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1. I n t r o d u c t i o n  

Let H:  C 2 - ~ C  2 be a Hdnon mapping 

l 
where p is a polynomial of degree d~>2, which without loss of generality we may take to 

be monic. 

In [HO1], it was shown that  there is a topology on C2LJS 3 homeomorphic to a 4-bali 

such tha t  the H6non mapping extends continuously. Tha t  paper  used a delicate analysis 

of some asymptot ic  expansions, for instance, to understand the structure of forward 

images of lines near infinity. The computat ions were quite difficult, and it is not clear 

how to generalize them to other rational maps. 

In this paper  we present an alternative approach, involving blow-ups rather  than  

asymptotics.  We apply it here to H6non mappings and their compositions, and in doing 
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so prove a result suggested by Milnor, involving embeddings of solenoids in S 3 which are 

topologically different from those obtained from H6non mappings. But the method should 

work quite generally, and help to understand the dynamics of rational maps f :  p 2 ~ p 2  

with points of indeterminacy. In the papers IV] and [HHV], the method is applied to 

some other families of rational maps, and in [HP2] it is applied to Newton's method in 

several variables. The critical points which appear in that  setting require new tools; the 

discussion below concerns only birational mappings. 

The approach consists of three steps, which we describe below. 

Resolving points of indeterminacy. The general theory asserts that  a "birational 

map" f :  p2 ~..,p2 is defined except at finitely many points, and that  after a finite number 

of blow-ups at these points, the map becomes well-defined [Sh2, IV.3, Theorem 3]. Let 

us denote by ) ( I  the space obtained after these blow-ups, and by ]:  )~I--~P2 the lifted 

morphism. For H@non mappings, this is done in w 

The complex sequence space. The mapping / cannot be considered a dynamical 

system, since the domain and range are different. One way to obtain a dynamical sys- 

tem is to blow up the inverse images of the points we just blew up to construct ) ( / ,  

then their inverse images, etc. On the projective limit, we finally obtain a dynamical 

system ~ . r f~. X~-+X~. This is not yet the space we want: we started with a birational 

map and should end up with an automorphism. We can repeat the procedure with 

( f ~ ) - l :  X~...-*X~, which again may have points of indeterminacy. Blow these up, and 

then their inverse images, etc., and take a second projective limit. This finally yields a 

compact space X ~  and an automorphism f ~ :  Xc~-+X~. 

The notation to keep track of successive blow-ups grows exponentially and soon 

becomes intractable. It is much easier to describe the projective limit in terms of sequence 

spaces. We learned of this construction from [Fr2]; something analogous was constructed 

by Hirzebruch [Hirz] when resolving the cusps of Hilbert modular surfaces, and was also 

considered by Inoue, Dloussky and Oeljeklaus [D1], [DO]. 

The space X ~  will usually have a big subset X ~  which is an algebraic variety, 

but X ~  will have some points which are extremely singular, in the sense that  every 

neighborhood has infinite-dimensional homology. 

We will construct X ~  for H@non mappings in w its topology (homology, etc.) is 

studied in w A surprise arises when we compute H2(X~) :  the manifold X ~  contains 

projective lines constructed during the blow-ups, which define elements in the homology 

group, but these lines quite unexpectedly do not generate that  group (Theorem 4.13). 

X* There is a natural way to complete the homology /42( ~ ,  C) to a Hilbert space, 

so that  f ~  induces an operator, and we plan in a future publication to show that  the 

spectral invariants of this operator interact with the dynamics. 
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The real-oriented blow-up. In order to "resolve" the terrible singularities of X ~ ,  we 

will use a further real blow-up, in which we consider complex surfaces as 4-dimensional 

real algebraic spaces, and divisors as real surfaces in them. One way of thinking of this 

blow-up of a surface X along a divisor D is to take an open tubular neighborhood W 

of D in X, together with a projection ~: W--+D. Excise W, to form X I = X - W .  If W 

is chosen properly, X '  will be a real 4-dimensional manifold with boundary OX~=OW. 
The interior of X t will be homeomorphic to X - D .  Then X ~ is some sort of blow-up of 

X along D, with 7r: OX~--+D the exceptional divisor. This construction is topologically 

correct, but non-canonical; the real-oriented blow-up is a way of making it canonical. 

We can pass to the projective limit with these real-oriented blow-ups, constructing a 

space B~(X~) which is topologically much simpler and bet ter  behaved than the original 

compactification, being a 4-dimensional manifold with boundary. The real interest is in 

the inner structures of the boundary 3-manifold, where we find solenoids (in this paper 

and in [V]), tori with irrational foliations (in [HHV]), etc. 

The definition and first properties of these blow-ups are given in w along with the 

methods needed to construct them. Theorems 5.7 and 5.8 are the principal tools for 

understanding real-oriented blow-ups, and we expect that  they will be useful for many 

examples besides the ones explored in this paper. 

In w we show that  the classical Hopf fibration is an example of a real-oriented 

blow-up, in two different ways, and we construct the real-oriented blow-up for Hdnon 

maps. This is quite an exciting space, and we filrther explore its structure in w using 

toroidal decompositions. These results allow us to prove (Theorem 7.7) that  extensions 

of the H~non maps to their sphere at infinity are not all conjugate, even when they have 

the same degree; the conjugacy class of the extension remembers the argument of the 

Jacobian of the H@non mapping. 

In w we construct the real-oriented blow-up for compositions of H6non maps, ob- 

taining a 3-sphere with two embedded solenoids E + and E- ,  but such that  the incom- 

pressible tori in S 3 -  (E+UE -)  are different from the incompressible tori we obtain from 

just one H6non mapping. This difference was first conjectured by Milnor [Mi4]. 

Acknowledgements. We wish to thank A. Douady for essential help in the conception 

of this paper, J. Milnor for his conjecture, Professors Soublin (Marseille), A. Sausse 

(Sophia-Antipolis), Mark Gross (Cornell) and Mike Stillman (Cornell) for help with 

the algebra, Alan Hatcher for help with the topology of Seifert fibrations, and Sa'ar 

Hersonsky for suggestions to improve the introduction. An anonymous referee has also 

pointed out many ways in which the paper could be improved. P. Papadopol thanks 

President Bill Williams of Grand Canyon University for his support  over many years, 

and Cornell University for many years of hospitality. 
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2. M a k i n g  H6non mappings w e l l - d e f i n e d  

Consider the H6non mapping 

H ( X ) = ( P ( X ) x a Y  (2.1) 

with a r  which we will consider as a birational mapping p2 ~ p 2  given in homogeneous 

coordinates as 

H y = xz d-1 , (2.2) 

Z Z d 

where ~(X,Z)=zdp(x/Z)=Xd+... is a homogeneous polynomial of degree d in the two 

variables x and z. 

LEMMA 2.1. (a) The mapping H has a unique point of indeterminacy at 

[Z] p - ~ -  , 

and collapses the line at infinity l~ to the point 

(b) The mapping H -1 has a unique point of indeterminacy at q, and collapses l~ 

to the point p. 

Proof. A point of indeterminacy of a mapping writ ten in homogeneous coordinates 

without common factors is a point where all coordinate functions vanish. In order for 

this to happen, we must have z = 0  of course, and the only remaining te rm is then x d, 

so tha t  at a point of indeterminacy, we also have x = 0 .  Thus p is the unique point of 

indeterminacy of H.  Clearly any other point of l~  is mapped to q. Par t  (b) is similar. [] 

Blow-ups of points on surfaces. The blow-up of an algebraic variety along a sub- 

variety is a s tandard construction of algebraic geometry [Har]. For the next three sections, 

we will need only the most elementary case of this construction: the blow-up of a point 

on a smooth surface, which we review here largely to set the notation. 

Let X be a complex surface, and x C X  a smooth point. Then X blown up at x is 

the surface )~• defined as follows. Choose a neighborhood U of x and local coordinates 

ul,u2 centered at x. First consider ~f , , cUxP  1 to be the surface of equation 
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where 

represents a point in p1 written in homogeneous coordinates. Note that  Ux is a smooth 

surface, and that  the projection 7r: U x ~ U  onto the first coordinate is an isomorphism 

except above x. Therefore, we can define Xx to be the quotient of the disjoint union 

X - { x } U U x  by the equivalence relation which identifies 

u =  c U - { x }  to c 5,,. 
\ u s /  u2 ' [72 

A standard result [Har] asserts that  the surface Xx does not depend on the choice 

of the neighborhood U or on the local coordinates ul,u2. The fiber E = T r - l ( x ) C ) ( x ,  

called the exceptional divisor, is canonically the projective line associated to the tangent 

plane Tx X. 

The space Ux cannot be covered by a single coordinate patch, since it contains a 

projective line, but it is covered by two coordinate patches - '  U~-" U~ and where U l# 0  and 

u2 # 0  respectively, which admit local coordinates Ul, u2/ul and us, Ul/U2 respectively. 

We will frequently describe this situation by the phrase "blow up x, setting ul =u2v". 
This means "blow up x, and in )fx, consider the coordinate patch parametrized by us 

and v=ul/u2". 

If C c X  is a curve, the proper transform of C is the curve CICXx which is the 

closure of 7 r - I ( C ) - E .  

Self-intersections. It is often necessary to know the self-intersection numbers of lines 

obtained when we make successive blow-ups. In this case, where we are blowing up a 

surface at a smooth point x, the rules for computing these numbers are simple [Sh2, 

IV.3, Theorem 2 and its corollaries]: 

�9 The exceptional divisor has self-intersection -1 ;  

�9 The proper transform C'  of any smooth curve C passing through x has its self- 

intersection decreased by 1. 

Making H well-defined. We will now go through a sequence of 2 d - 1  blow-ups, 

required to make the H6non mapping (2.2) well-defined. The results are summarized at 

the end in Theorem 2.3, which we cannot state without the terminology which we create 

during the construction. We will denote by HI,  ..., H2n-1 the extension of the H6non 

mapping to the successive blow-ups. 

To focus on the point of indeterminacy, we will begin work in the coordinates u=x/y,  

v=l /y ,  so that  the point of indeterminacy p is the point u = v = 0 .  The H~non mapping, 
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1 1 y-axis 

- 1  

0 
y-axis 

l i s  . . . . . . . .  - I 

I 

Fig. 1. Left: the  original configuration of the  axes (dot ted)  and the  line at  infinity in p2 .  

Right:  the  configuration after the  first blow-up. The  last except ional  divisor is denoted  by a 

thick line; the  heavy dots  are the  points  of indeterminacy of H and H1. The  numbers  labeling 

irreducible componen t s  are self-intersection numbers .  

using the affine coordinates u, v in the domain and homogeneous coordinates in the range, 

is written 
[~(u, vl--av d-1- 

L v d 
At a point of indeterminacy all three homogeneous coordinates vanish; we knew that  

this happens only at p, but it is clear again from this formula that  it happens only at 

? ~ = v = O .  

The first blow-up. Blow up p2 at the point u=v- -0 ,  using the chart v=uX1; i.e., 

use u and Xl=v/u as coordinates on the blown-up surface, and discard v as a coordinate. 

The extension of the H~non mapping, using the affine coordinates u, X1 in the do- 

main and homogeneous coordinates in the range, is written 

[P(u, Xlu)-a(Xlu)d-1 1 [uq(X1) -aXd-1 ] 

HI: X1 udX d k uX d 
(2.3) 

where we have set/5(1, X)--q(X), so that  q is a polynomial of degree d whose constant 

term is 1. 

Again, the only point where all three homogeneous coordinates vanish is u=Xl=O. 
We invite the reader to check that  the one point of the blow-up not covered by the chart 

u, X1 is not a point of indeterminacy. Figure 1 shows the self-intersection numbers: orig- 

inally I~r has self-intersection number 1; after one blow-up its proper transform acquires 

self-intersection number 0, and the exceptional divisor has self-intersection number -1 .  
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4 

- 1  

d - 2  lines with 
self-intersection 
numbers - 2 

f -~ -1  

- 1  

. . . . . . . . . . . . . . .  _ _ _  - . . . . . . . . . . . . . . . . .  

1 , 1 

~ - d  

Fig. 2. T h e  conf igura t ion  af ter  the  second blow-up (left) and  af ter  the  d t h  blow-up (right).  

T h e  heavy  do ts  are the  po in t s  of i nde t e rminacy  of H2 and  Hd; note  t h a t  t he  black dot  on t he  

r ight  is an  o rd inary  point;  all t h e  earlier ones  except  t he  very  first were double  points .  Again ,  

the  n u m b e r s  label ing c o m p o n e n t s  are t he  self- intersect ion number s .  

Several more 
setting 

blow-ups. We will now make a sequence of d - 1  further blow-ups, 

U= XlX2, X2 ~- XlX3, ..., Xd_l = XlXd. 
In other words, blow up the point u=X1 =0,  focusing on the coordinate patch where 

u and X2=u/X1 are coordinates. Then blow up the point in that  coordinate patch where 

X I = X 2  =0,  and focus on the coordinate patch of that  surface where X1 and X3 =X1/X2 
are coordinates, etc. 

The H~non mapping in these coordinates is given by the formula 

-XlXkq(X1)-aXd-k+l] = [ xkq(xl)-axdl-k ] 

Xk Xd+lXk X~Xk 

We see tha t  when k < d, the unique point of indeterminacy is X1 = X k  =0,  but when k=d, 
the unique point of indeterminacy is X I = 0 ,  Xd=a. At each step, there is one point 

X k = c ~  which is not in the domain of our chart; we leave it to the reader to check tha t  

this is never a point of indeterminacy. 

Again the self-intersection numbers are as indicated in Figure 2. At each step we are 

blowing up the intersection of the last exceptional divisor with the proper t ransform of the 

first exceptional divisor. Therefore, after this sequence of blow-ups, the last exceptional 
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divisor (now next-to-last) acquires self-intersection -2 ,  and the first exceptional divisor 

has its self-intersection number decreased by 1, going from - 1  to - d .  

The blow-ups that depend on the coejficients of p. The next d - 1  blow-ups have 

rather more unpleasant formulas, because each occurs at a smooth point of the last 

exceptional divisor, and we need to specify this point. To lighten the notation, we will 

define the polynomials q0, ..., qd-1 by induction: 

qo(X)=q(X) and qk+l(X) -qk(x)-qk(O) k = 0 , . . . , d - 2 ;  
X 

and the numbers Qo,---, Qd-1 (they are really coordinates of points on exceptional divi- 

sors) by 
k 

Q o = l  and Qk+l=--EQjqk-j+l(O). 

Set Yo=Xd, and make the successive blow-ups 

Yk--aQk = X1Yk+I, k = 0 , . . . , d - 2 .  (2.5) 

Remark. This means that  Yk+l is the slope of a line through the point X I=0 ,  

Yk =aQk. In that  sense the number aQk is really the coordinate on the line parametrized 

by Yk of the next point at which to blow up. 

LEMMA 2.2. (a) In the coordinates X1,Yk, the Hdnon mapping is given by the 
formula 

X k-1 ] [ 1Ykql(X1)+aEj= o Qjqk-j(X1)+Yk 
/s(xl) , Xl (XlYk+a~j=oQjXl) Hd+k: Yk ~-~ d-k-1 k k-1 j , k = l , . . . , d - 1 .  (2.6) 

[ xd-k(X~Yk+aEk--~QjX j) 

(b) The mapping Hd+k has the unique point of indeterminacy X I=0 ,  Yk =aQk, for 
k = l ,  ..., d - 2 .  

(c) The mapping H2d-1 has no point of indeterminacy, and maps the last exceptional 
divisor to loo C p2 by an isomorphism. 

Proof. This is an easy induction: all the work was in finding the formula. To start  

the induction, use formula (2.4) to compute the extension of the Hdnon mapping in the 

chart X d  - -  a = X1 Y1: 

[(a+X1Y:)(q(X1)-I)-X1Y1] [X1Ylql(X1)+aql(X1)+Y1] 
( X1 ) ~-~ xd-l(a+XlY1) ~ I Xdl-2(XlYl+a) ~ ' 

Hd+l: gl Xd(aq_XlY1 ) [ Xdl-l(X1Ylq-a) J 
(2.7) 
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where we have used q(X1)-I=Xlql(X1), and factored out X1. Observe that  formula 

(2.7) is exactly the case k=l  of formula (2.6). 

Now suppose that  Lemma 2.2 is true for k, and substi tute Yk=X1Yk+I +aQk from 

formula (2.5). For the first coordinate of Ha+k+1 we find 

k--I  

Xl(X1Yk+l-kaQk)ql(Xl)q-a E Qjqk-j(Xl)-kXlYk+l-kaQk 
j = o  

k - 1  

= X~Yk+lql(X1)+aX1Qkql(Xi)+a E Qj(qk-j(X1) --qk-j(O))+XiYk+l 
j=0 

k--1 

= X~Yk+lql(Xl)+aX1Qkql(Xl)+aX1 E Qjqk-j+l(X1)q-XlYk+l 
j = 0  

k 

= Xl( xlyk-l-lql(xl)q-a E QJqk-jq-l(Xl)-{- Y k + l )  �9 

j = 0  

The second and third coordinates are similar. In particular, we can factor out X1, until 

k = d - 1 .  This proves part  (a). 

At each step, any points of indeterminacy must be on the last exceptional divisor of 

equation X I = 0 .  But if we substi tute Xt=0 in the first coordinate, we find Yk =aQk, so 

tha t  indeed there is only one point of indeterminacy, proving (b). 

The restriction to the last exceptional divisor of the mapping H2d-1 is given by 

-Yd-,--aQd-, ] 
Yd_ l ~-+ a ; 

0 

since Re0,  the map is well-defined. Since Yd-t appears in the first coordinate with 

degree 1, this last exceptional divisor maps by an isomorphism to the line at infinity. [] 

Figure 3 shows the self-intersection numbers. We are now always blowing up an 

ordinary point of the last exceptional divisor, so this last exceptional divisor (now next- 

to-last) acquires self-intersection - 2 .  At the end, the last exceptional divisor keeps 

self-intersection - 1. 

To summarize, we have proved the following result. Denote by )~H the space ob- 

tained from p2  by the sequence of 2 d - 1  blow-ups described above. 

THEOREM 2.3. The Hdnon map H : C 2 - + C  2 extends to a morphism H2d_l = 

H:XH-+P 2, and maps D = X H - C  2, the divisor at infinity, to l~, mapping all of D to 
the point q except the last exceptional divisor, which is mapped to l~ by an isomorphism. 

Ter~ninology. To state the next result, we need to name the irreducible components 

of /9 .  Let us label A' the proper t ransform of the line at infinity, B '  the proper t ransform 
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- 1  

2d 31ineswith 
self-intersection 1 
numbers - 2  

- 1  - 1  

. . . . . . . . . . . . . . . . . .  ? . . . . . . . . . . . . . . . . . . . . .  ~ - _ 

Fig. 3. Left: the configuration after the ( d + l ) s t  blow-up. Right: after all 2 d - I  blow-ups. 

- 1  -d lB~ -1  1 - 2 ] B '  1 

A ~ L1 Ld-2 Ld-1 Ld L2d-3 Jl A ~ L1 

Fig. 4. The divisor/9. The numbers labeling the components are the self-intersection numbers. 

On the right, the simpler drawing for degree 2. 

of the first exceptional divisor, then in order of creation L1,L2, ...,L2d-3, and finally 

the components of the divisor/9.  The line ,4, i.e., the last exceptional divisor, will play 

a special role. 

Since A t is the proper t ransform of l~ ,  the projection A~-+l~ is an isomorphism, and 

we can define p~, q~ as the points of A I that  correspond to p, q. Note that  { p ~ } = L l n A  ~. 

The points ~ = ~ - l ( p ) ,  ~ = / ~ - l ( q )  play a parallel role; note tha t  (q}---L2d-3NA. 

This terminology is illustrated in Figure 4, which represents D, i.e., Figure 3 (right), 

redrawn in a more symmetrical  way. 

The rational mapping H ~. In the next section, we will want to consider H as a 

birational map  H~: XH ~ XH. 

THEOREM 2.4. The rational map H~: XH"~XH is defined at all points except ~. It 

collapses D -  fi to ql and maps A - ~  to A ' - p '  by an isomorphism. 

The rational map (H~) -1 is defined at all points except q'. It collapses D - A '  to 

and maps A ~- q~ to A-Y t  by an isomorphism. 

Theorem 2.4 is illustrated in Figure 5. 
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A' 

L1 Ld-2 Ld-1 Ld 

L] Ld-2 Ld-1 Ld L2d-3 

% 
Fig. 5. The "mapping" H~ acting on the divisor /9 .  It  is not a t rue  mapping  because it has a 

point  of indeterminacy at ~. 

Proof. This is really a corollary of Theorem 2.3. Clearly, H ~ is well-defined on 

) ( H - - / ~ - l ( p ) ,  i.e., on )~H--{P}, and coincides with _~ there. 

~ r t h e r ,  ~r is an isomorphism from a neighborhood of ~ to a neighborhood of p. 

So if we perform any sequence of blow-ups at p, _~ will become undetermined at ~. The 

s tatements  about the inverse map  are similar. [] 

3. C l o s u r e s  o f  g r a p h s  a n d  s e q u e n c e  s p a c e s  

We now have a well-defined map H:XH-+P 2, but that  does not solve our problem of 

compactifying H:  C2--+ C 2 as a dynamical system. We cannot consider H as a dynamical  

system, since the domain and the range are different. Neither does H ~ solve our problem, 

since it still has a point of indeterminacy. In this section we show how to perform infinitely 

many blow-ups so tha t  in the projective limit we do get a dynamical system. We will 

construct this infinite blow-up as a sequence space, as this simplifies the presentation 

and proof (this description was inspired by Friedland [Fr2], who considered the analog 

in (p2)Z). To make this construction, we need to analyze the graph of H~. 

Let X, Y be compact  smooth algebraic surfaces, and f :  X'..'+Y be a birational trans- 

formation. Let us suppose that  f is undefined at p l ,  .-.,Pn, and that  f - 1  is undefined 

at ql , - - - ,qm- Let F/C(X-{p~,.. . ,p~})• be the graph of f ,  and let F / c X x Y  be 
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its closure. 

LEMMA 3.1. 

such that 
The space H I is a smooth manifold, except perhaps at points (x, y) E H I 

x E {pl , . . . ,pn} and y E {ql,-. . ,qm}. 

Proof. Clearly the projection prl: F / - + X  onto the first coordinate is locally an iso- 

morphism near (x, y) if x~  {P 1,..., Pn}, and Pr2: F f - + Y  is locally an isomorphism near 

(x, y) unless y e { q l ,  ..., qm}. [] 

Example 3.2. Points (Pi, q j )EH/  can genuinely be quite singular. For instance, if 

X = Y = P  2 and f = H  is a Hdnon mapping, then f (resp. f - l )  has a unique point of 

indeterminacy p (resp. q) (see Lemma 2.1). The pair (p ,q)  is in ['H, and near (p ,q)  

we can find equations of H/~ as follows. 

In local coordinates 

u = x / y  and v = l / y  nea rp ,  

s = y / x  and t = l / x  n e a r q ,  

the space FH is given by the two equations 

vd=t(~(u,v)--av d-l) and ut=sv;  

it is quite singular indeed at the origin; one way to understand w is as a resolution of 

this singularity, as Proposition 3.3 shows. 

Let H be a Hdnon mapping, -XH be the blow-up on which H:-~H _+p2 is well-defined, 

and H~: X H ~ X  H be H viewed as a rational mapping from -~H to itself. 

PROPOSITION 3.3. The closure H H:C XH • XH i8 a smooth submanifold. 

Proof. The mapping H~:XH~'*XH is birational, and as we saw in Theorem 2.4, it 

has a unique point of indeterminacy at ~ = ~ - l ( p ) ,  and the inverse birational mapping 

(H~) -1 also has a unique point of indeterminacy q'. But the point (~, q') is not in FH~, 

SO FH~ is a smooth (compact) manifold by Lemma 3.1. [] 

There is another description of HH~, which we will need in a moment. 

PROPOSITION 3.4. The space FH~, together with the projections pr 1 and pr 2 onto 

the first and second factor respectively, make the diagram 

~'H~ Pr2 > -,~H 

pr 1 1 ~ 1 

a fibered product in the category of analytic spaces [DD]. 
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Proof. The diagram 

X H  X -'~H Pr2 > X H  

-~H H > p 2  

commutes on the graph FH, and also commutes on a closed set, so it commutes on FH~. 

Since all the spaces involved are manifolds, it is enough to prove that  the diagram 

is a fibered product in the category of analytic manifolds, i.e., set-theoretically. Since 

7 r (y )=H(x)  on FH this is still true on the closure ~Hlt. [] 

It is time to construct one of our main actors. The space X ~ ,  constructed below, is 

a compact space which contains C 2 as a dense open subset, and such that  H: C2-+C 2 

extends to Hoo: X~o--+X~o. The locus D ~ o = X o o - C  2 is an infinite divisor at infinity, the 

geometry of which encodes the behavior of H at infinity. 

Definition 3.5. Let X~o C ()(H) z be the set of sequences x =  (..., x - l ,  x0, x l ,  ...) such 

that  successive pairs belong to ~H~ C XH X.XH above. 

Let H ~ :  X ~ - + X o o  be the shift map 

(Hoo(x))k = xk+l,  k c z ,  

where x = ( . . . , x _ l , x 0 , x l ,  ...) is a point of X ~ .  

Clearly Xoo is a compact space, since it is a closed subset of a product of compact 

sets, and Hoo is a homeomorphism Xoo-+Xoo. We will see below why Hoo can be 

understood as an extension of H.  

PROPOSITION 3.6. (a) Each point of X m  is of one of three types: 

(1) sequences with all entries in C2; 

(2) sequences of the form ( . . . , ~ , ~ , a , b , q ' , q ' ,  ...) with a e S ,  a # ~ ;  

(3) the two sequences p~O = (..., ~, ~,. . .)  and q~O = (..., q,, q, ...). 

(b) The sequences of type (1) are dense in X~o. 

Proof. If a sequence has any entry in C 2, it is the full orbit of that  point, forwards 

and backwards. Otherwise, all entries are in the divisor D : X H - C  2. If these entries 

are not all ~, or all q', then there is a first entry a that  is not ~; it must be preceded 

by all ~'s. It is followed by the orbit of a, which is well-defined. Note that  b = H ( a )  

may be q'  (this will happen unless aEA) ,  and all the successive terms must be q'. This 

proves (a). 

For part (b), we must show that  a sequence x of type 2 or 3 can be approximated 

by an orbit, i.e., that  for any s > 0  and any integer N,  there is a point y E C  2 such that  
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d ( H n ( y ) - x , ~ ) < r  when [n[<N.  If  x is of type 2, we may assume that  x o r  Then 

all iterates of H and of ~ - 1  are defined and continuous in a neighborhood of x0, so 

any point in this neighborhood and close to Xo will have a long stretch of forward-and- 

backwards orbits close to x; but every neighborhood of x0 contains points of C 2, which 

is dense in )( .  

Similarly, the orbit of a point with Ix[ very large and y=O will approximate  qO~ and 

a point with [y[ very large and x=O will approximate  qO~. [] 

Example 3.7. The fact that  C 2 is dense in Xo~ is not quite so obvious as one might 

think, and there are examples of birational maps where it is not. For instance, consider 

the mapping 

a priori well-defined on (C*) 2. Denote p and q the points at infinity on the x-axis 

and y-axis respectively. Then when r is in the line at infinity, the pair (r, q) belong to 

~FCP2•  p2, as does the pair (q, r). Thus the sequence space contains points like 

(..., q, r, q, q, r, q, r, q, q, ... ) 

with symbols q and r in any order. Such sequences cannot be approximated by orbits 

in (C*)2; they also form subsets which have dimension equal to the number  of appear-  

ances of r ~ q ,  which may be infinite. Such sequence spaces are a little scary, as well as 

pathological, and irrelevant to the original dynamical system. In our case, if we had not 

blown up p 2  then C 2 would still have been dense in the sequence space, but it would 

have had bad singularities. 

PROPOSITION 3.8. The space X * = X ~ - { p ~ , q ~ }  is an algebraic manifold. More 

precisely, 

(1) the projection ~ro onto the O-th coordinate induces an isomorphism of the space 

of orbits of the first type to C2; 

(2) if  x = ( . . . , ~ , ~ , a , b , q ' , q ' ,  ...) is a point of the second type, and a appears in the 

k-th position, then the projection ~rk onto the k-th position induces a homeomorphism of 

a neighborhood of x onto ) ~ H -  {P, q'}- 

Proof. The first part  is clear. For the second, if a point y satisfies YkCP, q ' ,  then 

the entire forward-and-backwards orbit of Yk is defined: forwards it will never land on ~, 

and backwards it will never land on q' .  

Let us call Ck:_~H--{~,q'}--+Xc~ the map which maps x to the unique sequence 

xCXo~ with Xk = x .  The change of coordinate map r162 is then simply H 1-k on C 2. 
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q0 P0 ql  Pl 

L-1,1 L - l , d - 1  L - 1 , 2 d - 3  Lo,1 Lo,d-1 Lo,2d-3 L1,1 Ll,d-1 L l , 2 d - 3  

Fig. 6. The divisor Doo. 

This shows that  the coordinate changes are algebraic on the intersections of coordi- 

nate neighborhoods, except for one detail. The set C2C Xoo is exactly the intersection of 

the images of Ck and r when [l-k[ ~>2, but when l=k+ 1, the intersection then contains 

the sequences with entries ( . . . , ~ , ~ , a , b , q ' , q ' , . . . )  with a E ~ . - { ~ }  and b E A ' - { q ' } .  In 

this case also the change of coordinates is given by H a and is still algebraic. [] 

Remark. Contrary to what usually happens in algebraic geometry (and is sometimes 

required in the definition of an algebraic manifold), X *  is not quasi-compact for the 

Zariski topology, i.e., it cannot be covered by a finite number of affine algebraic manifolds. 

We can now see why Ho~ is an extension of H. On the subset isomorphic to C 2 

formed of sequences in C 2, with 7r0 the isomorphism, we have 

1to ( H a  (x)) = H(~r0 (x)); 

i.e., on that  subset, 7r0 conjugates H a  to H. 

Notation. We will systematically identify C 2 with r (C 2) C X ~ .  With this identifi- 

cation, H~o does extend H continuously, and algebraically in X * .  Moreover, we will set 

D o ~ = X ~ - C  2. Figure 6 shows D ~ .  

The lines denoted by Ai, iEZ,  are formed of those sequences whose i th  entry is 

in A'; each such line connects the sequences whose i th  entry is in L1 (denoted by Li,1) 

with those whose ( i - 1 ) s t  entry is in L2d-3. In particular, the points q0, P0, ql ,  Pl E X ~  

correspond to the sequences 

qo = (..., p, q, q~, q,, ql, ...), 

..., - 2 ,  - 1 ,  O, 1, 2, ... 

po = (..., p, p, p,, q,, ql, ...), 

..., - 2 ,  - 1 ,  O, 1, 2, ... 

ql = (..., p, P, q, q', q', ...), 

..., - 2 ,  - 1 ,  0, 1, 2, ... 

p l  = (..., p, P, P, p' ,  q', ...). 
..., - 2 ,  - 1 ,  0, 1, 2, ... 
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4. T h e  h o m o l o g y  o f  X~o 

In this section we will s tudy the homology groups Hi(X~),  more particularly H 2 ( X ~ )  

and the quadratic form on it coming from the intersection product.  

Although nasty spaces (solenoids, etc.) are lurking around every corner, here we 

will compute only the homology groups of manifolds, being careful to exclude the nasty 

parts. All homology theories coincide for such spaces, and we may use singular homology, 

for instance. Unless stated otherwise, we use integer coefficients; at the end we will use 

complex coefficients. Using d-torsion coefficients would give quite different results, which 

can easily be derived using the universal coefficient theorem. 

Inductive limits. It  is fairly easy to represent X ~  as an increasing union of subsets 

whose homology can be computed. Since inductive limits and homology commute,  it is 

enough to understand these subsets. 

First some terminology. If  G is an Abelian group, then G N is the product  of infinitely 

many  copies of G, indexed by N,  i.e., the set of all sequences (gl, g2, ..-) with g~ E G. The 

group G (N) c G N is the set of sequences with only finitely many  non-zero terms; in the 

category of Abelian groups, this is the sum of copies of G indexed by N; it is also easy 

to show that  it is the inductive limit of the diagram 

G --+ G2 --+ G3 ----~ ... 

where the map  

Gk--+G T M  is (gl,...,gk)~-~(gl,...,gk,O). 

The inductive limit we will encounter is not quite elementary. We will s tart  with an 

example, which has many features in common with our direct limit of homology groups. 

Example 4.1. Consider the inductive system 

Z /~>Z 2 /~>Z 3 f3>... 

where fn: Zn--+Z n+l is defined by 

fn(en,i) = ~ en+l# if i < n ,  

[ en+l, n-~en+l,n+ 1 if i = n, 

using the standard basis en,1, .-., en,~ of Z n. 

It  certainly seems as if the inductive limit of this system should be the group Z (N) 

of sequences of integers which are eventually 0. But this is not true: the inductive limit 

is bigger. It  is isomorphic to Z (N), but  not in the obvious way. 
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Let (vm, Vm+l, ...) represent an element of l~n(Z n, fn),  with vme Z TM. Then for 

any j ,  the coordinate (Vm)j is constant as soon as m>j .  This defines a map 

z N 
n 

which is easily seen to be injective. 

PROPOSITION 4.2. The image of ~ n ( Z  n, fn) in Z N is not reduced to Z (N), it 

consists of those sequences (a j ) jeN that are eventually constant. 

Proof. Any element of the inductive limit has a representative VmE Z m for some m. 

The ruth entry of vm will be replicated as both  the ruth and ( m + l ) s t  entry of vm+l, 

and then as the last three entries of vm+2, etc. Clearly the image in Z N will be constant 

from the m t h  te rm on. [] 

Thus there is an exact sequence 

0 --~ Z (N) ~ lim (Z n, f~) --+ Z --+ 0 
_ _ _ +  

n 

where the third arrow associates to an eventually constant sequence the value of tha t  

constant. 

We see tha t  there is an extra  generator to the inductive limit, which one may take 

to be the constant sequence of l ' s  in Z N. 

Example 4.3. Now let us elaborate our example a little. Modify f~: Z'~--+Z n+l so 

that  fn(en,n)=en+],n+den+l,n+l for some integer d~>l. 

Most of the computat ion above still holds, except tha t  a sequence 

V = ( V l , V 2 , . . . )  E Z  N 

belongs to the inductive limit if and only if it is eventually geometric with ratio d. We 

will denote Z[1/d] the rational numbers with only powers of d in the denominator,  i.e., 

the subring of Q generated by Z and 1/d. If  we set v+=(1 ,  d, d 2, ...), then v_ belongs to 

the inductive limit if and only if there exists aCZ[1/d] such that  v - a v  + has only finitely 

many non-zero entries. In other words, there is an exact sequence 

0 -~ Z IN) -~ I ~ ( Z  n, f~) -~ Z[1/d] -~ 0. 

Note tha t  our inductive limit is still a free Abelian group, since a countable subgroup 

of Z N is free Abelian [Gri, Theorem 138]. In our case, the elements 

(1, d, d2,d3,...), (0,1, d, d2,...), (0, 0,1, d, ...), ... 

form a basis. On the other hand, Z[1/d] is not free (it is divisible by d). 

The homology of blow-ups. Before at tacking the homology of X ~ ,  we will remind 

the reader of some facts about  the homology of algebraic surfaces. 
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PROPOSITION 4.4. If  X is a smooth algebraic surface (or more generally a 

4-dimensional topological manifold), and Z c X  is a finite subset, then the inclusion 

X-Z~-+ X induces an isomorphism on 1- and 2-dimensional homology. 

The proof comes from considering the long exact sequence of the pair (X, X - Z ) ,  

which gives in part  

...--+ H 3 ( X , X -  Z) -4 H 2 ( X -  Z)-+ H2(X) -4 H 2 ( X , X -  Z)--+ . . . .  

For more details, see [HPV, pp. 25 26]. 

PROPOSITION 4.5. If X is a smooth algebraic surface (or more generally an ori- 

entable 4-dimensional topological manifold), and Z c  X is a finite subset, then the in- 

clusion X - Z ' - ~  X induces an exact sequence 

0 -+ H4(X)  -4 Z z -4 H 3 ( X - Z )  -4 H3(X) -40. 

In particular, i f  X is compact and Z is a single point, then the inclusion induces an 

isomorphism H3 ( X -  Z)-+ H3 ( X) .  

The proof comes from considering the same exact sequence as above; we omit it. 

We will now see that  if you blow up a point of a surface, you increase the 2- 

dimensional homology by the class of the exceptional divisor. 

Let X be a surface, and z a smooth point. Let ~r: ) ( . - 4 X  be the canonical projection, 

and E = 7r- l(z) be the exceptional divisor. 

Consider the homomorphism 

given by the composition 

i: H (X) -4 (4.1) 

H:(X)  -4 H 2 ( X -  -4 

i.e., first the inverse of the isomorphism//2 ( X -  {z})-4/ /2 (X) in Proposition 4.4, followed 

by the map induced by inclusion. 

PROPOSITION 4.6. The map 

H~(X) e Z  -4 H~ (27z) 

given by (~,m)~-+i(a)+m[E] is an isomorphism. 

Proof. Apply the Mayer Vietoris exact sequence to Uz and X - { z } ,  where U is an 

open neighborhood of z in X homeomorphic to a 4-ball. We omit the details. [] 

The same Mayer-Vietoris exact sequence, together with Proposition 4.5, will also 

show the following result. 
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A 

Fig. 7. Left: a curve wi th  3 smoo th  branches  t h rough  z. Right :  a de fo rmat ion  which  avoids z. 

PROPOSITION 4.7. If  X is compact, the canonical projection induces isomorphisms 

HI(Xz) -+HI(X)  and H3(-~z)-+H3(X). 

The next proposition will be the key to most of our computations. 

P R O P O S I T I O N  4 . 8 .  Consider the composition 

H2(X) H2(X-{-.)) (2z). 

Let C be a curve in X with m smooth branches through z. Then the image of [C] in 

H2(-~z) is [C']+m[E], where C' is the proper transform of C in Xz.  

Proof. Let C be the normalization of C, which is in particular a smooth 2-dimen- 

sional differentiable manifold, and let f :  C -+C be the normalizing map. The mapping f 

can be deformed (differentiably, but perhaps not analytically) to a map f ' :  C - + X  that  

avoids z; so f '  lifts to a map ] ' :  C--+)~z, as illustrated by Figure 7. 

Then []'(C)] is the image of [C] in H2( .~) .  The homology class []'(C)] is of the form 

[C']+n[E] for some n: indeed, f '  can be chosen so that  []'(C)] is contained in a small 

neighborhood of C U E ,  which will retract onto C'UE, and hence whose 2-dimensional 

homology is generated by [C'] and [E]. We discover what n is by observing that  the 

intersection number [I '(C)]-[El vanishes, since the corresponding cycles are disjoint. So 

0 = []'(C)]. [E] = ([C'] +n[E])-[E] = m - n ,  

since each branch of C through z contributes 1 to [C'].[E]. 

The finite approximations to X ~ .  Now let us consider the set 

[] 

M 

] c I I  
i = N  

N<~ M, 
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AN ~ AN+I AM ~ AM+I 

LN,1 nN,d-1 nN,2d-3 LN+I,1 nM-1,2d-3 LM,1 nM, d-1 LM,2d-3 
Fig. 8. The divisor D[N,M ]. The last line of one block coincides with the first of the next. 

of finite sequences (XN, XN+I, ..., XM) with pairs of successive points in  FH~, and the 

subset D[N,M ] C X[N,M ] wi th  all coordinates in /9 .  

The set D[N,M ] contains the point piN, M] all of whose coordinates are ~, and the 

point Q[N,M] all of whose coordinates are q'.  Let us set 

X[*N,M] : X[N,M] _ {p[N,M], Q[N,M] } a n d  D[*N,M] = X[*N,M] ND[N,M ]. 

PROPOSITION 4.9. If - oc~  N' ~ N <<. M <~ M' <<. oo, then the natural projection 

X[N,,M, ] ---~ X[N,M ] has an inverse X[*N,M]--+ X[N,,M,] defined on X[*N,M]. 

Proof. Any point of X[*N,M] has a well-defined backwards orbit, since its N t h  co- 

ordinate is not q', and it has a well-defined forwards orbit, since its M t h  coordinate is 

not b. These orbits define an inclusion of X~N,M ] into Xoo. [] 

The point of this proposition is that  we can compute the homology of X~N,M ]. If V 

is an algebraic variety, let Irr(V) denote the set of irreducible components of V. 

PROPOSITION 4.10. (a) The space X[N,M ] is a smooth algebraic surface, and D[N,M ] 
is a divisor in X[N, MI. 

(b) The divisor D[N,M ] consists of M + I - N  ordered blocks, each consisting of 2d 
projective lines, with the last line of one block coinciding with the first of the next, as in 
Figure 8. 

Proof. Part (a) is more or less obvious, except perhaps for the points piN, M], Q[N,M]. 

The projection onto the M t h  coordinate gives an isomorphism of a neighborhood of 

p[Y,M] onto a neighborhood of ~, and the projection onto the N t h  coordinate works 

for q[g,M]. 

A point of D[N,M ] is a sequence of points at infinity in )(H- It consists of either 

�9 all ~ or all q', or 

�9 a certain number of p's (perhaps none), then a first element different from p, then 

something (perhaps q'), then all q"s. 

Let us denote by Dk the kth block 

Dk = {xeD[N,M] IXke ( D - A ) U { ~ }  and x k - 1 C q ' } ,  
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' 1 

2d-3 lines with 2d-3  lines with 
self-intersection -2  self-intersection -2  

Fig. 9. The  self- intersect ions of the  componen t s  of D[N,M ]. 

for N<~k~M (if k=N,  the condition Xk- l~q '  is void). This set is parametrized by 

Xk E (/9-- A) U {~}. Every point of D[N ,M] belongs to precisely one Dk, except for: 

�9 The points whose M t h  coordinate belongs to A - { ~ } ;  these form a projective line 

denoted AM+I. 

�9 The points qk, k = N + I , . . . , M ,  whose kth coordinate is q~ and whose ( k - 1 ) s t  

coordinate is ~. The point qk is simultaneously the left-most point of Dk and the right- 

most point of Dk-I .  

�9 The point qM+I-~-AM+INDM . [] 

All lines have the same self-intersection numbers as the corresponding lines in /9, 

except for the connecting lines, i.e., the lines Ak, k = N + I ,  ..., M, where xkEA'  and 

x k _ l C q  ~. These have self-intersection - 3 ,  as indicated in Figure 9. This is proved in 

the proof of Proposition 4.11. 

PROPOSITION 4.11. (a) The map that associates to each irreducible component of 

D[N,M ] the 2-dimensional homology class which it carries induces an isomorphism 

zIrr(D[N, M I) __} /-/2 (X[N ,M]) when -oc  < N <~ M < oo. 

(b) The inclusion X[*N,M]---} X[N,M ] induces an isomorphism on 2-dimensional ho- 

mology. 

Note that  this proposition represents the second homology group of X ~  as 

lim zIrr(DE - N, NI), (4.2) 
N 

since an increasing union of open sets is an inductive limit in the category of topological 

spaces, and homology commutes with inductive limits [Sp, Chapter IV, 1.7]. This is very 

similar to Example 4.3 above, and we will need to look carefully at the inclusions. 

Proof. (a) With a slightly different definition of X[N,M], this follows from Proposi- 

tion 4.6. We need to know that  X[N,M] is obtained from the projective plane p2 by a 

sequence of blow-ups, corresponding naturally to the irreducible components of D[N,M ]. 
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First notice that  we may assume that  N--0:  clearly shifting the indices gives an isomor- 

phism X[N,M ] "+ X[o,M_N]. 
Next observe that  Xlo,o ] = ) fH,  which as we saw is obtained from p2 by a sequence 

of blow-ups, each of which creates one component of/9=D[o,o] other than A' =Ao. The 

component A ~ is the proper transform of lo~ which was there to begin with and which 

generated the homology H2(p2).  So the theorem is true when M = 0 .  

If M=I, notice that  X[0,1] =FH~, so the diagram 

Pr 2 
X[0,1] > X[o,o] 

I 
X[o,ol H > p2 

is a fibered product by Proposition 3.4. But the bot tom mapping _H is an isomorphism 

on a neighborhood of b, mapping b to p=[0: l :0] .  Thus the inverse image by pr 1 of this 

neighborhood maps under pr 1 to its image just as the inverse image of the neighborhood 

of p maps under 7r. 

This same argument shows that  the component A1 of D[o,l] has self-intersection 3. 

Indeed, the line A1C D[o,o] has self-intersection -1 ,  and the first two blow-ups required 

to build X[0,1] are blow-ups of points of A]. 

To show that  X[0,2] is constructed from X[0,1] by a sequence of blow-ups, etc., apply 

the same argument, using the diagram 

X[0,2] > X[1,2] 

L l 
X[0,1] > X H .  

As above, we see that on A2, which has self-intersection - 1  in X[0,1], a point was 

blown up twice, so A2 has self-intersection - 3  in X[0,2]. By induction, Ak will have 

self-intersection - 1  in X[0,k+l] and self-intersection - 3  i n  X[0,k+2 ]. 

(b) This follows immediately from Propositions 4.4 and 4.10. [] 

Next, we need to compute the homomorphism H2(X[_N,N])-+H2(X[_(N+I),N+I] ) 
induced by the composition of the isomorphism 

and the mapping 

induced by the inclusion. 

H (Xl-N,N ]) 

H2(X~_N,N] ) --~ H2(X[_(N4_I),N+I]) 
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BM+I  AM+I ~ A M ~ , ~  A / M ~ M + I , ~ /  

L...,f._~qM+l~PM+ ... f ~ "~PM+I ... ~ {~'~BM+I 

JAM+l] , [AM+I]+[BM+I] ' ~  [AM+I]+[BM+I]+2[LM+I,1] 

Fig. 10. The first two blow-ups performed on AM+ICX[N,M ]. Note that  AM+I and BM+X 
each contribute 1 to the coefficient of the exceptional divisor LM+I, 1 . 

AM+I ~ J 
LM+I,2  J 

. . . f " ~  ~ B M + I  

[AM+I]+[BM+I]+2[LM+I,1]+3[LM+I,2] 

AM+I BM+ll 

[AM+I]+[BM+I]+2[LM+I,1] 
+3 [L M+l ,2 ]+ . . .  +d[LM+l,d 1] 

Fig. 11. Left: the next blow-up. Right: the configuration after d blow-ups. For the figure on 

the left, BM+ 1 contributes 1 and 2LM+I, 1 contributes 2 to the coefficient of the exceptional 

divisor LM+I, 2 . 

AM+I BM+ 1 ] 

, ~  [AM+I]+[BM+I]+2[LM+I,1] , ~  
+3[LM+l,2]+ ... +d[LM+l,d-1]+d[LM+t,a] 

Fig. 12. The configuration after d + l  blow-ups. Here, dLM+l,a-1 contributes d to the 

coefficient of the exceptional divisor LM+I, d. It is the only contribution since this time we 

are blowing up an ordinary point. 

AM+I B M + ~  AM+2 

. . . . . .  

, ~  [AM+I]+[BM+ll+2[LM+I,ll+3[LM+I,2] 
+ ... +d([LM+I,d-1]+[LM+I,d]+ ... +[LM+I,2d-3]+[AM+I]) 

Fig. 13. The configuration after all the blow-ups required to pass from X[N,M ] t o  X[N,M-}-ll 
have been made. We have blown up ordinary points on lines with weight d, so the new 

exceptional divisor always has weight d. 
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PROPOSITION 4.12. The homomorphism 

iN: H2(X[N,M]) -+ H2(X[N-1,M+I]) 

described above is given by the following formula: 

iy[C]=[C] if C # A M + I , A N ,  

iN [AM+I] = [AM+I] + [BM+I] + 2 [LM+I,1] +3  [LM+I,2] +... 

+d([LM+l,d-1] + [LM+I,d] + ... + [LM+I,2d-3] + JAM+2]), 

iN[AN] = [AN] +[BN-1] + 2[nN-x,2d-3] + 3[LN--1,2d--4] +... 

+d([LN-I,d-1] + [LN--I,d-2] + . . - +  InN-1,1] + JAN-I])-  

Proof. This is straightforward, using Proposition 4.8. Figures 10 through 13 should 

explain exactly the sequence of blow-ups. [] 

THEOREM 4.13. (a) The inductive limit 

H2(X[-N,N]) = H2(X*) 
N 

embeds naturally in Z Irr(D~). 

(b) / f  v c Z  Irr(D~,) is an element of H2(X--), then the limits 

v(An) v(A-n) 
//+ (V) : n--+oolim dn and , -  (v) = ,~-+o~lim dn 

both exist and lie in Z[1/d]. Actually, the sequences are eventually constant. 

(c) The following sequence is exact: 

0 ---+ Z (Irr(D~)) "-+ H 2 ( X * )  ( .+,v-))  Z[1/d]@Z[1/d] --+ O. (4.3) 

Proof. (a) Any element v of the inductive limit is the image of some 

V_ N E H2(X[_N,N]) = Z Irr(D[-N'N]) 

for all sufficiently large N, and the coefficient V_N(L ) of any irreducible component LE 

Irr(D[_N, NI) is then the same as the coefficient Vg,(L ) for all N'>~N by Proposition 4.12. 

This proves (a). 
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(b) The element v of the limit is determined by the corresponding element of v N E 

H2(X[-N,N]). In particular, VN assigns some integer weights a to [A-N] and fl to [AN+l]. 

Then, again by Proposition 4.12, we see that  

v ( A - g - 1 ) = d a ,  v (A-N-2)  = d 2 a ,  ..., 

v_(AN+2) =dfl ,  v(AN+3) =d2/~, .... 

In particular, the sequences defining v-  and v + are constant after N, so the limits exist. 

This proves (b). 

(c) For any e l e m e n t  v c Z  (Irr(D-)), there exists N such that  v has coefficient 0 for all 

irreducible components L c I r r ( D * )  which do not belong t o  D[_N,N]. Then v is in the 

image o f  H2(X[_(N+I),N+I]), and we see that  Z ( I r r (D~))  is included in H 2 (X * ) .  Clearly 

it is the kernel of the mapping (v : ,  u+), which is surjective. [] 

THEOREM 4.14. The Hdnon mapping H ~ : X * - - + X *  induces a commutative dia- 

gram 

0 > Z(I~(D~)) > H 2 ( X * )  (~-'~+) ; Z[1/d]| > 0 

0 > z ( l r r ( D - - ) )  > H2(Xo~ ) > Z[1/d]| > 0 

where a is the shift 

a([Ak]) = [Ak-1], a([Bk]) = [Bk-1], 

and fl is the mapping fl(a, b)=(a/d, bd). 

a([Lk,i]) ----[Lk-l,i], 

Proof. The action of H on the homology is induced by shifting (to the left) by one 

block in Z Irr(DL). Clearly, this induces the same shift on Z (Irr(D~)), and the statement 

about a is true. To see that /~ is correct, consider a homology class v E Z  I r r ( D - )  in the 

image o f  H2(X[_N,N] ). It will satisfy 

VAN+l=b, VAN+2=db, VAN+3=d 2b, ..., 

for some beZ,  and v+(v)=b/d g. The sequence (H2(H~) ) (v )  is the same sequence 

shifted, so that  

(H2(H~))(V)AN+I = db, 

and 

(H2(H~))(v)AN+2=d2b, (H2(H~))(V)AN+3=d3b, ... 

db 
v-  (H2(Hoc))(v) = ~W = dr-  (v_). 

The computation for v + is similar. [] 

One way of understanding the exact sequence (4.3) is as part  of the homology exact 

sequence of the pair D ~  C X ~ .  
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PROPOSITION 4.15. (a) There exists a unique isomorphism 

Z[1/d]•Z[1/d] -4 H2(X*, D , )  

which makes the following diagram commute: 

(V--~M + ) 
H2 (X~) ~- Z[1/dl@Z[1/d] 

H2 (X*) ~ H2(X~, D*). 

(b) Both H3(X~) and H3(X*, D*) are isomorphic to Z, and the canonical map 

H3 (X*) -4 H3(X*, D~o) 

is an isomorphism. 

(c) Both HI(X~) and HI (X* ,D~)  are zero. 

Remark. We will see in w (in the proof of Theorem 7.6) that the homology group 

H2(X~o,D* ) can also be understood as HI(S3-(E+UE-)) ,  where E + and E- are 

solenoids embedded in a 3-sphere obtained by an appropriate real-oriented blow-up. 

A classical result of algebraic topology says that for the standard d-adic solenoid Ed 

embedded in the 3-sphere in the standard way, HI(S 3-Ed)=z[1/d]. This explains why 

these bizarre groups appear in this complex-analytic setting, by making precise the sen- 

tence "at the ends of D*  there are two solenoids". 

Proof. The exact sequence of the pair D~ c X~  reads in part 

H2(D~) -4 g2(xo~) -4 H:(Xo~, Do~) -4 gl(Do~). 

The first term is Z (Irr(D~)), and the last term vanishes, since D~ is a union of 2-spheres 

identified at points, with the quotient topology from the disjoint union. This, together 

with Theorem 4.13 (c), proves (a). 

For (b), another part of the long exact sequence reads 

Ha(D*) -4 H3 (X*) -4 H3(X*, D*) -+ H2 ( D , )  -4 H2 (X*). 

Since the last map is injective and Ha(D~)=0,  the canonical map 

H3 (X*) -4 H3(X*, D , )  

is an isomorphism. 
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To see what it is an isomorphism between, notice that  H3(P2)=0 .  It  then follows 

from Proposition 4.7 t ha t  H3(X[N,M])=O for all N<~M. Next, the inclusion 

X[*N,M] C X[N,M l 

induces (still by Proposition 4.7 for the final 0) an exact sequence 

0 -'4" H4(X[N,M]) --+ H4(X[N,M], X[*N,M] ) --+ H3(X~N,M]) ~ H3(X[N,M]). 
II II II 
Z Z 2 0 

Thus H3 (X~N ' M] ) is canonically the quotient of Z 2 by the image of Z under the diagonal 

map, i.e., it is isomorphic to Z. 

The argument for (c) is similar but easier. [] 

The intersection form on the homology. The homology space H2(X*) carries a 

quadratic form coming from intersection. In order to describe it, we need to define 

homology classes which are not in the kernel of u +. Call v- ,v+EH2(XG) the images of 

[A'] and [A] in H2(X[o,o])=H2(X) under the inclusions 

H2 (xi0,0]) -+ H2(Xt_l,1]) -+ - +  . . . .  

We can also describe v + as elements of zIrrDL; in Figure 14, the top block indicates 

the irreducible components of D ~  for which we are giving weights; the next two blocks 

describe the weights assigned by v + and v - .  

The middle block describing v + has all zeroes above, and each succeeding line below 

is the previous multiplied by d; the bo t tom block describing v-  has all zeroes below, and 

above each preceding line is the next multiplied by d. 

Then v+(v+)=~, - ( v - ) = l ,  so that  the values of the quadratic form on Z (Irr(D~)) and 

on v + determine the quadratic form completely. 

PROPOSITION 4.16. On Z (Irr(DL)), the quadratic form is determined by the self- 

intersections and mutual intersections of the irreducible components of D*.  

The classes v + and v- satisfy the rules 

v+.v+=v .v = - 1 ,  v + . v - = 0 ,  
(4.4) 

v +" [L0,2d-3] = v - .  [L0,1] = 1, v +" [A1] = v - .  [A0l = - 1 ,  

with all other intersections O. 

Proof. The s ta tement  about  Z (I~(DG)) should be clear. 
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: : " .  : : i " .  : 

B - 1  
A - 1  L - l , 1  . . .  L - l , d - 2  L - l , d - 1  L - I , d  . . .  L - 1 , 2 d - 3  

Bo 
A o  L o , 1  . . .  L O , d -  2 L 0 , d - 1  L o , d  ...  L O , 2 d - 3  

B1 
A1 L1,1 . . .  L l , d - 2  L l , d - 1  L I , d  .. .  L 1 , 2 d - 3  

B2 
A 2  L 2 , 1  . . .  L 2 , d - 2  L 2 , d - 1  L 2 , d  ...  L 2 , 2 d - 3  

: : .. : : : � 9  : 

V § z 

: : ". : : : ". : 

0 
0 0 ... 0 0 0 ... 0 

0 
0 0 ... 0 0 0 ... 0 

1 
1 2 ... d - 1  d d ... d 

d 
d 2d ... d ( d - 1 )  d 2 d 2 ... d 2 

: : ". : : : "�9 : 
�9 �9 

V 

: : " .  : : : " . .  : 

1 
d d ... d d d - 1  ... 2 

0 
1 0 ... 0 0 0 ... 0 

0 
0 0 ... 0 0 0 ... 0 

0 
0 0 ... 0 0 0 ... 0 

F i g .  14  

For the other  classes, one way to do it is to cons t ruc t  a differentiable surface C + C )~H 

(not  an  algebraic curve) which represents  A, and which avoids ~ and  qr. Note tha t  

C + cannot  be algebraic (or analyt ic) :  the self-intersection of A is - 1 ,  so it is rigid as 

an algebraic curve�9 The  curve C + is t hen  conta ined  in X *  and  represents  v +. But  

a ne ighborhood of the  curve C + is also conta ined in X * ,  so v + only intersects  those 
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curves of D ~  tha t  C + intersects. Thus v +. v + =  C +. [Ao] = C +- C + = -  1 and v +. [Lo,2d-3] = 

C +" [Lo,~a-a] = 1. 

Similarly, construct a differentiable surface C - C X H  which is a deformation of A'; 

clearly we can take C+NC-=O.  [] 

Of course the quadratic form is invariant under the action of Hr since H ~  is a 

homeomorphism of X ~ .  This certainly is not obvious from the formulas. Let us check 

one case. Take d=2.  Since H ~  induces the shift, we see tha t  

( H ~ ) ,  (v +) = 2v++ [A0] + [B0] + 2[Lo,1]. 

The intersection product gives, as it should, 

( ( H ~ ) ,  (v+))  2 = 4(v+)  2 + (A0) 2 + (Bo)  2 + 4(L0,1)2 + 4 B o - L o , 1  + 4A0.  L0,1 + 8 v  +" L0,1 

= - 4 - 3 -  2 - S + 4 + 4 + S  = - 1 .  

This quadratic form on H 2 ( X * )  is of course neither positive nor negative definite. 

For instance A, the closure of the diagonal of C 2 in X-- ,  has self-intersection +2, whereas 

all the irreducible components of D *  have negative self-intersection. The following 

proposition says tha t  the form is mainly negative. 

THEOREM 4.17. The intersection form is negative definite on Z (Irr(D;~)). 

Proof. We will give two proofs, one conceptual and one computational.  Each proves 

a stronger (but not the same stronger) result. 

First proof. An element v C Z  (Irr(D;~)) comes from an element of H2(X[N,M]) which 

assigns coefficient 0 to the first and the last irreducible component  of the divisor D [ N , M  ] . 

Its  self-intersection in X[N,M ] and in X *  coincide. We will in fact prove tha t  if v has 

coefficient 0 with respect to one of these components,  then v.v<O unless v=0 .  

Indeed, the complement of the last exceptional divisor i n  D[N,M ] can be blown down 

to a point, so by [Gra], the intersection matr ix  of this divisor is negative definite, and 

hence v.v is negative if v 7~ 0. 

Second proof. Let us call an, bn,x~,j the coefficients of An, Bn,Li , j  respectively. 

Thus we are considering the quadratic form 

2 2 2 
. . . - - 3 a n - ~ - 2 a n X n , l - - 2 X n , 1 - } - 2 X n , l X n , 2 ~ - . . . - - 2 X n , d _ 2 - ] - 2 X n , d _ 2 X n , d _ l  

-db~ +2bnXn,d_l 2 ...+2Xn,2d-3an+l --3a~n+l + . . . .  --  2 X n , d _  1 -~- 2 X n , d -  l Xn,d n c 

I t  is clearly enough to show tha t  the quadratic form obtained by allocating half the 

coefficient an to the next t e rm and half to the previous te rm is negative definite, i.e., 
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tha t  the quadratic te rm in 2d variables 

_ 3 2  2 ~ao+2aox1-2x 1 §  +...--2X2d_2+2X(~-2Xd-1 

-db2§ ~+2Xd-lXd+...+2X2d-3a~ 3 2 _ - ~ a ~  

is negative definite. This is something like working in one block at a time. 

If we isolate the terms containing b and complete squares, this quadratic form can 

be writ ten 

--(db2--2bXd_l-t.-dX2d_l)--aa2+2aOXl--2x2-}-2XlX2-l-...--2X2d_2-t-2Xd_2Xd_l 
1 2 2 3 -- (2--~)Xd_l ~-2Xd--lXd--2Xd~-...-F-2X2d--3al---~a 2. 

If we complete squares from both  ends, we can write this as 

2bXd-l +lx2d 1 - - (  db2- d - )  

3-a~-2alx2~-~+ 2- xL ) 
3 3 2 -- ( ~ X2-- 2XlX2+ ~X2) -- ( ~ X2d_3--2X2d-3X2d-2-l-~ X2d_2) 

['d+lx2 2 d x2 ~ ~-~X2--2XdXd_I+ d~X2d 1 ( ) 
d - 1  x2_1" [] 

d ( d + l )  

It  works, with a tiny bit to spare, so we actually get a slightly stronger result: 

PROPOSITION 4.18. There exists K depending only on d such that 

1 2 

i E I r r ( D ~ )  iCI r r (Dor  

for any v c Z  ( I r r ( D ~ ) ) .  

Thus we can complete c(Irr(D~)) with respect to the intersection inner product,  to 
A 0 ~r . 

get a Hilbert space, which we denote H 2 ( X ~ ,  C). By Proposition 4.18, this intersection 

product  norm is equivalent to the /2 -norm on the space of sequences. 

The exact sequence 

0 ~ Z ( I r r ( D - ) )  --> H2 ( X ~ )  -+ Z[1/d]@Z[1/d] -+ 0 
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gives, tensoring with C, 

0 --~ C (Irr(D*))  --~ H2(X~o ; C )  --ff C O C  -ff 0, 

so it is natural to complete the entire homology, i.e., to set 

A * . H~(Xoo, C) A0 �9 . = H~ (Xo~, C)eCv+ e C v  -. 

On this completed homology space (unlike homology with infinite chains, which is the 

dual of cohomology with compact supports), the pseudo-inner product given by the 

intersection is still defined (e.g. by the formulas (4.4)). 

This completed homology H 2 ( X * ;  C) is contained i n  C Irr(D~176 but if v=(v~), iC 

2 This is not even true for vE Irr(Do~), the quadratic form is not given by v.v=y'] v i . 
A 0 , . 

H~ (Xoo , C), though in that  case (only) the series is convergent. But the series is divergent 

for v=v  + and v = v - .  

Neither are the subspaces Cv + and Cv orthogonal to H ~  formulas (4.4) say 

that  each of these subspaces are orthogonal to all but one standard basis vector. So 

the pseudo-inner products v.v + are well-defined even if v E H ~  C) is a series with 

infinitely many non-zero terms. 

Clearly the subspace c(Irr(D-))cH2(X~x~; C )  is invariant under the H@non map- 

ping H, which is simply a shift in Do~, so it induces a unitary operator on the Hilbert 
A 0 , . 

space H~(Xoo , C). This unitary operator has only continuous spectrum, on the unit 

circle, and with spectral density 2 d -1 .  There are in addition two eigenvectors of 

(Hoo),: H 2 ( X * ;  C) -+ H 2 ( X * ;  C), 

one with eigenvalue d and one with eigenvalue 1/d. One way of defining them is as 

w + : ~ l i m  l ( H ~ ) : ( v + )  and w - : ~ l i m  l ( H ~ ) : n ( v - ) .  

These do belong to the completed homology (but not to the homology), since w + is v + 

on the positive part of D * ,  and decreases like a geometric series on the negative part. 

These homology classes are already well-known in the theory: they are the homology 

classes of the currents # -  and #+, as defined by [BS1]. 

5. R e a l - o r i e n t e d  b lo w -u p s  

In this section we will define a way of "resolving" the non-algebraic singularities pOO qOO 

The idea is to "cut Xo~ along Doo". In topology, "cutting a manifold M along Z c M "  
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is a standard construction, at least when Z is a submanifold: it means to remove the 

interior of an appropriately chosen tubular neighborhood of Z, leaving a manifold with 

boundary. 

This correctly describes the topology of our real-oriented blow-ups, but lacks the 

naturali ty we need for mappings to extend canonically, so we will use a different approach, 

closely related to "blowing up X along Z".  

Remark. We will discuss the real-oriented blow-up in the real-analytic category. 

Most of the discussion of real-oriented blow-ups would work just as well in the real- 

algebraic or the C~-category;  in fact, we will work entirely with algebraic varieties, but it 

is convenient to be able to restrict to "ordinary" open sets, rather than Zariski-open sets. 

In any case, the definition (especially the endpoint modification below) should probably 

be viewed as preliminary. It works when Z is a divisor with normal crossings, but it does 

not create the right object (something like the complement of a tubular neighborhood) 

when the singularities of Z are too nasty. A full discussion of real-oriented blow-ups will 

require a separate paper. 

The oriented blow-up . ~  : a preliminary definition. Suppose that  X is a real-analytic 

manifold, and that  ZC X is an analytic subset, perhaps with singularities. Suppose that  

U C X  is a coordinate patch in which the ideal I ( Z )  of real-analytic functions on U 

vanishing on Z is generated by m functions f l ,  ..., fro: U - ~ R  TM" In other words, if we set 

then ZNU~--f-I(0).  We need to say things in terms of ideals rather than in terms of 

equations defining the set because, for instance, the origin in R 2 is defined by the equation 

x 2 + y 2 = 0 ,  but the one function x 2 + y  2 generates a much smaller ideal than Z(Z),  which 

is generated by x and y. 

We can then define @ C U x S m- 1 to be the closure of the set 

{ (x, P)  6 U x S "~-1 t f (x)  r 0 and f (x) / I f (x) l  = P}.  

Denote by p: U[--+ U the canonical projection, and set Z + = p - I ( Z ) .  

By contrast, the blow-up is the closure of the set 

Uf = {(x, l) �9 U •  -11 f(x)  ~ 0 and f(x)  � 9  

and the exceptional divisor is p-l(Z) .  The main difference, indicated by the +, is that  

we are now allowing for the orientability of the line l � 9  -1. 
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We will sketch in Proposition 5.2 the fact that  U~ depends only on Z and not on the 

chosen generators of I ( Z ) ,  and what to do when Z is not defined by global equations. 

Let us see that  this does correspond to "cutting a manifold X along Z" when Z 

is a smooth hypersurface, defined locally by f ( x ) = 0 ,  where f :  X--+R is a real-analytic 

submersion. Recall that S ~  1 } c R ,  and XzCX• {-1 ,  1} is X - Z ,  with Z •  {1} 

attached to the part where f is positive and Z • { -1}  attached to the part where f is 

negative. 

When Z is the origin of R n, it also gives what we want: R n with the origin replaced 

by S n - l ,  and naturally parametrized by "polar coordinates" (r,p)E [0, o c ) x S  n - l ,  but  

with no identifications when r=0 .  

The real-oriented blow-up. Already we run into trouble when Z is the union of 

the axes in R 2. The ideal Z(Z) is generated by the single function xy, so the space 

( R 2 ) z C R 2  x S ~ is 

(Q1uQ3) x {1}u(Q2uQ4) • { -1} ,  

where Qi denotes the closed i th  quadrant. 

This is not quite what we want: the plane cut along Z, i.e., the disjoint union of the 

four closed quadrants. We will replace the space )(~- by a space which maps to ) ~ ,  and 

whose points above xC-~-  are the ends of )~- - 2  + at x. This does not change the points 

with a basis of connected neighborhoods, but  it does separate the first quadrant from the 

third and the second from the fourth, as the points of contact of these quadrants each 

correspond to two ends. 

More formally, let X be any topological space, and Y c X  a closed subset. We will 

define the endpoint modification E(X, Y) to be the space X where every point yCY has 

been replaced by the set of ends of X - Y  at y, i.e., by the points of the projective limit 

where It0 is the functor which associates to a space its set of connected components, and 

the projective limit is taken over all open neighborhoods V c X  of y. The space E(X, Y) 
comes with a natural topology, which we will leave to the reader to define (see [DD, 

Vol. II, pp. 197-198]), and there is a canonical map p:E(X,Y)--+X. We will denote by 

E(Y)CE(X,Y) the subset p-l(y). 
This construction can lead to pret ty wild things when Y is complicated, but when 

X is a finite simplicial complex and Y is a subcomplex, which will always be the case 

in this paper, then E(X, Y) is a finite simplicial complex, and there are finitely many 

inverse images of every yEY. 
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Definition 5.1. Let X be a real-analytic manifold, and Z c X  an analytic subset 

such that :Z(Z) is generated by fl,-.-, fm. The real-oriented blow-up B+(X,f)  is the 
A 

endpoint modification E(X[ ,  Z+), with the exceptional divisor 13+(Z)C B + (X, Z) being 

E(Z  +) C E ()~-, 2+). 

A 

This actually defines the oriented blow-up U~ only locally, and further it appears 
A 

that U~ depends not only on ZC U, but also on the chosen generators for :Z(Z). The 

following proposition deals with these problems. 

PROPOSITION 5.2. (a) Let U be a real-analytic manifold, and Z c U  an analytic 

subset. Suppose that f l , . . . , fm and gl,...,gk are two sets of generators of Z(Z). Then 

the identity of U - Z  extends uniquely to an isomorphism U[-+U~ of semi-analytic 

spaces. 
A 

Thus we can write U~. 

(b) The identity of U - Z  extends uniquely to an isomorphism 

A ~ A 
E ( X ; ,  Z +) -+ E(Xg,  Z +) 

of semi-analytic spaces. 

Thus we can write B+(U, Z). 

(c) Let U, V be real-analytic manifolds, and F: V--+U a real-analytic map. Sup- 

pose that Z c U  is an analytic subset, and that F is a local isomorphism at all points 

of F- I (Z) .  Then the restriction of F to V - F - I ( Z )  extends to a mapping 

S+(F): S+(V, F-' (Z))  -+ s+(u, z) 

which is a local isomorphism at all points of B+(F-I Z), so that the diagram 

B+(V,F-I(Z)) S+(F)) B+(U,Z) 

Pl I F P21 

V ~U 

commutes, where the Pi are the canonical projections. 

Part (c) of Proposition 5.2 allows us to construct oriented blow-ups globally. If 

Z c X  is an analytic subspace of a manifold, we can cover X by open subsets Ui, and 

construct /3+(Ui, Z) for each i. Part (c) evidently applies to the inclusions UiNUjcU~, 

and allows us to glue the spaces B+(Ui, Z) canonically. 
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Sketch of proof. The blow-up has a universal property: replacing a subspace by a 

divisor. The main part of the proof is showing that  the space )~z has this property: [Har] 

proves this in the algebraic setting, and the same proof works in the analytic setting, and 

is Theorem II.7 of [HPV]. This implies that  the blow-up is independent of the chosen 

generators. It is easy to see that  this result goes over to the oriented context [HPV, 
A 

Proposition VI.4], allowing us to define a space X~ as required in part (a). 

The endpoint modification is a functor, giving us part (b). 

Part  (c) follows from the fact that  the universal property defining blow-ups is evi- 

dently local on the set being blown-up. [] 

The central example. The main example we will want to consider is the real-oriented 

blow-up of X = C  2 along Z = C  • {0}U{0} x C, both viewed as real-analytic spaces; i.e., 

C2=l=[ 4, parametrized by xl, Yl,X2, Y2 (where z l=xl+iy l ,  z2=x2+iy2), and Z is the 

union of the (xi, yl)-coordinate plane and the (x2, y2)-coordinate plane. 

This is quite complicated to work out directly from the equations: Z requires four 

equations to define it, and the equations for -~z are quite messy (this computation is 

done in [HPV, pp. 45-46]). It seems simpler to do the computation in its natural setting, 

where tensor products hide the complications of the explicit formulas. 

THEOREM 5.3. Let X1,X2 be smooth manifolds, and Y1cX1, Y2CX2 be smooth 

submanifolds. Then the identity of (X1-Y1)x  (X2-]I2)  extends to a unique isomorphism 

B + (X1, ]I1) • 13 + (X2, Y2) -+ B + (Xl x X2, (X 1 X ]72) I J (]I1 • X2)) .  

Proof. The uniqueness is clear, since (X1-Y1)x  (X2-Y2) is dense in both spaces. 

Thus it is enough to prove the statement locally, and we may assume that  X1, X2 are 

vector spaces, and that Yi C X i are vector subspaces. Choose complementary subspaces 

Ei so that  Xi=Yi|  then 

X~=YixE~ and Y/=Yix{0} .  

The following lemma, whose proof is immediate and left to the reader, allows us to 

ignore the Y/ and focus on the El. 

LEMMA 5.4. If  Y C X  are an analytic manifold and an analytic subset, and Z is an 

analytic manifold, then 

B+(XxZ,  Y •  =B+(X ,Y ) •  

A straightforward application of Lemma 5.4, setting ]I1 x Y2=Z, shows that  it is 

enough to prove that  

1~ + (El • El ,  E ,  x {0} U {0} x E2) = B + (El ,  {0}) x 13 + (E2, {0}). 
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Choose inner products in E1 and E2; we will use "polar coordinates" ri, Pi for Ei, 

where r iE [0, oc) and piCS(Ei) is a vector of norm 1 (here and later S(E) denotes the 

unit sphere of the inner-product space E).  Choose orthonormal bases vl,  ..., Vn for E1 

and wl, ..., Wm for E2. Then declaring vi| to be an orthonormal basis defines an inner 

product  on El| independent of the choice of bases, such that  lip| = [[pl[ []ql[. 

The classical Veronese embedding P(E1)xP(E2)--+P(Ex| is the map which 

takes lines l icE1, 12cE2 to the line ll|174 
This mapping has an oriented analog, which is no longer an embedding, but a double 

cover of its image. Again we leave the proof of the following lemma to the reader. 

LEMMA 5.5 .  The mapping 

r S(E ) • S(E ) 

given by r174 is a double cover of its image: r 1 6 2  

Now to prove Theorem 5.3. The map F:ElxE2--~EI| given by (x,y)~-~x@y 

defines the locus E1 • {0}tA{0} x E2 to be blown up, so to construct 

•+ (E, • (El • { 0 ) ) u ( { 0 }  • 

we need to compute the closure F C E1 x E2 x S(E1 | E2) of the graph F of 

F 
/ I  'F-=: (E~ - { 0 } )  • (E2 - { 0 } )  -~ S(E1 | 

Note that  

F(rlpl, r2P2) = r l r2 r  P2)- 

Consider the semi-algebraic mapping 

4: [0, oo) x S(E1) x [0, oo) x S(E2) -+ E1 x E2 x S(EI| 

given by 

(I): ( ( r l , P l ) ,  ( r2 ,P2) )  ~ ( r l P l ,  r2P2, r  

Observe tha t  this mapping is proper, so its image is closed. Moreover, the image of 

contains F as a dense open set, so the image of �9 is the closure of F. Moreover, �9 is 

injective on the locus where ( r l , r 2 ) ~ ( 0 ,  0). This is clear from the first two coordinates 

of �9 if both rl  and r2 do not vanish, and is still true if exactly one vanishes. Indeed, if 

r l  ~ 0, then ep((rl ,pl) ,  (r2,p2)) certainly determines Pl, and using the third coordinate, 

P2 also. 
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Therefore �9 induces a semi-analytic isomorphism between the quotient 

/~*(E1, {0}) xB*(E2, {0})/~,,, where ((0,pl), (0,p2)) ~ ( (0 , -Pi) ,  (0,-P2)), 

and F. Thus every point (0,0,r  corresponds to two ends, and �9 lifts to a 

semi-analytic isomorphism 

~:13+(EI,{O})xB+(E2,{O})--~I3+(ElxE2,(Elx{O})t.A({O}xE2)). [] 

Theorem 5.3 allows us to understand the fibers of the projection 

p: J[~* ( X l  x X 2 ,  ( X  1 x Y2) D (Y1 x X2)) : 

if (xl, x2)E(X1-Y1)x  (X2-Y2), then p-l(Xl,  x2) is a point, of course; 

if (xl, xu) E II1 x (X2-Y2), the fiber p-l(Xl,  xu) is canonically S(T~IX1/TxlY1); 

if (x~, x2) E (X~ -I11) x Y2, the fiber p-l(x~, x~.) is canonically S(T~X2/T~2Y2); 

if (Xl, x2) E Y~ x ]I2, the fiber p-l(Xl,  x2) is canonically 

S(T~X~/T~Y~) • S(T~,X~/T~,Y2). 

The real-oriented blow-up of a complex manifold along a complex subspace. In our 

applications of the real-oriented blow-up, the spaces YC X will be the underlying real- 

analytic spaces XR, YR of complex-analytic spaces X, Y. Rather than write B+(XR, YR), 

we will denote the real-oriented blow-up by 13h(X , Y). The space 13h(X , Y)  has extra 

structure in that  case: the natural action O*p=ei~ of the circle R/2~rZ on the unit 

sphere of a complex inner-product vector space induces an action of R/21rZ on B~t(Y), 

and when Y is of the form E1 • {0}U{0} x E2CE1 • Eu as above, where both E1 and E2 

are complex vector spaces, the same natural action of R/2~rZ on S(E1) and S(E2) gives 

an action of the 2-dimensional torus (R/27rZ) 2 on p-1 (xl, x2) when (xl, x2) E II1 • ]I2. 

We will mainly be interested in the case where X is a complex surface, and Z c X  

is a divisor with normal crossings. Let us denote by Z'  the smooth part of Z, i.e., the 

complement of the set of double points. The following statement then summarizes our 

discussion. 

THEOREM 5.6. (a) The real-oriented blow-up B~t(X, Z) is then a 4-dimensional 

manifold with boundary, and this boundary is a 3-dimensional manifold with corners 

corresponding to the double points of Z. 

(b) The group R/27rZ acts naturally on p- l (  Z'), making it into a principal circle 

bundle. 

(c) The fibers above the double points are naturally principal under the group 

(R/2~Z)  2 
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The real-oriented blow-up of a complex blow-up. The crucial question for us will be 

the following. Let X be a complex surface, ZC X a divisor with normal crossings, and 

zEZ  a point. Wha t  relation is there between the real-oriented blow-ups 13~t(X , Z) and 

B~()(z,  7r - l (Z))?  The answer is contained in the following two theorems. Let 

p:Bh(X,Z)--+ X and ~:Bh(Xz,~-I(Z))-+ Xz 

be the canonical projections. 

A first thing to notice is that  the topological pairs ]3~(Z)C B~(X, Z) and B ~ ( 2 ) C  

B~(Xz, Z) are homeomorphic. After all, the boundary of a tubular neighborhood of Z 

in X is still the boundary of a tubular  neighborhood of Z in _~z. Wha t  has changed is 

the pat tern  of tori in the 3-dimensional manifold B~(Z), and the circle and torus actions 

on the tori and regions between the tori respectively. 

The real-oriented blow-up of a complex blow-up at a simple point of a divisor. Let 

zCZ be a simple point, and let 5E)(~ be the new double point of Z, i.e., the intersection 
N 

of the proper t ransform of Z with the exceptional divisor. Then B~(X~, Z) can be 

understood as follows. The fiber p-l(z) is a circle; thicken this circle to make a solid 

torus, invariant under the existing circle action. Keep the old circle action on the outside 

of the solid torus, and modify it inside, so tha t  the oriented circle orbits on the boundary  

of the solid torus are the "sums" of the old ones and of boundaries of discs A in the solid 

torus, which are oriented so that  p: A--+Z is orientation-preserving. Theorem 5.7 makes 

this precise. 

Call Y the space B~(X, Z),  but with the following modified circle action on part  of 

the boundary B~(Z). Choose a disc DC Z centered at z, parametrized by w with ]w] < R  

and a section a: D-+B~t(D), giving us an isomorphism B~t(D)-+D x (R/2~rZ), allowing 

us to parametrize B~t(D)CB~t(X , Z) by w and 0ER/2~rZ.  Choose rKR, and define a 

new circle action on B~t(D~ ) by the formula 

O.(w, O, 0) = (we ~~ 0, 0+O) .  (5.1) 

THEOREM 5.7. There exists a homeomorphism h: B~(Xz, Z)-~ Y which coincides 

with the identity outside of p - l (u)  for some neighborhood U of D in X,  which takes 
~-1(2) to the torus ]w]=r, and which respects the circle and torus actions. 

For the proof, see [HPV, pp. 50-57]. 

The real-oriented blow-up of a complex blow-up at a double point of a divisor. Let 

z be a double point of the divisor Z c X ,  and call 51,22 the two double points above z 

in )(~, i.e., the two intersections of the proper t ransform of Z with the new exceptional 

divisor. 
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Again we will construct a model Y for B~t(X~, Z) whose underlying space is 

B~t(X, Z),  but where we modify the tori and group action on 13~t(Z ). Roughly, Y is 

constructed from 13~(X, Z) as follows. Thicken the torus p - l ( z )  so that  the thickened 

torus is invariant under the circle actions. Keep the old circle actions on the outside 

of the thickened torus, and modify it inside, so that  the oriented circle orbits on the 

boundary torus are the "sums" of an orbit of R/27r x {0} and an orbit of {0} x R /2 ~Z .  

Theorem 5.8 makes this precise. 

Choose local coordinates Wl and w2 on a neighborhood U of z in X, such that  

Iwl[, [w2[<R, and Z is given in U by the equation WlW2=0. This gives an isomorphism 

of B~t(X, Z) near  p - l ( z )  with the standard model B~t(D,0 ) x B~t(D , 0), which can be 

described as the set of 

( r l ,  r2 ,01 ,02)  e [0,1:~)2 x (R/27TZ) 2. 

The projection zr is given by wl=rle  i~ w2=r2e ~~ and the set B~t(Z ) corresponds to 

the subset where r l r 2=0 .  

Now choose r<R, and modify the circle action on the subset 

P = {(r l ,  r2, 01,02) e [0, R) 2 x (R/2~rZ) 2 I Irxl, Ir21 < r and rlr2 = 0} 

by setting 

e *  (r l ,  O, 01,02) = (r l ,  O, ~1-[-e, ~2-~- e),  

e ,  (o, r2, 01,02) = (0, r2, O, + O, e2 + O). 

Keep the previous circle action outside P; this gives as it should two circle actions 

on the two tori Iwll=r and Iw21=r. 

THEOREM 5.8. There exists a homeomorphism h: B~t (Xz, Z)-+ Y which is the iden- 

tity outside of p- l (U),  which maps the torus ~-1(51) to the torus r l=r,  r2=O, which 

maps the torus i5-1(22) to the torus rl=O, r2=r, and which respects all the circle and 

torus actions. 

For the proof, see [HPV, pp. 58-64]. 

Naturality. Let X be a smooth surface, Z C X  a divisor with normal crossings, and 

zED a point. 

THEOREM 5.9. (a) The mapping ~r:X~--+X lifts to a unique mapping 

~: ~ (xz ,  z) -+ ~.(x,  z) 
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such that the diagram 

Bh(2z, 2) ~ > uh(x, z)  

commutes. 

(b) If  z is a simple point of Z, then the mapping ~ maps the torus ~ - 1 ( ~ )  (para- 

metrized by (01, r to the circle p -  l ( z ) ( parametrized by 02), by the mapping 

(~1, r 1--), ~1 -~-(~2" 

(c) I f  z is a double point ol Z, then the mapping ~, mapping the torus ~-1(Zl), 
parametrized by 01, r  to the torus p-l(z) ,  parametrized by 01 and 02, is given by the 

formula 

+r ] " 

This is proved in [HPV, part (a) on p. 51, part (b) on p. 52, and part (c) on p. 59]. 

Infinitely many blow-ups. Suppose that  we repeat infinitely many times the following 

procedure, as in w 

Take a surface X0 containing a divisor with normal crossings Z0C X0; although it 

is not essential, we will assume that  X0 is compact. Choose a point zoEZo, blow it up 

to create a sur face  Xl=(X~o)zo , with a projection rl:X1--+Xo; set  Z1=71"ll(Zo). Now 

choose a new point zl C Z1, etc. Denote by 

~: Bh(x,, z~) ~ Bh(x~_l, z~_l) 

the map induced from ~r~. 

Theorems 5.7 and 5.8 assert that  at each stage the pair B~t(Z~)cB~t(Xi, Zi) is 

homeomorphic to the pair B~(Zo)CB~(Xo,  Zo). It seems reasonable to think that  the 

same will remain true in the limit, and it is. 

THEOREM 5.10. The projective limit of pairs 

W h  (Z~), ~) C ~ Wh(X, ,  Z,), ~) 

is homeomorphic to the pair 13~t ( Zo ) C B~ ( Xo, Zo ) , and the canonical map 

Wh(x,, z,), ~) -+ uh(Xo, Zo) 

can be approximated by homeomorphisms. 

This theorem is proved in [HPV, pp. 64-65]. 
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6 .  R e a l - o r i e n t e d  b l o w - u p s  fo r  H@non  m a p p i n g s  

The  Hopf  fibration p: $ 3 - - } S  2 is a famous example from topology, where the circle acts 

on the  3-sphere, and the quotient  is the  2-sphere. If  we th ink of S 3 as the  unit  sphere 

in C 2, and S 2 as P~ ,  then it can be wri t ten as 

p: (zl, z2) ~ [zl: z~]. 

It  can also be thought  of as the quotient  of the 3-sphere by the circle act ion 

R/27rZ• 3 - + S  3, e,(z~,z2)  = (e~%i,e~%2). 

The Hopf  fibration seems a natura l  candidate  to  be the  real-oriented blow-up of a pro- 

jective line in a surface, and it is. 

The real-oriented blow-up of the line at infinity in p 2 .  We will begin our construc- 

t ion of  real-oriented blow-ups const ruct ing + 2 B r t ( P c , l ~ ) ,  and then  seeing the effect on 

this real-oriented blow-up of the complex blow-ups described in w Local coordinates  

on a ne ighborhood of l~  C P ~  are 

1 y 1 x 
U 1 ~ - - ,  V 1 = -- and u2 = - ,  v2 = - .  

x x y y 

This leads to the charts  C•247 given by (vj,Oj), j = 1 , 2 ,  where Oj-= 

- arg uj. 

On the overlap vl ,  v2 ~ 0 these coordinates  are identified by 

1 
v 2 = - - ,  0 2 = 0 1 + a r g v l .  

Vl 

This is a variant  of the Hopf  fibration. 

PROPOSITION 6.1. (a) The mapping S3-+B~(I~) given by 

(zl, z2) ~-+ ~ vl = z2/zl, 01 = - arg zl, if z 1 ~ O, 

[ v2 = zl/z2, 02 = - arg Z2, / f  Z 2 ~ 0, 

is a diffeomorphism which carries the orientation of S 3 as the boundary of the comple- 

ment of the 4-ball to the standard orientation of B~(Ic~). 

(b) This diffeomorphism transforms the circle action O , ( z l , z2 )= (e - i ~  

into the canonical circle action 

e , ( v j ,  oD = (vj, o~ +o) .  
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Proof. The main thing to check is that  the mapping is compatible with the identi- 

fication 02 = 01+ arg Vl, which becomes arg z2 = arg zl + arg(z2/zl) .  

The map is injective: if we know vl and 01, then from z2=vlzl and the equation 

Iz112+lz212=l we see 
1 

IZll 2 -  1+1Vl]2, 

and since we also know the argument  of Zl, we know zl, hence z2. 

The surjectivity is also clear from the argument above. 

The compatibil i ty with the circle action is 

ei~ _ zl a rge i~  = a r g z l + O .  
eiO z2 z 2 

The vectors 

form a direct basis of T0,0)S 3 if we orient S 3 as the boundary of the ball. The first of 

these vectors is tangent to the oriented orbit through (1, 0), whereas the last two project 

under p to a direct basis of Tp(1,0)P~. [] 

Each s p a c e  X[_N_I,N+I] is obtained from X[_N,N] by a sequence of blow-ups, first 

at qN and PN+I,  and then at points of the most recent exceptional divisor; let 

71"N+I,N: X[--N--1,N+I] --+ X[_N,N] 

denote the blow-down mapping. By Proposition 5.9, the mapping 7fN+l, N induces a 

projection 

~ ' N + I , N :  ]~:~ ( X[--( N + I ),N + I], D[--( N + I ),N + I]) --~ ] ~  ( X[ -  N,N], D[-N,N]), 

which allows us to consider the projective limit 

Bh(X~,  Do) : ~ (Bh(X[--N,N ], D[--N,N]); #N+I,N)- 

There is a canonical inclusion iN: C2-'+X[-N,N] (as in Proposition 3.6 (b)), which 

lifts to iN: C2--~h(X[-N,N], D[-N,N]) since the real-oriented blow-up is taken along 

D[_N,N]:X[_N,N]-C 2. These inclusions are compatible with ~N+I,N, leading to an 

inclusion ) ~ :  C2-+ B~ ( X~ ,  D~ ). 
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THEOREM 6.2. (a) The mapping ~ is injective, with dense image, allowing us to 

think of C 2 as a subset of B~t(X~ , Do) .  

(b) The Hdnon mapping H: C2-+ C 2 extends continuously to an automorphism 

B~t (Ho) :  B h ( X ~ ,  D o )  -+ Bh(Xo~, Do~). 

Proof. (a) The injectivity of ~ is clear since all the 3N are injective. Moreover, 

all the jN have dense image by Proposition 3.6, and so do the 3N since the interior of a 

manifold with boundary is dense in the manifold. The density of the image of j o  follows 

immediately, since the topology on the projective limit is inherited from the topology of 

the product. (This also follows from the much more general Theorem 5.10.) 

(b) Clearly the H6non mapping, i.e., the shift, induces an isomorphism 

X[_N,N+I] --} X[_(N+I) ,N] , 

hence a homeomorphism 

+ 
B R ( X [ - N , N + I ] ,  D[--N,N+I]) --} I~R(X[_(N+]),N] , DI-(N+I),N]) 

by Proposition 5.2. The result will follow since 

+ 1 3 ~ ( X ~ , D ~ ) =  lim ~3R(X[_N,M],D[_N,M] ) r 
M,N-+oc 

when N and M can go to infinity in any way one wants: the pairs [ -N,  N] are cofinal 

in the projective system of pairs [ -N,  M]. [] 

The remainder of this section is devoted to understanding the structure of 

13~t(Xo, Do~) in detail, as this is equivalent to understanding the dynamics of H6non 

mappings at infinity. 

THEOREM 6.3. (a) The pair (B~t(Xo~ , D~) ,  B~t(Do~)) is homcomorphic to the pair 

(B 4, $3), the closed 4-ball bounded by the 3-sphere. 

(b) The mapping p: B~t(Do)-+Do has as its fibers: 

�9 a circle above ordinary points; 

�9 a torus above double points; 

�9 a d-adic solenoid E- above pO, and a d-adic solenoid E + above qO. 

Proof. Part (a) was proved in Theorem 5.10. More precisely, we saw that  the real- 

oriented blow-up of p2 along the line at infinity is a 4-ball bounded by a 3-sphere, and 
+ 

so li_m ]3R(X[_N,N] , D[_N,N] ) is also. Indeed, ~ ]3~:~(X[_N,N] , D[_N,N] ) is obtained by 
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infinitely many times making a blow-up of a surface X at a point z of a divisor D, then 

taking the real-oriented blow-up of the resulting surface )~z along the inverse image 

of the divisor D. That  is the situation of Theorem 5.10. Moreover, the first two cases of 

part  (b) follow immediately from Theorem 5.6. 

The third statement of part (b) is a bit more delicate. The point p ~  is represented 

by the sequence 

Pl E X[o,0], P2 E X[-1,1], P3 C X[-2,2], ..., 

and above this point we see the projective limit of the system of circles 

p o l ( P l )  +-p11(P2) +-- p~l(p3)  +-- . . . .  

Remark. We are adding an index to avoid ambiguity, calling 

PN : 13~ ( X[_N, N], D[_ N, N] ) ~ X[-N, NI 

the canonical projection; the added notation is necessary as the PN+I can be viewed as 

points in all X[_M,M] w i t h  M > N  (or in X ~ ) ,  but only i n  X[_N,N] are PN+I and qN 

simple points of D[_N,N]. 

There is a canonical parametrization of pNI(pN+I)CB~(X[_N,N],D[_N,N]), ob- 
tained from the composition 

projection to 
pNl(pg+l ) Nth coordinate ) p - l ( ~ )  applying H ) p - l ( p )  arg(1/y) } R/27rZ. 

N N N 

Bh(X[-N,N], D[--N,N]) B~t(X , 5)  B~t(P 2, lo~) 

We will denote this coordinate by 0 N. 

There is also a natural parametrization of p g  1 (q_ N) C B~ (X[_ N, N], D i_ N, N] ), which 

is a bit simpler, obtained from the similar composition 

projection to 
pNl(q_N) --Nth coordinate ) p--l(q,) __ p--l(q) arg(1/x) 

n N n 

+ Z ~ BR([--N,N],D[-N,N])  Bs B+rP2R, ,lo~) 

We will denote this coordinate by CN" 

Now part (c) follows from Proposition 6.4. 

> R/27rZ. 
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PROPOSITION 6.4. We have 

~NT1,N(ON+I) =dON+l+arga and ~NT1,N(~)-N-1) = de-N-1.  

End of proof of Theorem 6.3 using Proposition 6.4. One description (see [HO1, w 

of the d-adic solenoid ~d is as 

Ed = ~ (R/2r 0 ~ dO). 

Clearly the second part of Proposition 6.4 shows that precisely the space E § above qOr 

is canonically the d-adic solenoid. 

For the point p~ ,  observe that if we set r then the mapping 

0F-+d0+arg a becomes 

( a r g a )  arga 
~b~-~d ~b-~-~-  + a r g a + ~ - = d r  

Thus the subset E-CB~(X~, D~) above q ~  is also a d-adic solenoid. 

Proof of Proposition 6.4. Let us first compute the map 

p - l (~ )  __+ p - l (p )  

A A 

Bh(2, 5)  h(P 

induced by the blow-down mapping XH--+ p 2  where both domain and range are identified 

with R/27rZ: 

�9 p- l (p )  using arg(1/y); 

�9 p- l (~ )  using (arg(1/y))oH. 

In w we began by using the coordinates u=x/y, v=l/y near p, so we see that argv 

is our parameter for p-1 (p). Still in the notation of w arg X1 gives the parametrization 

o fp - l (~ ) .  Formula (2.6), for the case k=d-1, tells us that the point a rgX]=0  of p - l (~ )  

is mapped by B~t(/~ ) to the point where v has argument 

Xl(xd--lYd_l+a ~_,d--~ QjX~) 
arg xd-lYd_l+a ~-~d--~ QjX~ = arg X1. 

Thus we must see how the blow-down maps p - l (~ )  to p - l (p ) ,  working in the coor- 

dinate 0=arg X1 in the domain, and 0=argv  in the range, since these correspond under 

the H6non mapping. 



248 J. HUBBARD, P. PAPADOPOL AND V. VESELOV 

More precisely, consider the mapping from the circle p-I(~)CB~(XH,D) to the 

circle p-X (p) C B~(P2,  l~) .  Let ao = p, al ,  ..., a2d-2 be the successive points at which we 

performed blow-ups to get from p2 to XH, and finally set a2d_l--=p. The point ao and 

the points ad, ...,a2d 1 are simple points of the divisor constructed so far; the points 

al , . - . ,  ad-1 are double points. The inverse images of these points are parametrized by 

a rgv  at a0, 

arg XI  
arg u ] at al 

(6.1) 
arg Xl 

a t a k ,  k = 2 , . . . , d - 1 ,  
arg Xk ] 

argX1 at ak, k = d,..., 2 d - 1 .  

In these coordinates, the blow-down mapping ) ~ g - + P  2 induces the composition 

( 0 ) ( 0 )  ( 0 ) 
~-~ ~-+ ... ~--~ 

0 ~--~...~--~ 0 ~-~ O + a r g a  2 0 + a r g a  (d-1)O+arga ~--~dO+arga. 

a2d-- 1 ad ad-- 1 ad--2 al ao 
(6.2) 

These are all straightforward applications of Theorem 5.2, par ts  (b) and (c). Let us spell 

out the mapping which takes aa to ad-1. In that  case we are taking the circle above the 

point XI=O, Xd=a, parametr ized by argXx,  to the torus above X I = 0 ,  X d - I = 0 .  The 

blow-down mapping is 

(Xxld) ~--} (xdXll) = (xxXlXd) , 
and in particular the circle Xl=Oei~ is mapped  to the circle Xl=Oei~ 
oae iO. If  we let O--+0 and remember  only the arguments,  we get the desired formula. 

This proves the first part  of Proposition 6.4: by definition, the mapping pNl (pN+l ) -+  

pNl_l(pN) is precisely the mapping above, the domain and range being identified with 

R/27rZ by H ~ and H ~ respectively. 

There are two ways to approach the second part  of Proposition 6.4: to make the 

sequence of blow-ups at q, repeating the material  of w to make H -1 well-defined, or 

to make a change of variables to make H -1 conjugate to a H6non mapping, for a new 

polynomial Pl and a new Jacobian al ,  of course. Remember  that  we used the fact that  

the polynomial p is monic in w so Pl must also be monic. We invite the reader to show 

tha t  in the variables Xx, Yt, where ~xl=y and ~yl=x with ~d-l=a, we lmve 

. - 1 :  ( xl)yl ~ \ (p l (Xl ) - -y l / a~Xl  ] 
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with Pl monic. Thus, in these coordinates the blow-down takes 

arg(1/yl)  ~4 d arg(1/yl)  + arg(1/a).  

We invite the reader to check that  this means exactly that  in the original variables, the 

second formula of Proposition 6.4 is satisfied. [] 

7. The topology of B + ( X ~ ,  D ~ )  

Solenoidal mappings of the solid torus to itself are among the basic examples of dynamical 

systems. The typical example is the map 

~-d,k:SlxD--+ S l x D  

given by 

z) = (r 1-d+k), 

where S 1 is the unit circle in C, D c C  is the unit disc, and e>0  is chosen so that  the 

map is injective. 

We will define a mapping from a solid torus to itself to be an unbraided solenoidal 

mapping of degree d precisely if it is topologically conjugate to 7-d,k for some k. 

This definition is justified by Theorem 3.11 of [HO1], which asserts that  any injective 

map f :  S i x  D--+SI• D in the correct isotopy class, which expands in the circle direction 

and contracts in the disc direction, is conjugate to precisely one of the ~-d,k. The labeling 

is justified by Theorems 4.1 and 4.6 of [HO1], which assert that  if the solid torus is 

embedded in S 3 in the standard way, then only Td,O extends to S 3. 

We will now describe the mapping B~.(H~) more precisely. A first statement says 

that  appropriate restrictions of B~(H~)  and 13~(H~) -1 are solenoidal. 

Let us denote by Tp~ and Tq~ the tor i /5-1(pi)  and 15-1(qi). Each separates B~(Doo) 

into two pieces. We will denote by T~ the one that  contains the attracting solenoid E +, 

and by Tp~ the one that  contains the repelling solenoid E- ,  and similarly for q~. 

PROPOSITION 7.1. (a) The mapping B~(H~)  maps T+pl (resp. T~) into itself, and 

its restriction to T~ is conjugate to ~-d,O. 

(b) The map ~ ( H ~ )  -1 maps Tp~ (resp. Tq~) into itself, and its restriction to Tp~ 

is also conjugate to Td,O. 

Proof. We need to examine carefully the sequence of blow-ups that  makes H well- 

defined, to understand how the tori corresponding to the double points of D ~  are em- 

bedded in the 3-sphere B~(Doo). Recall that  we called c o = p ,  al ,  ..., a2d-2 the successive 

points at which we performed blow-ups to get from p2 to )(H, and finally set a 2 d _ l = p .  
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Fig. 15. Blow up p2  at a point  zE l~ ,  and then  take the real-oriented blow-up of the divisor 

consisting of Ice and the exceptional divisor. You obtain  a 3-sphere containing a torus,  and 

a circle action on bo th  components  of the complement  of the torus.  This  picture represents 

the stereographic projection of this space, with the inside of the torus  corresponding to the 

exceptional divisor, where the circle orbi ts  do not link, and the outside corresponding to the 

line at infinity, where the circles link with linking number  1. Curves describing the homology 

classes a and b are drawn on the torus; note tha t  the circle orbits  on the outside are in the 

class - a - b  and those inside are in the class - b .  

In w we showed how to start, creating a torus Tao in the 3-sphere, separating the 

solid torus corresponding to l~  from the solid torus corresponding to the first exceptional 

divisor (which will eventually be the irreducible component B of 9 ) .  Figure 15 shows 

how these solid tori are placed after stereographic projection; the words "inner" and 

"outer" will refer to this picture. 

The next d - 1  blow-ups are fairly easy to understand, now that  we have started 

right. We thicken the torus Ta0, creating an inner torus T~ and an outer torus Tp,=Tpo 
(which we can call by its final name, since it will not be affected by further blow-ups). 

Then thicken the inner torus T~ ,  creating an inner torus T~2, and one which corresponds 

to L1NL~ (between T~ 2 and Tpo). Then thicken the inner torus Ta2 again, d - 1  times in 

all. The inside of the torus Tpo is Tpo. See Figure 16 for the case d=3.  
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) 
Fig. 16. T h e  p ic ture  above cor responds  to t he  s i tua t ion  af ter  d b low-ups  w h e n  d = 3 ,  and  af ter  

s te reographic  project ion.  T h e  ou ts ide  cor responds  to the  real-oriented blow-up of t he  line a t  

infini ty (now A~), wi th  t he  Hopf  circle act ion,  as shown.  T h e  inner  to rus  cor responds  to  B,  

wi th  the  circle ac t ion  where  t he  orbi ts  are not  linked. T h e  region be tween the  inner  to rus  and  

the  nex t  cor responds  to Ld_I; t h a t  is where  all t h e  fu r ther  ac t ion  will take  place, th ickening  a 

circle orbit  ( represented on the  drawing,  and  going a round  3 t imes  in one di rect ion as it t u r n s  

once in t he  o ther  direction).  T h e  region be tween t he  ou te r  to rus  and  t he  nex t  cor responds  

to L1; the  circle ac t ion  the re  has  orbi ts  which  t u r n  twice in one di rect ion as t h e y  t u r n  once 

in t he  other;  we have  not  d rawn  t h e m  to keep the  d rawing  simpler .  

The circle orbits fibering the regions between the successive tori are contained in 

Tpo with the innermost torus (corresponding to the component B) removed, which is a 

space with homology Z 2, generated by a and b (see Figure 15). At the first thickening, 

an oriented circle orbit between the two tori is in the homology class - a - 2 b ,  at the next 

the new thickened torus is fibered by curves with homology class -a-3b, etc., ending 

up with a thickened torus fibered by circles in the homology class -a-db, and an inner 

solid torus (corresponding to B) with fibers in the homology class -b .  

In summary, after the first d blow-ups, we have an inner solid torus with fbers  in 

the homology class -b ,  then a succession of thickened tori with fibers in the homology 

classes 

-a-db, -a-(d-1)b, ..., - a - 2 b ,  (7.1) 

and finally the region T~0 corresponding to l~,  fibered (by the old Hopf fibers) in the 

homology class -a-b. See Figures 16 and 17. 



252 J. HUBBARD,  P. P A P A D O P O L  AND V. VESELOV 
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- a - b  

< 

- a - b  

<. 

- a - b  

< 

- a - b  

< 

A ! 

~fi~ L3 

Fig. 17. You can almost imagine constructing the pattern of tori in S 3 by rotating the figure 
above around the z-axis (shown as a heavy line). The case above corresponds to d=3. The 
"almost" is because the small circles are not actually rotated: as they turn around the z-axis 
they also turn in their annulus, so as to connect up, forming a single torus, as shown in 
Figure 16. 

We mus t  now make  d - 1  more  blow-ups of o rd inary  points.  We make  the  first by 

thickening a circle orbi t  in the  region corresponding to Ld-1, which is f ibered by circles 

in the  homology  class - a - d b .  We then  thicken a circle inside this torus,  which we m a y  

take  to  be the  "core circle", and repea t  this d - 2  t imes.  T h e  final to rus  crea ted  this way 

is Tql. All the  solid tori  are thickenings of the  original circle, and hence in the  homology  

class - a - d b .  

We need to  s t a r t  mak ing  the  second series of  blow-ups,  as we do not  yet  have the  

to rus  Tpl.  So thicken a fiber inside Tql,  creat ing a solid torus  still in the  homology  class 
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-a-db, and thicken it again d - 1  times; the outermost torus of the series just created 

is Tp~. We will not need to describe the further blow-ups. 

Moreover, B~(H~o) -1 is a homeomorphism which maps the solid torus Tpo to the 

solid torus T p .  We claim that  as a map Tp0 -4Tpo it is conjugate to the mapping ~-d,O, 
where ~'d,k is given by the formula 

Certainly B~(H~)  expands in the circle direction; in fact it is flF-+dfl (this is the 

coordinate fl of the stereographic projection). By choosing our thickenings sufficiently 

small, the mapping will be contracting on the discs. 

Theorem 3.11 of [HO1] asserts that  every injective map from a solid torus to itself 

whose image is in the homotopy class of the (1, d)-torus (un)knot and which is expanding 

in the circle direction and contracting in the disc direction is conjugate to precisely one 

of the ~-d,k, and Propositions 4.1 and 4.6 of [HO1] assert that  only ~-d,0 extends to the 

3-sphere. [] 

By Theorem 3.1 of [HO1], there are maps ~r+: T~)~-4R/2T:Z and 7r[: Tp --+R/27rZ 

such that  the following diagrams commute: 

B+R(H~) B + ( H c ~ )  -1  

R/27rZ o~do "~ R / 2 ~ Z  R/27rZ o,--+dO > R/2~rZ 

In our case, these functions 7r + and 7r[ can be computed explicitly; they are given 

by Proposition 7.2. Before stating this proposition, notice that  

�9 T+ is the set of xEB~(X~,D~) such that  (p(x))i=q'; 
�9 Tq~ is the set of x~gh(X~,D~ ) such that  (p(x)) i- lEA; 

�9 Tp, is the set of xeBh(X~,Doo ) such that  (p(x))i_l=~; 
�9 T~ is the set of xeBh(X~,D~o) such that  (p(x))~eA'. 
There is a natural mapping Qi:X~-4X[i,~), which blows D~o down onto D[i,~). 

Since Qi is a blow-down, it induces a mapping 

+ . + BR(Qi). BR(X~, Do) -4 Bh(Xii,~), D[i,~)). 

More precisely, the blow-downs X[_N,N]-"}X[i,N], i<N, induce mappings on the real- 

oriented blow-ups B~(X[-N,N], D[-N,N])-+B~(X[~,N], D[i,N]); to construct Q~, we must 

pass to the projective limit. 
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The mapping Qi maps T~, to the circle above qi in 13~(D[i,~)). This circle is 

canonically parametrized by r Let us denote the composition 

- -  0 + " + rhi -- r BR(Q~)tT+. T~ --+ R/27rZ. 

Exactly analogously, there is a natural blow-down P~:X~-~X(-~, i] ,  which blows 

D ~  down onto D(_~,/].  Again, since Pi is a projective limit of blow-downs, it induces 

a mapping 

Bh(Pi):  B h ( X ~  , D~)  ~ Bh(X(_or D(-or 

which maps Tp~ to the circle above Pi. This circle is canonically parametrized by ~bi 

(remember that  ~i = Oi + a r g ( a / ( d -  1)). Let us denote the composition 

ko~ = r : Tp~ --~ R/27rZ. 

PROPOSITION 7.2. (a) We may choose 7r+=rPi. 

(b) We may choose 7r:(= ~i. 

Proof. (a) Clearly Oi_l(B~(H~)(x))=Oi(x) when xeT~ +, as the left-hand side is 

just the right-hand side shifted one to the left. Moreover, Proposition 6.4 says that  

�9 i(y)=dC~)i_l(y) for yeT~_ l .  So 

(~i (B~ (H~) (x)) = dOi- 1 (B~(H~)(x)) = d(I)~ (x). 

The argument for part (b) is similar. [] 

Remark. What  happened to the d - 1  choices of 7r + and ~r-? For Ir +, our particular 

choice was given by the coordinate system in C 2, because ultimately, r If 

we conjugate a H~non mapping by setting Xl=~X, yl=~y where ~d-l--=l, it is easy 

to show that the H6non mapping remains of the same form (the polynomial remains 

monic and the number a is not changed). For 7r-, we do not actually have a canonical 

choice. The coordinate 0, which ultimately comes from arg(1/y),  is canonical, but r  

O+arg(a/(d-1)) is exactly ambiguous by a (d -1 ) - roo t  of 1, as one would expect. 

The  point of these computations is that  since 7r + and ~r- are conjugacy invariants of 

the mapping B~(H~)  (up to the ambiguity above), we can use them to find a condition 

for when the restrictions of B[((H1)~) and B~( (H2)~)  to the spheres at infinity are 

conjugate, where H1 and H2 are H~non mappings with corresponding polynomials Pl 

and P2, and Jacobians al and a2. In order to pin down our result, we need to know 

something about toroidal decompositions of 3-manifolds. 
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Fig. 18. T h e  conf igura t ion  of tori  in the  3-sphere  a t  infini ty be tween  t he  to rus  cor responding  

to  Bo and  B - l ,  in the  case d = 3 .  T h e  to rus  cor responding  to L - l , 1 n L - 1 , 2 ,  shown  as a 

heavy  curve,  winds  three  t imes  a round  the  to rus  cor responding  to Bo, in t he  figure a smal l  

th ickening  of the  un i t  circle in the  (x ,y ) -p lane .  T h e  to rus  cor responding  to Lo,2CILo,3, also 

shown as a heavy  curve,  winds  th ree  t imes  a round  the  to rus  B - l ,  represented  in the  figure 

as a th ickening  of t he  z-axis.  

Toroidal decompositions. The 3-manifold B ~ ( D ~ ) - ( E + U E  -)  has an interesting 

toroidal decomposition, a special case of which is illustrated by Figure 18. We will 

give the definitions and basic properties, largely due to Jaco, Johannson, Shalen and 

Waldhausen. Our sources are [Hem] and especially [Hat2]. 

Let M be an orientable irreducible 3-manifold with boundary. A properly embedded 

surface S c  M is incompressible if for any closed embedded disc in DC M with ODc S, 

there is a disc D~C S with 019= ODq The manifold M is atoroidal if each incompressible 

torus is isotopic to a boundary component. 
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Let D c C  be the open unit disc. A Seifert manifold is a 3-dimensional manifold, 

foliated by circles, such that  each leaf has a neighborhood homeomorphic to the quotient 

of D • [0, 1] by the equivalence relation which identifies (0, z) with (1, e2"iP/qz) for some 

rational number p/q, with the foliation induced by the lines {z} • [0, 1]. The set of leaves 

is then a surface with boundary ~, and the canonical mapping M--+gt is referred to as a 

Seifert fibration. This is a locally trivial fibration over the subset gt'C ~t corresponding to 

the regular leaves; the singular leaves (like the one corresponding to z = 0  in the model) 

correspond to the discrete set 12-gt ~. 

The key results for us are the following. Theorem 7.3 is exactly Theorem 3.3 

of [Hat2]. 

THEOREM 7.3. Let M be a 3-dimensional compact orientable manifold with bound- 

cry. Then there exists a collection of disjoint incompressible tori Ti C M such that each 

component of M - U i  T ~ is either atoroidal or a Seifert manifold, and a minimal such 

collection is unique up to isotopy. 

THEOREM 7.4. A Seifert manifold with at least two boundary components has a 

unique Seifcrt fibration up to isomorphism. 

This follows immediately from Theorem 4.3 of [Hat2]. Indeed, Hatcher shows that  

the Seifert fibration is unique except for a list of exceptions, and all these exceptions 

have 1 or 0 boundary components. 

THEOREM 7.5. Let f: M--+~ be a Seifert fibration, and let gt~Cgt be the complement 

of the points corresponding to singular fibers. Suppose that M is connected and that 

OM ~ .  Then every incompressible surface in M without boundary is isotopic to a 

surface of the form f-l(~/) for some curve ~fC ~', and the isotopy classes of such surfaces 

correspond exactly to the isotopy classes of such curves. 

This follows from Proposition 3.5 of [Hat2]. Hatcher proves that  every incompress- 

ible and boundary-incompressible surface is isotopic to either a vertical or a horizontal 

surface. Horizontal surfaces have non-empty boundary, and surfaces without boundary 

are vacuously boundary-incompressible. So our surfaces are isotopic to vertical surfaces, 

i.e., surfaces of the form f - l ( ~ ) .  

We will be interested in applying these notions to the manifold B ~ ( D ~ ) -  (E + UE-) ,  

which comes with a family of tori Tp~, which we will see are incompressible. 

THEOREM 7.6. (a) The tori Tp~ C I3~ ( D~ ) -  (E+ UE - ) are incompressible. 

(b) Every incompressible torus in B h ( D ~ ) - ( E + U E - )  is isotopic to exactly one of 

the Tp~. 
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Proof. (a) The homology HI(Bh(D~ ) -  (E+ UE-)) is isomorphic to Z[1/d] | 

This is proved e.g. using the Alexander duality theorem [Sp, 6.2, Theorem 16], which 

asserts that  

H1 (B~t(D~) - (E + U E-  )) = H 1 (E + ) G H 1 (E-).  

The cohomology above is Cech cohomology (isomorphic to Alexander-Spanier cohomol- 

ogy), given by the inductive limit of the singular cohomology of a basis of neighborhoods 

of E • Using the system of neighborhoods T~_~ of E +, we see that  

HI(E  +) = ~ (Z, n ~4 dn) = Z[1/d]. 

(This is similar to but simpler than Example 4.3.) 

An isomorphism is specified by sending the generators a, b (see Figure 15) of Hl(Tpo ) 

to (0, 1) and (1, 0) in Z[1/d] | Under this isomorphism, the corresponding gener- 

ators of Hl(Tp~) are sent to (0, d - i  ) and (d i, 0). In particular, the inclusion is injective on 

the homology of such a torus. If a disc in/3~(Do~)-  (E + UE-)  bounds a disc in Tp~, then 

the homology class of this boundary is zero in H I ( B ~ ( D ~ ) - ( E + U E  )), hence also in 

HI(Tp~),  so the curve bounds a disc in the torus, since any simple closed curve in a torus 

which is trivial in the homology bounds a disc. (This is not true on surfaces of higher 

genus, which is why incompressibility is not defined using injectivity of the inclusion on 

homology.) This is the definition of an incompressible torus. 

(b) Let T'  be such a torus. It is contained in the compact manifold T{,NT~,j for i 

sufficiently small and j sufficiently large, which allows us to apply Theorem 7.3, where 

M must be compact. So it is enough to prove that  Tp~+~, ..., Tpj_~ is a minimal family of 

incompressible tori in Tp~ N T~j such that  the components of the boundary are atoroidal 

or Seifert manifolds. 

First observe that  the components of 

are both atoroidal and Seifert manifolds. Indeed, the region Tp, NT~+I is homeomorphic 

to the region Mi bounded by the tori corresponding to  Li,d_2 nLi,d_l and Li,d NLi,d_l. 
This region contains the solid torus corresponding to Bi, but that  torus can be collapsed 

onto a circle without changing the homeomorphism type; call M[ the resulting manifold. 

The manifold M~ is fibered by the natural circle action, and the circle corresponding 

to B~ becomes a singular circle of type (1,d). Thus TpNT~+I is a Seifert manifold; let 

f i :TpNT~+l-+~ be the corresponding projection to the set of leaves (the base). It 

is also atoroidal, by Theorem 7.5, since f~ is an annulus with one distinguished point 
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Fig. 19. On  the  left, we have  repea ted  t he  re levant  par t  of  F igure  17, showing the  a n n u l u s  

cor responding  to Mi when  d = 3 ;  t he  th ree  do ts  represent  the  in tersect ion of t he  p lane  of the  

figure wi th  a circle orbit  in Mi .  T h e  r igh t -hand  side represents  t he  first, af ter  apply ing  z ~ - ~ z  d 

and  col lapsing t h e  central  disc to a point .  Every  poin t  on t he  r ight  co r responds  to a un ique  

circle orbit ,  i.e., t he  base is an  a n n u l u s  wi th  a single s ingular  fiber (cor responding  to the  

centra l  point) .  

corresponding to the unique singular fiber. This is seen as follows. In Figure 17, the 

manifold Mi corresponds to the annulus between the center circle and the next, with the 

d small circles removed. 

If we parametrize the disc by z, and compose zF-+z d with a collapse of the central 

disc to a point (corresponding to collapsing the solid torus corresponding to B to a circle), 

you manufacture a space which corresponds exactly to the set of leaves. See Figure 19. 

Any simple closed curve on an annulus with a puncture is homotopic to a point or 

to a boundary component,  so there are no incompressible tori in M[ by Theorem 7.5. 

Now we need to show tha t  our family Tp,+l, ..., Tpj_ 1 is minimal. It  is clearly enough 

to show that  Tp~ AT~+~ is neither atoroidal nor Seifert. It  clearly is not atoroidal, since it 

contains Tp~+l  , s o  we must show tha t  it is not Seifert. Suppose that  f :  Tp~ n T~,+2--+ ~ is a 

Seifert fibration, where ~ is some surface. The surface ~ must have a boundary  consisting 

of two components,  but otherwise we do not know much about  it. By Theorem 7.5, there 

is a curve 7 C ~t ~, where ~ is the complement of the projections of the singular fibers, such 

tha t  Tp~ is isotopic to T ~ = f - l ( 7 ) ;  in particular, the restriction of f to the components 

of (Tp~ ATI~+2)-TiP is a Seifert fibration. 

But each of these is already a Seifert fibration, in fact in a unique way by Theo- 

rem 7.4. It  is then enough to show that  the fibers of f~ and f i+l  on the torus Tp, which 

is the intersection of their domains are not homotopic curves; since they should both be 

homotopic to the fibers of f ,  this contradicts the existence of such an f .  

In the basis a, b for HI(Tp~), we saw that  the homology class of a fiber of f0 is - a - d b .  
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We claim that  a fiber of f l  has homology class -da -b ;  knowing this will end the proof. 

We need to repeat  the construction of Proposition 7.1 to understand the sequence 

of tori corresponding to the block B1 of D ~ .  Take the 3-sphere, with the sequence of 

real-oriented blow-ups corresponding to B~t(D), as shown in Figure 16. 

The fiber above q is a circle orbit outside the torus corresponding to q~, which we 

may take to be the z-axis. Thicken this torus; the fibers inside the thickened torus will 

now have the homology class - a - b + b = - a  by Theorem 5.7. Indeed, if you choose a 

small disc transverse to the z-axis, it projects to D (in fact, to a neighborhood of qr in 

the line at infinity A~), and the induced orientation gives its boundary the orientation +b. 

Now, when we make d - 1  more blow-ups, always of double points, the regions between 

the tori created have circle orbits in the classes - 2 a - b ,  . . . , -da-b .  The region foliated 

by curves in the class - d a - b  corresponds to the 3-manifold M1. [] 

Conjugacy invariants of B~t(Hoo ). Let H1 and //2 be H@non mappings. We will 

give a necessary condition for when the restrictions of B~t((H1)o~ ) and 13~t((H2)~ ) to 

the spheres at infinity 13[t(Dl,o~ ) and 13~t(D2,o~ ) are conjugate. To (sort of) lighten 

notation, we will call these restrictions BR((H~)~ ) . +  ' 

+ t THEOREM 7.7. In order for BR((H1)o~) and + ' ~R((H2)oc) to be topologically conju- 

gate, it is necessary that they have the same degree, and that 

a r g a l  = arga2 (mod 27r/(d-1)) .  

Proof. Tha t  they must have the same degree is clear by counting fixed points in the 

solenoids. We will first investigate the "critical locus" of the map 

(Try, 7to): Tp0 NT m --+ (R/2~rZ) 2. 

Remark. The notion of "critical locus" is not quite right: 13~t(Do~ ) is not naturally 

a differentiable manifold, it is naturally a manifold with corners, almost an object of 

the piecewise-linear category. Wha t  we will find is more PL than C1: the set of points 

which have neighborhoods on which ~r~- and ~r o differ by a constant is non-empty. In 

our setting, the critical locus will be the closure of this open set by definition. This is a 

much stronger notion of "critical" than one would expect: generically for a differentiable 

mapping from a 3-dimensional manifold to a surface, the critical locus should be a curve. 

LEMMA 7.8. On p~l(Bo), we have the identity 

arg a d 
7r~ -~r o = - arg a + T r -  d - 1  = ~ r - ~  arga .  
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Proof. The parametrized pa th  

t~-~ t > 0 ,  te-ia , 

thought of as a pa th  in X ~ ,  approaches a specific point of /3o with coordinate c. 

Thought  of as a pa th  in B~(X~, D ~ ) ,  it approaches the point x above c where k~0= 

a +  (arg a)/(d- 1). Thus 7r o (x) = a +  (arg a)/(d- 1). 

To compute Try(x), apply H to the pa th  

t ~  (P(c)-ate-i~ ) t >O, 

which approaches B~(Ho~)(x)cp~l(B_l). Just  as we needed the argument of 1/y to 

compute ~0 (adjusted by (arga)/(d-1)), we need the argument of 1Ix (unadjusted) 

to compute Oo(H(x))=Ol(x); clearly this argument is a - a r g a + l r .  Thus Try(x)= 

a - a r g a + T r .  [] 

Thus the two functions lr~- and 7r o differ by the constant (d/(d-1))arg a on this 

solid torus. 

LEMMA 7.9. The solid torus p~l(Bo) is the critical locus of (Tr~,Tro). 

Proof. We will only outline how to do this for points above L1. Choose as above a 

curve in X ~  tending in B~(X~, D~) to a point above a point cELt. For instance, 

(t-~ 
t ~-+ \ cte_ 2i ~ , t > O, 

is a curve approaching a point x above L]. At this point, we have 7 r o ( x ) = 2 a - a r g e +  

(arga)/(d-1). If we apply H to this curve and compute arg(1/x) ,  we find 

da  if d > 2, 

Ir~(x)= 2a-arg(1-ac) if d = 2 .  

Since arg c shows up explicitly in the formula for 7r~- 7to, such a point is not critical. [] 

Remark. The point ac=l in the case d = 2  above corresponds to BNL1; a similar 

point will show up above Ld-1 for every d. 

We now need to see that  the number (d/(d-1))arg a from Lemma 7.8 is (almost) a 

conjugacy invariant of B~(H~). 
Suppose that  F:B~(DI,~)-+B~(D2,~) conjugates B~t(HI,~)--+B~(H2,~), where 

we have used indices 1 and 2 to distinguish the objects created from H1 and / / 2 .  Then F 
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must send r.~ to r.~ since these are the closures of the set of periodic points of B~t(HI,cc ) 

and B~(H2,~)  respectively, so it must also send incompressible tori in the complement 

of the solenoids Z~ to incompressible tori in the complement of the solenoids Z2 ~. Since 

Tp~ separates the Tpj with j > i  from the Tpj with j< i ,  we see that  the order of the tori 

must be preserved, and there exists k such that  

F(TI,p~) is isotopic to T2,p~+~. 

By composing F with B~t((H2)~) ~ we may assume that  k=O, and that  

F(Tl,p~) is isotopic to T2,p~. 

LEMMA 7.10. The functions ~r+l,i and ~r~,~oF must differ by a multiple of 2~r/(d-1) 

on their common domain of definition. 

Proof. By composing ~r~-,i with an appropriate multiple of 21r/(d-1) ,  we may assume 

that  if x l E ~  is the fixed point of + ' BR((H1)~ ) with ~r~,i(xl)--0, then F(Xl)=X2 is the 

fixed point of B + / r H  ~1 R~ 2Jo~J with ~r~#(x2)----O. After this change, we must show that  7f + 1,i 

and 7r~,~oF coincide on their common domain. 

Choose j sufficiently small so that  

T + cT~,,pAF(T~,,p,). 2~p/ 

Now both diagrams 

T+ S~ ( H~,,o ) T+ T+ S+R ( H2,oo ) T+ 
2,pj  > 2,pj  2,pj  > 2,pj  

R/2~rZ O~dO > R/2~rZ R/27rZ O~dO > R/2~rZ 

commute. The uniqueness statement [HO1, Theorem 3.1] is not quite enough to guar- 

antee that  the vertical arrows coincide, since they are not of degree 1. In that  case, 

the proof guarantees that  such maps differ by a multiple of 1/(d i - j  -1 ) .  This is enough 

to guarantee that  if ~r + and ~r + oF -1 coincide at a single point, then they coincide 2,i 1,i 

everywhere; indeed, they do coincide at x2. Now 

~m 1 o~r + ~ IN ~" 71"+2,i ~- oTr~,ioB~t(H2,~ ) and r { i o f  - 1 ,  - d m 2,i L'R~ 2,~), 

any difference comes from different branches of 1/d m. Since F(TI,p~) is isotopic to T2,p~, 

and we can choose a branch continuously during the isotopy, we see that  ~r + and ~r{ i ~ F - 1  2~i 

(the latter adjusted at the beginning of the proof) must agree on their common domain 

of definition. [] 

Now we need to know something about this common domain of definition. 
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Fig. 20. A (3, 1)-curve on the boundary of a solid torus, corresponding to 3 times the generator 
of the homology of the solid torus, and the core curve of the solid torus. Clearly they link 
with linking number 1, whereas any curve outside the torus links with the (3, 1)-curve with 
linking number some multiple of 3. Thus this figure represents the case i - j = l  and d----3. 

LEMMA 7.11. The interiors of the torus F(T~,p,) and the interior of the torus Bi-1 

corresponding to B2,i-1 must have non-empty intersection. 

Proof. Another  way to  say this is to  say tha t  Bi_l  cannot  be isotoped, in 

B ~ ( D 2 , ~ ) - ( E ~ U E 2 ) ,  to a torus  outside of  F(T~,p,).  This can be seen from linking 

numbers,  The  presumed isotopy will take place in the complement  of T~,p~ for j suf- 

ficiently small. All curves (or unkno t ted  solid tori) outside T~,p~ have linking number  

some integer multiple of d i - j  with T2+,p . But  Bi-1 has linking number  d i - j - 1  with T~,pj 

(see Figure 20). 

Since the linking number  mus t  be constant  during the  isotopy, this is a contra-  

diction. [] 

Thus  F must  m a p  some open subset of the  torus  corresponding to  Bl,i  to  some open 

subset  of  the  torus  corresponding to  B2,i, in such a way tha t  

7r~i o F : Tr~i 

up to a multiple of 1 / ( d - 1 ) .  This proves Theorem 7.7. [] 

Remark. The condit ion a r g a l = a r g a 2  is also sufficient for conjugacy (see [HO4]). 

It  turns  out  t ha t  the  conjugacy propert ies  of  mappings  like B ~ ( ( H ) ~ )  (or the mapp ing  
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hd of [HO1]) are quite subtle; and that  there is an infinite-dimensional moduli space, 

even when the maps are hyperbolic on a neighborhood of the solenoids. 

8. The compactification of  composit ions of  H6non mappings 

A theorem of Friedland and Milnor [FM] asserts that  any polynomial automorphism of 

C 2 is either elementary, in the sense that  we can find one variable that  depends only 

on itself, or conjugate to a composition of H~non maps. Therefore, understanding the 

appropriate compactification of C 2 to which such a composition extends is evidently 

important. 

A conjecture by Milnor. In a personal communication, Milnor suggested what the 

3-sphere at infinity should look like; we will now state and prove this conjecture. 

Let 

be k H~non mappings, with a i r  0 and Pi of degree di ~> 2. We will consider G = Hk . . . . .  H1, 

which is a polynomial mapping of algebraic degree d=dl...., dk. 

Recall that  Ed=li_m ( R / Z ,  t~-+dt) is the d-adic solenoid, and that  fig: ~d-'-~d is the 

map induced by t~-+dt. 

We will call the simplest link of two circles with linking number d the one formed 

( c o s t ~  ( ( l + � 8 9  

Siot ) and ( l + � 8 9  0 ~<t ~< 2rr, 

I sin dt / 

as represented in Figure 21. 

THEOREM 8.1. (a) There exists a topology o n  C2LIS 3 homeomorphic to the 4-ball, 

with S 3 corresponding to the boundary, such that G extends continuously to a homeo- 
morphism g: $3-4S  3. 

(b) The homeomorphism g has two invariant solenoids E+, E- ,  one attracting and 

one repelling, and both homeomorphic to Ed, and the homeomorphisms can be chosen to 

be conjugacies between the restriction glr~+ and Od, and between glr.- and a-~ 1 . 

(c) The complement M = s a - ( E + U E  -) has a decomposition by incompressible tori 

(Ti)iez, unique up to isotopy, into pieces Mi bounded by Ti and Ti+l, homeomorphic to 

the complement of the simplest link of two circles with linking number di rood k- Moreover, 
M i N M j = O  unless li-jl<<.l. The tori can be chosen so that g(Ti)=Ti+k. 

by the circles 
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Fig. 21. The simplest link of two circles linking with linking number  5. 

In particular, the topology of the sphere at infinity is different for a composition of 

H4non maps with total degree d and for a single such mapping: the solenoids are the 

same but they are embedded differently in the 3-sphere. 

Proof. Let )~G be the minimal blow-up of p2 on which G: ) (G-+P 2 is well-defined. 

It can be constructed as follows: set Gm=Hm o .... H1, so that  GI=H1 and Gk=G, 
and define )(G,, to be the minimal blow-up of p2 on which Gin: )(era ___>p2 is well-defined. 

Further denote by 7rG.,: )(Gm-+P 2 the canonical projection, and by DG,,=Tr~IM(I~) the 

divisor at infinity of )CG,~. 

We will construct )(Gin by induction. Clearly XGI=XH1 is the space constructed 

in w Suppose that  we have constructed -~vm-1, together with Gin-1 and 7rGm_l. 

Set XGm to be such that  the upper left-hand square of the diagram 

-~Gm 

I 
XGm- i 

T~Gm-- 1 1 
i 

u 
p2 

> )~H,. 

7rHra I 
em-i > p2 

Urn > p2 

is a fiber product in the category of analytic spaces. Then the top line is a map- 

ping Gm:_~G, -+P 2, whereas the left-hand column represents -~vm as a modification 
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q' 
II N 

qo P0 ql Pl q2 P2 qk-1 Pk-1 qk Pk 

block corresp, block corresp, other block corresp. 
to HI to/-/2 blocks to Hk 

. . . . . .  . . .  . . . . . .  

2d1-3 lines of 2d2-3 lines of 2dk-3 lines of 
self-intersection -2  self-intersection -2  self-intersection -2  

Fig. 22. The divisor /ga.  The top figure gives the labels of all the components and points 

to which we will need to refer. The bo t tom figure gives the self-intersections of all these 

components. 

of p2 at p. Thus C 2 is dense in J~am, and it is clear by induction that  Gm extends 

Gm: C2---~C ~. That  it is the minimal modification of p2 to which Gm extends follows 

from the fact that  the construction of w is the minimal modification to which the indi- 

vidual H~non maps extend. Thus Xa,~ is the required minimal blow-up. 

The divisor above infinity 

D c  = ) ~ a - C  2 = ~S 1 ( I~)  

looks as in Figure 22. 

As before, we will avoid an infinite sequence of blow-ups by considering a sequence 

space. Consider the rational mapping G~: XG~-~XG, which is G wherever it is defined, 

and define 

~G c fig • 

to be the closure of the graph Fc ,  C)(G • of G. 

LEMMA 8.2. A pair (x,y)  belongs to FG if and only if either 

�9 it is in FG~ , or 

�9 x=~,  y � 9  

The proof is analogous to that  of Theorem 2.4. 

Now define the natural compactification of the composition of H~non mappings G 

as  

Xoc(G) -~ {( ..., x _ 2 ,  X _ l ,  Xo, Xl,  x2,  ... ) �9 ( X G )  z I (Xn, X n + l )  �9 FG for  all n �9 Z} .  
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Using Lemma 8.2, this space is not so difficult to understand. 

PROPOSITION 8.3. The space X~(G) is compact. The complement of two points 

q ~  = (..., q' ,  q', q' ,  ...) and p ~  = (..., p, p, p, ...) 

is an algebraic manifold. 

Proof. The proof is the same as that  of Proposition 3.8. 

Proof of Theorem 8.1. Again, to understand the structure of the bad points, we will 

pass to the real-oriented blow-ups. 

We can define spaces X[_N,M](G ) analogously to the construction in w with the 

divisors D[_N,M](G); next we construct the real-oriented blow-ups 

B~(X[-N,M] (G), D[-N,M] (G)) 

and take their projective limit 

Bh(Xoo(G ), D~o(G)) = ~ (Bh(X[-N, NI(G), D[-N,N](G)). 
N - +  oo  

Note that  again we are using Proposition 5.9 to construct the mappings implicit in the 

projective limit. 

The pair Bh(n~ (G))C Bh(X~(G ), D~(G)) is the compactification of C 2 promised 

in Theorem 8.1 (a). By Theorem 5.10, the pair is homeomorphie to (B 4, $3), exactly as in 

the proof of Theorem 6.3. Moreover, the inclusion of C2C B~(X~ (G), D~(G)) and the 

extension of G to the real-oriented blow-up are constructed exactly as in Theorem 6.2. 

The proof of Theorem 8.1 (b) is closely analogous to Proposition 6.4, but requires a 

bit of terminology. First, label components and points of D ~  as follows: let Ao = l~  C p2, 

and define recursively Ai C-~v~ to be the component of Hi- l (Ai_l )  which is sent by Hi 
isomorphically onto Ai-1. Finally, let P = P 0  and q=q0 ;  by induction each Ai contains 

the two points Pi,qi which under the isomorphism Gi]A~ map to Pi-1 and qi-1,  as in 

Figure 22. 

Next, we will label Pm,i and qm,i the points of D~(G) whose ruth entry is Pi. This 

requires a bit of care when i = 0  and i=k, which we will leave to the reader. 

Proposition 6.4 tells us that  there are natural angles 0j parametrizing p - l ( p j ) C  ) (c j ,  

and that these angles correspond under the H@non mappings (see equation (6.1), where 

this angle appears as the argument of v and the argument of X1). Note that  we are 

considering these fibers at the moment when they are created by the blow-up, so that  

each lies above a simple point of the divisor defined so far. Moreover, the same proposition 
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(specifically, see equation (6.2)) says that the composition of the H4non mappings takes 

angles Oj to angles 9j_ 1 as indicated in the diagram 

b l o w - d o w n  b l o w - d o w n  

~k ' ) dk ~k + arg ak t 

b l o w - d o w n  b l o w - d o w n  

X G k _  2 --~ ~(Gk_ 3 2GI--+ ~(GO 
, > ... , )dOk+~, 

) dkdk-lOk+dk-1 axgak+argak_l 

where d= dk...., dl and 

: dk -  ldk-2.., dl arg ak + dk-2 dk-3 . . ,  dl arg ak- 1 +-.- + dl arg as + arg al. 

An analogous argument, using appropriate conjugates of the inverses of the Hi, 

shows that the similar parameter Cj of p- l (q j )  is simply multiplied by d. Now the proof 

ends in the same way as the proof of Proposition 6.4, showing that the fibers above pO~ 

and q~  are both d-adic solenoids, in one case using the angles Cn, and in the other 

r 
Part (c) has substantially already been proved: The tori corresponding to the p~,j do 

form a sequence of incompressible tori in B~(Doo(G))-(E+UZ-),  and the components 

of the complements are homeomorphic to the simplest link of two circles which link 

with linking number dj. Moreover, the proof we have given in Theorem 7.6 that this 

is the unique toroidal decomposition of B[(Doo(G))-(Z+UZ -) goes through without 

change. [] 
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