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0. I n t r o d u c t i o n  

Let us consider a Schr5dinger operator in L2(Rd), 

-A+V,  (0.1) 

where V is a real-valued function. Lieb and Thirring [231 proved that i f 'y>max(0,  1 -  ld) ,  

then there exist universal constants LT, d satisfying(1) 

tr ( - A + V )  ~ - <~ L%d [ V~_+d/2(x) dx. 
J R  d 

(o.2) 

In the critical case d>~3 and "~=0, the bound (0.2) is known as the Cwikel Lieb- 

Rozenblum (CLR) inequality, see [8], [20], [25] and also [7], [19]. For the remaining 

case d = l  and .y= l ,  the estimate (0.2) has been verified in [27], see also [14]. On the 

other hand, it is known that (0.2) fails for 7 = 0  if d=2,  and for 0~<7< 1 if d = l .  

If VCL~+d/2(Rd), then the inequalities (0.2) are accompanied by the Weyl-type 

asymptotic formula 

lim 1 1 / / ~  cz-++cxD OL~'+d/2 tr ( -A+c~V)  ~ = l i m  (I~I2~_oLV)~. dx cl~ 
- ~ + ~  a ~ + d / 2  d •  (2~) d 

L~l'd /a ~/~+d/2, 
v _ ax, 

d 

(0.3) 

(1) Here and below we use the  not ion 2x_ := I x l - x  for the  negative pa r t  of variables, functions,  
Hermit ian  matr ices  or self-adjoint operators .  
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where the so-called classical constant L r is defined by -Ld 

d (2 )_df = d(l~[-1)~ d2~= 2dlrd/2F(.~+�89 ), ")'>~0. (0.4) 

It is interesting to compare the value of the sharp constant L%d in (0.2) and the value 
cl of L%d. In particular, the asymptotic formula (0.3) implies that  

cl (0.5) L.~, a <~ L.y,d 

for all d and 3' whenever (0.2) holds. Moreover, in [1] it has been shown that  for a fixed 

d the ratio L%a/L~I,d is a monotone non-increasing function of % In conjunction with 

the Buslaev-Faddeev-Zakharov trace formulae [6], [9] one obtains [23] 

= L ld (0.6) 

for 

d = l  and .y1>3 (0.7) 3" 

On the other hand, one knows that  

cl L%d < L%d 

i f d = l  and ~1 <~< 23 (see [23]), or "y<l and d e N  (see [12]). 

Up to now (0.7) was the only case where (0.6) was known to be true for general 

classes of potentials VEL ~+d/2. Notice, however, that (0.6) has been proven for various 

subclasses of potentials. If, for example, f~ C R d is a domain of finite measure and 

a as x E ~ ,  
= (0.8) 

as x c R d \ ~ ,  

then the equality (0.6) with 3,=0 can be identified with the P61ya conjecture on the 

number of the eigenvalues {#k} less than a for the Dirichlet Laplacian in ~. It holds 

true for tiling domains [24] and has been justified in [16] for certain domains of product 

structure by using the method of "lifting" with respect to the dimension d, which is also 

one of the main ideas of this paper. If-y~>l, then for V defined by (0.8), 

tr  ( - A + Y ) ' -  = E (a--#k)~+ .~K L cl,.,/,d ~ meas f~. (0.9) 
k 

This inequality was first obtained in [2, w as a simple corollary of the Berezin-Lieb 

inequality (see [3], [21] and also [18]).(2) The Berezin Lieb inequality was also used in 

(2) Later P. Li and S.-T. Yau [19] proved that ~-~'~=lttk>~(d/(d+2))(L~l, dmeas~)-2/dn 1+2/d, 
nCN. By using the Legendre transform it is easy to show that the latter is equivalent to (0.9). 
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[17] in order to improve the Lieb constant [20] in the CLR inequality for the subclass of 

Schr5dinger operators whose potentials are equal to the characteristic functions of sets 

of finite measure. 

Another example is given in [5], where the identity (0.6) with 0,>~1 and d c N  has 

been verified for a class of quadratic potentials. 

We note that,  with the exception of (0.7), the sharp value of L~,,d has been recently 
1 found in [14], where it was proved that  for d = l  and ~/=~ 

cl 1 
L1/2,1 =2L1/2,1--  5" 

In particular, in higher dimensions d>~2 the sharp values of the constants L.~,d have been 

unknown. 

The main purpose of this paper is to verify (0.6) for any q,>~ 3, d E N  and any VE 
L'~+d/2(Rd). 

In fact, this result is obtained for infinite-dimensional systems of SchrSdinger equa- 

tions. Let G be a separable Hilbert space, let 1G be the identity operator on G and 

consider 

-A|  xER ~, (0.10) 

in L2(R d, G). Here V(x) is a family of self-adjoint non-positive operators in G, such 

that  tr VEL'Y+d/2(Rd). Then we prove that  

tr  ( - - A |  ~ - ~< LC~l,d/Rdtr V~_+d/2(x) dx (0.11) 

for all q,~>3 and d~>l. The inequality (0.11) can be extended to magnetic Schr5dinger 

operators, and we apply it to the Pauli operator. 

We shall first deduce (0.11) for d=l, ~ /3  and G = C  ~ from the appropriate trace 

formula (1.61) for a finite system of one-dimensional SchrSdinger operators. In the scalar 

case these trace identities are known as Buslaev-Faddeev-Zakharov formulae [6], [9]. 

The matrix case can be handled in a similar way as in the scalar case (see [9]). We 

give, however, rather complete proofs of the corresponding statements in w since we 

were unable to find the necessary formula (1.61) in the numerous papers devoted to this 

subject. 

Note that  we discuss trace formulae only as a technical tool in order to establish 

bounds on the negative spectrum. We therefore develop the theory of trace identities 

only as far as it is necessary for our own purpose. 

In w we extend the results of w 1 to the Schr5dinger operator in L 2 (R 1 , G).  Applying 

a "lifting" argument with respect to dimension as used in [10] and [16], we obtain in w 

the main results of this paper. 
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Finally we would like to notice that  the combination of the results of this paper and 

1 discovered in [14] has lead to new bounds on the Lieb-Thirring the equality L1/2,1= 
constants in [13], which improve the corresponding bound obtained in [4] and [22]. 

1. T r a c e  f o r m u l a e  for  e l l ip t ic  s y s t e m s  

1.1. Jost functions. Let 0 and 1 be the zero and the identity operator on C ". We con- 

sider the system of ordinary differential equations 

d 2 
- ( ~ x 2  |  x c R ,  (1.1) 

where V is a smooth, compactly supported (not necessarily sign-definite), Hermitian- 

matrix-valued function. Define 

Xmi n :-- min supp V and Xma x := max supp V. 

Then for any kEC\{O} there exist unique (n x n)-matrix solutions F(x, k) and G(x, k) 
of the equations 

- Y ~ ( x ,  k)+VF(x, k) = k2y(x, k), (1.2) 

-G~z(x , k)+VG(x, k) = k2G(x, k), (1.3) 

satisfying 

F(x, k) = eikXl as x >~ Xmax, (1.4) 

G(x,k)=e-ikXl as X~Xmin. (1.5) 

If k r  then the pairs of matrices F(x, k), F(x, -k)  and G(x, k), G(x, -k)  form full 

systems of independent solutions of (1.1). Hence the matrix F(x, k) can be expressed as 

a linear combination of G(x, k) and G(x, - k ) ,  

F(x, k) = G(x, k)B(k)+G(x,-k)A(k)  (1.6) 

and vice versa 

G(x, k) = F(x, k)/3(k)+F(x,-k)a(k). (1.7) 

1.2. Basic properties of the matrices A(k), B(k), a(k) and ~(k) for real k. Through- 

out this subsection we assume that  k ER\{ 0 } .  Consider the Wronskian-type matrix 

function 

WilE, Cl(x, k) = C*(x, k)F" (x, k ) -  (C'x (x , k))*F(x, k). 
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Then by (1.2) and (1.3) for k C R  we find that 

d WI[F, a](x, k) = (x, k)Fx"(x, k) - (C"(~ ,  k))* F(x, k) = G* 0. 

Note that  for x<.Xmin by (1.6) we have 

W~[F, V](x, k) = [a*(x, k)a'x(x, k) - (a"  (x, k))* V(x, k)]B(k) 

+ [G* (x, k)G~ (x, -k) - (G'~ (x, k))* V(x, -k) ]  A(k) 

= - 2 i k B ( k ) ,  

while for x>~Xmax by (1.7) we find 

WI[F, G](x, k) = ~*(k)[F*(x, k)F'(x, k)-  (F" (x, k))* F(x ,  k)] 

+a*  (k)[F*(x, -k)F~(x, k) - (Fix (x, -k ) )*  F(z, k)] 

=2ik~*(k). 

This allows us to conclude that 

~*(k) = - B ( k ) .  

Similarly, for the matrix-valued function 

w2[F, C](x, k) = G*(x, k) F" (x, - k ) -  ( C  (x, k))* F(x, -k) 

we have 

and 

Thus, 

d W~[F, C](x, k) = 0 

W2[F, G](x, k) =-2ikA(-k) as x ~ Xmin, 

W2[F,G](x,k)=-2ika*(k) as x)Xma~. 
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(1.8) 

A(-k) = a*(k). (1.9) 

Inserting (1.6) into (1.7) and making use of (1.8) and (1.9) we obtain 

G(x,k) = G(x, k)[B(k)13(k)+A(-k)a(k)]+G(x, -k)[A(k)/3(k)+B(-k)ee(k)], (1.10) 

and thus 

A(-k)A*(-k)-B(k)B*(k) = 1, (1.11) 

B(-k)A*(-k)-A(k)B*(k) = 0. (1.12) 
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In particular, this implies 

Idet A(k) l 2 = det A(k) det A*(k) = d e t ( l + B ( - k ) B * ( - k ) )  ~> 1 (1.13) 

for all k e R \ { 0 } .  

1.3. Associated Volterra equations and auxiliary estimates. Next we derive estimates 

for the fundamental solutions of (1.1) for Imk~>0. Note first that  the matrices F(x, k) 

and G(x, k) are solutions of the integral equations 

f 
O 0  

F(x, k) = eik~l -- k -1 sin k(x - t )V( t )F( t ,  k) dt, 
, I X  

G(x, k) = e-ik~:l + k - t  sin k ( x -  t) V(t) a(t, k) dt. 
O 0  

(1.14) 

(1.15) 

Put 

H(x, k) = e-'k~F(x, k) - 1. 

Obviously, this matrix-valued function satisfies 

H(x ,k )=O for X/~Xma x (1.16) 

and 

where 

Note that  

(1.17) 

e 2ik( t -x)  - -  1 .  

K(x,  t, k) -- 2ik V(t). (1.18) 

c l ( v ,  (1.19) IIK(x't'k)ll < l+[k----~-- 

for all k with Imk~>0, and all k with Xmin~X~t. Here and below I1" II denotes the norm 

of a matrix on C n. 

Solving the Volterra equation (1.17) we obtain the convergent series 

H(x, k) = " 1-~ K(xz-1, xl, k) dxl ... dxm. 
= x m l = l  

From (1.19) we see that  IH(x, k)I~C2(V ) for all Xmin~X~$gmax. Inserting this estimate 

back into (I. 17), we conclude that  the inequality 

C3(V,n) (1.20) 
IIH(x'k)ll<" l §  
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holds for all x with Xmin~X~Xmax, and all k with Imk~>0. 

Remark 1.1. If we assume that  Imk~>0 and Ikl~>l, then (1.19) and therefore (1.20) 

holds true for all x ER.  

It is not difficult to observe, that  H(x, 4) defined by (1.17) is smooth in 

(x,k) E R• {kEC:Imk>~O}. 

In particular, if we differentiate (1.17) with respect to k we find that  

Since OH(x, k)/O[~ satisfies a homogeneous Volterra integral equation with the kernel 

(1.18), we obtain Og(x, 4)/O[r and thus all the entries of the matrix Y(x,k) are 

analytic in 4 for Im k>0.  

1.4. Further estimates on A(k) and B(k). If we rewrite (1.14) as 

[ 1 ~ ~V(t)dt 1 ~V(t )H(t ,k)dt  1 F ( x ' 4 )  = 1 -  

(1.21) 

+ ~  e2iktV(t) dt+ e2ik~V(t)H(t, k) dt ,  

then the expressions in the brackets on the right-hand side do not depend on x for 

X ~ Z m i  n. Comparing (1.21) with (1.6) we see that  

A(k) = 1- 1___ [+~v(t) dt- 1 /_e~ 2ik J_~ ~zk ~ V(t)H(t,k)dt, (1.22) 

1 [+~ dt+:__(~/_+~e2~ktv(t)H(t, 4)dt. B(k) = J-~ e2~ktY(t) (1.23) 

For sufficiently large 141 > C  the smoothness of V and (1.20) imply 

A(k)- 1 f+~v(t) dt C4(V,n) Lk1-2, Imk/> 0, (1.24) 

IIB(k)LL <. Ch(V,n)]kV 2, kcR. (1.25) 

In w we shall see that  (1.25) can be improved so that  

B(k) =O(141 -m) for all m e N  as k - + + o c .  (1.26) 
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1.5. The matrix A(k) for Imk~>0. First note that  all entries of the matrix A(k) are 

analytic in k for Im k>0,  and continuous for Im k~>0, k~0.  This follows from (1.22) and 

the analyticity of H(x, k). Fixing a sufficiently small e>0,  and using (1.22) and (1.20), 

we obtain 

IIA(k)ll<C61k1-1 as Ikl<e, Imk~>O. (1.27) 

Moreover, all the entries of A(k), and thus the function det A(k), are analytic for Im k>0,  

and continuous for Imk~>0, k~0.  Near the point k =0  we find 

IdetA(k)l <CTIkl a s  Ikl <~, Imk>~0. (1.28) 

Next let us describe the connection between the function det A(k) and the spectral 

properties of the self-adjoint problem (1.1) on L2(R, Cn). Our assumptions on the matrix 

potential V imply that  the operator on the left-hand side of (1.1) has a discrete negative 

spectrum which consists of finitely many negative eigenvalues Al = (ixl) 2, ~l > 0 ,  of finite 

multiplicities mz. Obviously a solution y(x) of (1.1) with k=ixt belongs to L2(R, C n) if 

and only if 

ixl)eGy as x Xmin,  

y(x):F(x, ixl)eFy a s  X ~ X m a x ,  

for some non-trivial vectors ec, eFEC n. Linear independent solutions Yl, ..., Yml define 

linear independent vectors eCyl ' " " ,  ey.~G and ey IF , " " ,  eyrn , respectively. In view of (1.6) we 

conclude that  

dim ker A(ix1) = mz. (1.29) 

If we select an orthonormal basis in C n such that  the first mz elements belong to 

kerA(ixz),  we find that  the first ml rows of A(k) vanish as k-+ixt. Since detA(k)  

does not depend on the choice of the orthonormal basis, and all entries of A(k) are 

analytic, the function det A(k) has a zero of order 

' ( 1 . 3 0 )  7n l ~ m l  

at k=ixl, >r Moreover, if A=k 2, I m k > 0 ,  is not an eigenvalue of the problem (1.1), 

then det A(k)r 

In the remaining part of this subsection we prove that  

' ( 1 . 3 1 )  m l ~ m l .  
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Let g(x,y,k) be the Green function of the problem (1.1). If k2<0, 

det A(k) r  it can be written as 

g(x, y, k) = ~ C(x, k) z-  (y, k) as y > x, 

[ - F ( ~ , k ) Z §  ~ y<~ .  

Here Z + (y, k) and Z-  (y, k) are (n • n)-matrices, which are chosen such that  

lim g(x,y; k) = lim g(x,y; k), 
x=y--O x=y+O 

' x k) lim g~ (x, y; k) § 1. lim gx( ,Y; = 
x=y--O x=y+O 

These equations turn into 

Z+(y,k) = 1 ' W(y,k)= \ Gy(y,k) /Ty(y,k) " 
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I m k > 0  and 

(1.32) 

Since OdetW/Oy=O, the determinant of W is a constant with respect to y. If y with 

y<Xmin, I m k > 0 ,  then in view of (1.6) and (1.5) we have 

W(y,k)= ( e-ikyl e-ikYB(k)§ ) (1.33) 
-ike-ikYl -ike-ikVB(k)+ikeikyA(k) �9 

Hence 

det W = (2ik) ~ det A(k), 

and W is invertible if and only if det A(k)~O. From (1.33) we see then that  for y<xmi, 
the entries Xij of 

W _ ~ ( y , k ) =  ( X l l ( y , k )  X l 2 ( y , k ) )  (1.34) 
X 2 1 ( y , k )  X 2 2 ( y , k )  

satisfy 

e-ikY x21 - ike-ikY X22 = 0, 

e-ik~ (x~l - ikx:2)  B (k) + e ik~ (Z2~ + ikX2:) A(k) = 1. 

This gives X21(y, k)=ikX22(y, k) and thus 

X22(Y, k) = (2ik)-l e-~kYA-l(k). 

In view of (1.32) and (1.34) we obtain Z+(y, k)=X~2(y, k) and finally conclude that  

g(x ,y ,k)=-(2ik)- lA- l (k)e  ik(x-y) as y < X m i n  <Xmax <X.  (1.35) 
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If k is in a sufficiently small neighbourhood of ixl, the Green function g(x, y, k) can 

be written as 
ml 

Er=   r(x) y, k). g(x, y, k) = ( k - i x z ) ( k + i x l )  

Here gz(x, y, k) is locally bounded and "~ {r forms an orthonormal eigenbasis corre- 

sponding to the eigenvalue At- - -x~.  Hence, 

det X 2 2 ( y  , k) = (2ik)-~e -~k~ det A -1 (k) 

= (-1)he -inkx det g(x, y, k) = O( Ik - i x z  I -mz ) 

as k--+i~l. This implies that det A(k) has a zero of order 

m' l ~< mz 

at k=ix l .  Finally, the last inequality and (1.5) imply (1.31). 

1.6. The matrix function T(x,  k). Consider the matrix function 

g(x,t,k)T(t,k)dt. (1.36) 
JX  

According to w the matrix-valued function T(x,  k) is smooth and uniformly bounded 

for 

(x,k)eax{keC:Imk >0 and tkl ) 1}. 

Obviously T ( x , k ) = l  for x>~xm~. Integrating by parts in (1.36) and using (1.18) we 

obtain 

dZ f ~  dx t T(x,  k) = - e 2ik(t-x) dtL2 ldt-1 (V( t )r ( t ,  k)) dt (1.37) 

for all l c N .  Since supp V_C [Xmin, Xm~] we find 

dIT(x, k)/dx I = 0 as Xmax  < x ,  (1.38) 

IldlT(x, k)/dx~ll <<. Cs as Xmi~ ~< x < Xm~x, (1.39) 

[[dtT(x, k)/dx t [[ <~ 69 e2(X-X~i.)  Im k aS X ~< Xmi,, (1.40) 

for all k with Imk~>0 and Ikl~>l. The constants Cs and C9 depend only upon V, n and I. 

If we integrate the right-hand side of (1.37) by parts, then (1.39) and (1.40) imply 

iidtT(x,k)/dxtll <~ Clo (1.41) - -  a.s Xrnin ~ X ~ Xmax ~ l+lkl 

C l l  e 2 ( x - x m i n ) I m k  as  X ~ X m i n ,  (1.42) IIdIT(x, k )/dxZll <<. l + l k  I 
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for all k with Imk~>0 and Ikl~>l. The constants C10 and Cll  depend only upon V, n 
and 1. 

In a similar way, integrating by parts in (1.37), we obtain the asymptotical decom- 
positions 

d l f ~  d 1-1 
dx I T(x, k) = - e 2ik(t-x) dtZ_ 1 (V(t)T(t, k)) dt 

, I X  

{~__~1(-1) r+l dr+l-2 } 
= (2ik)~ dx~+Z_ 2 (V(x)T(x,k)) 

+ ( - - 1 )  q+l j f ~ e 2 i k ( t - x )  dq+l-1 
(2 ik)~  "dtq +z-1 (V(t)T(t, k)) dt 

q_~ (--1) r+ l  d r+ t -2  1 
= ~ ~ (V(x)T(x, k))+Rq,~(x, k) 

ax - ) 

(1.43) 

as I k[ ~> 1, I m k  >0. Here 

Rq,z(x, k) = 0 as Xmax ~< x, (1.44) 

C12 (1.45) IIRq,l(X, k)H <~ (l~_]k]) ~ as Xmi n • x < Xmax , 

C13 e2(x--xmin) hn k (1.46) rJRq,~(x, k)ll < ( i +  Ikl)------~ as x ~< zm~n- 

The constants 612 and C13 depend upon V, n, l and q. 
Since dtH/dxl=dlT/dx ~ for all IEN, integration by parts in (1.23) and the inequal- 

ities (1.38), (1.41) and (1.42) give (1.26). 

1.7. The matrix function a(x, k). By using (1.6), (1.20) and Remark 1.1 for suffi- 

ciently large Ikl, Imk~>0, the matrix T(x, k )=l+H(x ,  k) is invertible for all x C R  and 

IlT-l(x,]~)ll<~C14 f o r a l l  x E R ,  Ikl>Cls, I m k ) O ,  (1.47) 

with sufficiently large cons tan ts  C14=C14(V~n) and C15=C15(V,n). Hence, for suffi- 
ciently large Ikl with Im k ) 0  the matrix function 

cr(x,k)= [ d T ( x , k ) ] T - l ( x , k )  (1.48) 

is well defined for all x c R .  Liouville's formula 
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implies 

d (ln det e-ikXF(x, k)) = tr a(x, k). 
dx 

Since e-ik~F(x,k)= l as x>~Xmax and 

e-ik~F(x, k) = e-2ik~B(k) + A(k) = A(k) + o(1) 

as x-+ - co, Im k/> e > 0, we finally conclude that  

lnde tA(k)=- /+~tra(x ,k )dx ,  Ikl)C15, Imk)e>O.  (1.49) 

Remark 1.2. Formula (1.49) is a matrix version of the corresponding well-known 

identity for scalar Schr5dinger operators (see e.g. w in [9]). 

1.8. The asymptotical decomposition of a( x, k ). Next we shall develop a( x, k) into 

an asymptotical series with respect to the inverse powers of k. For the sake of future 

references we compute the first three terms, although we only need the second one in 

this paper. 

If we apply (1.43) with q = 2 , / = 1  we find that  

1 
a= ~kV+Q2, Q2 =R2,1T -1, (1.50) 

while (1.43) with q=4, /=1 gives 

1 {d2V dV vd~T _1} 
~  ( 2 ik  + 2 o + T 

(1 .51)  

(2ik) 2 -d~x +Va + 1---V+R41T-l"2ik ' 

Inserting (1.50) into (1.51) we obtain 

1__1_ V l dV 1 {  d2V} 
a= 2ik (2ik) 2 dx (2ik)3 V 2-  dx 2 +Q4. (1.52) 

Finally, if we insert in a similar way (1.52) and (1.43) with/--2,  q=3 as well a s / = 3 ,  q=2 

into (1.43) w i t h / = 1  and q--6, we arrive at 

a = (2ik) - 1 V -  (2ik)-2-~xdV . . _3( ~d2y } - y  2 

_(2ik)-4/d3V 2dV 2 (1.53) [-d-x-3x 3 -  dx J 

+(2ik)_5{d 4V d 2V2 (dV 7 ~x4-3--~x2 +\~x/+2V3}+Q6 �9 
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As well as Rq,t the terms Q2, Qa and Q6 satisfy the inequalities of the type (1.44)-(1.46) 

with q=2, q=4 and q=6, respectively. Then we conclude that 

f §  trQq(x,k) dx=O(Ikl-q), q=2,4 ,6 ,  

as Ikl--+cc with I m k ) e > 0 ,  and thus 

/+_f 1 fftrVdx- 1 F ~176 tra(x'k)dx=~k (2ik) 3 oo trV2dx 

+ ~  / / f  [2trV3+tr(~z )2] dx+O(Ikl -~) 
(1.54) 

as Ik]--+oo with lmk>~e>0. 

1.9. The dispersion formula. Let 

N . 2 N 
{) ,~h=~ = {(~*'~) h=~,  ~z > o, 

be the finite set of the negative eigenvalues of (1.1). Each eigenvalue occurs in this set 

only once. Let ml be the order of zero of detA(k) at the point k=ixl, which by w 

equals the multiplicity of the corresponding eigenvalue. Then the arguments in w 

imply that the function 

M(k)=ln{detA(k) ~-~(k+ix'~'~_~t \k--2-~xt] } (1.55) 

is analytic for Im k>0 and continuous up to the boundary except k=0, where it has at 

most a logarithmic singularity. Moreover, the inequality (1.24) gives 

IM(k)l ~< c2(v)Ik1-1 

for all sufficiently large Ikl >C, Im k~>0. Hence, by applying Cauchy's formula for large 

semi-circles in the upper half-plane we obtain 

f_ ~176 -27riM(k), f+~M(z)dz 
z-k J-o~ z-k -0  

for arbitrary k with Im k >0. This implies 

1 f+~aeM(z) M(k)= ~ j_~ ~-k dz, (1.56) 
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which by (1.55) is equivalent to 

N k - i x t  1 [+=lnld~A(z) ldz  ~ Z m t l n  - 
lndet  A(k) = 7r--i J-oo z - k  z=l k+ixt (1.57) 

for all k with Im k > 0. 

1.10. Trace formulae for elliptic systems. Note that  

N N N 
Em'ln  k-ix, 2 2 ~ m,x~ 

k+i~ - ;Z Z m'x' - 3-7~ 
/=1  l=1  l=1  

N 

2 ~--~mtxp§ +g~ 
/=1  

(1.58) 

as [k[--+oc, I m k ) e > 0 .  On the other hand, from (1.13) and (1.26) we have 

in [det A(z)l = 2 -1 In [det(l+B(-z)B*(-z))] = O(Izl-m), z ~ R, 

as tzl--+oo, for all m E N .  Hence, the integral in (1.57) permits the asymptoticat decom- 

position 

f_+~lnldetA(z)ldz ~ Ij +O([klm+l) ' 
z - k  = -  k-7-4-f 

j=0 (1.59) [+~ 
Ij = z j In Met A(z)[ dz 

as I k l - ~ ,  Imk~>e>O. 
Combining (1.58), (1.59) with m = 5  and (1.54) we obtain 

N 

1 ftrVdx Io ~m~x~, (1.60) 
4 27r t=l 

N 

3 f 3 1 2 + E m t x 3  ' (1.61) tr V 2 dx = -~  t=l 

N 

5 / t r V 3 d x + 5  [tr{dV~2 5I~_E~,~ (1.62) 
32 6 4 J  \ dx ] dx= 2--~ l = l  

Finally we remark that  in view of (1.13) 

Ij ~> 0 (1.63) 

for all even, non-negative integers j .  
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2. Sharp  L ieb -Th i r r ing  inequali t ies for second-order  

one-dimensional  SchrSdinger - type  sys tems 

2.1. A Lieb-Thirring estimate for finite systems. Let us first consider the operator on the 

left-hand side of (1.1) in L2(R, C n) for some smooth, compactly supported, Hermitian- 

matrix potential V. Preserving the notation of the previous section the bounds (1.61) 

and (1.63) imply 

d 2 \3/2 
tr(-~-~x2| + V(x))_ = E m l x 3  ~ 3  / trV2(x)dx.  (2.1) 

l 

By continuity (2.1) extends to all Hermitian-matrix potentials, for which tr V 2 is inte- 

grable. Finally, a standard variational argument allows one to replace V by its negative 

part V_: 

d 2 3_/2 3/ t rV2(x)dx"  (2.2) tr ( - ~ x 2  |  ) ~<~-~ 

The constant on the right-hand side of this inequality is sharp and coincides with the 

classical constant L~2,1. In particular, this constant does not depend on the internal 

dimension n of the system. 

2.2. Operator-valued differential equations. Let G be a separable Hilbert space with 

scalar product ( . , . )G and norm I1" LIG. Let H I (R ,G )  and H2(R,G)  be the Sobolev 

spaces of all functions 

u ( . ) : R ~ G  

for  which the respective norms 

+ ii ll ) dx, 

dx 

are finite. Finally, let l a  be the identity operator on G. Then the operator 

d 2 
dx 2 | IG 

defined on H2(R, G) is self-adjoint in L2(R, G). It corresponds to the closed quadratic 

form 

h[u, u] = /Hu' i i  2 dx 

with the form domain H ] (R, G). 
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Let B and/(: respectively be the spaces of all bounded and compact linear operators 

on G. Let ]]-I1~ denote the corresponding operator norm. Consider an operator-valued 

function 

W(.):R--+B 

for which W(x)=(W(x))*, xcR,  and IIW(-)[IBeLP(R), l<p<cx~. Denote 

w[u, u] = f+~(W(x)u(x),  u(x))G dx. 

This form is well defined on H 1 (R, G) and 

lw[u,u]I <c16(f+ llW(x)ll' dx /Pil<I l. (2.3) 

The constant C16 does not depend upon W or u. Moreover, for all E>0 there exists 

a finite constant CaT(s, W) such that 

Iw[u, u][ ~< eh[u, u] + C1v(r W) / ]lu[[~ dx. (2.4) 

Both (2.3) and (2.4) follow immediately from the corresponding inequalities which hold 

in the scalar case. Hence, the quadratic form 

u] 

is semi-bounded from below and closed on HI(R,  G). 

bounded operator 
d 2 

Q = - | 1G + W ( x )  

It induces a self-adjoint semi- 

(2.5) 

on LU(R, G). 

If in addition W(x)EIC for a.e. x c R ,  then the form w[-,-] is relatively compact 

with respect to the metric on Hi(R,  G). In order to prove this fact we introduce the 

orthogonal projections PM on the linear span of the first M elements of some fixed 

orthonormal basis in (]. As a consequence, the Birman Schwinger principle implies, 

that the negative spectrum of the operator Q is discrete and might accumulate only to 

zero. In other words, the operator Q_ is compact on L 2(R, G). 
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2.3. A Lieb-Thirring estimate for operator-valued differential equations. We shall 

prove 

THEOaEM 2.1. Let W(x) be self-adjoint Hilbert-Schmidt operators on G for a.e. 
xER  and let t r W 2 ( . ) E L I ( R , G ) .  Then we have 

/, d2 -\3/2 Ld3/2,1 / / f  tr~--~x2| - <. t r W  2_ dx, (2.6) 

where according to (0.4) it holds LC13/2,1-- Y~'-- 3 

Proof. Assume that (2.6) fails. Then there exists a non-positive operator family W 

satisfying tr W2( �9 )CL 1 (R) and some sufficiently small r >0, such that 

tr )~/2(Q) > 3 f_Ttr W2 dx. (2.7) 

Here 

x~(Q) = -E(_~,_~)(Q)Q, 

with E(_~,_~)(Q) being the spectral projection of Q onto the interval ( - ~ , - s ) .  Since 

Q_ is compact, the operator E(_~,_~)(Q) is of finite rank n(e). 

Fix some orthonormal basis in G and let PM be the projection on the linear span 

of its first M elements. Consider the auxiliary operators 

Q(M, s) = E(_~,_~)(Q)(I(x)|174 )E(_~ _~)(Q). 

Obviously we have rank Q(M, s )~n (e )  for all M. Since I (x ) |  turns to the identity 

operator on L2(R, G) in the strong operator topology as M-+o~, the operators Q(M, s) 

converge to x~(Q) in the L2(R, G)-operator norm as M--+ec and 

Thus, 

tr(Q(M,s))3/2-+trx~(Q) as M--+oo. 

~-cx) 

tr(Q(M,c))3_/2 > 3 / trW2dx (2.8) 
J - - c ~  

for some sufficiently large M. On the other hand, a standard variational argument implies 

tr (Q(M, s))3/2 ~ tr ( ( I (x) |  Q(I(x)| 

Observe that the expression on the right-hand side is nothing else but the Riesz mean 

of order V= 3 of the negative eigenvalues of the ( M x M ) - s y s t e m  (1.1) with V(x)=  

PMW(X)PM. Thus, from (2.2) we obtain 

tr(Q(M,e))3_/2<<.3 /trV2(x)dx<~3 /trW2(x)dx, 
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which contradicts (2.8). This completes the proof. 

2.4. Lieb-Thirring estimates for Riesz means of negative eigenvalues of order ~>~ 3 5" 
We shall now suppose that the non-positive operator family W(x) satisfies 

3 (2.9) trW~+]/2(x) ELl(R)  for some 7 >  5" 

Let dE(_o~,~)(Q) be the spectral measure of the operator Q. Repeating the arguments 

of Aizenman and Lieb [1], we find 

{L 5 } B ( 7 _  ~,5) t r 3  Q~ = t r  dE(-oo,A)(Q) t ~ - 5 / 2 ( t - F ' ~ )  3/2- dt 

5 = t ~-5/2 tr (Q+t)a_/2 dt 

f e ~  p + ~  <~]o dt t '~- ' / ' ] -~  tr(W(x)+t)~-dx' 

where 
r(x+y) 

B(x, y) - r(x)r(y) 
is the beta-function. Let - # j ( x ) < 0  be the negative eigenvalues of W(x). Then 

dtt ~-5/2 tr(W(x)+t) 2 - d x = E /  d x /  dtt~-5/2(t-#j(x))2 
oo j = l  J --r JO - 

= B ( ~ - 3 , 3 )  dxE#~+l/2(x)  
oo j = l  

= B ( ~ -  ~, 3) f_~tr W Z + I / 2 ( x )  dx. 

From (0.4) we obtain 

3 5, L~[I= r(~+l) 3 r(~+l)r(3) 3 P(~- 3) 
2~1/2r(~+~) : l -g r ( ~ + ~ ) r ( ~ )  = 1-6" B ( 7  - a ,  ~)' 

and this implies 

THEOREM 2.2. Let the non-positive operator family W(x) satisfy (2.9). Then 

{ d2 \'Y f : t r  WZ+I/2(x) tr(--~ix2 |  - <<. L~',1 dx. (2.10) 

It remains to note that the constant L~',~ in (2.10) is approached for potentials c~W 

as c~-+ +oo.  
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3. Lieb -Th i r r ing  es t ima tes  wi th  sharp  cons tan ts  

for Schrhdinger  ope ra to r s  in higher d imensions  

3.1. Lieb Thirring estimates for Schrhdinger operators. Let G be a separable Hilbert 

space. We consider the operator 

- A |  (3.1) 

in L2(R d, G). If the family 

V(.): R d-~ 

of bounded self-adjoint operators on G satisfies 

IIV(.)IIBcLP(Rd), max{l, �89 < p < o o ,  (3.2) 

then the quadratic form 

v[u, u] =/a<V(x)u(x) ,  u(x))G dx 

is zero-bounded with respect to 

This immediately follows from the corresponding scalar result and the arguments given 

when proving the inequalities (2.3), (2.4). Hence the quadratic form h[ . , .  ] + v [ . , .  ] is 

semi-bounded from below, closed on the Sobolev space H I ( R  d, Q), and thus generates 

the operator (3.1). As in w one can show that if in addition to (3.2) we have V(x)EIr 
for a.e. xER d, then the negative spectrum of the operator (3.1) is discrete. 

The main result of this paper is 

THEOREM 3.1. Assume that V(x)~O for a.e. xER d and that trVd/2+~(.) is inte- 
grable for some "7>1 3. Then 

cl d / 2 + ' I  tr(--A| <L.yd f trV2 (x) dx. 
' j a g  

(3.3) 

Proof. We use the induction arguments with respect to d. For d= l ,  ~> 3 5, the 
bound (3.3) is identical to (2.10). Assume that we have (3.3) for d - 1  and all V~> 3 
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Consider the operator (3.1) in the (external) dimension d. We rewrite the quadratic 

form h[u,u]+v[u,u] for ueHl(Rd, G) as 

f+oc f+oo 
h[:, :]+v[u, ~] = j_+ h(x~)I:, ~] d:~ +J_+ ~(:~)[u, u] ~x~, 

h(xd ) [u ,u ]=s  ' Ou 2 
~ x d  G d x l  "'" d X d - 1 ,  

d-1 ~ o +(v(x)u' W(Xd)[U,U]=/Rd_I [j~__ 1 0 u  2 U)G)dXl...dXd-1. 

The form W(Xd) is closed on H I ( R  d-l ,  G) for a.e. xdER and it induces the self-adjoint 

operator 

a - 1  02 
W(Xd) = -- Z ~-X2 |  "'" Xd-1; Xd) 

k = l  k 

on L2(R d-l, G). The negative spectrum of this (d-1)-dimensional Schr6dinger system 

is discrete. Hence IV_ (Xd) is compact on L2(R d-l,  G), and according to our induction 

hypothesis tr W~_+l/2(Xd) satisfies the inequality 

ljl?'7+ 1/2 ~ , cl / R  t "  T?-7+d/2 ~ tr ,, _ (Xd) ~ L T + l / 2 , d _  1 a-1 * v_ I, X l ,  ..., X d - 1 ; X d )  dxl ... d x d - 1  (3.4) 

for a.e. Xd6R. For V6LT+d/2(Rd-~), the function tr W_~+1/2(.) is integrable. 

Let w_(xd)[',-] be the quadratic form corresponding to the operator W_(Xd) on 

H = L ~ ( R  d-l,  G). Then we have W(Xd)[u, u] >1 --w_ (xa)[u, u] and 

+ ~ [ t ~  - ( w _ ( ~ ) u ,  (3.5) 

for all uEHI(R d, G). According to w the form on the right-hand side of (3.5) can be 

closed to H 1 (R, H) and induces the self-adjoint operator 

d 2 
dx 2 | 1H - W_ (xa) 

on L~(R, H). Then (3.5) implies 

d 2 \7 
tr ( - - A |  "y_ ~< tr ---7-~| (3.6) ax~ /_ 
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We can now apply (2.10) to the right-hand side of (3.6), and in view of (3.4) we find 

[ d2 \'~ /+ tr w~+l/2(Xd)dXd t r  _ 

"<~ t e l  r c l  / 4  -.~ ~5. ,1~. /+1/2 ,d_1 tr V~_+d/2(x) dx. 
d 

The calculation 

Lcl fcl  F ( 7 + l )  
5 ' , 1 ~ + 1 / 2 , d - - 1  ---- 2~rl/2F(7+~+l 1) 

r(7+1) 

r(7+1+1) 
2~-l~(d-1)/2F(7+ �89 + l(d- 1)+1) 

completes the proofl 

For the special case G - - C  we obtain the Lieb Thirring bounds for scalar Schrhdinger 

operators with the (sharp) classical constant LT,d=L~l,d for "y~> ~ in all dimensions d. 

3.2. Lieb-Thirring estimates for magnetic operators. Following a remark by B. Helf- 

fer [11] we demonstrate how Theorem 3.1 can be extended to Schrhdinger operators with 

magnetic fields. Let 

a(x)=(al(x),...,ad(x)) t, d ~ 2 ,  

be a magnetic vector potential with real-valued entries akC L~oc(Rd). Put  

H(a)  = ( iV+a(x) )2Q1G.  

Its form domain d[h(a)] consists of the closure of all smooth, compactly supported func- 

tions with respect to h(a) [ . ,  ]+[[ 2 �9 �9 I[L2(Rd G ) (eft [26]), where 

 dx. (is 
k = l  

Let the operator family V and the corresponding form v be defined as in the previous 

subsection. If (3.2) is satisfied, then one can apply Kato's inequality [15], [26] and find 

that the form 

q(a) [u, u] = h(a)[u, u] +v[u, u] (3.7) 

is closed on d[q(a)] =d[h(a)] and induces the self-adjoint operator 

Q(a) = g ( a )  +V(x) (3.8) 

on L2(R a, G). Finally, by applying Kato's inequality to the higher-dimensional analog 

of (2.3) we see that  V(x)EK for a.e. x E R  d in conjunction with (3.2) implies that  Q(a) 

has discrete negative spectrum. 
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THEOREM 3.2. Assume that aEL~oc(R d) is a real vector field and that the non- 
positive operator family V(x) satisfies tr V d/2+~ c L 1 (R d) for some ~ >1 ~. Then 

tr(H(a)+V(x)) ~ - <~ L~l,d f trV_ d/2+~ dx. 
JFt d 

(3.9) 

Proof. In dimension d=  1, any magnetic field can be removed by gauge transforma- 

tion. Thus (2.10) can serve to initiate the induction procedure. 

Assume now that  (3.9) is known for all 7~>3 for dimension d - l ,  and consider the 

operator H(a)  in dimension d. Put  

We find that  

d--i 2 

= i ~_~_._+ad 2 
q(a)[u,u] /R  d ( OXd )U GdX+/R(W(xd)u, u ) H d x d  

0 2 
>~ /Rdt ( OXdi--+ad ) U dx-- fR(W_(Xd)U,u)HdXd, 

where for fixed XdER the operator W_(Xd) is the negative part of W(Xd) on H =  

L2(R d-l, G). We now choose a gauge in which ad vanishes. Namely, put 

r ..., Xd) = ad(Xl,..., Xd--1, T) dT 

and (t(x)=eir for all ued[q(a)]. Then 

2 

f dX--/R(W(Xd)(Z,(t)HdXd , ued[q(a)], (3.10) 
q(a) [u, u] ~> JRd OXd G 

where 

W(xd)=e~(~"x~)W_(xd)e-~r x ' = ( x l , . . . , x d _ l ) ,  

acts on H for any fixed XdER. Closing the form on the right-hand side of (3.10) we see 

that  

tr (H(a) + Y(x))~ • tr - ~ | 1H - -  W ( X d )  , (3.11) 
- dx  d 

where the operator on the right-hand side acts in L2(R, H). From our induction hypoth- 

esis we have 

cl f t r  V~_ -kd/2 (x'; Xd) dx I. tr W~+W2(Xd) = tr W~_+l/2(Xd) ~ L~+l/2'd-1 JRd-1 
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Hence (2.10) can be applied to estimate the right-hand side of (3.11), and we complete 

the proof of (3.9) in the same manner as in the proof of Theorem 3.1. 

3.3. Lieb-Thirring estimates for the Pauli operator. As an application of Theo- 

rem 3.2 we deduce a Lieb-Thirring-type bound for the Pauli operator. Preserving the 

notations of the previous subsection we put  d=3  and G = C  2. Let 

a(x)=(al(x),a2(x),a3(x)) t 

be a twice continuously differentiable vector function with real-valued entries. The Pauli 

operator is given by the differential expression 

z=Q(a)| al,2 -ia3,1+a2,3)+V| 
\ ~a3,1 +a2,3 --al,3 

(3.12) 

where 1 is the identity on C 2, V=V(x) is the multiplication by a real-valued scalar 

potential and 
Oaj Oak 

a j , k  - -  C~Xk C~Xj ' k , j = l , 2 , 3 .  

Let B(x) be the length of the vector B(x)=curla(x). Then the two eigenvalues of the 

perturbation of the term Q ( a ) |  in (3.12) at some point x e R  3 are given by 

V(x)• 

If V, B E L ~+3/2 (R 3) for some 7>~ 3, then Theorem 3.2 implies 

t r Z  ~ ~L~I,3(/{(VWB)~_+3/2~-(V-B)~_+3/2}dx). (3.13) 
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