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I n t r o d u c t i o n  

The  development  of intr insic  theories for a rea -min imiza t ion  problems was mot iva ted  in 

the 1950's by the difficulty to prove, by paramet r ic  methods,  existence for the P l a t eau  

problem for surfaces in Eucl idean  spaces of d imens ion  higher t h a n  two. After the pioneer- 

ing work of R. Caccioppoli  [12] and  E. De Giorgi [18], [19] on sets wi th  finite perimeter ,  

W . H .  F leming  and  H. Federer developed in [24] the theory  of currents ,  which leads to 

existence results for the  P l a t eau  problem for oriented surfaces of any  d imens ion  and  codi- 

mension.  It  is now clear t ha t  the interest  of this  theory, which includes in some sense the 

theory of Sobolev and  BV-funct ions,  goes much beyond the a rea -min imiza t ion  problems 

tha t  were its ini t ia l  mot ivat ion:  as an example one can" consider the recent papers  [3], 

[8], [27], [28], [29], [35], [41], [42], to quote jus t  a few examples. 

The second author is on leave from I~'AM MFF UK, Mlynsks dolina, 84215 Bratislava, Slovakia. 
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The aim of this paper is to develop an extension of the Federer-Fleming theory to 

spaces without a differentiable structure, and virtually to any complete metric space; as a 

by-product we also show that  actually the classical theory of currents depends very little 

on the differentiable structure of the ambient space, at least if one takes into account 

only normal or rectifiable currents, the classes of currents which are typically of interest 

in variational problems. The starting point of our research has been a very short paper 

of De Giorgi [20]: amazingly, he was able to formulate a generalized Plateau problem 

in any metric space E using (necessarily) only the metric structure; having done so, he 

raised some natural questions about the existence of solutions of the generalized Plateau 

problem in metric or in Banach and Hilbert spaces. 

The basic idea of De Giorgi has been to replace the duality with differential forms 

with the duality with (k+l ) - tuples  (f0, fl,---, fk), where k is the dimension, fi  are Lip- 

schitz functions in E,  and f0 is also bounded; he called metric functionals all functions T 

defined on the space of these (k+l) - tuples  which are linear with respect to fo. We point 

out that  the formal approach of De Giorgi has a strong analogy with the recent work 

of J. Cheeger [13] on differentiability of Lipschitz functions on metric measure spaces: 

indeed, also in this paper locally finitely many Lipschitz functions fi play the role of 

the coordinate functions xl ,  ..., x,~ in the Euclidean space R n. The basic operations of 

boundary T~-~OT, pushforward T,--~(p#T and restriction T~-+TLa~ can he defined in a 

natural way in the class of metric functionals; moreover, the mass, denoted by IITII, is 

simply defined as the least measure # satisfying 

k 

IT(fo, fl ,  ..., fk )l <~ YI  L i p ( f i ) / E  If0[ d# 
i = 1  

for all (k+l ) - tuples  (fo, f l , . . . , fk) ,  where Lip(f)  denotes the Lipschitz constant of f .  

We also denote by M(T)=IITII(E ) the total mass of T. Notice that  in this setting it is 

natural to assume that  the ambient metric space is complete, because Lip(E)~Lip( /~)  

whenever E is a metric space and /~  is the completion of E. 

In order to single out in the general class of metric functionals the currents, we have 

considered all metric functionals with finite mass satisfying three independent axioms: 

(1) linearity in all the arguments; 

(2) continuity with respect to pointwise convergence in the last k arguments with 

uniform Lipschitz bounds; 

(3) locality. 

The latter axiom, saying that  T(fo, fl ,  ...,fk)=O if f ,  is constant on a neighbour- 

hood of {fo ~ 0} for some i>/1, is necessary to impose, in a weak sense, a dependence on 

the derivatives of the f/ 's, rather than a dependence on the f i 's  themselves. Although 
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df has no pointwise meaning for a Lipschitz function in a general metric space E (but 

see [7], [13]), when dealing with currents we can denote the (k+l) - tuples  by the formal 

expression fo dfl A...Adfk, to keep in mind the analogy with differential forms; this nota- 

tion is justified by the fact that,  quite surprisingly, our axioms imply the usual product 

and chain rules of calculus: 

T(fo dfz A...Adfk)+T(fi dfoA...Adfk) = T(1 d(fofi)A...Adfk), 

T(fo dCz(f) A...Ad!bk(f) ) = T(fo d e t ( V r  dfz A...A dfk). 

In particular, any current is alternating in f=( f i ,  ..., fk). 
A basic example of a k-dimensional current in R k is 

~g~ (fo dfl A...Adfk ) := s  det (Vf)  dx 

for any gELi (Rk) ;  in this case, by the Hadamard inequality, the mass is IglE k. By the 

properties mentioned above, any k-dimensional current in R k whose mass is absolutely 

continuous with respect t o /2  k is representable in this way. The general validity of this 

absolute-continuity property is still an open problem: we are able to prove it either for 

normal currents or in the cases k = l ,  k=2,  using a deep result of D. Preiss [53], whose 

extension to more than two variables seems to be problematic. 

In the Euclidean theory an important  class of currents, in connection with the 

Plateau problem, is the class of rectifiable currents. This class can be defined also in 

our setting as 

T~k(E) := {T:  IITll << 7-/k and is concentrated on a countably 7/k-rectifiable set} 

or, equivalently, as the Banach subspace generated by Lipschitz images of Euclidean k- 

dimensional currents ~g~ in R k. In the same vein, the class Zk (E) of integer-rectifiable 

currents is defined by the property that  cp#(Tt_A) has integer multiplicity in R k (i.e. 

is representable as ~g~ for some integer-valued g) for any Borel set A c E  and any ~E 

Lip(E, Rk); this class is also generated by Lipschitz images of Euclidean k-dimensional 

currents ~g~ in R k with integer multiplicity. 

One of the main results of our paper is that  the closure theorem and the boundary- 

rectifiability theorem for integer-rectifiable currents hold in any complete metric space E; 

this result was quite surprising for us, since all the existing proofs in the case E = R  m 

heavily use the homogeneous structure of the Euclidean space and the Besicovitch deriva- 

tion theorem; none of these tools is available in a general metric space (see for instance 

the counterexample in [17]). Our result proves that  closure and boundary reetifiability 
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are general phenomena; additional assumptions on E are required only when one looks 

for the analogues of the isoperimetric inequality and of the deformation theorem in this 

context. 

If E is the dual of a separable Banach space (this assumption is not really restric- 

tive, up to an isometric embedding) we also prove that  any rectifiable current T can 

be represented, as in the Euclidean case, by a triplet ~M, 8, 7-] where M is a countably 

7-/k-rectifiable set, 0>0  is the multiplicity function and T, a unit k-vector field, is an 

orientation of the approximate tangent space to M (defined in [7]); indeed, we have 

T(fo df, A... AdA) =/M e/o(Ak dMf , T> dnk 

where Ak dMf is the k-covector field induced by the tangential differential on M of 

f=( f l ,  ..., fk), which does exist in a pointwise sense. The only relevant difference with 

the Euclidean case appears in the formula for the mass. Indeed, in [38] the second author 

proved that  for any countably 7-/k-rectifiable set in a metric space the distance locally 

behaves as a k-dimensional norm (depending on the point, in general); we prove that 

IITN=SATlkLM, where A, called area factor, takes into account the local norm of M 

and is equal to 1 if the norm is induced by an inner product. We also prove that  A can 

always be estimated from below with k -k/2, and from above with 2k/Wk; hence the mass 

is always comparable with the Hausdorff measure with multiplicities. 

If the ambient metric space E is compact, our closure theorem leads, together with 

the lower semicontinuity property of the map T~-+M(T), to an existence theorem for the 

(generalized) Plateau problem 

min{M(T)  : T 6 Ik( E), aT=S}  (1) 

proposed by De Giorgi in [20]. The generality of this result, however, is, at least in part, 

compensated by the fact that  even though S satisfies the necessary conditions OS=O 
and S C I k _ I ( E ) ,  the class of admissible currents T in (1) could in principle be empty. 

A remarkable example of a metric space for which this phenomenon occurs is the 3- 

dimensional Heisenberg group H3: we proved in [7] that  this group, whose Hausdorff 

dimension is four, is purely k-unrectifiable for k=2,  3, 4, i.e. 

7-/k(!v(A)) = 0 for all A C R k Borel, ~ E Lip(A, H3). 

This, together with the absolute-continuity property, implies that the spaces Tik(H3) 

reduce to {0} for k=2 ,3 ,4 ;  hence there is no admissible T in (1) if S r  Since a 

lot of analysis can be carried on in the Heisenberg group (Sobolev spaces, Rademacher 
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theorem, elliptic regularity theory, Poincar5 inequalities, quasiconformal maps, see [34] 

as a reference book), it would be very interesting to adapt some parts of our theory 

to the Heisenberg and to other geometries. In this connection, we recall the important  

recent work by B. Franchi, R. Serapioni and F. Serra Cassano [25], [26] on sets with 

finite perimeter and rectifiability (in an intrinsic sense) in the Heisenberg group. Related 

results, in doubling (or Ahlfors-regular) metric measure spaces are given in [6] and [47]. 

Other interesting directions of research that  we do not pursue here are the extension 

of the theory to currents with coefficients in a general group, a class of currents recently 

studied by B. White in [62] in the Euclidean case, and the connection between bounds on 

the curvature of the space, in the sense of Alexandrov, and the validity of a deformation 

theorem. In this connection, we would like to mention the parametric approach to the 

Plateau problem for 2-dimensional surfaces pursued in [49], and the fact that  our theory 

applies well to CBA metric spaces (i.e. the ones whose curvature in the Alexandrov sense 

is bounded from above) which are Ahlfors-regular of dimension k since, according to a 

recent work of B. Zleiner (see [39, Theorem B]), these spaces are locally bi-Lipschitz- 

parametrizable with Euclidean open sets. 

With the aim to give an answer to the existence problems raised in [20], we have 

also studied some situations in which certainly there are plenty of rectifiable currents; for 

instance if E is a Banach space the cone construction shows that  the class of admissible 

currents T in (1) is not empty, at least if S has bounded support. Assuming also that  spt S 

is compact, we have proved that  problem (1) has a solution (and that  any solution has 

compact support) in a general class of Banach spaces, not necessarily finite-dimensional, 

which includes all/P-spaces and Hilbert spaces. An amusing aspect of our proof of this 

result is that  it relies in an essential way on the validity of the closure theorem in a general 

metric space. Indeed, our strategy (close to the Gromov existence theorem of "minimal 

fillings" in [32]) is the following: first, using the Ekeland-Bishop-Phelps principle, we 

are able to find a minimizing sequence (Th) with the property that  Th minimizes the 

perturbed problem 

T ~--~ M(T)+ h M ( T - T h  ) 

in the class {T: OT=S}. Using isoperimetric inequalities (that we are able to prove in 

some classes of Banach spaces, see Appendix B), we obtain that  the supports of the 

Th are equi-bounded and equi-compact. Now we use the Gromov compactness theorem 

(see [31]) to embed isometrically (a subsequence of) spt Th in an abstract compact metric 

space X; denoting by ih the embeddings, we apply the closure and compactness theorems 

for currents in X to obtain SCS[k(X), limit of a subsequence of ih#Th. Then a solution of 

(1) is given by j#S, where j:  spt S-+E is the limit, in a suitable sense, of a subsequence 

of (ih) -1. We are able to circumvent this argument, working directly in the original 
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space E,  only if E has a Hilbert structure. 

Our paper  is organized as follows. In w we summarize the main notation and recall 

some basic facts on Hausdorff measures and measure theory. w contains essentially the 

basic definitions of [20] concerning the class of metric functionals, while in w we specialize 

to currents, and w and w deal with the main objects of our investigation, respectively 

the rectifiable and the normal currents. As in the classical theory of Federer Fleming 

the basic operations of localization and slicing can be naturally defined in the class of 

normal currents. Using an equi-continuity property typical of normal currents we also 

obtain a compactness theorem. 

In order to tackle the Plateau problem in duals of separable Banach spaces we study 

in w a notion of weak* convergence for currents; the main technical ingredient in the anal- 

ysis of this convergence is an extension theorem for Lipschitz and w*-continuous functions 

f :  A--+R. If A is w*-compact we prove the existence of a Lipschitz and w*-continuous ex- 

tension (a more general result has been independently proved by E. Matougkovs in [43]). 

The reading of this section can be skipped by those who are mainly interested in the 

metric proof of closure and boundary-rectifiability theorems. 

w collects some informations about  metric-space-valued BV-maps u: Rk--+S; this 

class of functions has been introduced by the first author in [4] in connection with the 

s tudy of the F-limit as e$0 of the functionals 

F~(u) := s [~'Vu'~ + W~U) ] dx 

with W: Rm-+[0,  oc) continuous (in this case S is a suitable quotient space of { W = 0 }  

with the metric induced by 2v /W) .  We extend slightly the results of [4], dropping 

in particular the requirement that  the target  metric space is compact,  and we prove a 

Lusin-type approximation theorem by Lipschitz functions for this class of maps. 

w is devoted to the proof of the closure theorem and of the boundary-rectifiability 

theorem. The basic ingredient of the proof is the observation, due in the Euclidean 

context to R. Jerrard,  that  the slicing operator  

provides a BV-map with values in the metric space S of 0-dimensional currents endowed 

with the flat norm whenever T is normal and f E L i p ( E ,  Rk). Using the Lipschitz approx- 

imation theorem of the previous section, these remarks lead to a rectifiability criterion 

for currents involving only the 0-dimensional slices of the current. Once this rectifiability 

criterion is established, the closure theorem easily follows by a simple induction on the 

dimension. A similar induction argument proves the boundary-rectifiability theorem. 
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We also prove rectifiability criteria based on slices or projections: in particular, we show 

tha t  a normal k-dimensional current T is integer-rectifiable if and only if ~ # T  is integer- 

rectifiable in R k+l for any Lipschitz function ~: E - + R k + I ;  this result, new even in the 

Euclidean case E=R m, is remarkable because no a priori assumption on the dimension 

of the support  of T is made. 

In w we recover, in duals of separable Banach spaces, the canonical representation 

of a rectifiable current by the integration over an oriented set with multiplicities. As a 

by-product,  we are able to compare the mass of a rectifiable current with the restriction 

of 7/k to its measure-theoretic support;  the representation formula for the mass we obtain 

can be easily extended to the general metric case using an isometric embedding of the 

support  of the current into l~ .  The results of this section basically depend on the area 

formula and the metric generalizations of the Rademacher  theorem developed in previous 

papers [38], [7] of ours; we recall without proof all the results we need from those papers. 

w is devoted to the cone construction and to the above-mentioned existence results 

for the Plateau problem in Banach spaces. 

In Appendix A we compare our currents with the Federer-Fleming ones in the 

Euclidean case E = R  "~, and in Appendix B we prove in some Banach spaces the validity of 

isoperimetric inequalities, adapting to our case an argument  of M. Gromov [32]. Finally, 

in Appendix C we discuss the problem of the lower semicontinuity of the Hausdorff 

measure, pointing out the connections with some long-standing open problems in the 

theory of Minkowski spaces. 

Acknowledgements. We thank M. ChlebN, R. Jerrard,  J. Jost, B. Kleiner and 

V. Magnani for their helpful comments  and suggestions. The first author gratefully 

acknowledges the hospitality of the Max-Planck-Inst i tut  in Leipzig, where a large part  

of this paper  was writ ten in 1998, and completed in the summer of 1999. 

1. N o t a t i o n  a n d  p r e l i m i n a r y  r e s u l t s  

In this paper  E stands for a complete metric space, whose open balls with center x and 

radius r are denoted by Br(x);  B(E)  is its Borel a-algebra and B~(E) is the algebra of 

bounded Borel functions on E.  

We denote by fl4(E) the collection of finite Borel measures in E,  i.e. a-addit ive 

set functions #: B(E)-+[0,  oc); we say tha t  #CAd(E)  is concentrated on a Borel set B if 

#(E\B) =0.  The supremum and the infimum of a family {#i}ie~ CAd(E) are respectively 
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given by 

V #i(B):=sup{)__~#i(Bi): Bi pairwise disjoint, B =  U Bi t,  (1.1) 
i E l  " l E a  i E J  ) 

A #i(B):=inf{E#i(Bi):Bi pairwise disjoint, B =  U Bi}, (1.2) 
i E I  " i C J  i E J  

where J runs among all countable subsets of I and BiC B(E). It is easy to check that  

the infimum is a finite Borel measure and that  the supremum is a-additive in B(E). 
Let (X, d) be a metric space and let k be an integer; the (outer) Hausdorff k-dimen- 

sional measure of BcX,  denoted by ~k(B) ,  is defined by 

nk(B) := lim w k inf [diam(Bi)]k : B C O Bi, diam(Bi) < 5 
~$o 2 ~ - i=0 i=0 

where wk is the Lebesgue measure of the unit ball of R k, and w0=l .  Since 7-l~c(B)= 

~,~(B) whenever B c X  and X isometrically embeds in Y, our notation for the Haus- 

dorff measure does not emphasize the ambient space. We recall (see for instance [38, 

Lemma 6 (i)]) that  if X is a k-dimensional vector space and B1 is its unit ball, then 

?-[k(B1) is a dimensional constant independent of the norm of X and equal, in particular, 

to wk. The Lebesgue measure in R a will be denoted by s 

The upper and lower k-dimensional densities of a finite Borel measure # at x are 

respectively defined by 

O*k(#,x) := lira sup # ( ~ ) )  O.k(#,x) := l iminf 
#(Bo(x)) 

oJ~O W k O  ' p$O 03kLO k 

We recall that  the implications 

O*k(#,x)>~t f o r a l l x C B  ~ #>>.tTtaL_B, (1.3) 

O~(#,x)~<t for a l l x C B  ~ #LB<~2atT-lkLB (1.4) 

hold in any metric space X whenever t e  (0, o0) and BE B(X) (see [23, 2.10.19]). 

Let X, Y be metric spaces; we say that  f :  X-~Y is a Lipschitz function if 

dy(f(z),f(y))<<.Mdx(x,y) for a l l x ,  y e X ,  

for some constant MC[0, oc); the least constant with this property will be denoted by 

Lip(f) ,  and the collection of Lipschitz functions will be denoted by Lip(X, Y) (Y will 

be omitted if Y = R ) .  ~ r t h e r m o r e ,  we use the notation L ip l (X ,Y)  for the collection 

of Lipschitz functions f with Lip(f)~< 1, and LiPb(X ) for the collection of bounded real- 

valued Lipschitz functions. 

We will often use isometric embeddings of a metric space into l ~162 or, more generally, 

duals of separable Banach spaces. To this aim, the following definitions will be useful. 
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Definition 1.1 (weak separability). Let (E, d) be a metric space. We say that  E is 

weakly separable if there exists a sequence (~h)C Lip l (E  ) such that  

d(x,y)= sup I~h(X)--~h(Y)l for all x, y e E .  
h c N  

A dual Banach space Y =  G* is said to be w*-separable if G is separable. 

Notice that,  by a truncation argument, the definition of weak separability can also 

be given by requiring (Ph to be also bounded. The class of weakly separable metric spaces 

includes the separable ones (it suffices to take ~h(" ) = d ( . ,  Xh) with (Xh)C E dense) and 

all w*-separable dual spaces. Any weakly separable space can be isometrically embedded 

in l ~ by the map 

j(z) := (~ l (x ) -~ i (Xo) ,  ~2(x ) -~2(xo) ,  ...), x e E ,  

and since any subset of a weakly separable space is still weakly separable also the converse 

is true. 

2. M e t r i c  f u n c t i o n a l s  

In this section we r following essentially the approach of [20], a general class of 

metric functionals, in which the basic operations of boundary, pushforward, restriction 

can be defined. Then, functionals with finite mass are introduced. 

Definition 2.1. Let k>~l be an integer. We denote by Z)k(E) the set of all ( k + l ) -  

tuples w = (f, 7h,..., 7rk) of real-valued Lipschitz functions in E with the first function f 

in Lipb(E ). In the case k=0  we set l)~ 

If X is a vector space and T : X - + R ,  we say that  T is subadditive if ]T(x+y)]<~ 
IT(x)]+lT(y)l whenever x, yeX ,  and we say that  T is positively 1-homogeneous if 

IT(tx) l=t IT(x)I whenever x e X  and t ~> 0. 

Definition 2.2 (metric functionals). We call k-dimensional metric functional any 

function T: :Dk(E)-->R such that  

(f, 7q,..., 7rk) ~ T(f, 7h,..., lrk) 

is subadditive and positively 1-homogeneous with respect to f cLipb(E ) and 7rl,..., 7rk E 

Lip(E).  We denote by MFk(E) the vector space of k-dimensional metric functionals. 

We can now define an "exterior differential" 

dw = d(f, ~h, ..., 7rk) := (1, f ,  7h, ..., 7rk) 
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mapping Ok(E) into z)k+l(E) and, for qoELip(E, F) ,  a pullback operator 

qo# w = ~# ( f  , r l ,  ..., rk ) = ( f  o~, rloqo, ..., 7rkoqO) 

mapping I)k(F) on 79k(E). These operations induce in a natural way a boundary operator 

and a pushforward map for metric functionals. 

Definition 2.3 (boundary). Let k>~l be an integer and let TcMFk(E) .  The bound- 

ary of T, denoted by OT, is the (k-1)-dimensional metric functional in E defined by 

OT(w)=T(dw) for any weT)k-l(E).  

Definition 2.4 (pushforward). Let ~: E ~ F  be a Lipschitz map and let TEMFa(E).  
Then, we can define a k-dimensional metric functional in F,  denoted by ~#T,  setting 

~#T(w)=T(~#w)  for any wEl?a(F). 

We notice that,  by construction, p#  commutes with the boundary operator, i.e. 

qo#(OT) = 0(qo#T). (2.1) 

Definition 2.5 (restriction). Let TCMFa(E) and let w= (g, TI, ..., Zm)ETPm(E), with 

rn<~k (w=g if m=0) .  We define a (k-rn)-dimensional metric functional in E, denoted 

by TLw, setting 

Tt_w(f  , 7h, ..., r k -~ )  := T ( f  g, T1, ..., "rm, 7rl,..., rk-m). 

Definition 2.6 (mass). Let TCMFk(E); we say that  T has finite mass if there exists 

#EA4(E) such that  
k 

]T(f, r l ,  ...,rk)] <~ H Lip(ri) /E Ill d# (2.2) 
i=1 

for any (f, r l ,  ..., rk)ETPk(E), with the convention Hi L i p ( r / ) = l  if k=0.  

The minimal measure # satisfying (2.2) will be called the mass of T and will be 

denoted by ]]TII. 

The mass is well defined because one can easily check, using the subadditivity of T 

with respect to the first variable, that  if {#i }iel C jk4 (E) satisfy (2.3) also their infimum 

satisfies the same condition. By the density of Lipb(E ) in LI(E, HTH), which contains 

B~(E) ,  any TEMFk(E)  with finite mass can be uniquely extended to a function on 

I3~(E) • [Lip(E)] k, still subadditive and positively 1-homogeneous in all variables and 

satisfying 
k 

IT(f, 7rl, ..., 7rk)] ~< H L ip ( r i ) /E  ]fI dIITH (2.3) 
i=1 
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for any f c Boo (E), 7rl, ... , 71 k E Lip(E).  Since this extension is unique we will not introduce 

a distinguished notation for it. 

Fhnctionals with finite mass are well behaved under the pushforward map: in fact, 

if T c M F k ( E )  the functional ~ # T  has finite mass, satisfying 

I]~#TII < [Lip(~)]kT# [[Tll. (2.4) 

If ~ is an isometry it is easy to check, using (2.6) below, that  equality holds in (2.4). It 

is also easy to check that  the identity 

qo# T ( f  , 7rl,..., ~k ) = T ( f  o~, 7rloqo, ..., ~ko?) 

remains true if f e  B~176 and 7ri cLip(E) .  

Functionals with finite mass are also well behaved with respect to the restriction 

operator: in fact, the definition of mass easily implies 

m 

[[TLwI[ < sup [g[ H Lip(v/)[[T[[ with w = (g, rl , . . .  , Tin). (2.5) 
i=1  

For metric functionals with finite mass, the restriction operator T L w  can be defined 

even though w=(g,~-l, ...,%~) with gEl3oo(E), and still (2.5) holds; the restriction will 

be denoted by T L A  in the special case m = 0  and g=XA. 

PROPOSITION 2.7 (characterization of mass). Let T E M F k ( E ) .  Then T has finite 

mass i f  and only if  

(a) there exists a constant M e  [0, oe) such that 

o o  

~ IT(f,, ~r~, ~-' ..., k)l~<M 
i : 0  

whenever ~ i  If i l~ <m and Lip(Tr})~<l; 

(b) f~-~ T ( f  , 7rl, ..., ~rk ) is continuous along equi-bounded monotone sequences, i.e. 

sequences (fh) s,,ch that (A(x))  is monotone for any x c E  and 

sup{IA(x)[ : xeE,  h e N }  < oo. 

I f  these conditions hold, IITII(E) is the least constant satisfying (a), and IITII(/~) is 
representable for any B C B ( E )  by 

sup{  ~=O IT(XB,, Tr~, "", Tr~)I } ,  (2.6) 
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where the supremum runs among all Borel partitions (Bi) of B and all k-tuples of 1- 
Lipschitz maps 7r}. 

Proof. The necessity of conditions (a) and (b) follows by the standard properties of 

integrals. If conditions (a) and (b) hold, for given 1-Lipschitz maps 7rl, ..., 7rk: E - + R ,  we 

set 7c=(Irl, ..., 7rk) and define 

#~(A) := sup{IT(f, 7rl, ..., 7rk)l : Ifl ~< XA} 

for any open set A c E  (with the convention #~(o)=0) .  We claim that  

(X3 

p~(A)<.E# . (A i  ) whenever AC U A~. (2.7) 
i = 1  i = 1  

Indeed, set CN(x)=min{1, N dist(x, E\Ai)} and define 

~N:= 
E N r  ' 

g N : = E ~ N = ( I + ( N  cN . 
i = 1  

Notice that  O<~gN <~ 1, gN is nondecreasing with respect to N, and gN~l for any xE Ui Ai. 
Hence, for any fcLipb(E ) with Ifl ~<XA, condition (b) gives 

I T ( f ,  T r ~ , . . . , T r k ) l =  l i m  T f~t) iN, 7( 1' . . . ,  7r k <.E#~(Ai).  
N--+c,o _ i = 1  

Since f is arbitrary, this proves (2.7). 

We can canonically extend #~ to B(E) setting 

} #~(B) := inf  #,~(Ai) : AC Ai for all BeB(E),  
" i = 1  i = 1  

and it is easily checked that  p~ is countably subadditive and additive on distant sets. 

Therefore, Carath~odory's criterion (see for instance [23, 2.3.2 (9)]) gives that  #~ e M (E). 

We now check that  

lT(f'wl'""Tck)l <~fE tfld#~ for all f E  Lipb(E ). (2.8) 

Indeed, assuming with no loss of generality that  f>~0, we set ft=min{f, t} and notice 

that  the subadditivity of T and the definition of #~ give 

I[T(f~,Trl,...,~rk)l--IT(ft,~rl, ...,~rk)l I ~<#,~({f >t})(s-t)  for all s > t. 
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In particular, t~-~ ]T(ft, 7rl, ..., ~rk)l is a Lipschitz function, whose modulus of derivative 

can be estimated with r at any continuity point of r By integration 

with respect to t we get 

// s = >t})dt= f dt, . 

By the homogeneity condition imposed on metric funetionals, (2.8) implies that  the 

measure #* =V~ #,~ satisfies condition (2.2). Since obviously 

#*(E) = s u p  # , , ( f i )  : Ifi[ ~< 1, Lip(Tr}) ~< 1 
- -  i = 0  

we obtain that  #*(E)<~M, and this proves that  ]]T]](E)<~M, i.e. that  []Tll(E) is the least 

constant satisfying (a). 

It is easy to check that  the set function ~- defined in (2.6) is less than any other 

measure # satisfying (2.2). On the other hand, a direct verification shows that  7 is 

finitely additive, and the inequality 7-~<#* implies the a-additivity of ~- as well. The 

inequality 

IT(XB,Trl, ...,Trk)l <~ T(B) for all B e B ( E ) ,  7rieLiPl(E ) 

gives p,~<r,  whence p*~<~- and also ~- satisfies (2.2). This proves that  r is the least 

measure satisfying (2.2). [] 

Definition 2.8 (support). Let # � 9  the support of #, denoted by sp t# ,  is the 

closed set of all points x E E  satisfying 

#(Be(x))>O for all Q>0. 

If F �9 MFk (E) has finite mass we set spt T :---spt [[Tll. 

The measure # is clearly supported on spt # if E is separable; more generally, this 

is true provided the cardinality of E is an Ulam number, see [23, 2.1.6]. If B is a Borel 

set, we also say that  T is concentrated on B if the measure IITII is concentrated on B. 

In order to deal at the same time with separable and nonseparable spaces, we will 

assume in the following that  the cardinality of any set E is an Ulam number; this is 

consistent with the standard ZFC set theory. Under this assumption, we can use the 

following well-known result, whose proof is included for completeness. 

LEMMA 2.9. Any measure #�9 is concentrated on a a-compact set. 

Proof. We first prove that  S = s p t p  is separable. If this is not true we can find 

by Zorn's maximal principle e > 0  and an uncountable set A c S  such that  d(x, y)~E for 



14 L. AMBROSIO AND B. KIRCHHEIM 

any x, yEA with x~y; since A is uncountable we can also find ~>0 and an infinite set 

B c A  such tha t  #(B~/2(x))>~6 for any xCB. As the family of open balls {B~/2(x)}~cs 
is disjoint, this gives a contradiction. 

h Let (Xn)CS be a dense sequence and define Lk,h:=l,~=oB1/k(Xn), for k~>l and 

h~>0 integers. Given e > 0  and k~>l, since # is supported on S we can find an integer 

h=h(k, c) such that  #(Lk,h)~#(E)--c/2 k. I t  is easy to check that  

K := A Lk,h(k,e) 
k=l 

is compact  and #(E\K)  <<.~. [] 

We point out, however, tha t  Lemma 2.9 does not play an essential role in the paper: 

we could have as well developed the theory making in Definition 2.6 the a priori assump- 

tion tha t  the mass IITII of any metric functional T is concentrated on a a -compact  set 

(this assumption plays a role in Lemma 5.3, Theorem 5.6 and Theorem 4.3). 

3. C u r r e n t s  

In this section we introduce a particular class of metric functionals with finite mass, char- 

acterized by three independent axioms of linearity, continuity and locality. We conjecture 

that  in the Euclidean case these axioms characterize, for metric functionals with compact  

support,  the flat currents with finite mass in the sense of Federer Fleming; this problem, 

which is not relevant for the development of our theory, is discussed in Appendix A. 

Definition 3.1 (currents). Let k~>0 be an integer. The vector space M k ( E )  of k- 

dimensional currents in E is the set of all k-dimensional metric functionals with finite 

mass satisfying: 

(i) T is multilinear in (f ,  7h, ..., 7rk); 

(ii) l i m i - ~  T(f, 7r~,..., 7dk) =T(f, 7r1,..., 7rk) whenever ~r~ --+Trj pointwise in E with 

Lip(zr~)~<C for some constant C; 

(iii) T(f, 7rl, ..., 7rk)=0 if for some iE {1, ..., k} the function 7ri is constant on a neigh- 

bourhood of { f r  

The independence of the three axioms is shown by the following three metric func- 

tionals with finite mass: 

Tl ( f ,  Tr) := /'RfTr'e-t2dt , 

f ~71" 1 ~71" 2 x2 y2 
T2(f'Trl'Tr2):=/R2f -~x Oy e- - dxdy, 

T3(f, r):= f f(t)(Tr(t+ 1)-Tr( t))e  -t2 dt. 
JR 
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In fact, T1 fails to be linear in 7r, T2 fails to be continuous (continuity fails at 7h(x, y )=  

7r2(x, y)=x+y,  see the proof of the alternating property in Theorem 3.5), and T3 fails to 

be local. 

In the following we will use the expressive notation 

w = f dyr = f d~lA...Ad~rk 

for the elements of ~k(E);  since we will mostly deal with currents in the following, this 

notation is justified by the fact that  any current is alternating in (~1, ...,Trk) (see (3.2) 

below). 

An important example of a current in Euclidean space is the following. 

Example 3.2. Any function gCLI(R  k) induces a top-dimensional current [g~E 

M k ( R  k) defined by 

[g~(f dTh A...Adlrk ) := /Rkg f  d~l A...Ad~k = /Rkg f  det(V~) dx 

for any f E B ~ ( R k ) ,  ~h,...,TrkCLip(Rk). The definition is well posed because of the 

Rademacher theorem, which gives/:k-almost everywhere a meaning to VTr. The metric 

functional [g~ is continuous by the well-known w*-continuity properties of determinants 

in the Sobolev space W 1,~ (see for instance [16]); hence [g~ is a current. It is not hard 

to prove that  ]] [g~ II = igls 

In the case k=2  the previous example is optimal, in the sense that  a functional 

T( f ,  71-1,71-2) = fR f det(VTr) d#, 

defined for f E B ~ (R 2) and 7rl, 7r2 E W 1'~ (R 2) N C 1 (R 2), satisfies the continuity property 

only if # is absolutely continuous with respect to s This is a consequence of the 

following result, recently proved by D. Preiss in [53]. The validity of the analogous result 

in dimension higher than two is still an open problem. 

THEOREM 3.3 (Preiss). Let #EA/[(R 2) and assume that # is not absolutely con- 

tinuous with respect to s Then there exists a sequence of continuously differentiable 

functions gh E Lip 1 (R 2, R 2) converging pointwise to the identity, and such that 

lim f det(Vgh) d# < #(R2). 

Notice that  the 1-dimensional version of the Preiss theorem is easy to obtain: as- 

suming with no loss of generality that  # is singular with respect to s it suffices to 

define 

gh(t) :=t--Zl(AhN(--oc, t)) for all t E R ,  
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where (Ah) is a sequence of open sets such that  / : l ( A h ) - + 0  , containing an/ :Lnegligible  

set on which it is concentrated. 

It is easy to check that  Mk(E) ,  endowed with the norm M(T):=IIT[[(E), is a Banach 

space. Notice also that  the pushforward map T~-+~#T and the restriction operator 

T~-+TLw (for wET?k(E)), defined on the larger class of metric functionals, map currents 

into currents. As regards the boundary operator, we can give the following definition. 

Definition 3.4 (normal currents). Let k~>l be an integer. We say that  T c M k ( E )  is 

a normal current if also 0T  is a current, i.e. 0TE Mk-1 (E). The class of normal currents 

in E will be denoted by Nk(E) .  

Notice that OT is always a metric functional satisfying conditions (i) and (ii) above; 

concerning condition (iii) it can be proved using the stronger locality property stated in 

Theorem 3.5 below. Hence T is normal if and only if 0 T  has finite mass. It is not hard 

to see that  also Nk(E) ,  endowed with the norm 

N(T)  := IITII(E)+IIOTII(E), 

is a Banach space. 

Now we examine the properties of the canonical extension of a current to B ~ (E) x 

[Lip(E)] k, proving also that  the action of a current on 7?k(E) satisfies the natural chain 

and product rules for derivatives. An additional consequence of our axioms is the alter- 

nating property in 7rt, ...,Trk. 

THEOaEM 3.5. The extension of any T ~ M k ( E )  to B~(E)  x [Lip(E)] k satisfies the 

following properties: 
(i) (product and chain rules) T is multilinear in (f, 7rl, ..., 7rk), 

T ( f  dTrl A . . .  A dTrk) +T(Trl dfA... AdTrk) = T(1 d(fTrl) A... Adzrk (3.1) 

whenever f ,  7rl E LiPb(E), and 

T ( f  dr (Tr) A... Ad~pk (Tr) ) = T ( f  det V r  (Tr) d~rl A... A dlrk) (3.2) 

whenever r = (r ..., Ck) C [6 I (R  k)]k and V ~  is bounded; 
(ii) (continuity) 

lim T ( f  ~, 7r~ 7r i , " ' ,  k) = T(f ,  ~rl,..., 7rk) 
i--+oo 

whenever f f  - f --+O in LI(E, [ITH) and 7r}--+Trj pointwise in E, with Lip(zr))~<C for some 

constant C; 

(iii) (locality) T(f ,  Trl,...,Trk)=0 if { f ~ 0 } = U i  Bi with B~CI3(E) and 7ri constant 
on B~. 
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Proof. We prove locality first. Possibly replacing f by fXB~ we can assume that 7ri 

is constant on { f r  for some fixed integer i. Assuming with no loss of generality that 

7r~=0 on B~ and Lip(rcj)~<l, let us assume by contradiction the existence of C c { f r  

closed and c > 0  such that IT(xc &r)l>e, and let 5>0 be such that IITII(C~\C)<e, where 

C~ is the open 5-neighbourhood of C. We set 

gt(x) := max{O, 1 - 3  dist(x, C ) } ,  ct(x):= sign(x)max{O, Ixt-t}, 

and using the finiteness of mass and the continuity axiom we find toE(O, 5) such that 

IT(gto&r)[>e and tlE(O, t0) such that IT(gtod#)l>e, with #j=~rj for j r  and # i=  

ct~oTri. Since 5i is 0 on Ct~ and sptgt~CCt~/~, the locality axiom (iii) on currents gives 

T(gt~ d#)=O. On the other hand, since Lip(#j)~<l we get 

lT( (gt~ d~r)l <~ /E Igto-- gt, t dlITll < ItTll(Cto\ C) < ~. 

This proves that t T(gto d@)f<e and gives a contradiction. 

The continuity property (ii) easily follows by the definition of mass and the continuity 

axiom (ii) in Definition 3.1. 

Using locality and multilinearity we can easily obtain that 

T(f  dTrl A d~-i-1Adr = T(f  CP(Tri ) dTr, A...AdTrk) (3.3) 

whenever iE{1,. . . ,k} and ~pCLip(R)NCI(R);  in fact, the proof can be achieved first 

for affine functions r then for piecewise affine functions r and then for Lipschitz and 

continuously differentiable functions r (see also the proof of (3.2), given below). 

Now we prove that T is alternating in ~rl, ..., ~rk; to this aim, it suffices to show that 

T vanishes if two functions ~ri are equal. Assume, to fix the ideas, that  ~ri=~rj with i<j, 
and set ~rk=Trz if l~{i,j} and 

1 k 1 (  1) 
k j+ 5 

where ~ is a smooth function in R such that ~ ( t ) = t  on Z, ~aP)0 is 1-periodic and 

~J=-0 in [0, �89 The functions 7r k uniformly converge to 7r, have equi-bounded Lipschitz 

constants, and since 

+ 1) = �89 

from (3.3) we obtain that T(f  &rk)=0. Then the continuity property gives T(f  dn)=0.  
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We now prove (3.2). By the axiom (i) and the alternating property just proved, the 

property is true if ~ is a linear function; if all components of r are affine on a common 

triangulation T of R k, representing R k as a disjoint union of (Borel) k-simplices A and 

using the locality property (iii) we find 

T(f dr = E TL~-l(A)(f  dr 
A E T  

= ~ TLTr-a(A)(f  det Vr dnlA...Aduk) 
A E T  

= T ( f  ~Tdet  VtblA(Tr) X~-l(A) dTrl A---Adlrk ) �9 

In the general case, the proof follows by the continuity property, using piecewise affine 

approximations r strongly converging in Wlio'~~176 (R k, R k) to ~. 

Finally, we prove (3.1); possibly replacing T by TLw with w=d~.A...Ad~k we can 

also assume that  k=  1. Setting S=(f, ~rl)#TE MI(R2),  the identity reduces to 

S(gl dg2)+ S(g2 dgl) = S(1 d(glg2) ) (3.4) 

where g~ E Lip b (R 2) are smooth and gi (x, y) = x and g2 (x, y) = y in a square Q D (f, ~r) (E) D 

spt S. Let g=gig2 and let Uh be obtained by linear interpolation of g on a family of 

regular triangulations Th of Q (i.e. such that  the smallest angle in the triangulations 

is uniformly bounded from below). It can be proved (see for instance [15]) that  (Uh) 
strongly converges to g in w i , ~ ( Q )  as h--+c~, and hence we can represent Uh(X, y) on 

each AETh as a~hX+b~hy+c~ , with 

lim sup sup lg2--a~hl+lgl--bhhl=O. 
h--+oc AETt  * (x ,y)E  A 

Using the continuity, the locality and the finiteness of mass of S we conclude 

S(ldg)= lim S(lduh)= lim E sLA(a~dz)+SLA(b~hdy) 
h--4. cx~ h - *  cx~ 

A e T h  

= lim E SLA(g2dgi)+SLA(gldg2)=S(g2dgi)+S(gldg2)" [] 
h---~oe 

AeTh 

A simple consequence of (3.1) is the identity 

O(TL f) = (OT)L f -TLdf  (3.5) 

for any fELiPb(E ). In particular, TLf  is normal whenever T is normal and fELipb(E  ). 
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The strengthened locality property stated in Theorem 3.5 has several consequences: 

first 

T(fdw) =T(f'd~r') whenever f = f ' ,  ~--Tr' on sp tT ,  (3.6) 

and this property can be used to define p # T E M k ( F )  even if pELip ( sp tT ,  F) ;  in fact, 

we set 

p #  T ( f  , ~T1, ... , 7(k ) : :  T ( / ,  7Fl, ... , 7Fk ) 

where fCLipb(E ) and #~ ELip(E) are extensions to E,  with the same Lipschitz constant, 

of f o p  and 7qop. The definition is well posed thanks to (3.6), and still (2.1) and (2.4) 

hold. The second consequence of the locality property and of the strengthened conti- 

nuity property is that  the (extended) restriction operator T~-~TLfdTIA...Ad~-m maps 

k-currents into (k -m)-cur ren t s  whenever f E B~(E) and ~-i E Lip(E). 

Definition 3.6 (weak convergence of currents). We say that  a sequence (Th) C Mk (E) 
weakly converges to TE Mk (E) if Th pointwise converge to T as metric functionals, i.e. 

lim Th(fd~r) =T( fd~)  for all feLipb(E), 7q eLip (E) ,  i = 1, ..., k. 
h-+oc 

The mapping T~-+ IITII(A) is lower semicontinuous with respect to the weak conver- 

gence for any open set A c E ,  because Proposition 2.7 (applied to the restrictions to A) 

easily gives 

]]T][ (A) = sup [ T ( f i  dTl-i)[ : E [fil~ XA, S}lp Lip(Tr}) ~< 1 . (3.7) 
- -  i = 0  ~'] 

Notice also that  the existence of the pointwise limit for a sequence (Th)C Mk(E)  is not 

enough to guarantee the existence of a limit current T and hence the weak convergence 

to T. In fact, suitable equi-continuity assumptions are needed to ensure that  condition (ii) 

in Definition 3.1 and condition (b) in Proposition 2.7 hold in the limit. 

The following theorem provides a simple characterization of normal k-dimensional 

currents in R k. 

THEOREM 3.7 (normal currents in Rk). For any T E N k ( R  k) there exists a unique 

g E B V ( R  k) such that T=~g~. Moreover, HOTI]=IDgl, where Dg is the derivative in the 
sense of distributions of g, and IDgl denotes its total variation. 

Proof. Let now TENk(Rk) .  We recall that  any measure # with finite total varia- 

tion in R k whose partial derivatives in the sense of distributions are (representable by) 

measures with finite total variation in R k is induced by a function gEBV(Rk) .  In fact, 

setting f~=#*Q~ E C ~ ( R k ) ,  this family is bounded in BV(Rk),  and the Rellich theorem 
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for BV-functions (see for instance [30]) provides a sequence (re,) converging in Lloc(R1 k) 

to gEBV(Rk), with ei-+0. Since fr163 weakly converge to # as e$0 we conclude that 
#=gs  

Setting 

#(f) :=T(f dxlA...Adxk), f e B ~ ( R k ) ,  

we first prove that all directional derivatives of # are representable by measures. This is a 

simple consequence of (3.2) and of the fact that T is normal: indeed, for any orthonormal 

basis (el, ..., ek) of R k we have 

frt~ 0r d# = T ( ~  dTrlA...AdTrk) = lT(1 dCAd#i)l= lOT(Cd~ri)l ~ falr ,IOTII 

for any r  where 7ri are the projections on the lines spanned by e~, and dT?~= 

dTrlA...AdTri_lAdTri+lA...AdTrk. This implies that IDv~I~<IIOTII for any unit vector v, 

whence p=gEk for some gELI(R k) and IDol ~< IIOTll. 
By (3.2) we get 

T(f d~a A... Ad~k) =/R~ gf det(W) dx 

for any fEB~(R k) and any 7rcCI(Rk,R k) with VTr bounded. Using the continuity 

property, a smoothing argument proves that the equality holds for all w=f dTrc79k(Rk); 

hence T =  ~g~. 

Finally, we prove that 

k - 1  

IOT(f dTq/~...Ad~rk_~)l <~ 1-I Lip(Tri) fR  Ifl dlOgh (3.8) 
i=1 k 

which implies that IIOTII<~IDgl. By a simple smoothing and approximation argument 

we can assume that f and all functions ri are smooth and that f has bounded support; 

denoting by H~ the (k • k)-matrix having Dg/IDgl and VTrl, ..., VTrk_l as rows we have 

OT( f dzrl A...AdTrk_l) = g df AdTrl A...AdTrk-1 

= E ( -1  f det dDig 
k i =  1 

r = E (-1)i  det dlDg I 
JR I gl k i =  1 

JRf~ f det (H,~) dlO91, 
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whence (3.8) follows using the Hadamard inequality. [] 

The previous representation result can be easily extended to those k-dimensional 

currents in R k whose mass is absolutely continuous with respect to s Except for 

k = l ,  2, we do not know whether all currents in M k ( R  k) satisfy this absolute-continuity 

property. As the proof of Theorem 3.8 below shows, the validity of this statement is 

related to the extension of the Preiss theorem to any number of dimensions. 

THEOREM 3.8. A current T E M k ( R  k) is representable as ~g~ for some gELI (R  k) if 

and only if ]]TII<</: k. For k = l ,  2 the mass of any T E M k ( R  k) is absolutely continuous 

with respect to s 

Proof. The first part of the statement can be obtained from (3.2) arguing as in the 

final part of the proof of Theorem 3.7. In order to prove the absolute-continuity property, 

let us assume that  k=2.  Let 

It(B) :=-T(XB dxlAdx2), B e B(R2), 

and let # L A + # L ( R 2 \ A )  be the Hahn decomposition of #. Since T is continuous, by 

applying Theorem 3.3 to the measures # L A  and --#L (R2\A),  and using (3.2), we obtain 

that  #<</22; hence p=gZ: 2 for some HELl(R2). In the case k = l  the proof is analogous, 

by the remarks following Theorem 3.3. [] 

In the following theorem we prove, by a simple projection argument, the absolute- 

continuity property of normal currents in any metric space E. 

THEOREM 3.9 (absolute continuity). 

ligible. Then 

IITLd~II (~-I (N))  = 0 for all 7r E Lip(E, Rk). 

Let TENk(E)  and let N E B ( R  k) be s 

(3.9) 

Moreover, IITll vanishes on Borel 7-lk-negligible subsets of E. 

Proof. Let L = r r - l ( N )  and fELipb(E); since 

(TL dr 0 (fXL) = TL  ( f  dlr)(XL) = rr# (TL f)(XN dxl A... A dxk) 

and rr# (TL f )  E Nk (Rk), from Theorem 3.7 we conclude that  TL d~r(fxn) = 0. Since f is 

arbitrary we obtain IITLdrcll (L)=0. 

If LEB(E) is any 7{k-negligible set and 7rELip(E, Rk), taking into account that  

rr(L) (being 7-/k-negligible) is contained in a Lebesgue-negligible Borel set N we obtain 

IITWdlrll(L)<llTLdTcll(Tr-l(N))=O. From (2.6) we conclude that  IITII(L)=0. [] 
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4. R e c t i f i a b l e  c u r r e n t s  

In this section we define the class of rectifiable currents. We first give an intrinsic 

definition and then, as in the classical theory, we compare it with a parametr ic  one 

adopted, with minor variants, in [20]. 

We say tha t  an 7-/k-measurable set S c E  is countably 7-lk-rectifiable if there exist 

sets As C R k and Lipschitz functions fs:Ai--+ E such that  

It  is not hard to prove that  any countably 7-/k-rectifiable set is separable; by the com- 

pleteness assumption on E the sets As can be required to be closed, or compact.  

LEMMA 4.1. Let S c E  be countably ~k-rectifiable. Then there exist finitely or 
eountably many compact sets Ks C R k and bi-Lipschitz maps f~: Ki-~ S such that fi (Ks) 

are pair-wise disjoint and 7-t k ( s \ u ~ f i ( K~ ) ) = 0. 

Proof. By Lemma 4 of [38] we can find compact  sets Ki C R k and bi-Lipschitz maps 

fs: Ks--+E such that  SC U~ f i (Ks),  up to 7-/k-negligible sets. Then, setting B 0 = K 0  and 

B ~ : = K i \ I - I ( s N U  f j ( K j ) ) E B ( R  k) f o r a l l i ) l ,  
j < i  

we represent 7-/k-almost all of S as the disjoint union of fs (Bs). For any i E N,  representing 

/:k-almost all of Bs by a disjoint union of compact  sets the proof is achieved. [] 

Definition 4.2 (rectifiable currents). Let k~>l be integer and let T E M k ( E ) ;  we say 

tha t  T is rectifiable if 

(a) IITII is concentrated on a countably ~k-rectif iable set; 

(b) IITll vanishes on 7-/k-negligible Borel sets. 

We say tha t  a rectifiable current T is integer-rectifiable if for any ~E Lip(E, R k) and any 

open set A c E  we have ~#(Tt_A)=~O~ for some OELI(R k, Z). 

The collections of rectifiable and integer-rectifiable currents will be respectively de- 

noted by T~k(E) and Ik(E).  The space of integral currents Ik (E)  is defined by 

Ik(E)  := Ik(E)NNk(E) .  

We have proved in the previous section tha t  condition (b) holds if either k =  1, 2 or 

T is normal. We will also prove in Theorem 8.8 (i) tha t  condition (a) can be weakened 

by requiring that  T is concentrated on a Borel set, a-finite with respect to 7 /n - l ,  and 
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that,  for normal currents T, the integer rectifiability of all projections ~# (TLA) implies 

the integer rectifiability of T. 

In the case k=0  the definition above can be easily extended by requiring the existence 

of countably many points xh c E and 0hC R (or ~h ~ Z, in the integer case) such that  

T ( f ) = E  Ohf(Xh) for all f e B ~ ( E ) .  
h 

It follows directly from the definition that  7~k(E) and :/:k(E) are Banach subspaces 

of Mk (E). 

We will also use the following rectifiability criteria, based on Lipschitz projections, 

for 0-dimensional currents; the result will be extended to k-dimensional currents in The- 

orem 8.8. 

THEOREM 4.3. Let SEMo(E) .  Then 

(i) Seh[o(E) if and only if S(XA)cZ for any open set ACE; 
(ii) SEZo(E) if and only if ~#SET_~(R) for any ~ELip(E);  

(iii) if E = R  y for some N, then SCno(E) if and only if ~#SET~0(R) for any 
~eLip(E) .  

Proof. (i) If S(XA ) is integer for any open set A, we set 

E := {x e E :  IISll (Be (x))/> 1 for all 0 > 0} 

and notice that  E is finite and that,  by a continuity argument, SLEEIo(E) .  If x ~ E  

we can find a ball B centered at x such that  ]]SI](B)<I; as S(XA) is an integer for any 

open set A c B ,  it follows that  S(XA)=O, and hence ]]SI](B)=0. A covering argument 

proves that  ]]SII(K)=O for any compact set K C E \ E ,  and Lemma 2.9 implies that S is 

supported on E. 

(ii) Let A c E  be an open set and let ~ be the distance function from the complement 

of A. Since 

S(xA) = ~ # s ( x ( o , ~ ) )  E z 

the statement follows from (i). 

(iii) The statement follows by Lemma 4.4 below. [] 

LEMMA 4.4. Let # be a signed measure in R y. Set Q=QNx(QM(0 ,  oc))N and 

consider the countable family of Lipsehitz maps 

fx,~(Y) =max)~iixi--yi[, y c R  N, i~N 
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where (x, A) runs through Q. 
Then ,eno(a N) if and only if f~,x##CT40(R) for all (x, A)c Q. 

Proof. We can assume with no loss of generality that  # has no atom and denote by 

N" ]]~ the lo~-norm in R g. Assume # to be a counterexample to our conclusion and let 

K~< N be the smallest dimension of a coordinate-parallel subspace of R N charged by I#], 

i.e. K is the smallest integer such that  there exist x~ R N, I c { 1, ..., N} with cardinality 

N - K  such that  I#l(Pi(x~ where 

o for any i C I }. P 4 z  ~ := {x e R~:  x~ = z ,  

Since # has no atom, K > 0. Replacing # by - #  if necessary, we find r > 0 and xl E QN 

such that  

# (M)  > 3~ where M :---- P1(x~ ] Iy -z  1I]o~ < 1). 

Next we choose k sufficiently large such that  

I# ] (M)<~  w i t h ~ / I : = { y e R g : d i s t ~ ( y , M ) e ( 0 , 2 / k ) } .  

Modifying x 1 only in the i th  coordinates for i E I we can, without changing M, in addition 

assume that  I(x~ for all i e t .  We define Ac(QN(0,  cc)) N by A~=k if iEI, 
and Ai = 1 otherwise. Observe that  

M C  f~-llA ([0, 1)) C MUl~r, 

Let T be the countable set on which /5=f~1,~## is concentrated. Due to our minimal 

choice of K we have [#[(MNf~,~(s))=O for any sER;  hence our choice of 7~f gives 

[#I(f~IIA(TM[0, 1)))~< [#[(f~]l~([0, 1 ) ) \ M ) <  s, 

and we obtain that  [/5[([0, 1))<r On the other hand, 

/5((0, 1]) -- #(/~-,~x ([0, 1))) >~ # ( M ) -  I I(M) >/2~. 

This contradiction finishes our proof. [] 

It is also possible to show that  this kind of statement fails in any infinite-dimensional 

situation, for instance when E is L 2. In fact, it could be proved that  given any sequence 

of Lipschitz functions on a Hilbert space, we can always find a continuous probability 

measure on it whose images under all these maps are purely atomic. 

Now we show that  rectifiable currents have a parametric representation, as sums of 

images of rectifiable Euclidean currents (see also [20]). 
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THEOREM 4.5 (parametric representation). Let TEMk(E).  Then, TCT~k(E) (resp. 
TCZk(E) ) if and only if there exist a sequence of compact sets Ki, functions 0i ELl(Rk)  

(resp. O{ELI(R k, Z)) with spt OiCKi, and bi-Lipschitz maps fi: Ki-+E, such that 

T = E f i # [ O i  ] and M(fi#[Oi~)=M(T). 
i = 0  i = 0  

Moreover, if E is a Banach space, T can be approximated in mass by a sequence of 
normal currents. 

Proof. One implication is trivial, since fi#IOi~ is rectifiable, being concentrated 

on f~(Ki) (the absolute-continuity property (b) is a consequence of the fact that  f - l :  

fi (Ki)--+Ki is a Lipschitz function), and T~k (E) is a Banach space. For the integer case, 

we notice that  Ti=fi#[Oi~ is integer-rectifiable if 0i takes integer values, because for any 

~ E L i p ( E , R  k) and any open set AcE ,  setting h=~of i :  K~-+R k and A'=f(I (A) ,  we 

have 

~#(TiLA)=h#([Oi~LA')= I E Oi(x)sign(det Vh(x)) 1 
x E h -  l ( y ) A A  ' 

as a simple consequence of the Euclidean area formula. 

Conversely, let us assume that  T is rectifiable, let S be a countably 7-/k-rectifiable 

set on which IITII is concentrated, and let Ki and fi be given by Lemma 4.1. Let 

g~=f~-lELip(Si,Ki), with Si=f~(K~), and set Ri=g~#(Tt-Si); since IIRill vanishes on 

"r/k-negligible sets, by Theorem 3.7 there exists an integrable function 0i vanishing outside 

of Ki such that  R~=I0i~, with integer values if TCIk(E). Since f~ogi(x)=x on Si, the 

locality property (3.6) of currents implies 

TLSi = (fiogi)#(TLSi) = f{#ni = fi#[Oi~. 

Adding with respect to i, the desired representation of T follows. Finally, if E is a Banach 

space we can assume (see [37]) that  fi are Lipschitz functions defined on the whole of R k 

and, by a rescaling argument, that  Lip(f  i)~< 1; for c > 0 given, we can choose 0~ E BV(R k) 

such that  fRk 10i--0~1 dx<c2-i to obtain that  the normal current T = E ~  fi#[O~] satisfies 
[] 

The following theorem provides a canonical (and minimal) set ST on which a recti- 

fiable current T is concentrated. 

THEOREM 4.6. Let TET~k(E) and set 

ST := {X e E :  O*k(llTII, X) > 0). (4.2) 
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Then ST is countably 7-lk-rectifiable, and [[T[I is concentrated on ST; moreover, any 
Borel set S on which IlTII is concentrated contains ST, up to 7-lk-negligible sets. 

Proof. Let S be a countably 7-/k-rectifiable set on which ReTie is concentrated; by the 

Radon Nikodym theorem we can find a nonnegative function OELI(7-~ki_s) such that  

L[T[[ =07tk[_S. By Theorem 5.4 of [7] we obtain that  Ok(liT[I, x)=O(x) for 7-/k-a.e. xeS,  
while (1.3) gives Ok(llTII, x )=0  for 7-/k-a.e. x e E \ S .  This proves that  ST=SN{O>O}, up 

to 7-/k-negligible sets, and since [[T[[ is concentrated on SN {0>0} the proof is achieved. [] 

Definition 4.7 (size of a rectifiable current). The size of TET~k(E) is defined by 

S(T) := ~(sr) 
where ST is the set described in Theorem 4.6. 

5. N o r m a l  c u r r e n t s  

In this section we study more closely the class of normal currents; together with recti- 

fiable currents, this is one of the main objects of our investigation, in connection with 

the isoperimetric inequalities and the general Plateau problem. We start with a useful 

equi-continuity property which leads, under suitable compactness assumptions on the 

supports, to a compactness theorem in Nk(E).  

PROPOSITION 5.1 (equi-continuity of normal currents). Let TcNk(E) .  Then the 
estimate 

k 

]T(fd~)-T(fd~')l<.~/Eifll~-~;ldllOTN+Lip(f)f~ p lTri-Tr;I dllTII (5.1) 
i = 1  t f  

holds whenever f, ~r~, 7r~ C Lip(E) and Lip(Tri) <~ 1, Lip(rr~) ~< 1. 

Pro@ Assume first that  f ,  7ri and 7r~ are bounded. We set dTro=drr2A...AdTrk and, 

using the definition of OT, we find 

T( f  dTr] Ad~o) - T( f  d~  Ad,o) 

= T(1 d(f7~l)Ad~o)-T(1 d(fv:'l)AdTro ) -T(~I  dfAdTro)+T(~ dfAdTro) 

= OT(f~rl d~o)-OT(I~ d~ro)- T(Tf] dfAdro)+T(7c~ dfAd~ro); 

hence using the locality property, I T ( f  d~] A d ~ o ) - T ( f  dTr~ Ad~o)] can be estimated with 

/E [fllTh-Tr~ldllOT[[+Lip(f)J(~ptf 17rl-Tr~ [ dllTl[. 

Repeating k - 1  more times this argument the proof is achieved. In the general case the 

inequality (5.1) is achieved by a truncation argument, using the continuity axiom. [] 
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THEOREM 5.2 (compactness). Let (Th) C Nk(E)  be a bounded sequence, and assume 

that for any integer p~  l there exists a compact set K p C E  such that 

1 
IIThlI(E\Kp)+IIOThII(E\Kp) < - for all h e N .  

P 

Then, there exists a subsequence (Th(n)) converging to a current TENk(E)  satisfying 

Proof. Possibly extracting a subsequence, we can assume the existence of measures 

# , - C A d ( E )  such that  

for any bounded continuous function f in E. It  is also easy to see that  ( # + . ) ( E \ K p ) E  

1/p, and hence # + u  is concentrated on Up Kp. 

Step 1. We will first prove tha t  (Th) has a pointwise converging subsequence (Th(n)); 

to this aim, by a diagonal argument,  we need only to show for any integer q~>l the 

existence of a subsequence (h(n)) such that  

3 
lim sup I Th(n) ( f  dTr) - Th(.,)(f dTr)l <~ - 
n~m--+ Cx) q 

whenever fdrcE~Dk(E) with ifl<<.q, Lip(f). .<l and Lip0r i )41 .  To this aim, we choose 

g ELip(E)  with bounded support  such that  

1 
s u p  N(Th-- Thi-_g) < q2 
h c N  

(it suffices to take g: E - +  [0, 1] with Lip(g)~< 1 and g =  1 in K2q2), and prove the existence 

of a subsequence h(n) such that  Th(n)[-g(f dTr) converges whenever f dTrel)k(E) with 

Lip(f)~<l and aip(Tri)~<l. 

Endowing Z = L i p l (Up  Kp) with a separable metric inducing uniform convergence on 

any compact  set Kp, we can find a countable dense set D c Z  and a subsequence (h(n)) 

such tha t  Th(~)k-g(f drr) converge whenever f ,  7rl, ..., ~rk belong to D. Now we claim tha t  

Th(~) k_ g( f  dTc) converge for f ,  7 r l ,  . . .  , 71 k E Lip 1 (E); in fact, for any f ,  #1, ---, ~k E D we can 
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use (5.1) to obtain 

lim sup I Th(n) L g(f  dlr) - Th(n,) L g(f  d~r)l 
n~nt---~oo 

~< 2 lim sup ITh(f dTr) --Th(]d'Tc)l 
h-+oo 

k 

lira sup E f (]fl + 1) I~ri -#~] d[llO(ThLg)ll + ]]TLgH] 
h--+cx~ i=1  J E 

+ / E  lf-]l dlIT~Lgll 

k 

~ E j f p  ( l f l + l ) l ~ i - # i l  d# 
i=1  t g  

§ /E( I f l§  l )lgl l~i-~il d" § /E If - fl lg] d#. 

Since ] and ~ are arbitrary, this proves the convergence of Th(n)Lg(f dTr). 

Step 2. Since Th(n)(W) converge to T(w) for any wEI)k(E), T satisfies conditions (i) 

and (iii) stated in Definition 3.1. Passing to the limit as n--+cc in the definition of mass 

we obtain that both T and 0T have finite mass, and that IITll ~<#, IlOTll ~<u. In order to 

check the continuity property (ii) in Definition 3.1 we can assume, by the finiteness of 

mass, that  f has bounded support; under this assumption, passing to the limit as h-+c~ 

in (5.1) we get 

k 

i=1  t f  

whenever Lip(~i)~ 1 and Lip(~r~)~ 1. This estimate trivially implies the continuity prop- 

erty. [] 

A simple consequence of the compactness theorem, of (3.5) and of (3.1) is the fol- 

lowing localization lemma; in (5.2) we estimate the extra boundary created by the local- 

ization. 

LEMMA 5.3 

Nk(E)  and 
(localization). Let ~ELip(E)  and let TENk(E) .  Then, T L { ~ > t } C  

]IO(TL {~ > t})II({~P = t}) ~ d IITLd~II({ ~ ~ ~_}) ~-=t (5.2) 

for s tER .  Moreover, if S is any a-compact set on which T and OT are concen- 
trated, T h { p > t }  and its boundary are concentrated on S for s tER .  
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Proof. Let # =  IITII + IIOTII, let (K,) be a sequence of pairwise disjoint compact sets 

whose union covers/t-almost all of E, and set 

g(t) := F({~ x< t}), gp(t):= #(KpN{!p ~< t}). 

We denote by L the set of all t c R  such that  g'( t )=~p gp(t) is finite and the derivative 

in (5.2) exists; these conditions are fulfilled s everywhere in R,  and hence L has 

full measure in R.  

Let tEL, let r and set 

0 

A ( s ) =  1 

for s <~ t, 

for s >1 t+eh, 

for sE [t,t+eh]; 

by (3.5) and the locality property we obtain that  the currents TLfho~fl satisfy 

8 ( T L A o ~ )  = aTLAo~--Rh (5.3) 

- 1  with Rh=S h TLx{t<w<t+~h} d~. By (3.5) and locality again we get 

1 
ORb = O(OT L fh ~ ~) = - - - -  OTL X{t<~,<t+eh } d~ .  

gh 

It is easy to see that  our choice of t implies that  the sequence (Rh) satisfies the assump- 

tions of Theorem 5.2. Hence, possibly extracting a subsequence, we can assume that  

(Rh) converges as h-~oe to some R c N k _ I ( E )  such that  I]RII and IIORII are concentrated 

on Up/4p. 

Since OTLfh(~) converge to OTL{~>t},  passing to the limit as h--+ce in (5.3) we 

obtain 

a(TL {~ > t}) = aTL {~ > t } - R ,  

and hence II0(TL{9~>t})II({9)=t})~<M(R). Finally, the lower semicontinuity of mass 

gives 

M(R)  ~< lim inf M(Rh)  ~< d ~< r}) r=t" h-+o  IITLd II({  [ ]  

In the proof of the uniqueness part of the slicing theorem we need the following 

technical lemma, which allows us to represent the mass as a supremum of a countable 

family of measures. 
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LEMMA 5.4. Let S c E  be a a-compact set. Then, there exists a countable set DC 

Lipt(E)NLiPb(E ) such that 

IITII = V ( I lTLdTr l t  : rr l ,  ..., ~rk e D} (5.4) 

whenever T is concentrated on S. 

Proof. Let X=LiPb(E)NLipl(E ) and let S =  Uh Kh with K h C E  compact.  The proof 

of Proposition 2.7 and a truncation argument  based on the continuity axiom give 

IITII = V { l l T h d ~ l l  : ~rl, ..., ~rk e x }  (5 .5 )  

for any T c M k ( E ) .  Let D h C X  be a countable set with the property that  any qCX 

can be approximated by a sequence qic Dh with sup ]qi] equi-bounded and qi uniformly 

converging to q on Kh. Taking into account (5.5), the proof will be achieved with 

D = Uh Dh if we show that  

IITLdTrllLKh<~V{llTLdqll:q],...,qkeDh} for all ~h, ..., 7rk e X .  (5.6) 

Let fEB~176 vanish outside of Kh, and let 7r~EDh converge as i -+oc to ~rj as above 

(i.e. uniformly on Kh with SUPh 17r~l equi-bounded). Then, the functions 

#~(x) := min ~r~(y)+d(x,y)e Lip l (E  ) 
y E K h  

coincide with 7r} on Kh and pointwise converge to # j (x )=minKh  7rj(y)+d(x,y). Using 

the locality property and the continuity axiom we get 

T ( f  dTr) = T ( f  d#) = lim T ( f  dfr i) = lim T ( f  dTr i) <~ f If] d~h 
i----~ oo i---~ c~o JE 

where ~h is the right-hand side in (5.6). Since f is arbi t rary this proves (5.6). [] 

In an analogous way we can prove the existence of a countable dense class of open 

sets. 

LEMMA 5.5. Let S c E  be a a-compact set. There exists a countable collection .4 

of open subsets of E with the following property: for any open set A C E  there exists a 

sequence ( A i ) c A  such that 

lim XAi : X A  in LI(#) for any # e M ( E )  concentrated on S. 
i --~ oo 

Proof. Let S = U h  Kh, with Kh compact  and increasing, let D be constructed as in 

the previous lemma, and let us define 

1 D}. 
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The characteristic function of any open set A C E can be approximated by an increasing 

sequence (g~)cLip(E), with gi~>0. For any i~>l we can find f~eD such that  l f i - g ~ t < l / i  

on Ki. By the dominated convergence theorem, the characteristic functions of {fi > �89 

converge in L 1 (#) to the characteristic function of A whenever # is concentrated on S. [] 

The following slicing theorem plays a fundamental role in our paper; it allows to 

represent the restriction of a k-dimensional normal current T as an integral of ( k - re ) -  

dimensional ones. This is the basic ingredient in many proofs by induction on the di- 

mension of the current. 

We denote by (T, ~r, x} the sliced currents, ~: E - + R  m being the slicing map, and 

characterize them by the property 

R,{T ,  x}~(x)  dx = TL(r  dlr for all r e Cc(Rk). (5.7) 

We emphasize that  the current-valued map x~-~(T, ~, x) will be measurable in the fol- 

lowing weak sense: whenever g dwG:Dk-m(E), the real-valued map 

x~-+ (T, ~,x)(g dT) 

is/:m-measurable in a m. This weak measurability property is necessary to give a sense 

to (5.7) and suffices for our purposes. An analogous remark applies to x~-+ II (T, ~, x> II- 

THEOREM 5.6 (slicing theorem). Let T C N k ( E ) ,  let L be a a-compact set on which 

T and OT are concentrated, and let 7~cLip(E, Rm),  with m ~ k .  

(i) There exist currents ( T , ~ , x ) e N k - m ( E )  such that 

(T, 7~,x) and O(T, 7~,x> are concentrated on LA~-I (x ) ,  (5.8) 

/R ,J  I(T, x) ll dx = IITLd~II (5.9) 7(, 

and (5.7) holds. 

(ii) If  L ~ is a a-compact set, and if TZCMk_m(E)  are concentrated on L ~, satisfy 

(5.7) and x~-+M(T x) is integrable on R k, then T~=(T ,  lr, x) for s x E R  m. 

(iii) If m-- l ,  there exists an El-negligible set N c R  such that 

(T, ~, x> = lim TL X{x<~<y} dTr = (aT)L {~ > x}- -O(TL {~ > x}) 
y4z y -- x 

for any x e R \ N .  Moreover, M ( ( T , ~ , x } ) < L i p ( T r ) M ( T L { ~ < x } ) '  for s x, and 

/ N ( ( T ,  ~r, x)) < Lip(~) N(T).  dx (5.10) 
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Proof. Step 1. In the case m = l  we take statement (iii) as a definition. The proof 

of the localization lemma shows that 

1 
S~ := (OT)L {Tr > x}--O(TL {~r > x}) = lim TLX{x<~r<y } dTr (5.11) 

y~.z y - x  

for Z:i-a.e. x; hence spt S~cLATr-i(x)  and 

d H(TLdTr)LwH({Tr>t} )t=z for s x E R  

whenever wEIDP(E), O<<.p<~k-1. By integrating with respect to x we obtain 

/ ~ M ( S ~  w) ~< dTr) La~) (5.12) L dx M( (TL 

where f*  denotes the upper integral (we will use also the lower integral f .  later on). 

Now we check (5.7): any function CECc(R)  can be written as the difference of two 

bounded functions ~bl, r E C(R)  with ~bi 7> 1. Setting h'i (t) = f~ ~bi (T) dT, for i = 1, 2 and 

wEiDk-i(E) we compute 

= OT(~,  + o t t o ) - T ( , , / +  oTr d ~ ) .  

Analogously, using the identity S~=O(TL{Tr4x})--o~ {Tr4x} we get 

~ S~ (w) r dx = -OT(~;o~rw)+ T(~(o~r dw). 
o o  

Hence, setting w = f  dp, we obtain 

fRs . ( f  = aT(~o~ I @)- T(.y~o~ d/A@) @) r dx 

= T ( f  d(7~ o70 Adp) = T(f~l~oTr dTrAdp) = TL~bi o~r dTr(f dp). 

Since r 1 6 2  this proves (5.7). 

By (5.7) we get 

k--1 

Thd~(gd~-) = /RSx(gd~-) dx <~ I I  LipO-~) f.RIIS~ll(Igl) dx 
i = 1  



C U R R E N T S  IN M E T R I C  S P A C E S  33 

whenever g d~-E:Dk-i(E). The representation formula for the mass and the superaddi- 

tivity of the lower integral give 

]]Tt_dTr]] (]g]) ~< ~.rt[[SxH(Ig[) dx for all gE LI(E, HTLdTr]]). 

This, together with (5.12) with w = I g I, gives the weak measurability of x ~+ [[ Sx[[ and (5.9). 

To complete the proof of statement (iii) we use the identity 

O<T, ~, x> = -<OT, ~, x>, (5.13) 

and apply (5.9) to the slices of T and OT to recover (5.10). 

Step 2. In this step we complete the existence of currents (T, 7r, x) satisfying (i) by 

induction with respect to m. Assuming the statement true for some mE [1, k -1 ] ,  let us 

prove it for m + l .  Let 7r=(Trl,#), with #ELip(E,  Rm-1) ,  and set x=(y,t) and 

Tt:=(T, Trl,t), Tx:=(Tt,~r,y). 

By the induction assumption and (5.12) with w=d~r we get 

iM(T~) dy at = M(Tt Ld~) dt ~ M(TLd~r). (5.14) 

By applying twice (5.7) we get 

RmTxr dr= fRT ,  2(t) t = T -  

whenever ~bi E Cr (R "~- i) and r E C~ (R);  then, a simple approximation argument proves 

that  T~ satisfy (5.7). Finally, the equality (5.9) can be deduced from (5.7) and (5.14) 

arguing as in Step 1. 

Step 3. Now we prove the uniqueness of (T, Tr, x); let f dpE:Dk-'~(E) be fixed; de- 

noting by (p~) a family of mollifiers, by (5.7) we get 

T~(fdzc) =limT(fo~oTrdTrAdp) for/:m-a.e, x E R  m. 
E$0 

This shows that, for given w, T*(w) is uniquely determined by (5.7) for l:m-a.e, xER m. 
Let D be given by Lemma 5.4 with S=LUL', and let N c R  "~ be an/:m-negligible Borel 

set such that TX(fdTr)=(T, Tr, x)(fdlr) whenever ~riED and x e R m \ N .  By applying 

(5.4) to TX-(T, Tr, x) we conclude that T~=(T, Ir, x) for any xERm\N.  [] 

Now we consider the case of (integer-)rectifiable currents, proving that the slicing 

operator is well defined and preserves the (integer) rectifiability. Our proof of these facts 

uses only the metric structure of the space; in w*-separable dual spaces a more precise 

result will be proved in Theorem 9.7 using the coarea formula of [7]. 
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THEOREM 5.7 (slices of rectifiable currents). Let TET~k(E) (rasp. TEZk(E)) and 
let ~rGLip(E, Rm), with l~m<.k. Then there exist currents (T, Tr, x)E~k-m(E) (rasp. 
(T, lr, x) E Zk_m ( E) ) concentrated on STNrr- I(x) and satisfying (5.7), (5.9), 

(TLA,%x)=(T ,  rc, x)LA for all AEB(E) (5.15) 

for Em-a.e. x c R  TM and 

/ n 2 (  (T, lr, x) ) dx <. c(k, m) f i  Lip(Tri)S(T ). (5.16) 
i : 1  

Moreover, if T~EMk_m(E) are concentrated on LATr-l(x) for some a-compact set L, 
satisfy (5.7) and fRk M(Tx) dx<cx~, then Tx=(r ,  rr, x) for s x E R  m. 

Pro@ We construct the slices of the current first under the additional assumption 

that  E is a Banaeh space. Under this assumption, Theorem 4.5 implies that  we can write 

T as a mass-converging series of normal currents Th; by applying (5.9) to Th we get 

m cxD m 

/R y~  (Th,~r,x> dx <~ H Lip(Tri) E M(Th) = H Lip(TrdM(T), 
m h = 0  i = 1  h = 0  i = 1  

and hence Y]~h (Th, ~r, x) converges in Mk-m (E) for Z;m-a.e. x E R m. Denoting by (T, ~r, x} 

the sum, obviously (5.7), (5.9) and condition (b) in Definition 4.2 follow by a limiting 

argument. Since (Th, rr, x) are concentrated on 7r-~(x), the same is true for (T, 7r, x}. In 

the general case, we can assume by Lemma 2.9 that  F = s p t  T is separable; we choose an 

isometry j embedding F into l~  and define 

(T,~r,t) :=j~cl(j#T,#,t) for all t a R  

where # is a Lipschitz extension to l~  of ~roj-I:j(F)-+R. It is easy to check that  (5.7) 

and (5.9) still hold, and that  (T, 7r, t) are concentrated on 7r-l(x). Moreover, since (5.9) 

gives 
m 

RII<T, dx H Lip(zr~)IITI[ (E\ST) = 0 X) II (E\Sr) 7r, <. 
m i ~ l  

we obtain that  (T,~r,x) is concentrated on ST for s x E R  "~. Using this property, 

the inequality (see Theorem 2.10.25 of [23]) 

/ :  Nk-m(STMZr-l(X)) dx <~ c(k,m) f i  Lip(Tri)Ha(ST) 
i = 1  

and Theorem 4.6 imply (5.16). 
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The uniqueness of (T, 7r, x) can be proved arguing as in Theorem 5.6 (ii). The unique- 

ness property easily implies the validity for s x E R m of the identity 

(TLA, 7r, x) = (T, 7r, x) LA 

for any AEB(E) fixed. Let ,4 be given by Lemma 5.5 and let N c R m  be an Era-negligible 

set such that  the identity above holds for any AC,4 and any x E R m \ N .  By Lemma 5.5 

we infer that  the identity holds for any open set A c E  and any x C R m \ N ,  whence (5.15) 

follows. 

Finally, we show that  (T, 7r, x) C Ik -m (E) for s x E R "~ if TE Zk (E). The proof 

relies on the well-known fact that  this property is true in the Euclidean case, as a con- 

sequence of the Euclidean coarea formula; see also Theorem 9.7, where this property is 

proved in a much more general setting. By Theorem 4.5 we can assume with no loss 

of generality that  T=f#~O~ for some integer-valued OCLI(R k) vanishing outside of a 

compact set K,  and that  f :  K--+E is bi-Lipschitz. Then, it is easy to check that  

T x : :  f#(~O~, ~rof, x) 

are concentrated on f(K)M~r-l(x), satisfy (5.7), and that  fRm M(Tx)  dx<oc. Hence 

(T, Tr, x) =TXcIk_m(E)  fo r  f_ffn-a.e, x c R  m. [] 

We conclude this section with two technical lemmas about slices, which will be used 

in w The first one shows that  the slicing operator, when iterated, produces lower- 

dimensional slices of the original current; the second one shows that  in some sense the 

slicing operator and the projection operator commute if the slicing and projection maps 

are properly chosen. 

LEMMA 5.8 (iterated slices). Let TcT~k(E)UNk(E), l<.m<k, ~ c L i p ( E , R  "~) and 
Tt=(T, Tr, t). Then, for any nE[1, k -m]  and any ~ E L i p ( E , R  n) we have 

(T,(Tr,~),( t ,y))=(Tt,~,y)  for s ( t , y ) E R  m+~. 

Proof. The proof easily follows by the characterization of slices based on (5.7). [] 

LEMMA 5.9 (slices of projections and projections of slices). Let rnC[1, k], n>m, 
SET~k(E), ~ c L i p ( E , R  '~-'~) and ~rcLip(E,R '~) .  Then 

q#((~,Ir)#S,p,t) = ~ # ( S ,  7r, t) for f~m-a.e, t c R  m, 
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where p: Rn--+R m and q: R n - + R  n-m are respectively the projections on the last m co- 
ordinates and on the first n - m  coordinates. 

Proof. Set r  let f d ~ - E / ) k - m ( R  n-m) and let g c C ~ ( R  m) be fixed. By the 

same argument used in the proof of Theorem 5.6 (ii) we need only to prove that  

/Rmg(x)q#(r  dT)dx= / R g ( x ) ~ # ( S ,  Ir, t)( f dT)dx. (5.17) 

Using (5.7) we obtain that  the right-hand side in (5.17) is equal to 

R g ( x  (S, x}(fo d(To~)) dx : S(fo d~Ad(ToV) ). 7T, B g o ~  

On the other hand, a similar argument implies that  the left-hand side is equal to 

i R g ( x ) ( r  x ) ( f  oqd(roq) ) dx = r  oq.gopdpAd(T oq) ) 

= S ( f  o~.go~ d~ Ad(To~) ) 

because q o r  and p o r  [] 

We conclude this section by noticing that  in the special case when k=m and ~ = ~  

an analogous formula holds with p equal to the identity map, i.e. 

(~#S,p,x)  =~#(S ,~ , x )  for/:k-a.e,  x c R  k. (5.18) 

6. C o m p a c t n e s s  in B a n a c h  spaces  

In the compactness theorem for normal currents seen in the previous section, the exis- 

tence of a given compact set K containing all the supports of Th is too strong for some 

applications. This is the main motivation for the introduction of a weak* convergence 

for normal currents in dual Banach spaces, which provides a more general compactness 

property, proved in Theorem 6.6. 

Definition 6.1 (weak* convergence). Let Y be a w*-separable dual space. We say 

that  a sequence (Th)CMk(Y)  w*-converges to T c M k ( Y ) ,  and we write T h a T ,  if 

Th(fdzr) converge to T( fd~)  for any fd~rEI)k(Y) with f and u~ Lipschitz and w*- 

continuous. 

The uniqueness of the w*-limit follows by a Lipschitz extension theorem: if A is w*- 

compact and f is w*-continuous, we can extend f preserving both the Lipschitz constant 

and the w*-continuity. 
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THEOREM 6.2. Let Y be a w*-separable dual space, let A c Y  be w*-compact and let 

f: A-+ R be Lipschitz and w*-continuous. Then, there exists a uniformly w*-continuous 

map f: Y - + R  such that f l A = f ,  sup I l l= su p  If] and L i p ( f ) = L i p ( f ) .  

Proof. Of course, we can assume f (A)C [0, 1]. Using compactness (and metrizability) 

of the w*-topology on any bounded subset of Y we find a sequence {Un}n>~O of w*- 

neighbourhoods of zero such that  

I f (x ) - f (y ) l<.2-~+Lip( f )d i s t l l . l l (x -y ,  Un) i f x ,  y e A ,  n>>.O. (6.1) 

Clearly, we can also modify this sequence (gradually replacing the U~ by smaller sets if 

necessary) in a way that  additionally 

U o = Y  and Un+I+Un+ICUn for alln~>O. (6.2) 

For x E Y we define 

dl(x) := inf{2-n : x e Un}, d2(x) := min{2dl(x),  Lip(f)Ilxll }. 

Due to (6.2) we have dl(x+y)<.2max(d~(x),dl(y)) for any pair of points x,y. This im- 

plies by induction With respect to n that  dl (}-~.~ xi) ~< 2 41 (xn) provided da (x a) < dl (x2) < 

...<dl(xn). We prove also by induction in n that  dl(~lXi)<2}-]~dl(Xi)  for any 

x l , . . . , xnEY.  Indeed, if all values dl(xi) are different, then this is a consequence of 

what was just said. But if dl(xn-a)=dl(Xn) then the estimate dl(xn-1)+d](xn)>~ 

dl(Xn-l-t-Xn) shows that  the claimed inequality follows from the induction assumption 

n-2 

Now we put for any x E Y 

d(x) := inf { 

We note that 

n - - 2  

< 2 Z dl(Xi)~-2dl(xn-1 ~-Xn)" 
1 

d2 x : x =  xi . 
i = 1  " =  

I f ( x ) - f ( y ) l  <~d(x-y) whenever x, y e A .  (6.3) 

n To see this take an arbitrary representation x - y = ~ l  zi. We define S to be the set of 

those indices i such that  d2(zi) =2dl(zi), and put  z = ~ i e s  zi, 2 = x - y - z .  Then 

Lip(f)  11211 ~< y~, Lip(f)Ilzill = Z d2 (zi). 
~ts i~ts 
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Moreover, Y'~ics d2(zi)=2 ~ E s  d,(zi)>jd,(z). Since I f ( x ) -  f(Y)l <~dl(z)+Lip(f)Ilzll due 

to (6.1), we just established (6.3). 

Finally, we define our function ] by 

](x) := inf f ( y ) + d ( x - y ) .  
yEA 

Since obviously Id (x -y ) -d (2-y ) l<~d2(x-2)  for any x ,2 ,y ,  we see that  ](x)-](5=)<~ 

d2(x-2)<.Lip(f)[[x-21[. Hence L i p ( f ) = a i p ( f ) ,  and due to the w*-continuity of dl at 

zero the function f is a uniformly w*-continuous one. Moreover, the condition (6.3) 

ensures that  f ( x ) = f ( x )  for each xeA .  The function min{f(x) ,  1} satisfies all stated 

conditions. [] 

In the following proposition we state some basic properties of the w*-eonvergence. 

PROPOSITION 6.3 (properties of w*-convergence). Let Y be a w*-separable dual 

space and let ( T h ) c M k ( Y )  be a bounded sequence. Then 
(i) the w*-limit is unique; 

(ii) Th ~ T implies M (T) ~< lim infh M (Th); 
(iii) w*-convergence is equivalent to weak convergence if all currents Th are supported 

on a compact set S. 

Pro@ (i) The uniqueness of the limit obviously follows from (ii). 

i in E and functions f i cLip(E)  with To prove (ii) we fix 1-Lipschitz functions 7rj 

Ifd~<l, for i=1 ,  ...,p. By (3.7) we need only to show that  

P 

E T(f i  d~r i) <~ liminf M(Th). 
h--+c~ 

i = 1  

Let e>0  and let K ~ C Y  be a compact set such that  [ITII(Y\Ke)+IIOTH(Y\K~)<c; since 

the restrictions of f~ and 7r i to K~ are w*-continuous we can find by Theorem 6.2 w*- 

continuous extensions fi~, ~r}~ of fiIg~, 7r}ln~. As the condition Y~i I fi~l~ < 1 need not be 

satisfied, we define f i t  = qi (fl~,..., fp~), where q: RP--+ R p is the orthogonal projection on 

the convex set ~ i  Izil ~< 1. The convergence of Th to T implies 

P P 

T(]~ dTr~) = lira ~ Th(L~ dTr~) <~ li~n inf M(Th). 
i = 1  i = 1  

^ 

Since f ~= f~ i= f i  on K~, by letting e$0 the inequality follows. 

(iii) The equivalence follows by Theorem 6.2 and the locality property (3.6). [] 

Another link between w*-convergenee and weak convergence is given by the following 

lemma. 
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LEMMA 6.4. Let X be a compact metric space, let C h C X  and jhCLiPl(Ch, Y)  with 

s u p { l l j ~ ( x ) ,  : x c cA, h e N }  < ~ .  

Let us assume that (Ch) converge to C in the sense of Kuratowski and that j: C-+Y 

satisfies 

Xh(k) ECh(k)--+X ~ w*-limjh(k)(Xh(k))=j(x). (6.4) 
k --~ oe 

Then, j c L i p l ( C , Y  ) and Sh--+S implies that j h # S h ~ j # S  for any bounded sequence 

(Sh)cNk(X)  with spt ShCC h. 

Proof. The w*-lower semicontinuity of the norm implies j E L ip l (X  , Y) and clearly 

spt S c C .  Let f :  Y--+R be any w*-continuous Lipschitz map; we claim that  for any Lip- 

schitz extension ] of f oj we have suPc h I f o j h -  ]!--+0; in fact, assuming by contradiction 

tha t  Ifojh(Xh)--f(xh)l>/C for some c > 0  and XhCCh, we can assume that  a subsequence 

(Xh(k)) converges to xeC,  and hence that  ](Xh(k)) converge to ](x)=foj(x);  on the 

other hand, jh(k)(Xh(k)) w*-converge to j (x) ,  hence f~ converge to foj(x),  

and a contradiction is found. 

Let now f d~rcT~k(Y) with f and 7ri Lipschitz and w*-continuous, and let ] ,  #i be 

Lipschitz extensions of foj ,  Irioj respectively with ] bounded; notice that  

jh#Sh( f  d~r)--j#S(f d:r) = [Sh(fojh d(Trojh))-- Sh( / d~)] + [Sh( / d ~ ) - S ( ]  d#)]. 

The equi-continuity of normal currents and the uniform convergence to 0 of f ~  and 

7riojh--(ri on Ch imply that  the quantity in the first square bracket tends to 0; the second 

one is also infinitesimal by the weak convergence of Sh to S. [] 

Definition 6.5 (equi-compactness). A sequence of compact metric spaces (Xh) is 

called equi-compact if for any ~>0  there exists N c N  such tha t  any space Xh can be 

covered by at most N balls with radius a. 

Using the equi-compactness assumption and the Gromov-Hausdorf f  convergence of 

metric spaces (see [31]), Theorem 5.2 can be generalized as follows. 

THEOREM 6.6 (weak* compactness).  Let Y be a w*-separable dual space, let (Th)C 

N k ( Y )  be a bounded sequence, and assume that for any a > 0  there exists R > 0  such that 

Kh = BR (0) N spt Th are equi-compact and 

sup IIThll(Y\Kh)+llOThll(Y\K~) < c. 
hEN 

Then, there exists a subsequence (Th(k)) w*-converging to some T E N k ( Y ) .  Moreover, 

T has compact support if spt Th are equi-bounded. 
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Proof. Assume first that  sp tTh are equi-bounded and put Kh=sptTh; since Kh 
are equi-compact, by Gromov's  embedding theorem [31], possibly extracting a subse- 

quence (not relabelled), we can find a compact  metric space X and isometric immersions 

ih:Kh--+X. By our extra assumption on Kh the maps  jh=ih I are equi-bounded in 

ih(Kh), and we denote by B a closed ball in Y containing all sets jh(X). Let d~ be a 

metric inducing in B the w*-topology; since Y=(B, d~) is compact,  possibly extracting 

a subsequence we can assume the existence of a compact  set C c X  and of j:  C--+B such 

tha t  Ch=ih(Kh) converge to C in the sense of Kuratowski and (6.4) holds (for instance, 

this can be proved by taking a Kuratowski limit of a subsequence of the graphs of jh  in 

X • B). By Theorem 5.2 we can also assume that  the currents Sh = ih#Th weakly converge 

as h-+oc to some current S. By Lemma 6.4 we conclude tha t  Th=jh#Sh w*-converge to 

T=j#S. 
If  the supports  are not equi-bounded, the proof can be achieved by a s tandard 

diagonal argument  if we show the existence, for any r  of a sequence Th still satisfying 

the assumptions of the theorem, with spt Th equi-bounded and M(Th-Th)(Y) <r These 

currents can be easily obtained setting Th =Th L BRh(0), where RhE (R, R +  1) are chosen 

in such a way tha t  M(OTh)(Y) are equi-bounded. This choice can be done using the 

localization lemma with ~ ( x ) =  IIx]]. [] 

7. Metr ic-space-valued BY-funct ions  

In this section we introduce a class of BV-maps u: Rk-+S, where S is a metric space. We 

follow essentially the approach developed by L. Ambrosio in [4] but, unlike [4], we will 

not make any compactness assumption on S, assuming only that  S is weakly separable. 

If  S = M 0 ( E )  we use a Lipschitz approximation theorem for metric-valued BV-maps to 

prove in Theorem 7.4 the rectifiability of the collection of all a toms of u(x), as x varies 

in (almost all of) R k. 

Let (S,d) be a weakly separable metric space and let ~cLipb(S ) be a countable 

family such that  

d(x,y) = sup I~v(x)-~(y)] for all x, yeS. (7.1) 

Definition 7.1 (functions of metric bounded variation). We say tha t  a function 

u: R k - + S  is a function of metric bounded variation, and we write u E M B V ( R  k, S), if 

~ouCBVloc(R k) for any ~C9 t- and 

IIDull := V ID(~ou)l < ~ .  
~o E..T 



CURRENTS IN METRIC SPACES 41 

Notice that  in the definition above we implicitly make the assumption that  ~ou is 

Lebesgue-measurable for any ~ E Lip 1(S); since S is a metric space, this condition is easily 

seen to be equivalent to measurability of u between R k, endowed with the a-algebra of 

Lebesgue-measurable sets, and S, endowed with the Borel a-algebra. Notice also that,  

even in the Euclidean case S = R  m, the space MBV is strictly larger than BV, because 

not even the local integrability of u is required, and is related to the class of generalized 

functions with bounded variation studied in [22], [55]. 

The class MBV(l~ k, S) and HDuI[ are independent of the choice of ~ ;  this is a direct 

consequence of the following lemma. It is also easy to check that  u E M B V ( R k , R )  if 

ueBVloc(R k, R)  and ]Dul(R k) <oo, and in this case IIDun =IOn[. 

LEMMA 7.2. Let f cL ipb (S  ) be as in (7.1), and let uEMBV(Rk, S) and ~E 
Lipl(S)MLipb(S ). Then r  k) and 

ID(Oou)l~ V ID(~ou)l. 
~E.T" 

In particular, IIDull =V{ID(~~ : ~ELipl(S)MLiPb(S) }. 

Pro@ Let us first assume k = l .  Let A c R  be an open interval and let v: A--+R be 

a bounded function. We denote by Lv the Lebesgue set of v and put tDvl(A)=+oo if 

v~BVloc(A). It can be easily proved that  

p--1 

whenever s  and NDA\Lv.  Choosing 

N : =  (A\L~o~)U U [(A\L~,ou)U{tEA: ]D(vou)[({t}) >0}] 
qoE~" 

we get 

Ir162 <~ sup ]~ou(ti+l)-~ou(t~)] <<. ]lDuil((ti+l,t~)) 

whenever ti, t~+l E A \ N .  Adding with respect to i and taking the supremum, we obtain 

that  ]D(~ou) I(A) can be estimated with HDull (A). By approximation the same inequality 

remains true if A is an open set or a Borel set. 

In the case k > l  the proof follows by the l-dimensional case recalling the following 

facts (see [23, 4.5.9(27) and 4.5.9(28)] or [4]): first 

1Dvl = V ID,vl for all vEBVloc(R k) (7.2) 
uESk-1 



42 L. A M B R O S I O  A N D  B. K I R C H H E I M  

and the directional total variations IDvvl can be represented as integrals of variations on 

lines, namely 

IDvvl = /  Vu(x,v)dT{k-l(x) for all y E S  k- l ,  
J T [ ~  

where Try is the hyperplane orthogonal to v, u(x, ~,)(t)-:u(x+tv) and 

Vu(x,,)(B):= IDu(x, ,) i({t:x+tveB}) for all BEB(Rk ) .  

Hence, for yES  k-1 fixed and v = r  using (1.8) of [4] to commute the supremum with 

the integral we get 

ID.vl=/ Vv(x,~)dTik-l(x)<<. f. V Y~ou(X,')d~k-l(x) 

= V f V~oo~(X,v)dnk-l(x) = V ID(~~ 

Since v is arbitrary the inequality IDvl <~ IIDul[ follows by (7.2). [] 

Given uEMBV(R k, S), we denote by MDu the maximal function of [[DuI[, namely 

IIDull(B~(x)) MDu(x) := sup 
p~,O O2k~ k 

By the Besicovitch covering theorem, s can be easily estimated from above 

with a dimensional constant times IIDull(Rk)/~; hence MDu(x) is finite for s 
The following lemma provides a Lipschitz property of MBV-functions (reversing the roles 

of R k and S, an analogous property can be used to define Sobolev functions on a metric 

space, see [a3], [34]). 
LEMMA 7.3. Let (S,d) be a weakly separable metric space. Then, for any uE 

MBV(R k, S) there exists an s set N c R  k such that 

d(u(x), u(y)) <<. c[MDu(x)+MDu(y)] Ix-y! for all x, y �9 R k \ g  

with c depending only on k. 

Proof. Any function wEBVloc(R k) satisfies 

Iw(x)-w(y)l <,. c(k)[MDw(x)+MDw(y)]]x-yl for all x, yELw, 

where L~ is the set of Lebesgue points of w; this is a simple consequence of the estimate 

1 Is Iw(z)-w(x)l fo ~ IDwl(Bt~ dt<~ MDw(x) 
wkek Q(~) Iz_x I dz <<. wk(te) k 
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for any ball B e ( x ) c R  k centered at some point xCLw (see for instance (2.5) and The- 

orem 2.3 of [5]). Taking into account (7.1) and the inequality MDu>~MD(~ou), the 

statement follows with N =  R k \ N ~ j =  L~o~. [] 

In the following we endow Lipb(E ) with the fiat norm F ( r  kbi+Lip(r and, 

by duality, we endow the space M0(E) with the flat norm 

F(T) := sup{T(r r e Lipb(E), f ( r  4 1}. 

If E is a weakly separable metric space it is not hard to see that  M0(E) is still weakly sep- 

arable. In fact, assuming E=l  r162 (up to an isometric embedding of M0(E) into M0(l~)) ,  

by Theorem 6.2 and Lemma 2.9 we see that  

F(T) = sup{T(r CeLip*(E)AB~(E),  F(r ~< 1} 

= sup{T(r n >~ 1, r G s F(r ~< 1}, 

where Lip*(E) is the vector subspace of w*-continuous functions in Lip(E), and ff-n(E) 

is the subspace consisting of all functions depending only on the first n coordinates of x; 

since all the sets {r163162 are separable, when endowed with the topology' 

of uniform convergence on bounded sets, a countable subfamily is easily achieved. 

THEOaEM 7.4 (rectifiability criterion). Let E be a weakly separable metric space, 

let S = M 0 ( E )  be endowed with the fiat norm and let TE MBV(R k, S). Then, there exists 

an gk-negligible set N c R  k such that 

~ K : =  U { x � 9  ll({x})>0} 
zERk\N 

is contained in a countably 7-tk-rectifiable set for any compact set KC E. 

Proof. Let N 1 c R  k be given by Lemma 7.3 with S= M0 ( E) ,  N=N1U{MDT=c~},  

K C E  compact and E, (f>0. For simplicity we use the notation Tz for T(z), while Tz(r 

will stand for f E r  dT~. 

We define Z~,~ as the collection of points z G R k \ N  such that  MDT(z)< 1/2E and 

1 IITzll({x}) >r 

for any xEK.  Setting T~,~={x�9 for some zEZ~,5}, we notice that  

7~/(=U~,~>0 T~,~; hence it suffices to prove that  ~ , ~  is contained in a countably 7-/k- 

rectifiable set. 

Denoting by B any subset of T~,~ with diameter less than ~, we now check that  

3c(k)(5+1) iz_ z,i (7.3) d(x, x') <~ r 
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whenever x, x ' � 9  B, tlT~ il ({x}) and IIT~, ii({x'}) for some z, z ' c  z~,~. In fact, setting 

d=d(x,x')<.~, we can define a function r equal to d(y,x) in Bd(x), equal to 0 in 

E\B2~(x) with sup ir  , L ip( r  since 

ITz(r ~ �89 [Tz,(r >~Ed-�89 

we get 

�89 x') <~ ITz,(r162 ~< c (k ) (5+ l ) [ z - z ' l .  
s 

By (7.3) it follows that  for any zcZc,~ there exists at most one x=f(z)EB such that  

IITzll({x})~>~; moreover, denoting by D the domain of f ,  the map f :  D-+B is Lipschitz 

and onto, and hence B is contained in the countably s/k-rectifiable set f(D). A covering 

argument proves that  74~,~ is contained in a countably ~k-rectifiable set. [] 

Actually, it could be proved that,  for a suitable choice of N, the set T~K is universally 
measurable in E, i.e., for any #CA~(E) it belongs to the completion of/~(E) with respect 

to it. The proof follows by the projection theorem (see [23, 2.2.12]), checking first that  

the set 

n ~  := { (z, x) �9 (R k \ g )  • K :  flTz II ({z}) > 0} 

belongs to B(R k) | and then noticing that  7~F( is the projection of ~ :  on E. Since 

the projection theorem is a quite sophisticated measure-theoretic result, we preferred to 

state Theorem 7.4 in a weaker form, which is actually largely sufficient for our purposes. 

8. C losure  an d  boundary -rec t i f i ab i l i t y  t h e o r e m s  

In this section we prove the classical closure and boundary-rectifiability theorems for 

integral currents, proved in the Euclidean case by H. Federer and W.H. Fleming in [24] 

(see also [58], [61]). Actually, we prove a more general closure property for rectifiable 

currents with equi-bounded masses and sizes, proved in the Euclidean case by F. J. Alm- 

gren in [1] using multivalued function theory. We also provide new characterizations of 

integer-rectifiable currents based on the Lipschitz projections. 

The basic ingredient of our proofs is the following theorem, which allows us to 

deduce rectifiability of a k-current from the rectifiability of its 0-dimensional slices (for 

Euclidean currents in general coefficient groups, a similar result has been obtained by 

B. White in [62]). The proof is based on Theorem 7.4, the slicing theorem and the key 

observation, due to R. Jerrard in the Euclidean context (see [36]), that  x~-+ (T, ~, x) is a 

BV-map whenever T e  Nk(E) and ~ELip(E,  Rk). 
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THEOREM 8.1 (rectifiability and rectifiability of slices). Let TCNk(E). Then TE 
7~k(E) if and only if 

for any 7rELip(E, Rk),  (T, Tr, x)ET~o(E) for s x E R  k. (8.1) 

Moreover, TeIk(E) if and only if (8.1) holds with I0(E) in place of ~o(E). 

Proof. Let 7r C Lip (E, R k) with Lip (Tri) ~< 1; we will first prove that for any T E Nk (E) 

the map x~Tx=(T,  ~r, x) belongs to M B V ( R  k, S), where S as in Theorem 7.4 is M0(E)  

endowed with the flat norm. Let CEC~(R  k) and r  ) with f(r  using (3.2) 

we compute 

= 0T(r162 d#i) - T ( r  dCAd~-~) 

<~ I[OTl[(r162 

where 

d~ri = dTrl A... A d~i- 1 A dTri+ 1 A... A dTrk. 

Since ~ is arbitrary, this proves that  x~-fT~(r belongs to BVloc(R k) and 

InTx (r ~< kTr# I[T[[ + kTr# [[ aT[[. 

Since r is arbitrary, this proves that T~ E M B V ( R  a, S). 

Now we consider the rectifiable case. By Theorem 5.7, the rectifiability of T implies 

the generic rectifiability of T~. Conversely, let L be a a-compact set on which ][T[[ is 

concentrated; by Theorem 7.4 there exists an Ek-negligible set NC R k such that 

U {yEL:][Tz[[({y})>O} 
x~Rk\N 

is contained in a countably 7-/k-rectifiable set R , .  Now, if TxE~o(E) for L]k-a.e. x, by 

(5.9) we infer 

IITL d~l[ (E \ • , )  = IITL dTrll ( L \ n , )  = fR~ IIT~ II (L \ 7~,) dx = O. 

Hence, TLdTr is concentrated on a countably 7/k-rectifiable set for any ~rcLip(E, Rk). 

By Lemma 5.4 this implies the same for T, and hence T is rectifiable. 

Finally, we consider the integer-rectifiable case. The proof is straightforward in the 

special case when E - - R  k and p--Tr: E-+R k is the identity map (in this case, representing 

T as ~0], (T, 7r, x) is the Dirac delta at x with multiplicity O(x) for Ek-a.e. xCRk) .  
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In the general case, one implication follows by Theorem 5.7. Conversely, let us 

assume that  the slices of T are generically integer-rectifiable. For A � 9  and ~ � 9  

Lip(E, R k) given, from (5.18) and (5.15) we infer 

<~#(TLA) ,p ,  x> = ~# (TLA, ~, x> : ~ # ( ( T ,  ~, x>LA) �9 2:o(R k) 

for s x E R  k, whence ~ # ( T L A ) e Z k ( R k ) .  [] 

Remark 8.2. Analogously, if E is a w*-separable dual space we can say that  TE 

T~k(E) (resp. T E Z k ( E ) ) i f  

<T, Tr, x) eT~0(E) (resp. :T0(E)) for s x e R  k 

for any w*-continuous map 7rELip(E, Rk). In fact, this condition implies that  TLdTr is 

concentrated on a countably 7-/<rectifiable set for any such 7r, and Lemma 5.4 together 

with Theorem 6.2 imply the existence of a sequence of w*-continuous Lipschitz functions 

~ri: E--+R k such that 

IITI1 : V tlTLd~rill - 
i C N  

We also notice that  in the Euclidean case E = R  n it suffices to consider the canonical 

linear projection and correspondingly the slices along the coordinate axes (in fact, our 

notion of mass is comparable with the Federer-Fleming one, see Appendix A). 

The following technical proposition will be used in the proof, by induction on the 

dimension, of the closure theorem. 

PROPOSITION 8.3. Let ( T h ) C N k ( E )  be a bounded sequence weakly converging to 

T ENk(E)  and let 7reLip(E). Then, for s t e R  there exists a subsequence (h(n)) 

such that ((Th(n),Tr, t)) is bounded in Nk-I (E)  and 

lim (Th(n), 7r, t> = <T, It, t>. 
n - - + O O  

In addition, if ThCTik(E) and S(Th) are equi-bounded, the subsequence (h(n)) can be 

chosen in such a way that S((Th(~), 7r, t)) are equi-bounded. 

Proof. We first prove the existence of a subsequence h(n) such that  (Th(~), 7r, t I 

converge to (T, Tr, t} for s t c R .  Recalling Proposition 5.6(iii), we need only to 

prove that  

lira Th(n)L{'rr>f~}=TL{Tr>t}, lim aTh(n)L{Tr>t}=STL{~r>t} (8.2) 
n - -~  oo  n ---~ c , o  
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for s t e R .  Let #h=Tr#(]]Th]]+]]OTh]]) and let #h(n) be a subsequence w*-converging 

to # in R.  If t is not an atom of #, noticing that  

lira lira sup []]Th(~)]] + ]]OTh(n)]] ] (Tr- 1(It - 6, t+6])  ~< lira #([t-- 6, t+5])  = 0, 
550 n--+oc 550 

and approximating X{~>t} by Lipschitz functions we obtain (8.2). As 

JR f lim inf N((Th(,~),~, t))dt  <<. l i m ~ f  f N((Th(n),Tr, t / ) d t  <<. Lip(Tr)sup N ( S h ) <  (X3 

n--+(x~ J R  h c N  

we can also find for s t E R  a subsequence of ((Sh(n),r,t)) bounded in N k - I ( E ) .  

If the sequence (S(Th)) is bounded we can use (5.16) and a similar argument to obtain 

a subsequence with equi-bounded size. [] 

Remark 8.4. If E is a w*-separable dual space the same property holds, with a similar 

proof, if weak convergence is replaced by w*-convergence, provided lr is w*-continuous. 

Now we can prove the closure theorem for (integer-)rectifiable currents, assuming 

as in [1], the existence of suitable bounds on mass and size. Actually, we will prove in 

Theorem 9.5 that  for rectifiable currents T whose multiplicity is bounded from below 

by a > 0  (in particular, the integer-rectifiable currents) the bound on size follows by the 

bound on mass, since S(T)<<.kk/2M(T)/a. 

THEOREM 8.5 (closure theorem). Let (Th) C Nk ( E) be a sequence weakly converging 

to TcNk(E) .  Then, the conditions 

ThCT~k(E), sup N(Th)+S(Th)< Oc 
h c N  

imply TET~k(E), and the conditions 

Th EZk(E), sup N(Th) < oc 
h E N  

imply TEZk(E). 

If  E is a w*-separable dual space the same closure properties holds for w*-conver- 

gence of currents. 

Proof. We argue by induction with respect to k. If k=0,  we prove the closure 

theorem first in the case when E is a w*-separable dual space and the currents Th are 

w*-converging. 

Possibly extracting a subsequence we can assume the existence of an integer p, points 

x 1, ..., x p and real numbers a 1, a p such that  ""~ h 

P 
i i Th(f) = ~ a h f ( x h )  for all h e N .  (8.3) 

i = 1  
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We claim that  the cardinality of spt T is at most p. Indeed, if by contradiction spt T 

contains q = p + l  distinct points Xl, ..., xq, denoting by X the linear span of xi we can find 

a w*-continuous linear map p: E--+X whose restriction to X is the identity, and consider, 

for r>O sufficiently small, the pairwise disjoint sets Ci=p-t(BT(xi)). Since q>p we can 

find an integer i such that  C~NsptTh=~ for infinitely many h, and since xiCCi the 

contradiction will be achieved by showing the lower semicontinuity of the mass in Ci, 

namely 

}ITII(C~) <~ l iminf  ]]ThH(C~) =0 .  (8.4) 
h--+oa 

Let f :  E--+ [ -1 ,  1] be any Lipschitz function with support  contained in Ci, and let fk: E-+ 
[ -1 ,  11 be w*-continuous Lipschitz functions converging to f in Zl(lITll) (see Theo- 

rem 6.2). Choosing a sequence (r such that  Cn>~0 and C n • X B r ( x )  w e  get 

T(fkCnop) = lim Th(fkr <~ l iminf  IIThlI(C~). 
h--+ cxD h --+ oo 

Letting first kj'cx) and then nj 'oc,  we obtain IT(f)l<~liminfh IIThll(Ci), and since f is 

arbi t rary we obtain (8.4). In the case when Th are integer-rectifiable, since the cardinality 

of sptTh is p, for any x C s p t T  we can easily find a w*-continuous Lipschitz function 

f :  E--+ [0,1] such that  f ( x ) = l ,  f ( y ) = 0  for any yesp tT\{x} ,  and {O<f<l} does not 

intersect spt Th for infinitely many  h (it suffices to consider p +  1 functions fj of the form 

gjop such that  { 0 < f j  < 1} are pairwise disjoint). Hence 

P 

E ahf(Xh) a~=T(f)  = lim Th(f)= lim i i 
h--+oo h--+ cx) 

i = 1  

is an integer. 

In the metric case the proof could be easily recovered using the isometric embedding 

of the closure of the union of sptTh into loo; we prefer, however, to give a simpler 

independent proof, not relying on Theorem 6.2. If  x 1, ..., x n are distinct points in sp tT ,  

we can find ~>0  such that  the balls B~(x i) are pairwise disjoint and obtain from the 

lower semicontinuity of mass tha t  

BE(xi)AsptThT~O for all i = l, ..., n, 

for h large enough. This implies tha t  T is representable by a sum ~ a~6~ with at  most  

p terms, and hence TcT~o(E). In the integer case we argue as in the proof of the closure 

property for w*-convergence. 

Let now k~>l and let us prove that  T fulfils (8.1): let ~rELip(E, Rk),  let L be 

a a -compact  set on which T is concentrated, and set 7r=(Tr1,Tr') with 7 r ' : E - + R  k- l ,  

S=Tkd~rl, Sh-~ThL_dTrl and 

St := <T, ~rl, t), Sht := <Th, 7h, t>. 
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By Proposition 8.3 we obtain that,  for /:l-a.e. t c R ,  the current St is the limit of a 

bounded subsequence of (Sht), with S(Sht) equi-bounded. Hence, the induction as- 

sumption and Theorem 5.7 give that  St~T2,.k_I(E ) for l:l-a.e, t c R .  For any such t, 

(St, ~r', y) �9 ~0  (E) for s  i_a.e" y C R k- 1. By Lemma 5.8 we conclude that  

and hence that 

(T, 7r, x) = (St, 7r', y) for Ek-a.e. x = (y, t) E R k, 

(T, Tr, x)GT~o(E) f o r E k - a . e . x = ( y , t ) G R  k. 

Since ~r is arbitrary this proves that  T is rectifiable. If Th are integer-rectifiable the proof 

follows the same lines, using the second part  of the statement of Theorem 8.1. 

Finally, if E is a w*-separable dual space, the same induction argument based on 

Remark 8.4 gives 

(T, zr, x)ET~o(E) for/:k-a.e,  x E R  k, 

for any w*-continuous map %cLip(E,  Rk). Using Remark 8.2 we conclude. [] 

THEOREM 8.6 (boundary-rectifiability theorem). Let k >~ 1 and let T � 9  Ik(E). Then 
OT�9 Ik- l(E).  

Proof. We argue by induction on k. If k = l ,  by Theorem 4.3 (i) we have only to show 

that  OT(XA)�9 Z for any open set A c E .  Setting ~(x)=dis t (x ,  E \ A )  and At={~>t} ,  we 

notice that  

cgT(XA~) = 0TL  At( l )  = O(TLAt)(1)+(T, ~, t)(1) = (T, ~, t)(1) �9 Z 

for El-a.e. t>0 .  By the continuity properties of measures, letting t$0 we obtain that  

OT(XA)=OT(x{~o>o}) is an integer. 

Assume now the statement true for k~> 1, and let us prove it for k +  1. Let 7r= 

(Th, #)CLip(E,  R k) with 7heLip(E) ,  # c L i p ( E ,  R k- l )  and St=(T, ~h, t); the currents 

St are normal and integer-rectifiable for El-a.e. t � 9  R,  and hence 

(OT, ~r~, t) = - O ( T ,  ~rl, t) = - O S t  �9 I~_I(E) 

for z:l-a.e, t c R  by the induction assumption. The same argument used in the proof of 

Theorem 8.5, based on Lemma 5.8, shows that  (OT, r, x) �9  for/:k-a.e,  x � 9  R k. By 

Theorem 8.1 we conclude that  OTCIk(E). [] 

As a corollary of Theorem 8.1, we can prove rectifiability criteria for k-dimensional 

currents based either on the dimension of the measure-theoretic support or on Lipschitz 

projections on R k or Rk+l; we emphasize that  the current structure is essential for the 

validity of these properties, which are false for sets (see the counterexample in [7]). 
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THEOREM 8.7. Let TENk(E) .  Then TETtk(E) if and only if T is concentrated on 

a Borel set S a-finite with respect to 7t k. 

Proof. Let ~ E L i p ( E , R  k) and S ' c S  with 74k(S')<oc; by Theorem 2.10.25 of [23] 

we have 

/R n ~  dx < c(k )[Lip(~)]kTtk(S ') < cx), 
k 

and hence S 'An-I (x )  is a finite set for /:k-a.e. x E R  k. Since S is a-finite with respect 

to 7-/k we obtain that  SMTr-l(x) is at most countable for s x E R  k. Hence, the 

currents <T,r,x>, being supported in SnTr-l(x),  belong to ~0(E)  for Lk-a.e. x E R  k, 

whence TE ~k (E). [] 

THEOREM 8.8 (rectifiability and rectifiability of projections). Let TE Nk(E).  Then 

(i) TEZk(E) if and only if r  k+l) for any CELip(E, Rk+I); 

(ii) TEZk(E) if and only if ~ # ( T L A ) E Z k ( R  k) for any ~ E L i p ( E , R  k) and any 

AEB(E); 

(iii) if E is a finite-dimensional vector space then TET~k(E) if and only if r  

~ k ( R  k+l) for any CELip(E, Rk+l) .  

Proof. (i) Let ~ELip(E,  R k) be fixed. By Theorem 8.1 we need only to prove that  

Tx = (T, r ,  x) are integer-rectifiable for/:k-a.e, x E R k. Let S be a a-compact set on which 

T is concentrated, let ,4 be the countable collection of open sets given by Lemma 5.5, 

and let us denote by ~A, for AEM, the distance function from the complement of A. 

By applying Lemma 5.9 with n = k + l  and ~=~A we obtain an s set 

NC R k such that  

~A#Tx = q# ((~A, 7r)#T, p, x) E Zo(R) 

for any A E A  and any x E R k \ N .  In particular, for any x E R k \ N  we have 

Tx(XA)=~A#Tx(X(O,~))EZ for all A E A ,  

and, by our choice of .4, the same is true for any AE B(E). Then, the integer rectifiability 

of Tx follows by Theorem 4.3 (i). 

(ii) By Theorem 8.1 we need only to show that, for 7rELip(E, R k) given, Ek-almost 

all currents Tx = {T, u, x) are integer-rectifiable. Let A be given by Lemma 5.5; by (5.15) 

and (5.18) we can find an Ek-negligible set N c R  k such that  

~# (Tx L_ A) = ~# (T t_ A, ~, x) = (~# (T t_ A ), p, x) E Zo (R k) 

for any x E R k \ N  and any AE.A. By Lemma 5.5 we infer that  

T~(A)=T~LA(1)=~#(T~LA) (1 )EZ  for all AEB(E) ,  xcRk\g. 
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The integer rectifiability of T~ now follows by Theorem 4.3 (i). 

(iii) Assuming E = R  N, the proof is analogous to that  of statement (i), using the 

countably many maps f~,a of Lemma 4.4. [] 

9. Rec t i f i ab l e  c u r r e n t s  in B a n a c h  spaces  

In this section we improve Theorem 4.6, recovering in w*-separable dual spaces Y the 

classical representation of Euclidean currents by the integration on an oriented rectifiable 

set, possibly with multiplicities. Moreover, for TE T~k (Y), we compare ]ITII with 7-l k t_ ST 
and see to what extent these results still hold in the metric case. 

The results of this section depend on some extensions of the Rademacher theorem 

given in [38] and [7]. Assume that  Y is a w*-separable dual space; we proved that  any 

Lipschitz map f :  A c R k - + Y  is metrically and w*-differentiable L:k-a.e., i.e. for L:k-a.e. 

x c A  there exists a linear map L: Rk-+Y such that  

w*-lim f ( y ) -  f ( x ) -  L(y -  x) = 0 

and, at the same time, 

lim IIf(Y)-f(x)ll-IIL(y-x)ll = 0 .  

Notice that  the second formula is not an obvious consequence of the first, since the 

difference quotients are only w*-converging to 0. The map L is called w*-differential and 

denoted by wd~f, while IILII is called metric differential, and denoted by mdxf. The 

metric differential actually exists/2k-a.e, for any Lipschitz map f from a subset of R k 

into any metric space (E, d), and is in this case defined by 

mdxf(v) := lim d(f(x+tv), f(x)) for all v E R k. 
t ~ 0  Itl 

This result, proved independently in [38] and [40], has been proved in [7] using an iso- 

metric embedding into l~  and the w*-differentiability theorem. 

(1) Approximate tangent space. Using the generalized Rademacher theorem one can 

define an approximate tangent space to a countably 7-/k-rectifiable set S c Y  by setting 

Tan(k)(S,f(x)):=wd~f(R k) for s xEAi 

whenever f~ satisfy (4.1). It is proved in [7] that  this is a good definition, in the sense 

that  7-tk-a.e. the dimension of the space is k and that  different choices of fi  produce 
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approximate tangent spaces which coincide 7-Lk-a.e. on S: this is achieved by comparing 

this definition with more intrinsic ones, related for instance to w*-limits of the secant 

vectors to the set. Moreover, the approximate tangent space is local, in the sense that  

Tan(k)(Sl,x) =Tan(k)(S2,x)  for ~k-a.e. xES~nS2 ,  

for any pair of countably "t/k-rectifiable sets $1, $2. 

(2) Jacobians and area formula. Let V, W be Banach spaces, with dim(V)=k,  and 

L: V - + W  linear. The k-Jacobian of L is defined by 

wk _ 7-lk({L(x): x �9 B1}) 
Jk(L)  := 7{k({x : [iL(x)l[ << 1}) Wk 

It can be proved that  Jk satisfies the natural product rule for Jacobians, namely 

Zk (LoM) = Jk(L)  Jk (M)  (9.1) 

for any linear map M: U-+V. If s is a seminorm in R k we define also 

~dk 

Jk(s) := nk({x: s(x) 1))" 

These notions of Jacobian are important  in connection with the area formulas 

xEf -1(y)  

for any Borel function O: Rk-+ [0, c~] and 

A O( f (x) ) Jk(md~f)  dx =- /E  O(Y) 7-I~ AN f - I (Y )  ) d~lk(Y) (9.3) 

for A � 9  k) and any Borel function 0: E--+[0, co]. 

(3) k-vectors and orientations. Let 7=TIA...ATk be a simple k-vector in Y; we 

denote by L~: Rk -+Y the induced linear map, given by 

k 

L~(Xl,. . . ,Xk):=~-~XiT~ for all x e R  k. 
i=l 

We say that  7 is a unit k-vector if L~ has Jacobian 1; notice that  L~ depends on the 

single 7-i rather than the k-vector T, so our compact notation is a little misleading. It is 

justified, however, by the following property: 

~-=AT' ~ Jk(n~)=]AIJk(L~,  ). (9.4) 
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This property follows at once from the chain rule for Jacobians, noticing that  we can 

represent L~ as L~,oM for some linear map M:Rk- -+R k with Jk(M)=IA I. The same 

argument proves that  any simple k-vector ~- with Jk (L~)>0  can be normalized dividing 

7-~ by constants A~>0 such that  I]~ A~=Jk(L~). We also notice that  (9.1) gives 

I det(L~ (rj)) I = Jk (Lo L~) = Jk (L) (9.5) 

for any unit k-vector ~- and any linear function L: span~--+R k. 

An orientation of a countably 7/k-rectifiable set S c Y  is a unit simple k-vector 

~-=~-1A...A~-k such that  Ti(x) are Borel functions spanning the approximate tangent space 

to S for Hk-almost every xES. 

(4) k-covectors and tangential differentiability. Let Z be another w*-separable dual 

space, let SC Y be a countably 7-/k-rectifiable set and let 7rcLip(S, Z). Then, for 7-/k-a.e. 

x~S the function 7r is tangentially differentiable on S and we denote by 

dSTr: Tan(k)(S, x) --+ Z 

the tangential differential. This differential can be computed using suitable approximate 

limits of the difference quotients of 7r, but for our purposes it is sufficient to recall that  

it is also characterized by the property 

wdy(Trof) =d~(y)lrowdyf for Ek-a.e. yeD, (9.6) 

whenever f :  DcRk-+S is a Lipschitz map. Clearly in the case Z=R p the map dSTr 

induces a simple p-covector in Tan(k)(S, x), whose components are the tangential differ- 

entials of the components of 7r; this p-covector will be denoted by Ap dST" Notice that,  

in the particular case p=k, (9.6) gives 

det(V(Tro/)(y)) = (Akd~(y):r, Tv) for s yeD, (9.7) 

where (- ,. ) is the standard duality between k-covectors and k-vectors, and 

~-y = wdyf(el)A...Awdyf(ek). 

Taking into account the chain rule for Jacobians, from (9.7) we infer that  

Jk(dS:r)= 'det(V(Tr~ < ~-Y l 
J k ( L ~ )  = AkdSTr, for/:k-a.e,  yeD, 

with x=f(y). Since f :  D--+S is arbitrary we conclude that  

Sk(d =) = for 7-/k-a.e. xeS,  (9.8) 

where a is any orientation of S. 
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The following result shows that, as in the Euclidean case, any rectifiable k-current in 

a w*-separable dual space is uniquely determined by three intrinsic objects: a countably 

7/k rectifiable set S, a multiplicity function 0 >0 and an orientation T of the approximate 

tangent space (notice, however, that in the extreme cases k = 0  and k=m, E = R  m, we 

allow for a negative multiplicity, because in these cases the orientation is canonically 

given). 

THEOREM 9.1 (intrinsic representation of rectifiable currents). Let Y be a w*- 

separable dual space and let TET~k(Y) (resp. TEZk(Y)) .  Then, there exist a countably 

7-lk-rectifiable set S, a Borel function 0: S--+(O, c~) (resp. 0: S--+N+) with f s  0 dT-I k < oc, 

and an orientation T of S, such that we have 

T ( f  dTrlA...AdTrk) = Jfs f (x)0(x)(Ak d~STr, T} dT-lk(x) (9.9) 

for any f dTrcl)k(Y). Conversely, any triplet (S,O,T) induces via (9.9) a rectifiable 
current T. 

Proof. Let us first assume that T=~#~g] for some g c L I ( R  k) vanishing outside of 

a compact set C and some one-to-one function ~ELip(C,  Y). Let L = ~ ( R  k) and let ~- 

be a given orientation of L; by (9.7) we get 

det (V(~ro ~a)(y)) = ( Ak dL(y)7~, ~y} Jk (wdy~) 

for lr = (71-1, . . .  , 7rk) E Lip(Y, Rk), where 

wdy~a(el)A...Awdy~a(ek) e {T~(y),--T~(y)} 
~Y = Jk (wdy~a) 

and el, ..., ek is the canonical basis of R k. Defining a ( y ) = l  if Uy and ~-~(y) induce the 

same orientation of Tan(k)(L, W(y)), and a(y )=-1  if they induce the opposite orientation, 

the identity can be rewritten as 

det (V(~ro ~)(y)) = a (y) (Ak dL(y)~, T~(y)) Jk (wdy~). 

By applying the area formula and using the identity above we obtain 

T ( f  dTrl A... Adlrk) = s  g(f~ ~) det(V(Tro ~)) dy 
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for any f d~ET)k(Y). Setting 

O(x):= ~ g(y)a(y), (9.10) 
yc~-l(x) 

possibly changing the sign of ~- (which induces a change of sign of a) we can assume that  

0~>0. Setting S=LN{O>O} the representation (9.9) follows. The case of a general current 

TET~k(Y) easily follows by Theorem 4.5, taking into account the locality properties of 

the approximate tangent space. 

Conversely, if T is defined by (9.9) then T has finite mass and the linearity and the 

locality axioms are trivially satisfied; the continuity axiom can be checked first in the 

case E = R  k (see Example 3.2), then in the case when S is bi-Lipschitz-equivalent to a 

compact subset of R k and then, using Lemma 4.1, in the general case. [] 

We will denote by IS, 0, ~-] the current defined by (9.9). In order to show that  the 

triplet is uniquely determined, modulo 7-tk-negligible sets, we want to relate the mass with 

~kk_S and with the multiplicity 0. As a by-product, we will prove that  S=ST, modulo 

7-/k-negligible sets. The main difference with the Euclidean case is the appearance in the 

mass of an additional factor ~v (V being the approximate tangent space to S),  due to 

the fact that  the local norm need not be induced by an inner product. 

Let V be a k-dimensional Banach space; we call ellipsoid any set R=L(B), where 

B is any Euclidean ball and L: R k -+V  is linear. Analogously, we call paraUelepiped any 

set R=L(C), where C is any Euclidean cube and L:Rk--+V is linear. We will call area 
factor of V and denote by Av the quantity 

2 k { 7-Lk(BI) } 
~v := - -  sup : VDR DB1 parallelepiped (9.11) 

~k ?-tk(R) 

where B1 is the unit ball of V. The computation of Av is clearly related to the problem 

of finding optimal rectangles enclosing a given convex body in R k (in our case the body 

is any linear image of B1 in R k through an onto map). The first reference we are aware 

of on the area factor is [11]. The maximization problem appearing in the definition of 

the area factor has also recently been considered in [9] in connection with Riemannian 

geometry and in [55] in connection with geometric number theory. In the following lemma 

we show a different representation of Av, and show that  it can be estimated from below 

and from above with constants depending only on k; the upper bound is optimal, and 

we refer to [51] for better  lower bounds. 

LEMMA 9.2. Let V be as above. Then 

,~v =sup{Jk~  : ~---- (~1, ..., ~k): V - + R  k linear, Lip(~i) ~ 1}. 
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Moreover, A v = l  if B1 is an ellipsoid, AV=2k/wk if B1 is a parallelepiped, and in general 

k -k/2 <<.~v <<.2k/~k. 

Proof. We can consider with no loss of generality only onto linear maps ~; notice 

that  the parallelepiped {v: maxi I~i(v)] ~< 1} contains B1 if and only if maxi Lip(~i) ~< 1. 

Taking into account the area formula we obtain 

2 k 

Jk~ = 7.[k({v: maxi I~i(v)] ~< 1})' 

and this proves the first part of the statement, since 7{k(B1):Wk. 

Any parallelepiped R c V  can be represented by ~ - I (W)  for some parallelepiped 

W C R  k. Since, by translation invariance, /:k is a constant multiple of ~#7-/k, we obtain 

that  Av is also given by 

- -  sup : R k D W D C" parallelepiped 
~ok t:k(W) 

where C=~(B1). If B1 is an ellipsoid so is C, and an affine change of variables reducing 

C to a ball, together with a simple induction in k, shows that  the supremum above is 

equal to 1. If B1 is a parallelepiped, choosing W = C  we see that  the supremum is 2k/wk. 

Due to a result of John (see [52, Chapter 3]) C is contained in an ellipsoid E such 

that  f_.k(E)~kk/2f.k(C); this gives the lower bound for Av. [] 

Remark 9.3. The area factor can be equal to 1 even though the norm is not induced 

by an inner product; as an example one can consider the family of Banach spaces Vy 

whose unit balls are the hexagons in R 2 obtained by intersecting [-1,  1] 2 with the strip 

- t < y - x < t ,  with tC[1, 2]. It is not hard to see that  l r A y t = 4 - ( 2 - t ) ~ ;  hence there exists 

t0c(1,  2) such that  Ay~o=l. Moreover, for t--1 the area factor equals 3/w, and in [51] it 

has been proved that  Ay>~3/rr for any 2-dimensional Banach space V. 

COROLLARY 9.4. Let Y be a w*-separable dual space and let IIk(Y) be the collection 

of all w*-continuous linear maps 

71" = (71-1, . . . ,  71"k): Y ~  R k 

with rciELip(Y) and dim(Tr(Y))=k. There exists a sequence (TrJ)CIIk(Y) such that 

Lip(rcJ)=t for any iC{1, ..., k}, j E N  and 

sup ak(rrJlv) = sup {ak(lrlv):  rrE Hk(Y), Lip(rri) ~< 1} 
j ~ N  

for any k-dimensional subspace VC Y.  

Proof. In Lemma 6.1 of [7] we proved that  IIk(Y), endowed with the pseudometric 

~ ( . , . ' )  := sup I I - (x) l -I~' (x) l  1, 
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is separable. Since "Y(~h, 7r)-~0 implies 

n ({veV: I (v)l 1})= 

we obtain that  

lim Hk({vEV: [rrh(v)[ ~< 1}) 
h--coo 
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03k 

7r ~ Jk(YrlY)= ~ k ( { v e V :  17r(v)l ~ 1}) 

is 3,-continuous, and the statement follows choosing a dense subset of 

{~r e IIk(Y): Lip(Tri) = 1}. [] 

Using Corollary 9.4, and still assuming that  Y is a w*-separable dual space, we can 

easily get a representation formula for the mass of a rectifiable current. 

THEOREM 9.5 (representation of mass). Let T= IS, 0, T~ ETCk(Y). Then 

IITII - -  OATt k LS,  

where A(X)=~Taz(k)(S,x ). In particular, S is equivalent, modulo ~k-negIigible sets, to the 
set ST in (4.2). 

Proof. The inequality ~< follows by (9.9) and Lemma 9.2, recalling that  by (9.8) 

k 

[(Ak dSTr, T}I = Jk(dsTr) ~< A(x) H Lip(hi). 
i = l  

In order to show the opposite inequality we first notice that  for any choice of 1-Lipschitz 

functions 7h, ..., ~k: Y--+R we have 

IIT[[/> +0(Ak dSTr, ~-} "]Lk L S, 

whence lIT H ~0Jk (dSyr)7t k L S.  Now we choose 71 j according to Corollary 9.4; since any 

real-valued linear map from a subspace of Y can be extended to Y preserving the Lipschitz 

constant (i.e. the norm) we have 

)~v = sup Jk(~rJIv) 
j E N  

for any k-dimensionM subspace VC Y, and hence 

]]T1] ~ V OJk(dSTrJ)7"LkLS=OsupJk(dSTrJ)7-lkLS=OATan(~)(S,~)~'LkLS. 
J J 
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Now we consider the case of a current TET~k(E) when E is any metric space; let 

S=ST as in (4.2) and let us assume, without any loss of generality, that  E is separable. In 

this case, as explained in [7], an approximate tangent space to S can still be defined using 

an isometric embedding j of E into a w*-separable dual space Y (Y=l  ~,  for instance), 

and setting 

Tan(k)(S,x) :=Tan(k)(j(S),j(x)) for 7-gk-a.e. xES .  

This definition is independent of j and Y, in the sense that  Tan(k)(S, x) is uniquely 

determined "]-/k-a.e. up to linear isometrics; hence Tan(k)(s, x) can be thought ~k-a.e .  

as an equivalence class of k-dimensional Banach spaces. Since the mass is invariant 

under isometries and the area factor Av is invariant under linear isometries, by applying 

Theorem 9.5 to j # T  we obtain that  

IITll = 0AT~.(~>(s,. ) ~ k a S  

and T is integer-rectifiable if and only if 0 > 0  is an integer Ha-a.e.  on S. 

In order to formulate the proper extension of Theorem 9.1 to the general metric case 

we need the following definition: we say that  two oriented rectifiable sets with multiplic- 

ities ($1,01, T1) and ($2, 0:, T~) contained in w*-separable dual spaces are equivalent if 

there exist S~cSz, S~cS2 with Hk(SI\S~)=Ha(S~\S~)=O and an isometric bijection 

f: S~ +S~ such tha t  01=O~of and 

dSlf:(~h(x))A...AdSlf:(Tk(x)) =T~(X)A...A'c~(x) for all xeS[ .  (9.12) 

We can now state  a result saying tha t  any TENk(E)  induces an equivalence class of 

oriented rectifiable sets with multiplicities in w*-separable dual spaces; conversely, any 

equivalence class can canonically be associated to a rectifiable current T. 

THEOREM 9.6. Let TET~k(E) and let S,O be as above. For i=1 , 2 ,  let ji:E--+Yi be 
isometric embeddings of E into w*-separable dual spaces Yi, and let Ti be unit k-vectors 
in Y~ such that 

j i# T = ~jl ( S ), Ooj~ - ~, 7i~. 

Then (jz(S), OOjl 1, ~-1) and (j2(S), Ooj21, T2) are equivalent. 
Conversely, if ( S, O, ~-) and ( S', O', T') are equivalent, and f : S--+ S' is an isornetry 

satisfying O=O'of and (9.12), then 

f#~S,O, 7~=~S',Oof-l,7'~. 

Since our proofs use only the metric s tructure of the space, we prefer to avoid the 

rather  abstract  representation of rectifiable currents provided by Theorem 9.6; for this 

reason we will not give the proof, based on a s tandard blow-up argument,  of Theorem 9.6. 
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We now consider the properties of the slicing operator,  proving that  it preserves the 

multiplicities. We first recall some basic facts about  the coarea formula for real-valued 

Lipschitz functions defined on rectifiable sets. 

Let X be a k-dimensional Banach space and let L: X - + R  be linear. The coarea 

factor of L is defined by the property 

S_~o T-lk-l(AOL-l(x)) dx C~(L)7-tk(A) = for all A e B ( X ) .  

In [7] we proved tha t  if L is not identically 0 the coarea factor can be represented as a 

quotient of Jacobians, namely 

e l ( L )  .-- Jk(q) 
J k - l ( P )  

with q(x)= (p(x), L(x)) for any one-to-one linear map p: K e r ( L ) - + R  k- t .  Using (9.5) we 

obtain also an equivalent representation as 

I<Ak-lp,r el(L)= I<Akq, >l, (9.13) 

where ~- is any unit k-vector in X,  and ~-' is any unit ( k -  1)-vector whose span is contained 

in Ker(L),  with no restrictions on the rank of p and the rank of L; moreover, representing 

~- as T'Ae for some eEX,  since we can always choose a one-to-one map  p we obtain 

CI (L)  = IL(e)l- (9.14) 

Let now Y be a w*-separable dual space, let S c Y  be a countably 74k-rectifiable 

set and let lr: S--+R be a Lipschitz function. Then, we proved in [7] tha t  the sets S~= 

SN~r-l(y)  are eountably 7-/k-Lrectifiable and 

Tan(k-1)(Sy,x) =Ker(dSrr)  for 7-/k-l-a.e. x E S  v 

for s yERn; moreover 

L 
for any Borel function 0: S-+  [0, oc]. 

THEOREM 9.7 (slices in w*-separable dual spaces). Let T=~M,O,T]E~k(Y)  and 

let 7reLip(Y, Rm),  with m<<.k. Then, for E'~ a.e. x e R  m there exists an orientation ~-~ 

of M n ~ r - l ( x )  such that 
(T, 7r, x) = ~MnTr- l (x) ,  0, Vx~. 
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Proof. By an induction argument based on Lemma 5.8 we can assume that  m = l .  

Let fdpc:Dk-l(Y) and set M~=MM~r-I(x); by the homogeneity of T~-+Jk(Lr) we can 

assume that 7-(y) is representable by ~(y)AT~(y), with 7~(y) a unit (k -1) -vec tor  in 

Tan(k-1)(Mx, y) for 7~k-l-a.e. yCM~, and for l :La . e .x .  Taking into account (9.13), and 

possibly changing the signs of T~ and ~, we obtain 

( A k - 1  dy ~I'p, Ttx(Y)) e l (dM7r )  = (Ak  dVq, T(y)) for 7-/k-La.e. y E Mx, 

f o r / : L a . e . x .  Using the coarea formula we find that  

TI_ (r dlr(f dp) =/MOr dMq, T) dT-I k 

= / a  r z) ~iz, 0, T'z] ( f dp) dz 

for any CECc(R) .  From statement (ii) of Theorem 5.6 we can conclude that  (T, Tr, x) 
coincides with ~Mx, 0, T~ for / : l -a .e ,  xE R.  [] 

10. Generalized Plateau problem 

The compactness and closure theorems of w easily lead to an existence result for the 

generalized Plateau problem 

min{M(T)  : TE Ik+I(E), OT = S} (10.1) 

in any compact metric space E for any SEIk(E) with 0S=0 ,  provided the class of 

admissible currents is not empty. It may happen, however, that  the class of rectifiable 

currents is very poor, or that  there is no TCIk+I(E) with OT=S. 
In this section we investigate the Plateau problem in the case when E=Y is a Banach 

space, not necessarily finite-dimensional. Under this assumption the class of rectifiable 

currents is far from being poor, and the cone construction, studied in the first part of the 

section, guarantees that  the class of admissible T is not empty, at least if S has bounded 

support. 

For t>~0 and f :  Y - + R  we define ft(x)=f(tx), and notice that  Lip(ft)=t Lip(f)  and 

]Oft/Oti(x)<~ ]lxll Lip(f)  for s  t > 0  if f c L i p ( Y ) .  
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Definition 10.1 (cone construction). Let SC Mk(Y) with bounded support; the cone 

C over S is the (k+l)-metr ic  functional defined by 

kd-1 j01 ( 07tit ) 
C(fdTr):=E(-1)i+l  S ft~7-dgrit dt 

i~l 
where, by definition, d~i=dqlA...Adqi-lAdqi+lA...Adqk+l. We denote the cone C by 

S x [0, 1]. 

The definition is well posed because for s t>~O the derivatives Orrit/Ot(x) exist 

for lISll-a.e, xEY. This follows by applying Fubini's theorem with the product measure 

liSi j •163 because for x fixed the derivatives Orrit/gt(x) exist for s  t~>O. In general 

we can not say that  S x  [0, 1] is a current, because the continuity axiom seems hard to 

prove in this generality. We can, however, prove this for normal currents. 

PROPOSITION 10.2. /jr SENk(Y) has bounded support then Sx  [0, 1] has finite mass 
and M(Sx[0 ,  1])~<RM(S), where R is the radius of the smallest ball BR(O) containing 
spt S. Moreover, Sx[0, 1]ENk+I(Y) and 

O(Sx [0, 1]) = -OSx [0, 1] +S.  

Proof. Let f &rCTPk+l(Y) with 7riCLipl(Y); using the definition of mass we find 

io'/  ISx[O, 1](f &r)l~R(k+l) t k lftldllSlldt. 

This proves that  f~-+Sx[O, 1](f&r) is representable by integration with respect to a 

measure. We also get 

/0' IlSx[O, 1}II(A)~<R(k+I) tkllSll(A/t)dt for all AeB(Y), 

and therefore M ( S x  [0, 1]) ~<RM(S). 

In order to prove the continuity axiom we argue by induction on k. In the case k=O 

we simply notice that  

~x[0,1](fdTl) :f01 / fQ~ft--~ 07[t d') d t - ~ f  fl~ 07rt dt) Jr.- 

and use the fact that,  for bounded sequences (uj)cwl,~176 1), uniform convergence 

implies w*-convergence in L~176 1) of the derivatives. Assuming the property true for 
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(k-1)-dimensional currents, we will prove it for k-dimensional ones by showing the iden- 

t i ty 

O(S x [0, 1])(f dTr) = -OS x [0, 1] (f dTr)+S(f dTr) (10.2) 

for any fdTrE:Dk(Y). 
We first show that  t~-~S(ft dTrt) is a Lipschitz function in [0, 1], and that  its derivative 

is given by 

for s t>0.  Assume first that,  for t>0,  Oft/Ot and 07qt/Ot are Lipschitz functions 

in Y, with Lipschitz constants uniformly bounded for t c  ((~, 1) with 5>0; in this case we 

can use the definition of boundary to reduce the above expression to 

S ( ~ t  dTrt)+s ft "07rit - ' ) (10.4) 

Under this assumption a direct computation and the continuity axiom on currents show 

that  the classical derivative of t~-+S(ft dTrt) is given by (10.4). In the general case we 

approximate both f and 7ri by 

where e~ are convolution kernels with support in (�89 2), w*-converging as measures to ~1. 

By Fubini's theorem we get 

lim Of[ ( ~ ~t ~ 01tit e-co Ot ,x, = (x), s-~olim (x) = ~ -  (x) for (llSll+llOSll)-a.e. x, 

for s t~>0. Hence, we can use the continuity properties of currents to obtain Z:l-a.e. 

convergence of the derivatives of t~S( f[  dTrf) to (10.3). As 

O(S• [0, 1])(f dTr)+OS• [0, 1](f dr) 

is equal to the integral of the expression in (10.3) over [0, 1], and S(f0 dTr0)=0, the proof 

of (10.2) is achieved. 

Now we can complete the proof, showing that  S x  [0, 1] satisfies the continuity axiom. 

Let fi, 7r i be as in Definition 3.1 (ii) and let us prove that  

lim Sx[0 ,1] ( f  i i i dTrl A...Ad~rk+l) = S•  [0, 1](f dTrlA...AdTrk+l). 
i -+oo  
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i=~vj for every i, we argue Denoting by p the cardinality of the integers j such that ~rj 

by reverse induction on p, noticing that the case p = k + l  is obvious, by the definition of 

mass. To prove the induction step, assume that i _ 7r~.- ~ for every i and for any j = 2,..., p, 

and notice that 

S x  [0, 1](ff dTr~Ad'k~) = S •  [0, 1 ] ( ( i f - f )  d~Ad~)  

+ O ( S x  [0, 1 ] ) ( f ~  d~-~)-S•  [0, 1](w~ dfAd~ril). 

The first term converges to 0 by the definition of mass, the second one converges to 

O(Sx [0, 1])(fTrl d~rl) by (10.2) and the continuity property of OS• [0, 1], and the third 

one converges to - S x  [0, 1] (Tr dfAd~rl), by the induction assumption. Since the sum of 

these terms is S •  [0, 1](f dTr), the proof is finished. [] 

In general the stronger Euclidean cone inequality 

M ( S x  [0, 1]) ~< ~ + 1  M ( S )  (10.5) 

does not hold, as the following example shows. 

Example 10.3. Let Xp be R 2 endowed with the /P-norm and define Ap, Bp as the 

area factor of Xp and the l-dimensional Hausdorff measure of the unit sphere of Xp, 
respectively. We claim that 7rAp is strictly greater than 1 ~Bp for p > 2  and p - 2  sufficiently 

small. As equality holds for p=2,  we need only to check that 27rAp>Bp for p=2,  where 

denotes differentiation with respect to p. Denoting by Ap the Euclidean volume of the 

unit ball of Xp (which is contained in [-1,112), we can estimate 

A ~ > 4  lim A p - 2  A~ 
7r p-+2 4 ( p - 2 )  7r 

and hence it suffices to prove that 2A 2~ > B 2.p 

Since Ap = 4 f~ (1 - x p) 1/p dx, a simple computation shows that 

X2 = ~o11V/-~-x2 I 2x21n(1/x) ln (1-x2) l  dx 

(10.6) 
f~/2 

= - 2 ] o  (cos2OlncosO+sin2OlnsinO) dO, 

with the change of variables x=eos  0. 

Now we compute Bp; using the parametrization 0~(cos~/P0,  sin2/P0) of the unit 

sphere of Xp we find 

f~/2 
8 ]0 (cos 2-p 0 sin p 0 + sin 2-p 0 cos p 0) 1/p dO, Bp----p 
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and differentiation with respect to p gives 

f~r /2 
B~ = - I r + 2 ] 0  (sin29-cos29)(lnsing-lncosg)dg. (10.7) 

Comparing (10.6) and (10.7) we find that  2A'2>B ~ is equivalent to 

9~07r/2 [ln sin 9 (6 sin 2 9 -  2 cos 29) + In cos 9 (6 cos 2 9 -  2 sin 29)] d9 < 7r, 

which reduces to f01 in x(4z 2 - 1 ) / ~  dx < ~ 7r by simple manipulations. The value of 

the above integral, estimated with a numerical integration, is less than 0.5, and hence 

the inequality is true. 

The cone inequality (10.5) is in general false even if mass is replaced by size: a 

simple example is the 2-dimensional Banach space with the norm induced by a regular 

hexagon HC R 2 with side length 1. If we take S equal to the oriented boundary of H, we 

find that  S(Sx  [0, 1])=~r, while �89 S(S)=3<7r because on the boundary of H the distance 

induced by the norm is the Euclidean distance. 

Now we prove that  the cone construction preserves (integer) rectifiability. 

THEOREM 10.4. / f  S=~M, 9,~]~ET~zk(Y) then Sx[0,  1]ET~k+I(Y), and it belongs to 

Ik+l(Y) if SEIk (Y ) .  In particular, if McOBI(O) and if we extend both 9 and ~? to the 
c o n e  

C := {tx: te[O, 1],xe M} 

by O-homogeneity we get 

S x  [0, 11 = IC, 0, ~-1 

with 7(x)=(xA~l(x))/Jk+l(L~A~(x)). 

Proof. Let X = R x Y  be equipped with the product metric, let ~=(1 ,0 )EX and 

define N=[0,  1] x M. Since the approximate tangent space to N at (t,x) is generated 

by e and by the vectors (0, v) with veTan(k)(M,x), setting a=(0 ,  yl)A...A(0,~k) the 

( k + 1) -vector 

Jk+l(Le^~(x)) 

defines an orientation of N, and we can set R=~N, 9,~-~cTik+I(X). We will prove that  

S x  [0, 1] =j#R,  where j(t, x)=tx.  In fact, denoting by p(t, x)=t  the projection on the 

first variable, by (9.14) we get 
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Hence, using the coarea formula we find 

j # R ( f  d~r) = IN O(x) f ( tx)(Ak+ l dy(~roj), ~} dT-L k+l 

O(x) f ( tx)(Ak+l dN(lroj), ~Aa) CNQdT-I k+l 

k§247 )) = O(x)f( tx)(AkdM(#ioj) ,a)  dT{k(x dt 
i=1  

=Z(-1)  dt 
i : 1  

The proof of the second part  of the s ta tement  is analogous, taking into account that  

j :  g - + B 1 ( 0 )  is one-to-one on X \ ( Y x { 0 } ) .  [] 

Coming back to the Pla teau problem, the following terminology will be useful. 

Definition 10.5 (isoperimetric space). We say tha t  Y is an isoperimetric space if for 

any integer k~>l there exists a constant 7(k, Y) such that  for any S E I k ( Y )  with 0S=0 

and bounded support  there exists TEIk+I(Y)  with OT=S such that  

M ( T )  ~< v(k, Y)[M(S)] (k+l)/k. 

We will provide in Appendix B several examples of isoperimetric spaces, includ- 

ing Hilbert spaces and all dual spaces with a Schauder basis. Actually, we do not 

know whether Banach spaces without the isoperimetric property exist or not. For finite- 

dimensional spaces; following an argument due to M. Gromov, we prove tha t  an isoperi- 

metric constant depending only on k, and not on Y, can be chosen. This is the place 

where we make a crucial use of the cone construction. 

We can now state one of the main results of this paper, concerning existence of 

solutions of the Plateau problem in dual Banach spaces. 

THEOREM 10.6. Let Y be a w*-separable dual space, and assume that Y is an 

isoperimetric space. Then, for any SCIk (Y)  with compact support and zero boundary, 

the generalized Plateau problem 

min{M(T)  : T e  Ik+l (Y) ,  OT = S} (10.8) 

has at least one solution, and any solution has compact support. 

Proof. Let R > 0  be such that  spt SCBR(0)  and consider the cone C = S •  [0, 1]. As 

OC=S, this implies that  the infimum m in (10.8) is finite and can be estimated from 
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above with RM(S)_ Let us denote by Ad the complete metric space of all TCIk+I (Y)  

such that  OT=S, endowed with the distance d(T ,T ' )=M(T-T ' ) .  By the Ekeland- 

Bishop Phelps variational principle we can find for any e > 0  a current T~EJtd such that  

M(T~) < ra+E  and 

T~-~M(T)+ed(T,T~), T e M ,  

is minimal at T=T~. The plan of the proof is to show that  the supports of T~ are equi- 

bounded and equi-compaet as ec (0 ,  �89 if this is the case we can apply Theorem 6.6 

to obtain a sequence (T~) w*-converging to TEIk+I (Y) ,  with ei$0. Since OTr 
w*-eonverge to OT we conclude that  OT=S, and hence TE3 4 .  The lower semiconti- 

nuity of mass with respect to w*-convergence gives M(T)~<m, and so T is a solution 

of (10.s). 
The minimality of Te gives 

I+E 
M(T~) ~< ~ M ( C )  ~< 3RM(S).  (10.9) 

As K = s p t  S is compact, the equi-compactness of the supports of T~ follows by the 

estimate 

(3")') -k 0k+l Ilr~ll(Bo(x)) >~ (k+ l )k+ l  for all xEsptT~,  (10.10) 

for any ball Bo(x ) C Y \K,  with ~,=~,(k, Y). In fact, let I o be the open 0-neighbourhood 

of K and let us cover K by finitely many balls Be(yj) of radius 0; then, we choose 

inductively points x~ E spt T~ \ I e in such a way that  the balls Be~2 (xi) are pairwise disjoint. 

By (10.10) and (10.9) we conclude that  only finitely many points xi can be chosen in this 

way; the balls B2o(yj) and the balls Bo(xi ) cover the whole of spt T~. We can of course 

decompose this union of closed balls into connected components. It is easy to see that  a 

component not intersecting K contains a boundary-free part of T~, and hence contradicts 

the minimality assumption for T~. On the other hand, all components intersecting K are 

equi-bounded, and therefore the whole spt T~ is as well. 

In order to prove (10.10) we use a standard comparison argument based on the 

isoperimetric inequalities: let e > 0 and x C spt T~\ K be fixed, set ~ ( y ) =  I ly-xll and 

6 : :  dist(x, K) ,  9(~) : :  IIT~ll(Bo(x)) for all gE (0, 6). 

For /:l-a.e. p>0  the slice (T~, ~, 0) belongs to Ik(Y) and has no boundary; hence, we 

can find REIk+I (Y)  such that  OR=(T~, ~p, O) and 

M(R)  ~< 7[M((T~, ~, Q))](k+l)/k ~ 7[g,(Q)](k+l)/k. 
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Comparing T~ with T~t_ (Y\Be(x))§ we find 

IIT~ II (BAx)) M(R)  +~M(T~ l_ B e (x) - R), 

and hence g(Q) ~< 3~'[g'(p)](k+l)/k. As g(Q) >0 for any g>0,  this proves that  

(3-~)-k/(k+l)Q 
g(Q)l/(k+l) k§ 

is increasing, and hence positive, in (0, 5). 

Finally, proving for any solution T of (10.8) a density estimate analogous to the one 

already proved for T~, we obtain that  spt T is compact. [] 

We conclude this section pointing out some extensions of this result, and different 

proofs. The first remark is that  the Gromov-Hausdorff  convergence is not actually needed 

if Y is a Hilbert space: in fact, denoting by E the closed convex hull of spt S, it can 

be proved that  E is compact; hence (10.1) has a solution TE. If r :  Y ~ E  is the metric 

projection on E, since 7c#S=S we get 

M ( T )  ~>M(Tr#T) i>M(TE) for all TEIk+I(Y), OT=S; 

hence TE, viewed as a current in Y, is a solution of the isoperimetric problem in Y. 

A similar argument can be proved to get existence in some nondual spaces such as 

L I ( R  m) and C(K):  

Example 10.7. (a) L I ( R  m) can be embedded isometrically in Y = M 0 ( R m ) ,  i.e. the 

space of measures with finite total variation in Rm; since Y is an isoperimetric space (see 

Appendix B) and the Radon-Nikodym theorem provides a 1-Lipschitz projection from 

Y to LI(Rm),  the Plateau problem has a solution for any SEIk(LI(Rm)) with compact 

support. 

(b) In the same vein, an existence result for the Plateau problem can be obtained 

in E=C(K), where (K, 5) is any compact metric space; it suffices to notice that  any 

compact family 9 r c E  is equi-bounded and has a common modulus of continuity w(t), 
defined by 

w(t) :=sup{lf(x)-f(y)l : f e ~ - ,  5(x,y) <<.t} for all t~>0. 

Let ~ be the smallest concave function greater than w; since for any s > 0  the function 

c+Mt is greater than w for M large enough, it follows that  ~ (0)=0 ,  and hence ~ is 

subadditive. Using the subadditivity of ~ it can be easily checked that  

f(x) ~ urnei~ [f(y)+~(5(x, y))] 

provides a 1-Lipschitz projection from E into the compact set 

{ f eE:  lifii~ <~ sup eDgily, If(x)- f(Y)l <~ ~(d(x,y)) for all x, yeK}.  
gC.T 

Since any function in 9 v has w ~  as modulus of continuity, the map is the identity on ~-. 
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11. A p p e n d i x  A: Eucl idean currents  

The results of w indicate tha t  in the Euclidean case E = R  m our class of (integer-) 

rectifiable currents coincides with the Federer-Fleming one. In this section we compare 

our currents to flat currents with finite mass of the Federer-Fleming theory. In the 

following, when talking of Federer Fleming currents (shortened to FF currents), k-vectors 

and k-covectors we adopt systematically the notation of [48] (see also [23], [57]) and take 

the basic facts of tha t  theory for granted. Since flat FF  currents are compactly supported 

by definition, we restrict our analysis to currents TC Mk (R  m) with compact  support.  We 

also assume that  k~>l, since M 0 ( R  m) is simply the space of measures with finite total  

variation in R TM. 
We recall that  the (possibly infinite) fiat seminorm of a FF current T is defined by 

F(T)  := sup{T(w):  F(w) < 1} (11.1) 

where the flat norm of a smooth k-covector field w with compact  support  is given by 

F(w) := sup max{llw(x)l]*, Ildw(x)ll*}, 
x E R  m 

and I1" I1" is the comass norm. It  can be proved (see [23, p. 367]) that  

F ( T )  = inf { M ( X ) + M ( Y ) :  X + O Y =  T}. (11.2) 

We denote by F k ( R  m) the vector space of all FF k-dimensional currents with finite mass 

which can be approximated,  in the flat norm, by normal currents. Using (11.2) it can 

be easily proved (see [23, p. 374]) that  F k ( R  m) can also be characterized as the closure, 

with respect to the mass norm, of normal currents. 

In the following theorem we prove tha t  any current T in our sense induces a current 

in the FF sense, and tha t  any TC F k ( R  m) induces a current in our sense. Our conjecture 

is that  actually T c F k ( R m ) ,  and hence tha t  our class of currents with compact  support  

not only includes but coincides with Fk(Rm);  up to now we have not been able to prove 

this conjecture because we do not know any criterion for flatness which could apply to this 

situation. Since the mass of any k-dimensional flat FF  current vanishes on 7-/k-negligible 

sets (see [23, 4.2.14]), this question is also related to the problem, discussed in w of the 

absolute-continuity property of mass with respect to 7-/k. On the other hand, for normal 

currents we can prove tha t  there really is a one-to-one correspondence between the FF 

ones and our ones. 

THEOREM 11.1. 

defined by 

Any T c M k ( R  TM) with compact support induces a FF current 

c~CA(m,k) 
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for any smooth k-covector field w: Rm--+ A k R m with compact support. Moreover, 

M(T) ~< c(m, k)M(T).  

Conversely, any T E F k ( R  m) induces a current T E M k ( R  "~) with compact support 

such that M ( T ) <  M(T).  Finally, T~-~T and TF-+T, when restricted to normal currents, 

are each the inverse of the other. 

Proof. By the continuity axiom (ii) on currents, T is continuous in the sense of 
distributions, and hence defines a FF current. Since 

aCA(m,k)  

we obtain that T has finite mass (in the FF sense) and M(T)~<cM(T), where c is the 

eardinality of A(m, k). 
Conversely, let us define T for a normal FF current T first. Let us first notice that 

any fd~EI)k(Rm),  with I c C ~ ( R  m) and ~ e C ~ ( R m ) ,  induces a smooth k-covector 
field with compact support w: Rm--+Ak R "~, given by 

w=fdThA.. .AdTck= E fde t (0(711 ' ""7rk)  )dxalA. . .Adx~k.  
~cA(,,,k) \O(x~,...,x~k) 

Hence, T ( f  dTr) is well defined in this case. Moreover, since the covectors w(x) are simple, 

the definition of comass easily implies that 

k 

II~(x)ll* If(x)l H Lip(Tri) for all x e R  m. (11.3) 
i=1  

Arguing as in Proposition 5.1, and using (11.3) instead of the definition of mass, if 
Lip(~i)~<l and Lip0r~)~<l it can be proved that 

IT(f  d 7 0 - T ( f '  d~')l ~ < / a , ] f - f '  I dIITIIFF (11.4) 

k 

+i__~l/R.J f' l~i-Tr;l dliOTllFF +Lip(f)/i~. 17ri-Tr;I d"TIIFF, 

where IITIIFF and IIaTIIFF are now understood in the Federer Fleming sense. 

If f dTrE~Dk(R m) we define 

T( f  dTr):= lim0 T(f*Q~ d(Tr*~c)). 
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By (11.4) the limit exists and defines a metric functional multilinear in f d~r: moreover, 

since for ~>0 fixed the map fdTcF-+T(f,o~d(~r,p~)) satisfies the continuity axiom (ii) 

in Definition 3.1, the same estimate (11.4) can be used to show that  T retains the same 

property. Setting w~-=f*o~ d(Tr,p~), by (11.3) we obtain 

IT(fdrc)l =l im IT(w~)l ~ l i m i n f  f llw~(x)ll* dlITIIF F 
e~0 r J R "  

k k 

H Lip(~ri)limsinf JR If*o~idNTliFF= H Lip(~ri)JR IfldHTNFF; 
i = l  m i = l  m 

hence T has finite mass and IITll~<llTlIFF. The locality property T ( f d l r ) = 0  follows at 

once from the definition of iF if f has compact support and one of the functions ~ is 

constant in an open set containing spt f ;  the general case follows now since T is supposed 

to have compact support. This proves that  iF is a k-current. The operator T~-~T can be 

extended by continuity to the mass closure of normal currents, i.e. to Fk(Rm). 

Finally, since T(fd~r)=T(fdTr) if ~ri are smooth, for any normal FF current T we 

get 

T (w)=  E T(w~dx~A"'Adx~k)= E T(w~dx~A'"Adx~k)=T(w)" [] 
( I E A ( m , k )  clEA(m>k) 

12. Appendix B: Isoperimetric inequalities 

In this appendix we extend the Euclidean isoperimetric inequality to a more general 

setting: first, in Theorem 12.2, we consider a finite-dimensional Banach space, proving 

the existence of an isoperimetric constant depending only on the dimension (neither 

on the codimension nor on the norm of the space). Theni using projections on finite- 

dimensional subspaces, we extend in Theorem 12.3 this result to a class of duals of 

separable Banach spaces. The validity of isoperimetric inequalities in a general Banach 

space is still an open problem. 

We start with the following elementary lemma. 

LEMMA 12.1. Let ~7: [0, oo) -+ (0, oo) be an increasing function, let k >12 be an integer 
and c>0. Then, there exist A=A(k,/7(0))<I and T=T(c,k)>O such that 

(~(t)+c[~'(t)]k/(k--i))(k+l)/k+(1--~(t)+c[/~'(t)]k/(k--1)) (k+l)/k > ,~ (12.1) 

s in (O,T) implies /3(T)> 1 

Proof. Let 5=/7(0)>0 and define )~ as sup~e[&U2] r where 

[ 1 \(k+l)/k / 1 \(k+l)/k 
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Since r is strictly convex and r  r189  it follows that  )~<1. Let 

T >  [�89 1/k 

and assume that  (12.1) holds s in (O,T) and •(T_)< 1. 5, the definition of A implies 

that  

2k 

s  in (0, T), and hence 

( 1 )'~-1 k 1 
T [] 

Now, we recall the isoperimetric inequality in Euclidean spaces: for any current 

SE Ik (R ~)  with compact support and zero boundary there exists T EIk+ t (R "~) satisfying 

OT=S and 

M(T)  <~ ~/(k, m)[M(S)] (k+l)/k. 

This result, first proved by H. Federer and W.H.  Fleming in [24] by means of the de- 

formation theorem, has been improved by F .J .  Almgren in [2], who proved that  the 

optimal value of the isoperimetric constant does not depend on m and corresponds to 

the isoperimetric ratio of a (k+l)-disk.  

The proof of the isoperimetric inequality in finite-dimensional Banach spaces follows 

closely an argument due to M. Gromov (see [32, w the strategy is to choose a 

maximizing sequence for the isoperimetric ratio (which is finite, by the Federer-Fleming 

result) and to prove, using Lemma 12.1, that  almost all the mass concentrates in a 

bounded region. Using this fact, the cone construction gives an upper bound for the 

isoperimetric constant which depends only on the dimension of the current. 

THEOREM 12.2. Let k>~l be integer. There exists a constant ~/k such that for 

any finite-dimensional Banach space V and any SEIk(V)  with OS=O there exists TE 

Ik+l(V) with OT=S and 

M(T)  <~ 3,k[M(S)] (k+l)/k. 

Proof. The proof is achieved by induction with respect to k; let a = ( k + l ) / k  and, 

for SCIk(V)  with 0S=0,  define 

3'(S) := inf [M(S)]~ : OT= S 

and "/(0)=0. Since V is bi-Lipschitz-equivalent to some Euclidean space which is known 

to be an isoperimetric space we conclude that  L----suPs 3'(S) is finite. In the following we 
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consider a maximizing sequence (S,~) and normalize the volumes to obtain M ( S n ) = I .  

A simple compactness argument proves the existence of linear 1-Lipschitz maps 7q, ..., 7rN 

in V with the property that  
N 

diam(iA ~r~-'(Li)) ~< 2 

whenever diam(L,)~<l. We define ~(t)=lls.ll(~j'(-~,t)) for any ie{1,  ... ,N} and n 

fixed. 

Step 1. Let k = l ;  we claim that  for any EC(0, 1) there exist closed balls Bn with 

radius less than 4 such that  [[S,[I (Y\Bn)<.~ for n large enough. In fact, for s  t ~ R  

such that  (Sn, 7ri, t )50  we have 

~( t ) />  M((Sn,  7r~, t))/> 1 

by the boundary-rectifiability theorem. On the other hand, if 5E (0, 1), ~i(t) E [�89 1-  �89 
and (S,,  7r~, t}=O we can decompose Sn as the sum of two cycles, 

S,~ 1 2 = S n + S  n = SnL{Tr i  < t } + S n L { T r i  > / t } ,  

to obtain 

~/(S,~) <~ "/(S~)(~i(t) )2 +~/(S2n)(1--~i(t)) 2 <~ L[1+5( �89  < L, 

and this is impossible for n large enough, depending on 5. Hence, setting 5=e/N, ~ >~ 1 
s  i n / : i = { Z i e  [15, 1-�89 }, which implies Ll(Ii)~<l. Our choice of ~ri implies that  

the intersection of 7r~-l(Ii) has diameter at most 2. 

Step 2. Now we consider the k-dimensional case with k~>2 and set c=~/k-1. We 

claim that  for any zE (0, 1) there exist closed balls Bn with radius less than rk=8T(c, k) 
(with T given by Lemma 12.1) such that  IISnll (V\Bn)<.e for n large enough. For this 

purpose we set 5=c/2N and observe that  

(l~i(t)+c[Z~(t)]k/(k--1))a+(1--Zi(t)+c[Z~(t)]k/(k--1)) a > A(k, 5) (12.2) 

for s t a n d n  large enough. In fact, for any t such that  Lt=(Sn, 7ri, t )EIk_l(V) we 

can find by the induction assumption RtEIk(V)  with ORt=Lt and 

M(Rt)  ~< c[M(Lt)] k/(k-1) <. c[~(t)] k/(k-1). 

Writing 
~ n  1 2 = S~+S,~ := (S,~L {Tr < t } -L t )+(Lt+S,L{Tr  >1 t}) 
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if (12.2) does not hold we can estimate ~/(Sn) by 

"7(S�88 ~, 

which is less than LA, and this is impossible if ~/(Sn)/L>;~. Now we fix n large enough, 

set 

t~ := inf{t : ~i(t) >1 5}, si := sup{t:/3i(t) ~< 1 - 5 } ,  

1 a n d / 3 i ( s i - T ) <  1. and obtain from Lemma 12.1 that/3i  (ti + T ) >  ~ 5, hence s i - t i  ~<2T and 

N N 
IlSn[I (g\iO1 71-i-1 ([ti, 8i])) ~ E IlSnll ( g  \71-i-1([ti, 8i])) ~ 2N(~ : 6. 

i=1 

By our choice of N, the intersection of 7r~-l([t~, s~]) has diameter less than 4T, and this 

concludes the proof of this step. 

Step 3. Assuming with no loss of generality that  the balls Bn of Step 2 (or Step 1 

if k = l )  are centered at the origin, we can apply the locMization lemma with ~ ( x ) =  [[x[[ 

to choose tnE(rk, r k + l )  such that  the currents 

L,~ :=  (Sn, ~, tn) = O(SnLBt~) = --O(SnL ( V \ B t ~ ) )  

have mass less than c for n large (Ln=0  if k = l ) ;  by the induction assumption we can 

find currents RnEIk(V) with ORn=Ln and M(Rn)<~C~k/(k-1); we project Rn on the 

ball Btn (0) with the 2-Lipschitz map 

x if Ilxll ~< tn,  

~(x):= tnx/Nxll if  Ilxll>tn, 

to obtain R~ EIk (V) with OR~ = Ln, spt R~n C Btn and M(Rn)  ~< 2kcc k/(k- 1). Writing 

S~ = (SnLBt -R~)+(R~ +S~L(V\Bt . ) )  

and applying the cone construction to Sn L Btn-R~n, for n large enough we obtain 

~/(Sn) ~ (rk + l)(l +2kc~k/(k-1))+ L(2kCCk/(k-1) +~)% 

Letting first n--+cc and then ~--+0 we conclude that  L<~rk+l, and rk depends only 

on k. [] 
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THEOREM 12.3. Let Y be a w*-separable dual space, and assume the existence of 

finite-dimensional subspaces Yn C Y and continuous linear maps Pn: Y-+ Yn, such that 

Pn(x) w*-converge to x as n-+oo for any x E Y .  Then 

inf { M ( T ) :  TC Ik+l(Y),  0 T =  S} ~< %Ck+I[M(S)] (k+l)/k 

for any S E I k ( Y )  with bounded support, where C=su p n  IIP,~II and % is the constant of 

Theorem 12.2. If  S has compact support, the infimum is achieved by some current T 

with compact support. 

Proof. The constant C is finite by the Banach-Steinhaus theorem. Let S E I k ( Y )  

with bounded support, let Sn= P n#S  and notice that by Theorem 12.2 we can find 

solutions T,~ of the Plateau problem 

min{M(T)  : TC Ik+l(Yn), 0 T =  Sn} 

and these solutions satisfy 

g ( T n )  ~ ~k[M(Sn)] (k+l)/k ~ "ykCk+l[M(S)] (k+l)/k. 

Since Yn embeds isometrically in Y we can view Tn as currents in Y and prove, by the 

same argument as in Theorem 10.6 (but using Theorem 12.2 in place of the assumption 

that  Y is an isoperimetric space), that  sptTn are equi-bounded and equi-compact. By 

Theorem 6.6 we can find a subsequence Tn(h) w*-converging to some limit T. Since 

OTn(h) w*-converge to 0T  and Sn(h) w*-converge to S, we conclude that  OT=S, and the 

lower semicontinuity of mass gives 

M ( T )  ~ lim inf M(Th) ~ % C k+l [M(S)](k+l)/k. 
h-+cr  

Finally, since we have just proved that  Y is an isoperimetric space, if S has compact 

support the infimum is a minimum by Theorem 10.6. [] 

Any dual Banach space Y satisfying the assumptions of Theorem 12.3 is an isoperi- 

metric space. These assumptions are satisfied by Hilbert spaces (in this case the optimal 

isoperimetric constant is the same as for Euclidean spaces), dual separable spaces with 

a Schauder basis, and also by some nonseparable spaces such as 1 ~ .  

Also the space Y = M 0 ( R  m) of measures with finite total variation in R TM has the 

isoperimetric property: indeed, let us consider regular grids "F~ in R m with mesh size 

1/n and let us define 

Pn(#) := E nmtt(Q)7-lmLQ for all # c Y .  
QCT,, 
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It is easy to check that  IIPnll=l and that  Pn(#) w*-converge to # as n - -+~  for any # c Y .  

More generally, any dual space Y=X* is an isoperimetric space if X has a Schauder 

basis: in fact, denoting by X~ the n-dimensional subspaces generated by the first n 

vectors of the basis, and denoting by 7r~: X--+Xn the corresponding projections such 

that  I I x - ~ ( x ) l l - ~ 0  for any xCX, we can define 

Pn: Y--+ Yn := {yC Y : yoTrn = y }  

setting Pn(y)=yoTrr~. 

13. A p p e n d i x  C: Mass ,  H a u s d o r f f  m e a s u r e ,  lower  s e m i c o n t i n u i t y  

In this section we assume that  Y is a w*-separable dual space and k~>l is an integer. 

We discuss here the possibility to define lower semicontinuous functionals, with respect 

to the weak convergence of currents, in Ik(Y).  Denoting by Ak Y the exterior k-product 

of Y, and by A~Y the subset of simple k-vectors, any function A: A~Y--+[0, oc) induces 

a functional 9cA on Zk(Y)DIk(Y) :  indeed, recall that  any TEIk(Y)  is representable, 

essentially in a unique way, as IS, 0, 71 through (9.9), with S=ST given by (4.2), 0 integer- 

valued and II~ll.~=l on s ,  i.e. 

k k 

7-lk({i~-i ~=1 for all x E S. 

If T= IS, O, 7-~ we define 

.rA (T) :=/s 0 ),(~-) d?-t k. 

Notice that,  in order to define 5cA, ,~ needs to be defined only on unit simple vectors; for 

this reason all the functions A that  we consider later on are positively 1-homogeneous. 

In the following, for ~-E A~ Y7 ~ 0, v ,  c Y is the k-dimensionM Banach space spanned 

by 7 with the induced metric, and B ,  is its unit ball. Several choices of ,~ are possible, 

and have been considered in the literature. In particular, we mention the following three 

(normalized so that  they agree if Y is a Hilbert space): 
k k k (a) :~l(~-)=ll~-IIm=n ( { E , = l z , ~  : ~i=l z2<l})/wk; 

(b) A2(7)=ArT II~-IIm, where Av is defined in (9.11) (see also Lemma 9.2 for a defi- 

nition in terms of Jacobians); 

(c) A3(~-)=VP(T)IITII,~/aJ~, where VP(T) is the so-calIed volume product of V~ (see 

[59, 2.3.2]). 
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The functional $'1 induced by )`1 is f s  IOI dT-lk, i.e. the Hausdorff measure with mul- 

tiplicities, while, according to Theorem 9.5, the functional ~'2 induced by )`2 is the mass. 

The functional 9v3 induced by ),3 arises in the theory of finite-dimensional Banach spaces 

(also called Minkowski spaces) and is the so-called Holmes-Thompson area; we refer to 

the book by A. C. Thompson [59] and to the book by R. Schneider [56] for a presentation 

of the whole subject; in this context, the function )̀ 1 has been studied by H. Busemann, 

and )`2 has been studied by R.V. Benson [11]. 

Coming to the problem of lower semicontinuity, the following definition (adapted 

from [23, 5.1.2]) will be useful. We recall that  the vector space of polyhedral chains is 

the subspace of Ik(Y) generated by the normal currents ~F, 1, 71 associated to subsets 

F of k-dimensional planes with multiplicity 1. 

Definition 13.1 (semiellipticity). We say that  )`: A~Y~[0, ~) is semielliptic if 

q 

E OiA(Ti)nk(Fi) ~ O~176176 (13.1) 
i = 1  

whenever -- q [Fi, O~,~-i] a T--  ~ =  1 - IFo, 0o, To]] is k-dimensional polyhedral chain satisfying 

0T=0 .  

Since (13.1) is equivalent to 

q 

E .T'~([[F~, 0~, T,~) >1 .T'~(~Fo, 0o, ToD, 
i = 1  

the geometric significance of the semiellipticity condition is that  "fiat" currents To = 

~F0,00, T0~ minimize ~ among all polyhedral chains T with OT=OTo. 
By a simple rescaling argument, it is not difficult to prove that  the semiellipticity of 

)` is a necessary condition for lower semicontinuity of -~ .  At least in finite-dimensional 

spaces Y, using polyhedral approximation results it could be proved, following 5.1.5 

of [23], that  the condition is also sufficient; we believe that,  following the arguments of 

Appendix B, this fact could be proved in greater generality, but we will not tackle this 

problem here. 

Since we know that  the mass is lower semicontinuous, these remarks imply that  

the Benson function )`u is elliptic. We will, however, give a more direct proof of this 

fact in Theorem 13.2 below (this result has been independently proved by A. C. Thomp- 

son in [60]). Concerning the Busemann and Holmes-Thompson definitions, their semi- 

ellipticity is a long-standing open problem in the theory of Minkowski spaces (see [59, 

Problems 6.1.1, 7.1.1]), and it has been established only in the extreme cases k = l ,  

k = d i m ( Y ) -  1; in these cases, as in the theory of quasiconvex functionals, semiellipticity 
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can be reduced to convexity. We also mention, in this connection, the work [10] by G. Bel- 

lettini, M. Paolini and S. Venturini, where the relevance of these results for anisotropic 

problems in calculus of variations is emphasized. 

We define 

1 A(T) := - -  sup {Ck(~(B~-))II~-IIm: ~ �9 A} 
~dk 

for all r e  A~cY\{O}, (13.2) 

where A is the collection of all linear maps U: Y--+R k with L ip0? i )~ l  , i=1 ,  ..., k. By the 

area formula, the function A can also writ ten as 

X(r) = sup {Zk(~)IITIIm : n �9 h}, (13.3) 

and hence Lemma 9.2 gives that  A=A2. 

THEOREM 13.2. The function )~: A~Y-~[0, co) defined in (13.2) is semielliptic. 

Proof. Let T be as in Definition 13.1 and let uEA be fixed; since 

T(1 dr/) = OT(nl &?2 A...A&?k-1) = 0, 

taking into account (9.9) we obtain 

Fo d~-Lk q f " 
i = 1  JF~ 

Since the definition of the Jacobian together with (9.8) imply that  

b2k 

we obtain 

~.kf~k(rl(Bro))7"Lk(Fo) ~ ~--~ ~k~k(vl(Br~))7"gk(Fi). 
i = 1  

This proves that  Oos <~q OiA(Ti)~-lk(Fi). Since ~? is arbitrary, the 

semiellipticity of A follows. [] 
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