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1. I n t r o d u c t i o n  

The determinant  of the Laplacian on a graph arises in two related statistical mechanical 

models, the uniform spanning tree model and the 2-dimensional lattice dimer model. 

For the spanning tree model, Kirchhoff [Ki) is a t t r ibuted with showing that  the prod- 

uct of the non-zero eigenvalues of the Laplacian on a finite graph is the same as the 

number  of spanning trees on that  graph. For the 2-dimensional dimer model, Temper- 

ley [T], based on work of Kasteleyn [Kasl], showed that  the number of dimer coverings 

of certain subgraphs of Z 2 can be computed by the determinant  of the Laplacian on 

related graphs. Precise estimates on these determinants  provide important  information 

about  these models, in particular allowing one to compute certain critical exponents and 

correlation functions [DD], [Kenl]. 

In this paper  we compute the asymptot ic  expansion of the determinant  of the Lapla- 

cian on a special family of graphs: subgraphs of Z 2 which are approximating rectilinear 

polygons (a polygon is rectilinear if its sides are parallel to the axes). Our main motiva- 

tion is not to s tudy the Laplacian in itself but rather to s tudy both the dimer (domino 

tiling) model and the uniform spanning tree model. For this reason we use the language 

of domino tilings. (Domino tilings are tilings with (1 x 2)- and (2 x 1)-rectangles.) 

Temperley [T] gave a bijection between the number of spanning trees of a subgraph 

H of Z 2 and domino tilings of a polyomino P = P ( H )  constructed from the superposition 

of H and its dual. We call a polyomino Temperleyan if it arises from a graph H by Tem- 

perley's construction. Such polyominos have a simple description: let Q be a polyomino 

such tha t  each side between a concave and convex corner has even length, and each side 

between two concave or two convex corners has odd length. Such a polyomino has odd 

area; let P be obtained from Q by removing one lattice square at some convex corner. 

Then P is Temperleyan. 

THEOREM 1. Let U C R  2 be a rectilinear polygon with V vertices. For each c>O, 

let P~ be a Temperleyan polyomino in EZ 2 approximating U in the natural sense (the 

corners of P~ are converging to the corners of U). Let Ac be the area and Perim~ be 

the perimeter of P~. Then the log of the number of domino tilings of P~ is 

coAe Cl Perim~ 7c ( 1 ) 
C 2 -~ E - - ~  c2(g) l o g ~ - c 3 ( U  ) "-~-c4~-0(1), (1) 

where co=G/To, G : 1 - 1 / 3 2 + 1 / 5 2 - . . .  is Catalan's constant, c1=G/27r + �88 - 1 ) ,  

ca is a constant independent of U, and c2(c) log( l /E)+c3(U)  is the c-normalized Dirichlet 

energy of the limiting average height function on U (see definitions below). The te~n 
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4~:rc2(e) is of the form 
1 V - 4  
2 36 (1+ERR(e))  

where ERR(~) is o(1). 

COROLLARY 2. Under the above hypotheses on U, for each e > 0  let H~ be the sub- 

graph of eZ 2 whose vertices are in U. Let N(H~) be the number of vertices in H~ 

and B(H~) the number of edges of eZ 2 on the boundary of H~. Then the log of the 

determinant of the Laplacian on H~ is 

4G N(H~)~ B(H~)-  7r e2(e) log +c5+o(1), 
7c 2 4-8 

where c2, c3 are as in Theorem 1 and c5 is another constant independent of U. 

The limiting average height function has the following description. Let b0c 0U be a 

base point. For xE OU define uo(x) to be the total turning (in radians) of the boundary 

tangent on the boundary path counterclockwise from bo to x (the function u0 has jump 

discontinuities at each corner of U and at bo). The limiting average height function 

is the harmonic function on U whose boundary values are 2uo/Tr. The e-normalized 

Dirichlet energy is by definition the Dirichlet energy contained in the complement of the 

e-neighborhoods of the jump discontinuities. 

Remarks. (1) In the case U is a rectangle, formula (1) follows from the formula for 

the exact number of tilings computed by Kasteleyn [Kasl] and Temperley and Fisher [TF] 

(the asymptotic expansion of which was computed by Duplantier and David [DD]); see 

Proposition 16 below. 

(2) The leading term in the above formula, involving the constant co, essentially 

follows from work of Burton and Pemantle [BP]: they constructed a measure p of entropy 

Co on the space X of domino tilings of the plane and proved that  it was the unique 

translation-invariant measure of maximal entropy on X. Furthermore they proved that  

for regions of the type used in the theorem, the entropy (the coefficient of e -2 in (1)) 

is coA. 

(3) Our boundary conditions give rise to a correction to the number of tilings which 

is only exponential in the length of the boundary (the 'perimeter '  term in the theorem). 

In [CKP], on the contrary, it was shown that  in some sense "most" other boundary 

conditions have a larger effect, giving a smaller entropy co, and making the local densities 

of configurations vary throughout the region. So both the 'area' and 'perimeter '  terms 

in the theorem depend strongly on our choice of boundary conditions. 

(4) Note that  if two regions have the same area, perimeter and number of vertices 

then the log of the number of domino tilings differs by a constant in the limit, that  is, the 
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ratio of the number of tilings is tending to a constant as c-n0. This constant depends 

on the shape of the regions and can in principle be computed explicitly. 

(5) There has been much work done on the 'regularized' determinant of the continu- 

ous Laplacian, and the asymptotic distribution of its eigenvalues [Kac], [MS], lOPS]. We 

have not a t tempted here to make any connection between these two subjects, although 

there is a lot of evidence for a connection, see e.g. [OPS], [DD]. 

(6) As noted above, Temperley [T] gave a bijection between the set of spanning 

trees of a subgraph of Z 2 and the set of domino tilings of a related polyomino. The 

corollary follows from the theorem by applying this bijection (see w for the definition): 

the graph H~ gives rise to a polyomino P~ of area A~=c2(4N(He)-B(H~)-4)  and 

perimeter Per im~=c(2B(H~)+4) .  Plugging these values into (1) gives the formula in 

the corollary. 

(7) The function ERR(c) is unknown although it seems possible that  it could be 

computed using Toeplitz determinants, as in [MW]. 

Part  of the motivation for proving Theorem 1 is to validate a certain heuristic, which 

at tempts to explain how the presence of the boundary affects the long-range structure 

of a random tiling. In particular, it a t tempts to explain how the boundary affects the 

densities of local configurations far from the boundary [DMB]. We call this heuristic the 

'phason strain' principle. 

The heuristic is as follows: the boundary causes the average height function of a 

tiling (see definition in w to deviate slightly from its entropy-maximizing value of 0. 

At a point in the region where the average height function has non-zero slope, the "local" 

entropy there is smaller than the maximal possible entropy, by an amount proportional 

to the square of the gradient of the average height function. The system behaves in such 

a way as to maximize the total entropy subject to the given boundary values of the height 

function, and the resulting average height function is the function which minimizes (the 

integral of) the square of its gradient. That  is, the average height function is harmonic. 

This "explains" the terms c2(c) log(1/c)+c3(U) in Theorem 1. 

Unfortunately the constant ~ r r  appearing in Theorem 1 is different from the ex- 

pected value of the local entropy as derived in [CKP] (where a rigorous version of the 

phason strain principle is proved in a different context): in [CKP] the entropy as a 

function of slope is shown to have the expansion 

ent(s, t) = ent(0, 0 ) -  l r r ( s 2 + t 2 ) + O ( t e r m s  of order/> 3), 

and where (s, t) are the partial derivatives of the height function. We may conclude from 

this discrepancy that  the computation in [CKP] can not be refined to obtain asymptotics 

of the same precision as Theorem 1 above (when applied to the present case, [CKP] 
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only gives the leading te rm in (1)). In particular, the phason strain principle can not be 

considered valid in this context. 

The techniques used to prove Theorem 1 can be applied to the uniform spanning 

tree model as well. Indeed, as mentioned above, there is a close connection between 

the spanning tree process on Z ~ and the domino tiling model IT], [BP], [KPW]. Many 

properties of spanning trees on Z ~ translate into computable properties of dominos. We 

study here one particular property of a uniform spanning tree: the distribution of the 

(unique) arc between two fixed points. The relevant question about  tilings is to count 

the number of tilings of a region with a hole (single square removed). To est imate this 

number,  we use the technique of Theorem 1: we cut the region apar t  up to the hole, 

and then sew it up again in such a way as to remove the hole. In this way we prove 

the well-known conjecture that  the expected number  of points on the tree branch within 

distance N from the origin grows like N 5/4. In fact we prove more: 

THEOREM 3. On the uniform spanning tree process on N x Z, the expected number 

of vertices on the branch from (0, O) to oe which lie within distance N of the origin is 

N 5/4+~ For x > 0  the probability of a vertex ( x , y )=re  i~ to be on the branch from 

(0, O) to oc is 

r-3/40+f(r)) cos(0)l/4 (1+o(1))  

where f ( r )  is o(1) as r--+ec. 

The branch in a uniform spanning tree has the same distribution as the loop-erased 

random walk (LERW), see [P]. So this proves that  the growth exponent of the loop-erased 

random walk is ~. This value of the exponent d has been conjectured by physicists 

for some t ime [GB], [Ma], using arguments based on conformal field theory and the 

assumption of conformal invariance of the "scaling limit" of the walk. Lawler [L] had 

previously given the bounds l<d<~ 4 5" 
Here is an outline of the paper. w gives the definitions and background. Most of 

the background comes from [Kenl] and [Ken2]: local properties of dominos can be found 

in [Ken1], and the conformal properties can be found in [Ken2]. In w we state two 

lemmas and use them to prove Theorem 1. Specifically, the theorem is proved by cutting 

up a rectilinear polygon into rectangles and using the known formula for the number of 

tilings of a rectangle. Lemma 6 determines how the number of tilings changes as you are 

making a single cut, and Lemma 7 relates this change to the change in Dirichlet energy 

of the average height function. The next two sections are devoted to the proofs of the 

lemmas. w recalls the formula for the number of tilings of a rectangle and proves the 

formula of Theorem 1 in this special case. w discusses the connection of domino tilings 

to loop-erased random walk and proves Theorem 3. 
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Fig. 1. The graph H and polyomino P(H). The squares of B0 are black, those of B1 are in 

grey. The vertex b of H is in grey, and corresponds to the missing corner of P.  

We kindly acknowledge Oded Schramm, Wendelin Werner and Bertrand Duplantier 

for helpful discussions, and thank Oded Schramm and Russell Lyons for proofreading. 

2. Definit ions and background 

2.1. T e m p e r l e y a n  p o l y o m i n o s  

By the grid ~ we mean the graph whose vertices are 2Z ~ and whose edges join all pairs 

of vertices at distance 2. A lattice square is a face of ~. A simply-connected subgraph of 

G is a set of vertices and edges of the grid which is the 1-skeleton of a simply-connected 

union of (closures of) lattice squares. 

Let H be a finite simply-connected subgraph of G, and bEH a fixed vertex adjacent 

to the outer face of H.  We associate to H a new graph PI=PI(H) =PI(H, b) as follows. 

There is a vertex of P~ for each vertex, edge and face of H,  except for the outer face and 

the vertex b. Two vertices Ul,U2 of P~ are connected by an edge in two cases: ul,u2 
come from an edge e and a vertex v of H (and v is on the edge e), or ul ,  u2 come from 

a face f and edge e of H (and e is par t  of the boundary of f ) .  In other words, P~(H) 
is the "superposition" of H and its planar dual H ' ,  except that  we discard vertex b of 

H and the outer vertex of H t. Let P(H) denote the polyomino in �89 whose dual (not 

including the vertex for the outer face) is P~(H). See Figure 1 for an example. 

Except for the outer face, the faces of P are squares, and come in four types, 

B0,B1, W0, W1. The squares in B0 are those coming from vertices of H;  the squares 

in B1 are those coming from faces of H. The  squares in W0 (resp. W1) are those com- 

ing from horizontal (resp. vertical) edges of H.  The 'B '  and 'W '  stand for 'black'  and 

'white '  coming from the checkerboard coloring of P.  See Figure 1. We assign colors 

B0, B1, W0, W1 to vertices of P~ corresponding to the colors of the faces of P.  
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Temperley [T] showed that  there is a bijection between spanning trees of H and 

perfect matchings of P~(H) (a perfect matching, or dimer covering, is a set of edges such 

that  every vertex is contained in a unique edge). Perfect matchings of P~ correspond 

to domino tilings (tilings with ( l x 2 ) -  and (2x 1)-rectangles) of P(H). A polyomino 

(a union of lattice squares bounded by a simple closed curve) is said to be Temperleyan 
if it is of the form P(H) for some simply-connected subgraph H of G. Note that  if H is a 

simply-connected subgraph of sG for some : > 0 ,  then P(H) will be a polyomino in �89 

The lattice square missing in P which corresponds to point bEH is called the base 
square of the polyomino. For the graph P~ dual to P, b is the base vertex (it is not a 

vertex of P ' ) .  By Temperley's bijection, the number of tilings of P is independent of 

choice of vertex bGH as long as it is on the boundary. If P is a Temperleyan polyomino 

then by H=H(P) we mean the unique associated simply-connected subgraph of ~ for 

which P=P(H). 
These definitions also apply to infinite graphs H,  the only difference being that in 

this case we may if we like choose b=cxD, which means that  we do not remove any lattice 

square from P(H). All infinite graphs we deal with in the sequel have the property 

that  near to infinity the boundaries are straight, that  is, the boundaries have no corners 

outside some fixed large radius. This is to avoid certain convergence problems later. Two 

important  examples of infinite Temperleyan polyominos are the whole plane P ( Z  2) and 

the half-plane P ( N  x Z). Both of these have b=cx~. 

2.2. C o n f o r m a l  p r o p e r t i e s  

The results of [Ken2] apply to Temperleyan polyominos. Let P be a Temperleyan poly- 

omino with dual graph p/ .  We assign weights to the edges of P / s o  that  a horizontal 

edge has weight 1 if its left vertex is white, - 1  if its leR vertex is black; a vertical edge 

is weighted i=x/C--1 if its lower vertex is white, - i  if its lower vertex is black. Thus the 

weights around a white vertex are 1, i, - 1 , - i  in counterclockwise order starting from the 

edge leading right; around a black vertex these weights are - 1 , - i ,  1, i. The adjacency 

matrix of the graph P~ with these weights is called the Kasteleyn matrix Kp of P. Its 

determinant is the square of the number of domino tilings of P [Kas2]. The inverse 

of the Kasteleyn matrix is called the coupling function Cp( . , .  ) of P.  The probability 

of a configuration of dominos occurring in a random tiling is the absolute value of the 

determinant of a submatrix of the coupling function matrix [Ken1]. 

The coupling function has a number of important  properties which we list here. 

2.2.1. Combinatorial properties of the coupling function. First, for v:, v2 two vertices 

of P ' ,  we have Cp(v:, v2)=Cp(v2, v:), and if vl and v2 are both black or both white then 
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Cp(vx, v2)=0.  Therefore we will always take the first variable of Cp to be a white vertex 

and the second variable to be a black vertex. 

The coupling function has a concise description in terms of the Green function 

on H.  Let G be the Green function on the graph H,  that  is, G is the function on 

H• which satisfies AG(x, y)=hx(y)--hb(y), where A is the Laplacian with respect to 

the second variable (and recall that  b is the base vertex). Here Af(v)=4f(v)--f(v+2)-- 
f ( v - - 2 ) - - f ( v + 2 i ) - - f ( v - - 2 i ) ,  except at a boundary vertex, where A f ( v )  is the degree of 

v times f(v) minus the sum of the neighboring values. (Here v+2, v+2i refer to the 

four neighbors of v in the graph H.  Note that  these vertices are at distance 2 in P ' . )  

As stated, the function G is only well-defined up to an additive constant. We fix the 

constant by setting the function to be zero when y=b. For x, x '  any two vertices of H,  

the function L(y):=G(x, y) -G(x', y) satisfies AL(y)=hx(Y) -5~:,(y) and n(b)=O. 
Let x and x '  be adjacent vertices of H; let f ,  f '  be the faces of H adjacent to the 

edge xx', with f '  on the left as the edge is traversed from x to x' .  Let ]- be the function 

on the faces of H which is the harmonic conjugate of L(y) in the sense that  for any edge 

e=vlv2 of H which is not the edge xx' we have L(v2)-L(vl)=]-(fl)-L(f2), where f l  

is the face to the left of the edge e (when e is traversed from Vl to v2) and f2 is the face 

to the right. If  we define ], to be zero on the outer face then it is uniquely defined and 

harmonic except at f and f ' .  Moreover AL(. )=,if(. ) - a s ,  ( . ), where A is the Laplacian 

on the dual H '  of H.  The function ],(z) can also be writ ten G( / ,  z ) - G ( f ' ,  z), where 

is defined by A G ( / ,  z)=hf(z)-~o(z) and G( I ,  o )=0 ,  o referring to the outer face. 

We now have the following description of the coupling function in terms of these 

Green functions. Suppose vl E Wo. Then 

{ G(vl+l,v2)-G(vl-l ,  v2) if vo. EBo, 
Cp(vl,v2)= i(G(vl+i, v2)-G(vl-i,  v2)) i f v 2 e B 1 .  (2) 

Note tha t  when v2 E Bo, Cp(vl, v2)=G(vl+ 1, v2)-G(Vl-1, v2) makes sense since both 

vl=t=l and v2 are in B0 (and hence vertices of H) .  When v2EB1 rather, Cp(Vl,V2)= 
i(G(vl+i, v2)-G(vl-i,  v2) makes sense since vl:l=i and v2 are in B1 (faces of H) .  Simi- 

larly, if v i e  W1 we have 

~ d(vl+l,v2)-G(vl-l ,v~) if v2eB1, 
Up(v1, v2) = ( -i(G(vl +i ,  v2)- G(vl-i, v2)) if v2 �9 B0. (3) 

This description of the coupling function follows from the fact that  K*K is the 

Lap]acian on H,  and also acts as the Laplacian on the dual of H,  see [Ken2]. 

An important  case of the above formula for Cp is when Vl corresponds to an edge 

on the boundary of H, so that  one of v1+1 or vl+i corresponds to the outer face of H.  
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Suppose for example that  V l+ l  is the outer face of P~; then ~vx+l(v2)=0 by definition 

(for v2 a vertex of B1, that  is, a face of H which is not the outer face), and so the term 

G ( v i + l ,  v2) can be ignored in the above formula. 

2.2.2. Asymptotic properties. Let U be a rectilinear polygon in C. Fix a base point 

boE OU. Let {Pc }e>0 be a sequence of Temperleyan polyominos P~ C cZ 2, approximating 

U as c--+0 in the following sense. The Pe are rectilinear with the same number of corners 

as U, one corner converging to each corner of U. ~ r t h e r m o r e  the base points b~ E P~ 

converge to b0. 

In [Ken2] we proved the following. Let C~ = C p.  Under the above convergence hy- 

potheses, the rescaled coupling functions C~/c converge to a pair of complex-valued 

functions Fo(v,z) and Fffv, z) which are meromorphic in z, in the following sense. 

If {ue}, {v~}, {we}, {x~} with ue, ve, we, xeEPe are four sequences of vertices of type 

W0, W1, B0, B1 respectively, converging to respectively u, v, w, xC U, then 

lim _1 C~ (ue, we) = Re F0 (u, w), 
e-~0 C 

lim -1C~(ue,xe) = i lmFo(u ,x) ,  
e--~O 

lim 1C~(ve, we) = Re Fx(V, W), 
e--+O C 

lim 1 C~ (re, x~) = i Im Fl(V, x). 
e--+O G 

The functions Fo and F1 are defined by the following properties. 

PROPOSITION 4 ([Ken2, Theorem 13]). For each fixed vEU the function Fo(v, z) 

has the properties: 

(1) it is meromorphic as a function of zCU; 

(2) its imaginary part vanishes for zCOU; 

(3) it has a zero at z=bo; 

(4) it has a simple pole of residue 1/Tr at z=v,  and no other poles on U. 

Similarly, for each fixed vEU the function F1 has the properties: 

(1) it is meromorphie as a function of zEU; 

(2) its real part vanishes for zCOU; 

(3) it has a zero at z=bo; 

(4) it has a simple pole of residue 1/7r at z=v,  and no other poles on U. 

Furthermore, Fo and F1 are the unique functions with these properties. 

Define the functions F+=FU:=Fo+F1 and F_=FU:=Fo-F1.  These functions are 

easier to work with since they transform as nicely under conformal mappings: F+ (v, z) dv 

is a meromorphic 1-form and F_ (v, z)d~ is an antimeromorphic 1-form. 
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PROPOSITION 5 ([Ken2, Proposition 15]). The function F+(v, z) is analytic in both 

variables. The function F_ (v, z) is analytic in z and antianalytic in v. If  V is another 

marked region and f: V--~U a conformal isomorphism sending the base point of V to the 

base point of U, then we have the transformation rules 

FY(v, z) = f ' (v)FU(f(v),  f(z)),  

FV(v, z) = f '(v) F U(f(v), f(z)) .  

(4) 
(5) 

When U = C  with bo=c~ we have F + ( v , z ) = 2 / , ( z - v )  and F_(v,z)-O.  When U is 

the right half-plane RHP={z:Re(z)>O} with bo=oC we have 

2 2 F+(v,z)-.(z_v), F_(v,z)- (6) 

This and the above transformation rules determine F+ and F_ (and hence Fo, F1) on any 

simply-connected region. 

2.3. A v e r a g e  h e i g h t  f u n c t i o n  

Recall [Th] tha t  the height function of a domino tiling is an integer-valued function on 

the vertices of the dominos; it is well-defined up to an additive constant. After fixing 

its value at some vertex, it is defined by the property that  on an edge viv2 which is not 

crossed by a domino, the height difference h(v~)-h(vl)  is +1 if the square to the left of 

the edge vlv2 (we mean, the square containing edge vlv2 and on the left when traversing 

vlv2 from vl to v2) is black, and - 1  if this square is white. See Figure 2. Note that  the 

height hmction along the boundary is independent of the tiling. 

Let U be a rectilinear polygon with base point b0, and P~ a sequence of Temperleyan 

polyominos converging to U as in the previous section. Suppose for simplicity that  all 

the P~ contain a fixed vertex v0, say at a corner of P~. Let h~ be the average height 

function of P~, that  is, for any vertex vEP~, h~(v) is the average height of v over all 

domino tilings of P~, where the height at v0 is taken to be zero. The limiting average 
height function h of a random domino tiling of U is by definition the limit as ~-+0 of the 

functions h~: take xEU with x~OU, and let x ~ P ~  converge to x; then 

h(x) := lim h~(xE). 
~--~0 

For xEOU but not at a corner, h(x) is defined by continuity from values of h in the 

interior. 
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Fig. 2. Some of t he  he igh t s  in a domino  tiling. 

In [Ken2] we showed that  this limit exists and has a simple expression in terms of the 

function F+. Let F+(v,z)=F+(v,z)-2/~(z-v) and let F+(v)=limz~vF+(v,z). Then 

the limiting average height function h on U is given by the complex line integral 

FF:( h(v) = 2 I m  u) du. 
�9 ] ~2  o 

The choice of zero v0 is immaterial since the height is only defined up to an additive 

constant anyway. Note that  from (6), on C or on the right half-plane we have F+(v, z ) =  

2/Tr(z-v), so F + - 0 ,  and therefore h(v) is constant, as expected. As another example, 

the map z~+(l+z)/(1-z) maps the unit disk to the right half-plane, mapping 1 to oc; 

therefore using (4), on the unit disk with base point z = l  we have 

F+(v,z) = 2 ( 1 - z )  7~(1-v)(z-v) and F + ( z ) =  -____~2 ~ ( 1 - z ) '  

so that  
h(v)= 4 i m / f f  du 

7r o l - U  

Note that  in general h(v) is harmonic, being the imaginary part of an analytic function. 

For v on the outer boundary of U, h(v)-h(vo) is the total turning (in radians 

times 2/~) of the boundary tangent on the path counterclockwise (cclw) around the 
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boundary from Vo to v. When passing the base point b0, however, the height drops by 4. 

Thus a full cclw turn contributes + 4 - 4 = 0  to h. The function h is constant on the 

straight edges, and there is a discontinuity at each corner of U, where h changes by +1 

according to whether the corner is a left turn or right turn (if the base point b0 is at 

a corner then the change would be - 3  or - 5  accordingly). These boundary values can 

be understood in a sense using Figure 2: the polyomino in this figure can be thought 

of as approximating a rectilinear octagon U, where the height on the lower boundary 

1 (the average of - 1  and 0, the alternating heights on P~), the height on the of U is - 5  

1 (the average of 0 and 1), and so on. Since a harmonic function right-most boundary is 

is determined by its boundary values this provides a simple description of h in terms of 

the turning of the boundary tangent. 

2.4. D i r i c h l e t  e n e r g y  

Recall that  the Dirichlet energy of a harmonic function h on a region U is given by 

E(hl= fs IWl2dxdy=   
where g is a harmonic conjugate of h, that  is, g is a harmonic function so that  h+ig is 

locally an analytic function of x+iy. 

We will be interested in the Dirichlet energy of harmonic functions which are the 

limiting average height functions on rectilinear polygons U. In particular, their boundary 

values have a finite number of jump discontinuities (at the corners); unfortunately in 

such a case the Dirichlet energy is infinite. To avoid this difficulty, for each sufficiently 

small (i>0 we define the (f-normalized Dirichlet energy E~(h) as follows. Remove a (i- 

neighborhood of each xE OU for which the harmonic function h has a jump discontinuity. 

Let U'  be the region U without these neighborhoods. The &normalized energy E~(h) is 

simply the integral of ]Vh] 2 over U '. 

If  U is unbounded and if h has a jump discontinuity at oc, we remove the neigh- 

borhood of cc consisting of points Iz]> 1/(i, and compute the energy on the remaining 

region as before. 

Here we will illustrate with an example. Let h be the bounded harmonic function on 

the upper  half-plane which has value 0 on the x-axis to the right of the origin and 1 on 

the x-axis to the left of the origin. Then h(z)=(1/Tr)Imlog(z). The harmonic conjugate 

to h is g(z)=-(1/~r)Re log(z). The normalized Dirichlet energy is the integral over OU' 

of h dg, which can be broken into four parts: the integral from _(i-1 to - &  the integral 

around the half-circle of radius (i, the integral from (i to ( i -1  and the integral around the 

half-circle of radius (i-1. The third of these integrals is zero since h is zero on the positive 
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x-axis. The second and fourth are zero since dg is zero on circles about  the origin. So 

the only contribution is from the first integral, which gives 

/_-~  ( ~ )  2 1 
1 dg = 9 ( - 5 ) - g  - = - log 

E~(h)  = 1/6 7c 5" 

In a more general situation, dg will not vanish along the boundaries of the 5- 

neighborhoods of the discontinuities, but dg will still be O(6) there, as we now show: Let 

h be the average height function on a rectilinear polygon U. Take a convex corner of U, 

translate and rotate  U so tha t  the corner is at the origin and is bounded by the positive 

axes. Without  loss of generality (after a linear scale) we suppose that  near the origin h 

is 0 on the x-axis and - 1  on the y-axis. Then h is the imaginary part  of an analytic 

function h(z) on U whose expansion at 0 is of the form 

2 l o g ( a l z + a 2 z 2 + . . . ) =  2 1 o g ( z ) + / 3 0 + • l Z + f l 2 z 2  + . . . .  
7~ 71" 

In particular when z = 8 e  iO, we have 

dg(z) 2 
- - R e ( 9 1 8 i e  + 0 ( 8 2 ) )  = 

dO 7r 

A similar argument works at a non-convex corner. 

Since h has a standard form near each of its jump singularities, the 5-normalized 

Dirichlet energy has a very simple dependence on 8. Recall that  at a convex corner the 

height function changes by +1 when moving cclw around the boundary. So the height 

function is of the form of that  of the above example. If  we change 5 to a smaller 5', the 

change in energy at that  corner is 

f i s '  2 + 2 
- d 9  = - -  log(3') log 8 + 0 ( 8 ) .  

Thus the dependence on 8 at a convex corner is (2/70 log(1 /5)+O(5) .  

Similarly we can do the calculation at a concave corner. Move and rotate  the corner 

so tha t  it is bounded by the positive x-axis and the negative y-axis. Up to an additive 

constant h is 0 on the x-axis near the origin and 1 on the negative y-axis. So h is the 

imaginary part  of an analytic function h ( z ) =  (2/3~r)log z + a 0  + a l z + a 2 z 2 +  .. . .  Now if 5 

changes to the smaller 8 ~, the change in energy is 

f-,z6' 2 2 
d9 = - - -  l o g 5 + 0 ( 8 ) .  log(8')+ 

Thus the dependence on 5 at a concave corner is (2 /37r ) log(1 /5)+0(5) .  
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If a corner contains the base point, then if it is a convex corner the height changes 

by - 3  rather than +1. The dependence on 5 is therefore 9 times that  for a normal 

convex corner, or (18/7r)log(I/5). So the fact that the corner contains the base point 

adds (16/~r)log(l/5) to its "local energy". If the corner is concave the height changes by 

5 rather than 1, and so the local energy is (50/37r)log(l/5) rather than (2/3~r)log(i/5),  

which is also an addition of (16/7r)log(i/5).  If the base point occurs along an edge, the 

height change is 4 and the energy associated is again (16/7r)log(1/5). 

Now from these calculations, for any rectilinear region U we can immediately com- 

pute the dependence of the 5-energy on 5, in terms of the number of vertices. A (simply- 

connected) region with V vertices has �89  concave vertices and �89 convex 

vertices, one of which we may take to be the base vertex. So the dependence on 5 of its 

&energy is 

7r 1 ( 4 ( V - 4 ) _ ~ _ )  ~+0(5). O(5) § ( ~  ( ~ - ~ ) +  2 ( - ~ ) +  ~ - ) l o g  ~ - - \  ~ F log 

Note that  - ~ s ~  times the above &energy gives the logarithmic terms in Theorem 1 

(if we replace 5 with c). 

3. Cutting a lattice region into rectangles 

Here we prove Theorem 1. Let U be a rectilinear polygon with base point boE OU. Let 

~o=~o(t) be a straight (horizontal or vertical) unit speed path in U from OU to OU which 

avoids bo and does not touch OU except at its endpoints. 

Let Pc c ez2 be a Temperleyan polyomino approximating U as described in w 

Let % be a strip of width ~ of lattice squares of P~, lying within O(e) of ~o and traversing 

P~ from the boundary to the boundary, avoiding the base square of PE. Furthermore we 

require that  % contain no square in B0 (that is, contains only white squares and squares 

in B1), and if either extremity of 70 is at a concave corner of U then the corresponding 

extremity or extremities of % are at the corresponding corners of P~. 

Because of the boundary conditions on P~, % has length which is an odd multiple 

of ~. If we remove % from P~, then what remains is a union of two disjoint polyominos 

P1 and P2- Let Pt be the polyomino which contains the base square of PE; then P1 is a 

Temperleyan polyomino. The other polyomino P2 will become a Temperleyan polyomino 

if we remove a single square s of type Bo in P2 adjacent to one of the endpoints of ~/E" 

Note that  the union %U{s} has a unique domino tiling. The number of tilings of P~ 

equals the product of the number of tilings of P1 and the number of tilings of P2, divided 

by the probability P r (~U{s} )  that  the tiling of ~ U { s }  occurs in a uniform tiling of P~. 
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We can repeat this procedure on P1 and /2.2, cutting them apart into simpler and 

simpler pieces until we arrive at a collection of Temperleyan rectangles (a Temperleyan 

rectangle is an odd-by-odd rectangle with corners in B0 and one corner square removed). 

Temperley IT] provides us with a formula for the exact number of tilings of a Temperleyan 

rectangle (see Proposition 13). Working by induction, to compute the number of tilings 

of P~ it suffices to be able to compute the probability of finding, in a random tiling of P~, 

a tiling of % U {s}. We cannot compute this probability exactly but we can approximate 

it sufficiently closely (Lemma 6). 

The region %t_J{s} has a unique tiling which is a chain of dominos. Starting from 

the boundary of P~, let al, a2, ..., aN be the set of consecutive dominos making up the 

tiling of %U{s}. The ai are laid end-to-end except for aN which is perpendicular to the 

others. The probability of all the ai being present in a tiling of P~ is a product, as j 

runs from 1 to N, of the probability that  aj is present, given that al,  . . . ,  aj 1 are already 

present: 
N 

Pr(al ,  ..., aN) = H Pr(a j la l ' " "  aj-1). (7) 
j = l  

Suppose that  al, . . . ,aj_l are present already. These dominos form a strip run- 

ning from the boundary of P~ to a point in the interior of P~. The region p(j)def 

P~\{az, ..., aj 1} is again a Temperleyan polyomino, by our hypothesis that  the ai con- 

tain only black vertices of type B1. So computing Pr (a j la l ,  ...,aj-1) is a matter of 

computing the probability of aj in a random tiling of this region P~(J). 

Let Uj be the region V with a slit cut out along the segment 70([0, 2 ( j -1 )e ] ) ,  and 

translated by - 2 ( j - 1 ) c  so that  the tip of the cut is at the origin. Then Uo=U (up to 

translation) and UN is a union of two rectilinear polygons. 

We may suppose (after applying a rotation if necessary) that  the path V0 is horizontal 

and goes from left to right. For 0 < j < N  let f j  be the unique conformal isomorphism 

sending the right half-plane {z: Re(z)> 0} to Uj which sends 0 to 0 (end of the cut), oe to 

the base point b0, and has expansion f j ( z ) = z 2 + O ( z  3) at the origin (we do not define f0 

or fN) .  

L E M M A  6.  

We have 

Let F~ j) be the function F~ (coupling function limit) on the region Uj. 

Pr(ajlal , . . . ,aj_l)  v ~ - i  = 1+ ( ~  cF~J)(c' 2 c ) - 1 )  +er r ( j )  

where err(j) is o(max(1/j, 1~ (N- j ) ) ) .  The term in brackets on the right-hand side is 

0(~) when j is not close to 0 or N.  Let ~>0 be a small constant and K=K(e) :=~/e .  
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Then this can be written 

[ 

Pr(aj]al ,  ..., aj-1) = ] 

v ~ - i  

1 + - ~  + errl( j)  + O(e) 
J 

1+ ~ S V / - ~  (0)+ ~o(c) 

C1 
1 +  ~ + err2 ( N - j )  + O(e) 

i v - 3  

if j<~K,  

if K < j < N - K ,  

if N - K ~ j ,  

(8) 

where S V / ~  is the Schwarzian derivative of V / ~ ,  and errl(x) and err2(x) are o(1/x). 

Here err1 depends only on whether ~/o starts at an edge or at a concave vertex, and err2 

depends only on whether ~/o ends on an edge or at a vertex. The constants Co, C1 are 

determined as follows. I f  % starts on an edge, then C o = - 1 ;  if  % starts at a corner 

then Co = - ~ .  I f  "Yo ends at an edge then C1 = - 3 ;  if % ends at a corner then C1 = 23 7 2 '  

As we will see in the proof, the first and third expressions on the right-hand side of 

(8) are special cases of the middle expression, except for the error terms. 

The probability of Lemma 6 can be related to the change in normalized Dirichlet 

energy of the limiting average height function of Uj: 

LEMMA 7. Let ~ and K be as in the previous lemma. For N > j > I  the difference 

in the &normalized Dirichlet energy of the limiting average height function between Uj 

and Uj-1 is 

48Co if j <. K, 
7rj 

8~ 
E a ( h j ) - E ~ ( h j - 1 ) =  - ~ - S v / ~ ( z j ) +  o(c) if K < j < N - K ,  

48C1 I-O(c) /f N - K < j ,  
7r (N- j )  

where Co and C1 are defined as in the previous lemma. When j = l  or j = N ,  the dif- 

ference in energy E ~ ( h j ) - E s ( h j _  D is a constant depending (for j = l )  only on whether 

the cut starts at a corner or on an edge, and (for j = N )  on whether the cut ends at a 

corner or on an edge. 

These two lemmas, and a computation of the number of tilings of a Temperleyan 

rectangle, give us the main result: 

Proof of Theorem 1. The proof is by induction on the number of cuts required to 

cut P~ apart into Temperleyan rectangles. In the case Pe is a Temperleyan rectangle, 

V = 4  and Proposition 16 below shows that  (t) equals the log of the number of tilings, 

up to an error O(e). 
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For a general P~ as in the statement, let %U{s} be a strip as explained above, 

cutting P~ apart into two Temperleyan regions P~ and P ' .  We compute the log of the  

probability of %U{s} occurring in a tiling of P,.  This probability depends on whether 

% starts on an edge or at a corner, and whether it ends on an edge or at a corner. 

Let el, ..., aN be the chain of dominos of %U{s},  and let P(J)=PeLJ{al, ..., aj}. By 

Lemma 6 we have 

log Pr(%U{s})(x/~ - 1) N _-- 3 ~  " log Pr(ajlal'v/2_l"" aj-1) 

= E log ( 1 +  ~ + e r r l ( j ) + O ( e ) )  
j<~g 

1 1 
+ E l~ ( 1 +  geSV/~J (0)+ ~ ~ ) 

K < j < N - K  

+ E log(l+~.+err2(N-j)+O(e)~ 
N-K<~j \ IV --~ /I 

- 1 1 
:j~+err3(3)+O(e)+K<j~<N_K~eSV/--~J(O)+-~~ 

Cx ~-errn(N-j)+O(e). + E  N-----3 
N - - K  <~j 

(9) 

In this expression the terms err3(j) and e r r 4 ( N - j )  sum to give an error ERR0(e) log( i /e )  

where ERR0(e) is o(1). The remaining terms are equal by Lemma 7 to -~sw times the 

change in Dirichlet energy on %, up to the error terms O(e) and o(e)/~. The terms O(e), 

however, sum to KO(e)=O(~), which is negligible. Similarly the terms o(e)/~ sum to 

o(e)/e~, which tends to zero if ~ tends to zero sufficiently slowly. 

Since each tile (except the last) decreases the area by 2 and increases the perimeter 

by 4, noting that -2c0 +4c1=  log (x/~ - 1) which cancels the denominator of (9), the 

formula (1) is correct up to a justification of the term ERR0(e). 

The error ERR0(e) is the sum of two error terms, one coming from the beginning 

of % and one from the end. Let ERRI(e)  and ERR2(e) be ~j~<g err3(j) when % starts 

at an edge or a corner respectively. Let ERR3(e) and ERR4(e) be Y~j>~N-K e r r 4 ( N - j )  

when % ends at an edge or a corner respectively. We have that E R R I ( e ) + E R R 4 ( e ) =  

ERR2(e)+ERR3(e)  since when % is traversed in either direction the same error occurs 

(that is, the probability of % U {s } is independent of the position of s as long as it is of type 

Bo and on the correct side of %; therefore 70 can be traversed in either direction, giving 

the same probability for %U{s}).  Moreover by Proposition 16, E R R I ( e ) + E R R 3 ( e ) = 0 ,  
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since when we cut a rectangle apart  into two rectangles there is no error (or rather, this 

error, when multiplied by log( i /e) ,  is still O(e)). 

Therefore if 7~ begins at a corner and ends at an edge, or vice versa, the error ERRo is 

ERR2 - E R R  1. When % begins and ends at a corner the error ERRo is 2 (ERR2 - E R R 1 ) .  

When we cut P~ apar t  to make rectangles, each concave corner gets cut exactly once, so 

the total  accumulated errors will be the number of concave corners t imes a fixed error 

E R R 2 ( e ) - E R R I ( e ) .  Setting E R R ( e ) = E R R 2 ( e ) - E R R I ( e )  completes the proof. [] 

As a shortcut for computing the log probabili ty of the cut %U{s},  from Lemma 6 

the log of (7) is  N l o g ( v ~ - 1 )  plus the sum over j of log(l+((rr/v~)eF~J)(e, 2 e ) - l ) ) ,  

plus the error term. When e is small the sum over j can be replaced by an integral using 

the variable t = 2 c j :  

S"(5  ) Pr(TEU{s}) = N log(V~ - 1) + eF}t/2e)(a, 2 ~ ) -  1 �9  
s 2~ (10) 

1 
+ ERR0 (e) log - + const + o(1). 

e 

Here ERR0(c) depends on whether or not 7o begins or ends at a corner, but not on U. 

This form will be useful in w 

4. T h e  p r o b a b i l i t y  o f  t h e  n e x t  d o m i n o  o n  a c u t  

4.1. T h e  sl i t  p l a n e  

Define the slit plane SP as the plane minus the left half of the z-axis: S P = R  2 -  ( - e c ,  0]. 

For e > 0  define the polyomino SPE to be the (infinite) polyomino obtained from 

P(2cZ2-/-(e,e))  by removing the lattice squares centered at ( - k c , 0 )  for all k~>0. We 

assume that  the lattice square centered at the origin is of type B1. The infinite poly- 

omino SPc is Temperleyan, with base point b at infinity (SP~ is gotten from the graph 

He which is obtained from 2eZ2+ (E, c) by removing edges ( - 2 k ~ + r  - r  e) for 

all k>0) .  

For later use, we compute the asymptot ic  coupling function on the slit plane SP. 

LEMMA 8. The asymptotic coupling function on SP with base point at oc satisfies 

FS+P(v,z)_ 1 1 

FSP(v,z)_ -1  1 
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Proof. The map z~-+v/-Z maps SP to the right half-plane RHP and oc to co. On 

RHP we have 

FR+HP(v,z)_ 2 1 ~r (z-v)  a n d  F_RHP(v, z) -- --2 1 

The result follows using the transformation rules (4) and (5). [] 

Let U, U3 be as in w Let f = f j  be as in that  section. Define b=bj and c=cj to be 

the coefficients in the expansion 

f(z) = z2 +bza +cz4 +O(z5). (11) 

Note tha t  hEiR and c E R  since f maps the imaginary axis to the real axis. The inverse 

of f has the expansion 

f - l ( z  ) 251/2__ lbz..~_ 5 2 1 3/2 2 = (gb -~c)z  +O(z ). (12) 

The expansion of V/]  is 

f ~ / / ~  1 2 1 =z+~bz - F ( ~ C  - 1  2 gb )z3~-O(z4), (13)  

and the Schwarzian derivative of v/-f at the origin is defined as 

sv (0) . -  =3c--~b . (14) 

4.2. P r o o f  o f  L e m m a  6 

Here we prove Lemma 6. After a translation we may assume tha t  the right-hand square 

of the domino aj_  1 is the square centered at the origin in eZ 2. Then Pr(a j  I al ,  ..., aj _ 1) = 

Cj (e, 2e) where Cj is the coupling function on P(J) t ranslated as above. We must then 

approximate Cj(e, 2@ Recall that  e is a lattice square of type W1 and 2e is of type B1. 

Recall from (3) that  for yEW1, the coupling function Cj(v,z) on P(J) satisfies 

ACj(v,z)=6,,+~(z)-dv_~(z), for zCH' the dual graph of H=H(P(j)), where A is the 

Laplacian on H ~. Furthermore Cj (v, z) is zero when z is the outer face of H.  In par- 

ticular, ACj(c,  z)=62~(z), that  is, Cj(e, z) is the discrete Green function on H' centered 

at e. To compute Cj(c, 2e), we will use a theorem of Kesten comparing the values of a 

continuous and a discrete harmonic function near the tip of a cut: 
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THEOREM 9 ([Kes]). Let D~lit be the slit disk { H < l } \ ( - 1 , 0 1  and let ~ be a contin- 

uous harmonic function o n  Dslit with piecewise continuous boundary values and boundary 

values 0 on the slit. Let g~ be a discrete harmonic function on cZ2ND~lit with boundary 

values within O(c) of the boundary values of {I, and boundary values 0 on the slit. Then 
for any (k,l)EZ21 

g~ (kE, le) = Ak,, [l(k~, l~)+ o (v~)  

where the constant )~k,l only depends on k and I. 

We cannot apply this theorem directly since in our case Cj (~, z) is not harmonic at 

the point z=2~. Let, however, Csp~(v, z) be the coupling function on the discrete slit 

plane SP~. The function g(z):=Cj(~, z ) -Csp(e ,  z) is harmonic for zEB1 in a neighbor- 

hood of the origin in H t, including the point z=2s ,  since the Laplacians of Cj and Csp, 

are equal there. Furthermore g(z)=0 (Dirichlet boundary conditions) when z is on the 

cut ~Y0. In fact g(z) is discrete harmonic on all of P(J) except possibly where the interior 

of P(J) meets the negative x-axis somewhere to the left of the slit (but since Csp~ admits 

an analytic continuation around the origin, we can define g(z) so as to be harmonic on 

all of P~(J)). 

We can therefore use Kesten's theorem applied to g(z) to compute g(2e)=A1,0 ~(2e), 

where .q(z) is the continuous harmonic function on P(J) with the same boundary values 

as g(z). It remains to compute ~(z) and Cse~. 

LEMMA 10. On SPe with zEB1, and z not within O(1) of the origin, we have 

Csp~(a, z) -- TaFlSP(a, z)4-o(~) = T ~ + o(~), 

for some constant T. 

For the proof see the appendix. Now to compute ~(z), from the lemma it is the 

(continuous) harmonic function with boundary values --vaFSP(~, z )+  o(e) on OUj. Note, 

however, that the function ~F}J)(v, z)-aFSP(v, z) as a function of z is continuous, har- 

monic, with boundary values -eFSP(v, z) on OUj. Multiplying by % at v=E we must 

have O(z)=Te(F}J)(~, z ) -  FlSP(c, z))+o(c). 

Let NL(O) be the neighborhood of radius L of the origin, where L is chosen so small 

that  NL(O)CP (j). More precisely, if j<~K or j > ~ N - K  we take L = m i n { j s ,  ( N - j ) ~ } ,  

and for K < j < N - K  take L=~.  

On CONL(O), cFISP(c,z) is O(X/gV/~) (see Lemma 8), and EFI(e,z) is comparable 

to cFSP(r z) and therefore also O ( ~ ) .  Therefore on ONL(O), X / ~  (Tr z)-- 

TEFS1P(e, z)) is bounded, and we have by Kesten's theorem (for the disk of radius L) 
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or 

g(2C) =/~1,0 T(cFI(C, 2C)- cF1SP(c, 2C))-}-o(c/L). 

Now from Lemma 8 (using FI=�89 we have cFSP(a, 2c)=v/2/Tr, and plug- 

ging in the value of A1,0T from (16) below yields the first result. 

Let f=f j :RHP--+Uj be as in the statement. Let s ( z ) = f - l ( z ) .  Then from the 

transformation rules (4), (5) and (6) we have 

FU(v,z)_ 2s'(v) 2s'(v) and F U(v,z)= 

Consequently 

Crl(C, 2c)= c ( st(c) st(c) ) 
s(2c)+s(c  

Using the expansion (12) and (14), and the facts that  bEiR,  cER,  this reduces to 

v + s4Z(o)c+o(c3/2 ) I 

So then 

P r ( a j t a l , . . . , a j - 1 ) = V / 2 - - 1 - t - A l , O T ~ S V / ~ ( O ) E + o ( ~ ) .  

Plugging in for A1,07 gives the center result in (8). 

When j is close to 0 we must replace r in Theorem 9 by 1/j  since j is the com- 

binatorial distance (number of lattice points in H )  to the boundary of the region. We 

have 

Pr(ajlat, . . . ,aj_i)=v/2-i+Alow,.VS2-2Sv/-fjjj(O)c+o(1. ~ . (15) 
' DTc \ 3 /  

A similar expression holds when j is close to N. 

Now when j is small or close to N, the Schwarzian derivative of f j  is blowing up in 

a standard way which is independent of U up to an error O(1): 

LEMMA 11. When j is small, the germ of f j  at the origin is independent of U 

(depending only on whether or not the cut starts at a corner or on an edge) up to an 

error O(1). Similarly when j is near N ,  the germ of f j  at the origin is independent of 

U up to an error O(1), only depending on whether the cut ends at an edge or a corner. 

The proof is in the appendix. Below when we write Oz(1) we mean an analytic 

function in z each of whose coefficients is O(1) (as j--+0 or j - + N ) .  In particular, z3Oz(1) 

is an analytic function whose 2-jet vanishes. 
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2 ( N - j ) c  

(a) (b) 

Fig .  3. W h e n  t h e  c u t  e n d s  a t  a n  e d g e  (a)  a n d  a t  a c o r n e r  (b) .  

Recall that  fj is normalized as in (11). If "Yo starts at an edge of U, then when 

j is small fj is approximated by the map 2v/ejz2+(ej) 2 -2cj which maps RHP to 

{x+iy:x>-2ej}-[-2ej,  O]. That  is, from Lemma 11 we have 

Z 4 
fj(z) = 2x/Ejz2+ (c j )  2 -2cj+z30z (1) = z 2 - - -  +z3Oz (1). 

4cj 

Therefore S V / ~ ( 0  ) = - 3 / 4 e j  + O(1). Plugging this into (15) yields 

Pr(ajlal, a j _ ] ) =  v ~ - I  v ~ - i  ( ~ )  "'" 8j Fo +O(c)  

where the o(1/j)-term is independent of U: the term o(1/j) only depends on the error 

in Kesten's theorem as applied to the coupling function on {x+iy:x>-2ej}-[-2ej,  0]. 

If % starts at a corner of U, then fj is approximated by a map of the form 

f(z) = C+C'(z+2iB)v/z-iB +z30~ (1), 

for constants C, C' and B (this follows from the Schwarz-Christoffel formula: the deriva- 

tive of f is a constant times z/zv/77~ for some real B). The conditions that  f(iB) =-2ej 
and f (z) = z 2 + O(z 3) determine C, C', B, and a short computation gives 

Z 4 
f j(z)=z 2 2iV~z3_ +O(z6)+z3Oz(1), 

whence 
5 +0(1). SV/-~J (0) -- 12e~ 
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A similar argument holds when j is near to N. If 7o ends at a straight edge of U, 

then near the origin fj  is approximated by the map 

C' 
f j ( z ) = C  ~ ~z3Oz(1), 

which maps RHP to the region shown in Figure 3(a). Again C, C r, B are determined by 

f(oc)=2c(N-j) and f(z)=ff+O(z3), and a calculation gives Sv~(O)=-9/4cj+O(1 ). 
Lastly, if 7o ends at a corner of U, then near the origin fj is approximated by a map 

of the form 
C / fj(z) = C -  

V ~ - i B  (z+2iB) ' 

which maps aHP to the region shown in Figure 3(b). Using f (z)=z2+O(z~)  and f(o~)= 
2 e ( N - j )  determines C, C', B to give 

f(z) = z 2 + ~2ix/~ z3_4@jz4 +O(z5)+ z3Oz(1) ' 

which gives SVTj(0):--23/~2~j +0(~). 
This completes the proof of Lemma 6. [] 

To determine A1,0~-, we use Proposition 13 below. When we cut an (mxn)-rectangle 

R into two rectangles R1 and R2 with a horizontal cut of length rn, the sum of the logs 

of number of tilings of R1 and R2, minus the log of the number of tilings of R, which 

is the probability of the cut, is 'rn l o g ( v ~ -  1 ) -  1 log re+O(1).  On the other hand, from 

the above proof this is 

.~log(v~ - 1) +A1,0 7 67c(V/~ _ 1) ( -  ~ - ~ )  l~ + ~176 m)" 

This gives 

(v/2 -1)7r (16) 

5. T h e  c h a n g e  in t h e  D i r i c h l e t  e n e r g y  

We prove here Lemma 7. The computation is in two steps. We first show that  the 

change in the &normalized Dirichlet energy only depends (up to an error o(s)) on the 

4-jet of f at the origin, that  is, only depends on b and c of (11). Then we do an explicit 

computation of the Diriehlet energy for a particular 2-para, meter family of regions, whose 

corresponding maps f have &jets covering every possible value of (b, c). 
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5.1. D e p e n d e n c e  on  4 - je t  

Since in w we computed the dependence on 5 of E~, we can assume without loss of 

generality in this section that  5 is small compared to c. 

Let hj denote the limiting average height function for Pj, and hj+l be the limiting 

average height function for Pj+I. 

LEMMA 12. Up to an additive constant we have hjofj=(2/w) Imlogfj(z). In par- 
ticular, hj = hjo fj ofj-1 = _ (2/7r) Im log(f71 )'(z). 

The proof of the first s ta tement  follows from the definition of hj in the last paragraph 

of w The second s ta tement  follows trivially from the first. 

Let gj be a harmonic conjugate on Uj of hi,  so that  hj:=h:+igj is analytic on Uj. 
Similarly let gj+l be a harmonic conjugate for hj+l on Uj+I. 

Since the boundary of Uj is a subset of the boundary of Uj+I, the change in nor- 

malized Dirichlet energy can be written (recall that  U] is the region Uj minus a 5- 

neighborhood of its vertices) 

fou~+lhj+ldgj+l-Js fou(hj+ldgj+l-hjdgj)+/xhj+ldgj+l (17) 

= Js (hJ+l-hj) dgj+l- fou,jhj d(gj+l-gj)+/xhj+l dgj+l (18) 

where X=OU~+I-OU ~ is the pa th  which consists of the four pieces 

ON6 (0) U [-5, 2~ + 51U ON,~ (21) U [-5, 2c - 51" 

where the superscript * is a reminder that  the second segment is traced in the reverse 

direction. 

We will show that  each of the three integrals of (18) depends (up to controlled errors) 

only on the 4-jets of fj and fj+l. 
The first integral in (18) can be est imated as follows. On the boundary of Uj we 

have hj+l=hj, and for each corner c of Uj+I we have dgj+l=O((~) on ON~(c) (see w 

It  remains to consider the boundary ONs(O), where 0 is the tip of the cut in Uj (which 

is not a corner of Uj+I). The x-axis divides ON~(O) into two parts. Since gj+l is smooth 

on each half, when 5--+0 the integral of (hj+l-hj)dgj+l on each half tends to zero. In 

conclusion the first integral in (18) tends to zero with 5. 

To compute the second integral in (18), we show that  we can replace the pa th  of 

integration by a smaller path  of radius O(e); on this new path  we will be able to replace 

dgj and dgj+l with their 4-jets. 
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Now hi+l-hi is the harmonic function which (after choosing an appropriate base 

point) is zero on OUj, and 1 and - 1  on the upper and lower side of [0, 2e] respectively. 

On OUj we therefore have 

g j + l - - g j  = Ira(h j + l - h  j) = - i  ([tj+l - t t j )  

since the real part of this function vanishes. 

The second integral in (18) can then be written (using hj=-(2/Ir)Imlog(fj-1)'(z) 
from Lemma 12) 

~ou,hJ d(gj+l - g j )  = - ~2 I m / o u , l o g ( f j - 1 ) ' ( z ) ( - i ) ( h j + l - h j ) '  dz, (19) 

where the ' refers to the z-derivative. This integral is the imaginary part of a contour 

integral. The integrand is analytic on U ' -  [0, 2@ in particular, it is analytic on U' minus 

a neighborhood of the origin of radius 3c. Therefore we can replace the path of integration 

by a path which winds around the boundary of the slit disk Dslit = {z E U':lz I < 3r 

Now on Dslit we have (see (12)) 

1 b FTV/~+zOz(1) ) =log((f~,~4}),)(z)+za/2Oz(1) l~ = l~ 2~f~ 

where fj,{a} is the 4-jet of fj at the origin (7 is a constant depending on b and c only). 

Similarly 

( 1 bj+l t - ~ , j + l ~  + O ( z - 2 c ) )  
l~ = l~ 2 x/z-- 2E 2 

= log((fj+l,  {4} )1) (Z) ~- (Z -- 2C) 3 / 2 0 z _ 2 e  (1), 

where we recall that since we are using coordinates in Uj, 

f j+ l (Z) : 2e+z  2 +bj+l  z 3 -~Cj+l Z4 -~- .... 

These equations give, on 0Dslit, 

@j=_2 Re(dlog((f[,~4}),)+v~Oz(1)dz)=dgj,14~+v~Oz(1)dz (2O) 

and similarly dgj+ l =dgj+ l, { 4} + v ~ Oz(1) dz. 
Having found dgj and dgj+l, the integral (19) becomes 

/ hj(dgj+l-dgj)= Js } +v~O(1)dz). (21) 
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Since hj is bounded, 

o(1) f hj,{4t dz = 

and similarly on the path  of integration the only singularity of dgj+l,{4} or dgj,{4} occurs 

near the origin, where the functions are at worst O(z-1), so 

z3/20 z (1)(dgj+l, {4} - dgj,{4}) = J zl/20z (1) dz = O(e3/2). 

Thus we can pull the errors in (21) out of the integral, giving O(e3/2). Therefore the 

integral (19) only depends on by, cj, by+l, cj+l up to an error O(~3/2). 

Lastly we estimate the third integral in (18). As was the case for the first integral, 

on the two halves of N6(0) the integral of dgj+l tends to zero with 5. Now on Nh(2e) we 

have dgj+a=O(6), and hj+l is constant (1 or - 1 )  on the two "sides" of [0, 2e]; so 

f 2e-5 6 
/xhj+ldgJ+l:~ dg;+l- f22e_hdg3+l 

= o(1)+gj+l(5)+-gy+a(2e-5)+-gj+~(2e-5)-+gj+l(5) -, 

(22) 

where the + and - refer to the two limits from above and below the axis, and the o(1)- 

term tends to zero with & Using 9j+1(z)=(2/Tr)Re log(f~-~_i)'(z ), we see that  the values 

at 5 and 2 e - 5  of gj+l depend only on the 4-jet up to an error O(e3/2). 

We have shown that  the change in energy depends only on the 4-jet of fj and fj+l. 
Now when j is not within K of 0 or N, bj+l=bj +O(e )  and Cj+l=Cj + O ( e )  by Lemma 11. 

Changing bj+l and Cj+l by O(e) changes the second and third integrals (21) and (22) by 

at most O(e3/2); so when K < j < N - K  the change in energy in fact depends only on the 

4-jet of fj. 
When j < K  or N - K < j ,  the energy depends on the 4-jet of both fj and fj+l. In 

these cases, however, both  fj and fj+l are independent of U up to O(1); in the next 

section we will see that  the energy depends only on j ( through the Schwarzian derivative 

of V ~ )  up to an error o(1/j). This completes the proof that  the change in Dirichlet 

energy only depends on the 4-jet of f at the origin, up to terms in o(e). 

5.2. Computat ion  for a specific family of  functions 

At this point we could simply work out the integrals (21) and (22), but it is less compu- 

rationally painful to do an explicit calculation for a particular family of functions. This 

will also give a more accurate estimate of the energy when j is near 0 or N. 



THE ASYMPTOTIC DETERMINANT OF THE DISCRETE LAPLACIAN 265 

(a) (b) 
Fig. 4. The  image  of R H P  under  the  funct ion fp,q is shown in gray. 

For p, qEiR and {0,p, q} distinct, define 

fP'q(Z)= 2V~p JofZu'/U-z-Pv u-q du. (23) 

If -ip>O>-iq and Ip[>lq] this is a map from RHP injectively onto the region 

Up,q shown in gray in Figure 4(a); this follows from the Schwarz-Christoffel formula [Ah] 
3 1 ( f  maps RHP to the polygonal region with angle 27r at the origin, ~Tr at f(p), ~r at f(q), 

and 27c at oc. If -ip>O>-iq and IPl<lq[ this is still a well-defined map which is not 

injective on RHP (although it is locally injeetive). This lack of injectivity is of no 

consequence to us. When p and q are on the same side of the origin the image is as 

shown in Figure 4(b). Again the map may or may not be injective according to whether 

or not p is between q and 0. 

The 4-jet of fp,q at the origin is 

fP'q(Z)=Z2+ p/  3 + -4q 2 
1 

2pq 4p2] 4 + O ( z S )  (24) 

For any f of the form (11) there are p, q for which fp,q has the same 4-jet at the origin 

as f ,  provided tha t  b e 0 :  it suffices to take 

12b 12b 
p -  16c_2762 and q -  16c+9b ~ 

Note that  when p, q take these values, two of the points {0,p, q} are equal only when 

b=0 (the cases when one of p, q is infinite are allowed). The case b=0 will be dealt with 

later. 
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The integral in (23) can be explicitly evaluated, giving 

fp,q(z) = ~ d ( x'/(z- p)( z -q) (4z-  2 p + 6 q ) -  2(p 2 + 2pq- 3q 2) log( zv/~-p + ~ )) -C2  

where C2 is chosen so that  fp,q(O)=O: 

C2 = ~ ~ /~  ( v ~  ( - 2 p + 6 q ) - ( p 2  + 2pq- 3q 2 ) l o g ( - ( v ~  - x/q )2)). 

We have explicitly 

1 1 q / / v~  +x/~ f(p)=-~q(2p-6q)+-~V~p (p2+2pq-3q2)log, ) 

and 

Thus 

f(q)=-~q(2p-6q)+sV~p (p2+2pq-3q2)log ).  

f(P)-f(q) = 4 V P (P2+2pq-3q2) (25) 

where we chose the sign of the square root and branch of logto correspond to the situation 

of Figure 4. 

Suppose - i p > 0 > - i q ,  Then the &normalized Dirichlet energy for the region Up,q= 
fp,q(RHP) is fu, hdg, where h is 0 on the vertical boundary from - ioo  to f(q), - 1  on 

the horizontal boundary from f(q) to 0, 1 on the boundary from 0 to f(p),  and 2 on the 

vertical boundary from f(p) to oc (note that  h has different values on the two "sides" 

of [f(q), 0]). 

To compute E~, we pull h back to RHP. The preimage of N~(f(p)) is to first order a 

disk around p (that is, it converges to a round disk when 5-+0); let 5p denote its radius. 

Similarly let 5q and (i0 be the radii of the preimages of the disks around f(q) and f(0) 

respectively. Let (f~ be defined by: 1/5~ is the radius of the preimage of the disk of 

radius 1/5 around 0. 

Then (recalling that  g is constant up to lower-order terms on the boundary of the 

&neighborhood of the singularities) 

f--iSo fp--iSp f1/5~ 
E~ = - Jq+i6q d(g ofp,q) + J~o d(g ofp,q) + 2 J,+i~, d(g ofp,q) (26) 

= -2g(fp,q(5o))+g(fp,q(q+iSq)) -g(fp,q(p+i@))+2g(fp,q(1/Sc~)). 
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Prom (24) we have 5~ = 5 up to higher-order terms. For z close to p we have from (23) 

fp,q(Z) = fp,q(p)§ v ~  ( z -  p)3/2 + O( ( z -  p)2) 

and so up to higher-order terms we have 

r  2/3 . (27) 
\ 4  V Pq .] 

Similarly near q, 

and so 

fp,q(Z) = fp,q(q)+4V~p q ~ (z-q)  1/2 t O ( z - q ) ,  

( 5 V / ~  1 )2 (28) 
~q-- 4 q qv~:~ ' 

For large z we have f p , q ( Z ) = 2 V ~ z + O ( 1  ) Which implies f p , q ( Z ) = V ~ z 2 + O ( z )  and 

SO 

Plugging these into (26) with gofp,q=-(2/Tr) Re log fp,q gives the Dirichlet energy 

to be 

_ _  

= 3~ ~ log 48q191p_q] a . (31) 

By symmet ry  we get the same energy when - ip<O<-iq.  A similar calculation 

shows tha t  the same energy is obtained in the remaining cases when p and q are on the 

same side of the origin. 

When we extend the cut by a small amount 2e, the new region has a new uniformizing 

function of the same form fp,,q,, where p~ and q /are  defined by changing p and q so that  

f(p) a n d  f(q) each change by - 2 e .  Let dp and dq denote the changes in p and q for an 
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infinitesimal e. We must first have O=d(f(p) -f(q)). This relates the change in p to the 

change in q. From (25) we have the equation 

O=d(f(p)- f(q) ) = ( g~p (2p+ 2q)+(P2 + 2Pq- 3q2) ( ~ ) )  dp 

+(~-- (2p-6q)+&(p2+2pq-3q2))dq,  
\ V P x/Pq 

or  
dq = - q [" 3p2 + 2pq + 3q 2 "~ , 

P ~ ~ ) a p .  

Since V~(p2+2pq+3q 2) does not change, we have 

q dp+(3q - 1  "~d 1 /ff d(f (p)) = --~ 2 P) q + 4 V P (p2 + 2pq- 3q 2) 

(( 1 1 ) 2 @ p (  1 1 ) d ~ )  • + 

- 16pq 2 
= p2+6pq_15q 2 dp. 

Now the change in E~ when d(f(p))=-2E and d(f(p))=d(f(q)) is 

_2 dE5 dp _ 4(5p+7q)(p-q) p2+6pq-15q2 = c(5p+7q)(p-q) 
dp d(f(p)) 7rp(p2 +6pq-15q 2) -16pq  2 27rp2q 2 

Finally the Schwarzian derivative of fx/~p,q is 

3 (  3 1 1 ) 1 ( ~  ~)2 (5p+7q)(p-q) 
4q 2 2pq 4p 2 - 4  - = 16p2q 2 

1 which is g~r times the change in Es. This completes the proof when jC[K,N-K] 
except in the case b=0. For the case b=0 see the function fq of w below. The case 

j(~[K, N - K ]  is dealt with in the next section. 

5.3.  B e g i n n i n g  a n d  e n d i n g  o f  a c u t  

As above, the change in energy near the beginning of a cut only depends on the germ 

of f near the tip of the cut. Near the beginning of the cut, the germ of f only depends 

on whether or not the cut starts at a corner or at an edge (Lemma 11). We computed 

the limiting functions f when j is near the beginning or ending of the cut in the proof 

of Lemma 6. 
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5.3.1. Beginning on an edge. Suppose first that  the cut begins on a straight edge 

of U. We compute the change in E~ between the t ime when there is no cut to the t ime 

when the cut has length 2cj. 

Let hq be the function on R H P - [ 0 ,  q] whose boundary values are 0 on the y-axis, 

1 on the upper  boundary of the cut [0, q], and - 1  on the lower boundary of the cut. Up 

to an additive constant, this is the height function on U near the beginning of the cut. 

We can compute the ~-normalized Dirichlet energy of hq in the same way as we 

did for the functions fp,q of the previous section. Specifically, the map from RHP to 

Uq = R H P -  [0, q] is 

fq(Z) -= ~ - - q  = Z 2 -  ~--~ Z4-~-Oz(Z6), 

and the Dirichlet energy is 

2gofq( o)-gofq(,/-:  + (32) 

where (to first order) fq maps the 60-neighborhood of the origin to the &neighborhood of 

the origin, and the neighborhoods of -t-v/-q/2 of radius dl to the &neighborhood of - q .  

As before ~o=(~I/2; one computes 5 : = d 2 = 5 2 / 4 q v ~ .  Plugging into (32) with 

gofq = - (2/7c) Re log fq gives 

6 1 6 2 
- l o g  E5 = 7r 6 + 7r log q + log 2. (33) 

When q=2e j ,  that  is, U q = R H P - [ 0 ,  2cj], this gives the energy change due to the 

first j steps of the cut. The change in Dirichlet energy between j and j + l  is 6/Trj, which 

is - (8r S V ~  (0) as required. 

Note that  if we set ~=e  in (33), the c-normalized energy due to the beginning of the 

cut is 
6 
- log j + const + O(e). 
7r 

In particular, when j = K = ~ / e  this is (6/70 log(1 /c)+O(1) .  

5.3.2. Starting at a concave corner. In ease the cut starts  at a corner of U (of 

angle 37r), the change in energy can be computed in a similar manner. Again we compute 

the change in energy between the t ime when there is no cut to the t ime when the cut 

has length 2ej. 

Let T Q P  be the three-quarters plane, T Q P = { ( x ,  y): x > 0  or y>0} ,  and define Uq= 

T Q P - [ 0 ,  q]. We first compute E~ on TQP.  We can take the average height func- 

tion h on T Q P  to be 1 on the negative x-axis, and 0 on the negative y-axis, that  is, 
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h=const+(2/3rr)Imlog(z). Then Ea(h) on TQP is fhd9=9(6)-9(1/6), and up to 

higher-order terms g(6)=(2/3rr) log(l /6)  and g(1/6)=-(2/a~)log(1/6). So the energy 

is (4/37r)log(1/6). 

The map from RHP to Uq is 

~0 z W dw 
fq(Z) = 2~/:-q v/w-q 

At the origin we have 

Now 

- -  = 2vZ~ ( ~ (w-q)a/2 + 2q(w-q)l/2) +8q--~23 

fq (z) = z 2 + 3~ z3 + 316q 2 2:4 ~- O(z5). 

= q(  hdg = -gOfq(1/6 )-goL(q+iaq)+29ofq(6o) du 

Again 5o=61/2, and near oc, 

5 -1 = f ( l / 6 ~ )  = 4 v ~ 6 ~ 3 / 2 .  

Near q we have f(z)=f(q)+4qgrL--~Zv/YZ~+O(z-q), so 

Inq~/-Zq 16~/2 = 6. 

Plugging all this in we have 

Ea(hq) = _2 log 2v~ + - 2 - l o g ( 2 x / 5 )  

14 1 20 
= 3---~ log ~ + ~ log q + const. 

The difference in energy between Uq and TQP is then 

10 log 1 20 logq+const .  

Now f(q)=S 2 5q , which is - 2 c j  when q=3V~/4. Plugging this value of q in gives the 

energy due to the cut of Pj to be 

10 1 10 
log ~ + ~ tog(e j )  + const. (34) 

When j changes by i the energy changes by 10/37rj, which is again - ( 8 e / T r ) S ~ q  (0). 

Setting 6=E in (34) gives the contribution to E~ from the beginning of the cut as 

(10/37r) log j + const + O(e). 
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5.4. E n d i n g  o n  t h e  i n t e r i o r  o f  a n  e d g e  

A similar computat ion holds in this case, with fq as in the proof of Lemma 6. There is, 

however, a shorter method, obtained as follows. 

The change in E6 near the end of a cut only depends on the local s tructure of the 

average height function near the end of the cut. Therefore the energy can be obtained 

from the known value of the energy for a rectangle. Indeed, cutting a rectangle into two 

rectangles with a single edge, the change in E~ due to the beginning of the cut, plus 

the change due to the ending of the cut, plus the contribution from the "central" terms, 

must equal total  energy change which is (24 /701og(1 / s )+cons t+O(s )  (see (36)). The 

contribution at the beginning of the cut is (6/70 l o g ( i / a ) + c o n s t  + O ( s )  (see w so 

the contribution at the end of the cut is 

18 log 1 48 ( 3 1 
- -  - + const + O(s) . . . .  log - 
71" g 71" \ 8 g 

The constant is independent of U by Lemma 11. 

+ const + O( s ) ) .  

5.5. E n d i n g  a t  a c o n c a v e  c o r n e r  

The energy for the end of a cut ending at a corner of U can be computed from the previous 

case. Given an L-shaped region, cut it into two rectangles with a single cut beginning 

on an edge and ending at the corner. We can compute the change in Dirichlet energy by 

start ing the cut at the concave corner and ending at the edge; the contribution from the 

start  of the cut start ing at the concave corner is (cf. (34)) (10/37r) log( l / s )+  const + O(s), 
and the contribution from the end of this cut is (18 /Tr ) log(1 / s )+cons t+O(c)  by the 

previous paragraph.  The sum of these must equal the contribution for s tar t ing from 

the edge ( (6 /7 r ) log(1 / s )+cons t+  O(s)) and ending at the concave corner. Therefore the 

contribution due to a cut ending at a concave corner is 

1 /) 
37r46 log -s + const + O(e) = - ~-  \ -  ~-~ log -s + const + O(e . 

This completes the proof of Lemma 7. 

6. T h e  case  o f  r e c t a n g l e s  

Let P be a ( ( 2 m - 1 ) •  (2n-1) ) - rec tangle  with a unit square removed at the lower left 

corner. By Temperley 's  trick [T], domino tilings of P are in bijection with spanning trees 

of the (rn z n)-grid graph, rooted at the lower left corner. 
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The number of spanning trees of the (m • n)-grid, which by Kirchhoff [Ki] is 1~ran 
times the product of the non-zero eigenvalues of the Laplacian, is 

m n  
( j , k )#O-  

where j (resp. k) runs from 0 to m - 1  (resp. 0 to n - l ) .  The log of this formula was 

asymptotically computed in [DD]: 

PROPOSITION 13 ([DD]). The log of the number of spanning trees of an (n •  

rectangle is 

4GmnTr ~- ( re+n) log (v/2 - 1) - ~ log(m)+ log07(e-2"n/m))- ~ 

Here G is Catalan's constant, and ~? is the Dedekind eta-function 

oo 

~(q)=ql/24H(1--qk ). 
k = l  

The area of P is ( 2 n - 1 ) ( 2 m - 1 ) - l = 4 n m - 2 n - 2 m ,  and the perimeter is 4 n +  

4 m - 4 ,  so this expression may be rewritten 

G A r e a ( P ) +  ( G ~  

where 

log (v~4 - 1) ) Perim(P) - 21 log(m) + log(~(e-2~n/m)) + C+ O(m 2), 
(aS) 

/ 25/4 "~ 2G 

6.1. Di r ich le t  e n e r g y  for a r ec t ang le  

Let U be the rectangle [0, �89 > [0, �89 in C, with base point at the lower left corner. The 

average height function h for U is, up to an additive constant, the harmonic function 

which is 0, 1, 2, 3 on the lower, right, upper and left boundaries respectively. 

The function h has an explicit expression in terms of the the Weierstrass elliptic 

function ~(z)=pl,i~(z) (see [hh]: this is the doubly periodic function with periods 1 and 

iT and a double pole at each point of the lattice). 

LEMMA 14. Up to an additive constant we have 

h(z) = - 2 Im log p'(z). 
7~ 
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Proof. From [Ah] we have 

where F = Z + i r Z .  

- 2  
~J(Z)  = E ( Z _ _ W ) 3 '  

wEF 

Note that  p'(z) is real when zE [0, �89 
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or zE[0 , �89189  and pure 
1 imaginary when zCi[O, lr] or zEi[O, �89  Furthermore on a fundamental domain 

for F, p'(z) is zero or infinite only at the corners of U (see [Ah]). So the argument 

of ~a'(z) is constant on each edge of the rectangle U. At a corner zy, z j r  we have 

ga'(z)=cj(z-zj) + O((z-zj)2), and so ( -2 / r e ) Im  log p'(z) changes by +1 at each corner 

of U when going counterclockwise around U. [] 

Let U t be U minus the 5-neighborhood of the four corners of the rectangle. Then 

]~ f l / 2 - 6  f (  l +iz)/2-i5 f i r / 2 + 5  f i5 
Ea(h) = hdg= l Odg+ I ldg+ l 2@+ 1 3@+0(5) 

U' ,]5 J1/2+i5 J(lq-ir)/2--5 Jir/2--i5 

where the contribution on the boundaries of the neighborhoods of the corners is 0(5) .  

Since when 5 is small g is essentially constant on the neighborhoods of radius 5 of the 

corners, this energy is 

U~(h) = - g  ( � 89  5 ) - g ( � 8 9  + l i t - 5 ) - 9 (  l i~  + 5 ) +  39(5) + O(5). 

At the origin, p'(z)=-2/z3+O(1), and so 

log V'(Se i~ = ~ log ~ + c o n s t + O ( 5 )  = - log _ + 2  log(_2)+O(53)" 
7T 71" 7r 

Near the other three corners of U, 

2 log p'(dei~ = _2 log(cjSeiO)+o(5 ) 
7"( 7r 

where cj =~gtt(zj). Using g(z)=(2/7r) Re log ~9'(z), the energy is 

(1 )  =2__441og(~) 21og(clc2c3) ' Es(h) = 2~ (log(clS)+log(c25)+log(ezS))+18rr log ~ ~r rr 

where el, e2, Ca are the derivatives J'(zj) at the three other corners of U. 

LEMMA 15. We have 

ClC2C 3 = l(271-)12~(e--2rrr)24" 
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Pro@ Prom the differential equation 

(Vt  (Z ) )2  = 4(~9(Z) - -  e I ) ( V ( Z )  - -  e2 )  ( V ( Z )  - -  e3 )  

(where ej=p(z j ) )  we obtain (upon differentiating the logarithms of both sides) 

from which we get 

2v"(z)_ v'(z)+ v'(z) 
v'(z) V( )-el V(z)-e  V(z)-e3' 

~ t t ( Z l ) = 2 ( e l - e 2 ) ( e l - e 3 ) ,  

with similar expressions for c2, ca. Their product is 

ClC253=8(el--e2)2(e1--e3)2(e2--e3) 2, 
and by [Ap] this equals 

1 __ l / ,- ,  x12 / --2zrrx24 

The energy is therefore 

24 log log 27r) ( e - 2 ~  24 
7r 7r 

This is the (Lenergy for a (�89 x �89 

Let U~,, be the rectangle [0, a] x [0,/~], where T=~/a. We can scale Us, ,  by 1/2a 

to get U. As a consequence, the above expression is the 2a~-energy for U~,3. To get the 

5-energy for U~,~, substitute 5/2a for fi in the above expression. We get 

g5(ua'~)=241~176 (~ ( 3 6 )  

PROPOSITION 16. Let U be a rectangle; let P~ be a sequence of Temperleyan rect- 

angles of area A~ and perimeter Perim~ approximating U. Then the log of the number 

of domino tilings of Ps is 

GA~ ~_ ( G 4 log(x/2 - 1) ) Perim~ 7r 
~s 2 ~ 4 e 48 r2(s, U)+C+O(s2) ,  

where r2(s, U) is the s-normalized Dirichlet energy of the average height function (given 

by putting e for (~ in (36)) and C is a universal constant. 

Proof. If U is an (a • fl)-rectangle, this follows from (35) upon setting 2 m - 1 = a / e ,  

2 n -  l=fl/e. [] 

This proposition tells us why the 'natural' choice of 5 in E6(h) is 5=e  or some 

constant multiple of s. In fact there is a multiple which makes the constant C in the 

above formula vanish, although we will not need this accuracy. 
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7. L o o p - e r a s e d  r a n d o m  w a l k  

The loop-erased random walk in a finite graph G has the following simple description. 

Let b0, bl be two vertices of G. Take a simple random walk start ing from b0 and stopping 

at bl. Erase from the pa th  its loops, in chronological order. Tha t  is, if there is a loop, 

erase the first loop (the first t ime the pa th  comes back to the same vertex twice). For 

the new path, if there is still a loop, erase the first loop, and so on. The remaining pa th  

is a simple pa th  from b0 to bl. 

There is a well-known connection between the LERW and spanning trees [P]: in a 

uniformly chosen spanning tree on a region P c  Z 2, the unique arc (branch) from a to 

b has the same distribution as the LERW from a to b on the same region. Pemantle  

also showed that  on an infinite domain such as Z 2 or the upper  half of Z 2, the LERW is 

well-defined (despite recurrence of the simple random walk, see [P]). 

7.1.  L E R W  a n d  d o m i n o s  

Let P be a ( ( 2 n - l )  x (2n-1) ) - square  Temperleyan polyomino with base square b0 on 

the center of the right edge. Recall how Temperley 's  trick works: a domino tiling of P 

corresponds to a spanning tree of the graph H(P) which is rooted at  b0 in the following 

way. Each domino covering a vertex v of H(P) has white vertex covering the center of 

an adjacent edge e of H(P). In the associated spanning tree the outgoing edge from v 

points in the direction e. The union of these edges forms a spanning tree with all edges 

oriented towards the root at b0. 

Let Q be the region obtained from P by removing a single black square bEBo and 

a single white square w. 

LEMMA 17. When b is on the boundary of P, domino tilings of Q are in bijection 

with spanning trees of P for which the branch from b to bo contains the edge w (traversed 
in either direction). 

Pro@ Let T be a domino tiling of Q. Let b ~ and b" be the neighboring squares of 

w which are in H.  Temperley 's  trick assigns to a vertex xCH an outgoing edge e if and 

only if xe is a domino of T. Temperley 's  trick, applied to T, gives a set of directed edges 

of the graph H such that  each vertex has exactly one outgoing edge, except for b0 and 

b which have no outgoing edges. Furthermore the union of these edges is a forest, that  

is, each component  is a tree. There are exactly two components to this graph since each 

component is rooted at exactly one of b0 or b. 

We claim that  b ~ and b" are in different components of this forest. To see this, first 

note that the directed branch from b' cannot pass through b", for otherwise the path 
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from b' to b" followed by the segment from b '~ to w to b' would be a lattice path  in H 

enclosing an odd number of squares of Q,(1) and so could not arise from a domino tiling 

of Q. Similarly the paths from b' and b H cannot end both at b0 or both  at b because their 

union would contain a closed lattice pa th  from b' to b". 

So the paths from b' and b H end one at b0 and one at b. On the pa th  which ends 

at b, shift the dominos along it by one square towards b, and add an extra  domino from 

w to its freed neighbor. This makes a domino tiling of P in which the tree branch from 

b passes through w (shifting dominos by 1 along a tree branch has the effect of changing 

the direction of the edges on that  branch). 

This process is reversible: from a tiling of P whose branch from b to b0 passes 

through w, shift the dominos by one up to w to get a tiling of Q. [] 

When b is not on the boundary of P,  it is possible that  one of the paths from b' or 

b I~ winds around b, or that  these two paths both lead to b0, enclosing b. So the lemma 

does not hold in that  case. 

By Lemma 17, to prove Theorem 3 it suffices to be able to count the number of 

tilings of Q, or rather, to compute the ratio of the number of tilings of Q to the number 

of tilings of P. 

7.2.  R e g i o n  w i t h  a w h i t e  h o l e  

First we compute the coupling function on Q. Since Q has a hole (the hole w) which 

does not enclose the same number of black and white squares modulo 2, the weighted 

adjacency matr ix  A of Q'  (the dual graph of Q) is not a Kasteleyn matr ix  for Q. In [Kas2], 

Kasteleyn describes how to redefine the weights of A to get a Kasteleyn matr ix  in this 

case (rather, he describes how to get weights for general planar graphs). One way to get 

a Kasteleyn matr ix  for Q~ is the following. Start  with the weighted adjacency matr ix  

A=A(Q ~) of w Take a pa th  7 of vertices in Q from the outer boundary to a vertex 

of w (7 is a pa th  of faces of Q/). Every edge in 7 crosses an edge VlV2 of Q/. For each 

edge in 7, change the sign on the corresponding matr ix  entries Avlv~ and A~,~v~. The 

matrix A' with these new signs is a Kasteleyn matrix for Q'.  In particular, it has the 

proper ty  that  its determinant  is the square of the number of matchings, and its inverse 

is the coupling function CQ for Q [Kas2], [Ken1]. 

Let (~' be the double cover of the graph Q~, branched around the face containing w. 

Tha t  is, Q'  is defined by the property that  a closed pa th  in QI lifts to a closed path  in Q~ 

if and only if it winds an even number of times around the face w. Similarly we define 

(1) From the Euler formula for a disk F-E+V=I,  for any simple closed path in Z 2 the sum of 
the number of faces, edges and vertices strictly enclosed is odd. 
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the double c o v e r / ~  of H as follows. Recall  t ha t  w is an edge of H .  Remove  w from H 

and let H be the  double cover of H-{w}  branched  over the  face which contained the  

edge w. The  double cover of H ~, the  dual  of H ,  is s imilarly defined (and denoted H ' ) .  

For each fixed v, the  coupling funct ion CQ(v, z) lifts to a discrete analyt ic  funct ion 

CQ o11 ~)': let z '  be a lift of z, and v '  a lift of v; then  define CQ(v' ,  z ' )  to be -t-Co(v, z), 
with the  + sign when v ~, z ~ are on the same sheet of the  cover (in the  sense t ha t  there  is 

a p a t h  f rom v ~ to  z ~ which does not  cross a lift of ~/) and - sign otherwise.  

For a point  xEQ ~ let x ~ and x "  denote  its two lifts. 

Let  vGW1 and zCB1. For lifts v ~ of v and z ~ of z, the  real pa r t  of CQ(v~,z ') is 

ha rmonic  on H~ except  when  z=v+s or z=w+s (as in (2), wi th  ex t r a  singularit ies a t  

w + c ) .  So let t ing G denote  the  Green funct ion o n / ~ ,  and v+=v+s, w• it must  

be  t ha t  Re CQ(V', z') is a linear combina t ion  of the  Green  functions G(v~, z'), G(v~, z'), 
G(w~,, z'), G(w~:, z'). By the a n t i s y m m e t r y  under  changing sheets  and (2), Re CQ(v ' ,  z ' )  

is of the  form 

a(v§ z')- 5(v+, z')+ 5(v", z') 
@OL1 (G('t/)~_ , Z r --G(~// ,  Z:))-~-O~2(G(W+, Zr zr 

for some (real) cons tants  c~l, c~2 which depend on v. These  cons tants  are de te rmined  by 

the  following condit ion on CQ: the  harmonic  conjugate  of Re CQ mus t  be  zero at  the  four 

points  b~), b~, b~{, b~'. These  four condit ions give only 2 linear equat ions  for C~l, c~2 since 

the  value at  b~ is by cons t ruc t ion  the  negat ive  of the  value a t  b~, and similarly for bk'. 

We need to show tha t  the  coefficients c~l,c~2 converge as c--+0, and compu te  their  

limit. To show this requires two steps. First ,  we will show tha t  the  Green  funct ions 

G(y,  z) converge to the  corresponding cont inuous Green  functions,  and moreover  t ha t  the 

t e rms  (G(W~l, z)-G(w~ ~, z))/s and (G(w~, z)-G(w~ ~, z))/s converge to the  derivat ives of 

the  cont inuous Green functions.  These  derivat ives have s imple poles at  the  origin. T h e n  

we will show t h a t  there  is a unique pair  of analyt ic  funct ions F0, F1 with  the  required 

proper t ies  having simple poles at  the origin. 

The  convergence of the  Green  functions on ~r~ is s tandard:  As e--+0, if y~ does not  

converge to 0 then  G(y~, z ~) has the  form 

(y',  z ' )  = _2 log l Y' - zq + - log - + const  + O c I z ' - y ' l  

(see e.g. [S D. This  is enough to  conclude t h a t  as s -+0 ,  ( G ( y - c ,  z ) - G ( y + e ,  z))/e tends  

to a ha rmonic  funct ion with zero b o u n d a r y  values and a s ingular i ty  a t  y of the  form 

R e ( 1 / , r ( z - y ) ) .  This  is the  derivat ive On(y, z)/Oy of the  cont inuous Green funct ion g(Y, z). 
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From the symmetry  G(y, z ) = G ( z ,  y) we can conclude the same when y tends to 0 

as e-~0. In conclusion, (G(W~l, z)-G(w~ ~, z))/c and (G(w~, z ) - G t w  '' 2, z))/e converge to 

harmonic functions with simple poles at the origin (and single-valued harmonic conju- 

gates). 

To show tha t  c~1 and a2 converge, we claim that  it suffices to show unicity of the 

limit of CQ. Tha t  is, since for each E, c~1 and c~2 are solutions of a linear system whose 

coefficients converge (being functions of the Green function derivatives), either in the 

limit the linear equation becomes singular (in which case there is non-unicity of the 

limit) or it does not, in which case the solution is unique and the solutions for finite c 

converge to this solution. 

7.3. Un ic i ty  of  the  limit 

Rather  than  work on a square region, it suffices to work on the unit disk with the white 

hole at the origin: the transformation rules (4) and (5) allow us to move the result back 

to the square Q. 

Let U be the unit disk with marked points b0,bz on the boundary. Let U be the 

double cover of U branched over the origin (the map f ( z )=z  2 maps U to U). The 

lifts to U of the asymptot ic  coupling functions Fo(v, z), FI(V, z) on U have zeros at 

z = + v ~ 0 , - t - V ~ l ,  poles at z = i v ,  and simple poles at z=0 .  (A priori the poles at the 

origin may have residue 0, in which case they are not poles at all.) These functions 

also are antisymmetric:  for v, z E U  we have F0(v: z ) = - F o ( v , - z ) = F 0 ( - v , - z )  and the 

same for F1. Furthermore,  since F0 and F1 are respectively pure imaginary and real on 

the boundary of U, they extend by Schwarz reflection to meromorphic functions on the 

entire Riemann sphere, with additional simple poles at + 1 / 0  and oc (the reflections of 

i v  and 0). In particular, they are rational functions. Since we know exactly the location 

of their (six) poles, and four of their zeros, it remains to find the other two zeros. The 

ant i symmetry  under z~-+-z and symmet ry  under z~-+ 1/2 implies that  the two other zeros 

are on the unit circle: otherwise the orbit of the zeros under these two symmetries would 

have four elements. Thus the functions have the form: 

 0)(z 
 0(v,z)=c0 z 

~l(V, Z ) :ic1 V~O0 Z ~11 ~b4 z ] 

for real Co,C1, and where b3=b3(v) (resp. b4=b4(v)) must have absolute value 1. Now 
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b3 and b4 are chosen so that  the residues of Fo and -Pl are real at z=v. The constants 

Co=Co(V), cl=cl(v) are real and chosen so that  the residue of each function at z=v  is 1/7r. 

We can explicitly solve for b3 as follows. The residue of -Po at z=v  is 

(~ ~o)(~ ~_~ ~) 
V V , ] \ b 3  

co 2v(v-2_~2) 

This is supposed to be real; equating this and its complex conjugate yields 

(~ ~Ov )(v~ ~1_~ )(~ _ ~) 
2v(v-2_~2)  

(~o ~o~)(~ ~>(b~-~) 

Solving for b3 gives b2=Xo/Xo, where 

2~(~-~-~) 

(~o )(~1 ) (  ~)( ~1) Xo = v r ~ ,N1 ~2 + ~ ~oo ~ r ~ V~l 
V V 

Similarly one finds b~=-X1/X1,  where 

X l = - v  ~oo v v~ l  v + 1 1 

A lengthy calculation yields 

~§ 
4~(~ ~o)(~_~ ~1 ~)z 

(which is meromorphic in both v and z as expected) and 

~_(v,z)= 
4z(~ ~o)(~_~ ~1 ~)z 

(antimeromorphic in v as expected). 
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The map from U to 5 is f ( z ) = v ~ .  Using the transformation rules (4) and (5) we 

have on the original region U, 

FT(v ,z )  = 2 ( z -bo ) (Z -b l )  
~r(z-v)(v-bo)(v-bl) ' 

2(z-bo)(z-bl) 
FU-(v'z)= 7r(1-z~)(~bo-1)(�9 " 

The fact that  the t ransformation rules apply in this case follows from the fact that  the 

results F v have all the required properties of the coupling function limits (and are the 

unique functions with these properties). 

7.4.  O n  R H P  

The map f ( z )=(z -1) / ( z+l )  maps RHP to the unit disk, sending 1 to 0, 0 to - 1  and 

cc to 1. Let RHP ~ be RHP with a 'white hole' at  1. The limiting coupling functions on 

RHP ~ with zeros at b5:=f-a(bo) and b6:=f-l(bl) are 

Fy.,~(v,z) = 2(z-b~)(z-b6) /~2_1 
7r(z-v)(v-b5)(v-b6) Vz-2-Zl-1 ' 

FRHP~ Z) = 2(z-bs)(z-b6) i ~  2-1 
- ~(z+~)(~+bs)(~+b6) z~:-- 1 

We will assume b6--cx); in this case the formulas on RHP ~ become 

z) = 2 ( z - b s )  /~/v 2-1 (37) F~HP~( v, 
~- (z -v) (~-b~)  v~-~-21 ' 

~(z+o)(o+b~) 7 ~ z i  (38) 

7.5. T h e  n u m b e r  o f  t i l ings  o f  Q 

1K, � 8 9  Suppose that  Q=Q~ ap- Let U be the ( K  • K)-square  U=[0,  K] x [ - ~  

proximates U as c-+0, and suppose that  the holes b, w, b0 of Q~ converge to points of the 

same name b, w, b0E U. 

Since we are concerned primarily with the growth rate of the LERW, to simplify 

the calculations we will make the further assumption that  b, wEU are within distance 

1 of the origin, b0 is on the right edge of U, and K is large. Using Lemma 11 we can 

then approximate to error O(1/K) the coupling function limits F0 U, F U for points near 

the origin by the (much simpler) coupling function limits on R H P - { b ,  w}. 
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Suppose that w is on the x-axis at x-coordinate a > 0 ,  and let b=/3i where/3 is real, 

131<1. 

As in Lemma 17 let P be the region Q with the holes b and w filled in. Let SC P 

be the chain of horizontal dominos from the origin to w. 

Notationally, for a region A let N(A) denote the number of tilings of A. The ratio 

of the number of tilings of Q to the number of tilings of P is a product of three terms 

N(Q) N(Q) N ( Q - S )  N ( P - S )  
N(P~ = N ( Q - S )  N ( P - S )  N(P) ' (39) 

each of which we can now approximate. 

7.5.1. The first ratio. The inverse of the first term in (39), N ( Q - S ) / N ( Q ) ,  is the 

probability of S occurring in a tiling of Q. This is computed in a similar fashion to 

the proof of Theorem 1. Let al ,  ..., a,~ be the set of dominos in the chain S. Then the 

probability of aj occurring given al,  ..., aj-1 is given by (see Lemma 6) 

Pr(aj,al,...,aj)x/~_l = l + ( ~ 2 ~ F g J ( e ' 2 z ) - l ) + ~  

where Uj is the translate of the region R H P -  [0, 2ej] (with a white hole at w and black 

hole at b), translated by - 2 z j  so that  the tip of the cut (2ej) is at the origin; Uj corre- 

sponds to the polyomino Qj = Q - { a l ,  ..., aj-1 }. The limiting coupling function F Uj on 

Uj C a n  be computed from (37) and (38). Indeed, let t=2e jE[0 ,  ct]; then the map 

f ( z ) - av/-~-ff ~_ t 2 

maps the region Uy to RHP and sends the singularities a - t  to 1 and i /3-t  to b5 =f(i /3-t) .  
A computation using (37) and (38) gives 

! o o 

r 2c) = �89 (c)(r+ RHP (f(c) ,  f ( 2 e ) ) + F  RHP (f(c) ,  f (2e)))  

__ V/~ [_ V/2(5t2--OZ2) e _1_O(c3/2). 
7r 47rt (a 2 --t 2) 

As a consequence 

Pr(aj  ] al , . . . ,  a j  ) 5t 2 --Ct 2 
= 1 +  e+o(e ) .  

V ~ - i  4t(~ 2 - t 2 )  

When we sum the logs of Pr(aj[al,. . . ,aj_l) for j running from 1 to m we get (see 

equation (10)) 

f~ 
a-2e (5ti__~2)e dt 

logPr(S)  = m l o g ( v ~ - l ) +  2e 4t(c~2-t 2) 2e +o ( lo g e )+o (1 )  

1 1 1 
= m l o g ( v ~ - l )  + ~ log - + logcr+o(1)+o( loge)  

where the o(loge)-term is independent of a and/3. 

Surprisingly, there is no dependence on t3 to first order. 
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7.5.2. The second ratio. Since b and w are on the boundary of the polyomino P - S ,  
the second ratio in (39) is exactly ICP-S(w, b)l , where C P-S is the coupling function 

on P - S .  
The coupling function on P - S  can be computed using (4), (5) and (6) and the map 

f ( z ) =  v / (Z+a)  2 - a  2 which maps RHP- [0 ,  a] (translated by -c~ so that  the tip of the 

cut is at the origin) to RHP, and ~ to co. We must compute eFoP-S(~,-a+i/3). We 

have 

( 1 ) 
sFP-S(s,-a+i/3) = f'(r f ( - a §  q f ( -a+i/3)+f(s)  

g-2~a 
- 

7.5.3. The third ratio. The computation of the third ratio in (39) is similar to the first 

ratio, except that now there are no singularities at b, w. We may use the coupling function 

on RHP, given by (6), to compute the coupling function on RHP-[0 ,  t] (again shifted so 

that  the tip of the cut is at the origin). The appropriate function is f ( z ) =  v/(z+t)2-t  2 , 
and we arrive at 

eFoU'(~, 2~)= ~ E + O(e2). 
7I" 471"/; 

The log of the probability of S occurring is then 

f2 ~ e . d t = m l o g ( v / ~ _ l  ) 1 1 1 m l o g ( v ~ - l ) +  4t 2e - 8  ~ l~176176176 

7.5.4. The product. Now combining these three results, the log of the ratio (39) is 

log(R) = - m  l o g ( v / 2 - 1 ) -  g log - log c~ + log 
- g ~v/a~ +/32 

1 1 1 
+ m  log(v/2 -1 )  - g l o g a -  g log ~ + o(log ~)+o(1) 

3 1 1 ~ log(a2+/32)+o(loge)+o(1), = - ~ log ~ + ~ log e~ - 

where the o(log e)-term is independent of a,/3 (the o(1)-term depends on a,/3). 

This is the log of the ratio of the number of tilings of Q and the number of tilings 

of P. For finite K there is an additional additive error term O(1/K). 
Letting ct+i/3=re i~ in polar coordinates, the probability that  w is on the LERW 

from b to b0 in Pc is 
(~)3/4(1+~ COS(0)1/4 (1 +O(1)) 
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where the o(1)-term in the exponent is independent of 0. 

The expected number of edges on the LERW from b to b0, and which are at distance 

~ R  from b, is then the integral of (g/r)3/4(l+~ 1/4, times the number of edges 

per unit area 1/s 2, times the area form rdrdO, as r runs from 0 to R. This gives 

(R/c) 5/4(1+~ This completes the proof of Theorem 3. 

8. O p e n  p r o b l e m s  

There are a number of places where our arguments could stand improving, or where there 

are interesting avenues for further research. We list some of the outstanding ones here. 

(1) There remains in Theorem 1 the error te rm ERR(s)  which is somewhat annoying. 

It  seems reasonable to suspect that  this term is in fact O(1) but we do not have any 

method of computing this term at present. 

(2) Is there an extension of Theorem I to the non-simply-connected case, as well as 

to the case of surfaces of higher genus? A more general version of Lemma 6 as well as 

its proof should be easy given the coupling function F0. We do not know at present an 

easy extension of Lemma 7 to this case though. 

(3) Can one find a more natural proof of Lemma 77 There may be a proof using 

invariance properties of the Schwarzian derivative, but we did not see it. 

(4) Theorem 1 could be generalized to regions with polygonal boundaries which 

are horizontal, vertical, or have slope • this is because there is an exact formula for 

the determinant of the Laplacian on a triangular region ((x,y):x/~0, y~/0, x+y~n}, 

see [KPW]. 

More generally, one can ask about the relationship between the te rm - l c 2 ( s ,  U) 

of (1) and the ~-function regularization of the determinant  of the Laplacian. It  appears  

from lOPS] that  they are the same up to a multiplicative constant. Is there a simple 

explanation for this fact? 

(5) Is 5 the almost sure growth exponent for the LERW? The major  open question 

about  the LERW is: Is there a scaling limit of LERW, and if so is it conformally invariant? 

9. A p p e n d i x  

9.1. G r e e n ' s  f u n c t i o n  for  a sli t  p l a n e  

We prove here Lemma 10. 

Proof. As noted in the first two paragraphs of the proof of Lemma 6, we must com- 

pute the discrete Green function G(0, z) on Z 2 -  ( - c o , - 1 ] ,  that  is, the function of z har- 
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monic on Z 2 -  ( -oo ,  0] with Dirichlet boundary values 0 on the boundary ( - e c ,  -1]  which 

satisfies AG(O,z)=5o(Z) for z E Z 2 - ( - o c , - 1 ] ,  and asymptotically G(O,z)--+O when 

Let f,~(z) be the harmonic function on Z 2 -  ( - o c . -  1] whose boundary values are 0 

for z E [ - n , - 1 ]  and 1 for z C ( - o o , - n - i ] .  Let g,(z)=f~(z)-f,~+l(z-1). By definition, 

9,~(z) is harmonic on Z 2 -  ( - oc ,  0] with boundary value fn(0) at z = 0  and boundary value 

0 for z c ( - o c , - 1 ] .  Therefore gn is a constant times the desired Green function G(0, z). 

This constant is 1 over the Laplacian of gn at 0, that  is, -1/(fn+l(O)+f~+l(i)+f~+l(-i)) 
(note that  fn(Z) is harmonic at 0, and fn+l(Z--1) is zero at z = 0  and z = - l ) .  So we have 

f~(z)-f~+l(z-  1) 
a(O, z) = - fn+~(o)+ f .+~( i )  +A+~(-i) 

The asymptotic values of f,~(z) for large n and z are 

1 l+iv/~/n 
- Im log 

By Theorem 9 applied to the function f , ( z ) ,  we have f,~(0)=A1,0-2/Irx/-~ and f n ( i ) =  

fn(-i)=Ao,x.v~/Trv~. Also when n>>lz]>>l we have 

1 
1 ..t_O(z3/~_nl/2)" 

Therefore when [z[>>l, and in the limit as n--+oc, we have 

2A1,0+2x/~ ~0,1 - ~  -t- 0( Z- 3/2)" 

Scaling everything by c (replacing z with z/c) completes the proof. [] 

9 .2 .  L o c a l  R i e m a n n  m a p p i n g s  

We prove Lemma 11. This is essentially a weaker version of a lemma of Hayman [H, 

Lemma 6.6]. 

First consider the case when j is small and the slit starts on an edge of U. For 

q>0  let gq be the map 9 q ( Z ) = ~ - q .  Then gq maps RHP injectively onto the 

translate by - q  of R H P - [ 0 ,  q]. When q=2ej, 9q is the standard limiting form for the fj; 
we must show that  the derivatives of fj differ from those of g2ej by O(1). There is a 

constant C (depending on U but independent of j )  such that  for each j sufficiently small 

g~f j  maps a neighborhood of the origin in RHP to the half-disk Bc(0 )NRHP.  Now 
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-1 g2ejfJ extends by Schwarz reflection to an injective map from a ball around the origin 

into Bc(0);  since the derivative at the origin of g ~ f j  is 1, this ball has radius comparable 

to C. Since g ~ f j  is bounded on this ball, the Schwarz lemma implies that  its derivatives 

at the origin are all bounded as well. We conclude that  92ej-lfJ =z~_z2Oz(1). 

Now f j=g2~j(z+z2Oz(1)) and since g2r is independent of U, the germ of f j  at the 

origin is independent of U up to O(1). 

The same argument with a different gq works in the case where the cut starts at a 

corner. The argument at the end of the cut requires a simple modification. [] 

References  

[Ah] AHLFORS, L., Complex Analysis, 3rd edition. McGraw-Hill, NewYork, 1978. 
[Ap] APOSTOL, T., Modular Functions and Dirichlet Series in Number Theory, 2nd edition. 

Graduate Texts in Math., 41. Springer-Verlag, NewYork, 1990. 
[BP] BURTON, R. ~z PEMANTLE, R., Local characteristics, entropy and limit theorems for 

spanning trees and domino tilings via transfer-impedances. Ann. Probab., 21 (1993), 
1329-1371. 

[CKP] COHN, H., KENYON, R. ~ PROPP, J., A variational principle for domino tilings. To 
appear in J. Amer. Math. Soc. 

[DD] DUPLANTIER, B. ~= DAVID, F., Exact partition functions and correlation functions of 
multiple Hamiltonian walks on the Manhattan lattice. J. Statist. Phys., 51 (1988), 
327-434. 

[DMB] DESTA]NV1LLE, N., MOSSERI, R. ~ BAILLY, F., Configurational entropy of codimen- 
sion-one tilings and directed membranes. J. Statist. Phys., 87 (1997), 697 754. 

[GB] GUTTMANN, A. ~ BURSILL, R., Critical exponent for the loop-erased self-avoiding walk 
by Monte-Carlo methods. J. Statist. Phys., 59 (1990), 1-9. 

[HI HAYMAN, W.K.,  Multivalent Functions. Cambridge Tracts in Math., 48. Cambridge 
Univ. Press, Cambridge, 1958. 

[Kac] KAC, M., Can one hear the shape of a drum? Amer. Math. Monthly, 73:4, Part II 
(1966), 1 23. 

[Kasl] KASTELEYN, P.W.,  The statistics of dimers on a lattice, I. The number of dimer ar- 
rangements on a quadratic lattice. Physica, 27 (1961), 1209-1225. 

[Kas2] Graph theory and crystal physics, in Graph Theory and Theoretical Physics, pp. 43- 
110. Academic Press, London, 1967. 

[Ken1] KENYON, R., Local statistics of lattice dimers. Ann. Inst. H. Poincard Probab. Statist., 
33 (1997), 591 618. 

[Ken2] Conformal invariance of domino tiling. To appear in Ann. Probab. 
[Kes] KESTEN, H., Relations between solutions to a discrete and continuous Dirichlet problem, 

in Random Walks, Brownian Motion, and Interacting Particle Systems, pp. 309-321. 
Progr. Probab., 28. Birkhs Boston, Boston, MA, 1991. 

[Ki] KIRCHHOFF, G., LTber die AuflSsung der Gleichungen, auf welche man bei der Un- 
tersuchung der linearen Verteilung galvanischer StrSme gefiihrt wird. Ann. Phys. 
Chem., 72 (1847), 497-508. 

[KPW] KENYON, R., PROPP, J. ~z WILSON, D., Trees and matchings. Electron. ]. Combin., 7 
(2000), Research Paper 25, 34 pp. (electronic). 



286 R. KENYON 

ILl 

[Ma] 

[MS] 

[MW] 

lOPS] 

[P] 

IS] 

[T] 

[TF] 

[Th] 

LAWLER, G., A lower bound on the growth exponent for loop-erased random walk in 
two dimensions. ESAIM Probab. Statist., 3 (1999), 1-21 (electronic). 

MAJUMDAR, S. N., Exact fractal dimension of the loop-erased self-avoiding walk in two 
dimensions. Phys. Rev. Lett., 68 (1992), 2329-2331. 

MCKEAN, H. fr S1NGER, I., Curvature and the eigenvalues of the Laplacian. J. Differ- 
ential Geom., 1 (1967), 43-69. 

McCoY, B. & Wu, T., The Two-Dimensional Ising Model. Harvard Univ. Press, Cam- 
bridge, MA, 1973. 

OSGOOD, 13., PHILLIPS, R. & SARNAK, P., Extremals of determinants of Laplacians. 
J. Funct. Anal., 80 (1988), 148-211. 

PEMANTLE, R., Choosing a spanning tree for the integer lattice uniformly. Ann. Probab., 
19 (1991), 1559-1574. 

SPITZER, F., Principles of Random Walks, 2nd edition. Graduate Texts in Math., 34. 
Springer-Verlag, NewYork-Heidelberg, 1976. 

TEMPERLEY, H., Enumeration of graphs on a large periodic lattice, in Combinatorics 
(Aberystwyth, 1973), pp. 202 204. London Math. Soc. Lecture Note Ser., 13. Cam- 
bridge Univ. Press, London, 1974. 

TEMPLERLEY, H. ~ FISHER, M., Dimer problem in statistical mechanics--an exact 
result. Philos. Mag. (8), 6 (1961), 1061-1063. 

THURSTON, W. P., Conway's tiling groups. Amer. Math. Monthly, 97 (1990), 757-773. 

RICHARD KENYON 
CNRS UMR 8628 
Laboratoire de Mathdmatique 
Bs 425 
Universit~ de Paris-Sud 
FR-91405 Orsay Cedex 
France 
kenyon~topo.math.u-psud.fr 

Received January 11, 1999 
Received in revised form October 22, 1999 


