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1. I n t r o d u c t i o n  

In this paper, we s tudy scattering for Schrhdinger operators on asymptotical ly hyperbolic 

manifolds. In particular, we show that  the scattering matr ix  depends meromorphically 

on the energy CEC, and for the values of ~ where it is defined, it is a pseudo-differential 

operator  of order 2 R e ~ - n  (really complex order 2 ~ - n ) ,  where the dimension of the 

manifold is n §  We then show tha t  the total  symbol of this operator  is determined 

locally by the metric and the potential, and that ,  except for a countable set of energies, 

the asymptotics of either the metric or the potential  can be recovered from the scattering 

matr ix  at one energy. This also allows us to characterize the total  symbol of the scattering 

matr ix  in the case where the manifold is of product  type modulo terms vanishing to 

infinite order at the boundary. 

We remark that the fact that the scattering matrix at energy ~ is a pseudo-differential 

operator is a known result, see for example w of [29]. However, the proof in the general 

case does not seem to be available in the literature. Proofs of several particular cases 

have been given, see for example [6], [13], [14], [17] and [37], and references given there. 

Recall that a compact manifold with boundary (X, 0X) is asymptotically hyperbolic 

when it is equipped with a metric of the form 

H 
g~-x2, 

where x is a defining function of OX, and H is a smooth Riemannian metric on X,  which 

is smooth and non-degenerate up to OX. Furthermore we assume that  ]dXiH=l at OX. 
In other words, g can be expressed by 

dx2 § h(x, y, dx, dy) (1.1) 
g z  X 2 , 
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for some boundary-defining function x, and a product  decomposition X,~OX • [0, e) near 

the boundary, where hlx= o is independent of dx 2, and hlx=o induces a Riemannian metric 

on OX. As observed in [28] this implies that  along a smooth curve in X\OX,  approaching 

a point pEOX, the sectional curvatures of g approach - 1 .  We note that  this form is 

invariant under multiplying x by a function of y, so there is no canonical metric on OX 
induced by g, but there is a natural  conformal structure. The simplest example of such 

a manifold is the hyperbolic space, H '~+1, and its quotients by certain discrete group 

actions. 

Let Ag be the (positive) Laplacian on X induced by g. It  will be shown in w tha t  

given a function fECCc(OX) and ( E C \ ( - c c ,  0], with 2 ~ E C \ Z ,  which is not a pole of the 

meromorphic continuation of the resolvent, there exists a unique solution of the equation 

( A g + ~ ( ( - n ) ) u = 0  of the form 

u= xC f+ + xn-( f_, (1.2) 

with f+, f_ E C~(X) and f = f  [oz. This is implicit in [26], [28] and is s tated without a 

proof in [29]. A related result is also stated in the introduction of [28]. The first terms 

of the expansion with Re ( =  [ n  have been established in [6]. 

It  is then natural  to define, as in [29], for these values of (,  the scattering matr ix  to 

be the map  

T(( ) :  f ~ f_ Iox. (1.3) 

However, the scattering matr ix  is then (mildly) dependent on the choice of boundary-  

defining function x, and so we instead define it as a map 

S(0: C~(Ox, IN*(OX)l n-() --> C~(OX, IN*(OX)l ~) (1.4) 

via S(()( f  Idxl n-C) = (T(()f)Idxl (, and it is then invariant. Whilst this definition can not 

make sense for ( such that  2 ( c Z ,  as the decomposition (1.2) can not then be unique, 

and the uniqueness of the expansion (1.2) is not established in w for ~ c ( - c c , 0 ] ,  we 

shall see in Proposition 4.4 tha t  the scattering matr ix  can be defined as a restriction of 

the resolvent. This allows a meromorphic continuation of S(()  across points which are 

not poles of (4.36). In fact, we show that  these results remain valid in the presence of a 

short-range potential  V, which in this context means 

VEC~(X ,R) ,  V=xV,  V e C ~ ( X , R ) .  (1.5) 

As we will see in w such a potential  does not affect the normal operator  of Ag, and tha t  

allows the construction of [28] to go through without significant change. 
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For simplicity, we work in a product decomposition such that  

dx2+h(x, y, dy) (1.6) 
9 -  x2 

The existence of such a model form is established in w This yields a trivialization of 

the normal bundle which we work with. In w we prove 

THEOREM 1.1. Let (X, OX) be a smooth manifold with boundary. Suppose that g in- 

duces an asymptotically hyperbolic structure on X ,  and that g=( dx2 § h( x, y, dy ) ) / x  2 with 

respect to some product decomposition near OX. Let lie C~ be a short-range poten- 

tial and let ~cC be such that the scattering matrix, S(r associated to Ag + V +~(~-n )  

is defined. Then S(~)E~ 2Re;-~, and its principal symbol equals C(r 2r where [~] 

is the length of the covector ~ induced by ho =h(0, y, dy), and 

C(~) -- 2 n-2~ V ( l n - r  

This result has been established in [6] for Re ~= ~n.1 As a direct consequence we 

obtain 

COROLLARY 1.1. Let (X, OX) be a smooth manifold with boundary, and let pEOX. 

Suppose that gl and g2 induce asymptotically hyperbolic structures on X ,  and that 

gi =(dx2 § y, dy) ) /x  2, i=1 ,2 ,  with respect to some product decomposition. Let Vi, 

i=1,  2, satisfy (1.5), and let Si ( ~ ) be the scattering matrix associated to Ag~+V/+~(~-n) .  

There exists a discrete set Q c C  such that S2(~)-SI(r uRer for ~ E C \ Q  if and 

only if hi(O, y, dy)=h2(0, y, dy). 

We then analyze the difference of the scattering matrices when the metrics gI, g2, 

and the potentials 1/'1, V2, agree to order k~>l at the boundary. We also prove in w 

THEOREM 1.2. Let (X, OX) be a smooth manifold with boundary, and let pcOX.  

Suppose that gl and g2 induce asymptotically hyperbolic structures on X ,  and that gi= 

( dx2 + hi ( x, y , dy ) ) / x 2, i=1,  2, with respect to some product decomposition. Moreover" 

suppose that h2 -h l=xkL(y ,  dy)+O(xk+l),  k>~l, near p, and that V1,V2 are smooth 

short-range potentials such that V 2 - V l = x k W ( y ) §  k+l) near p. Let Si(~) be the 

scattering matrix associated to Ag~§247 We then have that, near p, 

$1(~) - $ 2 ( r  6 ~/2 Re i -n -k  (1.7) 

and the principal symbol of $1 (~ ) -$2 (~ )  equals 

X--'H" ~'~ ' l~12r247162247162 , (1.8) Al(k, ~) A.~ ~'.~',3 I'.l 
i,j 



44 M.S. JOSHI AND A. SA BARRETO 

where H=holLho 1 as matrices, ho=hl[~=o=h2]~=o, T=trace(holL), ]~[ is the length 

of the covector ~ induced by ho, and A1, A2 are meromorphic functions of ~, given by 

F 1 C(r 
Al(k,~) = -  F ( - ~ ( k + 2 - 2 r  M(~) Tl(k,~), 

(1.9) 
A2(k,~)=Ir,~/22k_2<+nF(�89 ) C(() T2(k,(), 

F ( - � 8 9  M(~) 

where C(~) is given by (5.4), Ty (k, s j =  1, 2, is the meromorphic continuation of the 

functions given by (5.4), and M(~) is given by Proposition 4.2. 

As an application of Theorem 1.2 we analyze the cases where the manifold is actually 

hyperbolic and is almost of product type. 

THEOREM 1.3. If (X, OX) is such that in some product decomposition the metric 

is a product modulo terms vanishing to infinite order at the boundary, then the scattering 

matrix is equal to 

2,_2~ r ( l n - ~ )  A<-n/2 
- o x  , 

modulo smoothing. If (X, OX) is a smooth hyperbolic manifold, the same result holds 

modulo pseudo-differential operators of order 2 R e ~ - n - 2 .  Here we have chosen a defin- 

ing function x in order to trivialize the normal bundle and to induce a metric on the 

boundary, with respect to which we take Aox.  

We prove the result for almost product-type structures in w In the hyperbolic case, 

the result for principal symbols is due to Perry, [37] (Perry's definition of the scattering 

matrix was slightly different which caused an extra factor to be present). The result for 

hyperbolic manifolds is an immediate consequence of Theorem 1.2 and observing that  a 

funnel is product type to second order. 

As consequences of Theorem 1.2 we have the inverse results: 

COROLLARY 1.2. Let (X, OX),gj, Vj,Sj,  j = l , 2 ,  be as in Theorem 1.2, let peOX 

and suppose that 171=112 near p. There exists a discrete set Q c C  such that if e E C \ Q  

and $1 (r - $2 (i) E ~2 Re ~-n-k, k >~ 1, near p, then there exists a diffeomorphism • of a 

neighbourhood U c X  of p, fixing OX, such that r  

COROLLARY 1.3. Let (X, OX),gj ,Vj ,Sj ,  j = l , 2 ,  be as in Theorem 1.2, let peOX 

and suppose that gl=g2 near p. There exists a discrete set Q c C  such that if r  

and SI(~)-S2(I)Cko2Rer -n -k ,  k>~O, nearp, then V1-V2=O(x k) near p. 

Of course, intersecting over all k, we see that  off a countable set of energies a metric 

or potential can be recovered modulo terms vanishing to infinite order at the boundary. 

We will prove these corollaries in w after the proof of Theorems 1.1 and 1.2. 
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In w we give a n  application of these results, or rather of the methods used to prove 

them, to inverse scattering on the Schwarzschild and the De Sitter-Schwarzschild model 

of black holes. We show that  the Taylor series at the boundary of certain perturbations 

of these models can be recovered from the scattering matrix at a fixed energy. 

Our approach is heavily influenced by the work of Guillop~ and Zworski, [13], 

[14], [15]. In particular, we compute the scattering matrix as a boundary value of the 

resolvent. To do this we use the calculus developed by Mazzeo and Melrose, [28], of 

zero-pseudo-differential operators in order to construct the resolvent. 

As in our work on asymptotically Euclidean scattering, [21], [23], [24], a key part 

of our approach is to consider the principal symbol of the difference of the scattering 

matrices rather than the lower-order terms of the symbol of a single operator, which 

allows us to proceed more invariantly. We remark that  whilst our results are quite 

similar to those in the Euclidean case, the proofs and underlying ideas are very different. 

The fundamental reason for this is that  in the asymptotically Euclidean category, as 

observed by Melrose, [30], and by Melrose and Zworski, [33], there is propagation of 

growth at infinity, whilst this does not occur in the asymptotically hyperbolic category. 

This is reflected in the fact, proved in [33], that  in the asymptotically Euclidean case the 

scattering matrix is a Fourier integral operator associated to the geodesic flow at t ime ~, 

whilst in the asymptotically hyperbolic manifold case it is a pseudo-differential operator, 

and in the fact that  the principal symbol of the difference of the scattering matrices is 

locally determined by the perturbation. See [32] for a discussion of a general framework 

including both cases. 

There is a long history of scattering theory on hyperbolic manifolds arising from the 

observation that  the Eisenstein series for a ~ c h s i a n  group is a generalized eigenfunc- 

tion for the Laplacian on the associated quotient of hyperbolic space- - the  fundamental 

reference for this is [25] where the finite-volume case is studied. The study of the infinite- 

volume case was initiated by Patterson in [36]. There has been a wealth of results in 

both cases, and we refer the reader to [14] for a comprehensive bibliography and to [17] 

and [29] for a review of the subject. There has been less work on asymptotically hyper- 

bolic spaces. Mazzeo and Melrose, [28], and Mazzeo, [26], [27], studied properties of the 

Laplacian on such manifolds from which the properties of the scattering matrix proved 

in w are implicit. In [6] Borthwick showed the continuous dependence of the scattering 

matrix on the metric. Agmon has also studied related questions, see [1], [2]. Recently 

Borthwick and Perry, [8], showed that,  except for possibly finitely many exceptions, the 

poles of the resolvent agree with multiplicity with those of the scattering matrix. An- 

dersson, Chrusciel and Friedrichs have studied solutions of the Einstein equations and 

related problems on asymptotically hyperbolic spaces, [3], [4]. There appears to be no 
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results in the literature on the inverse scattering problem on asymptotically hyperbolic 

manifolds. Perry, [38], has shown that  for hyperbolic quotients in three dimensions by 

convex, cocompact, torsion-free Kleinian groups with non-empty regular set, the scat- 

tering matrix determines the manifold. Borthwick, McRae and Taylor have proved an 

associated rigidity result, [7]. 

We would like to thank several of our colleagues: Maciej Zworski for explanations of 

hyperbolic scattering and helpful comments; Richard Melrose, Rare Mazzeo and Laurent 

Guillop@ for helpful conversations; Tanya Christiansen for explaining her computation 

in the almost product case in the asymptotically Euclidean setting; and Mary Sandoval 

for carefully reading the paper and making many useful comments. Finally, we would 

also like to thank the referee for comments which helped to improve the content and 

exposition of the paper. This work was initiated whilst visiting the Fields Institute and 

we would like to thank that  institution for its hospitality. This research was partially 

supported by an EPSRC visiting fellowship. The second author is also grateful to the 

NSF for its support under Grant DMS-9970229. 

2. A m o d e l  f o r m  

In this section, we establish a model form for asymptotically hyperbolic metrics near 

infinity (the boundary).  This is very  similar in statement and proof to the model form 

for scattering metrics proved in [24]. See also [22] for a similar model for exact b-metrics. 

In the case where all sectional curvatures are equal to - 1  near the boundary a related 

normal form has been established in [16]. 

PROPOSITION 2.1. Let (X, OX) be a smooth manifold with boundary OX, and sup- 

pose that g is a metric on X such that 

dx2+h(x,  y, dx, dy) 
g -  x 2 

in some product decomposition near OX, where x is a defining function of OX, with 

hlx=o independent of dx 2, and inducing a metric on OX. Then there exists a product 

decomposition, (2, ~]), near OX such that 

d~2 §  9, dg) (2.1) 
g ~ :~2 

Proof. First we prove this result modulo terms that  vanish to infinite order at x--0. 

It is enough to show the existence of a sequence of diffeomorphisms, Ck, of O X x  [0, e) 

such that  
d~2 §  ~, Y, dY) 

r ~ ~o(~k-2), k >1 1, 
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and 

f k  --1 =~k-lCk 

fixes the boundary to order k §  This is enough, as a diffeomorphism ~ can then be 

picked, using the Borel lemma, of which the l th  term in the Taylor series will agree with 

that  of r for l<~k, for all I. 

First we observe that  we can assume that  h(O, y, dx, dy) is independent of dx 2 and 

dxdyj. Indeed, by defining the vector field Vx as g ( V x , . ) = d x  and denoting IVxl~= 
g(Vx,Vx), the vector field r~=v~/IV~l 2 is smooth in X,  and moreover N x = l .  For 

pEOX, let yj, l<<.j<~n, be smooth local coordinates on OX valid in a neighbourhood 

of p. Extending yj to be constant along the integral curves of P~, which are perpendicular 

to OX, gives a coordinate system in X valid in a neighbourhood of (0, p). It is clear by the 

construction that  g(E, 0y~)=0 at 0.32, l<.j<~n. Thus, in these coordinates, h(O, y, dx, dy) 
is independent of dx 2 and dx dyj. This gives the map r 

Next we proceed by induction. Suppose that  ~k-1, k~> 1, has been constructed. We 

show how to pick fk so that  

d22+h(Sc'~]'dY) +o(2k-2), k>~2. 
~ ; ~ - -  l g  = 2~2 

Putt ing Ck=r our result follows. 

We work in local coordinates on the boundary. We shall see that the choice of the 

next term in the Taylor series is actually unique so there is no problem patching these 

local computations together. So suppose that  we have, for k~>2, 

r  = 
dx2 +h(x, y, dy) 

X 2 
+ xk-3a(Y) dx2 + xk-3 E ~J (Y) dx dyj § O(xk-2). 

Putt ing 

and 

y = ~ + 6 ( 9 ) ~  t, 

we have 

and 

dx = d~ + l~ z- 1,,/(f/) d~ + ~l ~ dy 

dy = d9 § l~l-16(Y ) d~ § ~l ~ (~) dy. 
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Now if h(0, y, dy)=~ hij (y)dy~ dya and l=k, we see that  the metric becomes, mod- 

ulo O(2k-2)-terms, 

d~2+h(2, 9, dg) 
2 2 

t- :~k-3c~(9 ) d~ 2 + 2 k-3 E & (9) d2 dgj 

+ 2k'y(9) ~k-3 d~2 + 2k2k-3 E hijSi dgj d.~. 

Pick "y(9)=-a (9) /2k ;  as the form hij(9) is non-degenerate, there is a unique choice of 

(~ such that  2k~hij~i=-~j.  This cancels the terms of order k - 3  in d2 2 and d2dg. 
Equation (2.1), modulo O(2~176 follows. 

Having achieved the modulo form modulo x ~~ which is all that  is necessary for the 

rest of this paper, we now show that  this form can be improved to remove this error. If 

dx 2 + h(x, y, dy) + O(x ~) 
g = X2  

then the geodesic flow is generated by the Hamiltonian function 

= x~ -~+x ~ ~ h ~j(x, ~)a~j + O(x~). 
i , j  

Now if we work in rescaled zero-coordinates, that  is, let ~ = x r ,  ~=x{,  and leave (x,y)  

fixed, the canonical one-form ve=rdx+~-dy is rescated to 

Oc~=~dx+~.dY ' 
x x 

and the Hamiltonian to 

= e 2 + Z  W,(x, y)~& + O(x% 
i , j  

The zero-Hamilton vector field of ~, H~, is defined by 

d~ H~) = d& 

We then find that,  modulo O(x~176 

' 0  - 0  o 
] 0r + XUh-l' 

where 

h-l(x, y, ~) = ~ w,(., y )~j  
i , j  

and 
�9 Oyi 

0 h_lO~,). 
Oyi 
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This is of the form 

w h e r e  I~l 2 =h-l(x, y, ~). 
Now if we restrict to the cosphere bundle, 

~2 + h - 1  (x, y, ~) = 1, 

which is invariant under the flow, we can re-express ~ in terms of (x, y,~), and near 

f = - I  the vector field becomes 

H~ = - 2 ( x  ~ x + ~ ' ~ )  +O('~'2 +x2). 

This forms a sink at ( x , ~ ) = 0  and thus, by Theorem 7 of [40], there exist local 

coordinates (x ' ,~ ' ) ,  equal to (x, ~) to second order at (x, ~)=(0 ,  0), which reduce the 

vector field to the form 

U~ = - 2  x' +~,. 0 +o(1~,12+(x,)2 ) Oy 

We therefore see that  any integral curve start ing close enough to (x',~')=(O,O) will 

converge to (0, 0). 

So in particular if we take a hypersurface S ~ { x = e } ,  then the geodesics start ing on 

the unit normals pointing to the boundary  will converge to (x', ~ ' ) =  (0, 0). We also have 

tha t  the x~-derivatives of these geodesics will be non-zero so they can be reparametrized 

in terms of x ~. In x t>0,  we can put O=~/x ~, and use (x', O, y) as coordinates. The form 

of the vector field means tha t  the angular coordinate 0 will be constant on geodesics, 

and we have 
dy dx' = O( (x')2 + (x')21012) = O((x')2)" 

Now as the finite-time solution of an ODE, the point y on the boundary, which is the 

limit of the geodesic, will vary smoothly with the s tar t  point on S~. We also see, as the 

change in y is the integral of the derivative along the curve, that  the Jacobian of the 

map from S~ to the boundary will be invertible for r sufficiently small. This will also be 

true for the map to hypersurfaces S~,, ~ '<  ~. 

So if we now take geodesic normal coordinates to the hypersurface S~, then these give 

us a map X: OX• R+--+X,  which is smooth up to the boundary, and is a diffeomorphism 

in a neighbourhood of the boundary. Now the metric in these coordinates is of the form 

(dx')2 +h(x ', y, dy), 
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so if we put X=e -x' we get coordinates in a neighbourhood of infinity such that the 

metric is of the form 
dX 2 
X2 ~-h(X,y, dy). 

Note that  the change of coordinates gives the correct compactification at the boundary 

to ensure that there has been no change of smooth structure there. Thus we know that 

the transformed metric must be of the form 

dX2+ l(X, y, dy, dX) 
X 2 

with l smooth up to X = 0 ;  so we conclude that h(X,y, dy)=k(X,y, dy)/X 2, with 

k(X, y, dy) smooth up to X = 0 ,  and we are done. [] 

We remark that the construction of the Taylor series in the first part of the proof 

gave a boundary-defining function of the form 5~=x+O(x2), and that  the rest of the 

Taylor series was then determined; one could however start with a different defining 

function c~(y)x. This contrasts with the case of a scattering metric where the xLterm is 

fixed by the metric but the x2-term can be chosen. 

3. C o n s t r u c t i n g  t h e  r e so lven t s  

In this section, we review the construction of the resolvent on an asymptotically hyper- 

bolic manifold due to Mazzeo and Melrose, and show how to modify it to obtain infor- 

mation about the difference of two resolvents associated to data which agree to some 

order at the boundary. Our account is necessarily brief and we concentrate on explaining 

where our construction differs from theirs and refer the reader to their paper [28] for fur- 

ther details. We shall work with half-densities throughout as they give better invariance 

properties. 

We recall that  a Riemannian metric g on a manifold Y induces a canonical trivial- 

ization of the one-density bundle by taking w= v/5 Idyl where 5 is the determinant of 9ij 

in the local coordinates y on Y. The square root of this is then a natural trivialization 

of the half-density bundle. We then have a natural (self-adjoint) Laplacian, /~, acting on 

half-densities by 

/~ ( f a )  1/2) : A(f)w 1/2, 

where A is the Laplacian acting on functions. 

Mazzeo and Melrose showed that in an asymptotically hyperbolic manifold, the 

resolvent 

R(~)=(~+~(~-n))  -1, R e ~ > n ,  
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which is a well-defined operator for R e ~ > n ,  depending holomorphically on ~, could be 

meromorphically continued to the entire complex plane, and that  its extension could be 

constructed in a certain class of "zero"-pseudo-differential operators. A "zero'-vector 

field is a vector vanishing at the boundary, and a "zero"-differential operator is a compo- 

sition of such vector fields, the most important  example being the Laplacian associated 

to an asymptotically hyperbolic metric. 

"Zero'-pseudo-differential operators have kernels living on the blown-up space 

X• This is the space obtained by blowing up X•  along the diagonal, Aox, 
of OX • OX. We recall that  blow-up is really just an invariant way of introducing polar 

coordinates, and that  a function is smooth on the space X• if it is smooth in polar 

coordinates about Aox. As a set, X• is X•  with Aox replaced by the interior 

pointing portion of its normal bundle. Let 

/3:XxoX ~ X x X  

denote the blow-down map. If (x, y) are coordinates in a product decomposition of X 

near OX, and we let (x ~, y~) be the corresponding coordinates on a second copy of X, 

then R =  ( x2 + ix' )2 + (y _ y,)2) 1/2 is a defining function for the new face, which we call the 

front face. The functions O=x/R and Q~=x~/R are then defining functions for the other 

two boundary faces, which we call the top and bot tom faces respectively. One advantage 

of working on this blown-up space is that  the lift of the diagonal of X • X only meets 

the front face of the blown-up space and is disjoint from the other two boundary faces. 

See w of [28] for a picture. 

To define the space of "zero'-pseudo-differential operators, Mazzeo and Melrose 

defined a bundle F0(X), whose sections are smooth multiples of the Riemannian density. 

Note that  for the Riemannian structure (1.1), the natural density is singular at OX. In 

local coordinates (x, y), where x is a defining function of the boundary, it is given by 

hix, y) dx dy h c C a iX), h ~ O. 
X X n ' 

We denote F 1/2 (X) the analogous bundle of half-densities. Similarly we define the bundle 
1~1/2 F~/2(X• The bundle ~0 over X x o X  is then defined to be the lift of F1/2(XxX) 

under the blow-down map. 

A "small" zero-pseudo-differential operator of order m is then an operator on X of 

which the Schwartz kernel when lifted to X• vanishes to infinite order at the top 

and bot tom faces, and is the restriction of a section of r l / 2  ~0 over the double across the 

front face, which is conormal to the lifted diagonal of order m. In the interior, these 

are of course just the usual class of pseudo-differential operators acting on half-densities. 
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The space of these kernels will be denoted K~(X), and the corresponding operators by 

r0(x)). 
m~s~t The "large class" ~0 (X), s, t E C ,  is then defined to be operators which have 

Schwartz kernels tha t  are equal to an element of K~(X) plus a function of the form 

Qs(o,)tf with fEC~176 F~/2) and smooth up to the boundary. This space then has 

three natural  filtrations, but it will also be important  to consider a fourth which is the 

order of vanishing at the front face, so we commonly work with operators with kernels 

in the class Rk~'~'s't(x). In [28], Mazzeo and Melrose show tha t  the meromorphic 

extension of the resolvent to C lies in Oo2'~'r 

The ordinary symbol map, expressing the lead singularity at the diagonal in the 

interior, extends to this class and is a homogeneous section of the zero-cotangent bund l e - -  

tha t  is, the dual bundle to the space of vector fields vanishing at the boundary. There is 

also a second natural  symbol map, which is called the normal operator.  This is obtained 

by restricting the Schwartz kernel to the front face, and hence expresses the lead te rm 

there, which is therefore a section of the bundle F01/2(X x0X)  restricted to tha t  face. 

Let pCOX and let X v be the inward-pointing vectors in Tp(X). This is a manifold 

with boundary and has a metric 

gp = (dx)-2hp, 

where g=x-2h, making it isometric to the hyperbolic upper  half-plane. (We regard hp 
and dx as linear functions on the tangent space Xp.) Mazzeo and Melrose observed tha t  

the leaf of the front face above a point p is naturally isomorphic to Xp, using a natural  

group action on the front face. This group action is obtained by lifting the action of the 

subgroup of the general linear group of the boundary of Xp to the normal bundle of Xp, 
as a leaf of the front face is just a quarter of the normal bundle over p. 

I t  is also observed in [28] tha t  the restriction of F~/2(X• X) to the front face is 

canonically trivial, and then can act as a convolution operator  using the natural  group 

structure on the front face. As mentioned above, the fibre of the front face above a 

point p can be identified with Xp. Let (x, y) be local coordinates near pEOX, with x a 

boundary-defining function, and also denote the natural  corresponding linear coordinates 

on Xp by (x,y). Let (x',y p) he the same coordinates on the right factor in X• and 

let s=x/x', z=(y-yP)/x. Then if the Schwartz kernel of a map  B is k(x',y', s, z)')' with 

3,= I ds dz dx dy/sx n+111/2, the normal operator  is given at p =  (0, y) by 

[Np(B)(f#)]=Sk(o'y 's 'z)f(X'y-Xz) dS (3.1) 

where 
1/2 

d y 
d# = ---- ,~n I Z 
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This formula will be very useful in w 

In fact, Mazzeo and Melrose only used the normal operator for terms in ~o~'8 ' t (x)  

but it works equally well for terms in ~ " s ' t ( X ) ,  see Theorem 4.16 of [28], the main 

difference being that  the normal operator instead of being a smooth half-density on the 

front face, now has a conormal singularity at the centre, i.e. the intersection of the lift 

of the diagonal of X • X with the front face. The normal operator will of course have 

growth at the boundaries of the front face according to s, t. In particular, it will be in 

the space .A 8,t of half-densities growing of order s at the top edge, and of order t at the 

bottom. 

The important  fact is that  the normal operator of a zero-differential operator is 

obtained by freezing the coefficients at a point on the boundary, and the normal operator 

of the Laplacian is just the Laplacian of the induced metric on the space Xp. As a short- 

range potential vanishes at the boundary, if P ( r 1 6 2 1 6 2  with V short-range, 

and QEq2"~'~'t(X), we thus have that  

Np(P(r = (Ap+((r  (3.2) 

see the proof of Proposition 5.19 of [28], w i t h  /Tkp the Laplacian on Xp, acting on half- 

densities, which is the model hyperbolic half-space up to a linear scaling. 

Now what we are interested in in this section, and in this paper in general, is the 

structure of the difference of the resolvents associated to two pieces of data. We begin 

by proving 

PROPOSITION 3.1. Suppose that g], g2 are asymptotically hyperbolic metrics which 

agree to order k at OX, i.e. in some product decomposition X ~ O X x  [0, e) near OX, x is 

a defining function of OX, in which 

dx2 +hl(x, y, dy) 
g l =  x2 , 1=1 ,2 ,  (3.3) 

where 

h2 (x, y, dy) = hi(x, y, dy)+ xkL(x, y, dy)+ O(xk+l), k ) 1. 

Suppose that V1,V2 are short-range potentials that satisfy V2--VI=xkW, W E C ~ ( X ) .  

Let ~ ,  l=l ,  2, be the (positive) Laplacian associated to gt acting on half-densities via 

the natural trivialization of the half-density bundle given by gl, and let 

Pz(r = s247247162162 (3.4) 

Let hz(x,y) and L(x,y) denote the matrices of coefficients of the tensors hl(x,y, dy) 
and L(x,y, dy) respectively. We then have that for H=hl(O,y)-lL(O,y)hl(O,y) -1 and 
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T---Tr(hl(0, y) - lL(0 ,  y)), 

1 ) P 2 - P I = X  k HijxOy, xOy~+ k ( k + l ) T + W  +xk+lR ,  
~ i , j = l  

(3.5) 

with R a second-order symmetric zero-differential operator. 

Proof. In local coordinates (x, y) near qEOX the operator Pl acts on a half-density 

f (x ,  y)]dxdyl 1/u as 

Pt(f(x, y)Idx dyl 1/2) -= [5]/4( Ag~ + V +~(~-n)  )~tl/4 f(x,  y)] Idxdyl U2, 

where Ag z denotes the Laplacian acting on functions, and 5t denotes the determinant 

of gl. 

So we need to consider the operator 3a/4Ag~-l /a+V+~((-n) .  Let gij denote the 

components of the metric g, and gij its inverse. Denote z=(x,y)  with Zo=X, zj=yj,  
1 <~j<.n. So using the expression of Ag in local coordinates, 

Agf----__(~--1/2 ~ Oz,(gijS1/2Oz~f), 
i,j=O 

we have 

Recall that  

Therefore 

~l/4Ag(~-l/4f) : ~ (~-l/40z, (gij(f(Oz36l/4)-51/4(Oz~f))). 
i , j :O  

1 
- -  g ~ 0 = g 0 i = 0 ,  i r  g0o = X2 , 

1 
g i j = ~ h i j ,  i , j r  

gOO=x 2, giO=gOi=0, i •0 ,  

gij = x2hiJ, 1 <~ i, j <~ n. 

Using (3.3) we can write 

(3.6) 

(3.7) 

(3.8) 

h2 = hl(I+xkh~lL+O(xk+l))  (3.9) 

and therefore conclude that  

h21 = h~ 1 -xkh-~lLh-~ 1 +O(xk+l), 

det h2 = det h l ( l + x  k Tr(h~lL)+O(xk+l)). 
(3.10) 
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We also deduce from (3.7) that  

5j = x -2(~+1) det hj, 

Hence 
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j = 1 , 2 .  (3.11) 

52 = (~i(l+x k Tr(h~lL) +O(xk+l)), 
5+U4 ~• k 1 2 = 01 [• .~ Tr(h~lL)+O(xk+l)). 

(3.12) 

P2( (x')kF1) = (x')kskERi, 

with s=x/x' .  As x' commutes with P2, this becomes 

P2F1 = skER1. 

We can rewrite this as 

Examining each term of (3.6) and using (3.8), (3.10), (3.11) and (3.12), we deduce 

that  (3.5) holds. We carry out the computation for the term i = j = 0 .  This is the term 

that  will contribute with a multiple of T to (3.5). The computations for the terms 

involving y-derivatives are easier and will be left to the reader. 

first term = 521/40x (x 2 (fOx61/4 - 61/40~ f)) - 6; 1/40r (x 2 (fOr6~/4- 6~/40~ f)) 

= 2xf(5~l/40x(~ 1/4 --(~:l/4cgzS~/4)+x2f(521/40251/4 -- 5;- 1 /4025~ /4 ) .  

Using that  v -  10xv = 0r log v and that  v -  102v = 02 log v + (0r log v)2  we obtain 

f i rs t term=�89 I 1 2 2 [62\  

Since log(l+u)=u+u20(1), (3.12) gives that  

first t e r m =  l x f ( k x k - l T ) +  �88 = ~k(k+ l )xkTf  +O(xk+l). 

This ends the proof of the proposition. [] 

Let us denote P2--PI=xkE, where E is the operator given by the right-hand side 

of (3.5). Now let RI(~) be the resolvent of P~, which by Theorem 7.1 of [28] lies in 

�9 o2'r162 We then have 

P2(R1 - R 2 )  = P2R1 - I d  = (P2 - P1)RI = xkER1. 

So to get R2 as a perturbation of RI we need to solve 

P2F = xkERz. (3.13) 
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Now skER1 is in ~0'r and we look for F1E~o2'r162 To get improvement 

on the front face, we use normal operators, (3.2) and the fact that  V is short-range, to 

deduce that  

(s  = Np(skER1). (3.14) 

This can be solved near the singularity by using the elliptic calculus, and away from this 

the right-hand side is in .A r Now Proposition 6.19 of [28] states that  this equation 

has a meromorphic solution in .A C'r So we can choose F1 meromorphically to satisfy 

(3.14). 

Putt ing F=(x')kF1ERkq2o2'~'~(X), we then have that  

e2( n l  - F ) - Id e nk + l ~~162 ( X). (3.15) 

We can then remove the term at the front face iteratively and asymptotically summing 

obtain 

P2( Rx - F ' ) -  Id e R~176162 ( X),  

with FtERkq~o2'~'r ). The error term now vanishes to infinite order at the front face. 

The diagonal singularity can be removed by an element of R ~ o 2 ' r  by standard 

symbolic arguments for constructing the parametrix of a pseudo-differential operator. 

This leaves an error in the class xr f e C ~ ( X •  Flo/~(X• This can be 

removed using the indicial equation by an element of the same space as in [28]. 

We observe that  the error term in R~qZo2'<'r is, by definition, the sum of 

a term in _R~ ) plus a term whose kernel is of the form R~162162 with F 

smooth in the blown-up space. The latter term is in fact of the form xr f E  
C ~ ( X • 2 1 5  Since the kernel of an operator in R ~  ) vanishes to 

infinite order at the three faces of X • this construction gives 

THEOREM 3.1. Let (X, OX) be a smooth manifold with boundary and defining func- 
tion x. Suppose that 

dx2 + hj ( x, y, dy) 
gj = x2 , j =  1,2, 

and Vj are smooth real-valued functions vanishing at OX. Let Rj(~) denote the re- 

solvent of P j=s  where ;Xj is the Laplacian associated to gj acting on 

half-densities. Suppose that ~ is not a pole of Rj(~), and that hi -h2  and I/1 -V2 vanish 
to order k>~l at x=O. Then 

RI(~)-R2(~) =GI(~)+G2(~)+G3(~), G,er162162 rl/2(X)), i=  1,2,3, (3.16) 

where G3 has kernel of the form x<(x')r 7EC~215215 the lift of the 

kernel of G2 under/3 is singular at the lift of the diagonal but vanishes to infinite order 
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at the top, bottom and front faces of X •  and the kernel of G1 satisfies 

~*Gl(~)=Rkgr162 a(~)ECC~(XxoX\Ao,Fo/2(X•  (3.17) 

is a conormal distribution to the lifted diagonal Ao. 

If  E is such that P2 -PI=xkE ,  then the restriction of (~(~) to the front face, F =  

{R=0},  satisfies 

(s162162 = Np((X/X')kE)G, (3.18) 

where ~ho is the Laplacian on the hyperbolic space with metric ho(p), acting on half- 

densities, i.e. in coordinates ( zo, z' ) where the boundary is given by {z0=0}, s f wl /2) = 
(Ahof)W 1/2, with 

w= 51/2dz~ dy 
Z 0 Z~ 

and 

Aho=Z02 f i  hiJ(P)Oz, Ozj-(n-1)zoOzo, 
i,j=O 

and G is the Green function of Aho+~({--n). 

(3.19) 

Note that  the last s tatement follows from Propositions 2.17 and 5.19 of [28] and the 

fact that  the normal operator of the resolvent is its Green function. 

Remark 1. In what follows, it is important  to reMize that  there is a unique solution 

(3.18) which is meromorphic in ~, is conormal to the centre of the front face, and is in 

M 4,4-k near the boundaries. 

To see this, note that,  if we have two choices, Wl and w2, then 

( A h o + r 1 6 2  = 0. 

Since w l - w 2  is conormal to the centre of the front face it must be actually smooth. By 

Theorem 7.3 of [26], we know that  Wl-W2=(gp')r162 where f ,  g are distribu- 

tional coefficients. 

On the other hand we also know that  Wl -w2  c.A r162 and so is of the form Wl -w 2  = 

Or162 with w smooth up to the boundary. Therefore we conclude that  Wl-W2= 

(~0')r  with ~ smooth up to the boundary. Since Ah0 has no discrete spectrum, it 

follows from Proposition 4.3 that  for ~ ( - o c ,  �89 wl=w2, and thus by meromorphicity 

everywhere. 
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4. T h e  P o i s s o n  o p e r a t o r  a n d  t h e  s c a t t e r i n g  m a t r i x  

In this section we extend some of the results of [13] and [14], obtained in the case of 

Riemann surfaces, to asymptotically hyperbolic manifolds. We show that  the kernel of 

the Poisson operator is a multiple of the Eisenstein function and, as in [13], [14], we 

obtain a formula for the scattering matrix in terms of the resolvent. Similar results 

have been established by Borthwick in [6] for Rer189  The Poisson operator has also 

been studied by Agmon in [1]. As a consequence of this formula, we prove that  the 

scattering matrix at energy r CEC\Q,  where Q is a discrete subset which is described 

in Proposition 4.4, is a pseudo-differential operator of order 2 r  We also prove the 

result stated in equation (1.2) of the introduction. 

Before proceeding to this, we sketch our argument. The resolvent of the Laplacian 

acting on half-densities has, by [28], a meromorphic extension to the entire complex 

plane. Its weighted restriction to XxOX, we call the Eisenstein function, E(r in 

analogy to previous work on hyperbolic manifolds. This function is automatically in the 

kernel of A + r 1 6 2  and we examine its distributional asymptotics. In particular, we 

see that  it has two components, one lead term is a multiple of the delta-function on the 

diagonal times x ;, and the other is a pseudo-differential operator times x n - ; .  This means 

that  upon integration of a suitable multiple of the Eisenstein function against a half- 

density on the boundary one obtains roughly an eigenfunction of the form x;f+xn-r 
plus lower-order terms, where g=S(~)f, with f prescribed, and S(~) a fixed pseudo- 

differential operator, which is of course the scattering matrix acting on half-densities. So 

the Eisenstein function is really the Poisson operator for the problem, and our first task is 

to prove that  it has the appropriate distributional asymptotics. The Eisenstein function 

E(~) plays an analogous r61e to that  of the Poisson operator P()~) in [33]. However, it 

lives on the manifold X x OX blown up along the boundary diagonal, rather than on a 

microlocally blown-up space. 

Recall that  XxoX is the space obtained from X x X  by blowing up the diagonal 

ACOXxOX, and that  I~:XxoX-+XxX is the corresponding blow-down map. Theo- 

rem 7.1 of [28] states that  the resolvent R(() ,  which is well defined and holomorphic 

in ~, for Re ~>n,  extends to a meromorphic family R(r162162 F0~/2(X)), r  

that  satisfies, in terms of the spaces introduced in w 

R(r162162 R'(r and R"(r162162 Clo/2(X)), 

with the boundary term, R'(~) ,  having Schwartz kernel of a special form: 

/3"K"(r = Q~ (0')~F(~), F(r (4.1) 
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where Q and Q' are defining functions of the top and bot tom faces respectively, and F(~) 

is meromorphic in ~. 

Let R(r E C - ~  (X x X, P~/2 (X x X))  also denote the Schwartz kernel of the resol- 

vent, and let x and x'  be a boundary-defining function of each copy of X in X x X .  We 

will show that  the Eisenstein fllnction, which is defined by 

: (4.2) 

is a section of F01/2(X x OX) which is smooth in X x OX and has a conormal singularity at 

A C OX x OX. Notice that  it depends on the choice of the defining function x'. To make 

it independent of this choice one can view it as a section of F~/2 (X x OX)| IN* OX I r 

by defining it as 

E(r = (x')-<+~/2R(~)I~':o I dx'l r (4.3) 

This is the analogue of Definition 2.2 of [13]. For simplicity we will work with the 

definition given by (4.2), and so we fix a product decomposition X~OXx[O,e)  of X 

near OX. 

Since R'(<)er its kernel vanishes to infinite order at the top and 

bot tom faces. So we deduce that  its kernel satisfies 

=0.  

Therefore, for K"(r  given by (4.1), 

E(r = (x')-r g"(()I~':0. (4.4) 

Since the singularity of K "  is better  described in X x o X ,  to understand the sin- 

gularity of E ( ( )  at A we blow up the manifold X x O X  along A and analyze the lift of 

E(r under the blow-down map. Let X x o O X  be the manifold with corners obtained by 

blowing up X x 0X along the diagonal A C OX • OX, and let 

fl: X xoOX ~ X x OX 

denote the corresponding blow-down map. It is then clear that /~=fl l(xxooX).  

Let ~" be the new boundary face introduced by the blow-up, the front face, and let 

M denote the lift of cgXxcgX\A under/~, i.e. 

JY= j3-1(A), M = c l o s f l - l ( O X x O X \ A ) .  

We refer the reader to Figure 1 for a picture of the two-dimensional local model case 

X =  [0, 1) x (0, 1). We observe that  in this case A is a submanifold of dimension one of a 
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X 

J 
J 

j~ 

< 

i I r 

X x O X  X x o O X  

Fig. 1. X •  for t he  local mode l  X - -  [0, 1) • (0, 1). 

manifold of dimension two, and thus when A is blown up the manifold M is disconnected, 

as shown in Figure 1. In general, A is a submanifold of dimension n of a manifold of 

dimension 2n, so M is not disconnected. 

If R c C ~ ( X •  is a defining function of the front face in X •  R=RIx• 

is a defining function of ~-. In local coordinates we have R = ( x 2 + ( x ' ) 2 + l y - y ' 1 2 )  1/2 and 

~=(x~+ly-y'12)l/~. 
Next we consider the lift of E under the map ft. It is actually more convenient to 

analyze the lift of x-r We deduce from (4.1) and (4.4) that 

fl* (x-r (r = (R0) -r (n6')-r  6r (6,)r162162 =0 

: R-2~+nLon/2(Lo' )n /2F(~)ILo ,=o .  
(4.5) 

As in w of [28], it is simpler to do the computations in projective coordinates valid 

in regions of X x o X  which together cover X x o X .  Following the notation of [28], we use 

three coordinate patches: 

x y _ y l  
X l t  S -~- - -  Z z X ! 

X ! ~ 

x' z~ y -  yP X, t z - - ,  - -  - - ,  
X X 

x , P~= x ~ y _ y l  

6= ly-r  b-y ' l '  r=ly-y'l ,  ~ =  l y - r  

(4.6) 

We observe that  so far we have used 6 and 6 p to denote x / R  and xP/R. However, in the 
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region where the third set of coordinates hold we see that  

X X p X t X / 

Q= -R = r(l  +(x/r)2 +(x,/r)2)l/2, Q = ~ = r(l  +(x/r)2 +(x,/r)2)l/2" 

So for x / r  and x'/r small, @ and Q~ are essentially given by (4.6). 

In the region away from the top face, we can use projective coordinates (x, t, z', y), 
and near the intersection of the top and bot tom faces we can use (r, Q, Q',y,w). So we 

can represent the half-density F(~) in these local coordinates by 

F(r  t , x ,y , z ' )  dx dy dt dz' t/2 
X X n t t n , F C C c ~  

F(~) = F(r r, ~, co', y, w) ldr do d~' dw dy 1/2, 
r ~ Q' ~(Q')~r ~ 

We observe that  in the respective regions, 

F C  C ~ .  

(4.7) 

R = (x 2 + (x') 2 + lY-Y']2)l/2 = x ( l + t  2 + iz,12)1/2 = xR', 

1 t Qt = 

~= (1+t2+lz, j2)~/2, (1+t2+Iz,12)1/2 ' 
R -- (x2 + (x')2 + [y_y,[2)1/2 = r ( l ~ _  (~ot)2 + c 0 2 ) 1 / 2  = rR', 

RIE C ~ ,  

R' E C ~ . 

Hence restricting to the bot tom face, which is given respectively by {t=0} and {Q'=0}, 

gives 

~* (x-r = x-2r x, y, z')]dx dy dz'] 1/2, F'e C ~,  

~* (x-r = r-2;+("-l)/2Q-1/2F'(4, r, Q, 0', y, w)Idr d~ dw dyl 1/2, FIE C ~r 
(4.8) 

Therefore we have that  

~*(x-r Efi-2r215 F1/2(XxoOX)), (4.9) 

where we also denote Q=QIx• Note that  

3": z-1/2rl /2(x • ox)  ~ ~"/2 ~-l/2rl/2(X • (4.10) 

is an isomorphism. Indeed, if we use local coordinates 

y - y '  
x, w -- , y, 

x 

x y - y '  
ly-v' l=r,  o = - ,  ~ -  

T r 

(4.11) 
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where the first set is valid away from MN.~, and the second is valid near MN 9 ~, respec- 

tively. Then the lift of x-1/2idxdydyl[ 1/2 is given by 

x(n-1)/21dxdydwiU~ ' r(n-D/20-U2[drdodwdyll/2 

respectively. Therefore the map (4.10) is in fact an isomorphism. 

Now that  we have found a space which contains ~*(x-r which is given in 

(4.9), we consider the push-forward of a smooth section of this space. That,  in particular, 

will establish the properties of x-r First we need to introduce some notation. 

Note that  $- and M are manifolds with boundary, and that the restriction of /3  to M 

induces a map 

~0 ----/~]M: M ,.~ OX xoOX -~ OX • OX, 

which corresponds to the blow-up of the manifold OXxOX along the diagonal A C 

OX x OX, see Figure 1. 

Given REC~(XxoOX) and xEC~(X), defining functions of ~" and OX respec- 

tively, the function O=x/REC~(XxoOX) is a defining function of M. Since ~- and M 

intersect transversally, with M A ~ ' =  OM=O.T, the functions 

RM=R]MEC~(OXxOX), ~ ) ~ = 0 1 ~ E C ~ ( ~  -) 

are defining functions of OM and 0~- respectively. 

Recall that,  see for example w of [18], if Y is a manifold with corners, and 

yEC~(Y) is a defining function of a boundary hypersurface of Y, then sections of 

yCF1/2(Y), viewed as distributions acting on F1/2(Y) via 

<yCF, f> =./yyr for R e ~ > - l ,  FEC~(Y, Ft/2(Y)), IEC~(Y, FI/2(Y)), (4.12) 

have holomorphic extensions to C \ - N .  

We will consider three such half-densities associated to R, RM and 0 r  defined on 

X• M and U respectively. 

We have fixed a product decomposition X,,~OXx [0, E) near OX, and will prove 

that  the sections of the push-forward of/~-2r 1)/2ao-1/2F1/2(XxoOX ) have distri- 

butional asymptotic expansions as x$0. To do that  we define the partial pairing for 

UEk-2~-}-(n-1)/2g-1/2C~176 F1/:(XxoOX)), IEC~(OXxOX, rl/2(OXx OX)): 

(~3o.u,f} = f (go.u)(x,y,y')f(y,y'). (4.13) 
Jo X •  

We remark that  if u is a smooth section of 

/~-2r 1/2(X xoOX) 
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then the restriction of u to M, denoted by UlM, is well defined as a section of 

1)/2 rl/  ( o x  x o ox) .  

It is also easy to see that  x2r is a smooth section of ~2r 

Therefore it can be restricted to ~-={i~--0}, and (x2r is a smooth section 

of 

We now prove a push-forward theorem which relates the distributional asymptotics 

of the class of half-densities given by (4.9), which includes the Eisenstein function, to 

their behaviour at the boundary, cf. Proposition 16 of [33]. 

PROPOSITION 4.1. Let x c C ~ ( X )  be a defining function of OX, and fix a product 

decomposition X~OXx[O,s)  near OX. Let R E C ~ ( X x o O X )  be a defining function 

of jz, Q=x/fft, and let Q~'=QIJ:, as above. Let 

v = R-2~+(n-1)/20-1/2F , FE C ~ ( X x o O X ,  F1/2(XxoOX)), 2~C C \ Z .  

Then the push-forward of v under [~, denoted by ~,v, is a section of x-1/2F1/2(X x OX), 

which has a conormal singularity at A, and moreover it has an asymptotic expansion in 

x as x$O, in the sense that if f c C ~ ( O X x O X ,  FI/2(OXxOX)) and ( . , . )  is the partial 

pairing defined above, then 

(~.v, f )  = (H;(x)+x~-2r162 1/2 a s  x$O, (4.14) 

where Gr He C C ~ ([0, e)) depend holomorphically on ~. Also, if VIM and x2r 

denote the restrictions of these half-densities to M and Y: respectively, then 

He(O) = (flO. (ViM ), f ) , 
(4.15) a~(O) ---~ ( (X2~--(n--1)/2VI.~, L0~(nq-2)/2)(~A, f ) ,  

where 6ix is the delta function of the diagonal, and (x2r O~j-=/2) is the pair- 

ing induced by the trivialization of the half-density bundle F1/2(~) given by the product 

structure. 

Proof. Since this is a local result and ~ is a diffeomorphism away from A, we only 

need to work in a neighbourhood of a point qcA.  Let y, y' be local coordinates near q, 

and let R=(x2+ly-y'12) 1/2, O=x/R and w = ( y - y ' ) / R .  The map/~ can be described as 

(see Figure 1) 

~: S+ x [0, oo) x [0, oe) x R  "~ --+ R+ x a n-1 x R  n - l ,  

(co, 4, R, y') ~ (Ro, y' + Rw, y'), 
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and we will denote 

v=[t-2r 1/2, FeC~(X•  (4.16) 

We also set z = y - y  ~. Then the variables y~ become parametric, and for simplicity 

we will ignore them. The diagonal is given by A = { x = 0 ,  z=0}. 

It is easy to prove that  D.(R-2r is conormal to A. Just observe that  the vector 

fields tangent to A are spanned over C~ (X  • OX) by 

xO~, zjOz~ , XOz~ , zkO~, 

and it can be proven, by using projective coordinates as in (4.11) above, that  these vector 

fields lift under ~ to smooth vector fields that  are tangent to jr. Thus repeated appli- 

cations of these vector fields to ~ . (R-2r  will not change its Sobolev regularity. This 

shows that  ~.(/~-2r is conormal to A. Next we establish the asymptotic expansion. 

We observe that the radial vector field is given by 

[t ~--~ =D*(xOx+Z.Oz). (4.17) 
OR 

Thus, since x(x2+lzJ~)-~/2 is homogeneous of degree zero with respect to the action 

(x, z)~+(Ax, Az), A e a + ,  we have 

(xO~+z.O~)(x(x2+lzl2)-l/2)=O, (x,z) r  

Therefore, 

/ ~ O  D,(zk(z2 + iz12)_k/2) = 0, 

We will also use that 

k �9 N. (4.18) 

Ox(x2 + Iz12) ~/2 = x(x2 +lz12) -1/2 = z / ~  (4.19) 

and that  R~*(O,) is a smooth vector field in XxoOX which is tangent to jr. 

We deduce from (4.17) and (4.19) that  

xOx(xO,+z.O=+2r162 FI~C~(X• 

and using (4.17), (4.18) and (4.19) we obtain 

(zOx-1)(xOx+z.Oz+2r162162 F~C~(X• 
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Similarly it follows that 

(xO~ - k)(xO~ + z .  Oz + 24 - k ) x ~ 3 ,  ( ~ - 2 ~  Fk) = x ~+1~. (~-2~ Fk+l ), 
(4.20) 

Fk+l ~ C~(X • 

Induction and (4.20) give 

M 

H (xOz -j)(xOx +z. O~ +24- j ) /3 .  (R-2r = xM+lfl, (/~-2r 
j:0 (4.21) 

FM C C ~ ( X  x o OX).  

Since the map defined in (4.10) is an isomorphism, it follows that the push-forward 

of (4.16) can be written in local coordinates x, z as 

fl.(TI-2r z) ~ dz 1/2. 

Let fEC~(Rn). Then 

Using (4.21) and the identity div(zu(z))=nu(z)+z.Ozu(z) we deduce that the func- 

tion u(x) given by 

u(x)=/R~fl.(T' t-2r x > 0 ,  

satisfies 

M 

Let 

H (XOx--j) (xO~ +2~-- (n+ j) )u(x) 
j=O 

= x M+I fRo3.(~-~r z) f(z) dz, x>O. 

M 

ltM (X) = 1-I (XOx "~ 2~-- ( n + j ) ) u ( x ) .  
j=O 

Then we deduce from (4.22) that there exists sCR, independent of M, such that 

M 

Oxj~=I(XCgx--J)UM ~Cx M+s, x > 0 .  

(4.22) 

(4.23) 
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Thus, for M + s > 0 ,  there exists CoEC such that 

M 
lim V[ (xa~- j )uM = Co. 
x$0 ;_~ 

From (4.23) we obtain 

M 

Ox(j~=l(XCgx--j)uM--Co) I ~Cx M+s, x > 0 .  

It follows from (4.24) that 

M 

j~ll(XOx--j)uM--Co <~Cx M+s+l, x>O. 

Since (xOx-j)Co=-jCo we have, for ao=Co/(-1)MM!, 
M 
H(xO~--j)(uM--ao) <~Cx M+8+1, z > 0 .  

' j= l  

Proceeding by induction, and using that (xO~-j).=xJ+lOx(x-J.), 
M+s-p+l>O, there exist amEC, O<.m4p-1, depending on 4, such that 

M p--1 ) 

j~-p (xcqx-j)(uM-E m=0 ~CxM+S+I' x~O. 

V~ M . p-1 Let us denote p=Hj=p+l(xa~-j)(UM-~m=o amzm). Then 

10xx-pVp(x) l <~ Cx M+s-p 

Integrating this equation from x to 1 

Iy~(x) l<C~'. 
Now we observe that if 

I(xO~-a)ul<<.CxZ, 0 < x < l ,  0 < Z < R e a ,  

then 

(4.24) 

we find that for 

(4.25) 

and using that M+s+l-p>O we find that 

lu(x)p <~ Cx ~. 

To see that, just notice that u satisfies 

lu(1)-x-~u(x),= ~lOs(s-au(s))ds= ~ls-~-l(sOs-a)u(s)ds 

f l  C [l_x~_ae~l = Cx ~-P~ < C.x J-Rea-l ds< I~ -Rec~ l  R e c ~ - Z  

(4.26) 

(1--x~e~--~). 
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Hence 

C x/~( 1 _xR~ ~_~) <~ CxP. 
< Re 

Thus (4.26) follows. 

Applying (4.26) repeatedly with ~ = p  and a = j ,  with p + l  <<.j~M, we deduce that,  

for M + s + l - p > O ,  
p--1  

UM(X)-- E amx'~ <~ CxP' x > 0. (4.27) 
m : 0  

Notice that  ( x O ~ + 2 ~ - n - j ) x m = ( m + 2 ~ - n - j ) x  TM. Since 2 ~ Z ,  m + 2 ~ - n - j r  we 

M " --V'P-1 d x m satisfies deduce from (4.27) that  for dm I] j=o(m+2r  VB--Z_~m= o m 

This gives that  

M 

1-[(xOx+2~-n- j ) (U-Vp)  <~ Cx p, x > 0 .  
'j=O 

(4.28) 

X--2~+n§ f i ( x O x + 2 ~ - n - j ) ( U - V p )  <~ Cx p, x > O. 
j=l 

Thus, for p + 2 R e ~ - n - l > 0 ,  there exists boCC such that  

M 

l imx 2r H ( x O x + 2 ~ - n - j ) ( U - V p )  = bo. 
x$0 

j = l  

Since 2~r Z, we can proceed as above to deduce that  there exists 2~o such that  

M 

1-I(xO~:+2~-n-j)(U-Vp-7OXn-2r <<. Cx p, x > O. 
'j=l 

Using induction we find that  for p +2  Re ~ - n - q > O ,  there exist 3'm, O<<.m<<.q-1, depend- 

ing on ~, such that  

II(xox+2 -n-j) u--vp--  mx <C P, x>0. 
j = q  m = 0  

Proceeding as above we find that  

M / q--1  \ 

~q+l(XOx-~-2~--rt--j) ~U--VP--m~:o~mXm+n-2r ~ Cx n§162 x ~ O. 
j :  
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Applying (4.26) with c~=n+ j -2 r  q+l~j<~M and f l = n + q - 2 R e ~ ,  we obtain, for ar- 

bitrary MEN,  and p,q satisfying respectively M+s-p+l>O,  p+2Re~-n-q>O,  

u ( x )  p-1  q-1 ~/mx m - ~  dmx'~-x n-2' ~ ~ C x  '~+q-2Rer x > 0 .  
m = 0  m = 0  

Now Borel's lemma gives the desired result. It is clear from the construction that He and 

Gr depend holomorphically on ~, provided 2 ~  Z. This method of proving the existence 

of an expansion goes back to Euler and has been used in similar contexts in [19], [20] 

and also [31]. 

Next we need to compute Gr and Hr Since these are holomor- 

phic functions of ~, we only need to compute H;(0) for 2 R e ~ - n < 0 ,  and Gr for 

2 R e ~ - n > 0 .  

In the coordinates above we have, for f e C F ( R  n) and ~=(x:+lzI:)~/L 

It follows from the dominated convergence theorem that for 2Re (-n<0, 

,,... ,..r 0, :,,0. (.,.,,,>. 

To compute G;(0) for 2 R e ( - n > 0  we set z=xw. Observing that in these coordinates 

Qy=(l+lwl2) -1/2, we deduce from (4.29) that 

<~,(R-~<F),f>x~ ( (1+ 'w-/~2) 1/2 w ) = o~F ~}~,~, f(x~)d~. 

Again by the dominated convergence theorem, 

r ) .,o jR .  \ ,e~, (1+1~2)~/, f(xw) dw 

(1+;,.,.),.. 
Using the map R ' ~ w ~ S P ( w ) = ( ( l + l w l 2 ) - l / 2 , w ( l + l w l 2 ) - v 2 ) ~ s  n we have, for 

fs gd~= fRg(SP(w))(l +lwl2)-(~+')/2 dw. 
+ 

Therefore 
R ~ -1-n/2 2~--n/2~. nQ~F(0, Q~, QTw) dw = ~ 67 ~ aa 

= (x~c-(n-1)/2v[~, e~_l-n/2). 
(4.30) 
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Since 2 Re ~ - n  > 0 the integral converges. This concludes the proof of the proposition. [] 

Next we compute the coefficient of (~ in the second equation of (4.15) when v is the 

lift of the Eisenstein function. This will be important in the definition of the scattering 

matrix. 

PROPOSITION 4.2. Let g and V satisfy the hypotheses of Theorem 1.1. The coeffi- 
cient of ~ in the second equation of (4.15), 

--l--n~2\ M(r = (~*(x2C-(~-~)/2E(r zj: /, 

is equal to Iho] 1/2 times a function which is independent of the base point of the fibre 3:, 
and is also independent of g and V. 

Proof. According to (4.30), (4.5) and (4.10), M(r depends only on the value of F l y  

where F is given by (4.1) and .T is as above. 

We recall from the construction of R(~) in w and the proof of Proposition 7.4 in 

[28] that  the normal operator of R(~) is just Ro(~), the Green function of the operator 

;Xho+~(~--n ) given by (3.19), where as observed in [28], the fibre of the front face over a 

point pEOM can be naturally identified with the hyperbolic space H n with linear metric 

induced by h0. Thus in order to compute M(~) we need only compute for R0(~). It is 

well known, see for example Lemma 2.1 of [16], that  

Ro(r  

dx dy dx' 
r(r189162 I h ~  x n z' ( 7 )  n +S1,  

$1 e A r162 (4.31) 

where ly-yrlo is the distance in the ho-metric and Ihol denotes its volume element. (Here 

we have multiplied by the appropriate half-density.) Since ~=x(x 2 + (x')2 + lY- Y'I 2)- 1/2 

and d=x'(x2+(x ' )2+ly-y '12)- l /2  we deduce from (4.31) that  Ro(~)=0;(Q') ;# where 

# is the half-density induced on the front face. By an abuse of notation we denote the 

restrictions of ~ and ~ to the front face also by Q and ~. Thus F l y  is just the half-density 

induced on .7". This concludes the proof of the proposition. [] 

Now it follows from (4.9) and Proposition 4.1 that  x-r with 2 ~ Z  and 

not a pole of R(~), is a section of x-1/2F1/2(X• which is smooth in the inte- 

rior of X •  and has a conormal singularity at A. Since x-(n+I)/2F1/2(X• = 

F~/2(X• we have that  x - r  is a smooth section of Flo/2(X• Therefore we 

have from (4.14) that  
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COROLLARY 4.1. For 2(~ Z and ( not a pole of R((), the Eisenstein function, E((), 
defined by (4.2), is a smooth section of F~/2(XxOX) which is holomorphic in i. More- 
over, for any product decomposition X ~ O X  x [0, r and for any f, g E C ~ (voX, F1/2 (OX)), 
we have that, as x$O, 

_~1/2 
(E(~),f|162 , x > 0 ,  (4.32) 

where h~,(ECoo([0, c)), i=1,  2, depend holomorphically on ~. 

We observe that,  as an element of COO(XxOX, F~/2(XxOX)), E(() defines, by 

duality, a map 

E(( ) :  C (OX, r /ffOx)) c (x, 

(E( r  = / e C (aX, e c (x, 

By definition of the resolvent, R((), the kernel of (~g(~)+V(x)+(((-n))R(() is sup- 

ported on the diagonal in X x X. In particular, we find from the definition of E(()  that  
if f e  Coo (OX, F 1/2 (OX)), 

(s  =0 in X. 

Moreover, it follows from (4.15) and (4.32) that  for any fcCoo(OX, FU2(OX)), 

(E(() f)(z , . )  = x(f++xn-r f• e COO(X,F~/2(X)), xn/2f-lox -- M(f ) f ,  

where M(()  is given by Proposition 4.2. This shows that  (1/M(())E(ff) is the Schwartz 

kernel of the Poisson operator. 

For completeness, as the general result does not seem to be in the literature, we 

prove the uniqueness of the generalized eigenfunction E(() f .  The case R e ( = � 8 9  has 

been proved by Borthwick in [6]. Our proof, which is based on an argument of [30], is 

not very different from his. For simplicity we consider the Laplacian acting on functions. 

The half-density case is identical. 

PROPOSITION 4.3. Let ( e C  be such that 2(~Z ,  ( ~ ( - o o ,  �89 and ~((-n)  is not 
in the point spectrum of Ag. Suppose that U~-x( f +xn--f f I, with f, f'ECoo(X), satisfies 

(Ag+f(~-n))u----O. If f'lox=O, then u=O. 

Proof. Substituting u=xCf+xn-( f  ' in the equation (Ag-~(n-())u=O, equating 

the powers of x, and using that  2~ ~ Z, we deduce that  if f~lox =0 then, in fact, f '  vanishes 

to infinite order at OX, and so can be absorbed into f .  So we may assume that  u=x(f .  
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If Re~> ~nl then u is an L2-eigenfunction and, by our assumption on ~, must be 

zero. 
1 To analyze the case Re~<~n,  we proceed as in [30]. Let r  r 

r >~0~ with r  for t<  1 and r  1 for t>  2, and let (x, y) define a product decom- 

position near the boundary as in Proposition 2.1. Since in this product decomposition 

% = -(xO~)2+nxOx -F -F (x ,  y)Ox+x~Q(x, y, 0~), 

with F smooth, r vanishes near (3X, and Ag is self-adjoint, we obtain 

/ z  (lAg' r u dg= 2i I m [ r  r  ix) lul 2 dg 

where dg is the Riemannian measure induced by the density, and h is the natural density 

induced by g in y. 

Now if we have u=xCf, then, after setting X=~T, integrating by parts, and using 

that r and r we obtain 

(-- 2i(2e)2Re;-n Im ~ + 2is2Re;-n lm ~ (2 Re ~-- n) ~2.-r2Rer l r dT) 

• __LX I f12 CO' y) dh + 0 (e 2 Re r 1) (4.33) 

= 2i Im [~(~- n)] f r ~x)lul 2 rig. 
2x 

Observe that 

r r ) 
x 

- -  e 2 R e r  r  Ifl2(O,y)dh 
x 

Since Im~(2Re ~ -n )=Im[~( r  we deduce from (4.33) and (4.34) that 

-2i(2e)2Re~-nIm~ Lxlfl2(O,y)dh+O(e2Re~-n+l)=2iIm[~(~-n)]O(1 ). (4.35) 

When 2Re~<n,  since this holds as s--+0, we deduce that flox=O. Observe that when 

2Rer  Im[~(~-n)]=0. Thus the right-hand side of (4.35) vanishes. Letting ~--+0, we 

also deduce that flox=O. 
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Once f[ax vanishes it follows, using the indicial equation and the fact that  2 r  

that  u must vanish to infinite order at the boundary, thus that  ucL2(X)  and therefore 

u=O. [] 

The scattering matrix, acting on half-densities, can then be defined, for the values 

of ~ as in Proposit ion 4.3, and such that  M ( ~ ) r  as the map 

s(0: rl/2(0x) -+ rl/2(0x), 

_ ~ z n / 2 L l o x  , S(~)f  - M(()  

with M(r defined as above. Thus it follows from the first equation in (4.15): 

PROPOSITION 4.4. For the values of ~ as in Proposition 4.3, and such that M(()y~O, 

the scattering matrix S(r is a pseudo-differential operator in OX, acting on half- 

densities, which is meromorphic in ~. Moreover its kernel, which we also denote by S((), 

satisfies 
1 /3~ S(~) = ~ D* ( x-c+n/2 (Xt)-C+n/2R(~))ITNB, (4.36) 

where T N B  is the intersection of the top and bottom faces, and M(~) is defined in 
Proposition 4.2. 

Observe that  the right-hand side of (4.36) gives a meromorphic extension of S(~) 

for values of ~ that  are not poles of (1/M(I))R(~). 

As pointed out in the introduction, this definition of the scattering matr ix  is depen- 

dent on the choice of the defining function x. There is a s tandard way to remove it, see 

for example [14], [37], and view it as an operator  

S((): C ~ (OX, r ~/2 (OX) | IN* (aX) l " -c)  -~ c ~ (ox, r ~/~ (ox) |  (ax)  I c). 

Now this scattering matr ix  is not quite the same as the one defined in the in- 

troduction, as this is the scattering matr ix  associated to the operator acting on half- 

densities rather than on functions. Let w0 denote the canonical density over the bound- 

ary induced by h. To get the appropriate  Eisenstein function for functions we take 

w-1/2 (x, y) E(~) w 1/2 (y'). We thus see that  the scattering matr ix  on functions is obtained 

by trivializing the half-density bundle over the boundary by w~/2. Note that  conjugating 

the scattering matr ix  by the trivializing half-density will not affect the principal symbol, 

nor will it affect the principal symbol of the difference of two scattering matrices asso- 

ciated to differing metrics which agree at the boundary. It  follows therefore that  in the 

next section, where we establish our inverse result, it is irrelevant which definition we 

U s e .  
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5. The  pr incipal  symbo l  

We compute the principal symbols of S(~) and $1(~)-$2(~). Throughout this section 

we assume that ~ is not a pole of the right-hand side of (4.36). We also fix a product 

structure in which 

dx2§ y, dy) 
gj= x2 , V jeC~(X) ,  Vj(0,y)=0,  j = l , 2 ,  

h2(x, y, dy)-hl(X, y, dy) = xkL(y, dy)+O(xk+l), k >~ 1, (5.1) 

V2-Vl=xkW(y)+O(xk+l),  k ~  l. 

First ,  we prove Theorem 1.1. 

Proof. It follows from (4.36) and (4.29) that the leading singularity of/3~S(() is 

given by (1/M(~))FITnBR -2r As observed in the proof of Proposition 4.2, FITnB is 

the induced half-density on TnB.  Thus, pushing forward to OX• gives that the 

leading singularity of S(~) is given by (1/M(()) ly-y '1-2r  times the half-density induced 

by h. The density term in M(~) cancels with that of h. Taking the Fourier transform we 

find that the principal symbol of S(~) is given by C(~)I~12~-'~, where I~1 is the length of 

the covector ~ with respect to the metric induced by h. Note that the principal symbol 

could also be computed by observing that it must agree with that in the almost product 

case, and that doing so gives the explicit value of the constant--we have proceeded in 

the other way in order to prepare the ground for our next result. [] 

As a consequence of Theorem 3.1 and Proposition 4.4 we obtain 

PROPOSITION 5.1. Let gj,Vj, j = l , 2 ,  satisfy (5.1). Let Sj(~), j = l , 2 ,  be the scat- 

tering matrix corresponding to gj, Vj, and let M(~) be defined as above. Then 

1 
S I ( ~ ) - $ 2 ( ~ )  = ~ (AI(~)+A2(~)), 

where A2 C ~ - ~  (OX, F 1/2 (OX)) and the Schwartz kernel of A1 satisfies 

/3~A1(~) = (Rk-2~+non/2(Qt)n/20l(r 

with a(;) defined by (3.17). 

Proof. We will apply (3.16) and (3.17) to (4.36). Since the lift of the Schwartz 

kernel of G2, defined in (3.16) and (3.17), under/3 vanishes to infinite order at the top 

and bottom faces, it does not contribute to the difference of the scattering matrices. Also 

notice that if v e C ~ ( X x X ,  F~/2(Xx X)), then 

e c  (ox • a x ,  r • o x ) ) .  
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So G3(~) contributes to the difference of the scattering matrices with a smoothing oper- 

ator. Finally observe that 

~*(X-~+n/2 (X t ) -~+n/2G1)[TN B : (Rk-2~+non/2(Ot)n/20~(~))[O:O,:  O. (5 .2)  

This concludes the proof of the proposition. [] 

Next we compute the leading singularity of $1(~)-$2(~). The main part of the 

calculation is 

LEMMA 5.1. Let gj, Vj, j = l , 2 ,  satisfy (5.1), and let Sj, j=1 ,2 ,  be the scattering 
matrix corresponding to gj, Vj. Let pEOX and assume that, after a linear transformation, 

h0(p)=Id. Let Sj(i),  j = l , 2 ,  be the scattering matrices acting on half-densities. Then, 
for M(~) as above, 

1 
$1(~)-$2(r ---- ~ (BI(~) +B2 (~)), 

where in local coordinates x ,y  ~, valid near p=y, with Y=y-y~ ,  r=ly-y~[, Q=x/r, 

~'=x~/r, w = ( y - y ' ) / r ,  valid near TAB,  the lift of the kernels of B1 and B2 under 
~o are given by 

dw ]l 1/2 
/~;Bi  : rk-~r 0, w, y, 0, 0) dr d 

r--Z Y[ , (53) 
j33 B2 = O (  rk-- 2~ +n+ i ) . 

Moreover, for 2Re~)max(k+2 ,  n - k + 1 ) ,  

[Tl(k, ,, j(y)l l  - 0y 0yjlYI 
i , j=l 

+ T~ (k, r  �88 

r(;-�89 
~O~/R U2~+k+3-21--n 

T~(k,{) = ~ (u2+[Vi2)r ~ dUdu, 

(5.4) 

el----(1, 0,..., 0), l =  1,2. 

Proof. In these coordinates, (5.2) is given by 

~*(Xr162 = rk-2;+~a(~, r, w, y, O, 0) 1 dr dw dy' 1/2. 
l 

(5.5) 
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Now we use Proposition 5.1 and observe that  ~ O = 3 1 T n B  . Equation (5.3) is just the 

first-order Taylor expansion in r of the function a(~, r, w, y, 0, 0). 

We observe that  a(r 0, w, y, 0, 0)Idw dy'] 1/2 is the restriction of Rn/2On/2(Q')n/2a(~) 
to the the intersection of the top, bottom and front faces, TNBAF={R=o=Q~=O}, so 

the second part of the lemma is to compute this value. We know from Theorem 3.1 that  

the half-density R~/2a(~), restricted to the front face, satisfies (3.18). By Remark 1 (after 

Theorem 3.1) this equation has a unique solution in .d r162 After solving it directly, we 

find the value of its solution at TNBnF. 
Instead of using coordinates (r, Q, O',w, y'), it is easier to solve (3.18) in coordinates 

s=x/x', z=(y-y~)/x '. The front face is then given by x'=O, and we have 

X S 

0 = ( x 2 § 2 4 7  = ( 1 + s 2 + l z [ 2 ) l / 2 ,  

x' 1 
(x2 + (x')2 + ly-y'12)l/2 (1+s2+lz12)1/2 

(5.6) 

The intersection of the top, bottom and front faces, TnBNF, is then given by { J = s = 0 ,  

[zI=c~}, and since ho=Id,  equation (3.18) is reduced to 

(s162 +s2 +lzl2)(k-2r = Np(skE)G, (5.7) 

where/~ is the Laplacian in the hyperbolic space acting on half-densities. Hence we have 

sr ( l + s2 + ]zl2)(k-2r /2 a(s, z) = G( Np(skE) a)(s, z). (5.8) 

It follows from (3.5) that  

Np(E):  ~ mj(y)sOz{sO~j +(W(y)+ l k(k+ l)T(y)). 
i , j : l  

(5.9) 

We recall from Lemma 2.1 of [16] that  

a(s ,z )=  (~  _n/2 r(~) . s~ 
r ( i -  �89 ~ + E l ,  (5.1o) 

where E1 has a conormal singularity at { s = l , z = 0 }  and, near the boundary, G1E 

.4 ~+1'r where A a,b denotes the space of half-densities of the form 

salzl_ b ~ dz . ,L 1/2 
a y  . 
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It follows from Proposition 6.19 of [28] that  G(.A(+k+I'r162 Since, as in 

equation (4.12) of [28], see also equation (3.1), G acts as a convolution operator with 

respect to the group action defined in w of that  paper, we find that  

i[ 1/2 
sO(1 +s2 + Iz12)(k-2o/2~(s, z) 

dz 
dy 

= C Hq(y)O~,OzjIl ( k, ~, s,z) (5.11) 
i, --1 

dy -t-J, 

where 

C((-) = (2.n--n/2 F( ' )  ) 2 1(n_2)), 
and 

h ( k , ( , s , z )  = o r - . . -  ( l+ t2+lu l2 )C( l+s2 / t2+ l z - ( s / t )uI2) (  ~,-t; T 
Recall that  our goal is to compute the restriction of Rn/2On/2(o')n/2a(r to TrTBr7F. 
In these coordinates 

sn/2 
R,~I2 ~,~12 (0,),~12 = (x'),,12 (l+s2+lzl2p/4" 

So, after restricting to the front face, which is given by {x'=0}, we have to restrict 

s n/2 ? dz dy~l 1/2 
(l+s2+lzl2)n/4 o4s, z) s~ 

to the corner TNBrhF={s=O, [zl=oo}. This is the same as the restriction of 

s'~/2 I ds dz I 1/2 

izln/~ ~(~, z) ] --s ~- ~ dy' . 

Notice that  for w=z/]z], we have dw=dz/]z[ n. Thus it follows by (5.11) that  the value 

of sn/2]z[-n/2a at TNBNF is then given by A(w)]dwdy'[U2, where 

A(w) = lim 1 Hij(y)Oz~Oz~I1 + (W(y)+ lk(k+ 1)T(y))/2 . 
~-~o sr +s2 +jz]2)(k-20/2 ~i,j=~ 

I~1-+oo 
(5.12) 

Set Iz l~=~/t  and U=(t/~)lzlV, and observe that I z ( k , r 1 6 2  M), so we 
can also set z=[z[e~, e1=(1,0, ...,0). Then 

Jo JR~ (u2 +s2/Iz12 +lY12)( (1/]z]2 +u2 +(el-V)2) r dY du. 

To analyze the limit of Iz(k, (, s, z) as s--+O and Izl--+oe, we begin by proving 
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LEMMA 5.2. For k>~l, and for 2 R e d ~ m a x ( n - k +  l ,k+2),  we have 

L~ u 2Re~+k+3-2z-~ g(l,k, 4)= ~ (U2.~_IVI2)Re~(u2W(el_V)2)Re ~ dYdu< cx~. 

Proof. We carry out the proof for n > l .  The case n = l  is actually simpler. Observe 

that for V=(v ,V ' ) ,  V ' e R  ~-1 and IV']=Q, 

L c)~L c'ViR u2Re ~+k+3-2l--nQn-2 
J(l, k, 4) = IS"-2I (u2+e2+v2)R~r dv dude. 

Setting v = R c o s r  u= R sin r cos O, Q=RsinCsin0 ,  0<r  0<9<�89 we obtain 

Lo~L~ Rk+3-2Z(sin r r 
J(l ,k , i )=Kz(C) [ (R_cos  r + (sin r r dCdR, 

r~r l 2 
Kz(4) = ISn-2[ Jo (COSO)2Rer 

Thus, for k>~2 and 4 as above, we have that 

(LT; J(l, k, 4) <~ Kx (4) R a+3-2t (sin r de dR 

i4~176 --2Re~+k+3--21 " 2Re~+k+2-21 ) +K2(4)  R (sine) dCdR <oc. 

The same argument can be used to show that J(1, 1, 4)<  cx). When k = 1 and l = 2, another 

argument has to be used. Setting R = c o s  r  sin r we find that 

S?io" J(2 ,1 ,4)~K(4)  (l+t2)-ReCdCdt<oc. 
O ~  

This concludes the proof of the lemma. [] 

Thus the dominated convergence theorem gives that  for 

Tz(k, 4, s, z) = s-Clzl2C-k-4+~Sl(k, 4, s, z), 

we have 

L~ U2~TkW3--21--n 
lim Tl(s ,z)=Tl(k ,4)= dYdu. (5.13) 
~-+o ~ (u~ + lV l2 )~(u2  + ( e ~ - V ) 2 ) ~  

I~1-->o~ 

By identical considerations we deduce that 

O~jTz(s, z) = O(s2/izl3), O~DzjTz(s, z) = O(s2/Izld). 
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Hence 

Oz~Ozjh(s,z) =Cl(~)S((Oz~Ozj]Zlk+2-2r162162 (5.14) 

Using that  z=(y-y ' ) / x '  we find that  z / l z l=w=(y-y ' ) / l y -y '  [. Therefore (5.4) 

follows directly form (5.11), (5.12), (5.13) and (5.14). This concludes the proof of the 

proposition. [] 

Now we can prove Theorem 1.2. 

Proof. It follows from (5.3) and (5.4) that  the leading singularity of the kernel of 

$1 ( ( ) -$2 (~ )  is given by 

M(r  ,j=l 
(5.15) 

times a non-vanishing smooth half-density, where C( ; )  is given by (5.4) and M(r by 

Proposition 4.2. We obtain (1.8) by taking the Fourier transform in Y of (5.15), and 

observing that  (5.4) was obtained under the assumption that  ho=Id,  and using the fact 

that  h0 is symmetric. The coefficients of Tj(k, ~), j=l ,  2, in (1.9) arise when we take 

the Fourier transform of the corresponding power of [YI. See for example p. 363 of [12]. 

This ends the proof of the theorem. [] 

We now prove Corollaries 1.2 and 1.3. The proof of Corollary 1.3 is a direct con- 

sequence of the fact that,  for every k, A2(k ,~ ) r  for at least one value of 4- The 

proof of Corollary 1.2 requires a more delicate analysis due to the presence of the term 

involving T(y). 

Proof. As we are working modulo diffeomorphism invariance we can take a product 

decomposition such that  each gj is of the form (1.6). Suppose that  gl equals g2 to order 

k near p, and suppose that  the principal symbol of S~(~)-$2(~) of order 2 R e ~ - n - k  

is equal to zero at p. Since VI=V2 near p, we find that  W=0 .  By a linear change of 

variables on the tangent space to OX at p we may assume that  h0=Id.  It is clear from 

(1.8) that  if the trace is zero and A l ( k , ~ ) r  then Lij(p)=O is zero, so we need only 

show that  off a discrete set these hold. By taking ~=e j  =(0,  ..., 0, 1, 0, ..., 0), 1 in the j t h  

entry, we deduce from (1.8) that  

Al(k, ~)Lij(p)+ �88 ~)T(p) = O, 1 <~ i , j  < n. 

By taking i=j and adding in j we obtain, for all ~ which is not a pole of Aj(k, ~), j = l ,  2, 

(Al(k, 4 )+  �88 + 1)A2(k, 4)) T(p) = O. 
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Using the formulas for A1 and A2 given by (1.9) and the fact that  F(z+l)=zF(z) we 

have, again for all r which is not a pole of Aj(k, ~), j = l ,  2, 

(Tl(k,~)(k+2-2~)(k-2~+n)+�88 (5.16) 

(This can also be deduced directly from (5.15).) It follows from the meromorphicity of 

the scattering matrix that  the coefficient, Z(r of T(p) in (5.16) has a meromorphic 

extension to C, and we will show that  it is not identically zero. Hence, if the symbol of 

order 2 Re ~ - n - k  of the difference of the scattering matrices vanishes at an energy r 

which is not one of the zeros of Z(~), it follows that T(p)=0. 
We know from Lemma 5.2 that  for k~> 1, and for 2 Re ~ > m a x ( n - k +  1, k+2) ,  Tl(k, ~) 

and T2(k, ~) are finite. In particular they are finite for 2 ~ = k + n ,  as long as n~>2. It is 

clear from the definition of Tj that  for 2 ~ = k + n ,  Tj(k, ~) >0, j = l ,  2. Hence T ( p ) = 0  and 

Hij ----0. 

For n = l ,  we can apply the same argument except that  we take 2 ~ = k + 2  instead of 

k + l .  This ends the proof of the corollary. [] 

6. A l m o s t  p r o d u c t - t y p e  m e t r i c s  

In this section, we examine the scattering matrix for metrics which take the form 

dx2 +h(y, dy) +O(xOO ) (6.1) 
g-- x2 

for some product decomposition. Our approach is analogous to that  of Christiansen, [11], 

and Parnovski, [35], in the asymptotically Euclidean setting. The computation is also 

closely related to that  of Hislop, [17, w for H n. 

As we have shown in previous sections that  if two metrics agree to infinite order 

then the associated scattering matrices differ by a smoothing operator, it is sufficient 

to compute for the manifold R+ • OX with metric (dx 2 +h(y ,  dy))/x 2. The Laplacian is 

then 
f o'~ 2 o 

where Aox is the Laplacian associated to h on OX. Let Cj be a complete orthonormal 

basis of eigenfunctions for Aox with Cj of eigenvalue A 2. 

We then look for solutions of ( A + ~ ( ~ - n ) ) u = 0  of the form x~/2a(x)r Com- 

puting as in [17] we deduce that  a satisfies 

( x2 0 [x2)~y+(~_�89 
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This is a modified Bessel equation, and taking the solutions which are regular at infinity, 

we see that a has an asymptotic expansion as x-+0, and its lead term is of the form 

1 
r ( 1 - ( ~ - � 8 9  ( � 89162  

1 
r ( l +  ( r189 

It now follows immediately that S(~) applied to Cj multiplies it by the ratio of these 

coefficients: 
(�89189 =2n-2~ F(�89 ~r 
(�89162189 r ( ~ - � 8 9  Aj " 

As the functions Cj form an orthonormal basis, we have now proven the second part of 

Theorem 1.3. 

7. Inverse scattering for black  holes  

We consider two models for the exterior of a static black hole, the Schwarzschild and the 

De Sitter-Schwarzschild models. These are given by 

(Y,g), Y = R t x X ,  whereg=c~2dt2-c~-2dr2- r2[dw[2.  

Idw[ 2 is the standard metric on S 2. In the Schwarzschild model, 

X : ( r + , c ~ ) ~ x S  2 and a=(1-2m) 1/2, r+=2m<r, (7.1) 
r / 

and in the De Sitter-Schwarzschild model, 

X=(r+,r++)rxS 2 and a = ( 1  2mr ~Ar2) 1/2' r+<r<r++. (7.2) 

The parameter m > 0  denotes the mass of the black hole. In (7.2), A, with 0<9m2A<1,  

is the cosmological constant, and r+, r++ are the two solutions to a = 0 .  

These are semi-Riemannian metrics on the manifold with boundary Y, so their 

Laplacians are in fact hyperbolic operators, and we denote them [~g. We have 

(7.3) glg = a - 2 ( D t  2- (~2r -2D~(r2(~2)Dr-a2r -2A~) ,  

where D.=(1/i)O., and A~ is the positive Laplacian on S 2. Therefore stationary scat- 

tering phenomena are governed by the operator 

P = a2 r -2Dr  (r2a 2) D~ - a2r  -2 A~. (7.4) 
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Scattering theory for the operator P has been extensively studied, see for example 

[5], [9], [10], [34], [39] and the references cited there. It was observed in [39] that,  after a 

change of C~-s t ruc ture  on X, in the De Sitter-Schwarzschild model the operator P can 

be viewed as a zero-differential operator which is elliptic, and whose normal operator is, 

after a linear change of variables, a multiple of the Laplacian on the hyperbolic space. 

This change in C~-s t ruc ture  is simply the addition of the square root of the boundary- 

defining function and therefore only affects smoothness up to the boundary and not 

smoothness in the interior. Thus the methods of [28] directly apply, and it was shown in 

[39] that  R(/~)= ( P - A  2 -  ln2)-1 has a meromorphic continuation to C. It also follows 

from the discussion in [39], and the methods of w that  the scattering matrix can be 

defined in this situation. 

The case of the Schwarzschild model is more complicated. At one end, a = 0 ,  which 

is the black hole, the operator P behaves as in the De Sitter-Schwarzschild model, i.e. 

after a change in the C~-s t ruc ture  of X, it is an elliptic zero-differential operator, and 

its normal operator is essentially the hyperbolic Laplacian. On the other end, as r--+c~, 

c~--+], and the metric g tends to the Lorentz metric. Thus the operator P tends to 

the Euclidean Laplacian. This is the case of an asymptotically Euclidean metric. To 

study the scattering matrix at this end one proceeds as in [33]. Since the construction 

of the symbol of the scattering matrix at each end only depends on the metric in a 

neighbourhood of each boundary, see [33] and w it follows that,  modulo smoothing 

operators, the scattering matrices at each boundary are independent. 

It was shown in [5] that  the resolvent R(~), for the Schwarzschild model, as an op- 

erator from g ~ ( X )  to C~(~:),  has a meromorphic continuation from Im ~>0 to C \ i R _ .  

It is not known whether its poles might accumulate at the origin. 

In this section we will prove that  the Taylor series of certain perturbations of both 

models, at a = 0 ,  are determined from the scattering matrix at a fixed energy. The 

analogous result at x = 0  also holds for the Schwarzschild model. However, since its proof 

relies on the methods of [24], we will not carry it out here. 

THEOREM 7.1. Let (X, OX) be a smooth manifold with boundary with dimension 

n + l ,  and let pEOX. Suppose that g induces an asymptotically hyperbolic structure on X ,  

and that g= ( dx 2 +h(x ,  y, dy) ) /x  2, with respect to some product decomposition near OX. 

Suppose that P is a positive, smooth, elliptic, zero-differential operator of second order, 

and that its normal operator satisfies 

Nq(P) =KNq(Ag)  for all qCOX, (7.5) 

where K > 0  is a constant on each component of OX. Then for each h E R \ Q ,  Q a 

discrete subset, and f c OX) there exists a unique u satisfying ( p _  2_  �88 of 
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the form 
xi)~+n/2 _--i)~+n/2 g 

u = f + + x  j_,  

Moreover the scattering matrix given by 

f+lox = f .  

S ( A ) f  : f - l o x  

is a pseudo-differential operator of order 2iA. 

Furthermore if P2 is another smooth elliptic zero-differential operator of second 

order that satisfies (7.5), and is such that 

0y ayj+W())  ( ) P - P 2  = x  k j x x ~x x + 0  x k+l , 
\ i ,  j--l-- 

(7.6) 

where H=(Hi j )  is a smooth symmetric matrix, then 

s2( ) c 

and the principal symbol of S(A)-S2(A) equals 

2 i A - k - 2  Al(k ,  A) E Hij~i~jl~l +A2(k, A) WIll 2i;~-k, 
i,j 

(7.7) 

where ho=hl~=o, I~] is the length of the covector ~ induced by ho, and A1, A2 are func- 

tions of A which are not identically zero. 

Proof. A line-by-line inspection of the proof of Theorem 1.2 with ( = l n + i A  gives 
the result. [] 

As an application of Theorem 7.1 we will prove 

THEOREM 7.2. Let X and ~ be given by either (7.1) or (7.2). 
Cr162 O<.i,j<.2, and let 

Let aij (r, w) C 

2 2 

g = ~2 dt 2 _ c~-2 (1 +~aoo (r, w)) dr 2 - E aoj dr dwj - r 2 E (Sij +c~aij) dwi dwj 
j = l  i , j=l  

(7.8) 

be a perturbation of the models above. Let  X1/2 be the manifold X with the new C ~ 

structure in which a C C~(X1/2)  is the new boundary-defining function. Then the oper- 

ator Pa defined by 

E]9~ = c~-2 (Dt2-Pa) (7.9) 
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satisfies the hypotheses of Theorem 7.1 at the boundary, {a=0} ,  and there exists a prod- 
uct decomposition (G,~), with ~=w at c~=0, near X such that for )~cR\Q, Q a count- 
able subset, its scattering matrix at energy ~ determines the Taylor series of aij in 
coordinates (~,~)  at {G=0}. 

Note that  as before we can recover to finite order off a discrete subset but to infinite 

order off a countable subset. 

Proof. We will only carry out the proof for the Schwarzschild model. The other 

case is very similar, although the computations are more tedious, but are essentially 

done in [39]. 

First we check the statement about the normal operator of Pa. Since a 2 =  1 - 2 m / r  

we find that  dr=a(r2/m) da. Hence g is given by 

r2 2 
g=a2dt2- r4 ( l+aa~176176  2 E (~ij+aaij)dwidwj. (7.10) 

i , j = l  

Let Ao=(a~ where a ~  -2, 0 _ . o  ~2 and o a22--t~33:, aid=0 , i#j .  Let Al=(a~j),  where 

alo=a-2aoo, aid --ajlo =ado, aijl _--a,~.., l<~i,j~2. Let A=Ao+aAx. Then we have A =  

Ao(Id +aAolA1) and hence 

det(A) = det(Ao) det(I+aAolA1) = det(Ao)(1 +aT+O(a2)), 

T = a o o + a n  ~-a22, 

A-1 = Aol + aAolA1Ao 1. 

(7.11) 

Using (7.11) and the definition of P~ we find that  the normal operator of P~ at a point 

p at the boundary c~=0 is 

NAPe) = ~ (4(~G)2+~2ap), 

where AB is the Laplacian at the tangent plane to S 2 at p. Thus Np(P~) satisfies (7.5). 

Next we consider two perturbations of the Schwarzschild metric F and H satisfying 

r 4 

Fo0 = ~-~ (l+~foo), 

r 4 
Hoo = ~-~ ( l+ah0o) ,  

r 2 
Flj = Fjl = ~ flj, 

r 2 
H l j  = H~I = ~ h~r 

Fij = r2(Sid +~r-2fij), 

Hij -~ r2(Sij +~r-2hij). 

Let gF and gH be defined by (7.10), where f~j and hij play the r61e of aij. Let SF and S H 

be the scattering matrices corresponding to PF and PH. It follows from the computation 
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of the determinant above that ,  for a small and fij ,  hij smooth, 

r4 r2 2 
GF = ~ ( l + a f 0 0 ( r ,  w)) dce2+ce~  E foj dc~dwj + r  2 E (Sij+c~fij) dwi dwj, 

j=1,2 i,j=l 

r4 r2 2 
G• = -~5 (1 + ~ hoo (r, w )) d(~ 2 § a - ~  E boy d(~ dwy + r 2 E (Sij § ~hij) dwl dw i 

j : l , 2  i , j : l  

are Riemannian metrics near OX. 

Let (5, ~) be a product  decomposition of X near OX in which 

GF = da2+fi jdwi  dwj, G H = dc~2+~ dwi dwj. 

Suppose that,  in these coordinates, f i j - -h i j :~k~j i j .  Therefore 

PF -- PH : ~k(~iij Owi Owj ) ~- o(~k4-1) �9 

So it follows from Theorem 7.1 tha t  the kth-order symbol of SF(A)--SH(A) determines 

and is determined by ~ .  

This ends the proof of the theorem. [] 
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