since for a.e. E with respect to #, (1.13) holds, we deduce that  for such E, (4.1) must 

hold. Thus, Corollary 4.1 implies Corollary 4.2. [] 

Recall that for an equation of the form (1.7), the upper Lyapunov exponent ~(E) is 

defined by 

9(E) ~ lim sup 1 In ll(I)n(E)ll. 
n----* o o  n 

A rather soft application of Corollary 4.2 gives 

COROLLARY 4.3. Suppose that 9 ( E) > 0  for every E in some Borel set A. Then the 
restriction #(AN.) is zero-dimensional. 

Proof. 9 (E)>0  implies that  limSUPL_~oo(1/n~)~-~L=l II~n(E)ll2>0 for any /3>0. 

Thus, by Corollary 4.2, #(AN.  ) is a-singular for any a > 0 .  [] 

Example. Consider an operator of the form (1.1) with V(n)=A cos(2:rwn+~), where 

A>2, qoC[0, 27r], and w is an irrational. We will show in [9] that  in such a case, ~ ( E ) > 0  

for any E E R .  Thus, by Corollary 4.3, we obtain that  for every boundary phase 0, the 

corresponding spectral measure # is zero-dimensional. 

Corollary 4.1 and its derivatives, Corollaries 4.2 and 4.3, say that  the existence of 

fastly growing solutions imply corresponding singularity of the spectral measure. A weak 

inverse of this fact is given by 
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COROLLARY 4.4. For any L>0,  let 

RL=--~([L]n~=ll[a(n),-I+(L-[L])la([L])I-t ) �9 

Suppose that for some 1 ~ < 2  and every E in some Borel set A, every solution v of 
(1.7) obeys 

l imsu Ilvll~ 
L--+a~ p R----~- L <oo. 

Then the restriction >(AN.)  is (2-  l~)-continuous. 

Remark. Note that  for/3= 1 and a(n) = 1 for all n, Corollary 4.4 implies in particular 

that  energies for which (1.7) has only bounded solutions must be associated with the 

absolutely continuous part of the spectral measure/~. This is a known fact, which is an 

immediate consequence of the Gilbert-Pearson theory, although it can also be shown by 

different means [20]. Corollary 4.4 is the natural generalization of this fact. 

Proof. Let EEA.  By (1.16), we have IlUl[[L[[U2]IL•RL, and since [[u2[[2L<CR~ L for 

some constant C, we see that  Hul [[L> C-  1/2R1-~/2. Thus, if 

2 - ~  2 - / 3  
~ -  - (4 .8 )  

2 - ( 2 - / 3 )  /3 ' 

we have that 

IlUlII_~_L_L C-O+-y)12R~-~12-'y~12 C -1t~ > O. (4.9) 
Jlu211~ > = 

By Theorem 1.2, it follows that  #(AA.  ) is (2-/3)-continuous. [] 

Another general application of Theorem 1.2 relates averaged decay of generalized 

eigenfunctions (if it happens to occur) to dimensional Hausdorff properties: 

COROLLARY 4.5. Let RL be as in Corollary 4.4. Suppose that 

l iminf [[u1[]2 = 0  

for every E in some Borel set A. Then the restriction # (AN. )  is a-singular. 

Remarks. (i) Note, in particular, that  if the generalized eigenfunctions are averagely 

decaying, then #(AN.  ) must be singular. 

(ii) Kiselev-Last [12] have recently obtained a generalization of Corollary 4.5 to 

multi-dimensional Schr5dinger operators. 
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Proof. Let EeA and /7-c~/(2-c~). By (1.16), we have IlullILIlu211L>~RL, and so 

Ilu211~>.(RL/IlullIL)Z. Thus, we have 

/I lusll2 k 1/(2-~) 
l iminf II~,IIL < l i m i n f  I1 1111+n - l i m i n f  =0.  (4.10) 

By Theorem 1.2, it follows that  #(An. ) is a-singular. [] 

As a final remark to this section, we note that  while Theorems 1.1 and 1.2 are also 

valid for continuous Schrhdinger operators on L2(R +) (and so are suitable versions of 

Corollaries 4.1 4.3), Corollaries 4.4 and 4.5 are not. Their proofs use the fact that  the 

Wronskian in the discrete case involves only solutions, as opposed to the continuous case 

where the Wronskian also involves derivatives. Continuous Schrhdinger operators may 

have, for example, absolutely continuous spectrum along with decaying eigenfunctions 

(e.g., the potential V(x)=-x, for which the eigenfunctions are decaying Airy functions). 

5. P r o o f  of  T h e o r e m  1.3 

Proof of (i). Clearly, [-2, 2] is in the essential spectrum, since the potential vanishes 

over arbitrarily long intervals, and so approximate eigenvectors for the free (discrete) 

Laplacian on/2(Z)  are also approximate eigenvectors for He. To see that  the spectrum 

outside [-2, 2] consists only of some isolated eigenvalues, we consider the discrete Lapla- 

cian as a perturbation of the potential V. The spectrum of V consists of an infinite 

multiplicity eigenvalue at 0, along with simple isolated eigenvalues which correspond to 

the non-vanishing values of the potential. For any E outside [-2, 2], there are at most 

finitely many simple eigenvalues within a distance 2 of E. Thus, since the norm of the 

discrete Laplacian is 2, it follows from perturbation theory that  there cannot be any 

essential spectrum outside [-2, 2]. [] 

Proof of (ii). Consider a closed interval I=[a,b]C(-2,2). If we can show that  

# ( I A .  ) has the desired properties for such an arbitrarily chosen I, it will follow that  

# ( ( -2 ,  2)A. ) has them. For every ECI, m>k>~O, let 

- Tm(E) T . _ I ( E )  ... Tk+t(E), 

where the T,~(E) are defined by (4.4). Ok,re(E) is the transfer matrix from k to m, and 

we denote O0,,~(E) by Om(E) as in w Since we always have det(Ok,m(E))=l ,  it follows 

that  Hc~,l(E)ll=H~k,m(E)ll. For any n c Z  +, if L~<~k<m<L~+l, then ~k,,~(E) is the 

same as the corresponding transfer matrix for the free (discrete) Laplacian. In particular, 
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there is a constant C I ,  depending only on the interval I ,  such that  1~< II~Pk,m(E)ll <Ct 
for any such k, m and ECI. Moreover, for any n E Z  +, we have 

OL,._I,L~,(E)=TL,~(E)= (E-VI(Ln) --01) , (5.1) 

and so 

max( l ,  V(Ln)-2) <~ IlTL~(E)ll ~ V(Ln)+3 .  (5.2) 

Consider now some n E Z  + and L,~<~m<Ln+l. Then we have 

g2m(E) = CL,,m(E)TL,~(E)r ~L1,L2-1(E)TL~(E)g2LI-I(E), 
(5.3) 

and thus we see tha t  

l ~ I  r n l ( 1 - - a ) / 2 c ~  
It~m(E)II • C~ +1 (V(Lk)+3)  < C~ t n  Lk I , (5.4) 

k = l  ' - k = l  " 

where C1 is some constant depending on CI and a. Similarly, for large n, we also have 

[ ]' 
k = l  L L k = I  J 

n V 'n  k k n 
where C2 is some constant. Since Hk=lLk=2 ~k=~ , and since (1/n'~)~k=lkk---~l as 
n - - ~ ,  we see that  for large n, 

n-i ]-I I~ 
L~ -~ < Lk Ln < Lk < --n , 

- -  k = l  

where 6 can be made arbitrarily small by taking n sufficiently large. Similarly, for large n, 

we also have C'~<L~ and C~<L~. Thus, we deduce tha t  for any L,<~m<Ln+l, 

Z0-~) /2~-e < II@m(E)ll ~< ro-~)/2~+~ (5.7) n - - n  , 

for any 6 and sufficiently large n. By considering m=2Ln, it follows from (5.7) tha t  

s II~k(E)ll 2 ~>- ~n~r r0-~) /~-2~ = _~r. '/~-2~ = (1)'/"-2~m'/'~-2~. (5.S) 
k = l  

Thus, by Corollary 4.2, we see that  for any 6>0,  # ( I n  - ) is (2 (~ / ( l+a)+6)-s ingular .  

Next, we need to establish the desired continuity of # ( I A  - ), namely, to show that  

for any 6>0,  # ( I A . )  is (a -6) -cont innous .  Let ~ = a / ( 2 - a ) .  By Theorem 1.2, it is 

sufficient to show tha t  for every ECI  and 5>0,  

lim inf Ilu1112" >0 .  (5.9) 
m ~  i1~11~ -~) 
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Since for every m, Ju~(m)12+Ju2(m)12~ JJCm(E)l1-2, we see, by (5.7), that  for every e>0, 

sufficiently large n, and Ln ~<m<L,+l ,  

llUlll 2 > �89 (5.10) 

Letting l=-m-Ln, we see that  (5.10) implies 

llu~ II ~ ~- ~-~-~-(~-~)/"-~'~- ~,~ ~, (5.11) 

for n large. Similarly, we have 

Ilu~ll~<~ r(~-'~)/~+~"-(~ r ~ ( ~ - ~ ) / ~ + ~  (5.12) 

and thus for n large, 
2 l + e  llu~lI,.~ <L~ +L(Z-~)/~'+~l. (5.13) 

By combining (5.11) and (5.13), and denoting "?- (1-c0/c~ , we obtain 

Ilu~]l~ L~-~+L;'Y-~I > ~f,,~,~(l). (5.14) 

By computing the derivative of fn,~,5(l), one easily verifies that  for a fixed 0<6<~, 
sufficiently large n, and sufficiently small ~, fn,~,~(l) has a single minimum on [0, oc), 

which occurs at the point where 

L~.~_~_(~_5)L~+~ L~-~ + Ln "~-~l 
LI+~ + L~n+e I ---0. (5.15) 

(5.15) can be solved to yield 

and at the minimum point 

so we have 

rain 
lc[0,~) 

l + ' y  I-V l= (~-5)L~ - L ,  
1 + 5 - ~  ' 

L~2"Y-2~ ( LI+r + L~+~l), L~-~+L~'Y-~I- /~-6 

(5.16) 

(5.17) 

L~2~_2z [ (~_6)LI+,y__L~_, Y ]1+~-# 
A'~'~(/) = # - 5  LI+~+ L~+~ (5.18) 

- n  l + 5 - f l  J " 

As n--~oc and ~--~0, the right-hand side of (5.18) is of order L (1+2~+~)(1+~-#)-2~-2~~ , and 

since (1+2"y)(1-f~)-2")'=0, we see that  it goes to infinity, and thus, in particular, it is 

bounded away from zero. By (5.14), this implies (5.9). [] 
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Proof of (iii). In order to prove (iii), we will establish that  for Lebesgue a.e. E,  (1.7) 

has solutions with appropriate decay properties. It will then follow from the theory of 

rank-one perturbations and from the uniqueness of subordinate solutions that  for a.e. 

boundary phase 0 and a.e. E with respect to #, the solution ul must be one of these 

decaying solutions. 

Fix some boundary phase 00, say 00=0, and let H be Ho for 0=00. For each m c Z  +, 

let Fm be the operator on/2(Z+) with matrix elements 

((~i, rrn~j) = (~i,m- l ~j,m q-~i,m(~j,rn-1, (5 .20)  

where 6i,j is the usual Kronecker symbol. For each k c Z  +, let ~Ik=H-FLk, Hk= 
H - - r L k - - r L k + l ,  and for every z e C ,  let G(z)=(H-z) -1, Gk(z)=(~Ik--z) -1 and 

G k ( z ) = ( H k - z )  -1. Moreover, for every i, j e Z  +, let 

G(i,j,z)={di,G(z)6j), Gk(i,j,z)=(6i,Gk(z)~j) and Gk(i,j,z)=(~,Gk(z)hj). 

Consider now some n>nk. Using the resolvent identity G(z)=Gk(z)-G(z)FLkGk(Z), 
we obtain that  

G(1, n, z) = - G ( 1 ,  Lk-  1, z)Gk(nk, n, z). (5.21) 

Similarly, we have Gk(z)=Gk(z)-Gk(z)Fnk+lGk(z), from which it follows that  

Gk(Lk,n,z) =--Gk(Lk,Lk,z)Gk(Lk+l,n,z)- --1 
V(Lk)-Z 

By combining (5.21) and (5.22), we obtain 

Gk(Lk+l,n,z). (5.22) 

1 (5.23) G(1, n, z) = G(1, Lk-- 1, z)GkiLk + 1, n, z) V(Lk)- z" 

Consider now E c R  and z=E+iE in the upper half-plane. The various G(i,j,z) and 

Gk(i, j, z) are Borel transforms of signed measures, and so it is known that  for Lebesgue 

a.e. E,  they have finite non-tangential limits on the real axis: G(i,j,E)-G(i,j,E+iO) 
and Gk(i,j, E)-Gk(i,j ,  E+iO). 

Recall noole's equality [1], [3], [4], which says that  if f (E)=f(x-E)- ld#(x)  for a 

positive singular measure p with #(R)- -1 ,  then for any A >0, we have I{EII f ( E )  l> A}I-- 

2/,~, where 1" I denotes Lebesgue measure. If # is a signed measure with I#I (R)~I ,  we 

can consider f(E) as the difference of two integrals with positive measures, and obtain 

I{EIIf(E) l>,~)l~< 4/,~. Since we already know that  the spectral measures of H (and thus 

also of H)  for any vector 6i are singular, we conclude that  for any i , j E Z  +, 

I{EIIG(i,j,E)I >~}1 ~< 4/)~, 
(5.24) 

I{EIIGk(i,j,E)I >~}l  ~<4/~. 
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From (5.23) and (5.24) we deduce that  for any k > l ,  n>Lk and E E ( - 2 ,  2), 

E ]G(1,n,E)[> l~ 
j i log(Lk) " 

(5.25) 

Since y~.~__2(logLk) -1 <oc,  it follows from the Borel Cantelli lemma that for Lebesgue 

a.e. E E ( - 2 ,  2), there exists a K(E) such that  for any k>K(E) and n=Lk+l or Lk+2,  

l~ (5.26) IG(1,n,E)I V(Lk)-2" 

Now, for any E for which the sequence {G(1, n, E)}~_a exists, it solves (1.7) for n>2 .  

Thus G(1,n,E), Lk + 2<n<~ Lk+l can be obtained from G(1,Lk + I,E), G(1, Lk +2, E) 
by the action of the free transfer matrix: 

a(1 ,  n + l ,  E) _ . /"  a(1 ,  Lk+2,  E)  

G(1, n,E) )=r G(1,Lk+i,E) ) ' 

where, as in the proof of (ii), we have JI(PLk+2,~(E)]] ~<CE for Lk+2<n<Lk+a and EC 

( -2 ,  2). This implies that  for the same full measure set of E 's  as above and k>K(E), 
(5.26) holds for all Lk<n<.Lk+l. 

Thus, we deduce that  for Lebesgue a.e. EE  ( -2 ,  2), there exists a solution v of (1.7) 

(with Iv(0)12+ Iv(l)12= 1) and a constant CE, such that  for sufficiently large k and n>Lk, 

l~ = CE log2(Lk)Lk (1-c')/2c~ < Lk -(1-a)/2~+e, Iv(n)l < CE V(Lk~ (5.27) 

where ~ can be chosen arbitrarily small for k large. Moreover, since, by (1.16), there can 

be at most one solution of (1.7) which is decaying, v must also be the unique subordinate 

solution of (1.7). 

We now go back to consider Ho, where 0 can vary. By the theory of rank-one 

perturbations (see, e.g., [18]), it is known that  for any set A c R  with IA[=0, we have 

I t (A)=0 for (Lebesgue) a.e. boundary phase 0. Thus, it follows that  for a.e. 0, # is 

supported on the set of E 's  where the solution v of (5.27) exists. Moreover, since # must 

also be supported on the set of E 's  for which ul is subordinate, it follows that  for a.e. 0 

and a.e. E with respect to #, Ul must coincide with v of (5.27). 

Let ~5 and "y be as in the proof of (ii) above, and fix some (i > 0. Consider an E E ( -  2, 2) 
- -  l+"g  where ul  coincides with v of (5.27), a large k c Z  +, and let n = L k + t , k  . By combining 

(1.13) with (5.27), we see that  

l + e  L I + 3 ' / - - ' y ' + e  __ 9 L l + ~  Ilu~ll~ < Lk + (5.28) ~ k  ~ k  - -  ~ k ' 
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and from (4.6), (5.7) and (5.27), we see that  

Ll+'y ?~t--e __/-.1+2"/--e (5.29) 

where, in both (5.28) and (5.29), E can be made arbitrarily small by taking k sufficiently 

large. Thus, we have 

Ilulll  < 2L~ +s-(l+2"r-e)(f~+5) _- 2Lka(l+2"r)+e(l+~+5), (5.30) 

and by considering k--*co and r we see that  (5.30) implies 

II II 2 
lim inf ,,ul,,L =0 .  (5.31) 
L ~  - 2(~+a) 

t~2 L 

Since for any 5>0,  (5.31) holds for a.e. 0, for a.e. E with respect to t t ( ( - 2 , 2 ) N . ) ,  it 

follows from Theorem 1.2 that  for a.e. 0, # ( ( - 2 , 2 ) A . )  is (a+E)-singular for any ~>0. 

Since we already know from (ii) that  # ( ( - 2 ,  2)N. ) is (a-~)-cont inuous  (for any r  

it follows that  it is of exact dimension a. [] 
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