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1. I n t r o d u c t i o n  

A basic problem in geometry and representation theory is the deformation problem. 

Suppose that  A0:F~+G1 is a discrete embedding of a finitely generated group F into a 

Lie group G1. Suppose also that  GICG2,  where G2 is a larger Lie group. The defor- 

mation problem amounts to finding and studying discrete embeddings As: F-~G2 which 

extend Ao- 

Let H 2 be the hyperbolic plane. The complex hyperbolic plane, C H  2, is a complex 

2-dimensional negatively curved symmetric space which contains H 2 as a totally real, 

totally geodesic subspace, and is often considered to be its complexification. The theory 

of deforming Isom(H2)-representations into Isom(CH2),  while quite rich, is still in its 

infancy. (For a representative sample of such work, see [FZ], [GKL], [GuP], [KR], [To].) 

The state of affairs is such that  one still needs to work out basic examples in detail to 

gain a foundation for more general considerations. 

The complex hyperbolic ideal triangle groups are amongst the simplest concrete exam- 

ples of complex hyperbolic deformations. A complex hyperbolic ideal triangle group is a 

representation of the form As: F-+Isom(CH2).  Here F is the free product Z / 2 . Z / 2 * Z / 2 .  

The representation As maps the standard generators to order-2 complex reflections, such 

that  the product of any two unequal generators is parabolic. (See w for definitions.) 

There is a real 1-parameter family {A~ l sER}  of nonconjugate complex hyperbolic 

ideal triangle groups. The representation A0 is the complexification of the familiar real 

ideal triangle group generated by reflections in the sides of an ideal geodesic triangle in 

the hyperbolic plane. The other representations are deformations. 
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Fig. 1 

In [GP], Goldman and Parker studied, and partially classified, which complex hy- 

perbolic ideal triangle groups are discrete and faithful. Let gs be the product of all three 

generators of 0s(F), taken in any order. In [S] we proved (and slightly strengthened) the 

Goldman-Parker Conjecture: 

THEOREM IS]. Qs is discrete and faithful if  and only if  gs is not elliptic. Also, Os is 

indiscrete when gs is elliptic. 

The representations Qs and Q-s are equivalent after a relabelling of the generators. 

Thus we think of [0, oc) as the space of complex hyperbolic ideal triangle groups. There 

is a neighborhood of 0 in which gs is a hyperbolic element, and there is a neighborhood 

of c~ in which gs is an elliptic element. The interface between these two intervals is the 

point ~ where g~ is a parabolic element. We call 0~ the parabolic representation. 

The theorem above says that  all the "business" of the deformation takes place in 

the vicinity of ~. Understanding what happens as s--~$ amounts to understanding the 

mechanism of degeneration for the representations. It is the purpose of this paper to 

make some progress along these lines. 

The unit 3-sphere, S 3, is the natural ideal boundary of C H  2. The limit set As 

of t)~(F) is the accumulation set, on S 3, of any orbit 0s(F)(p), where p c C H  2. The 

definition does not depend on the choice of p. The domain of discontinuity of 0s(F) is 

the complement A ~ = S 3 - A s .  

Let E 3 denote an abstract copy of the unit 3-sphere S 3. (We want to distinguish E a 

from S 3, to avoid confusion.) Figure 1 shows the Whitehead link L. From the picture, it 

is clear that  there is a (Z/2  x Z/2)-symmetry group acting on L. This symmetry group 

induces a similar action on the complement E 3 -  L. 

THEOREM 1.1. The quotient A~/O~ is commensurable with the Whitehead link com- 

plement. More precisely, let F = Z / 2 , Z / 3  be the modular group. There is a representation 

~s :F-+Isom(CH 2) which contains ~ with index 6. The quotient A~/~(F)  is homeo- 

morphic to ( E 3 - L ) / ( Z / 2 x  Z/2),  as an orbifold. 

The Whitehead link complement is an example [Th] of a manifold which admits 
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a complete finite-volume hyperbolic structure. The surprise in our result is that  3- 

dimensional real hyperbolic geometry appears in a complex hyperbolic setting. As a 

byproduct of our proof, we give a constructive description of A~. 

To give information near ~, we prove 

THEOREM 1.2. There is some 5>0 having the property: For all sE($-5 ,~) ,  the 

groups ~)s(F) and 00(F) have topologically conjugate actions on S 3. In particular, As is 

a topological circle and As/L)s(F) is doubly covered by the SI•  Here S 3 is the thrice 

punctured sphere. 

Certainly, Theorem 1.1 should be true for all s �9  ~). The appearance of 5 is an 

artifact of our proof. 

In w we give background material, and establish a few general preliminary results. 

In w we recall the idea of a hybrid cone, defined in IS], and develop it further. In w we 

give a new proof that  ~ is a discrete embedding. In w we prove a technical result about 

the action of the parabolic elements in ~ .  In w we characterize A~ and As. We put 

everything together in w and prove Theorem 1.1. In w we prove Theorem 1.2, modulo 

one detail, which we clear up in w The idea in w is to show that the analysis in w167 

goes through, with suitable changes, for parameters sufficiently close to s. 

Though our proofs in the paper do not depend on the computer, we figured out 

practically every detail in this paper from extensive computer experimentation. In par- 

ticular, we have programmed every formula of this paper into the computer, and tested 

it repeatedly. 

I would like to thank Martin Bridgeman, Bill Goldman, Jeremy Kahn, Bill Thurston 

and Justin Wyss-Gallifent for helpful and interesting conversations relating to this work. 

I would especially like to thank John Parker for many helpful mathematical suggestions. 

2. Prel iminaries  

2.1. The complex  hyperbol ic  p l a n e  

C 2,1 is a copy of the vector space C 3 equipped with the Hermitian form 

<u, v> = u1~1 +u2~2-u3~3.  (1) 

The spaces C H  2 and cOCH 2 are respectively the projective images, in the complex pro- 

jective plane C P  2, of 

N _ = { v E C  2 ' l t<v ,v}<0}  and N o = { v � 9  2 ' l l<v ,v}=0} .  (2) 
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(See [G, p. 67] or [El.) The map 

e(v , ,  v2, v3) = ( vl , v2 ) 
\v3  ~3 (3) 

takes N_ and No respectively to the open unit ball and unit sphere in C 2. Henceforth 

we identify C H  2 with the open unit ball. 

Given a point VECH2US 3, we will say that  V E e - I ( V )  is a lift of V, and that  a lift 

of the form (vl, v2, 1) is a]finely normalized. We define the vector O-I(V) as the affinely 

normalized lift of V. 

SU(2, 1) is the group of (. ,. )-preserving, determinant-1 complex linear transforma- 

tions. PU(2, 1) is the projectivization of SU(2, 1), and elements of PU(2, 1) preserve 

C H  2. Concretely, each T e  SU(2, 1) determines an element of PU(2, 1) via 

T=eo oe-'. (4) 

The map :F--~T is a three-to-one surjective Lie group homomorphism. 

An element TEPU(2, 1) is called loxodromic if T has exactly two fixed points in S 3, 

parabolic if it has exactly 1 fixed point in S 3, and elliptic if it has a fixed point in 

C H  2. This classification is exhaustive and exclusive. T is called ellipto-parabolic if T is 

parabolic and also stabilizes a complex line in C P  2. (See [G, p. 203] for more details.) 

For instance, the element g, is ellipto-parabolic. 

Up to scale, there is a unique Riemannian metric on C H  2 which is invariant under 

PU(2, 1). This metric is the real part of a K~hler metric. It is known as the complex 

hyperbolic metric. 

2.2. Heisenberg space 

We call N = C  •  Heisenberg space, and we call Ho={0} •  the center of Heisenberg 

space. Given pES 3, a Heisenberg stereographic projection from p is a transformation 

B: S3-{p}--+~ of the form 

B =~ro/3, 7c(z,w)=(z, Im(w)). (5) 

Here /3 is a complex projective transformation of C P  2 which identifies CH 2 with the 

Siegel domain 
{(z, w) I Re(w) > Izl 2 } C C 2 C C P  2. (6) 

We write oc=B(p)  in this case. B conjugates the PU(2, 1)-stabilizer of p to Heisenberg 

automorphisms of 7/. 
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Heisenberg automorphisms are real affine maps having the form 

F(z ,  t) --+ (fl(z), f2(z, t) ). (7) 

Here fl(t) is either a complex afline map, or the composition of complex conjugation with 

a complex aifine map. We say that  F covers fl .  The set of all Heisenberg automorphisms 

is generated by maps of the following type: 

F(z , t )=(z+A, t+2Im(~z)+s) ,  AGC, s e R ,  (8) 

F(z , t )=(Az ,  lAI2t+s), AeC*,  s e R .  (9) 

If F and G are Heisenberg automorphisms which both cover the same map then there is 

some s C R such that  G(z, t) = F(z ,  t) + (0, s). 

The complex lines tangent to S 3 form a canonical contact distribution $ on S 3. 

Heisenberg stereographic projection maps $ to a corresponding distribution in 7/, which 

we give the same name. In 7/, the distribution 3 is the null distribution to the contact 

form 

w = 2y d x -  2x dy+dt. (10) 

(See [G, p. 124].) Here C has been identified with R 2 in the usual way. $ has cylindrical 

symmetry, in that  it is invariant under the maps from equation (9). 

We say that  a curve is CR-horizontal if its tangent vector, at every point, is contained 

in ~. The vertical projection 7cc(z , t )=z  is a fibration from 7/ to C. If 3 ' :R/Z--+C 

is a piecewise smooth closed loop and t E R  then there is a unique CR-horizontal lift 

7: [0, 1]--~7/such that  7cco~=~f and 7 (0)= t .  The monodromy is 7 ( 1 ) - 7 ( 0 ) = ( 0 ,  A), where 

A is proportional to the signed area of the region bounded by ft. This well-known result 

follows from equation (10) and from Green's Theorem. 

Here is a useful consequence of equation (10): If H is a plane in $, based at the 

point (z, t), then the maximum slope of a vector in H is 21z [. (The slope of a vector (z, t) 

is defined as • ) 

2.3. Spec ia l  c u r v e s  

2.3.1. Complex slices and C-circles. A complex slice is the intersection of a complex line 

in C P  2 with C H  2. Complex slices are totally geodesic subspaces, when considered as 

Riemannian subspaces of C H  2. 

A C-circle (also known as a chain) is the ideal boundary, on S 3, of a complex slice. 

A C-circle is a round circle, being the intersection of a complex line with S 3. The C- 

circles are everywhere transverse to C. A C-arc is a nontrivial arc of a C-circle. Given 

two points p ~ q E S  3, there is a unique C-circle containing p and q. 
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Let N + = C  2,1-N_ - N o .  If C is a C-circle, then there is the polar vector C*cN+, 
unique up to scaling, such that  C={vENoI(v,C*}=O}. There is a unique involution 

IccPU(2, 1) fixing C. As in [G, p. 70], this map is computed by setting Ic=OoIc.oO -1, 
where 

2{~, C*> C* (11) 
Ic. = <c*, 

A Heisenberg C-circle (also called a Heisenberg chain) is the image of a chain under a 

Heisenberg stereographic projection. The curves ({z} x R)Uoc are chains. In particular, 

the center of 7-/ is a chain (with oc deleted). All other Heisenberg chains are ellipses 

which project to round circles under projection rrc: 7-/--+C. (See [G, p. 125].) Let C be 

such a chain, with center of mass c. We have CCEc, where Ec is the affine plane which 

is tangent to g at c. We will say that  a round Heisenberg chain is one which is, itself, a 

round circle. The center of mass of a Heisenberg chain is contained in the center of 7-/if 

and only if the chain is round. Such curves are contained in planes of the form C x {t}. 

2.3.2. Real slices and R-circles. A real slice is a totally real, totally geodesic sub- 

space of C H  2. Every real slice is isometric to the real slice R2MCH 2. An R-circle is 

the ideal boundary, in S a, of a real slice. Every R-circle is PU(2, 1)-equivalent to the 

particular R-circle R21DS 3. All R-circles are CR-horizontal. An R-arc is a nontrivial 

arc of an R-circle. There is more than one R-arc joining two points in S 3. We will have 

more to say about this in the section below on spinal spheres. 

A Heisenberg R-circle is the image of an R-circle under a Heisenberg stereographic 

projection. Any Heisenberg R-circle "y which contains oo is (the extension of) a straight 

line. We call these R-circles straight. 3' has the form (Lx  {t})Uoc where L E C  is a line 

through the origin, if and only if ~/is straight and intersects the center of 7-/. In this case 

we call ~, level. All other Heisenberg R-circles are curves, which project to lemniscates 

via 9rc. One such lemniscate is given in polar coordinates by r2=cos(20).  All other 

lemniscates are equivalent to this one by complex affine maps. (See [G, p. 139].) 

2.4. C y l i n d r i c a l  p r o j e c t i o n  

We define the cylindrical projection 

dz, t)={(argz,  t)}, z r  dO, t)=R/2rrZx{t}.  

maps the point pET-/to the subset ~(p) of the fiat cylinder "==R/2rrZ• When p is 

not in the center, we can interpret ~(p) as a point. 

The following technical result will be used in w 
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0 1 

Fig. 2 

LEMMA 2.1. Let C be an elliptical Heisenberg chain which links the center and which 

is not round. Let c be the center of mass of C, and let ~ be the radius of 7rc(C). Then 

~(C) is the graph of the function g(O-Oo)+B, where 

g(O) = A sin(0)(cos(0)+ v / E + c o s  2(0)), 

d=21 c(c)l 

Proof. Let Co be the point on C such tha t  7rc(C0) makes an angle 0 with the positive 

real axis. ~(C) is the graph of the function O-+lrR(Co). To compute  this function, we 

first normalize as much as possible, by maps from equation (9). 

Applying the map (z, t)--+ (z, t - B ) ,  we can assume without loss of generality that  

B =0.  Applying a rotation (z, t)-+ (uz, t) by -0o  about  the center we can assume without 

loss of generality tha t  00=0. We now have c = ( + V / ~ , 0 ) .  Applying the map (z,t)-+ 

(z V / ~ ,  2t/m) we get  c = (1, 0) and A = 2. The quantity E is not changed by any of these 

normalizations. 

We set (x, y)=7rc(C0).  

from solving the equations 

(See Figure 2.) We have 7rn(Co)=2y. Our formula comes 

( x - 1 ) 2 + y 2 = ~  2, x=ycot(O) 

in terms of y. [] 

2.5. T h e  c ross  r a t i o  

Given four distinct points xl, x2, x3, x4 C S 3 we define the Kordnyi-Reimann cross ratio 

X(Xl, X2, X3, X4) = (X3' Xl> (X4' X2} (12) 
(X4, Xl)(X3, X2)" 

Here Xj is a null lift of xj. One can easily see that  the cross ratio is independent of 

lift, and invariant under the action of PU(2, 1). Aside from the specific formula, these 

are the only properties of the cross ratio we will use. Some additional properties are 

summarized in [G, w 
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2.6. Sp ina l  s p h e r e s  

For information about spinal spheres, see [G, w Here are some equivalent definitions 

of spinal spheres: 

(1) A spinal sphere is the union of all R-arcs containing two fixed points in S 3. 

(2) A spinal sphere is any inverse image, under Heisenberg stereographic projection, 

of (c• {0})uoo. 
(3) A bisector is the locus of points equidistant from two distinct points in C H  2. 

A spinal sphere is the accumulation set, in S a, of a bisector. 

(4) The orthogonal projection onto a complex slice extends to S a. A spinal sphere is 

the inverse image of a geodesic, contained in a complex slice, under orthogonal projection 

to that  slice. 

As suggested by our first definition, a spinal sphere has a singular foliation by R-arcs. 

These R-arcs are disjoint except for two points, which are called the poles of the spinal 

sphere. The C-circle joining the poles is called the spine of the spinal sphere. The spine 

intersects the sphere only at the poles. Spinal spheres have a second singular foliation 

by chains. Again, the poles are the singular points. These two singular foliations look 

respectively like lines of longitude and latitude on a globe. 

3. H y b r i d  s p h e r e s  

w167 also appear in [S], with minor changes. The material in w167 3.7 is new. On 

the first pass, the reader might want to skip the material in w167 which is not used 

until w 

3.1. P a r a b o l i c  h y b r i d  cones  

We say that a flag is a pair (E,p), where E is a chain and pEE is a point. 

LEMMA 3.1. Suppose X E S 3 - E .  There is a unique R-circle 7='7(E,p;X) such 

that XE~/ and pE% 2/A(E-p)~O. 

Proof. We normalize by a Heisenberg stereographic projection so that  E- -Ho,  the 

center of "b/, and p=oo.  In this case, there is a unique level Heisenberg R-circle contain- 

ing X. This is "7(H0, oc; X).  [] 

Let ~ (E ,p ;  X) be the portion of 9' which connects p to X but which avoids E - p .  

(See Figure 3.) Given a set S c S 3 - E ,  we define 

f t (E,p;S)= U gt(E,p;X). 
X E S  
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X 

Ho 

U(Ho,p;X) 

Fig. 3 

We call ~ the parabolic hybrid cone. When the context is clear, we will call f~ a hybrid 
cone, as we did in IS]. Our construction is natural. The PU(2,  1)-image of a hybrid cone 

is again a hybrid cone. 

We say that ~(E,p; S) is in standard position if, as in Lemma 3.1, it is normalized 

so that  E is the center of 7-/and p=c~.  

3.2. Parabolic hybrid spheres 

Let (E,p)  be a flag, and let C be a chain which links E. We define the parabolic hybrid 
sphere 

E(E,  p; C) = ~ (E ,  p; C) UIc  (~(E,  p; C)), 

where Ic is the complex reflection in C. Here is some additional terminology: 

(1) C is the equator of E. 

(2) The flags (E,p) and (Ic(E),Ic(p)) are the spines of E. 

(3) The points p and Ic(p) are the poles of E. 

(4) t~(E,p; C) and Ic(f~(E,p; C)) are the hemispheres of E. 

A hybrid sphere is determined by its equator and spines. 

Say that  a piecewise analytic embedded sphere (resp. disk) is the image of a contin- 

uous embedding r E -+S  3. Here E is a 2-sphere (resp. disk) with a finite analytic cell 

division, and r is analytic when restricted to each open cell of E. 

LEMMA 3.2. E(E ,p ;  C) is a piecewise analytic sphere. 

Proof. We will show that  the hemispheres are piecewise analytic embedded disks, 

which intersect exactly along the equator. If two piecewise analytic disks share a common 

boundary, and intersect only along this boundary, their union is a piecewise analytic 

sphere. 

We normalize so that  Q = ~ ( E , p ;  C) is in standard position. Here C is an ellipse 

which links E. The map ~(z, t) =(arg  z, t) is injective and analytic on C, and is a fibration 
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from ( C - { 0 } ) x  R onto an infinite cylinder. Vt(E,p; C) is obtained from C by gluing on 

rays which are subsets of the fibers of the fibration. From this description it is clear 

that  gt(E,p;C) is embedded, and analytic away from {p}UC. We arbitrarily choose 

points X1,X2cC. Let C1 and C2 be the two arcs of C bounded by X1 and X2. Let 

gtj=~(E,p; Cj). We can write ~=~t lU~2,  where gtlA~2=~(E,p; XIUX2) is a union of 

two analytic arcs. This structure shows that  ~ is a piecewise analytic disk. 

Let ~c:  C x R - + C  be projection. Recall that Ic is the involution with fixed point 

set C. It follows from symmetry that  Ic maps the exterior of the cylinder Ac =7c~1(C) 

into the interior. Thus Ic (~-C)  and g t - C  lie in different components of Ac,  so that  

~ n l - c ( U )  =C.  [] 

3.3. Eccentricity 

We use the notation from the previous section. We say that  E is in standard position 

if one of its hemispheres, f~(E,p; C), is in standard position. In this case, Sc=77c(C) 
is a round circle in C, which bounds a disk AcCC. The linking condition implies that  

O~Ac-Sc.  
Let c and 0 be the center and radius of Ac.  We define the eccentricity of E(E ,p ;  C) 

to be the ratio 

e(~) ---- e(C)  = Icl/o. (13) 

The quantity in equation (13) does not change if we apply to E one of the maps from 

equation (9). Thus, we can define the eccentricity of an arbitrary hybrid sphere by first 

moving it to standard position and then computing. This definition still requires a choice 

of hemisphere. By symmetry, both hemispheres give the same answer. 

LEMMA 3.3. Two parabolic hybrid spheres are PU(2, 1)-equivalent if and only if 
they have the same eccentricity. 

Proof. The "only if" direction follows from the well-definedness of the eccentricity. 

Now for the "if" direction. For j = 1 , 2 ,  let gtj=~t(Ej,pj;Cj) be a standard position 

hemisphere of the hybrid sphere Ej. Normalizing by maps from equation (9), we can 

arrange that  Cj intersects R x {0} in points (1,0) and (ej, 0), where ej E[--1, 0). The 

l ( l + e j ) ,  and the radius is �89  The eccentricity of Ej is center of 7~c(Cj) is 

therefore (l+ej)/(1-ej). If E1 and E2 have the same eccentricity then el=e2.  Since 

chains are determined by two points, C1=C2. Since ~1 and ~2 are in standard position, 

g t l=~2.  Finally, E l = E 2  as well. [] 

Remark. If E has eccentricity 0 then we can normalize so that  the hemisphere 

~ (E ,p ;  C) is in standard position, and so that  C = S I •  In this case, E(E,p;C)= 
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C 

Fig .  4 

(C • {0})Oct.  Hence, a spinal sphere is a parabolic hybrid sphere of eccentricity 0. One 

can think of the eccentricity as a measure of how far a hybrid sphere deviates from a 

spinal sphere. 

As an alternate ibrmulation, one could say that  a hybrid sphere is a spinal sphere if 

and only if its two spines share a common chain. 

3.4. C o m p l e x  t a n g e n c i e s  

Recall that  g is the contact plane field on Heisenberg space. The plane C • {0} has the 

following feature: For any nonzero z E C  the plane of g, based at (z, 0), does not coincide 

with the tangent plane to C • {0} at (z, 0). 
1 We say that  a hybrid sphere (or hemisphere) is tame if its eccentricity is less than  ~. 

LEMMA 3.4. Suppose that ~ (E ,p;C)  is a tame hybrid hemisphere, and that qE 

12-p. The tangent plane to ~ at q does not coincide with the contact plane at q. 

Proof. We may assume that  ~ ( E ,  p; C) is in s tandard position. From the description 

in Lemma 3.2, ~ ( E , p ;  C) is a surface ruled by horizontal rays. The rays all a t tach to C, 

which is contained in a plane II. If  qcgt  is any point, let qlEC be the point on the same 

ray as q. 

If  q=ql=(zl ,  tl) and q2=(z2, t2) are two points in f~, joined by a line segment S, we 

define the slope of S to be I t l -  t2 I/Izl- z2 I- (See Figure 4.) We define the slope of vectors 

in 7-I to be the infinitesimal version of this quantity. Let S' be the segment joining q[ 

to q~. Note tha t  t}=tj .  If  ql and q2 are close together, Iz' -z;l< lze-z21+o(Izl-z21) 
Thus, the slope of S t is less than  the slope of S, up to a second order error. Lett ing 

q2--+ql, we see that  the slope of any vector tangent to ft at q is less than  the maximum 

slope attained by vectors tangent to II. 

On the other hand, I I = E c ,  the contact plane of g centered at the center of mass c 

of C. The eccentricity condition implies that  17rc(c)l< Irrc(q) l for any point q Cf~. If Eq 
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z Y 

P 

Fig. 5 

is the contact plane based at q, then the maximum slope attained by vectors tangent to 

Eq exceeds the maximum slope attained by vectors tangent to I I=Ec.  To conclude: The 

slope of any vector tangent to ~ at q is less than the maximum slope attained by vectors 

tangent to Eq. Thus, Eq cannot be the tangent plane to ft at q. [] 

3.5. Loxodromic hybrid spheres 

The flag (E,p) serves as the basis of our definition of the parabolic hybrid cone. Such 

flags are stabilized by ellipto-parabolic elements. A loxodromic element stabilizes a pair 

(E, P),  where PC E is a nontrivial C-arc. The inclusion of E in our notation is redundant, 

but we wish to highlight the parallels to the parabolic case. 

The chain E bounds a complex slice H~ .  A pair of points y E P  and z E E - P  

are harmonic conjugates if the geodesic 7P in H~,  which joins the endpoints of P,  is 

perpendicular to the geodesic in H ~  which joins y to z. (See Figure 5.) 

LEMMA 3.5. Given XE S 3 - E ,  there is a unique R-circle 7(E,  P; X)  which contains 

X and which intersects E in a harmonic pair of points. 

Proof. (Compare our proof to the discussion in [G, p. 169].) Let IIE be orthogonal 

projection from c n  2 onto H~:. The map HE extends canonically to S 3. If 7 E H  2 is a 

geodesic perpendicular to 7P, then YIcl('y) is a spinal sphere whose poles are harmonic 

conjugates with respect to P. Such a spinal sphere is the union of R-circles, all of 

which contain both poles. These R-circles intersect each other only at the poles. The 

geodesics perpendicular to "fp foliate H~:, so that  the spinal spheres, discussed above, 

foliate S 3 - 0 P .  The point X lies on one such spinal sphere, and is contained on a unique 

R-circle on this spinal sphere. [] 
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Let f t (E,  P; X) be the portion of v(E,  P;  X) which joins X to P but which avoids 

E - P .  Given a subset S c S 3 - E  we define the loxodromic hybrid cone it(E, P; S) as in 

the parabolic case. If C is a chain which links E, we define the loxodromic hybrid sphere 

E = Q ( E ,  P; C)UIc(Q(E, P; C)), exactly as in the parabolic case. 

3.6. Loca l  s t r u c t u r e  

LEMMA 3.6. A chain and a spinal sphere intersect in at most two points, unless the 

spinal sphere contains the chain. 

Proof. Normalize so that  the spinal sphere is (C x {0})Uoc. From here, the lemma 

is obvious from our description of Heisenberg chains, given in w [] 

Given XE S 3 - p ,  we define the en@oint map f (X)=f~(E,  P; X)NP.  

LEMMA 3.7. Let (E,P) be as above, and let C be a chain which links E. Suppose 

that f i e  is not constant. There are two points X1,X2EC such that f is two-to-one on 

C - X 1 - X 2 ,  and f ( C - X 1 - X 2 )  is a C-are bounded by f (X1)  and f (X2) .  

Pro@ For each yEP, the set f - l ( y )  is a spinal sphere. By hypothesis, C is not 

contained in any such spinal sphere. From this we see that f - l ( y ) N C  consists in at 

most two points. If we identify P with some real interval then f[c  can have at most 

one maximum point and at most one minimum point. By compactness, f has at least 

one maximum point and at least one minimum point. Thus, f[c has a unique maximum 

point XIE C and a unique minimum point X2 E C. The lemma follows immediately from 

this. [] 

COROLLARY 3.8. i t (E,  P; C) is a piecewise analytic disk. 

Proof. Let XI and X2 be the points from the proof of Lemma 3.7. Let C1 and C2 be 

the closed arcs of C bounded by X] and X2. We have ~=~txUit2. Here ~2j=i t (E,p;  Cj). 

By Lemma 3.7, and the same argument as in Lemma 3.2, the set ~j  is a piecewise 

analytic disk. The intersection itlN ~22 is the union of the three analytic arcs ~t(E, P; X1), 

f t (E,  P; X2) and f (Cl)=f(C2).  The lemma is clear from this description. [] 

Remark. Given the picture developed in this section, we see that  E(E,  P; C) is a 

spinM sphere if and only if f]c is constant. The family of loxodromic hybrid spheres 

contains the family of spinal spheres with codimension 2. In the next section we will see 

how loxodromic hybrid spheres can be considered as perturbations of parabolic hybrid 

spheres. 
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3.7. Per turbat ions  

Suppose that  X is a metric space. Given a family of compact subsets { A ~ } c X  we write 

A~-+B if and only if 5(A~, B)-+O as c-~O. Here 5(A~, B) is the infimal r such that  every 

point of A~ is within r of some point of B, and vice versa. 

We will take X = S  3 equipped with the round metric, or X = 7 /  equipped with the 

Euclidean metric. 

Let F,~_-E(E~, PE; C~) be a family of loxodromic hybrid spheres, 12~=~)(E~, P~; C~) 

be one of the hemispheres of E~, and Eo=E(Eo, P0; Co) be a parabolic hybrid sphere. 

Assume that  X~--~ Xo for X = E ,  P, C. 

LEMMA 3.9. E~--+E0. Furthermore, E~ is a piecewise analytic embedded sphere, for 

all sufficiently small ~. 

Proof. We can choose a Heisenberg stereographic projection B~ so that  B~(C~) is the 

center, B~(P~)--+cc, B~(C~)-+B0(C0) and B~--+B0, uniformly on compacta. Lemma 3.1 

implies that  the R-circles foliating B~(12~) converge, on compacta, to level R-circles. In 

particular, the curvature of these arcs converges uniformly to 0, on compacta. Thus, 

for any compact KCTt, we have KNB~(f~) -+KABo(f~o) .  Finally, B~ -1 maps small 

neighborhoods of cc to small neighborhoods of Po. Hence E~--+ E0. 

In view of Lemma 3.8 and the proof of Lemma 3.2, it suffices to prove that  the 

two hemispheres of E~ intersect only at the equator. In view of the convergence result 

E~-~ E0, it suffices to prove that  the two hemispheres intersect only at the equator, in a 

small neighborhood of the equator. Since Ic  is an involution fixing C, and rotating each 

contact plane based at C by 180 degrees, the R-arcs foliating our hemispheres nearly 

point in opposite directions near C, as long as e is small. [] 

LEMMA 3.10. For any compact set KCf~o-Po, there is an open set UKDK and an 

e g > 0  such that if C<eK and qEE~AUK then the tangent plane to E~ at q is distinct 

from the contact plane at q. 

Proof. The proof of Lemma 3.9 also establishes the following result: Let q~El2~ be 

any sequence of points converging to q0 E f~0 - P0. The tangent plane to ft~ at q~ converges 

to the tangent plane to ~t0 at q0. From this fact, a sequence of counterexamples to this 

lemma would lead to a contradiction of Lemma 3.4. [] 
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4. Parabol ic  case: discreteness proof  

4.1. The  parabolic  representa t ion  

Let 0:F-+Isom(CH 2) be the parabolic representation. Let io,il,i2 be the standard 
generators of F=Z/2*Z /2 .Z /2 .  Let Ij=Q(ij). The element Ij is a complex reflection 
in a chain Cj. The chains Ci and Cj intersect pairwise in a point Pij. A main feature 
of 0 is that the product of all three generators, taken in any order, is ellipto-parabolic. 
Iiljlk fixes a point Pj and stabilizes a chain Ej. Since Ikljli and Iiljlk are inverses of 
each other, they both stabilize the flag (Ej, Pj). 

has a very concrete matrix representation. The formulas we give here are special 
cases of those from [S, w 

Define 

~ = ~6 (5v/5+v~i) ,  # = �88 (v /5+v~i ) .  (14) 

Co, 81 and C2 are, respectively, the chains {z=w}, {w=~} and {z=A}. 
Matrix representatives for Io, I1,/2 are, respectively, 

Define 

[ 0 - 1  0 ] [ - i  0 ! ~ ]  [30 0 -4_03 A] 
-1  0 0 , 3 - , -1  . 
0 0 -1  4A - 4~ 0 

The parabolic dement g=IlIoI2 is represented by 

(15) 

0 -1  0 ] 
Ii 5 �9 0 Iv i (16) 

o 

P0 = (P, P), Q0 = (A, A). (17) 

g preserves the pair (E0, P0), where Eo is the chain deternfined by P0 and Qo- 
We note that conjugation by the antiholomorphic involution 

Ro(Z, w) = (@, 2) (18) 

fixes Io and interchanges I1 and /2. The chain Eo is preserved by Ro. The two fixed 
points on Eo are Po and Qo. 

4.2. Canonical  pro jec t ion  

There is a canonical Heisenberg stereographic projection B, associated to our represen- 
tation, such that B(E0) is the center of ~ and 

B(Po) =oo, B(Qo) = (0,0), B(P12) = (1,0). 
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We write B=Tror as in equation (5), and /3=OoMoO -1, where O is as in equation (3) 

and M is some matrix, not necessarily in PU(2, 1). Scaling M has no effect on the 

resulting Heisenberg stereographic projection. 

Here is how we derive M. The points P12, P0, Qo all lie on the R-circle fixed by R0. 

We can choose lifts P0, Q0 and/512, and a polar vector E*, such that  

(/50, Qo) = (Qo, P~2) = (~5~2, ~50) = (E*, ~5~2) : -1 .  

(This follows from the vanishing of the angular invariant of P0, Q0, P12. See [G] for 

details.) We define 

M ( X ) =  - * - - - - ((X, E }, (X, Qo), (X, Po})- (19) 

Up to scale, the matrix representing 2~I is 

[ -6v/5  +2v  ~ i  

M =  [ 1 0 v ~ + 2 v ~ i  

L 3 v ~ -  3v'3 i 

-6v -2v i 18 ] 
10v -2v i -32 . 
3 +3v i -12 

(20) 

4.3. P r o o f  m o d u l o  d i s jo in tness  

We now associate a parabolic hybrid sphere Ej to each generator Ij of the ideal triangle 

group. We will describe F~t. The other two are obtained by cyclically permuting the 

indices. The equator of Z1 is C1, the chain fixed by 11. One of the spines of F~I is 

the pair (Eo, Po) stabilized by 111o12. The other spine is the pair (E2, P2) stabilized by 

Ili2Io. 
Let ~ be cylindrical projection, defined in w Figure 6 shows the images ~(B(E~)) 

and ~(B(E2)). Here -- is identified with [0, 27r] x R ,  with vertical sides identified, and 

the images have been scaled so as to fit nicely in a square. It appears that  one of these 

sets intersects the other in a single point. The inverse image of this point is an R-arc. 

The justification for this picture is the proof, following this section, of the Disjointness 

Lemma. 

LEMMA 4.1 (Disjointness Lemma). E1AEz=~(E0,  P0;/~ 

COROLLARY 4.2. The parabolic representation ~ is discrete and faithful. 

Proof. By cyclically permuting the indices, we see that  Ei and Ej intersect in an arc, 

for each pair of indices i# j .  Each sphere bounds two open balls. Since the arc does not 

disconnect either sphere, one of the two open balls in S 3 bounded by E1 is disjoint from 

one of the two open balls in S 3 bounded by E2. It follows from the threefold symmetry of 

the picture that  there are open balls By, which are bounded by Ej, such that  Bo, B1, B2 
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Fig. 6 

are pairwise disjoint. The element I t stabilizes E t and maps the complement of Bj 

into By. Here Bj is the closure of By. 

We end our proof with an argument reminiscent of the Ping-Pong Lemma. Let w be 

any reduced word in {i0, il, i2 }. We have w =ian ... i al , where a t C { 1, 2, 3} and a~ r a~+~ 

for any index i. We have w=anw ~, where w'=ia,,_~ ...ia~. By induction, O(w ~) maps 

the complement of B~I into Ban_~. Since a~r the disjointness above says that  

t~(w) maps the complement of B~  into the interior of B~ n. As usual, this is enough to 

conclude that  0 is discrete and faithful. [] 

4.4. Dis jo in tness  p r o o f  m o d u l o  two l e m m a s  

We will write B ( E j ) = ~ j  n ~ ,  where ~t~ is in standard position and ~)j =Icj ( ~ ) .  Here 

Cj--B(Cj).  Let cj be the center of mass of Cj. For j = l ,  2, define 

st Hj=R/2 Z• 

Let Rj C ~ be the region bounded by S t and Hj. (See Figure 7.) 

LEMMA 4.3. RtNR2 is a single point, disjoint from H1UH2. 

LEMMA 4 . 4 .  ( ( ~ j ) C R j  and ~ ( ~ j - C j ) A S j c H j .  

Let us now deduce the Disjointness Lemma. ( maps level R-circles to single points. 

For this reason, ~ ( ~ ) c ( ( C j ) .  Lemma 4.3 therefore says that  ~ A ~  is a single R-arc. 
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Fig. 7 

This R-arc must be contained in a level R-circle, must reach oc, and must have (1, 0) as 
its finite endpoint. Hence f ~ A f ~ =  [1, oc]. We have 

~(a l -C, )  C (R1-S1)UH1 =X, ~(a;) C $2 =Y. 

XAY=rg, by Lemma 4.3. Since ~ is defined on all of f t l - C , ,  and oo~f~,, we have 
(Ftl-C,)NC2=rg. Similarly, (f~2-C2)NCI=~. Lemma 4.4 immediately implies that 

~(~ '~ , -C , )N~(~-~2-C2) : I2 I  , and hence (~,-C,)1")(~2-C2)~-~-~:2~. All in all, we find that 
B(E1)AB(E2)=[1, eel. By construction, [1, oo]=B(a(Eo, Po; P12))- This establishes the 
Disjointness Lemma. 

4.5. P r o o f  of L e m m a  4.3 

Using equation (20) and the equations in w we compute that 

c l = B o l c l o B - l ( o o ) = (  ~ -  +4V z, v--~. --Y- v~ " v / ~ ) -  (21) 

Using B(P12)=(1, 0) and equation (21) we see that 

= I c(c,)l = v q 7 6 .  (22) 

The map (z, t ) -+(5 , - t )  interchanges C1 and C2, as well as E1 and E2. Therefore, all 
information about E2 can be obtained from the formulas above. 

S~ and Hj are graphs of 27r-periodic functions si and hi. Equation (21) gives 

h , ( e ) -  � 8 8  h 2 ( e ) - - l g i h .  (23) 

Referring to Lemma 2.1, as applied to C,, we have 

00 C (�89 Tr), tan(00)-----V/5-/3, 
(24) 

A=�89 B= �88  0=V/5-/3, E = 9 .  
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Hence, 

81(0)=9(0--00)-4-g(00) , 82(- -0)=--81(0) ,  (25) 

39(0) = sin(0)(cos(0)+ V/cos2 (0)-4-9). (26) 

To prove Lemma 4.3 it suffices to prove that  

(1) Sl(O)>h2(O) for all 0, 

(2) s2(O)<hl(O) for all 0, 

(3) sl(O)=s2(O) if and only if O=27rk for kEZ. 

We compute 
cos(O)(2 cos 2(o)+8) 

3g'(0) = 2 cos 2 (0) - 1-4 
v/Cos2(0)+9 

From this it follows that  9 '(0)=0 if and only if c o s ( 0 ) = l / v / H .  Plugging this into g, we 

get 19(0)1 < �89162 In particular, 

1 1 - �88 r = h2(0) 81(o) > - l v y d + 9 ( O o ) = - ~ v ~ + J - i g  > 

This is statement (I). Statement (2) follows from symmetry. 

For statement (3), note first that s1(0)=s2(0)=0. By symmetry, and periodicity, 

it suffices to prove that 81(0)>82(0) for 0G[Tr, 27r). Define 01=Oo-TrG(-�89 O). Note 

that 10-0oi<1011 implies 0E(Tr, 27r). We compute that g~'(O) is a positive multiple of 

AIA2AaA4, where 

A1 = - sin(0), A2 = (9+cos2(0)) -3/2, A3 = c o s ( 0 ) +  4 9 ~ - c o s 2 ( 0 ) ,  

A4 = 10 cos(0)+ (4+cos 2 (0))(cos(0)+ V/9 + cos 2 (0)). 

Note that  Aj(O)>O for j = l ,  2, 3 and 0E(Tr, 27r). If A4(0)=0, then 

v/30~-54 
cos(O) = v ~  

From this, and from A4(-00)>0,  we get A4(0)>0 for 10+0ol < 1011. Hence, 

9"(o) > o, 1O+Ool < t011. 

By symmetry, 

si(0)=4(0), 

From equations (27) and (28) ,we get 

8~(0)>0,  

81'(n) = -8~(a). 

8~(o) < 0, 0e(01,-al). 

(27) 

(28) 

(29) 
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By equations (28) and (29), integration, and periodicity, 

s~(O) >s2(O), 0~[01+27r, 2~). 

Since g(O) >0 for Oc (0, 7r), we have 

sl(o) > g(Oo) = hi(O) > s2(O), 0 c (0o, 01+27r] ~ [Tr, 01 +27r]. 

Statement (3) follows immediately from equations (30) and (31). 

(30) 

(31) 

4.6.  P r o o f  o f  L e m m a  4.4  

We will deduce Lemma 4.4 from a more general result, which might have other uses. Say 

that  a hybrid hemisphere fl is in inverted position if Ic(f~) is in standard position. Here 

C is the equator of f~, and Iv is complex reflection in C. Let c be the center of mass 

of C. Let RC--  be the region bounded by 

S =~(C) ,  H=R/21rZxTrn(c). 

Lemma 4.4 is an instance of 

LEMMA 4.5 (Dollar Sign). Let f~ be a tame hybrid sphere with positive eccentricity. 

If Q is in inverted position then ~(f~)C R and ~([~-C)AScH.  

Normalizing by a map from equation (9), we can arrange that  c=(t, 0), where t>0.  

Thus, S N H = ( 0 , 0 ) .  Let L = R x  {0}. Note that  LUoc is a Heisenberg R-circle which 

intersects C in two points. Define the open topological disks 

a+={(z , t )Ef~l Im(z)>O}-C and f~_={(z , t )EQlIm(z)<O}-C.  

We will show that  the fibers of ~ are transverse to ~• (It suffices to consider f~+, by 

symmetry.) By the Open Mapping Theorem, ~(f~• The Dollar Sign Lemma 

follows from this, and from the straightforward items 

(1) ~ - g / + - Q _ c C u L ,  

(2) ~ • 1 7 7  

(3) ~(CUL)COR, 

(4) ~ ( C - L ) c S - H .  
f~ is foliated by R-arcs, one of which is LNgt. Hence f~+ is also foliated by R-arcs. Say 

that  an inward radial is a curve of the form 7rc(a), where a is one of the foliating R-arcs 

of gt+. The inward radials are line segments or arcs of lemniscates. 
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Fig. 8 

LEMMA 4.6. If  a fiber of ~oB is tangent to f~+ then some ray through the origin is 

tangent to some inward radial c~, at an interior point yEc~. 

Proof. The fibers of ~ have the form ~)~--g• {s}, where ~) is a ray through the origin 

in C. If a fiber of ~ is tangent to ~2+ then there is some s E R ,  some ray g, and some 

xEf~+, such that  Qs is tangent to f~+ at x. Let T~ be the tangent plane to 12+ at x. Let 

Ex be the contact plane. Equation (22) says tha t  E has eccentricity vfi-/10, and hence 

is tame. By Lemma 3.4, we have Ex C T~. Let c~ be the foliating R-a rc  through x. 

Both ~o~ and c~ are CR-horizontal and tangent to ft+. Hence, ~ and (~  are tangent to 

two unequal planes, and hence to each other. Projecting, we see tha t  ~ and 7 r c ( ~ )  are 

tangent to each other at 7re(x), which is in the interior of ~=Trc(ax) .  [] 

Say that  an arc of a lemniscate is symmetric if it contains the double point and has 

180 degree rotational symmetry.  We say that  such an arc is small (resp. medium) if its 

arc length is less than (resp. equal to) half that  of the lemniscate. 

LEMMA 4.7. The inward radial a is a small symmetric arc. 

Proof. Recall that  a=Trc(a~) .  One endpoint of a is t, and the other is some uE 

7rc(C). Let T and U be the tangent lines to a at t and u respectively. (See Figure 8.) 

Let a~=Ic(ax).~ Note tha t  a x~ is an arc of a level R-circle, since Ic(f~) is in s tandard 

position. Since Ic  interchanges (t, 0) and cx~ it follows from symmetry  that  the line V 

containing 7rc(a~) is parallel to T. The differential map  dig acts as a 180 degree rotation 

of the contact planes which are based at points of C, so that  U=V.  In short, T and U 

are parallel. Since 0, t and u are not collinear, a is not a line segment. 

Let S be the space of arcs of lemniscates which have tangent lines parallel at the 

endpoints, given the topology from the top of w is, the Hausdorff topology. 

S has several components,  one of which is So, the subset of symmetric  arcs. So is the 
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f(m) 

0 t 

Fig. 9 

only  componen t  which has e lements  which converge to  a line segment ,  a is nea r ly  a line 

segment  for choices of a near  L. Hence,  a E S 0  for all  choices of c~. Also,  U is never  

t angen t  to  7rc(C) ,  so t h a t  c~ is not  a m e d i u m  s y m m e t r i c  arc. Since some choices of a 

are  smal l  s y m m e t r i c  arcs, and  no choice is a m e d i u m  s y m m e t r i c  arc, all  choices a re  smal l  

s y m m e t r i c  arcs. [] 

F igu re  9 shows the  cons t ruc t ion  to  follow. Let  mEa be the  midpo in t .  Let  X be  

the  disk centered  at  t such t h a t  mEOX. For  yea an in ter ior  point ,  let  Yy be the  ray  

t angen t  to  a ,  a t  y, o r ien ted  away from t. (This  ray  is shown for y=m.) Since a is a 

smal l  s y m m e t r i c  arc,  a is a lways t r ansve r se  to  cOX, and  po in t ing  ou tward ,  when or ien ted  

towards  7rc(C) .  T h a t  is, Y,~NXcOX. Since 12 is t ame ,  and  cOX has half  the  d i a m e t e r  

of 7re(C), we have OEX-cOX. In  pa r t i cu la r ,  O@Ym. 
Yy is never  para l le l  to  U, because  a is a smal l  s y m m e t r i c  arc. I f  YyAU=O for some 

choice of y, t hen  YyNU=;~ for all  choices. For  y close to  u we obvious ly  have YyNUr 
Hence,  YyNUr for all  in ter ior  po in t s  y. We define 

f(Y) = I m ( Y u n U ) .  

I f  we can  show t h a t  f ( y ) > O  we will know t h a t  the  line t angen t  to  a a t  y does  not  con ta in  

the  origin,  as desired.  
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f is monotone on each convex half of c~, and at tains its minimum at m. If f ( m ) > O  

then f ( y ) > O  for all interior y. Since O~Y,~, we have f(m)r There are some choices 

of c~ for which f(m)>0. Since we have shown that  f ( m ) = O  is impossible for any choice, 

we conclude that ,  always, f(m)>0. 

5. T h e  a c t i o n  o f  p a r a b o l i c s  

5.1.  O v e r v i e w  

Say tha t  a sequence of subsets { Xn} C S 3 shrinks to a point xE S 3 if each open neighbor- 

hood U of x contains Xn, once n is greater than some integer Nu. The purpose of this 

chapter is to prove Lemmas 5.1 and 5.2 below. The notation is from w 

LEMMA 5.1. The sequence {(IlIoI2)n(~l)InEN} shrinks to the point Po. 

Proof. Let g=IlIoI2. Recall tha t  g stabilizes the flag (E0, P0), which is a spine 

of El.  We normalize by the Heisenberg stereographic projection B, from w so tha t  

B(E0)  is the center and B(Po)=C~. Note that  B ( E : ) - a o  is contained in an infinite 

slab of the form SK={(z, t) llt I < K } .  Here K is some constant. Let - / = B o g o B - : .  The 

element g is ellipto-parabolic, so that  V(z , t )= (uz ,  t+to). Here to is some nonzero real 

number. Note that  {Vn(sK)} exits every compact subset of 7/. The same is therefore 

true for {v~(B(E1))}.  Pulling back by B gives us our result. [] 

LEMMA 5.2. The sequence {(I:I2)n(E1)lneN} shrinks to the point P:2. 

Proof. Let P be a Heisenberg stereographic projection so tha t  P(P12)=co .  Let 

h=PoIiI2oP -1. Let ~ = P ( E : ) .  It  suffices to prove that  {hn(~P)} exits every compact  

subset of 7/. If  this is false, then there is a hemisphere T of ~ ,  points pj=(zj,tj)ET, 
and an increasing sequence {nj } such that  p j -+  cxD and {h nj (pj)} is precompact  in 7/. 

We may write h=hlh2, where hj =Polj oP -1 . Since P ( C j )  is a vertical chain, hj cov- 

ers order-2 rotat ion about  the point ~rc(Cj). Hence, h covers translation along the line 

M c C  which joins these two points. Suitably choosing P ,  we can assume that  M is the 

real axis. In this case h has the form given in equation (8), with z0ER. From this we 

see tha t  I Im(zj)l  is uniformly bounded and Itjl< Cllzjl+ Ci for some constant C]. 

The remainder of this chapter is devoted to establishing the lower bound Itj]> 

C71zjl2-C7 for some constant 6'7. For j sufficiently large, the two bounds contradict 

each other. [] 
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5.2.  P o s i t i o n s  o f  l ines  

Recall that  C1 is the equator of •1. This hybrid sphere has (E0, P0) as one of its spines. 

LEMMA 5.3. Let ~1 be the hemisphere of E1 which has (Eo, P0) as a spine. Let 7 
A 

be the R-circle containing ~(Eo,  P0; P12)- Then 7~C1=P12. 

Proof. We already know that  P12ETAC1. We just have to show that  7 does not 

intersect C�92 twice. A horizontal line intersects a Heisenberg chain twice if and only if 

the line contains the center of mass of the chain. Let B be the Heisenberg stereographic 

projection from w Recall that  B ( 7 ) = R •  and that  C l=B(C1 )  is an elliptical 

Heisenberg chain whose center of mass is not contained in R •  {0}. From this we see that  

C1 does not intersect B(7)  twice. Pulling back by B we get our result. [] 

Let a be the foliating R-arc of T which connects p=P(P12)  to oc. Let 6 be the 

straight Heisenberg R-circle which contains c~. Let L=Trc((~). Let T '  be the other 

hemisphere of ~. For each object X just defined, let X '  be the corresponding object 

on T' .  

COROLLARY 5.4. 6 and 6'  do not intersect the equator C=P( (~I )  of �9 in ?-t. Thus 

the lines L and L' are distinct and parallel. 

Proof. The complex reflection Iv  fixes C. IF interchanges 6 and 6 ' .  Hence, the 

corollary is true for 6 if and only if it is true for ~'.  For ~"  one of 6, ~ '  we have 

~ " = P ( 7 ) -  Pulling back by P,  the previous result tells us that ~ " A C = c o .  Note that  Ic  

covers order-2 rotation which swaps L and L'. This fixed point is contained on neither 

line. Hence, L and L' are distinct and parallel. [] 

LEMMA 5.5. L and M are perpendicular. 

Proof. In the notation of the previous lemma, it suffices to prove that  L"=~rc(G")  

and M are perpendicular. Ro swaps C1 and C2, and preserves C0. Hence, R0 swaps 

E1 and E2, and fixes 9'. Let R = P o R 0 o P  -1. Note that  R is an involution which fixes 

both ~"  and co. Also, R swaps the vertical chains C ; = P ( C 1 )  and C2=P(C2) .  Hence, 

R covers reflection in L", and this reflection swaps the points ~rc(C1) and Irc(C2). This 

is only possible if L" and M are perpendicular. [] 

5.3. T h e  lower  b o u n d  

Before we give our proof, let us summarize what we know so far. T is a hemisphere of 

�9 =P(E1) .  The equator C = P ( C 1 )  of T is a vertical chain which projects to a point 

under ~rc. The pole of T is the point P = P ( P 0 ) .  The R-arc foliating T, which connects 
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to p, projects to a ray parallel to the imaginary axis. The element h covers translation 

along the real axis. The points Pl,P2, ... are points on T which converge to ce, and are 

such that h n~ (pj) is contained in a fixed compact subset of 7-/. 

Now for the proof. Let c~j be the foliating R-arc of T which contains pj. Let 

Ln ~c(c~j). Let P be the vertical chain 7Oct(p). There is a unique straight R-arc/~j 

which connects a point p~jEP to pj. Let Mj=Irc(~j). Since Iz~i-~oo and IIm(zn)i is 

bounded, Mn converges to M. (See Figure I0.) 

LEMMA 5.6. There are similarities Tn: C - + C  such that Tn(Ln)  converges to one 

lobe of the unit lemniscate, as n--+oe. The expansion constant of T~ 1 tends to oe with n. 

Proof. First of all, the unit tangent vector to L~ at ~c  (p) converges to a unit vector 

tangent to L. Call this Fact 1. 

We claim that L n is an arc of a lemniscate Ln, for n sufficiently large. If this is false, 

then L~ is a ray. L n contains the point Trc(C), which is not contained in L. Hence, there 

is a uniformly positive bound on the angle between L and Ln,  contradicting Fact 1. 

We choose a similarity T,  such that  Tn(Ln) is the unit lemniscate. The diameter 

of Ln tends to cx~ with n, because 7cc(a) is noncompact. Thus, the expansion constant 

of T~ 1 tends to oo. The endpoints of L n a r e  x = ~ c ( C )  and Y=~c(P) ,  points which 

are independent of n. Since the expansion constant of T~ tends to 0, the two points 

T~(x) and T~(y) converge to the same point, which must be the double point of the unit 

lemniscate-- that  is, the origin. 

Thus, either T~(Ln) converges to one lobe of the unit lemniscate, or to the entire 

lemniscate. In the second case, L~-L~ is contained in a single compact subset K of C, 
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independent of n. By compactness, there is a uniform upper bound to the length of 

G n - c ~ ,  and hence to the distance between the endpoints of c~n. Here 3~ is the R-circle 

containing an. This contradicts the fact that one endpoint of ~n tends to 0% and the 

other one is pE3-t. [] 

Let C1, C2, ... denote constants. Since flj is contained in a contact plane parallel to 

the one based at p, we see that  It}-ti]<C1]zjl+C1. Note that  Lj has diameter at least 

Czlzj[-C2. By Lernrna 5.6, and from the convergence of Mj to M, we see that  LjUMj 
bounds a region with signed area at least C4 Izjl 2 -  C4. As we discussed in w the CR- 

horizontal lift ajUflj has rnonodromy at least Cblzjl2-Cb. That  is, It}l>C6]zj]2-C6 . 
The triangle inequality now says that  ]tj] >Czlzj 12_ C7. 

This completes our proof of Lernma 5.2. [] 

6. D o m a i n  of  d i scont inui ty  and l imit set 

6.1. Main  result  

We know from w that  the parabolic representation 0 is a discrete embedding. Let AC S 3 

be the limit set of p(F), and let A =S 3 - A be the domain of discontinuity. In this chapter 

we will describe A and A. 

Let Zo, El ,  E2 be the hybrid spheres constructed in w These spheres bound the 

disjoint open balls Bo, B1, B2, used in the proof of Corollary 4.2. Recall that  Pij is the 

fixed point of Iilj. Let Pk be the fixed point of Ik-llklk+l. Here indices are taken 

rnod 3. Note that  P~i,PkcEoUE2UE2. Define 

F = S 3 - U B~ - U P~j - U Pk. (32) 

F is obtained by deleting six points from the closed set S 3 -  U Bi. In this chapter we 

prove 

LEMMA 6.1. F is a fundamental domain for the action of p(F) on A. More pre- 
cisely, 

(1) 
(2) ~/(F)VIFy~;g if and only if ~/E{Io, Ii,I2}, 
(3) I j (F)AFcOF.  

There is an order-3 element s3EPU(2, 1) such that  s 3 ( C / ) = C j . I ,  indices taken 

rood 3, Since our constructions are natural, s3(Ej)=Ej+j, Let GcPU(2,1)  be the 

group obtained by adjoining s3 to 0(F). Since 0(F) has finite index in G, the two groups 

have the same limit set and domain of discontinuity. Our proof of Lernma 6.1 involves 

studying the orbit G(Eo). Note that  G(Eo)=G(E1)=G(E2). 
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6.2. The pattern of  tangencies  

Figure 11 shows a schematic picture of E1 and E2. One must imagine that  each of these 

spheres is the double of a square, and has been flattened down onto the plane, for the 

purposes of drawing. 

The equators of the two spheres appear  as thickened diagonal arcs. The arc of tan- 

gency appears  as a vertical arc. 

Figure 12 shows a schematic picture of all three spheres. The spheres E0 and E1 are 

not shown tangent. The free vertical arc of E0 is glued to the free vertical arc of E1 in 

the manner  indicated by the arrows. The union of the three balls BoUB1UB2 resembles 

a MSbius band, which has been fattened up in three segments. One could picture three 

pieces of ravioli stuck together, end to end, to approximate  a MSbius band. The balls 

are the filling of the ravioli, and the spheres are the dough. 

One creates F by taking the closure of the complement of this thickened MSbius 

band, and deleting the six distinguished points. 

Remark. The reader who is anxious to get to the topology of A/Q(F) can assume 

Lemma 6.1 and skip to w at this point. 
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6.3.  P i c t u r e s  o f  t h e  orbi t  

Say that  a sphere w"EG(Eo)  separates the spheres w, J E G ( E 0 )  if there are open balls 

B, B / bounded by w,J  such that  B and B' are contained in different components of 

S3-w ". To avoid trivialities, we insist that all three spheres are distinct. We write 

5(w, J ) = n +  1 if there are n distinct spheres in G(E0) which separate w from E ~. We say 

that  ~ and J are adjacent if and only if 5(~, w ' )=  1, and separated otherwise. It follows 

from symmetry and from the argument in Corollary 4.2 that: 

(1) E0 is adjacent to Ei and Io(Ej)  for i , jE{1 ,2} .  

(2) If w ~ E0 is not one of the four spheres listed in (1), then E0 and w are separated. 

Indeed, one of these four spheres separates w from E0. 

(3) If 5(w,w')=2 then there is some ~EG  and indices i, jE{1 ,  2} such that  ~/(w) =E~ 

and "f(w~)=Io(Ej). (Proof: Apply an element which moves the separating sphere to E0.) 

(4) If 5(w,w')=2 and wnw'%O then a J n J  is a single point which is G-equivalent 

to one of the six special points on E0UElUE2. (Proof: Move the separating sphere to 

E0 and observe that  EoNw and Eonw I are foliating arcs of different hemispheres.) 

Figure 13 shows Eo and its four adjacent spheres. We have depicted Eo as a trans- 

parent doubled square. The two spheres E1 and E2, represented by large quadrilaterals, 

are on the "outside" of E0 in the sense that  the reader could touch these spheres without 

penetrating E0. The two spheres I0(E1) and I0(E2) are represented by doubles of small 

quadrilaterals. These spheres are "inside" Eo in the sense that  the reader must pene- 

t rate  E0 in order to touch a generic point of these spheres. The outer spheres are glued 

together, and the inner spheres are glued together, as indicated by the arrows. The black 

dots denote the poles of the spheres. The equators are not drawn, but can be determined 

from the positions of the poles. 

Figure 14 fills in all the spheres adjacent to those in Figure 13. The new spheres are 

again represented by doubled quadrilaterals. Nearby parallel edges are glued as indicated 
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by the arrows. The larger spheres separate the reader from the smaller ones. For instance, 

in order to touch generic points of the sphere labelled C, the reader must penetrate the 

sphere labelled B. In order to touch generic points of the sphere labelled B, the reader 

must penetrate the sphere A. 

Figure 15 fills in all the spheres adjacent to those shown in Figure 14. The gluing 

arrows and the black dots have been deleted to give a less cluttered picture. Once a single 

black dot has been placed, all the other black dots, as well as the arrows, are forced. 

6.4.  T h e  n e i g h b o r h o o d  o f  a v e r t e x  

Figure 16 shows the pat tern made by the union of spheres which contain a single point x. 

Spheres are represented as in the other pictures, with the larger spheres separating the 

reader from the smaller spheres. 

The pat tern of spheres is the same whether or not x is a pole. The labelling, however, 

is different in the two cases. The two representa~tive cases are x=P12 and x=Po. 
When x=Pi2, the fixed point of Ili2, the spheres are 

..., I l I2I i (Z2) ,  IlI2(r~1), I1(E2), r~,  E2, I2(r~1), I211(Z2), I~IlI2(E1) . . . . .  
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Fig. 16 

When x=Po, the fixed point of IlIoI2, the spheres are 

..., I lIoI2(~1),  /110(~2), 11(~0), ~1, ~2, I2(~]0), /210(21), /21011(~2) . . . . .  

In both cases, we have listed these spheres so that  they are adjacent if and only if they 

are listed successively. 

Both sequences above are doubly infinite. Later in the chapter, it will be useful to 

work with the singly infinite sequences 

~2, /2(~1), /211(~2), I211/2(~1), /211/211(~2), ..., 

E2, I2(~o), /210(Z1), I21011(22), I2IoIaI2(2o), .... 

(33) 

(34) 

6.5. Proof  modulo  shrinking 

Say that  a sequence S={wn}EG(Z)  is nested if there is a sequence of balls {Bn} such 

that  B~DBn+I and con bounds Bn, for all n. In this case, we say that  (con} is good if the 

infinite intersection (7/~n is a single point. Following this section, most of the chapter is 

devoted to proving 

LEMMA 6.2 (Shrinking). All infinite nested sequences are good. 

We now establish Lemma 6.1. Let F ~ be the interior of F.  Note that  F - F ~  

~0U~IU~2.  The proof of Corollary 4.2 shows that  7 ( F ~ 1 7 6  for any nontrivial 

7cp(F) .  This gives statement (3) of Lemma 6.1. 

The analysis in the previous section shows that  ~0 intersects any nonadjacent sphere 

in one of the points/)1, P2, Pro, P0~- Cyclically permuting the indices, we get the following 

result: For any nontrivial ~/~ p(I') - {I0,11,/2}, the intersection 7 ( E i ) n E j  is contained in 
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one of the six points UPnr~U UPk. Thus 7 (F-F~176  for such S. Combining 

this with .~(F~176 gives statement (2) of Lemma 6.1. 

Let 

zx'= U 

Statement (2) of Lemma 6.1 implies that  every point of F has an open neighborhood 

which intersects only finitely many 0(F)-translates of F.  By symmetry, this is true for 

all points in A t. Hence, A~C A. 

Let p E S a - A q  Suppose first that  p is 0(F)-equivalent to some P~j or to some Pk- 

Since A contains the fixed points of elements of 0(F) we have pEA. The other possibility 

is that  p~ S 3 - A ' ,  where 

At'= U 
~eo(r) 

Here F = S a - U  Bj. In this case, there is an infinite nested sequence {w~} such that  (in 

the notation above) pE [-1B~. Each Ej has two poles. We choose one pole arbitrarily and 

call it pj. By the Shrinking Lemma, p = N  B~, and hence pj--+p. Note that  pjcA,  since 

pj is a parabolic fixed point. Since A is closed, pcA.  In both cases considered, we have 

S a-A~CA.  Hence, A c  A ~. Combining this with the other containment, we get A = A  ~. 

This is statement (1) of Lemma 6.1. [] 

6.6. P r o o f  of  the  Shrinking Lemma 

Say that  a nested sequence S is maximal if S is not a proper subsequence of a nested se- 

quence S' whose first element, coincides with S. For instance, the sequences (33) and (34) 

are maximal. It clearly suffices to prove the Shrinking Lemma only for maximal nested 

sequences. 

Say that  two maximal nested sequences S =  {wj } and S t=  {w~ } stably agree if there 

are indices n and n'  such that  {coj Ij>n} and {w~ I j>n t} coincide. More generally, we 

say that  sequences S and S" are equivalent if there is some element gEG such that  S 

and S'=g(S')  stably agree. If S and S' are equivalent, and S t is good, then so is S. 

Say that the maximal nested sequence S has Type A if it is equivalent to se- 

quence (33), and Type B if it is equivalent to sequence (34). Otherwise, say that  S 

has Type C. Lemmas 5.2 and 5.1, combined with the remarks about equivalence, say 

that all sequences of Type A are good and that  all sequences of Type B are good. We 

just have to deal with sequences of Type C. 

LEMMA 6.3. Suppose that S={wn} is a sequence of Type C. Then there is an 

infinite sequence ao<bo<al<bl ..., and elements gl,g2,...EG, such that wajFIWb~=~, 

czaj=gj(a;ao) and Wbj=gj(a~bo) for all j. 
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Proof. We will use the function 5, defined in w Observe first that  there are only 

finitely many pairs (w, w'), modulo the diagonal action of G on G(E0)x  G(E0), such that  

~(w,J )<N,  for any N. (One simply normalizes so that  w=E0,  leaving finitely many 

choices for J . )  Second, observe that  Pn=wn_lAWn+l is either a point or the empty  set, 

by the analysis in w 

Suppose that  P,~ is the empty  set, for infinitely many indices nl ,  n2, .... Note that  

~(Wn-l,Wn+l)=2. Using our first observation, we can take a subsequence so that  the 

pairs (wn~-l ,wnj+l)  are all equivalent under the diagonal G-action. We set a j = n j - 1  

and bj=nj+ l. 

Suppose that  Pn is a point for all but finitely many indices. Since S has Type  C, there 

are infinitely many indices ml,rn2,.., such that  PmjTs Here Wm~-lVIWm~+2=rg 

and 5(Wmj--l,Wmj+2)=3. As above, we can assume that  all these pairs are equivalent 

under diagonal G-action. We set aj  = m j -  1 and bj = m j  + 2. [] 

Suppose that  w and w ~ are embedded spheres, not necessarily disjoint. We define an 

invariant 

X ( w , w ' ) =  inf inf X(x,y ,x ' ,y ' ) .  
x,yEw x~,ylEw~ 

The infimum is taken over quadruples of distinct points. Here we are using the cross 

ratio, defined in equation (12). Here are two basic properties: 

(1) X(w,w')=O if and only if wNw'=O, 

(2) X(g(w),g(w'))=X(w,w') for any gePU(2, 1). 

LEMMA 6.4. Let S={w,~} be a maximal nested sequence which is not good. Given 

any r  there is some NEN having the property that X(Em,  E n ) < r  if m,n> N. 

Proof. Let {Bj} be the sequence of balls associated to S, as above. Let x ~ y  be two 

points in ~ By. We can find points x j, yj E Ej such that  xj--+x and yj--+y. The sequence 

{xj} is a Cauchy sequence in S 3, and so is the sequence {yj}. Also, the limits of these 

sequences are different. We have X ( E ~ ,  E~)<~X(xm, Ym, x,~, yn). Let Arm and Ym be 

affine lifts of Xm and Ym- Likewise for 32, and Y.. We see that  

(xm,x,d-~o, (Ym, Yn) -~ 0, 

while the other two terms remain uniformly bounded away from 0. Hence, we conclude 

that  X(xm, Ym, Xn, Yn) is vanishingly small for m and n increasingly large. [] 

Suppose that  S has Type  C. Using the notation of Lemma 6.3, we see tha t  

X(waj,Wbj)~O is a quanti ty which is independent of j .  In particular, the conclusion 

of Lemma 6.4 does not hold. Hence S must be good. 
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Fig. 18 

6.7. T h e  l imi t  se t  

Our description of A comes straight from Figures 13-16 and their obvious continuations. 

First we construct a space S ~  which is related to A. Then we modify S ~  to get 2S~,  

which is homeomorphic to A. 

Given the solid unit square, S, with top and bo t tom edges distinguished, let S ~ be 

the union of two solid quadrilaterals shown in Figure 17. Unlike in Figures 13 16, the 

quadrilaterals here represent themselves, rather than their doubles. 

If Q is a quadrilateral, with a distinguished pair of opposite edges, there is a real 

projective t ransformation TQ such that  TQ(S)=S. This map  is unique up to order-2 

rotation. We define Q'=T(S~). 

Let So=S and SI=S  ~. Note that  $1 is the union of two quadrilaterals, SuUS12. 

Define S2--SrnUS~12. Figure 18 shows how the pat tern  continues to get nested sets 

S1DS2DS3 .... Define S ~ = ~ S k .  

We now modify S ~  recursively. We color the four outer vertices of S ~  alternately 

white and black, as shown in Figure 19. Note that  Soo is the union TS~UBSoo of two 

homeomorphic copies of itself. Here T S ~  N B S ~  is two vertices. 
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(1) Cut  Soc open along the two vertices TS~NBSor 

a t ,  

(2) Twist TS~ 90 degrees clockwise out of the plane, by pulling one of the cut 

vertices up and pushing the other one down. Likewise twist BS~. 

(3) Glue the twisted copies together along their two nearby vertices. 

Call the resulting object S 1 .  After having made this modification, we color two 

additional vertices of S 1 alternately black and white, as shown. 

Note that  S 1 is a union of two twisted copies of TS~ and BS~. The outer vertices 

of each half are already colored alternately black and white. We may perform the same 

kind of twist modification on each of these halves, keeping the outer vertices fixed in the 

process. (The right part  of Figure 19 shows one of the pieces which is to be twisted. The 

other piece is difficult to draw.) Call the result $2~. After the modification is done, we 

can color four additional vertices alternately white and black. In general, S n is a union 

of 2 ~ twisted copies of S~, and each of these copies has its four outer vertices colored 

alternately white and black. One creates S ~  +1 by modifying each copy as above. Let 

S ~  be the limit of this process. 

Let 2 S ~  denote the space obtained by gluing two copies of S ~ ,  along the outermost  

four vertices, with a 90 degree twist. 2 S ~  is homeomorphic to A. Indeed, if all twists are 

made in a clockwise way, then the embedding is correct. The homeomorphism extends 

to all of S 3. 

There is a countable collection of vertices of 2 S ~  colored white, and a countable 

collection colored black. The union of each type of vertices is dense in 2 S ~ .  Our 

homeomorphism carries the black vertices to fixed points of elements conjugate to IlIoI2, 
and the white vertices to fixed points of elements conjugate to IlI2. 
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7. T o p o l o g y  of the quotient 

7.1. T h e  pattern of  tangencies 

This section is a continuation of w 

It is convenient to define 

Vo = Q(Eo, Po; P~2) = EtnE2. 

The arcs V1 and V2 are defined by cyclically permuting the indices. For all i r  the arcs 

V/and Vj are foliating arcs of different hemispheres of the same hybrid sphere. Also, the 

endpoints of these arcs differ. Hence, V~NVj = Z .  

Figure 20 is a repeat of Figure 12, with additional labels drawn in. For i~j  we 

define 

H~j = I~(Vj). 

The four axcs Hol, V1, Hoz, V2 intersect in the same topological pat tern as a square. Let 

So be this topological square. Note that  So is a closed circuit on E0 which divides E0 

into two disks, each of which has, as a "diagonal", part of Co, the equator of Eo. These 

diagonals further divide each of the disks into two topological triangles. One of the two 

disks, and two of the triangles, is visible in Figure 20. The other disk, and the other 

two triangles, are hiding behind the ones shown. By cyclically permuting the indices, 

we see that  the same picture takes place in each of the three hybrid spheres. Thus, 

O(Bo U B10 B2) has a triangulation into twelve triangles. 

7.2. The face pairings 

Let F be as in equation (32). We spend the rest of the chapter deducing Theorem 1.2 

from Lemma 6.1. 

We have already seen above that  O(BoUBIOB2) has a triangulation into twelve 

triangles. OF has the same triangulation. The vertices are deleted. (Note the analogy 
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with an ideal hyperbolic triangle.) The elements Io, 11 and 12 identify the triangles in 

pairs. Each element identifies two pairs of triangles. 

Recall from the previous section that  So is the circuit on E0 which divides it into 

two solid squares, each of which is a union of two triangles, separated by an arc of Co. 

The element I0 identifies these triangles in pairs, by folding along the arc of Co, as shown 

in Figure 21. The same fold takes place on the back side of the hybrid sphere. 

Let Q be the quotient of F by its face pairings. We can use the information given in 

this section to deduce the homeornorphism type of Q. The rest of the chapter is devoted 

to this enterprise. 

7.3. T o p o l o g y  o f  t h e  q u o t i e n t  

For the purposes of visualizing Q, we equip S a with the round metric. Let Be be the 

c-tubular neighborhood of BoUBlUB2, for some extremely small ~. (It is useful to 

think of c as infinitesimally small.) There is an obvious nearest point map r c3Be-+ 
O( BoU B1U B2). Define 

T' = Sa-B~ - U r  U (~-l(Pjk)" 

If e is sufficiently small then Be is homeomorphic to an open solid torus. Therefore, F is 

a solid torus with six points deleted from its boundary. 

Pulling back by r the triangulation of O(BoUBIUB2) induces a triangulation 

on 0F.  Forgetting about indices, the edges on 0/~ are labelled by H,  V and C. The map 

r is one-to-one on the open triangles, the C-edges and the H-edges. On the ~'-edges, 

however, r is two-to-one. 

The triangles on 0F  are identified, in pairs, by folding across the C-edges. We 

will see that  the face pairings on 0-F automatically identify all the V-edges which are 
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identified by r Thus, the quotient of Q) of F by its face pairings is homeomorphic to Q. 

Let 0 . F  be the torus which is obtained by filling in the punctures on c~F. R 2 uni- 

versally covers 0 .F .  This covering induces a cover of 0/~ by R 2 - Z  2. The triangulation 

of 0F  lifts to a triangulation of R 2 -  Z 2. The vertices of the squares belong to Z 2. Half 

of these vertices, which are colored black, project to the points Pi. The other half project 

to the points Pjk. The pattern comes straight from Figure 20. 

The triangulation on 0F  is obtained from the triangulation of R 2 -  Z 2 by taking the 

quotient by the deck group of the covering. Specifying the deck group of the covering 

amounts to placing a parallelogram II in Figure 22, and agreeing that  the deck group is 

generated by identifying the opposite sides of II by translations. 

Since 0F  is triangulated by twelve triangles, and each triangle has area �89 we see 

that  H must have area six. If we follow two consecutive V-edges, we trace out a closed 

loop on the solid torus containing 0-~. Indeed, such loops are mapped to the Vj, in two- 

to-one fashion. Looking at Figure 20, we see that  a horizontal zigzag pattern made from 

three successive C-edges makes a closed loop. Figure 23 shows pictures of the vertical 

loops and the horizontal zigzag loops. We deduce that  the shaded parallelogram serves 

as valid choice for II. 
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Recalling that the triangular faces of 0 F  are identified in pairs by folding along the 

diagonal edges, we see that  consecutive vertical edges in 0F  are automatically identified. 

Thus, the face pairings on 0/~ automatically identify the V-edges which are also identified 

under r as we had claimed above. 

It remains to figure out which loops on 0 F  are contractible in/~. The left-hand side 

of Figure 24 shows a loop L1 on X=BoUBIUB3 which is contractible in S3-X. We 

omit the proof of this statement. The reader can perform the proof by lightly gluing a 

piece of string to a MSbius band, along L1, and observing that  one can pull the string 

off the MSbius band. 

The middle part of Figure 24 shows the loop L2~O.F' which maps to L1 under our 

nearest point map. Curves isotopic to L2 are contractible in F.  The curve L3 is isotopic 

to L2 in 0./~. Curves in 0/~, which are parallel to L3, contract in/~. 

Now we introduce some hyperbolic geometry. Let PC  H 3 be the regular ideal pyra- 

mid with ideal square base, created by cutting in half the regular ideal octahedron. Let 

{P~ InEZ} be an infinite collection of isometric copies of P, all labelled as in Figure 25. 

Let Pij be the j t h  point of Pi. Let (n; ijk) be the triangle of Pi whose vertices are 

Pni, Pn3 and Pnk. We form the space f~ by gluing the face ( n + l ,  543) to the face (n, 125), 
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Fig. 26 

for all nEZ.  Our notation is such that  P~+1,5 is glued to Pnl, etc. One can visualize this 

space by lining up the pyramids along an axis, as shown in Figure 25, twisting P,~ by a 

rotation of ~-Trn, and then sliding the pyramids together. 

Oft consists entirely of ideal squares. Half of these squares, which we call Type A, 
are the bases of the pyramids. Let DA(n) be the diagonal joining Pnl and P,,3. We 

call DA(n) a diagonal of Type A. The other ideal squares are formed by the unions of 

the form (n, 145)U(n+l ,  235). We call these ideal squares of Type B. We call the edge 

DB(n)=(n, 145)N(n+l,235) a diagonal of Type B. Note that  DB(n) joins the points 

Pnl and PuS. Figure 25 shows DA(2) and DB(2), drawn with thick lines. The pat tern of 

distinguished diagonals on Oft looks locally just like the pattern of diagonals in Figure 22. 

There is an isometry I: f t -+f t  such that  I(Pn)=Pn+I. The quotient ft/I 3 is a solid 

torus with six deleted vertices whose boundary has the same combinatorial structure 

as 0-P. Under a suitable choice of identification, the square base of P0 is identified to 

the circuit So shown in Figure 20. The element I has the same action on ft/[3 as the 

element s3 has on F.  

It is easily checked that  Ro(N0)=G0, and that  R0 acts as 180 degree rotation about 

the circuit So. Rotating 180 degrees about the axis of the pyramid P0 extends to an 

isometry R of ~. The element R has the same action on ft/I 3 as R0 has on 0/~. 

Recall that  G is obtained by adjoining s3 to o(F). If we let # be the group action 

on S a obtained by adjoining R0 to G then A / #  is homeomorphic to the quotient of 

W= f~/(I, R) by the identifications induced by folding across the distinguished diagonals. 

A fundamental domain for W is one half of P0. We may take this half to be an 

ideal tetrahedron T whose vertices are Pol, P02, P03 and P05. Let FA be the fold across 

DA(O). We have 

FAoR(O; 123) = FA(0; 341) = (0; 321), 

RoI(0; 125) = RoI(1; 543) = R(0; 543) = (0; 521), 

IoDBoR(O; 325) = IoDB(O; 145) = I(1; 523) = (0; 523). 
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Thus, each face of T is identified to itself by a fold across a bisecting edge. The pattern 

is as shown in Figure 26. (Two views are shown, so that  one can see all fold lines.) 

The thin edges correspond to dihedral angles of 1 ~Tr, and the thick edges correspond to 

dihedral angles of 17r. The dotted edges are the fold lines. 

The points 1,3, 5 all get identified to each other, and 2 is only identified to it- 

self. Comparing the treatment of the Whitehead link complement in ~]3-L in [Th, 

pp. 129 131], one can see that  W = ( E 3 - L ) / D 4  . This completes the proof of Theo- 

rem 1.1. [] 

8. T h e  topo log ica l  c o n j u g a c y  

8.1.  M a i n  c o n s t r u c t i o n  

Let Qs: F-+PU(2,  1) be the representation with angular invariant sC[0, ~). We can gen- 

erate Qs simply by replacing ~, defined in w with the variable 

s+i  
- - -  ( 3 5 )  

v ' - ~  2s 2 

Setting ~ = ~ / 3  yields the constant ~ used in w We get matrices Ij,~ by using -~s 

in place of A in equation (15). The representation ~ is given by Q~(ij)=Ij,~. We will 

suppress the subscript ~. For instance, Ij =Ij,~. 

It is easy to see, and it is proved in IS], that: 

(1) Ij,s converges to Ij as s-+~. 

(2) gs=Ii,~Io,sI2,s converges to g as s--+$. 

(3) Conjugation by R0 interchanges I1.~ and I2,~, and also preserves I0,~. 

(4) gs preserves two points O~ and Qs, both of which converge to P0 as s - ~ .  

(5) The C-circle E0,~ containing O~ and Q~ converges to E0 as s-+$. 

Let Cj,~ be the chain fixed by Ij,~. Let Pij,~=Ci,~NCj,s. Let Po,~ be the arc of E0,s, 

bounded by O~ and Q~, which varies continuously with s and shrinks to Po as s ~ $ .  

Define 

: P0, ; C0,s). 

Here E0,~ is a loxodromic hybrid sphere. We define Ej,~ for j =1, 2 by cyclically permuting 

the indices. 

In w we will prove a local version of the Disjointness Lemma. 

LEMMA 8.1. There is some c>0  having the following property. Let Ue denote the 

c-neighborhood of P12, as measured in the round metric in S 3. For s C ( ~ - c ,  ~), we have 
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COROLLARY 8.2. There is some 5>0 having the foItowing property. For s E ( g -  5, .~ ) , 

we have EI,~NE2,s = Q(Eo,~, P0,~; P12,s). 

Proof. Since Ej,~--+Ej as s--+g, it suffices to prove that  there is some (~>0 with the 

following property. If V5 is the 5-neighborhood of EIAE2, as measured in the round 

metric, then for sE(~-(~, ~), 

:s n�89 = t~(E0 ,~ ,  P0,~; P12,8)MV~. 

This is what we will prove. 

From the original Disjointness Lemma, we have 

Y]I[~'I Y~2 = Q ( E o ,  Po;/912). 

Let U=U~ be the set from Lemma 8.1. Let f~y,~ be the hemisphere of Ej,8 which has 

(Eo,s, Po,s) as a spine. Let f~},~ be the other hemisphere. If the conclusion of this lemma 

is false then we may find 

pnE El,hA E2,n-  U 

such that  pn-4E1NE2. Here Sn--+g, and we have set Ej,~n=Ej,n, for notational conve- 

nience. 

On a subsequence we may assume that  pn--+pEEIME2. Since p~U,  we see that  

p is an interior point of t2j for j = 1 , 2 .  In particular, p~ft~Uft~. We conclude that  

Pn Eft  1,~ A ft2,n for sufficiently large n. 

Let aj,~ be the foliating arc of ftj,n which contains Pn. Note first that,  for j = l ,  2, 

aj,~ --+ E ln E2 .  

Also, since al,~ and a2.~ are defined relative to a common spine, these arcs lie on a 

common R-circle, and have a common endpoint. Hence we have either a~,~Ca2,n, or 

the reverse. Without  loss of generality, suppose that  c~,nCc~2,~. In this case, let q~ be 

the endpoint of OZl, n contained on the equator of ftl,~. By construction, qn c ~l,n Fl~2 ,n  

and q~-+Pl~. Eventually q~E U, contradicting Lemma 8.1. [] 

8.2. The  pattern of  tangency 

We will henceforth assume that  sE($- f i ,$ ) .  By Lemma 8.2, we have EI,sNE2,s = 

ft(E0,s, P0,s; P12,~). One endpoint of this arc is contained in P0,s. Call this endpoint as. 

The intersection I2,s(E0,~)NEl,s is also an arc, one of whose endpoints, bs, is contained 

in P0,~. A key difference between the parabolic and loxodromic cases is that  as=bs, 

whereas: 
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LEMMA 8.3. a ~ b ~  for s<~ sufficiently close to ~. 

Proof. If a~=b~, then this common point is fixed by g~. Hence, this point must be 

either O~ or Q,. By construction, Os and Q~, the endpoints of Po,~, are not contained 

in the hemisphere f~=f~(E0,~, P0,,; C1,~). Since the point Po is disjoint from the hemi- 

sphere Ii(f~(E0, P0; C])), the entire are Po..~, including the endpoints, is disjoint from the 

hemisphere Ii,~(ft~) for s sufficiently close to ~. [] 

We will represent •l,s by the double of a hexagon, as shown in Figure 27. Figure 27 

also shows E2,,, as well as Ii(E0,,). The long diagonals represent the equators of the 

spheres, as in Figure 11. One of the short thick diagonals on E1 represents the arc on P0,~ 

which joins a, to b,. The other short thick diagonal on El, ,  represents the symmetrically 

located arc, on the other hemisphere. 

Figure 28 shows Ej,,, for j = 0 ,  1, 2. 

Compare Figure 28 with Figure 12, which shows the parabolic case. As s--+$, the 

short diagonal segments converge to the pole points. 
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8.3. Perturbing the spheres 

LEMMA 8.4. Suppose that s is as m Corollary 8.2. For j = 0 ,  1,2 there are piecewise 

smooth embedded spheres E}, s such that 

(1) 5,s(r:,2=r b and Ij,s interchanges the two components of S3-Erj,s, 

(2) 5j,sCr:., 
(a) r4,snr;~={P~j,~}, 
(4) the sequence {(Ij,~h,~)n(E},~)} shrinks to the point Pij,s for iCj .  

Proof. We suppress the parameter s. With one change, the argument in the proof 

of Lemma 5.2 shows that  { IJ j (Ej )}  shrinks to a point. The one change is that  one of 

the endpoints of Ln is no longer independent of n, but rather varies in a compact subset 

of C which is independent of n. This change has no effect on the argument. 

Let Lij = Ei • Ej. Since L~j C E j,  the sequence {Ii Ij (Lij) } shrinks to a point. Also 

Ii(Lij)ALij=Pij.  Likewise for Ij. From this, it is easy to construct a topological ball 

Bij  C S 3 such that  

(1) {I~Ij(Bij)} shrinks to Pij, 

(2) L~j nBij =Pij, 
(3) OBij-Pij is smooth, 

(4) I~ (B~j) n B~j = 5 (B~t) n B~t = Pit, 
(5) OB~j-Pit is transverse to both Ei and Et, 

(6) OBijNE~ and OBijAEj are embedded disks, contained respectively in hemi- 

spheres fti and ~ j  of Ei and Ej,  

(7) "/ij=OBijNEi is a simple closed curve which bounds disks on both Ei and Bij. 

Likewise for "~ti = Et N Bit. 
The ball Bit is not smooth at Pij. The cone point at Pit has an extremely small 

angle, as shown schematically in Figure 29. We think of Bij a S  being contained in a tiny 
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~0 

Pig. 30 

1 
neighborhood of L~j. This is shown schematically in Figure 29, 

Let Aij be the small disk on E~ bounded by 7ij. Likewise define Aj/. By construc- 
t l - -  I t ion,  3`ijA3`ji=Pij. In particular, there are disks z~lij and  Aji on Bij such t ha t  3`ij--O/\ij 

l l I -- and ~:ji=OAji and  /~jiN/~ij--Pij. 
We now explain how to modify N0- The other cases are done by permuting the 

indices. Since s<g,  the segments Lm and Io(L02) are disjoint. The same is true when 1 

and 2 are switched. By choosing Boj small enough, we can assume that  A~I~I0(A~2 ) = 0 .  

Likewise, A~2 n I0(A~l)=O. (A similar statement is automatically true for the A-disks.) 

We create P~ by by replacing the four above-mentioned A-disks by the corresponding 

A'-disks. The modified spheres have all the desired properties. [] 

Figure 30 shows a schematic picture of our perturbation. In this picture, the four 

spheres adjacent to E0 have also been perturbed. The arrows indicate gluings which are 

not shown directly. 

8.4. P r o o f  of  T h e o r e m  1.1 

We have shown that  it is possible, for s<$  sufficiently close to g, to replace Ej,8 by a 

perturbed sphere E~, 8. The three spheres E~,8, E~1,8 and E t2,2 retain all the properties of 

the original spheres, except that  the stronger statement E~,sC'IE~,~=P~j,8 is true for all 
i r  

Recall that  p0(P) preserves the real slice X = R 2 A C H  2. Within X, a fundamental 

domain for this action is the ideal triangle bounded by the three geodesics 3`0, 3`1,3'2 fixed 

by the generating reflections. The orthogonal projection Hx:  CH2--+X extends to S 3. 
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The three topological spheres 

Sj,o = s3nnTc~(~j)  

intersect pairwise in a single point. The generators of g0(F) act on these spheres in the 
! same way as the generators of gs(F) act on the spheres Ej,s, constructed above. The 

topological conjugacy is obvious from here. The fact that  all nested sequences of spheres 

shrink to points means that  the conjugacy extends across the limit sets, without any 

problems. 

It remains to analyze As and /ks /gs (F  ). Given our topological conjugaey, it suffices 

to consider the case s~-0. The limit set A0 is obviously a circle. Let H0 be the index-2 

subgroup of g0(F) consisting of even words. For each point x E X ,  the fiber I~xl(x)NS 1 is 

a circle. From this it is easy to see that  A o / H  o is a circle bundle over the thrice punctured 

sphere. All such bundles are trivial. Thus A0/g0(F ) is doubly covered by S i x  $32. 

9. P r o o f  of  Lemma 8.1 

The main idea in our proof of Lemma 8.1 is to replace the Heisenberg stereographic 

projection B by a map Bs which is adapted to the loxodromic element gs. Once we have 

derived some basic properties of this map we will imitate Lemma 4.3 and Lemma 4.4. 

9.1. L o x o d r o m i c  s t e r e o g r a p h i c  project ion  

A basis of eigenvectors of gs is given by 

5s e-~(o~) ,  ~ s = e - t ( Q s ) ,  A . = Es = AsE;,  A~ E R.  (36) 

All vectors are supposed to be affinely normalized. Here O is as in equation (3). 

Let X E S 3 - E ,  with lift _~. Define 

Bs(X)  = (Hs(X),  As(X)), (37) 

()~,/~s) , A s ( X ) -  1 log 1<)~'5~>1 (38) 
n~(x) = V/(~,Os)(X, Qs) Ix(Os, Os)l I(X,Q~)I" 

These quantities are independent of the lift of X. One can consistently take a branch of 

the square root so that  IIs is globally defined. 

LEMMA 9.1. As s-+~, the map B~ converges, in the Ca-topology, to a map which 

agrees with B up to composition with some map (z, t)-+(Az, At) for /~EC* and AER*.  

Proof. Recall that  g~ stabilizes the pair (E0, P0). Let/~0 be the affinely normalized 

lift of P0, and let E0 be the affinely normalized lift of the vector polar to E0. Note that  
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/~0 and P0 are multiples of the similarly named vectors from equation (19). The points 

()s and Q)~ converge to P0, and E~ converges smoothly to /~o. Note that  Q~ does not 

converge to a multiple of ~)0, the vector used in equation (19). Define 

]s=O~-s Us=]~/ll]~ll, 0=limU~. (39) 
s - - + g  

By construction, U is tangent to the chain Eo at Po, and contained in the complex line 
A 

which contains Eo. Since Eo is transverse to the contact structure, we have (Po, U) r  

The points Po and Qo are diametrically opposed on Eo, because Ro is an isometry which 

interchanges the two components of Eo-Po-Qo. Since Po-Qo=Po-Qo, there is some 

KIC R such that  

iK1U = ~)o-?0.  (40) 

Let W be an open subset whose closure is contained in S3-Eo. Let XcW be a 

point with lift X. The convergence above gives 

lim H~(X) - (X, Eo} (41) 

When Hs is considered as a function of W, the convergence takes place in the smooth 

topology, because all vectors vary smoothly. 

Below we will show that  there is a constant K2 E R such that  

lim A~ = K 2  Im (X,V) V=-iK1U. (42) 

Once again, the nature of our formulas is such that  the convergence of the corresponding 

functions takes place in the smooth topology. 

Combining equations (40), (41) and (42) we get 

B ~  =~roeoM~,  M~(X):=((X,F,o),(X, K20.o),(X, Po)). (43) 

Here O and Tr are as in equations (3) and (5). The vectors used in this last equation are 

all multiples of the ones used in equation (19). 

To finish the proof, we derive equation (42). Since (Qs, Q~)=0, we get 

As(X)= l~ 11+ll3 llzl(s)l z1(8) (2, 5s) Z2(8)_~_(~s,Ss}. (44) 
II] lllz2(s)l ' - ( 2 , @ s ) '  

Writing zl=xl+iyl we have 

log tl +[Ijsllzl(s)l = �89 + 211j~llxl(s)+llJsll21zl(s)12). (45) 
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If we define 

0(S)- Xl(S) q-113sll Izl(s)l 2 
Iz2(s)[ 21z2(s)l '  "(s)=211J llxl(s)+llJ(s)N21zl(s)lL (46) 

then, as long as [rl(s)l< 1, we can expand out equation (45) in a Taylor series: 

As (X) = 0(s) (1 - �89 r/(s) + �89 r/2(s) - �88 r/a(s) +.. .) .  (47) 

Since lim •-+0 and lim~-.~ z2(s)=(Po, U)=;r we get 

(x,  u) (x,  v) (48) 
lim As = lin! 0(s) = K8 lim_ xl(s) = K3 Re (X, P0) - / ( 2  Im (X,/3o)" 
8 ---~ g 8--+S 8--+S 

Here K 3 = l / [ @  [] 

LEMMA 9.2. I f  7 is an R-arc which intersects Eo,s in points which are harmonic 

conjugates with respect to P0,s, then Bs(~ , )=(S-{0})x  {r}. Here S is a line segment 

through O. 

Proof. Writing everything out in the basis (O~, Qs, E~), we see that  Bs conjugates 

the stabilizer subgroup of Po,~ to the isometrics of C x R which preserve {0} x R. There is 

one element in the stabilizer of P0,s which interchanges its endpoint and has 7 as its fixed 

point set. Bs conjugates this element to an isometry of C x R, and this isometry must be 

an order-2 rotation about a line of the form S x  {r}. Hence, this line contains B~('y). [] 

LEMMA 9.3. There is a set K s c S  a such that 

(1) B~ is a diffeomorphism from S a - K ~  onto its image, 

(2) the differential d(TrcoBs) is nonsingular and complex linear on each complex 

line tangent to a point of S a - K s .  

Ks shrinks to Po as s - ~ .  

Pro@ The map II=TroO extends to a holomorphic mapping of an open subset of C 2. 

Hence, dH is automatically complex analytic on complex tangeneies, dH is nonsingular 

on the complement of a vanishingly small set, by Lemma 3.9. [] 

9.2. E n d  of  t h e  p r o o f  

Let E~, s and E~,s be the hemispheres of El,s and E2,s which share the common spine 

(E0,s, P0,s)- Let E~*~ be the other hemisphere of Ej,s- Let E~ and E~* be the corre- 

sponding hemispheres of the parabolic hybrid sphere Ej. Let x be so small that  ]s-g] <6 

implies: 
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(1) There are no complex lines tangent to Ej,s at points in Ue. This is possible by 

Lemma 3.10. 

(2) Referring to Lemma 9.3, we have U~ c Ks. 

Define 

Rj . . . .  = r .~ . ;nu~ .  (49) 

Since ~j,s is a smooth surface, with uniform bounds from above on its normal curvatures, 

we can take e so small that  Rj,s,~ is an embedded disk. 

LEMMA 9.4. For ~ sufficiently small, 

~oBs(OR~,~,~)n~oB~(OR2,~.~) = (oBs(P12,,).  

Proof. We have 
- -  * *  A 

oRj,s,~ - ( o g ~ n ~ j . ~ ) u ( u ~ n c j , s ) .  

The arc ~oB~(U~nCj,s) is the graph of a function fj,s, defined in a neighborhood of 

0ER/27rZ.  Since R0 interchanges El,s and E2,~, as in the parabolic case, we have 

f~,s(0)=f~.s(0). By Lemma 3.9, the function fj,~ converges smoothly to the function sj, 

used in the proof of Lemma 4.3. Hence. f~'.~(t)>0 and f~ ' s ( t )<0  for t sufficiently close 

to 0. Therefore 

~oBs(Cl,snU~)n~oB~(C2,snU~) = ~oBs(P12,s). 

From Lemmas 4.3 and 4.4 we have 

~oB(C2nU~)n~oB(Sl nau~) = o, 

,~oB(:S~ naU~)n,1oB(~i n0U~)=~. 

By continuity, the analogous formula is true for s sufficiently close to g. [] 

Let X ~ be the interior of the set X. Lemma 8.1 is an immediate consequence of the 

preceding result, and the following result: 

LEMMA 9.5. For ~ sufficiently small, and Is-gl<c,  the set ~oBs(R~,s,~) is con- 

tained in the interior of the compact region bounded by ~oBs(ORj .... )). 

Proof. We imitate the proof of the Dollar Sign Lemma. We define the inward radials 

of R ~ to be arcs of the form 7rcoBs(a) ,  where a is an R-arc  foliating R ~ We have 

arranged that  there are no contact planes tangent to R ~ We have also established 

Lemma 9.2 and Lemma 9.3. 
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Fig. 31 

It  suffices to prove that  the fibers of ~oBs are transverse to R~,~,~. If this is false 

then there is a segment through the origin which is tangent to an inward radial of R ~ at 

an interior point. 

The inward radials of R ~ are open arcs. One endpoint of each inward radial is 
A 

contained on the C-arc 7rcoBs(Cj,s). The same argument as in Lemma 4.4 shows that  

the tangent lines to inward radials at these endpoints contain the origin, as shown in 

Figure 31. 

In the parabolic case, the inward radial of 7rcoB(Ej) ,  whose endpoint is 7re oB(P12), 

is locally convex at P12. By Lemma 3.9 and continuity, the same statement  is true at 

all points of all inward radials of R ~ as long as e is chosen small enough. By convexity, 

the tangent lines to a fixed inward radial of R ~ at distinct points, cannot both  contain 

the origin. Since the tangent line at one endpoint contains the origin, the tangent line 

at any other point does not contain the origin. [] 
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