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1. I n t r o d u c t i o n  

Suppose that  V is a vertex operator algebra [B1], [FLM]. One of the basic problems is 

that  of determining the so-called n-point correlation functions associated to V. There 

is a recursive procedure whereby n-point functions determine (n+ l ) -po in t  functions [Z], 

so that  understanding 1-point functions becomes important.  In this paper we will study 

the 1-point functions on the torus associated with the moonshine module, which is of 

interest not only as an example of the general problem but because of connections with 

the monster simple group M. 

First we recall the definition of a 1-point function. Let the decomposition of V into 

homogeneous spaces be given by 

V =  ~ Vn. (1.1) 
n~no 

Each vEV is associated to a vertex operator 

Y(v,z) = E v(n)z-n-1 
nEZ 

(1.2) 

with v(n)E End V. If v is homogeneous of weight k, that  is, v E Vk, we write wt v =k.  The 

zero mode of v is defined for homogeneous v to be the component operator 

o(v) = v(wt  v -  1), (1.3) 

and one knows that  o(v) induces an endomorphism of each homogeneous space, that  is, 

o(v): tin -+ Vn. (1.4) 
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The 1-point function determined by v is then essentially the graded trace of o(v) on V. 

More precisely, if V has central charge c we define the 1-point function (on the torus) via 

Z(v,q) =Z(v,T)=tr[VO(V)q L(~ =q-C/24 E (trlv~O(V))qn" (1.5) 
Tt~TtO 

Here, L(0) is the usual degree operator and q may be taken either as an indeterminate 

or, less formally, to be e 2 ~  with T in the upper half-plane 0. If g is an automorphism 

of V we define 

Z(v, g, q) = Z(v, g, T) ---- q-C/24 E (trlv~ o(v)g)qn. (1.6) 

~ ? ~ 0  

These functions can be extended linearly to all v c V  by defining Z(v, g, q)=~~i Z(vi, g, q) 
if v - -~ i  vi is the decomposition of v into homogeneous components. In this way we 

obtain the space of 1-point functions associated to V, namely the functions Z(v, q) for 

vEV. 
In order to state our results efficiently we need some notation concerning modular 

forms. We denote by .%- the C-linear space spanned by those (meromorphic) modular 

forms f(T) of level 1 and integral weight k~>0 which satisfy 

(i) f(T) is holomorphic in 0; 

(ii) f(T) has Fourier expansion of the form 

~ a  n f(T)---- nq ,  ao=O. (1.7) 

Thus f(T) has a pole of order at most 1 at infinity and constant 0. Let M be the 

space of holomorphic modular forms of level 1, and ,~ the space of cusp forms of level 1. 

Thus we have S=.TV)M. 
Among the elements of M are the Eisenstein series Ek (v) for even k ~>4. We nor- 

malize them as in [DLM], namely 

-Bk  2 
Ek('r) : --~7-.I -~ ( k - l ) !  Z a k - l ( n ) q n  (1.8) 

n : l  

with Bk the kth Bernoulli number defined by 

t t k 
-- ~ Bk~.  (1.9) et-_ l 

k=0 

If A//k is the space of forms f(T)E.A~ of weight k then there is a differential operator 

CO: A4k--+.Mk + 2 defined via 

cO = COk: f(T) ~-+ ~ f(T)§ (1.10) 

Here, E2(T) is again defined by (1.8), though E2 is not a modular form. 

By a co-ideal we mean an ideal 2: in the commutative algebra Az[ which also satisfies 

CO(Z) CZ.  
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THEOREM 1. Let V ~ be the moonshine module. The space of 1-point functions 

associated to V~ is precisely the linear space jz defined above. 

As we will explain in due course, it is a consequence of results in [Z] (see also [DLM]) 

that  all l-point functions associated to vectors vCV ~ lie in ~-. The new result here is 

therefore an existence result: for each f(T) E~" there is a vCV ~ such that  Z(v, T)=f (T) .  

Recall next that  V ~ is a direct sum of irreducible highest weight modules M(c, k) 

for the Virasoro algebra Vir. Here, c=24 and for k>0,  M(c, k) is the Verma module 

generated by a highest weight vector vCV~. Thus L(n)v=O for all n>0 ,  where L(n) are 

the usual generators for Vir, and L(O)v=kv. 

The proof of Theorem 1 is facilitated by the next result. 

PROPOSITION 2. Let vEV~k be a highest weight vector of positive weight k. Then 

the following hold: 

(a) Z(v, 7) is a cusp form of weight k, possibly 0; 
(b) The space of l-point functions consisting of all Z(w,'r) for w in the highest 

weight module for Vir generated by v is the O-ideal generated by Z(v, 7-). 

While Proposition 2 actually holds for a wide class of vertex operator algebras, our 

final result is more closely tied to the structure of V ~. It gives us a large set of highest 

weight vectors (for the Virasoro algebra) to which we can usefully apply the preceding 

proposition. 

First recall that  to each A in the Leech lattice A there is a corresponding element 

e ~ in the group algebra C[A] and an element, also denoted e ~, in the vertex operator 

algebra VA associated to A. See [B1], [FLM] and w below for more details. The relation 

of VA to V ~ shows that  e~+e  -~ can be considered as an element of both vertex operator 

algebras. 

THEOREM 3. Let v()~)=e~ +e -~ be as above and considered as an element of V ~. 

Then v (~) is a highest weight vector of weight k = 1 (~, ~}, and if 0 ~ ;~ E 2A then 

Z(V(~),T)=Tl(T)12{(�89 ) __ (103  (T))(~k,A } 12}. (1.11) 

In (1.11), ~(~-) is the Dedekind eta-function, and O1, O2, O3 are the usual Jacobi 

theta-functions (see, for example, [Ch, p. 69]). 

If An={AcA[(A,  A)=2n} then A2=0, so if 0 ~ A c 2 A  then �89 A)=4m with m~>2. 

If rn=2  then Z(v(A),~-) is a cusp form of level 1 and weight 8 by Proposition 2, and 

hence must be 0. Then (1.11) reduces to the identity 01(T)4-'~-O2(T)4--O3(T)4:0, which 

is well known in the theory of elliptic functions (loc. cit.). If m~>3 then one can check that  

Z(v(A), ~-)~ 0 (for example by looking at the coefficient of q in the Fourier expansion), so 
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Z(v(A),T) is a non-zero cusp form of level 1 and weight 4rn--12, 16, 20, .... One knows 

(see, for example, [S]) that  the cusp forms of level 1 and weights 12, 16, 20 are unique up 

to scalar (as are those of weight 18, 22 and 26), and given by A(T), A(~-)E4(T), A(T)Es(~-) 

respectively, where A(T)=rl(T) 24 is the discriminant. Once we know that  A(T) can be 

realized as a 1-point function Z(v, T) for some highest weight vector v, the fact that  

G=A4A(~-) (loc. cit.) together with Proposition 2 then shows that every f(T)E,S can be 

so realized. This in turn reduces the proof of Theorem 1 to dealing with forms which 

have a pole at infinity. 

Our discussion so far has not taken into account the automorphisms g of V ~ (that 

is, elements of the monster). There are some general results, which follow from [DLM], 

which imply that  if vcV~ is homogeneous of weight k with respect to a certain oper- 

ator L[0], then Z(v,g,T) is a modular form of weight k for each g c M .  Moreover, the 

level is the same as that  for the McKay-Thompson series Z(1,g ,  ~-) described in [CN] 

and proved in [B2]. We describe the precise subgroup of SL(2, Z) which fixes Z(v, g, T) 
in Theorem 6.1. 

Group theorists may be disappointed to learn that  if we fix v so that  all Z(v, g, T) 
are modular forms of weight k then in general the Fourier coefficients of the forms (for 

varying g) do not define characters, or even generalized characters. This is so even if 

Z(v, 1, T) has integer coefficients. This does not mean, however, that  these higher weight 

McKay Thompson series are of no arithmetic interest. If we combine our results with 

some calculations of Harada and Lang [HL], for example, we find that  for each of the 

weights k=12, 16, 20 there is a unique vector v in the moonshine module V ~ with the 

following properties: 

(a) v is a highest weight vector for Vir which lies in V, ~ and is monster-invariant; k 

(b) The 1-point function Z(v, T) =q+ . . .  is the unique normalized cusp form of level 

1 and weight k. 

Such a v may be obtained by averaging the vector v(A) of Theorem 3 over the 

monster (AC2Am, ra=3 ,  4 or 5). The unicity of such v makes them entirely analogous to 

the vacuum vector 1, and it is likely that  the trace functions Z(v, g, -r) are of particular 

interest in these cases. 

We can understand the representation-theoretic meaning of the functions Z(v, g, T) 
as follows: since v is monster-invariant then each g commutes with the zero mode o(v) 
and its semi-simple part o(v)s with regard to its action on the homogeneous space V~. 

Thus if o(v)~ has distinct eigenvalues A1,...,At on V~, the corresponding eigenspaces 

V~ 1, ... V~,t are monster modules and the ( n - 1 ) t h  Fourier coefficient of Z(v, g, T) is 
t 

equal to ~=1 Ai trv~ ' g- 

We complete our discussion with two conjectures: 
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(A) For each cusp form f(T)ES of weight k there is a (monster-invariant) highest 

weight vector veV2 with Z(v, v)=f(w); 
(B) If Z(v, ~-) is a cusp form then so is Z(v, g, "r) for each monster element g. 

The paper is organized as follows: In w we review the required results from the 

theory of vertex operator algebras and prove Proposition 2. In w we reduce the proof 

of Theorem 1 to that  of Theorem 3, which is proved by lengthy calculation in w In w 

we give an equivariant version of formula (1.11), that  is, we calculate Z(v(.~),g,~-) for 

various elements gCM,  namely those that  lie in the centralizer of a central involution, 

and in w we describe the invariance group of Z(v, g, T) in SL(2, Z). 

Background from the theory of elliptic functions and modular forms can be found 

in [Ch] and [S], for example. 

We thank Chris Cummins for useful comments on a prior version of this paper. 

2. P r o o f  o f  P r o p o s i t i o n  2 

We start by recalling some results from [Z]. If V is a vertex operator algebra as in 

(1.1) then there is a second VOA structure (V, Y[. ,. ]) defined on V with vertex oper- 

ator Y[v, z]. The two VOAs are related by a change of variables and have the same 

vacuum vector 1 and central charge c. The conformal vectors are distinct, however, and 

we denote the standard Virasoro generators for the second VOA by L[n]. The relation 

between the L(n) and L[n] (cf. [Z]) shows that  both Virasoro algebras have the same 
highest weight vectors v. 

A most important  identity for us is the following (cf. [Z] and [DAM, equation (5.8)]): 

if w c V then 
O O  

Z(L[-2]w, T) = OZ(w, 7)+ E E2l('r)Z(L[2l- 2]w,-r) (2.1) 
/=2  

where we are using the notation of w We should emphasize that  it is a consequence 

of the main results of [Z] and [DLM] that  if v is homogeneous of weight k with respect 

to L[0], where we are taking V=V~ to be the moonshine module, then the trace function 

Z(v, 7-) is indeed a meromorphic modular form of level 1 which lies in the space 9 ~ defined 

in (1.7). 

It is also shown in [Z] (cf. [DLM, equation (5.1)]) that  the following holds: 

Z(L[-IIw,~-) = 0  for all weV. (2.2) 

We turn to the proof of Proposition 2, beginning with part (a), which is elementary. 

Namely, from the creation axiom 

lira Y(v, z ) l  = v, 
z--+0 
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we get v ( n ) l = 0  if n~>0. So if vCVk with k > 0  then o ( v ) l = 0 ,  in which case we see that  

Z(v,~-) =q-1 E trlv-~ 
n = 2  

is a modular  form of level 1, holomorphic in ~ with a zero of order at least 1 at  co. So 

indeed Z(v, ~-) is a cusp form, as asserted in Proposition 2 (a). 

We turn to the proof of (b) of Proposit ion 2, which is established by a systematic 

use of equations (2.1) and (2.2). Let v6Vk be a highest weight vector. By a descendant 
of v we will mean a vector of the form L[nl] ...L[nt]v with each ni~<0, or any linear 

combination of such vectors; we write v--+w if w is a descendant of v. 

Let I=(Z(w, T) IV--+W > be the linear span of the indicated forms, and let J be the 

0-ideal generated by Z(v,'r). We must prove that  I=J. 
First we show that  IcJ .  We do this by proving by induction on wt[w] (the 

weight of w, homogeneous with respect to the second Virasoro algebra) tha t  Z(w, 7-)CJ. 
Because L[-1]  and L[-2]  generate L[-n] for all n > 0 ,  we may take w in the form 

w=L[nl] ...n[nt]v with each n i = - I  or - 2 .  If  n l = - i  then Z(W,T)=O by (2.2), so we 

may take n l = - 2 .  So w=L[-2]x where x=L[n2] ... L[nt]v has weight equal to wt [w] -2 .  

By (2.1) we have 

Z(w, T) = OZ(x, T)+ E E2t (T)Z(L[2l-2] x, T). (2.3) 
/=2  

Since v--+x and v-+n[2k-2]x, induction tells us that  Z(x,-r) and Z(L[2l-2]x, "r) both lie 

in J ,  whence so does the right-hand side of (2.3) since J is a 0-ideal. So indeed Z(w, "r) 
lies in J .  

Next we show tha t  I is also a 0-ideal. Since Z(v, 7-) is in I it follows from this tha t  

JCI  and hence that  I=J, as required. 

Let r~>l with v--+w and consider the vector x=L[-2]L[-1]2~w. If 2 / - 2 < 2 r  then 

n[21-2]L[-1]2rw can be writ ten as a linear combination of vectors of the shape L [ - 1 ] u  

for some u. Thus (2.2) tells us tha t  Z(L[21-2]L[-1]2~w,7)=O if 2 / - 2 < 2 r .  Now by 

(2.1) we get 
o o  

Z ( x , T ) =  E E2z(T)Z(L[21-2]L[-1]2~w"r)" (2.4) 
l=r+l  

Assuming that  w is homogeneous with respect to the second Virasoro algebra, it fol- 

lows in the same way that  z(n[2r]n[-1]2rw, 7) is a non-zero multiple of Z(w,~-). If  

l > r + l  then L[2l-2]L[-1]2~w has weight less than that  of w, while if also v=w then 

L[2l-2]L[-1]2rv=O. Thus (2.4) now reads 
(3O 

Z(x, = + E2z( ) Z(uz, (2.5) 
l=r+2 
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where v--+uz, wt[uz]<wt[w] and a is a non-zero scalar. From (2.5) and what we have 

said it follows by induction on wt[w] that  E2r+2(T)Z(w, "r) lies in I whenever r>~ 1. Since 

the forms E2~+2(7) generate the space M of modular forms (in fact, E4(T) and E6(~-) 

suffice), it follows that  I is an ideal in M .  But then (2.1) shows that  OZ(w,~-) lies in I 

whenever v--+w, so I is a 0-ideal. This completes the proof of Proposition 2 (b). 

3. T r a c e  f u n c t i o n s  w i t h  a po le  

In this section we prove 

PROPOSITION 3.1. Let k be a non-negative integer. Then the trace function 

Z(L[-2]kl,-r) is non-zero, and more precisely has a q-expansion of form eq-l  +... where 
(--1)kC>0. 

Set w = L [ - 2 ] k l .  Note that  the t ru th  of the proposition shows that  Z(w,'r) is a 

form of level 1 and weight 2k which is non-zero with a pole at co. If we have two such 

trace functions of the same weight and the same residue at c~ then they differ by a cusp 

form. So together with Proposition 2, this reduces the proof of Theorem 1 to showing 

that  A(~-), say, can be realized as a trace function. As we have pointed out in w this is 

implicit in the statement of Theorem 3. 

We turn to the proof of Proposition 3.1, using induction on k. The case k = 0  is 

obvious. Set x=L[--2]k-ll ,  so that  w=L[-2]x.  By (2.1) and (1.10) we get 

d 
Z(w, ~-) = q~q Z(x, 7)+ E E2t (T)Z(L[2l -2]x ,  T). (3.1) 

l = l  

Now by another induction argument using the Virasoro relations, we easily find that  

if l ~> 1 then there is an identity of the form 

L[21- 2]x = nt L[-  2]k-t l (3.2) 

where nl is positive and the right-hand side is interpreted as 0 if l > k. 

From (1.8), the q-expansion of E2l(7-) begins 

B2l 
- (21)--5 + . . . ,  

and it is easily seen from (1.9) that  we have 

(--1)Z+lB2l > 0. (3.3) 
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By induction we have Z ( L [ - 2 l r l ,  T)=e(r)q -x +... with ( -1 ) r e ( r )>0  for O<.r<k. It 

follows that  the coefficient of q-1 on the right-hand side of (3.1) is equal to 

k 

- e ( k - 1 ) - ~ - ~  B2z nle(k-l) 
/=1 ~ 

k 

: (--l)k { (--1)k-le(k--1)+ ~ (--1/+1 ~nt(--1)k-le(k--l)}" 
/= I  

Prom what we have said, the sum of the terms in the braces is positive, so Proposition 3.1 

is proved. [] 

4. P r o o f  o f  T h e o r e m  3 

We have reduced the proof of Theorem 1 to that  of Theorem 3, which we carry out in 

this section. 

We first take over en bloc the notation of [FLM] with regard to the lattice VOA VA 

and associated vertex operators, where A is the Leech lattice. In particular, 0 = C |  

~z is the corresponding Heisenberg algebra; M(1) is the associated irreducible induced 

module for ~z such that  the canonical central element of ~z acts as 1; VA=M(1)NC[A]; 

Y(c z) : E- z)E* z)e z 

is the vertex operator associated to c~6A where 

(,~eN c~(:t=n) ) E ~(c~, z) = exp + n  z=Fn 

for c~El? and e~ acts on C[A] by 

e~: e~ ~ e(a, r ~+~ 

where e ( . , .  ) is a bilinear 2-cocycle of A with values in {+1}; t is the automorphism of 

VA of order 2 induced from the (-1)-isometry of A such that  t e~=e-~ ;  t acts on M(1) 

by t(~l(-nl)... 13k(--nk))=(--1)kt31(--nl).../3k(--nk) for /3i6 t1 and n i>0 .  

For a t-stable subspace W of VA we define W =~ to be the eigenspaces of t with 

eigenvalues 4-1. We start by considering the action of Y(e~+e -~, z) on Vs Thus V~ is 

spanned by elements of the form 

v| +tv| -~, (4.1) 
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and we have 

Y(v(~), z ) (v |  + tv| = z<~'~> E - (-~, z) E+ (-~,  z)v| ~)e ~+~ 

+ ~ - < ~ ' ~ > E - ( - ~ ,  z) E+ (-~,  z)t~| - ~ ) ~ - ~  
(4.2) 

+ z-(~'Z) E - ( a, z) E+ ( a, z) v |  ~)e -~+~ 

+ z( ~,~1 E-  (a, z) E + (a, z) tv | -13) e -~-~. 

From this we see tha t  non-zero contributions to the trace on V~ can arise only when 

a � 9  and more precisely when a = •  in (4.2). 

For ~ � 9  we set 

V(~) = M(1)| +Ce -~) 

which is t-stable. So the trace of o(v(A)) on V~ is equal to the trace of o(v(A)) on V(a )  + 

where A = 2 a � 9  which we now assume. Clearly v(A) is a highest weight vector with 

weight ~ 

Note that  e(• •  It  follows from (4.2) tha t  only expressions of the form 

z-2(~'~)(E-(-2c~,z)E+(-2c~,z)tv| z)v| -~) (4.3) 

contribute to the trace. Thus we are essentially reduced to computing the trace of the 

degree-zero operators of E - ( - 2 a ,  z)E+(-2a, z) and E - ( 2 a ,  z)E+(2a, z) on M(1).  

Let A = C A  and O=A• be an orthogonal direct sum. Then we have M ( 1 ) = S ( ~ - ) =  

S(A-) |  Let x be a formal variable and define xge(EndM(1))[x] such tha t  

x N ( o L I ( - - ~ I )  ... O ~ k ( - - ~ k ) ) = X k O L l ( - - n l )  ... O t k ( - - n k )  fo r  c~ i �9 0 a n d  n i > 0 .  Set 

E-(+a,  z)E+(~=A, z) = ~ E• -~ 
nEZ 

LEMMA 4.1. We have 

tr E • (0) qL(O)xN IS(A_) = exp (En>0  - (A, A) xqn/n(1-xqn)) 
rIn>o (1 -xq  n) 

(4.4) 

Pro@ Note tha t  S ( A - )  has a basis 

{A( -n )  k~ ... A(--1)kl I k~ >/0, n/> 1}. 

In order to compute the trace it suffices to compute the coefficients of A ( - n )  k~ ... A(-1)  kl 

in E(O)+A(-n) k~... A(-1)  kl, tha t  is, we need to compute the projection 

Pkl ..... k~: E(O)• k~ ... A(-1)  kl -~ C A ( - n )  k~ . . -A(-1)  kl- 
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Recall that 

for s, tcZ. Then 

p,(~), :~(t)] = ~(),, ),) 5s+~,o 

Pk ...... k~E(O) + )~(--n) k'~ ... )~(- 1) k' 

= E (-1)m+"+P'~ A(-1)m A(-n)P'~ A(1)Pl A(n)P'~ )~(--n)k~"" A(--1)k~ 
Pl! "'" nP-pn! Pl! "'" nP~pn! 

p ~ k i  

= E (-1)m+'"+P~ Q_~ 1 (A'A)P'iP'ki(ki-l)'"(ki-pi+i)~ 
p,<,% - (Pi!)  : i2p '  ] A(--n)k~ ... A(--1) k~ 

= E ( f i  (kP:) ( - ( A ' A ) ) " )  ; 
pi~ki  i=1 

Thus 

trE+(O)qi(~ E ( f i  (kp:) ( - (A,  " 

Note that if y is a formal variable and s is a non-negative integer then 

E ym ys s m  m = ~ s E  s ~s 
,~>~ = m=o (1-y)l+~ 

Then for any pi~>O we have 

E (xqi)ki-  (l_xqi)l+p~ 
ki ) 0 

Hence 

t r E +  O)qL(~ E ( l_xqi)  Pi! ~, i(1--xq) 
i~1  pi~O 

= H ( l _ x q n )  exp 
,~>1 \ [ - q ) 

m=l (1 -xq  m) eXP.n=l n(1-xqn) 

as desired. [] 
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LEMMA 4.2. We have 

tr E • (0) q i(0)xNIM(1) ---- exp (•n>O - (A, A} xq~/n(1 - xqn)) 
Nn>0(1 --xqn) 24 

(4.5) 

Pro@ Since M ( 1 ) = S ( f l - ) |  and E+(O) commute with ~(n) for ~ c B  and 

n 6 Z, we immediately have 

tr E ~ (0) qL(O)xNIM(1 ) = tr E • (0) qL(O)xNIs(i_ ) t r  qL(O)ZNIs(~ ) 

and also 
1 

trqL(O)xNis(~_)r = 1 n 23 
H >o( ) " 

The lemma now follows from Lemma 4.1. [] 

Set f(q, x )=tr  E+(O) qL(O)xNIM(1 ). Then one can easily see that 

tr E+(0)qi(O)IM(1)+ = 1 (f(q, 1)+f (q ,  -1 ) ) ,  

tr E + (0) qi(~ : �89 (f(q, 1) -- f(q, -- 1)). 
(4.6) 

LEMMA 4.3. The contribution of V~ to Z(v(A),r)  is 

oc (1__qn)24 ~ [  (l__q2n)2().,.X) = r/(2.r)2(x,),)_24 
q(),,),)/s-1 H (l_q2n)24 (l_q,~)(),,x) ?7(T)(A,A)--24 " 

n = l  n = l  

(4.7) 

Proof. We have already seen that 

tr o(v(A)) qL(~ 2 = tr o(v(A)) qL(O) lv(s)+. 

Clearly, qL(~177 From the proof of Lemma 4.1 we see that E+(0) have 

the same eigenvectors and the corresponding eigenvalues are also the same. It follows 

from (4.3), (4.5) and (4.6) that 

tr o(v (A)) qL(O) Iv(~)+ = q(;~,~)/S (E + (0) qL(O)]M(1)+ -- tr E • (0) qL(O) IM(D- ) 

= q(a,a)/Sf(q,--1) = q(X,X)/8 exp(~n>0  (A, A} qn/n(l+qn)) 
1-[~>0(1 +q~) 24 

Next note that 

qn 
n ( ~ q  ~) 7 (-1)iqin 

~'t=l 

O O  . O O  O O  

i -- -- E (--1)n 1og(1--qn). = _  E ( _ I ) E  qin 
n 

i = 1  n = l  n = l  
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So tr o(v(A))q L(~ may be written as 

0 0  

q(~,~)/s H(1+qn)-24 fi (j_q~)(-w(~,~) 
n = l  n = l  

(4.8) 

If now we incorporate the grade shift of q-C/24=q-1, the lemma follows from (4.8). [] 

At this point, recall [Ch] the Jacobi theta-functions Oi, i=1 ,2 ,3 ,  considered as 

functions of 7, that  is, with the "other" variable set equal to 0: 

O1(7) = 2q 1/s 1-I (1 -qn) ( l+qn)2  = 2 rl(2r)2 
n = l  ?7(7) ' 

OO 

02(r)  = H(1--qn)(1--qn-W2) 2 -  ~/(�89 
n = l  V ( T )  ' 

O O  

03(7) = H(1-q~)( l+q~-l /2)  2 -  r/(r)5 
.=1 

(4.9) 

(4.10) 

(4.11) 

Combining (4.7) and (4.9) then yields 

LEMMA 4.4. The contribution of V~ to Z(v(A),T) is equal to 

.(7) 12(�89 o2(T)) 

Now let VAT be the t-twisted VA-module (cf. [FLM]). Then the moonshine module 

V ~ is the direct sum of V;  and (vT) + where again + refers to the fixed points of the 

action t on VAT. The space Va T can be described as 

v T =  s(O[-II-)|  

where 6 [ - 1 ] = E n e z  b| is the (-1)-twisted Heisenberg algebra, b [ - 1 ] - =  

~-~-n>o b |  and T is the 212-dimensional projective representation for A such 

that  2L acts on T trivially. The grading on V T is the natural one together with an 

overall shift of q3/2. Now t acts on T as multiplication by -1 ,  and on S(0[-1]-)  by 

t(131(--nl).../3~(--nk))=(--1)k~31(--nl)...~k(--nk) for biCb and positive n i e � 8 9  As 

before, for any t-stable subspace W of V T,  we denote by W • the eigenspaces of t with 

eigenvalues +1. Then (VAT) + is the tensor product of T and S(b[-1]-)  . 

The twisted vertex operator Y(e~,z) for/~cA on VAT is defined to be 

Y (e ~, z) = 2-<~'~>E1/2(-,~, z ) E-~/2 (-fl, z )e~z -<~'~> /2 



where 

for h c ~), and e~ acts  on T.  

see t ha t  

v(~(~),z) 

M O N S T R O U S  M O O N S H I N E  OF H I G H E R  W E I G H T  113 

"15~ (h 'z) :e~p _ •189 z ~(~ 

Because Ac2A then  e~ and  e_~ act  t r ivial ly on T,  and  we 

: 2-<~,~> E;/~ (-~, z)E:/~ ( -  a, z) z-<','>/2 + 2-<~,~> Ef/~ (~, z)E;/~ (~, z) z-<~, ~>/~ 

on V T .  As before we set 

E1/2(•177 E E~2 (n)z-~" 
nEZ+I/2 

T h e n  the  cont r ibut ion  of ( v T )  + to Z(v(A),  T) is equal to 

q-1212-<a,X) tr(E[/2(O)+ E[/2(O) )qL(O)Is(6[_I]_)_. 

For a formal  variable x we define the  ope ra to r  xNe(EndS(~[-1]-))[x] as before, 

so t h a t  xN(/~l(--nl) .../~k(--nk)) =xk /~ l ( - -n l )  . . ./3k(--nk for bi e D and posi t ive ni e �89 + Z .  

Set 

(~-~. -(~,~)xq ~+~/~ ~ H(l_xq~-l/2)-2~. 

By a proof  not  essentially different to t h a t  of L e m m a s  4.1 and  4.2 we find 

LEMMA 4.5. The traces tr E~/2(O)qL(O)xN[s(6[_I]- ) and tr E~/2(O)qL(O)xN[s(6[_I]- ) 
are the same and equal to g(q, x). 

One can easily see t ha t  

t r  (E+/2 (0) + El~ 2 (0)) qn(O) [ S(f~ [_ 1]- ) -  - -  

N e x t ,  

-g(q,  1 ) - g ( q , - 1 ) .  

xqn+l/2 ~ xqn+l/2 oo 
: 1 E xiqi(n+l/2) 

E (n+l)(l_xqn+l/2) n:O n+~ ~=o n:O 

~ qi(~+l/2) ~ log[l_qi/2 
= x~ -~  n+~ ---~--~" xi 

~=1 ~=o ~:1 \ ~ ] "  
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Then the contribution of (vAT) + to Z(v(A), 7) is equal to 

2-(;~';~)+12ql/2 (1-qn-1/2)-24 H 1-qi/2 (~'~) 
n=l i=1 l q-qi/2 

_2-(A,A)+12q1/2 H( l+qn -1 /2 ) -U4  t l / ~ }  

n = l  i=1 \ 

=2-(A'A)+I2q W2 f i  (1--qn)24 f i  (l--qi/2)2(a'a) 
n=l (1-q' /2)24 i=] (1--qi)(A'A) 

- f i  
--2-(A'A>+12q1/2 H (1--qn/2)Ua(1--q2n)24 (1--qi)5<a'a) 

,~=1 (1 _qn)4s i=1 (1 _ q 2 i ) ~ 2 ) 2 ( x , ~ )  

[1,--~ [ ~(A,A)--12"I 

Thus we have proved 

LEMMA 4.6. The contribution of (vT) + to Z(v(A),r) is equal to 

?'](T) 1 2 { ( 1 0 2 ( T ) ) ( A ' A ) - 1 2 - ( 1 0 3 ( T ) ) ( ) % A } - t 2 } *  

Theorem 3 is an immediate consequence of Lemmas 4.4 and 4.6. 

5. A ge n e r a l i z a t i o n  o f  T h e o r e m  3 

In this section we generalize Theorem 3 by computing explicitly the trace function 

Z(v(A),g,r) for certain automorphism g of the moonshine module. As before, A is 

the Leech lattice. To describe the result we first recall some facts about Aut(V~), that  

is to say, the monster simple group M. 

The centralizer of an involution in M (of type 2B) is a quotient of a group C, 

partially described by the short exact sequence 

1 -+ Q-+ C-+ Aut(A) -+ 1 

~) ,~  ~1+24 where .~ = _+ is an extra-special group of type + and order 225. For more information 

on this and other facts we use below, see [G] or [FLM]. The group C acts on both S(b-)  

and S(I1[-1]- ) through the natural action of Aut(A), that  is, with kernel Q. It acts on 

C[A] with kernel the center Z(Q) of Q, and on T with kernel a subgroup of Z(C)  of 

order 2 distinct from Z(Q). Then the quotient C of C by the third subgroup of Z(C) of 

order 2 acts faithfully on V ~. 
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Let us fix 0 r  and let H < C  be the subgroup defined as 

1 -+ Q-+ H - +  (Aut A)~ --+ 1 

where (Aut A)~ is the subgroup of Aut A which fixes A. We will compute Z(v(A), h, 7-) for 

hcH.  The action of h on VA is described by a pair (~, a) where ~E �89 and aE (Aut A)~; 

a acts in the natural manner, and ~ acts via 

We let - a  denote the element t aEAut  A, and define a modified theta-function as 

O~'--a(T)= E e27ri(~"Y)q('Y'~)/2" (5.1) 

"IGA 

(5.1) is a modification of the theta-series of the sublattice of A fixed by - a ,  and as such 

is a modular form of weight equal to one half the dimension of the (-a)-f ixed sublattice. 

Finally, let ~a(T) and ~-a(~-) be the "usual" eta-products associated to a and - a  (with 

regard to their action on A) (cf. [CN], [g]). We will establish 

THEOREM 5.1. Let 0 r  c~cA, and let h c H  be associated to (~,a) as above. 
Then we have 

Z(v( )~), h, T) -= e2~i(~'a) Or ( 01--@~ ) ) 

(5.2) 

The reader is invited to compare this result with Theorem 10.5.7 of [FLM], which 

deals with the case in which v(,~) is replaced by the vacuum. 

Note that  r;-a(~-) is a form of the same weight as 0~,~(~-) (loc. cit.), so that  (5.2) is 

indeed a form of the same weight as Z(v()~), T), as expected. The proof of Theorem 5.1 

is a modification of that  of Theorem 3. 

We begin with the appropriate modification of (4.2), concerning the action of 

Y(v(~), z)h on V~. We have, setting h=h(~, a), 

Y(v(,~), z) h(v| +tv| -~) = Y(v(,~), z)h(~, 1)(a(v)| +ta(v)| -~(~)) 

= e 2"i(~'~(~)) Y(v()~), z)(a(v) | e ~(~) + ta(v) | e -~(~)) 

: e z ) E  z) a(v) |  

+z-<A'~(~)>E-(-A, z)E+ (-A, z)ta(v)| ~-~(~) (5.3) 

~- z-(X'a(~)) E - ( )% z)E+ ( )% z)a(v)@e -)~+a(~) 

+ z <~ '~(~)) E-  (A, z) E + (A, z) ta(v) | e- ~- a(;9) }. 
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LEMMA 5.2. We may take )~-a(~)=~ in (5.3). This holds if, and only if, ~ - ~ = 5  
for some 5cA satisfying - a (5 )= 5 .  

Proof. We see from (5.3) that  contributions to the trace of o(v(A))h on V~ poten- 

tially only arise when )~+a(Z)=-t-~ or A-a(~)=-i-f~. If )~=• then A is both a 

commutator (that is, lies in [a, h]) and a fixed point of a (by hypothesis). This leads to 

the contradiction that  A=0, so in fact A+a(~)=-~  or A - a ( ~ ) = ~ .  Since ~ and - ~  are 

essentially interchangeable in (5.3), we may assume that indeed 

=Z. (5.4) 

Applying a to (5.4) yields A-a2(13)=a(~)=A-/3 ,  so that  a2(13)=/3. This may be written 

as ( a+ l ) ( a -1 ) /~=0 .  Set 

a ( ~ ) - ~ = 2 5 .  (5.5) 

Hence a (5)+~=0,  that  is, 25 lies in the sublattice of A fixed by - a .  Moreover, (5.4) and 

(5.5) yield ~ -2 f l=25 ,  so remembering that  A=2a we get 

(5.6) 

On the other hand, if (5.6) holds, application of a yields 

a - a ( ~ )  = -5,  (5.7) 

and (5.6), (5.7) imply that  A-a( /~)=~.  

From the lemma and (5.3) we see that  only expressions of the form 

[] 

e 2~i(~'~-~) z-(~'~-~)(E- (-A, z)E + (-)~, z)ta(v) | ~-~ + E-  ()~, z )E + (A, z) a(v) | e-~+~) 

contribute to the trace, where 5 ranges over the (-a)-fixed sublattice of A. 

We now follow the analysis of w which follows (4.3). Since a fixes A, the contribution 

from S(A-)  is identical to that  of (4.4). As for S(B=), the operators E• are trivial, 

and we need to calculate 

tr qL(O)axNIs(h_). (5.8) 

If Z= 1 this is precisely ~?a(T)/~?(7), by definition.(1) If x = - i  then ax N is just the action 

of ta, and (5.8) is then I]_a(T)?7(2T)/I](T ). 

Combining (4.4) and the above, we obtain the analogue of Lemma 4.2, namely 

(1) This takes into account the corresponding grade shift. 
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LEMMA 5.3. We have for x=• 

tr E+ (O)aqL(O)xN,M(1) =exp(~>O ~ )TIxa(7)--l. (5.9) 

Now use this, Lemma 5.2 and the proof of Lemma 4.3 to see that  the contribution 

of V~ to Z(v(A), h, 7) is equal to 

( E e2~i(~'~-~)q(~-a'~-~)/2exp E n ( l + q n )  77-a(7)-1" (5.10) 
5 c A  \ n > 0  

-a(~)=~ 

Note that  (a, 5)=0.  Then (5.10) is equal to 

which is the first summand of (5.2). 

The other two summands of (5.2) arise from the contribution of (VAT) + to the trace. 

The proofs are as before, and are easier than the part just completed as there is no theta- 

function to deal with. We leave details to the reader. This completes our discussion of 

Theorem 5.1. 

6. T h e  i n v a r i a n c e  g r o u p  o f  Z(v, g, r) 

We will determine the subgroup of F=SL(2 ,  Z) which leaves Z(v,g,7) invariant. More 

precisely, if v is homogeneous of weight k with respect to L[0], so that  Z(v,g,7) is 

modular of weight k by [DLM], we will describe in Theorem 6.1 below the action of 

F0(n) on Z(v,g,T), where n is the order of g. We recall that  

{(: 
FI(N): {(: bd)EFo(N ) a -d - l  (N)}. 

The case where v = l  is the vacuum (and k=0)  is covered by results in [CN], [FLM] 

and [B2]. Precisely, one knows that  there is a character sg of r0(n) such that  

(6.1) 

for vcF0(n) .  Moreover, kerr  where N=nh, and h divides gcd(n, 24). 
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To describe our generalization of this result, we need to recall some further re- 

sults. Let AM((g))=NM((g))/CM((g)) be the automizer of (g) in the monster M. Then 

AM((g)) is the group of automorphisms of (g) induced by conjugation in M. As such, 

AM((g)) has a canonical embedding 

ig:AM((g))--+Un (6.2) 

in which Un is the group of units of Z /nZ ,  and tCNM((g)) satisfying tgt-l=g d maps 

to d under ig. From the character table of M [CC], we see that the following is true: 

[Un:imig]~2, with equality if, and only if, g is not conjugate to g-1 in M. In this case, 

U~=im ig • {=hl}. 

Since Vo(n)/rl(n) is naturally isomorphic to U~, we may define a subgroup Fg of 

F0 (n) via the diagram (rows being short exact) 

1 > r l ( n )  - r 0 ( n )  . U n  ~ 1 

T T 
1 > r l ( n )  ) rg ) ig(AM((g))) ~- 1. 

(6.3) 

In (6,3), 

= c r0(n) 
e 

maps to dE Un. From what we have said, we have To(n) :  Fg] <2, and Fo(n)=Fg • {4-1} 

if we have equality. 

Let X range over the irreducible, complex characters of the normalizer NM((9)) of 

(g) in M. We will be particularly interested in those X satisfying CM((g))Ckerx. Such 

X are 1-dimensional and induce characters 

X: AM ((g)) -+ C*. (6.4) 

Using the lower row of (6.3), we can pull back X to a character of Fg, also denoted by X- 

If [F0(n): F9]=2 then r0(n)=rg • ( - I )  (where I is the identity (2 x 2)-matrix), and we 

then define a character Xk (kCZ) of F0(n) so that  its restriction to Fg is the earlier X, 

and its value on - I  is ( - 1 )  k. So in all cases we have defined characters Xk of Fo(n), 

with the convention that  Xk=X if Fg=Fo(n) .  

We decompose Y ~ into homogeneous subspaces ~k] with respect to the L[0]-operator. 

This commutes with the action of the monster M, and we let V3 be the x-isotypic [k],x 
subspaees of ~ ]  considered as an NM((g})-module. We can now state our result: 
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THEOREM 6.1. Fix gEM and let the notation be as above. Suppose that vCV[bk],x 
for some simple character X of NM((g)). Then the following hold: 

(a) If CM((g))~ker X then Z(v,g,~-)=O. 
(b) / f  CM((g))Cker X then 

z lk~(v, g, 7-) = ~ (7) xk (~) z (v ,  g, 7-) (6.5) 

for ?Ero(n).  

Proof. We first prove (a). Since X is a simple character of NM((g)) and CM((g)) is 

normal in YM((g)), the assumption CM((g))~ker X means that  CM((g)) does not leave 

v invariant if O~vcV[~], x. Then v can be written as a linear combination v - - ~ i  vi with 

each v, eV[~], x and tivi=Aivi for each i, some tieCM((g)) , and l # A i e C * .  

We may thus assume that  v=vi, with tv=Av for some tCCM((g)) and some 1 5  

)~CC*. But then 

Z(v, g, 7-) = q-1 y ~  (trLv2 o(v)g)q~ = q-1 ~ (trlv2 to(v)gt-1)q n 
72 n 

= q - 1  ~ (trly~ o( tv )g )qn  -~ Z ( t v ,  g, 7-) : ~ Z ( v ,  g, 7-). 
m 

Since A ~ i, we get Z(v, g, 7-)=0, as required. 

To prove (b) we need some results from [DLM], which we assume that  the reader is 

familiar with. In particular, since g has order n then a matrix 

c r0 (n )  

maps the (1, g)-conformal block to the (1, gd)_conformal block. Since the trace functions 

Z(v,g, 7-), Z(v, gd 7-) span these conformal blocks, there is a scalar ~/9(3~), independent 

of v, such that  

Z ['~(v, g, 7-) = r/g (7,) Z(v, gd, 7-). (6.6) 

Here, if v C VIii then 

ZlT'(V, g, T) = (c7- +d)-k Z(v, g, ~/z). (6.7) 

Taking v = l ,  k=0  in (6.6)-(6.7) and comparing with (6.1) then yields qg(3')=eg(7), that  

is, 

Zl~/(v, g, ~-) = eg(~/)Z(v, gd, T). (6.8) 

Suppose that  dEig(Ai((g)),  that  is, "yEF 9. Then gd=tgt -1 for some tENM((g)), and 

we calculate as before: 

z (v ,  go 7-) = Z(v, tgt -1, 7-) = z ( t - % ,  g, 7-) = x ( t -~ ) z ( v ,  g, 7-). 
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Then (6.8) reads 

Z l~/(v, 9, ~-) = r ('Y) x ( t - 1 )  Z(v ,  9, T). (6.9) 

By our conventions, x ( t - 1 ) = X ( ~ ) ,  so (6.9) is what  we require. 

Now assume that  "y ~ Fg. From our earlier remarks, it suffices to take 3 / = - I .  In this 

ease ~,6F0(N),  so eg(~/)=l,  and (6.7) reads 

Zlk~/(v, g, ~-) = (--1)k Z (v, g, 7-), 

which is what (6.5) says in this case. The proof of the theorem is now complete. [] 

Remark  6.2. By Theorem 2 of [DM], each :y occurs in V ~, that  is, given X as above, 

there is a k such tha t  V[k],x~0. 
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