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In troduct ion  

It  was proved by [Sel] tha t  the Laplacian A(F) for congruence subgroups F of the mod- 

ular group Fz has an infinite sequence of embedded eigenvalues {Ai} satisfying a Weyl 

law #{~i~<A}~(rFf/47r)A for A--+cx~. Here I l l  is the area of the fundamental  domain 

F of the group F, and the eigenvalues Ai are counted according to multiplicity. The 

same holds true for the Laplacian A(F; X), where X is a character on F and A(F; X) is 

associated with a congruence subgroup F1 of F. It  is an important  question whether 

this is a characteristic of congruence groups or it may hold also for some non-congruence 

subgroups of Fz.  To investigate this problem Phillips and Sarnak studied per turbat ion 

theory for Laplacians A(F) with regular per turbat ions derived from modular  forms of 
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Research Foundation. On leave from the Steklov Institute, St. Petersburg. 
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weight 4 [PS1] and singular perturbations by characters derived from modular forms of 

weight 2 [PS2]. Their work on singular perturbations was inspired by work of Wolpert 

[W1], [W2]. See also [DIPS] for a short version of these ideas and related conjectures. 

Central to their approach was the application of perturbation theory and in that  con- 

nection the evaluation of the integral of the product of the Eisenstein series Ek(Sj) at an 

eigenvalue ~j:Sj(1--Sj) with the first-order perturbation M applied to the eigenfunc- 

tion vj. If this integral Ik(sj), which we call the Phillips-Sarnak integral, is non-zero 

for at least one of the Eisenstein series Ek(sj), then the eigenvalue Aj disappears under 

the perturbation aM+a2N for small a r  and becomes a resonance. This follows from 

the fact that Ims is proportional to the sum over k of  IXk(Sj)] 2, a fact known as 

Fermi's Golden Rule. The strategy of Phillips and Sarnak is on the one hand to prove 

this rule for Laplacians A(F) and on the other hand to prove that  Ik(si)r for some 

k under certain conditions. For congruence groups with singular character perturbation 

closing 2 or more cusps, a fundamental difficulty presents itself due to the appearance 

of new resonances of A(F; c~) for a # 0 ,  which condense at every point of the continuous 

spectrum of A as a--+0. These resonances (poles of the S-matrix) were discovered by 

Selberg [Se2] for the group F(2) with singular character perturbation closing 2 cusps, so 

we call them the Selberg resonances. Any method of proving that  eigenvalues become 

resonances or remain eigenvalues has to deal with these resonances, which arise from the 

continuous spectrum of the cusps, which are closed by the perturbation. This makes 

the problem very difficult in that  case. This is also illustrated by the example of F0(p) 

with trivial character, where p is a prime. Here the Riemann surface has 2 cusps, which 

are both closed by a singular perturbation defined by a holomorphic Eisenstein series 

of weight 2. The Phillips-Sarnak integral is non-zero for all new odd cusp forms, but 

the spectra of the perturbed operators are purely discrete, condensing in the limit on 

the original continuous spectrum. See also Remark 8.9 for another example. In the case 

of regular perturbations derived from cusp forms it is not too difficult to prove Fermi's 

Golden Rule, but  it is very hard to prove that  the integral is not zero. 

We consider instead as our basic operator A(r;x), where r=~0(N) is the Hecke 

group of level N and X is the 1-dimensional unitary representation of F0(N) defined by 

a real, even, primitive Dirichlet character mod N. These characters are fundamental in 

number theory, since they are related to real quadratic fields. We study basic spectral 

properties of the operators A(F0(N) ;x)  and related Hecke theory. We prove that  the 

multiplicity-one conjecture holds for A(F0(N); X) and the set of non-exceptional Hecke 

operators T(p), p~N. The exceptional Hecke operators U(q), qlN, are shown to be uni- 

tary and have only the eigenvalues i l .  This implies that  the analogue of Selberg's small 

eigenvalue conjecture is valid for the exceptional Hecke operators U(q) with primitive 
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character. Moreover, we prove that  the Hecke L-functions are regular and non-zero on 

the boundary of the critical strip. 

Based on this theory we develop the perturbation theory for embedded eigenvalues 

of the operators A(F0(N); X). We prove that  for a class of regular perturbations defined 

by holomorphic Eisenstein series of weight 2 the Phillips-Sarnak integral Ij(sj)~O for 

all odd Hecke eigenfunctions of A(F0 (N); X) with eigenvalues Aj--sj ( 1 - s  j)  except if sj 
takes one of the values s(n, q) = �89 +in~/log q, q a prime, q IN. 

Consequently, at least one eigenfunction from each odd eigenspace of A(F0(N); X) 

with sj ~s(n, q) for all n and q IN becomes a resonance function under this perturbation, 

the corresponding eigenvalue giving rise to a resonance. We notice that  in the case of 

A(Fo(N)) with trivial character the embedded eigenvalues are discrete in the space of 

new forms, whereas in the case of A(Fo(N)) with primitive character they are genuinely 

embedded, since both cusp forms and Eisenstein series are new. 

We now describe in more detail the contents of the paper. 

In w we introduce the Hecke groups F0(N) to be considered, and define their prim- 

itive character rood N. We consider precisely those sequences of values of the level N 

for which such a character exists: (1) N=NI=I mod 4, (2) N=4N2, N2-=3 mod 4, 

(3) N=4N3 ,  N 3 - 2  rood 4, where N1,N2,N3 are square-free integers. The Riemann 

surfaces associated with the groups F0(N) have d(N) cusps, where d(N) is the number 

of divisors in N. 

The primitive character X keeps all cusps open in case (1), and closes one third of 

the cusps in case (2) and one half of the cusps in case (3) (Theorem 1.1). Closing of a 

cusp means that  the continuous spectrum associated with that  cusp disappears. 

In w we discuss the Eisenstein series, and in w we prove the Weyl law for eigen- 

values of A(F0(N); X) (Theorem 3.6), using the factorization formula for the Selberg 

zeta-function [V1] and Huxley's explicit formula for the scattering matrix of FI (N)  [Hu]. 

In w we develop the Hecke theory for Maass wave cusp forms of A(F0(N); X). We 

prove that  there is a unique common eigenfunction of A(Fo(N); X) and the Hecke opera- 

tors T(p), p~N, with given eigenvalues and first Fourier coefficient 1 (the multiplicity-one 

theorem) (Theorem 4.2). The exceptional Hecke operators U(q), q IN, are unitary (The- 

orem 4.1) and have only the eigenvalues +1 (Theorem 4.3). This is in contrast with the 

case of A(Fo(N)) with trivial character, where the operators U(q) are not normal in the 

whole Hilbert space, and normal but not unitary in the space of new forms. 

In w we study the Dirichlet L-series L(s; vj) and L(s; ~j) associated with the eigen- 

functions vj of A(F0(N); X) and their conjugates ~j. They have an Euler product repre- 

sentation (Theorem 5.1) and analytic continuation to all of C, connected by a functional 

equation (Theorem 5.2). Based on this together with a general criterion proved in [MM] 
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(Lemma 5.3) we prove that  L(s; vj) and L(s; ~j) are regular and non-zero on the boundary 

of the critical strip (Theorem 5.4). 

In w we introduce perturbation of A(Fo(N); X) by characters X(a). This is equiva- 

lent to perturbation by a family of operators aM+a2N, where 

(0 0) 
M=-47riy 2 wl-~x-W2~y , N--47r21wl 2, 

and a ) = a ) ( Z ) = 0 2 1 + 0 2  2 is a modular form of weight 2 derived from the classical holomor- 

phic Eisenstein series E2(z). The basic result here is in each of the cases (2) and (3) the 

existence of such a form a~(z), which keeps the same cusps open and closed, which are 

already open and closed by the primitive character X (Theorem 6.1). In Theorem 6.2 an 

explicit ( k -  1)-parameter family of such forms w is constructed, where k is the number of 

prime factors in N2 or N3. This makes the perturbation defined by w regular relative to 

A(Fo(N)), and thereby accessible to analysis of embedded eigenvalues. In case (1) this 

is not possible, and the remaining part of the paper deals with the cases (2) and (3). 

In w we prove for this class of perturbations, using the non-vanishing of the Dirichlet 

L-series for eigenfunctions, that  for some k the Phillips-Sarnak integral Ik(�89 is 

different from zero for all odd eigenfunctions except for rj=nTr/logq, q=2 or q an odd 

prime, qlN, nEZ (Theorem 7.1). 

w contains the general perturbation theory (Theorem 8.4), which allows us to con- 

clude from the non-vanishing of the Phillips-Sarnak integral that  at least one eigenfunc- 

tion from each odd eigenspace turns into a resonance function (Theorem 8.5). Using this 

result, the proportion of odd eigenfunctions which leave as resonance functions can be 

estimated depending on the growth of the dimensions m(sj)  of the eigenspaces (Theo- 

rem 8.6). The estimate rn(~j)<<ASlog A j, which can be obtained using Selberg's trace 

formula, gives at least the proportion clog X/v~,  while the boundedness m(~j)~<m, 

which has been conjectured, implies that  a positive proportion leaves (Corollary 8.7). 

The operator M, which is derived from the real part of the form w, maps odd 

functions into even functions, and even into odd. Therefore, the Phillips-Sarnak integral 

is always zero for even eigenfunctions, and it remains an open question whether some of 

these leave under this perturbation. 

There is another perturbation (x.ll~+c~2N, where /~r is derived from Imw and /~  

preserves parity. This perturbation, however, is completely different. It is singular, but 

in some sense very simple. Although the Phillips-Sarnak integral is non-zero for all 

even Hecke eigenfunctions, it does not follow that  corresponding eigenvalues give rise to 

resonances. Quite the contrary happens. All eigenvalues and resonances remain constant, 

because the Laplacians L(c~) are conjugate to L via multiplication by an automorphic 

phase function (Remark 8.8). 
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The proof that the Phillips-Sarnak integral is not zero utilizes strong arithmetical 

properties based on Hecke theory and is specific for the operators A(F0(N); X)- General 

perturbation theory makes it possible, however, to draw some conclusions about the 

eigenvalues more globally (Remark 8.9). Thus, eigenvalues of A(F0(N); X) with odd 

eigenfunctions which leave the spectrum for a ~ 0  can then only become eigenvalues for 

isolated values of a E  (- �89 �89 

1. The  group F o ( N )  with  primit ive  character X 

We consider the Hecke congruence group [ '0(N) together with its 1-dimensional unitary 

representation X, also called a character of the group. We are interested here only 

in arithmetically important characters, coming from real primitive Dirichlet characters 

X rood N. We have, following Hecke, 

(a  n X("/)= XN(n)' "7= gc E Fo(N), an-bcg= l. 

It is well known (see IDa]) that  the real primitive characters mod N =  fdl are identical 

with the symbols 

where d is a product of relatively prime factors of the form 

--4, 8, --8, (--1)(P--1)/2p, p > 2. (1.1) 

We have 

provided (dl, d2) = 1. 

By definition 

, 

0, 

1, 

1 

0, 

(~n 8) =x4(n)xs(n). 

n -  1 mod 4, 

n - - 3  mod 4, 

otherwise, 

n - - - •  mod 8, 

n -  +3 mod 8, 

otherwise, 
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We have also, by the law of quadratic reciprocity for the Legendre symbol, 

( p )  = ( - ~ )  wherep'=(-1)(p-1)/2p, (1.2) 

provided n is an odd square-free integer. By Kronecker's extension of Legendre's symbol 

we have 

or, more generally, 

2~mm = - -  , k ~ Z , k ~ > l .  

where 

and l=plp2...pk, i.e. if 1 

(see (1.2)). 

Finally, we recall that 
( p ) = { + l  if nRp, 

- 1  if nNp, 

for p an odd prime and (p, n) = 1. We also define 

0 

Here by definition, nRp just means that  there exists an integer x such that  x2--- -- n rood p. 

In the case of nNp such an integer does not exist. 

For odd n we also have 

This explicit definition of the symbol (d) is important in order to calculate the 

values of the character X on the parabolic generators of the Hecke group. 

The numbers 

(-1)(P-1)/2p, p > 2, 

are all congruent to 1 mod 4, and the products of relatively prime factors, i.e. distinct 

factors, each of this form, comprise all square-free integers, positive and negative, that  

l /=  (_1)(t-1)/~/ 

is any square-free odd positive integer, and I~=plp~ ~ "'Pkl 

Thus, relation (1.2) holds whether n is odd or even. It holds also in the more general 

form 
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are congruent to 1 mod 4. In addition, we get all such numbers, multiplied by -4 ,  i.e. 

all numbers 4N where N is square-free and congruent to 3 mod 4. Finally, we get all 

such numbers, multiplied by 4-8, which is equivalent to saying all numbers 4 N  where N 

is congruent to 2 mod 4 (see [Da D. 

By this we have obtained all real primitive Dirichlet characters. But we need only 

even characters here, since we consider the projective Heeke group F 0 ( N ) c P S L ( 2 ,  R),  

This means that we identify 2 matrices 

( a  b ) ~  ( - a - b )  
Nc d -Nc -d  

and x(d)=x(-d). According to this classification of primitive even real characters, we 

will consider 3 different choices of N in Fo(N). 

(1) Po(N1) ,  Nl=l-[p>2(-1)(p-1)/2p, N I > 0 .  

This means that  N1 is any square-free positive integer and N I - 1  mod 4. 

(2) We take M~ = IIp>2(-1)(P-1)/2p, M~ <0, and consider f'0(4N2) where N2 = - M s  

This means that N2 is any square-free positive integer and N 2 - 3  mod 4. 

(3) We take M~=I-Ip>2(-1)(P-1)/2p and define Na=2IM~[. 

We have that Na is any square-free positive integer and N3 = 2 rood 4. 

Then we consider Fo(4N3). 

We now recall the basic properties of the group F0(N), having in mind our choices 

(1), (2), (3) for N. It is well known [Sh] that for any N, 

[Fo(1) : Fo(N)] = N II(l+l/p) = m, 
PIN 

0, 

n 2 =  p 1-IN ( 1 +  ( ~ ) )  , 

{0 
4[N, 

otherwise, 

0, p = 2, 

( ~ ) \ ~ / =  1, p ~ l  mod 4, 
-1 ,  p - 3  rood 4, 

9IN, 

otherwise, 

0, p = 3, 

(2-33)\~/= 1, p---1 mod 3, 

-1 ,  p - 2  rood 3, 

h = N/d)), 
diN 
d>0 

1 ?Tt I n  l'/z 1 g = l + ~  - ~  2 -  5 3 - ~ h .  
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Here m is the index of F0(N) in the modular group, n2 is the number of F0(N)- 

inequivalent elliptic points of order 2 (n3, of order 3), h is the number of F0(N)-inequi- 

valent cusps, g is the genus, ~(n) is the Euler function, ~(1)=1, 

~(n )=n  1 -  1 1 -  1 ... 1 -  , n=plP2  ""Pk" 

For our purposes it is important to see the parabolic generators of our groups and 

corresponding cusps of the canonical fundamental domains. 

Case 1. For Fo(N1) we have NI=plp2 ...Pk, a product of odd different primes. Then 

hl=~,dIYl,d>O ~((d, N1/d))=d(N1), the number of positive divisors of the positive inte- 

ger N1. Let griEF0(1), diN , d>0,  

( 1  01) (1.3) 
O'd  ---- d " 

We can take as a complete set of inequivalent cusps for F0(N1) the set of points Zd= 
1~tiER, d]N~, d>0. We define then Fd={TEFo(N1)}yZd=Zd}. Let Sd be the generator 

of Fd. We can find Sd from the condition S~dEFo(N1), 

Sd = 1 ] \ - d  1 = -d2m~ l +dm~d ' 

where we have to take the minimum Imp[ (width). That  gives md=N1/d, and we obtain 

( 1 - N 1  N 1 / d ) ,  d>O,d[N1. (1.5) 
Sd -= k, -dN1 1+N1 

Since our character X=XN1 is mod N1, we obtain 

XNI(Sd)=XNI(I+N1)=XN~(1)=I for any d[N1, d > 0 .  (1.6) 

Case 2. F0(4N2), N2 is the product of different odd primes. Then we have 

h2 = E p((d, 4N2/d)). 
d[4N2 
d)O 

Since ~(2)=1 we obtain h2=d(4N2), the divisor function of 4N2. For any d[4N2 

we introduce the matrix adEF0(1) (see (1.3)). Again we take as a complete set of 

inequivalent cusps for F0(4N2) the set of points Zd=l/dER, d]4N2, d>0. We define in 

analogy with the first case 

= {z  e  0(4N ) I = zd}, (1.7) 
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and for the generator Sa=Sd (2) we have 

(1-dma md ) (1.8) 
Sd = \ _d2m d l +dmd ' 

where for md we have the minimum [rnS[, when NeP0(4N2) (see (1.4)). We have 3 

possibilities now. In case (i) diN2, then we have 4N2ld2md and md=4N2/d. We obtain 

( 1 - 4 N 2 4 N 2 / d  ) diN2, d>0 .  (1.9) 
Sd = ~ - 4 N 2 d  1+4N2 ' 

In case (ii) d=2dl, dl[N2, then we have 4N2ld2md and md=N2/dl. We get 

( 1-2N2 N2/dl) dl,N2, dl>O,d=2dl. (1.10) 
Sd = -4diN2 1+2N2 ' 

Finally in case (iii) we have d=4d2, d2lN2. Then 4N2[16d~md, and we get rr~d=N2/d 2. 

We obtain 

Sd = \( -16d2N21-4N2 l+4N2N2/d2 ) , d2[N2, d2>0,  d=4d2. (1.11) 

Case 3. For I~o(4N3) we have N3=2n, with n=plp2 ...pk the product of different 

odd primes. We get 

h3= E ~((d,4N3/d))=d(4N3). (1.12) 
d[4N3 
d>O 

We take as the set of all Fo(4N3)-inequivalent cusps the set of points 

Zd=l/d, d]4N3, d > 0 ,  (1.13) 

and then we define in analogy to (1.7) 

Pa = Po(4N3) l'yza = za} 

and its generator Sd, given by (1.8) with d[4Na, d>0. Similarly to (1.4) for md we take 
m t the minimum [ d[, when S~CP0(4N3). We have 4 possibilities now: 

(i) din, 
(ii) d=2dl,dl[n, 
(iii) d=4d2, d21n, 
(iv) d=8d3, d3[n. 
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Analogously to (1.8), (1.10) we obtain 

1 -4N3  4N3/d ~ , 
-8dn 1+4N3 / 

(1-2N3 N3/dl ) ,  
-4d~ N3 1+2N3 

Sd = 

-16d2n 1+2N3 

(1-4N3 n/d3 ) ,  
-64d2n 1+4N3 

din , d > 0 ,  

d =  2d1, dll n, dl > O, 

d=4d2,  d2ln, d2>0,  

(1.14) 

d = 8d3, d3 In, d3 > 0. 

In (1.6) we calculated the values of ~NI(Sd), d]N1, d>0.  Now we do that for all 

other cases. We have in Case 2 of 4N2 with either (i) diN2 or (iii) d=4d2, d2]N2, 

)I~4N2(Sd) =X4N2(l+4N2) :~4N2(1) = 1, diN2 , d > 0 ,  (1.15) 

X4N2(Sd)----1, d=4d2,  d21N2, d 2 > 0  (see (1.11)). (1.16) 

For the case (ii) d=2dl ,  dl]Nu, dl>0, we have to calculate (see (1.10)) 

X4N2(Sd) = X4N2(1~-2N2). (1.17) 

We obtain 

) ~4N2(l~_2N2)= (1_]_2N2) = (l~_~_N 2 4 N  2 -4  ) (1_~_~2)  _)(~4(X_]_2N2)(1_[_2N2 
(1 .18)  

Since N2=3 rood 4 we get x 4 ( l + 2 N 2 ) = - 1 ,  and then 

X4N2(Sd)=X4N2(1+2N2):--1, d = 2 d l ,  dllN2, d l > 0 .  (1.19) 

In Case 3, F0(4N3), we have (see (1.14)) 

X4N3 (Sd) = X4N3 ($8d3) : 1, 
din d3[n 

X4N3 ($2~1) = X4N3 ($4~2) = X4N3 ( 1 +  2 N 3 )  = - 1. 
d~ln d2ln 

(1.20) 

(1.21) 



S P E C T R A L  T H E O R Y  O F  L A P L A C I A N S  165 

From the basic properties of the symbol (d) (see the beginning of this section) it 
follows that 

, 

X4N3(l+2N3)= ( 45/3 "~= Xs(I+2N3)\  ~ ] M~>0, 

k, 1+2N3 J "1 2N "/1+2N3"~ xs(l+2N3)x4  + ),  M <0, 

where M~=l'-[v>2(-1)(P-1)/2 p. Then we have 

(1+2N3~ ( M3 ) 
-g77,~ = 1+2-N3 =1,  J 

where Ma=I'Iv>2P, corresponding to the product M~. Next 2N3=41M~I and we have 

x4(l+2N3) = 1. (1.22) 

Since Na = 2 rood 4 we have finally 

Xs (l+2Na) = -1.  (1.23) 

We have proved the following theorem. 

THEOrtEM 1.1. (1) For the group F0(N1), N1 a square-free positive integer, NI=-I 

mod 4, and its arithmetical character XNI= (-~  ), we have a complete system of Fo(N1)- 

inequivalent cusps Zd given by Zd=l/d, diN1, d>0. The system of all parabolic gener- 

ators "Sd is given by (1.5). Then all the above-mentioned cusps are open relative to this 

character. This precisely means that )INI(Sd)=I. We are also saying in this case that 

the character X is regular for the group Fo(N1) (see w 
(2) For the group Fo(4N2), N2 a square-free positive integer, N2--3 rood 4, and its 

arithmetical character we have the complete system of ro(4g:) inequi- 

valent cusps Zd=l/d, d14N2 , d>0. The system of all parabolic generators Sd is given by 

(1.9), (1.10), (1.11). The character X4N2 is singular for the group F0(4N2), two thirds 

of the cusps Zd are open and one third is closed by the character X. This precisely means 

that for open cusps Zd, diN2, d>0, or d=4d2, d2>0, d21N2, we have X(Sd)=I (see 

(1.15), (1.16)). For closed cusps Zd, d=2dl, da>0, dllN2, X(Sd)=--I (see (1.19)). 
(3) For the group ['o(4N3), N3 a square-free positive integer, N3-2  rood 4, and its 

arithmetical character X4N3 =(-~-) ,  we have the complete system of Fo(4g3)-inequi- 

valent cusps Zd=l/d, dI4N3, d>0. The system of all parabolic generators Sd is given 

by (1.14). The character ~4N3 i8 singular for the group Fo(4N3) with half of the cusps 

open and the other half closed. The open cusps are zd, din, d>0 (N3=2n), or d=8d3, 
d31n, d3>0 (see (1.20)). The closed cusps are Zd, d=2dl, dlln, dl>0, or d=4d2, d2ln, 

d2>0 (see (1.21), (1.22), (1.23)). 
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2. T h e  E i s e n s t e i n  s e r i e s  

We recall the main points of the spectral theory of the automorphic Laplacian on the 

hyperbolic plane, which we need in this paper (see [Sel], [He], [BV1], IV2]). 

Let H be the hyperbolic plane. We consider H = { z C C I z = x + i y  } as the upper 

half-plane of C with the Poincar~ metric 

ds 2 _ dx2 +dy 2 
y2 

Let 

be the Laplacian associated with the metric ds 2. Then let P be a cofinite group of 

isometrics on H, and X a 1-dimensional unitary representation (character) of F. We 

define the automorphic Laplacian A(F; X) in the Hilbert space 7-/(F) of complex-valued 

functions f which are (F; x)-automorphic, i.e. f(~z)=x('~)f(z) for any "~CF, zEH, and 

which satisfy 

Ilfll 2 = ]p  If(z)l 2 d#(z) < co. 

It is clear that ~ ( F ) = L 2 ( F ;  d#), when F is given. The linear operator A(F; X) is defined 

on the smooth (F;)r functions fcL2(F;  d#) by the formula 

A(r;  x ) f  = - A f .  

We identify A(r; ~) with the restriction AF(r; X) of A(F; X) to the space of functions flF, 
where f runs over all smooth (F; x)-automorphic functions f .  The closure of A(F; X) in 

7-tr is a self-adjoint, non-negative operator, also denoted by A(F; X)- 

We recall that  the character X is regular in the cusps zj of the fundamental domain 

F if x(Sj)=I  and Sj is the generator of a parabolic subgroup F j C F  which fixes the 

cusp zj. Otherwise x ( S j ) r  and X is singular in zj. It is clear that  this property of 

the character does not depend on the choice of fundamental domain, since in equivalent 

cusps the character has the same values (this means t h a t  X(Sj)-~X(Sj) and that  Sj, Sj 
correspond to equivalent cusps). 

The total degree k(F; X) of singularity of X relative to F is equal to the number of 

all pairwise non-equivalent cusps of F in which X is singular. If F is non-compact, which 

is the only case we consider, and the representation X is singular, i.e. h > k(F; X))1 ,  then 

the operator A(F; X) has an absolutely continuous spectrum {AE[�88 ~ ) }  of multiplicity 

h-k(F;X),  where h is the number of all inequivalent cusp of F.  In other words, the 

multiplicity r(F; X) of the continuous spectrum is equal to the number of inequivalent 

cusps where X is regular, r(F; x)=h-k(F;  X). 
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The continuous spectrum of the operator A(F; X) is related to the generalized eigen- 

functions of A(F;x) , which are obtained by the analytic continuation of Eisenstein se- 

ries. We define this as follows. For each cusp zj of the fundamental domain F,  in 

which the representation X is regular, we consider again the parabolic subgroup F j C F ,  

Fj={'yEFl~/zj=zj}. Fj is an infinite cyclic subgroup of F, generated by a certain para- 

bolic generator Sj, X(Sj)=I. 

There exists an element gj E PSL(2, R) such that  

gjoo = zj, g j lS jg jz  -= Socz = z+ l  

for all zcH.  Let y(z) denote Im z. Then the non-holomorphic Eisenstein (or Eisenstein- 

Maass) series is given by 

Ej(z;8;r;x)= ys(g717z)x(7) (2.1) 

Here ;~ is the complex conjugate of X, and 3, is a coset Fj~/of  F with respect to Fj. The 

series is absolutely convergent for Re s>  1, and there exists an analytic continuation to 

the whole complex plane as a meromorphic function of s. We have a system of r(F; X) 

functions given by (2.1). For s =  �89 +it, tER,  they constitute the full system of generalized 

eigenfunctions of the continuous spectrum of the operator A(F; X)- 

We recall the definition of the automorphic scattering matrix. For 1 ~<a, fl~<r(F; X) 

we have 
O0 

E~(gzz; s; F; X) = E aN(y; s; F; x)e 2~nx. (2.2) 
n : - - O O  

This function is periodic under z-+z+ 1, and moreover 

a0(y; s; F; X) = 6aflYS+~afl(s; F; X)y l-s, (2.3) 

z=x+iyEH,  where 

= ~ 1, a = f l ,  

t O, a#fl .  

The matrix r  which is of the order r(F;X), is called the 

automorphic scattering matrix. It is well known that  r F; X) is meromorphic in sEC,  

holomorphic in the line Re s =  �89 and satisfies the functional equation 

r r; r; x) = It, (2.4) 
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where Ir is the identity (r(F; X)• X))-matrix. The matrix r  X) is important 

for establishing the analytic continuation and the functional equation for the Eisenstein 

series given by 

Ea(z; 1 - s ;  F; X) = E 7 ~  (1 - s ;  F; x)E~(z; s; F; X), (2.5) 
~3=1 

l<.a<.r=r(F;X). 
We make now more precise the formulas (2.4), (2.5). We have 

E~(g~z; s; F; X) = 5~Y ~ + ~  (s; F; X)y I-~ 
g 27rinx +v~ :~-~.(s;r;x) s_l/2(27rlnly)e , (2.6) 

n#0 

where Ks_l/2(y ) is the McDonald-Bessel function. This expression is obtained from the 

differential equation Af+s(1-s)f=O by separation of variables in the strip -~<x<~ ,x  1 

0<y<cx~. Let F ~  be the infinite cyclic group generated by z-+z+l. Then we construct 

a double coset decomposition (see [I, p. 163]) 

I ,c :>0 d mo d  C 

where 

The general Kloosterman sums are introduced by 

S~(m,n;c;F;x)=S~(m,n;c): E c ~ (a bd) ma+nd exp 2~ri - -  (2.8) 
d rood C C 

Here we have assumed that  we can extend the character X from F to g~lF9z. Then we 

have 

_ F ( s - � 8 9  So~(O, O; c) (2.9) 

c > 0  

27r s 
~ n ( s ) = ~ n ( s ; F ; x ) =  ~(s) [n] '-x/2~ S~z(O,n;c)c -'~s, (2.10) 

c>0  

where F(s) is the Euler F-function. 

The explicit calculation of these series in full generality for our groups F0(N1), 

F0(4N2), F0(4N3), and the corresponding arithmeticM characters in terms of Dirichlet 
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L-series, is rather technical and will be presented in a separate paper. The approach to 

solve this problem is by developing an idea due to M. N. HtLxley (see [Hu]), although he 

considered congruence groups without characters. We will use his results later in this 

paper to prove the asymptotical Weyl law for discrete eigenvalues of A(F; X) with the F 

and X considered here. 

Remark 2.1. It is an interesting fact that the scattering matrix for the operators 

A(F0(N); X) with primitive character X is off-diagonal. This is proved for P0(8) in [BV2] 

and in the general case in [Fo]. 

3. The  discrete  s p e c t r u m  of the  au tomorph ic  Laplacian A(Fo(N) ;  X) 

We consider in this paragraph the group F=F0(N) with primitive character X- We 

will prove here that apart from the continuous spectrum of multiplicity r(F; X) (see w 

the operator A(F; X) has an infinite discrete spectrum consisting of eigenvalues of finite 

multiplicity, satisfying a Weyl asymptotical law 

~(Y) A, (3.1) 

where N(A; F; X)=~r ~A} is the distribution function for eigenvalues of A(F; X), the 

Aj are repeated according to multiplicity, and #(F)= IFI is the area of the fundamental 

domain F of F. 

As follows from general results on the spectrum of A(F;x) (see [Fa, p. 382], IV1, 

p. 77]) and the Selberg trace formula, it is enough to prove that the determinant of the 

automorphic scattering matrix 

~(s; F; X) = det r F; ~() (3.2) 

is a meromorphic function of order 1. We will prove this indirectly, reducing to the group 

FI(N), and then using Huxley's result. 

We recall the definitions 

F I ( N ) = { ( :  ; ) E S L ( 2 ,  Z) c - O , a - d - l m o d N } ,  

((: } F(N)=r2(N)= d eSL(2, Z) b - c - O , a - d - l m o d N  

and the classical result (see [Mi, p. 104]): 
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THEOREM 3.1. 

( :  ; )  ( ;  mod N 
TN : --'+ mod N 

Then TN is surjective, and KerTN=F(N)=F2(N).  

(2) The mapping 

induces an isomorphism 

(1) Let TN be the homomorphism of SL(2, Z) into SL(2, Z/NZ) 

b mod N'~ 
/ d mod N 

B 

a b )  -+d rood N � 9  (Z/NZ)* 
c d 

ro (N) / r~ (N)  ~- (Z/NZ)*, 

and r l (N)  is a n o r m a l  subgroup of Fo(N) of index ~(N),  where ~ is the Euler function. 

We recall now the general theorem proved in IV1], which we adopt to our situation. 

THEOREM 3.2. For a general cofinite Fuchsian group F and its normal subgroup F ~ 

of finite index, the following formula for the kernels of the resolvents of A(F'; 1) in Hr, 

and A(F; X) in Hr holds: 

1 
[ r : r ,  1 Z [tr~r(z ,z ' ;s;F;x)]dimx=r(z ,z ' ;s;F';1) ,  (3.3) 

~c(r,\r)* 

where [F:F'] denotes the index of F ~ in F. Here ~ runs over the set of all finite- 

dimensional, irreducible unitary representations of the factor group Ft\F. We extend 

the representation ~ to a representation X of the group F by the trivial representation, 

setting/or V =~.~2, V~ e r', ~2 �9 r '  \ r ,  X(V) = X(V1) X(~2)--X(V1) X(~) =X(~) .  The trace 

tr~ is the trace in the space of the representation X, and dim X is the dimension of X. 

For Re s > 1 the resolvent is defined as 

R(s; r; x) = (A(r; x) -s (1-s)I ) - -1 ,  (3.4) 

where I is the identity operator in Hr. We recall 

[[f[l~ = / F  if[2 d#, 

f: F-+V, the finite-dimensional space of the representation X. Then the kernel of the re- 
solvent, considered as an integral operator, is given by the absolutely convergent Poinca% 
series 

r(z; z'; 8; r; x) = ~ x(~) k(z, ~z'; 8), (3.5) 
~ E F  
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where k(z, zt; s) is the Green function for the operator - A - s ( 1 - s )  on H. 

As the group F from Theorem 3.2 we consider the projective group ['0(N), and 

set F '=FI(N).  Then from Theorem 3.1 follows that the factor group Fo(N)/FI(N) is 

isomorphic to the group of all even Dirichlet characters of Z mod N. Each of these 

characters becomes a character of the group F0(N) if we set 

X(7)=x(d) ,  ~ / = ( ~  ~ ) c F 0 ( N ) ,  (3.6) 

since 
a b ' ~ ( a  ~ b ~ * 

c--0 mod N. 

The identity (3.3) becomes 

2 
~(N) E r(z'z';s;F~ 

X e v e n  
X m o d  N 

(3.7) 

and finally we obtain the relation between the distribution functions of discrete eigen- 

values of A(FI(N); 1) and A(FI(N); X), 

We have 

N(A; FI(N); 1) = E N(A; F0(N); X)- (3.9) 
X e v e n  m o d  N 

#(PI(N)) = �89 (3.10) 

and the inequality, valid for all big enough A, 

/ (A;  F0( / ) ;  X) < #(F0(N)) A, (3.11) 
4r  

where #(FI(N)) and #(F0(g)) are the areas of the fundamental domains for FI(N) and 

F0(N) respectively. From that follows 

LEMMA 3.3. Let the Weyl law hold for N(A; FI(N); 1). Then the Weyl law is true 
for each summand N(A;Fo(N);x) in (3.9). In particular, the Weyl law is valid for 
N(A; Fo(N); X) with real primitive character rood N. 

Let us formulate now the result of Huxley (see [Hu, p. 142]). 

Z(s;F](N);1)= 1-I Z(s;Fo(N);x), (3.8) 
X e v e n  rood  N 

where X=I means the trivial 1-dimensional representation. FYom (3.7) follows the fac- 

torization formula for the Selberg zeta-function 
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LEMMA 3.4. The determinant of the scattering matrix r 1) for the group 
f'l(N) is given by 

_ l(k_ko)/2 r ( 1 - s )  k f A ~ l - 2 s  L(2-2s;~() (3.12) 
de tq~(s ; ia l (N) ;1) - ( -  ) ( F ~ )  I \~-'k,J H L(2s;X) ~ 

X 

where ~ is the number of cusp,, - k o = t r r  P~( N); 1), A is a positive integer composed 
of the primes dividing N, and the product has k terms, in each of which X is a Dirichlet 

character to some modulus dividing N, L(s; X) is the corresponding Dirichlet L-series, 

is the complex-conjugated character. 

Prom (3.12) follows 

LEMMA 3,5. det r FI(N); 1) is a meromorphic function of order 1. 

From Lemmas 3.3-3.5 and the Selberg trace formula follows 

THEOREM 3.6. For P=f 'o(N) with real primitive character X rood N, the Weyl law 
(3.1) is valid. 

So we have infinite discrete spectrum of eigenvalues of A(F0 (N); X). Actually, having 
in mind the Selberg eigenvalue conjecture and equality (3.8), it is very likely that the 
whole spectrum of A(f'0(N); ~) belongs to I�88 oo), since we have a non-trivial congruence 

character )~, coming from the symbol (K). 

The even and odd subspaces H~ and 7-to of 7-/are defined by 

7 t~={ feT t l J ' ( -Z )=f ( z ) } ,  7 4 o = { f E 7 4 { f ( - 2 ) = - f ( z ) } .  

The spaces He and Ho are invariant under A(~'o(N);x), giving rise to operators 

Ae(F0(N); 12) and Ao(f'o(N); X). The spectrum of Ao(Fo(N); X) is purely discrete. 

COROLLAau 3.7. The Weyl law for A~(Fo(N);x) and Ao(f'o(N);x) is given by 

#{Aj { Aj.< A}_~ " '  A, 
8~r 

where {Aj} is the sequence of eigenvalues for either Ar or Ao(Fo(N);x), 
counted with multiplicity. 

Proof. We refer to [V3], which deals with the modular group without character. 

This can be extended to :Fo(N) with primitive character. [] 
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4. H e c k e  t h e o r y  for  M a a s s  cu sp  f o r m s  

We now recall the Hecke theory for Maass cusp forms in application to all our cases 

P0(N1),XN1, P0(4N2),X4N2 and Po(4Na),X4N3. There is no published account of this 

theory except for the short review by H. Iwaniec (see [I, pp. 70-72]). But for holomorphic 

forms the corresponding results are well known and published in [O], [AL], [Li] We 

make this transfer to the case of Maass forms specifically for the form with real primitive 

character in the style of [I], supplying more details about exceptional Hecke operators. 

We will write here simply F0(N) and X, having in mind the 3 particular cases we consider. 

Let f be a continuous (F0(N); x)-automorphic function, i.e. 

f ( T z ) = x ( 7 ) f ( z ) ,  for all 7CP0(N) ,  zCH, 

and let nE Z+. Then the Hecke operators are defined by 

1 f(az+b~, 
T(n)f(z)= ~ E x(a) E t ~ ] 

a d = n  b m o d  d 

(4.1) 

and T(n)f(z) is again a continuous (F0(N); x)-automorphic function. 

It is not easy to see immediately this property from the definition (4.1). We have to 

bear in mind the more general definition 

M 

Tgf(z) = ~ X("/j)f(g-l',Sz) 
j = l  

(4.2) 

for an arithmetical cofinite group F acting on H,  and for some isometrical transformations 

g of H with the property that  the intersection F I = g - I F g O F  has a finite index both in 

g-lFg and F. Then we define Vj from the right coset decomposition 

M 

r = U F'~,j. 
j = l  

In this definition we assume that  we can define the character X of F for the group g-lFg. 
Then the definition (4.1) follows from (4.2) if we take F = F 0 ( N )  with our character X 

and 

It is easy to check this in the simplest case n=p prime, p{N. We have 

r ' = r 0 ( N , p ) ,  r ' \ r =  b b m o d p ,  
1 ' NV 
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(see [AL, p. 137]), where/3, 7 are any integers with the property p I 3 - N v = I .  

Then from (4.1) directly follows the basic relation 

T(m)T(n)= E x(d)T(mn/d2)" (4.3) 
dl(m,n) 

It is easy to check (4.3) for ( m , n ) = l ,  and then to consider the case n=p k, m=p k', 
different powers of the same prime p. From (4.3) follows that  all T(n) commute with 

each other, and also commute with the automorphic Laplacian A(F0(N); X). 

From (4.3) follows also that  the most fundamental are the Hecke operators T(p) 
which correspond to primes. Here we have to distinguish 2 cases, (1) p{N, (2) piN. For 

convenience we introduce the notation U(q)=T(q) for qlg, while T(p) is reserved for 

p{N. We can see from i4.1) and the definition of X that  

T(p)f(z) = X(p)f(pz)+--~, E f , pJ(N, 
b mod p (4 .4)  

U(q)f(z) = T(q)f(z)= -~  Z f ' qlN" 
b mod q 

All the operators Tip), U(q) are bounded in the Hilbert space 7-/(r'0(N)), and they 

also map the subspace of cusp forms 74iF0iN)) into itself. The operators Tip ) are X(P)- 
Hermitian in HiF0(N)): 

(T(p)f, g} = X(P)if, T(p) g) (4.5) 

o r  

Tip)* =xip) TiP). 

The equality (4.5) is similar to Lemma 13 of [AL], where the corresponding fact was 

proved for holomorphic forms without character in relation to the Petersson inner product 

(on the subspace of cusp forms). 

We introduce next 2 involutions: Kf(z)=f(z) is the complex conjugation, ggf(z)= 
f(-1/Nz).  It is easy to see that  they map (F0(N); x)-automorphic functions to them- 

selves because, in particular, we have 

0 Nc -1 0 -Nb ' 

HNFo(N)HNI=FoiN). Then we have obviously 

KA(Fo(N); X) = A(Fo(N); x)K, 

KT(p) = T(p)K, (4.6) 

Uiq)K=KU(q), 

KHN = HN K. 
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Less trivial facts are 

T* (p) = HNT(p)HN, 

U* (q) = HN U(q) HN, 

(4.7) 

(4.8) 

where T* (p) and U* (q) are the adjoint operators of T(p) and U(q) in 7/(F) respectively. 

From (4.5), (4.7) follows that  

HNT(p)=x(p)T(p)HN, p{N. (4.9) 

Then we can see that  all Hecke operators have only point spectrum in the space of 

all cusp forms 7-/o(F0(N); X), and we want to find the common basis of eigenfunctions for 

A(F0(N); X) and all Hecke operators T(p), U(q) in this space. And actually it is possible, 

because we consider primitive characters X, which make all cusp forms "new". We recall 

briefly the definition of old and new forms for F0(N) and X, generated by a Dirichlet 

character mod N. 

If x is mod M and v(z)eT-go(Fo(i); X) then v(dz)eT-lo(Fo(N); X) whenever dMIN. 
By definition ?-/~ X) is the subspace of 7/o(/~0(N); x) spanned by all forms v(dz), 
where v(z) is defined for F0(M) with character X mod M, M<N, dMIN and v is a 

common eigenfunction for all Hecke operators T(m) with ( m , M ) = l .  Let the space 

7-/o ~ew be the orthogonal complement, 

7-/o(Fo(N); X) = 7/~ (r'o (N); x)| X). 

From this definition it is clear that  there are no old forms for the pairs (Fo(N1); XN1), 

(Fo(4N2);XaN2) and (Fo(4N3);X4N3) we consider, because XN1, XaN2, X4N3 are primi- 

tive characters rood N1, 4N2, 4N3, respectively. The existence of the above-mentioned 

common basis of eigenfunctions follows from the following important theorem. 

THEOREM 4.1. Each exceptional Hecke operator U(q), qlN, is a unitary opera- 
tor in the space ?-/(Fo(N)), U(q)U*(q)=U~Uq=I, where I is the identity operator in 
7-/(Fo (N)). 

Proof. The proof is a transfer of Theorem 4 and Corollary 1 of [O] to our case of 

non-holomorphic forms with primitive character. The case q=2 is the simplest, because 

221N. We consider the more difficult case where q is a prime, qlN, q#l.  By (4.8) we 
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have to prove U(q)HNU(q)HN=I. We have 

z+bl ) 
ql E E f -(N/q)bz+l-(N/q)bb' U(q)HNU(q)HNf(z) = _ b mod q b' mod q 

( z+b' ) 
= 1_ E f -(N/q)bz+l-(N/q)bb' 

q b' mod q 
b=0 

+-1 E f( z+b' 
q \-(N/q)bz+l-(N/q)bb'] 

b' mod q 
b#0 

1 f (  z+~ 
= f ( Z ) + q  E E \-(N/q)bz+l-(N/q)bb']" 

b mod q b ~ mod q 
be0 

(4.10) 

We want to prove that the double sum on the right-hand side of (4.10) is equal to zero. 

For each pair b, b' mod q, br there exists a unique matrix depending on a I mod q, 

a /3) CFo(N), 
N 7 

such that  

( 1 b I ) = ( a  ~ ) (  1 a' ) 

-(N/q)b 1-(N/q)bb' N'y -N/q 1-(N/q)a' 

and ~=b mod q, ~_--1 mod N/q. This means tha t  X((~):Xq(5)XN/q((~)-~-)(.q(b). Here we 

use a notation for the Xq(~)-part of the character symbol (~-) which corresponds to the 

period q (see w 

Then we get that  the double sum considered is equal to 

1 E f (  Z-[-al / E X q ( b ) = 0 '  
q a'modq - ( N / q ) z + l - ( N / q ) z '  b m o d q  

and that  proves the first part of the theorem. The proof of the identity U~ Uq=I is 

similar. [] 

From Theorem 4.1 follows that  all operators U*(q) also commute with all Hecke 

operators and A(F0(N); X), and that  is the reason why there exists a common basis of 

eigenfunctions for all these operators in the space 7/o(F0(N); X)- In fact, it is possible to 

prove a much stronger result about the existence of the common basis of eigenfunetions, 

the so-called multiplicity-one theorem. Unitarity of U(q) does not follow from this the- 

orem, however. It is analogous to Theorem 3 of [AL] and to Theorem 3 of [Li]. This 
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theorem is about the following. We take first the common basis of all eigenfunctions 

vj (z) for all T(n), (n, N) = 1, and A(Fo(N); X) in the space 7to(Fo (N); X) of cusp forms. 

Let us introduce 
T'(n) = ~ iT(n) if x(n) = - 1 ,  (4.11) 

( T(n) if x(n) = 1. 

We can see then that  all T'(n) are self-adjoint operators (see (4.5)). 

Since vj is an eigenfunction of A(f '0(N);x),  Avj=Ajvj, A j = s j ( 1 - s j ) ,  we have for 

j = l , 2 ,  ..., 

Vj (Z): E ~j (n) x/Y Ksj-1/2 (271-1n1 y) e 2~inx (4.12) 
n r  

(similarly to (2.6)) with Qj(n)CC. We have also 

T(n)vj(z) = Aj(n)vj(z), (n ,N)  = 1. (4.13) 

From (4.1), (4.12), (4.13) follows that  if ej(1)=0, then oj(n)=O for all n, (n, N ) = I .  

If Oj(1)#0 we obtain for all n, ( n , N ) = l ,  

At(n ) = oj(n) (4.14) 
0j(1)" 

Before talking about the proof of this theorem we make the following remark. 

There is also the important involution 

J: z -+ -2,  z E H. 

This involution acts on the space of all continuous (F0(N); x)-automorphic functions 

and splits this space into the sum of subspaces of even and odd functions given by 

f ( J z )= f ( z )  or f ( J z ) = - f ( z ) .  This J commutes with A(F0(N); X) and with all Hecke 

operators. The conditions for the eigenfunction vj(z) of A(I~0(N); X) in (4.12) to be even 

or odd are respectively 

= = - o j ( n ) .  (4.15) 

That means, in particular, that  the Fourier coefficients oj(n) with negative numbers n 

are determined in both cases by Oj (n) with positive numbers n. We have also 

HNJ= JHN, K J =  JK. (4.16) 

Let us consider the case Oj(1)=0 first. Then we will show that  the whole function 

vj (z) is zero. From that  follows that  only the eigenvalues Aj (n) for (n, N ) =  1 determine 
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completely the function vj (z) up to multiplication by a constant, of course. In that  case 

vj (z) has to be an eigenfunction of all U(q), U* (q), q IN. And that  is the multiplicity-one 

theorem in our case. 

Very briefly the idea of the proof of the multiplicity-one theorem is the following. 

We consider an eigenfunction (4.12) with (4.13), and we assume that  ~j(1)=0, ~j(n)=0,  

( n , N ) = l .  Then we see that  the series (4.12) can be written as a sum of terms 

vj (z) = ~ Wjq (z). (4.17) 
ql N 

Each wjq is associated with a subgroup of F0(N) with character X and level q, where the 

numbers q are mutually prime. Then, since the whole sum (4.17) belongs to (F0(N); X) it 

follows that  each w3qE(Po(N); X). The last step of the proof is to see from the structure 

of wyq as a Fourier series similar to (4.12) that  each wjq belongs to some overgroup of 

Fo(N) with trivial extension of X. Since the character X is primitive it is only possible 

if each wjq(z)=O. Now we have for any non-trivial vy(z) from (4.12) with (4.13) that  

~j(1) r  Let us introduce the normalization 

~oj(1) = 1 (4.18) 

for all fj(z). This normalization is different from the normalization in Hilbert space 

theory 

IIv  II = 1, (4.19) 

but it is more natural when we are talking about Heeke theory. From the previous 

argument follows that  vj(z) from (4.12) with (4.13), (4.18) is completely determined. 

In other words, for the eigenvalues {Aj,Aj(n)}, (n ,N)=l ,  (4.14), there is only one 

eigenfunction vj(z). This is the idea of the proof of the multiplicity-one theorem. We 

formulate this theorem as follows. 

THEOREM 4.2. (1) There exists a unique common basis of eigenfunctions for all 
operators A(F0(N); X), T(n), T*(n), n>~ 1, in the space of cusp forms 7-/o(F0(N); X). 

(2) Each eigenfunction vj(z) from (4.12) of this basis can be taken with normaliza- 
tion (4.18) and is uniquely determined by the eigenvalues Aj, Aj(n), (n, N ) = I ,  (4.14). 

(3) We have also (see (4.3)) 

V(q)v j ( z )  = a ( q ) v j ( z ) ,  = ej(q)v (z) 

and 

(4) oj(n)oj(m)=~al(m,n) x(d)oj(mn/d2), in particular oj(q)oj(n)=oj(qn), qlN, 

Oj(pk+X)=-pd(pk)Od(P)-X(p)od(pa-1), p{N,  k~>0, 

where by definition Qj(p-1)---0, p,q are primes. 

On the basis of Theorems 4.1 and 4.2 we can prove 
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THEOREM 4.3. For any qlN we have ~j (q )=•  j - - l ,  2, ..., see (3) of Theorem 4.2. 

Proof. We consider the involution l INK (see (4.6)). We have 

T(p) ( HNK) vj = X(p)K HN T(p)vj = X(P) ~,j (P) ( HN K) vj -- Ay (p)( HN K) vj. 

From Theorem 4.2 follows then that  H y K v j = u j v j  with ujEC. Since (HNK)2=I we 

have uj =•  So we obtain 

HN Kvj  = ivy  (4.20) 

for any j = l ,  2, .... Then from Theorem 4.1 follows that  

is equivalent to 

HNU(q)HNU(q) = I  

(HNK)U(q)(HNK)U(q) = K - K  = I (see (4.6)). (4.21) 

Applying (4.21) to the function vj(z) and using (4.20), we obtain the claim of the 

theorem, A~ (q) --Qj (q)2__ 1. [] 

Remark 4.4. The Selberg small eigenvalue conjecture for A(Fo(N); X) says that  all 

eigenvalues are embedded in the continuous spectrum [�88 oc). It is not difficult to see 

that  for q]N the continuous spectrum of U(q) is the whole unit circle. Since the only 

eigenvalues are • the analogue of Selberg's small eigenvalue conjecture holds true for 

the exceptional Hecke operator. 

5. Non-vanishing of  Hecke L-functions 

For each function vj(z) from (4.12) with (4.13), (4.18), we define the Dirichlet series 

pj(n) (5.1) L(s; vj) = 

From studying the Rankin-Selberg convolution we can see that  the series (5.1) is 

al~solutely convergent for Re s > 1. 

From Theorems 4.2 and 4.3 also follows 

THEOREM 5.1. Let L(s;vj) be the series (5.1) and let the function vj(z) be as in 

Theorem 4.2. Then for Re s>  1 we have an Euler product representation for L(s; vj), 

n(s; vj) = l ~  (1 -  pj (p)p-S + X(p)p-2~)-l. (5.2) 
p 

The product is taken over all primes. 
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We can also write (5.2) in the form 

L(s;v#)=Yi(1-~#(q)q-S) -1 1-I(1-Qj(p)p-STx(p)p-2S) -1 (5.3) 
q[N p~N 

since x(q)=0,  qlN. From Theorem 4.3 we know that  oj(q)=+l, qlN, j = 1 , 2 , 3 ,  .... 

We derive now the functional equation for the pair of Dirichlet series 

L(s; vj) = 
Qj(n) 

U s 

.=1 (5.4) 

L(8;Oj)-: ~ oJ(n) R e s >  1. 
ns  

n ~ l  

We only consider the case of odd eigenfunctions since that  is important  for this paper. 

We have together with (4.12) by definition 

~j(z) = ~ ~(~)v~Ks~_l /~(2~l~ ly)~  ~ ,  (5.5) 
nr 

If s j - � 8 9  or s#e( �89 then Ksj_~/2(2~rlnly) is a real-valued function, and for 

odd vj we have �9 We will write vj(z)=vj(x,y), where z=x+iy. We have 

vj(-x ,  y)=-vj(x,  y). The action of the involutions HNK from (4.20) can be written as 

~j (~, v) = +vj (~, y), 
x y (5.6) 

U ~  v - -  N(x2+y2) ' N(x2+y2)" 

We apply the partial derivative a/Ox and obtain 

1 0 0 j  _jrOVj 

Ny 2 0 u  ~=o = Ox x=O" 

This is equivalent to 

• = :t:N3/2y 3 oj(n)nKsj_,/:(27rny) = E Qj(n)nKsj_l/2(2~n/Ny). (5.7) 
n=l n=l 

We multiply the left-hand side of (5.7) by 4~rNS/2-a/2y s-a and integrate it from 0 

to e~ in y. We obtain 

/j 1 1 3 4~r~/~-3/2Y~-3B(y)dy=Tr-SmS/2P(�89 (5.8) 

= a(s; O .  
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That  is because 

fo ~Y'~Ks~_l/2(y) d y =  2 s-1 �88 r ( � 8 9  + ~). F ( �89  

We can now write the integral obtained as a sum of 2 integrals: 

47r s/2-3/2 f __ B(y)y ~-a dy = 47rm ~/2-3/2 + 
Q 

J0 / v ~  

In the first integral we use (5.7) for B(y),  and then map y-+l/Ny.  

Then we obtain that (5.9) is equal to 

47r N 3/2 yS oy(n)nKsj_l/2(27~ny) dy 
k, J1/v/~ n = l  

~ yl-S ~-~ nK~j-1/2 ) •  (1-~)/2 Oj (n) (2~ny) dy 
/'/N n=l 

= C(s; ~j) •  - s ;  v#). 

It is clear that  C(s; vj), C(s; ~#) are entire functions of s. Then we have 

(5.9) 

(5.10) 

ft(s; ~#) = C(s; ~?#)4-C(1-s; vj). (5.11) 

The analogous calculation shows that 

a(s; vj) = C(s; v j ) + c ( 1 - s ;  ~j), 

a ( 1 -  s; vj) = c ( 1 - s ;  vj)+C(s; 9#), 

and we finally obtain 

-t-a(1-s;vj) = ~(s; ~)j). (5.12) 

We have proved 

THEOREM 5.2. The Dirichlet series L(s;vj), which is defined in (5.1) for any odd 
eigenfunction vj(z) given by (4.12)with (4.13), (4.18), has an analytic continuation to 
all sEC. The same property has the Dirichlet series L(s;Oj) which is defined in (5.4). 

Both series are connected by (5.12) with (5.8), where the functions ~t(s; vj) and ~(s;~)j) 

are entire functions of s E C. 

We shall prove that the functions L(s; vj) and L(s; i~j) are regular and non-vanishing 

on the boundary of the critical strip. 
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We start with the Rankin-Selberg convolution. For each eigenfunction vj(z) from 

(4.12) we define the series 

I~ (5.13/ 
n s 

n = l  

which is absolutely convergent for Re s > 1. 

For Re s > 1 we consider the Selberg integral 

where 

JFo Ivy(z)12E~(z; F0(N); 1) dit(z) =A(s), 8; 
(g) 

E~(z;s)=E~(z;s;Fo(N);1)= E y~(~/z). 
-rCr~\l~o(g) 

Using the unfolding of the Eisenstein series we obtain 

A(s) = fo~y ~-1 ~ [oj(n)[2K~j(27rlnly) dy 
riCO 

r2(�89189189 ~ ]~ 
4~sr(s)  n s 

It is weU known that  E(z, s; F0(N); 1) has analytic continuation to the whole s-plane, 

1 it has only a simple pole at s = l  with residue equal to #(F0(N))  -1 (inverse and at Re s > 

it-area of the fundamental domain of F0(N)).  From this follows that  the Rankin-Selberg 
1 convolution (5.13) is a regular function in Re s>  7 except for a simple pole at s = l .  

We want to see now the Euler product for the Rankin-Selberg convolution (5.13). 

The method is due to Rankin (see [R]). The main difference from Rankin's case is that  our 

coefficients Qj may be complex numbers, and that  we have also exceptional primes q[N. 
First consider the main case (n, N)=I. It follows from (4.5) that  

oj(n)=x(n)~j(n), j = l , 2 , . . . ,  (5.14) 

and for x ( n ) = - l ,  

x ( n ) = •  we have 

oj(n) is purely imaginary (it can not be zero). 

[Oj (n)[2 = x(n) Off(n). 

From Theorem 4.2 follows 

o~ (pn) = ( oj(p) Oj(P'~- I ) -- X(P) Oj(;n-2) ):, 

(X(P) Qj (p~-a) )2 = (-~oj (p~-l ) + Oj (P) Qj (p~-2) )2. 

In both the cases 

(5.15) 

(5.16) 



S P E C T R A L  T H E O R Y  O F  L A P L A C I A N S  183 

Then multiplying the second line of (5.16) by X(P) and taking the difference, we obtain 

2 n 2 2 n - - 1  2 n - - 1  oj(p )-ej(p)ej(p )+x(p)oj(p ) 
+ X ( p )  2 2 ~ - 2  2 ~ - 2  2 ~ - a  Qj(P)Oj(P )-Pj(P )-X(P)Qj(P ) = 0 .  

(5.17) 

Multiplying now (5.17) by X(p ~) and using (5.15), we obtain 

Ioj(pn)12-1oj(pn-~)121o~(p)12 +l~j(pn-~)12 
+ Ioj (p)  l 2 IOj(pn-2)l 2 -IOj(p n-2) 12 -[0j (p~-a)12 = 0. 

(5.1s) 

In the case qlN we have from Theorems 4.2, 4.3 that 

I~ j (q~) l  = 1, n = 1, 2 , . . . .  (5.19) 

Then applying Theorem 4.2 again we get 

( _ _  ) ( 1 1 )  I~ - I I  1-~ I~ ~-I~ ~ I~ +'" H 1+~-+~-;+... 
n = l  p{N qlN 

l+p-2S 
= I I  (1 -q-28) -1"  H l_lpj(p)12p-2S+p-2S+lOy(pll2p-4~_p-4S_p-6S 

qlN pen 

= H (  1 _ q-2S)-t. H (1 +p-2S)(1 _p-2S)-l(1 + (2 - f0 j  (P)12)P -2s +p-4S) -  ] 
ql N p{N 

= H (  ] _ q-2~)-1. H (1 _p-4S)(1-p-~-s)-2 (1 + (2- IPj  (P)12)P -2~ q _ p - - 4 s ) - -  1 

q]N p~N 

=~(2s)L(2s;~)L-l(4s;~) H(l+(2-1Oj(P)12)p-2~+p-4~) -1, (5.20) 
p{N 

where L(s; ~) is the Dirichlet L-series with principal character mod N: 

L(s; ~) = H ( 1  _~(p)p-S)-i = ~(8) II(1--p--S).  
P p[N 

The products in (5.20) are taken over all primes p~N, qlN. For p~N we now introduce 

new functions a j  (p),/3j (p), which are important to define symmetric power L-series, by 

'~(p) +ZJ (p) = a (p), 
(5.21) 

We have 

(-j (p)+ 9j (p))2 = 0~ (p) = -~ (p)+ 2 x(p) + Zy (p) 
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and 
x(p)a2(p) + x(pl~2(p) = ley(p)12- 2, 

2 2 o~j(p)~j (p) = 1. 

Applying (5.22) to (5.20) we obtain by the definition 

(5.22) 

H (1+(2-Iej(p)12)p -2s +p-4~)-1 
pin 

:ii(i X(P)a2(P)Y ' (1  
) 

= L2 (2s; vj). 

p2S /] 
(5.23) 

Combining with (5.20) we finally obtain 

L(s; ~) L2(s; vj)r L(s; vj • ~j) = L(2s; ~) 

where L(s; vj • ~j) is the Rankin-Selberg convolution (5.13). 
We can also write using (5.21) for R e s > l  

(5.24) 

L(s;vj) = H(l:J=q-S)-I H (10~-sP)) - l (1  ~J(P)ps ) - 1  
qIN p~N 

L(s; ~j)= H ( I  :t:q-~)-I H ( 1 -  ~ p) )-1 (1-- ~J (P) )-1. 
q]N p{N pS 

(5.25) 

For the proof of the next theorem we will make use of the following general criterion 
proved in [MM, Theorem 1.2]. 

LEMMA 5.3. Let f(s) be a function satisfying: 

(1) f is holomorphic and f (s)#O in {siRe s = a >  1}, 
(2) f is holomorphic on the line a = l  except for a pole of order e ~ l  at s= l ,  
(3) log f (s)  can be written as a Dirichlet series 

with bn~O for a>l .  

and 

U s n=l 

1 Then if f has a zero on the line a = l ,  the order of the zero is bounded by ~e. 

We now want to prove 

THEOREM 5.4. L(s;vj) and L(s;Oj) from (5.4) are regular for s=l+i t ,  s=it, t c R ,  

L( l+i t ;v j )#O,  L(i t;vj)#O, L( l+i t ;~j)~O,  L(it;Oj)#O, j = 1 , 2 , . . . .  (5.26) 
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Proof. Clearly, (5.26) is analogous to the prime number theorem, ~ ( l + i t ) r  for 

the Riemann zeta-function. This kind of property for different zeta-functions is very 

important in number theory (see, for example, [JS], [MM]). 

From the functional equation (5.12) follows that  it is enough to prove the inequalities 

L(l+i t ;v j )~O,  L(l+it; �9 (5.27) 

because we know all singular points of the Euler F-function from (5.12). 

Consider the product 

f(s) = L(s; vj • Oj)L(2s; ~)L(s; vj)i(s;  ~j) I I (1-q-S)(1-~j (q)q-8)(1-~j (q)q-S) .  
qlN 

Let R e s > l .  Then from (5.23), (5.24), (5.25) it follows that  

log f(s) = - E {2 log(1 -p -S )  + l o g ( l -  X(P)a~ (p)p-S) + l o g ( l -  X(P)~ (P)P-~) 
peN 

+log(1 -cej (p) p-~ ) + log(1 - ~3j (p) p -~) (5.28) 

+log(X-Sj(p)p-~)+log(1-~j(p)p-S) }. 

For [x[ <1 we have log ( i -x )= -En~  xn/n. Using this we continue (5.28) to 

O O  

log f ( s )  = 
p~N n=l  

(3<3 

= E E an,p (5.29) 
p{N n = l  rtpnS " 

We will show now that  an,p>~O. 
We consider 2 cases: X(p)=l ,  X ( p ) = - l .  In the first case 

an,p = 2+2a~(p)+2/3y(p)+a~n(p)+/3~n(p) = (l+a~(p))2+(l+/3y(p)) ~ 0, (5.30) 

because in that  case aj(p) , /3j  (p) are real numbers. In the second case we have that  

aj(p)=i5j(p),/3j(p)=i~j(p), and 5j(p),/3j(p) are real numbers. We have 

a 2 ~/2n -2n ~n i n 1 n 1 - n  i n 1 n 1 n,p= ~- j -~-/~j -~- j ( )  ( ( - - )  ~- ) - ~ / ~ ( )  ( ( - - )  -q- ), (5.31) 

and this is real and ~>0 if n = 2 m - 1 ,  m = l , 2 , . . . .  For n = 2 m ,  m = l , 2 , . . . ,  we have 

an,;= 

= (1+(--1)m~2m)2+(1+(--1)m~2m)2 ~ O, 
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and we have proved that  a,~,p>~O for all p{N, n = l ,  2, .... 

Let us assume first that  L(s; vj)=0 at s = l .  This means also that  L(s; 9 j )=0  at s=l. 
Since L(s; vj • ~)j) has only a simple pole at s = 1, we see that  the function f(s) has a zero 

at s = l .  On the other hand, since log f ( s )  has the property (3), l o g f ( s ) > 0  for s > l ,  so 

f ( s ) > l  for s > l ,  a contradiction. So we have L(1;vj)#O, L(1;~3j)#0. 

Suppose now that  L(1 +it; v j ) =  0 for some t # 0. Then f(s) has a zero of order >/1 on 

the line R e s = l ,  s # l ,  since L(s;fJj) and L(s;vjx�9 are regular at s=l+it. Also, f(s) 
has a pole of order 1 at s = l ,  since L(s;vjxgj) has a simple pole at s = l  and L(1;vj)#O, 
L(1; �9  This is in contradiction with Lemma 5.3, and Theorem 5.4 is proved. Vq 

6. T h e  f o r m  w(z )  a n d  perturbation of A ( F o ( N ) ;  X) by characters 

Let w(z) be a holomorphic modular form of weight 2 which belongs to F0(N). Thus 

= (cz  

"~=(: bd) eFo(N). 

It is well known that  the integral 

[ . ' r  z o 

X~(7)=exp27riaRe/ w(t)dt, "~EFo(N), (6.1) 
4 Z 0 

a C R ,  zEH, defines a family of unitary characters for the group F0(N) which is inde- 

pendent of the choice of the point Zo. We consider the family of self-adjoint operators 

A(F0(N); X'X~), as we defined in w by the Laplacian acting on functions g(z) satisfying 

9(7z) = 7e o(N). (6.2) 

We consider a as a small parameter,  la]<r with E>0. The domain of definition 

D(A(Fo(N); X'X~)) is a dense subspace of L2(F; d#), varying with a. We consider then 

the operator A~=A(Fo(N); X'X~) as a perturbed Ao=A(Fo(N);x), since the character 

(6.1) becomes trivial when a = 0 .  

In order to apply perturbation theory we have to bring all the operators As to the 

domain of definition of A0. Then we have to choose the form w which makes the pertur- 

bation regular, and this is very important  if we want to get information on eigenvalues 

and eigenfunction. On the other hand, it is very important  to take as w(z) the old holo- 

morphic Eisenstein series, coming from the holomorphic Eisenstein series E2(z)=P(z) 
which belongs to the modular group. The last condition is crucial for the evaluation of 

the Phillips-Sarnak integral and for proving that  it is not zero (see w We will show 

that  there exists a form w(z) which satisfies these 2 conditions, for exactly the 2 cases (2) 
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and (3) from Theorem 1.1: (2) Fo(4N2), N2 a square-free positive integer, N2--3 rood 4, 

and its arithmetical character X= (4 ~_N2), (3) F0(4N3), N3 a square-free positive integer, 

N 3 - 2  mod 4, and its arithmetical character X= (4.N3). In these 2 cases the character X 

is always singular, since there exist both open and closed cusps. We construct now this 

perturbation, and then we will find the appropriate form w(z). 
For a function f, f(~/z)=x(v)f(z), ~fEFo(N), we define 

// 9(z) = f(z) exp 27ria Re w(t) dt = f(z)ft(z, a). (6.3) 
o 

It is not difficult to see that  g(z) satisfies the condition (6.2). Applying the negative 

Laplacian 
02 

- A  = -4y  20z02 (6.4) 

to the function g(z), we obtain that  the operator A(Fo(N); X'X~) is unitarily equivalent 

to the operator 

L(~) = - A + c ~ M + ~ 2 N ,  (6.5) 

where 
0 O )  . 2 f  0 _ 0"~ 

M = - 4 ~ i y  2 wl-~x-W2~y, = - 4 m y  ~W~z+W-~z ) ,  (6.6) 

N = 4~2y 2 ]w(z)1 2 = 4~2y 2 (w21 + ~ )  

and w=wl+iw2, ~=a~l-iw2. The domain of definition D(L(a))  equals 12(z, a ) - ID(A~) ,  

and 

L(c~) = •( . ,  a ) - ' A ~ ( - ,  a).  (6.7) 

Note that  M maps odd functions to even and even to odd. Recall that  functions 

satisfying f ( - x + i y ) = - f ( x + i y )  are odd and functions satisfying f ( - x+iy )=f (x+iy )  
are even by definition. Note also that  a function f ,  satisfying f(~/z)=X(7)f(z), 7E Fo (N), 
with our arithmetical character X, is allowed to be odd or even. It is also true for the 

trivial character. It is not difficult to see also that  the differential operators M, N map 

(F0(N), X.X~)-automorphic functions to (F0(N), X-X~)-automorphic functions. 

We will determine now the form w(z). We start with constructing the holomorphic 

Eisenstein series of weight 2 for F0(N) without character, using non-holomorphic Eisen- 

stein series of weight zero. This method goes back to gecke (see also [Sch, p. 15]). We 

consider the series (2.1) for F=F0(N) ,  X=I .  Then we define 

Gg(z;s;F;1)=2i ff---~Eg(z;s;F;1)=(O+i O--~Eg(z;s;F;1), (6.8) 
\ Oy Ox ] 

l<~g~h, where h is the number of pairwise inequivalent cusps of F.  
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(The function E~(z,. ) depends also on 2, the complex-conjugate variable, since it 

is not a z-holomorphic function, so we have to write Eg(z,. )=Eg(z, 2;. ) or Eg(x,y;. ), 
z=x+iy ,  z = x - i y ,  O/Ox=O/Oz+O/O~, O/Oy=iO/Oz-O/02.) It is well known that  each 

of the Eg(z; s;F; 1) has a simple pole at s = l  with residue constant, independent of g. 

This means that  Gg(z; s)=Gg(z; s; F; 1) is regular at s = l .  We set Gg,2(z)=Gg(z, 1). It 

is clear then that  Gv,2(z) transforms as a modular form of weight 2, 

(a bd) (6.9) Gg,2(~z) = (z+d)2Gg,2(z) for any ~/EF, 7 = c " 

But Gg,2(z) is not a holomorphic form. Let us denote cz+d by J(7; z). 

From (2.6) follows the Fourier decomposition 

Gg,2(gzz) j -  2(g~; z) = ~ - - -  2iC -4re E v ~  ~Zn (1 ;  F; 1)e 2~i'~, (6.10) 
n = l  

where Res~=l E~(z; s)=C, K1/2(y)= v/~/2y e -y. 

Let nl , . . . ,  nh be integers with the condition 

h 

E n a = 0 .  (6.11) 

Then we define 
h 

E n~G~,2(z) = G(z; nl,..., nh). (6.12) 
~ 1  

From (6.10) follows that  G(z; nl, ..., nh) is a holomorphic modular form of weight 2 for F. 

Then it is not difficult to see that  all periods 

jfz ~ z ~  G(t, hi,..., nh) dt 
o 

(6.13) 

are real, ~'EF, zoEH. 
We construct now our form w(z) as one of these functions G(z; nl, ..., nh). Let us go 

back to Theorem 1.1. We consider there the last 2 cases. In case (2) we had F=Fo(4N2),  

N2 a square-free positive integer and N 2 - 3  rood 4. For our arithmetical character (4_~_N~) 

we have open cusps zd, diN2, d > 0  and d=4d2, d2]N2, d2>0. We have the closed cusps 

Zd, d=2dl, dl[N2, dl>0.  The total number of all closed cusps is 

(6.14) 
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where d(. ) is the divisor function. The total number of open cusps is 

(6.15) 

and we certainly have h=k+r=3d(N2)=d(4N2). We now define the form w(z) by 

(,J(Z) : E ~'~2dlG2dl'2(Z)' 
dl[N2 
dl>0 

(6.16) 

where each of the n2d ~ is equal to +1 with the only condition 

E ?'t2d t ~ O. 

diIN2 
dl>O 

(6.17) 

From (6.10) follows that  w(z) is exponentially small in all open cusps, and it is like 

j2(gz, z) in each closed cusp/3=2dl .  

In analogy to this we consider case (3) of Theorem 1.1. We have r=P0(4Na), N3 a 

square-free positive integer, N a - 2  mod 4 and X=(4~-Na). The open cusps are Zd, din, 
d > 0  (N3=2n)  and d=Sd3, d3[n, d3>0. The closed cusps are Zd, d=2dl, dll n, dx>0 and 

d=4d2, d2[n, d2>0. We have 

(a)) 

h=k+r=4d(1N3) =d(4N3), 

(6.18) 

dl ]N3/2 d2 ]N3/2 
dl >0 d2 >0 

where each of n2dl, n4d~ is equal to -kl with the condition 

(6.19) 

E n2dl-I- E n4d2=O" 
dl]N3/2 d2 [N3/2 

d l>0  d2)~0 

(6.2o) 

From (6.20) again follows that  w(z) is exponentially small in all open cusps and it is like 

j2(g~; z) in each closed cusp ~=2 d l ,  ~=4d2. 
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Let us calculate now the parabolic main periods of w(z) in both  the cases (6.16), 

(6.19). We consider (6.16) first. Let Sd, be a parabolic generator of case (2), F0(4N2) 

(one of (1.9), (1.10) or (1.11)). We have 

Sd, ZO f g  a-~I Sa, zo 
w(z) dz = ]_~  W(gd, t) dt 

j2 (gd' ; t ) '  
a z 0 gd '  Zo 

(6.21) 

where 

9d, OO = Zd,, 9~,,1Sd,gd, Z = Sooz = z + l .  (6.22) 

The r ight-hand side of (6.21) is equal to 

rSooto 
f gd'ISd'ge't~ dt - Jto w(gd, t) dt 

Jto w(gd't) j2(gd,;t ) j2(gd,;t ) 

fS~to = dt 

dllN2 
d1>O 

(6.23) 

We apply formula (6.10) and we finally obtain 

jfzS•'zo { 1, a = ~ ,  
o w(z) d z =  E n2dl~(2d~)d', 5 ~ =  

d l > O  

(6.24) 

This is zero if z d, is any open cusp, since the sum in (6.24) is taken over closed cusps 

only. And if Zd, is one of the closed cusps, then (6.24) is equal to rid, = •  

The analogous calculation shows in case (3), Fo(4N3), tha t  the w(z) from (6.19) has 

the main parabolic periods equal to 

~ S~,zo ]" 0 if Zd, is an open cusp for (4..~Na), 
o W(Z) dz = I (4N3) ,  nd, if Zd, is a closed cusp for - 7 -  

(6.25) 

X (4N2) and "7=S~, nd,=+l .  Thus in case (2), Fo(4N2) with = _ _  

fTzo f'TZo 
X ~ ( 7 ) = e x p 2 1 r i a R e ]  w(t)dt=exp2~ria ]zo w(t)dt,  

J Z 0 

we obtain 

(4N ) 
1 if zd, is an open cusp for --:-  ' (6.26) 

X(Sd,)X~(Sd,) = e2~i~n~,_~ ~ = e~i(2~,~,_l ) if Zd, is a closed cusp for (4 ~N2), 
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X (4Nz) and 7 : S ~ ,  ha, =+1 .  The same result is valid in case (3), Fo(4Na) with = -7-  

f ~ / z o  fTzo 
X~(~') = e x p 2 ~ r i a R e /  w(t)dt=exp27ri(~/ w(t)dt. 

�9 ~, z 0 ,] z o 

We have 

1 if Zd, is open for ( ~ ) ,  

~ ( S d ' ) X ~  ~" e 2 ~ i ~  ----e =i(2~nd'-l) if Zd '  is closed for (4Ns),__7._ 
(6.27) 

rid,=• We obtain in both cases that  for c~C(-�89 �89 the character X'X~ relative to the 

group F has the same degree of singularity and keeps the same cusps open and closed. 

For F0(4N2) and ( - ~ )  it is given by (6.14), and for F0(nN3) and (4_~N3) by (6.18). This 

means that  the perturbation (6.6) is regular for the constructed forms w(z). 
We now consider the case F0(4N2), N2=plp2 ...Pk. 
We want to get an expression for the form w(z) of (6.6) as 

= P(dz)   (6.28) 
d14N2 

d>O 

with real coefficients O~d, and we will prove that  there exists a set of integers n2d l=+ l  

satisfying (6.17) such that  the coefficient c~1 which corresponds to d = l  is not zero, 

a 1 r  (6.29) 

Here P(z) is the holomorphic Eisenstein series of weight 2 for the modular group Fo(1). 

We recall 
oo 

P(z) = E2(z) = 1-24  E cr(n)e2'~inz" (6.30) 
n = l  

It is not quite a modular form of weight 2. We have the transformation properties 

P(aZ+b~=(cz+d)2p(z)-6-~ic(cz+d)'\cz+d] 7r (ac ~ )  EFo(1). (6.31) 

In particular, 
6i P(-1/z) =z2P(z)---z,  
7r (6.32) 

P ( z + l )  = P(z). 

We consider (6.28) as a system of linear equations with unknown C~d, using well-known 

asymptotics of w(z) and P(z) at cusps of F0(4N~), the fundamental domain for F0(4N~). 
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When we defined the non-holomorphic Eisenstein series (2.1) we introduced the 

elements gj. We now parametrize these elements by the divisors d14N2, and we will 

consider all inequivalent cusps of F0(4N2), see (1.8), (1.9), (1.10), (1.11). We have 

gd S~  g~- 1 = Sd, 

(, o) 
~ d =  d 1 ] \  0 v ~  -~  = d v ~  v ~  -~  " 

(6.33) 

As a linear fractional transformation, gd z =md Z/(dmd z + 1), it has integer coefficients. 

To calculate the asymptotics of the right-hand side of (6.28) at the cusps lid' we have 

to find the asymptotics of the functions 

= p (  dmd, z 
P(dgd, Z) z --+ c~, (6.34) \ d'mxz+l / '  

for all positive divisors d 14N2, d' 14N2. We set md, Z=Z' and consider 

dz' ) / dlz" "~ 
P 

where 
d d' 

d l -  (d,d')' d2- ()'d,d'~' z" (d,d') ' ' = z = (d,d)rod, Z, 

with (d, d') the greatest common divisor of d, d'. The matrix 

dl 0) 
d2 1 

does not belong to F0(1), so we can not directly apply formula (6.31), but since we have 

(dl, d2 )= l  we can make the following transformation. We define 

g = ( ~  /3) E PSL(2, R),  

( dlz" ) / - 1  dlZ" "~ 
P \ d 2 ~ l  =P~g og~) ,  

( dlz" )+/3 
dlz" ak.d2~--+ l (adl+/3d2)z" +/3 

9 d2z"+1- "7\~)+5( dlZ" - (~dl+6d2)z"+~" 

(6.35) 

We now choose a,/3, % 5 by adl+/3d2 =1, "ydl+6d2 =0. 
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For example, 7 = - d 2 ,  ~=dl .  Since (d l ,d2)= l  there exist integers a,/3 with these 

conditions. This means that  gESL(2, Z). We have 

dl Z '1 z" + fl _ ~, 
g d2 z"+~l - d~- 

and we apply (6.31) to the function 

o 2 o 6 i  o 
p ( g - l ~ )  _- p = (d2z+ct) P ( z ) -  -~d2(d2z+o O. 

k d 2 z + a /  
(6.36) 

We have finally from (6.34), (6.35), (6.36) and (6.30) 

(d2~+c~)2 = (d2(z~_@+r = \ ~ ] : (d2zP '+l~2 ~(d2(d,d,)rnd, Z+l) 2 

1 (d,md, Z+l )2_  (d,d')  2 = d~ d 2 (d'md'z+l)2" 

(6.37) 

This means that from (6.32), (6.37) we get 

z-~o~lim (d'mg, z+l)-2P(dgd, z) = (d,d2d')2 (6.38) 

That  gives the desired asymptotics of the right-hand side of (6.28). 

From (6.10), (6.16) we can see that 

lim Gd,2(gd'Z) (d'v"m-~ z + v~m~ -1)-2 = 5rid', 
Z ---> O0 

which means that  

lim Gd,2(gd, Z)(d'md, Z+ l) - 2 -  (~dd' . (6.39) 
z~oc rod, 

Combining with (6.16) we obtain the following system of linear equations, where dP[4N2: 

E /3d,,(d', d") 2 = E ~(2dl)d' n2dl 
m d, 

f q 4 N 2  d l [N2  

dt~>0 d l>0  

(6.40) 

where Ctd,,=/3d,,.(dlt) 2. From this system we have to determine the coefficients OZd,, and 

to see that there exists a form w(z) with 317~0. 

Before studying the system (6.40) we will define the analogous system for the case 

f'0(4N3). We have 

w(z) = E P(dz)o~d. (6.41) 
d l 4 N a  

d>0 
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Using the definition of w(z) in this case (see (6.19)), we obtain in analogy with (6.40) 

the system 

E Zd"(dt'dt')2: E (~(2d')d'n2dl§ Z ~(4d2)d'Tt4d2' (6.42) 
mdt rrtd~ d"14g 3 dllN3/2 d21N3/2 

d r' >0 dl >0 d2 )0 

where ad,, =fld"' (d") 2- 

In Appendix A we prove the following theorem about solution of the systems of 

equations (6.40) and (6.42). 

THEOREM 6.1. In both the cases Fo(4N2), X4n2 and F0(4N3), X4N3 there exist for~ns 
w(z) given by (6.16), (6.17) and (6.19), (6.20), with the properties that each of them is 

given by a formula (6.28) with rational coefficients ad, and the coefficient al is not zero. 

At the end of this paragraph we present some class of forms w(z) with explicit 

coefficients (~d. For these forms we can evaluate the Phillips-Sarnak integral (see w 

We have to satisfy 2 necessary conditions for the coefficients ad. Namely, (1) w(z) has 

to be a holomorphic form of weight 2 for our group Fo(N) with trivial character, and 

(2) it has to be small in all open cusps for the character X. We have w(z)=~dlN C~dP(dz), 

w(1/d')=O if 1/d' is an open cusp. Then we have 

= p ( d m d ,  z h = ( N z + l ) a p ( ~  ) (d,d') 2 6i d' 
P(dgd, z) \ N z + l ]  d 2 -~ d ( N z + l ) .  

The first condition becomes 

E ad ' l /d=O (6.43) 
diN 

since we have 

d' (d,d') 
d2(d2z'§ =d2" ( N z + l ) -  (d,d ')  d ( g z + l )  

(see notations for (6.35)). And the second condition is 

d ~  ad = Vd' = 0 if 1/d' is open. (6.44) 
diN 

We introduce now the notations d=2Z~ 1 ~k diN, where are different primes. �9 "" qk , qY 
Then/30----0, 1, 2 in the second case (see Theorem 1.1), and 13o=0, 1, 2, 3 in the third case. 

For other flj, j = l ,  ..., k, we have in both cases flj =0,  1. We denote 

O~d ---- OLflo/~1 ...f~k" 

We will now prove the theorem, considering the cases (2) and (3) separately. 
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THEOREM 6.2. Let W(Z)=~-~dINadP(dz), ad=aZo~l.../3 k. The following systems of 

coefficients a/3o.../3 k define a class of forms W(Z)=~dINadP(dz  ) which satisfy (6.43), 

(6.44), and therefore define regular character perturbations of A(F0(N);  X). For N=4Nu 

we have d=2/3~ l"''qk/3k, qj IN2 different primes. Then C~d=O~/3o/31...Zk , where 

= " " a k  q l  " " q k  ' C I = I '  

al/31...Zk = -5a0/31.../3k, (6.45) 

a2/3~ ...~k = 4ao/3~ .../3k, 

/3j = 0, 1, j = l , . . . , k .  

For N=8N3,  d=2/3~ k, 

(__ 1)/31+...+/3k C/31 s /3k OZo/31.../3k = 1 "'" k qk ~ e l : l ~  

al/3~.../3~ = - 7 a o f h  .../3k, (6.46) 

a2/3~.../3k = 14a0/31../3k, 

OL3/31..-/3k = --8OL0/31.../3k, 

where e2,..., ~k are any real numbers. 

Proof. Let N=4N2.  We have 

1 ( 1~/3~+...+/3ke/32 o/3k (6.47) ~ O:0/31.../3k = \ - -  ] 2 "'" Ck 

and if we sum (6.47) over all diN2 we are obviously get t ing zero, because of (-1)/31 

coming w i t h / 3 1 = 0  and /31=1 .  The  same is t rue  for the other  2 lines in (6.45). So the 

condit ion (6.43) is satisfied. We check now (6.44). We have 

2 1 1 
~ ... ~ OZ/30---/3k ~02min(/3'~ S),~2 m i n ( / 3 1 0  ~/1 '/3~) q2 min(/3k,/3~) 

-2/30 2/31 2/3k "'" k 
/3o=0/31=0 /3k=o 2 ql "'" qk 

1 1 (-1)/3~+'''+/3k ~-/31 r o2min(/31,/3~) 2min(/3~:,/3~) (6.48) 
= ~-, "'" ~ q~l...q/3k ~1 . . . .  k'~11 ""qk 

/31 = 0  /3k : 0  k 

x (1- ~ --5" Q2 rain(i,/3;) - ~ 6 "  22 mi,(2,/3;)) . 

Prom Theorem 1.1 follows tha t  ~/~=0 or/3D=2 for the open cusp Zd,. T hen  the last t e rm 

in parenthesis  of (6.48) is equal to zero in bo th  these cases. 

The  case N = 4 N 3  is dealt  with in the same way. For the last step we have the 

common multiple 

22 min(2,/3;) 8 . 22 min(3,/3;). (6.49) 1 - �88 min(l ' /3;) -~ 11~ �9 --  6~ 
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The open cusps in that  case correspond to ~ = 0  o r / ~ = 3 ,  and we obtain in that  case 

that  (6.49) is equal to zero. The theorem is proved. [] 

These forms w(z) are important  for our perturbation (6.5), (6.6), and precisely for 

these forms we will consider the Phillips-Sarnak conjecture. 

7. The  Phi l l ips -Sarnak integral 

In this section we study the Phillips-Sarnak integral, adapted to our perturbation (6.6). 

For any odd eigenfunction of Theorem 4.2 which corresponds to an embedded eigenvalue 

1 (actually, according to the Selberg eigenvalue conjecture, reduced to our case of ~ j>  

congruence character, all ,~j >/�88 we define the integral over the fundamental domain 

Fo(N) of F0(N). We use the notations of w (see the beginning of w The cusp 1/N is 

equivalent to ec. So we have Fo(N), containing co, and we define the Eisenstein series 

E~(z , s )=E~(z , s ; f 'o (N) ;x )= E Y~(~/z)x(~/)" (7.1) 
~ E F c c \ F  

The integral is 
P 

Ij (s) = lEo(N) (Mvj)(z) Er (z, s) d#(z). (7.2) 

THEOREM 7.1. (1) For any Heeke eigenfunction vj of A(Fo(N);x), given by The- 
orem 4.2, with eigenvalue )~j=sj(1 sj)=�88 2, and for any form w(z) from w the 
integral Ij(sj) is well defined. 

(2) Let vj be an odd eigenfunction of A(Fo(N); X), and let w(z) be a form given by 
Theorem 6.2 with real parameters r ( s l = l )  - Let c2,...,r and cmT~+l for 
m=l+l ,  ...,k. Then Ij(sj)7~O if sj=�89 does not belong to any of the sequences 

7r Ir 
sn=�89 with rn=nlog~, r n = n ~ ,  r e = l , . . . , / ,  n E Z .  

Proof. The proof contains 2 parts, the first being the calculation of the integral, and 

the second the evaluation of the Dirichlet series coming from vj and w. 

We take first R e s > l .  It is not difficult to see that  vj(z) is a function of exponen- 

tial decay in all parabolic cusps of Fo(N). This follows from the fact that  vj(z) is an 

eigenfunction of the Laplacian, which is (Fo(N); x)-automorphic. In open cusps zm it is 

a cusp form and it has Fourier decomposition 

vj(gmz) = ~ ~ ~m)(n)Ks~_l/2(27rlnly)s =~n~, 
riCO 

(7.3) 
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where gm is defined in (2.1). In closed cusps zz it has Fourier decomposition 

OO 

vj(glz)=v~ ~ e~l)(n)Ks,-1/2(27rln+1]Y) e2'~i(n+l/:)~. 

Then it is obvious that  

~j ( ,z)  = x(z) v~ (z), (Mvj ) ( ' y z )  = X ( 7 ) ( M v j ) ( z ) ,  

E~ (Z~; ~) = X(~) E~ (z, ~), 

X2('~)= 1, "~eFo(N). 

197 

(7.4) 

Ovj Ovj 
Vjx-- Ox' vjy= Oy" 

1/2Wl(x,y)vjx(x,y)d x ,1/2 fl/2 = ~lv j l_  1/2 - ]_  1/~1~(  x, ~)v~ (x, y) dx 
1/2 

(7.6) 

f 
l/2 

= - W l ~  ( x ,  y) vj ( x ,  y) dx 
J-1/2 

because w and vj are periodic in x with period 1. Similarly 

r /0 ySw2vjy dy = y~w2vl~-s y~-lw2vj dy- y~vjw2 dy 
JO 

(7.7) 

=-S f'o~y~-lw2vj dy- fo~Y~VjW2ydy. 

Also we have Fourier decompositions 

OO OO 

wl(x,y)= E ane-2~nYeos2~nx , w2(x,y)= E ane-2~nYsin27rnx. (7.8) 
n = l  n = l  

Then we have 

That  means that  the integral (7.2) is well defined, and we can unfold the Eisenstein 

series E ~  (z, s), obtaining 

fo~dYf 1/2 dx ( Mvj (z) ) yS, (7.5) b(s) = 7 J-1/2 

where y-2(Mvj)(z) =-4~i (~ lVjx-  ~2vjy) (see (6.6)), 
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Using (7.3)-(7.8) we obtain 

foe fl/2 
Ij(s)=47ri ]o yS dy ]-i12dx(~ L yS-l dy fll2 

(7.9) 
�9 f ~  _ f l / 2  

= - 4 m s  1o y~ 1 dy ]_ll2W2(x,y)vj(x,y)dx. 

Then we apply (4.12), (7.8) to (7.9). We obtain 

gas) =4~s y~-'/~ a.oj(~)r 
JO 

~=I (7.10) 

1 (Loet~-ll~e-tK~'-ll2(t)dt)D a~oj(n) 
=47rs(27rff+l/2~ = n s+1/2 " 

The standard integral in brackets is equal to 

v/-~. 2_s_1/2 C ( s + s j ) r ( s - s ~ + l ) ,  (7.11) 
r(s+l) 

and we finally obtain 

8 

b ( s )  = 2 ~ - ~ - ~  r(s+sj)r(s-sj+l)r(s+ 1) y~ anOj(n)ns+ll2. (7.12) 
n ~ l  

We have now s=�89 ~'~0, Sj=�89 Tjr (T, TjER). 
With these conditions the factor to the Dirichlet series in (7.12) is never equal to 

zero. So we have to study the Dirichlet series in more detail. 

We have W(Z)=EdbN adP(dz). We introduce ~(z)=-~w(z), b(n)=-l/24a~. The 

series we will study is 
b(~) a (~) 

Rj(s) = E Res  > 1. (7.13) n s + l / 2  
n ~ l  

We have then 
oo 

~(z) = Z " d  Z ~(~) e:''n~z (7.14) 
diN n = l  

We arrange the summation in (7.13) in the following way. We write 

r 0 r 1 r k r k + l  anrm n=Po Pl ""~k " t ' k+ l  " " t ' m  , 

where rj>>.O, O<.j<.m, re=O, 1, ..., and pjlN, O~j<~k, po=2. Then for diN we have d=  

ro rl...p~k, where rio=0, 1, 2 in the case N=4N2 and rio=0, 1, 2, 3 in the case N=4Na. P0 P~ 
For other primes rj=O, 1, l<~j<<.k, we have 

~(z) = E aro---~k E a(P;~ exp27riz(P~o~176 (7.15) 
r i o > . . . , r k  r~ 
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Using (7.t4), (7.15) we obtain 
! 

Trn b(P~~176 E to-no ,'k--nk, , ~k+~, ano...n,a(p o ) ~r(p k a(p~m). (7.16) �9 .. )a~pk+ t )... 
no,...,nk 

The prime means that the sum is taken over/Sj with the conditions r j - /3 j  >~0. 

We have from (7.16) and Theorem 4.2, setting 

~Zo+no ~Zk+nk ~k+~ l~ (7.17) ' n  = 1 3 o  " " / ' ) k  "/lk+l ""Pm, 

~ b(n)oj(n) _ 
ns+l/2 

n = l  no , . . . , nk  

oo lo ll Im to+no ~lk+f~k plk+l ply. I 
O~no...nk \ " cr(Po )ff(Pl )'"cr(pm ""t~'k " k + l " ' "  m /  Z 

Then we get 

For 03 we have 

p-(,+U2) Oj(pn)= H ~ ~J(P') pn+,_ l 
p:(N n = 0  p{N n = 0  pn(s+ l/2) p-- 1 

~- H E ~--i ~,pn(s--i/----'-'---~) pn(Sq-1/2) ]" 
p~N n=O 

1 03 = H ~ [p(1-  Qj (p)p-(~-!/2)+X(p)p-2(s-1/2))-i 

- ( 1 -  Oj (p)p-(S+U2) +X(p)p-a(~+U2))-I] 

= n (1 -X(p)p -2~) (X-o j (p )p  -(~-1/2) +X(p)p-Zs+l)) -1 
p~N 

• (1-Oj(p)p-(~+U2) +X(p)p-2~-z)-l.  

(7.20) 

(7.21) 

/_Zo+no _Ik+nk pZk+l p~)S+l/2 
n = l  \ P 0  " " P k  " k + l " "  

' ~ (7.18) ---- Z ~176 [ n _na.~s+l/2 
no ..... n~ ~Po~ u k  J 

q]Nn=O qn(s+l/2) n ~ o'(pn)Loj(pn) 
pen n = 0  pn(s+l/2) 

The right-hand side of (7.18) is the product of 3 factors 01,02, 03. We consider first 02 

and 0a. For 0z we have 

c~ cr(qn)o~(q) oo qn+l__l 0](q) 
0 2 - - - - H E  q n ( S + l / 2 ) - - H E  q_-------~'qn(S+l/2) 

q[N n = 0  q[N n = 0  (7.19) 
= II ( l_oj (q lq-~+l /2)- l ( l_oj (q)q-~- l /2)  -1. 

qlN 
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Then using Theorem 5.1 we obtain tha t  the product of 02 and 03 from (7.18) is equal to 

I I  [ I  = L-l(2s;  )r(s+�89 1; vA �9 (7.22) 
qlN p { g  

From Theorem 5.4 follows that  (7.22) is not zero for any s=�89 rCR. In order 

to prove the theorem we have to s tudy now the first factor 01 in (7.18). Here we have to 

consider separately 2 different cases: N=4N2 and N = 4 N 3 .  For N=4N2 the factor 01 is 

equal to (with the notation pj=qjlN) 

Z O~f~o'"~kQJ(2)~3~ "'" aoj(qk)~3k(2~~ "'" q~kk)--(s+l/2) 

~q 
=(1 -5Qj (2 ) ' 21 /2 - s+4Q~  (2)'21-2s) 1-I (1-qS--E~/~oJ(q))' 

q[N2 
q prime 

Eq ~ Eqj . 
(7.23) 

We have s-�89 To make (7.23) equal to zero we have to satisfy one of the 

conditions 

Oj(2) =2,irJ  Oj(2)=l/2.2irJ, oj(q) = q'-J/eq. 

We apply now Theorem 4.3, that  oj(q)==l=l, Qj(2)---t-1, and that  gives the result in the 

case N=4N2. To prove it for N = 4 N 3  we have to see also the equation 

1 - 7t)j (2). 2 - ~  + 14t) 2 (2). 2 - 2 i ~ -  8t) 3 (2). 2 -3i~ = 0. (7.24) 

Tha t  gives solutions for ~)j(2) equal to 2 irj, 1/2.2 irj, 1/4.2 i~, and the result follows as 

in the case N=4N~. The theorem is proved. [] 

Remark 7.2. It  is an interesting question whether the condition tha t  the eigenvalue 

s not belong to any of the sequences {Sn} defined in Theorem 7.1 (2) can be removed by 

replacing the Eisenstein series corresponding to the cusp at oc by the Eisenstein series 

corresponding to a cusp on the real axis, possibly giving rise to different exceptional 

sequences. In the case of F0(8) there is only one other open cusp at the point 0, and it 

turns out that  the exceptional sequences are the same. In the general case the problem 

becomes rather  complicated, and it is not clear what will happen. We expect, however, 

tha t  in any case the sequence r~=nTr/log2 is exceptional for all cusps. Tha t  is because 

22 IN while only piN. 
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8. P e r t u r b a t i o n  of  e m b e d d e d  e igenvalues  

Definition 1. Suppose that  F has h cusps zl, ...,Zh, and that under the character X~ 

the cusps zl, ..., Zk are open and Zk+l, ...,Zh are closed. Let ? iz i=oc,  i=1,  ...,k, where 
- 1  7i=gi  . The Banach spaces C , , , = C , , , ( F )  are defined as the spaces of continuous 

functions f on F such that  

If('~iz)l K CIIm'~izl ~ f o r i = l , . . . , k ,  

If(~/iz)l<<, ClIm~/iz]" f o r i = k + l , . . . , h ,  

with the norm 

I l f l l , ,~=max~ max sup If(~/,z)l(Im~/iz) - . ,  
I.l<~i<~k zEF 

max sup If(~iz)l(Im~/,z)-~'}. 
k+l<~i<.h zEF 

Im ~/iz)l  

We utilize mainly the spaces C1,-2, C I = C I , 1  and C-1,0. 

We make use of results of [Fa] on estimates and mapping properties of the resolvent 

kernel of the Laplacian A(r) extended by [V1] to operators A(F; X) with character X- 

From the results of [Fa] and IV1] we obtain 

THEOREM 8.1. For any ctC(-�89 �89 the resotvent R(s,(~) of L(a)=L+ctM+ct2N 

has an analytic continuation R(s, (~) to {s [0<Re s<2} as an operator in B(C-l,O, Cl,-2). 

For R e s > l ,  R(s,c~)eB(Cl_2).  

We set ~ ( s )=~(s ,  0). 
We consider the mapping properties of the operators M and N. In the open cusps 

the coefficients of M and N are exponentially decreasing, in the closed cusps they go 

like y2. It follows that  V(ct)EB(CI_2, C_Lo), where V(o~)=c~M+a2N. This implies 

LEMMA 8.2. V(c~)[t(s)EB(C_I,O) for 0 < s < 2 ,  

IIv(~)R(s)llmc~-l,0~ ~0 
c~--+0 

and for I~l<e, 

/~(s, c~) = R(s)(1 +V(c~)fi(s)) -1 E B(C_l,O, C1,-2 ). 

R(s, ~) is analytic with values in B(C-1,0, C1,-2) for 0 < R e s < 2  as a function of a 

for [~l<e. 

We now consider the operator LI(o~)=L+aM+a2N acting in the Banach space 

Cz,-2 with maximal domain 79(LI (@). 
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By Theorem 8.1 the resolvent Rl(s) of LI=LI(0) exists as an operator in B(C1,-2) 

for R e s > l ,  hence V(e~)RI(s)eB(C1,_2) and I]Y(a)Rl(s)ll >0 for R e s > l .  Moreover, 
c~---~0 

for Ic~l<E and R e s > l ,  

nl(s, a) = Rl(s)(l + V(a)Rx(s) ) -1 E/~(C1,-2). 

It follows that Ll(a) is closed on the domain ~(LI(a) )=D(L1)  for ]al<r We have 

established 

LEMMA 8.3. LI(O0 is analytic for lal<r as a family of closed operators in C1,-2 
with domain D(L1). 

We shall analyze now the perturbation of embedded eigenvalues. This was investi- 

gated by [Ho] for Schrhdinger operators - A + a V  with multiplicative potential V. In our 

case the form of the perturbation requires a somewhat different approach, combining the 

family/~(a) derived from Faddeev's analytic continuation of the resolvent with Kato's 

analytic theory of regular perturbations of isolated eigenvalues for operators in Banach 

space [K]. 

1 be an eigenvalue of L=A(f'; X), so=�89 to,O, with eigen- Let Ao=So(1-so)> 
space Af=Af(L-  A0) of dimension m. 

Let K=K(so, 5) be a circle with center So and radius 5 separating So from other 

points s~ corresponding to eigenvalues A~=si(1-s~) of L, and choose e>0 such that 

R(s, a)eB(C_l,O, Ca,-2) for seK and ]a] <r The operators/5(a)eB(C_l,O, C1,-~) are 

defined for ]a[ < c by 

/5(a)-- 27ril 
/5(a) is analytic in a for [c~[ <r and/5(0) coincides with the orthogonal projection 

P0 of H on N(L-A0),  restricted to C-1,0. 

We consider the operators 

Po/5(a)Po=-~l-l-= po f R(s,a)(2s-1)ds Po 
zTrz J K 

-- ~--~ PO /KR(S)(2s-1) ds P o 

+ ~ / P o  ~ R ( s ,  a ) ( a M  +o~2N)R(s)(2s - 1)ds Po 

= Po+c~Po 2@~ fK ~(s'a)(M+aN)fit(s)(2s-1)ds Po. 
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Here we use that  Ti(Po)=AfcC_I,o=D(P(o)). Since the eigenfunctions CEN decay 

exponentially, we can also consider P0 as an operator in B(C1,-2, 7-/), so that  we have 

PoP(o)PoEB(7-I). For a-+0,  the second term converges in norm to zero. 

It follows that  dim R(PoP(o)Po)=dimR(Po)=m for Iol <6. 

The circle K contains for each a with lal <6 a finite number of poles s l (a) ,  ..., sk(o) 
of the meromorphic function/~(s,  0) with values in B(C-1,0, C1,-2). Let 

Pi(a)  = - Res{R(s, ~)}~=~(~). 

Then 

For 1~[<6 we have 

k 

i=1  

k 

m = dim 7~(/~(c~) P0) = E dim g(/~i (~ P~ (8.1) 
i=1  

This implies that  for lal<e all the poles si(a) of R(a,  s) inside K are simple. 

Then we have, with Ai(a)=s~(o)(1-si(a)), 

(Ll(o)-)~i(a))Pi(o)=O, i= l,...,k. 

We choose a basis r ..., Cm of N and set Cj(a)=P(a)r 
Let now r  be an eigenfunction or a resonance function with eigenvalue or reso- 

nance A(a). Then r and hence 

m m 

r = aj(o)r = E (8.2) 
j=l  j=l  

The condition (L l ( a ) -A(c~ ) ) r  is equivalent to 

( ( L l ( a ) - A ( a ) ) r  Ck) = 0, k = 1, ..., m, (8.3) 

or 

that 

m 

E a j ( a ) ( ( L l ( a ) - A ( o ) ) P ( a ) r  Ck) = 0, k = 1, ..., m. 
j = l  

In order that  these equations have non-trivial solutions, it is necessary and sufficient 

d(A, a) = det { ((L1 (0) - l (0))/~(o) Cj, Ck> }j,mk=l = 0. (8.4) 
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Since the coefficients of the polynomial d(A, a) are analytic in a for lal <e, it follows 

that  the m-dimensional eigenvalue )~o splits into analytic functions )~i(c~) and branches 

Ajt(c~) of Puiseux cycles. Any embedded, real eigenvalue is analytic, while resonances, 

which are non-real for (~r may be analytic functions or branches of Puiseux cycles. 

Due to the special circumstance that  a resonance )~jl(a) cannot move into the resolvent 

set, but has to move to the second sheet, the Puiseux series for Ajl(c~) has to begin with 

a polynomial of the form 

2k--1 

E alC~l+a2kct2k' az real for l<.2k-1,  Ima2k•0,  k>~l. 
/ = 0  

This implies that  Ajz(a)E C2k(-e,  e). 

Based on this we construct a Kato basis for N and L(cQ. 

Let 

. . . ,  

be the distinct real eigenvalues of L(c~) with multiplicity mi, i=1,  ..., s, and let 

) ~ s + l ( O l ) ,  )~s+2(O~), .--, ~s+t(O~) 

be the distinct resonances of L(c~) with multiplicity mi, i---s+l,  ..., s+t. The functions 

Al(c~),...,As(~) are analytic for levi<e, while the functions ,~8+l(c~),...,As+t(c~) are at 

least C2(-e ,  e) and may be analytic. The dimensions mj, j = l ,  ..., s+ t ,  are independent 

of (~ for 0<lc~l<e and ~;+t 1 mj=m.  
For i=l ,  ..., s we get from (8.3) with )~(a)=Ai(c~), 

m 

Eaj(c~)((Ll(c~)-Ai(c~))~)(c~)r =0,  k = 1,.. . ,m. (8.5) 
j = l  

Since d(Ai(c~), c~)=0 and Ai(c~) has multiplicity m~ as root in d(Ai(~),c~), we can ob- 

tain mi linearly independent solutions {alj(~)}~=l of (8.5), / = l ,  ..., mi. Then by (8.2) 
m we obtain mi linearly independent eigenfunctions r analytic 

mi  for I~t<e. It follows that  for any linear combination r162 r162 
mi  ~j=lCI~5(~)r c~r so (L~(c~)-Ai(c~))O(~)=0 for any r in the subspace 

Ei spanned by r ..., r 

Consider now a resonance )~i((~), where we assume that  Au(c~) is a branch of a 

Puiseux cycle, i=s+l ,  ..., s+t. Again we insert ,~i(~) in (8.3), getting (8.5), but we only 

know that  s e). We can again solve (8.5) for a~j(c~), since d(s a ) = 0 ,  

obtaining C~(-e ,  e)-functions au(c~),/=1, ..., mi. Moreover, we get mi linearly indepen- 

dent vectors {au(c~)}~2~, since for Ic~l<e, s is a simple pole of/~(~,  a) so that  the 
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range of Resx,(a)R(A, a) is N(L l (a ) -A i (a ) ) .  This gives by (8.2) mi linearly indepen- 
dent resonance functions ~bu(a), l= l ,  ...,m~, which are C2(-r with values in C1,-2. 

As above, for any function ~b=~_~l flz~bu(0), 

m i  

P((~)r = r = E fllCu(a) and (LI((~)- Au (o~)) r = O. 
l=1 

We can choose an orthonormal basis for Eli = span{r (0)}~n_il, but whereas the subspaces 

Ei and Ej corresponding to embedded eigenvalues Ai(a) and Aj (a) are orthogonal, Eu is 
not necessarily orthogonal to the spaces Eki, Etj and E~. If the resonance Ai(a) is 

analytic, we obtain analytic functions r 

We have proved the following general result on perturbation of embedded eigenvalues 
and eigenfunctions. 

THEOREM 8.4. Let A0=s0(1-s0) be an eigenvalue of L with eigenspace N of dimen- 

sion m. The poles As(a), ..., Ak(a) of R(a, s) inside the circle K can for [a] <E be divided 

into groups forming Puiseux cycles of order p>~l. If  p=l ,  the corresponding Aj(a) is 

analytic for [a]<c. If  p>~2, the Puiseux cycle consists of p branches Ajl(a), ..., Ajp(a) 

of a function having a branch point of order p at a=0 .  In the first case p=l ,  we have 

the possibilities: 

(1) Ai(a) is real for all real a, and Ai(a) is an embedded eigenvalue of L(a) for 

(2) Ai(a)=Ao+ala§247 +a2lc~2l + ~m>~21+l area m, al, ..., a2t-1 are real, 

Ima2l>O for so=�89 Ima2z<O for so=�89 to>O. 
In the case p~2,  the functions Ajl(a), ..., Ajp(c~) have expansions of the form 

Ajl (o~) : )~o q- bl a +. . .  + b2m-  1 a2m-- 1 jr b2m a 2"~ + b2m+ 1 ~.)10~(2rn+ 2)/p ...[_..., 

1=1, ...,p, where bl, ...,b2m-1 are real and Imb2m>O for So=�89 Imb2m<O for So= 
1 ~- i to ,  to>O. 

The multiplicity of each Ai(a) and Aj(a) is constant and is the same for all elements 

of a Puiseux cycle. 

The total dimension of the eigenvalues and resonances Ai(a) and Adt(a) equals m. 

For each eigenvalue function or analytic resonance function Ai(a) of multiplicity mi 

there exists an mi-dimensional subspace Ni of N such that for CENi, r162 

N ( L l ( a ) - A i ( a ) ) ,  and r is analytic for ]a[ <z with values in 7-t for embedded eigen- 

values Ai(a) and C1,-2 for resonances Ai(a). When AU(a ) with multiplicity mj is a 

branch of a Puiseux cycle, there exists an my-dimensional subspace Ntj of N such that 

for CENti, r 1 6 2  and r  c) with values in C1,-2. 



206 E. BALSLEV AND A. VENKOV 

Choosing any orthonormal basis of each of the spaces N~ and Nlj, we obtain taking their 
union a Kato basis of N, where functions from different subspaces are not necessarily 
orthogonal unless both consist of eigenfunctions r E Ni, Ck C Nk, where r (a) and Cj (a) 
are eigenfunctions of L(a). 

We shall now derive explicit formulas for the perturbation of the eigenvectors r to 

first order and the eigenvalue Ao=so(1-So) to second order. 

Let CEAf(L-Ao)=PoH. Then r 1 6 2  is an analytic function with values in 

C1,-2 for [a]<r We calculate r 1 6 2  a s  follows: 

r = lim :{P(a)-P(O)}(b 
a--+00~ 

= a--,o ~ ~ / l i m  1 - 1  /K{~(a ' s ) -R(s)}(2s-  1) ds 

= l i m l ~  1 ~-,o ~ fi(a, s)(aM+a2N)R(s)r - 1) as 

= lim ^1. f ~(a ,s ) (M+ag)(L_s( l_s) )_ lr  
a-+O 2"K't J K 

= 2~il f, fi(8)Me{8o(t_~ol_8(l_8))_t(28_l)ds. 

(8.6) 

Setting r162 we derive an expression for/~(0, s)r  Let I s - so l<5 ,  Re s >  �89 and 

I m ( s - s 0 )  >0. Then by the spectral theorem, 

i F 1 
1 ~ _ r 2 _ 8 ( 1 _ 8  ) IEJ(�89 §189162 R ( ~ ) r  ~ j:l  

+Rt(s)r162 -so) - s ( 1  - s ) ) - Ip0 r  

(s.7) 

where h is the number of open cusps, 

o~ 

R,(8)r = y~ ICk><r162 ~(1-- 8)) -1, 
k = l  

oo 

Rd(s)r = ~ 1r162162 
1=1 

and Sk(1--sk) are the embedded eigenvalues different from s0(1-s0)  with eigenfunc- 

tions Ck, and s'~ ( 1 -  s'z) are the small, discrete eigenvalues with eigenflmctions r 
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t o - R  to to + R 

Fig. 1. Deformation of the spectrum of L. 

D 

Here we use the notation (u, v)=fF u(z)~;(z)d#(z) for any pair of functions on F 

such that  fF lul" Ivl dp(z)<oo. Also, lu) means multiplication by the function u. 

The integrand is analytic in r, and we can deform the contour R to a contour FR, 

Is - sol < R ~< 5, obtained by replacing [to - R, to + R] by the semicircle { -  Re ~ } 0 < ~ <~ ~}, 
see Figure 1. For a fixed s the poles of the function ( �88  -1 are 

Q+ = •  �89 = •  = ~:to• 

We have chosen to focus on so=�89 The root ~_=to- i ( s -so)  lies inside the 

above semicircle. The residue of the integrand at the simple pole Q_ is 

R e s (  ..1 1. 1 h }r 
j= l  =--i(s-1/2) 

h 
1 

-- - 2 i ( s - � 8 9  E IEJ (s))(Ey(1-s)lr 
j= l  

so the first te rm nc(s)r of R(s)~b equals 

1 ]~ 1 n (~+zr) ) (EJ(~- i r ) l~)dr  
n j= l  

h 
1 

4(s-�89 j= l  

(8.8) 

Both terms of Re(0, s) have analytic continuations to {s[Is-so [ <R},  and we obtain 

R~(0, s)~b expressed by the same equation (8.8). 

We calculate the first te rm at s=so. Replacing R by any smaller radius ~>0  we 
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obtain 

h 

147r fr } ( ) 1  EiEj( �89162 r 
o ~+r2--so. 1-sO. j = l  

1 f f t o _ e  j ( t 7  } 1 h 
= - -  l im{  ] + EIEj(�89 

4rr o,O ( J _ ~  +o r-~-t2o .r 

h 

~rr o,o �88 o j = l  

1 =_~pp  1 1 ~-~lEj(�89189 & 
r-to r+to -cx~ j = l  

h 
1 1.2rri Res { 1 EiEj(�89189 } , 

+-4~ -2 �88 j=, -~=~0 

where CQ is the semicircle {s=yei~l-rr<~<~O }. Thus, half of the previously subtracted 

residue is added, and we obtain 

1 F /~c (So) r = PP 1 1 h r--to r+to E[Ej(�89189162 
oa j = l  

h 
1 E ~ + 8"~o E [  j(~+ito))<Ej(�89162 

j = l  

(s.9) 

We can now introduce (8.7) in (8.6), using (8.9). We obtain the following expression 

for r using that  all the terms of/~(s)!b have a simple pole at s=so, except possibly the 
1 last term of (8.7) which contains a double pole if ~ is an eigenvalue of L. 

c~ h 

1 1 El'j( +ir)>IE,( -ir)lM >dr oo r-to r+to j=l 
h 1 

+~to E IEj(�89176176 Mr176162176162 
j : l  

(s.10) 

From this expression for r and Theorem 7.1 it is clear that  for every odd Hecke 

eigenfunction vj of Theorem 4.2, vj (c~) cannot be a linear combination of eigenfunctions 

corresponding to embedded eigenvalues Ai(~), since vjl ~ 7-/. Thus, if N(L-Ao) contains 

odd functions, there exists at least one eigenfunction r with eigenvalue Ao such that  r 

is a resonance function with resonance A(c~). 
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To complete the picture we prove, using (8.10), the expression for the imaginary 

part of the coefficients in the second-order expansion of the resonances Ai(0/) known as 

Fermi's Golden Rule. 

Let ~(0/) =A~(a), i = s +  1, ..., s+t ,  be a resonance of L(0/) of multiplicity m~, 0< I0/I <a, 

0/real, A(0)=~. Let r be a function in the subspace Ni of N of Theorem 8.4 such that 

LI(0/)r162 (8.11) 

Since ~(0/) E C 2 ( - r  c) and r E C 2 ( - r  r with values in C1,-2, we can expand both 

sides of the equation (8.11) to second order, obtaining 

(L+0/M+0/2N)(r162 12+~0/ r +0(c~2)) 
= (A~-0/~1-4-10/2-~2 -~-0(0/2))((~-~- 0/*1 Jr- 10~2r ~-0(0/2)) �9 

The first- and second-order equations are 

and 

Lr + M e  = A0r + N r  

� 8 9 1 6 2 1 6 2 1 6 2  1A 1 r162162  

(8.12) 

(8.13) 

(8.14) 

Integrating (8.13) and (8.14) with r we get 

(Mr r = ),1, (8.15) 

(Mr r + <N~b, r = �89 A2- (8.16) 

Here we have used that  r is a cusp form, and hence 

( ( L - A ) @ , r 1 6 2  i = 1 , 2 ,  

and (r r =0, which follows from (8.10). 

Introducing (8.10) in (8.16), we obtain 

1 f ' ~  1 1 h 
ReA= = ~ P P  ] ~  --~'l(Ej(�89162 

r - t o  r+to j=~ (8.17) 

+ ((R~ (s) + Rd (s)) Me,  r + (Nr r 

h 
1 

ImA2= ~o0 .~ I<Ej(�89162 (8.18) 

By Theorems 7.1, 8.4 and (8.10), (8.18), we have obtained the following result. 
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1 THEOREM 8.5. Let h=-~+t 2, s--7+it ,  be an eigenvalue of L=A(Fo(N);x)  with 

eigenspace N of dim N= m, and assume that N contains a subspace of odd functions. 

Let e E N  and r162 Then r162 is given by 

h 
- 1 

q~l ---~ (~1 -~- ~-~ E ] E j ( � 8 9 1 8 9 1 6 2  
j = l  

where r is given by (8.10). 

The function r  if and only if ( E j ( � 8 9 1 6 2 1 6 2  for some j.  

For odd Hecke eigenfunctions r the function r does not belong to ~ ,  provided s 

does not belong to any of the sequences {Sn} defined in Theorem 7.1. 
There exists at least one eigenfunction r in N such that r is a resonance function 

with resonance A(c~), A(0)=A. 

For any such eigenfunction, Im A"(0) is given by Fermi's Golden Rule 

h 

ImA2= ~to j~__l [(Ej(�89162 

Definition 2. Let 

,~1 ~ )~2 <~ ... <~ ,~k < ... 

be the eigenvalues of L whose eigenspaces contain odd subspaces ICkcN(L-Ak  ) with 
multiplicities 

dk = dim/Ck. 

Let 

rnk = max{dj [ 1 <~ j <~ k}, 

m(A)=mk for Ak ~ A <Ak+l. 

Let S be the union of the exceptional sequences of Theorem 7.1 and 

NI(A) = #{ak < A}, 

N2(A) = #{Ak < A I A~ E S},  

N3(A) = #{Ak ~< A [Akr = N,(A)-N2(A). 

We write 
f l ( ~ )  f l(A)~f2(A) if, for every r > 0, -7-7-~>/1-~, A>~A(a). 
J~tA) 
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THEOREM 8.6 .  Assume that m()~)=o(A) as A--+cx~. Then 

N3(A)~ 1 IFIA. 
m(~) 8 .  

Proof. We consider first A=Ak. By Corollary 3.7 

N(A~) 
(IFI/87r)Ak 

>~ 1-~1 for )~k >A(el) .  

But 

Nl(),k) ~ N(Ak) for all k, 
m k  

SO 

Nl()~k)/> (1 " ]FI 
-el)m---~.8 ~k �9 

1/2 Since N2(,~k),~c,k k , we conclude that  

N3(Ak) ~ 1 IF__[] Ak. 
mk 8~r 

To obtain the result for general A we first prove 

N(Ak+l) ~ 1. 
N(Ak) k--~ 

We have 

(8.19) 

(8.20) 

N(Ak+I) = #{#i  ~< Ak+l} = #{#~ ~< ~k}+dk+l = N()~k)+dk+l <~ N(Ak)+mk+l, 

where 

Pl  ~ ~t2 ~ --. ~ ~tk 4 . . .  

are the eigenvalues of L, counted with multiplicity. Then 

1 ~ N(~k+l___~) < 14 mk+l _ l + - -  
N(Ak) N(Ak) 

N(Ak+I) 
N(Ak) c(Ak+l), 

and hence 
N(Ak+I) 

N(Ak) (1--e(Ak+l))< 1, e(Ak+l) ~0, 

SO 

lim N(Xk+l) _ 1. (8.21) 
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From (8.20) and (8.21) we obtain 

N(.Xk)_ N(Ak) N(/~k+ 1) 
N ( ~ k )  >1 - -  - - -  

mk N ( ~ k + l )  mk 

By (8.19), 
N()~k+l) 

([FI/4cr) Ak+l 
From (8.22) and (8.23) follows that 

where 

- - / >  (1-~)  N(~k+l) 
mk 

- - ,  /~k > A(~I).  

~> l - e 2 ,  ,Xk >A(e2). 

/~()~k) ~> (1--~1)(1--~2) /> l--a, Ak > A(c), 
(1/mk)(IFI/47r)~k§ 

C1-~-E2"~-C1~2 <E,  n(~)  = max{A(E1),  A(c2)}. 

Since/~(A)=/~(Ak), m()~)=m()~k)=mk for )~k<.)~<Ak+l, this implies that 

N(A) 
(1/m(A))(IFI/47r)A 

> / l - e ,  A>A(e), 

(8.22) 

(8.23) 

~(A)~ IFI A. 
87rm 

and the theorem is proved. [] 

The result on the asymptotic number of eigenvalues, which become resonances un- 

der character perturbation, thus depends on bounds on the dimension of eigenspaces, 
see [Sa]. We obtain the following asymptotics from increasingly strong proved or conjec- 

tured bounds. 

COROLLARY 8.7. (a) Assume that rn(A)<~cv~/log)b c>0. 
This can be proved using estimates of the argument of the Selberg zeta-function on 

Res=�89 (el. [Se], [V]). 
This bound implies by Theorem 8.6 that 

N(A) ~> IFI ~1/~. log ~. 
87rc 

(b) Assume that m()~)<~cA z for some c>0, 0</3<1. 
This is a conjecture [Sa] which implies that 

~(~) > IFI ~_~. 
87re 

(c) Assume that m(A)<<.m for all ,~>A. 
This boundedness conjecture implies that 
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This indicates that  the Weyl law is violated for small a ~ 0. We note that  it follows 

from the Hecke theory of w that  m ~> 2. 

Remark 8.8. For even eigenfunctions the Phillips-Sarnak integral is zero, since Me) 
is odd for even 0. It is therefore not known whether even eigenfunctions leave or stay 

under this perturbation. There is another perturbation obtained by replacing Re w by 

Imco in the definition of the characters co(a), 

~ ( ~ ) ( ~ / ) = e  2niaImf:~176 dt , yePo(N). 

The family A(F0(N); X.X (~)) corresponds by unitary equivalence via the operator 

e2~i~f2o ~~ to the family of operators in H(Fo(N);  X) 

where 

L(a) = L+aM+a2N, 

L = A(f'o( N); )I), 

It turns out that  the operator 2~r is not L-bounded, and therefore the perturbation 

theory developed for M does not apply. Although the Phillips-Sarnak integrals are in fact 

given by the same Rankin-Selberg convolution and can be proved to be non-zero for Hecke 

eigenfunctions, this does not imply that  certain eigenvalues with even eigenfunctions 

become resonances under this perturbation. Indeed, Imf~Z~ for 3'EF0(N), 

which implies that  X.X(c~)=X for all c~ and the functions a (a )=exp{2zr ia Im f~o w(t)dt} 
are f'0(N)-automorphie. Thus, the operators L(a)  are unitarily equivalent to L for 

all a via and all eigenvalues stay. The domain D(L(a)) equals 

Q(a)D(L), which changes with ct. 

Remark 8.9. The proof that  the Phillips-Sarnak integral is not zero is based on the 

non-vanishing of the Dirichlet L-series for eigenfunetions, which is proved using Heeke 

theory. This is therefore specific for the operators A(F0 (N);)/). However, we can draw the 

following conclusions about embedded eigenvalues of A(F0(N); )/.)~(~)) based on general 

perturbation theory. Due to the analytieity in c~, each embedded eigenvalue A(c~0) of 

L(a0) under the perturbation aM+c~2N either stays as an embedded eigenvalue for 

c~r analytic in a, or leaves as a resonance. 

Therefore eigenvalues of L=A(Fo(N); )l), which leave the spectrum as resonances 

for a r  can only become eigenvalues for isolated values of a c (  - 1 ,  1). 
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A. A p p e n d i x  

We will study the matrices of (d', d")  2 which correspond to the systems (6.42). We want 

to prove that the coefficient ~1 is not zero, for some choices of coefficients n2dl, n4d~. We 

start from (5.3). We have 4N2=4pl ...Pk, where pi are different primes not equal to 2. 

To see the matrix 

(d',d") 2, d'14N2 , d',d">O, (A.1) 

we consider the primitive matrices 

( 1  1 : )  ( i )  
A =  1 4 , B i=  1 

1 4 16 P~ ' 
1 ~< i ~< k. (A.2) 

It is not difficult to see that the 

= 1_._ 15 - 3  , A-1 

- 3  3 

inverse matrices are 

B / _ l = ( p  ~ - 1 )  1 (A.3) 
- 1  1 p2_  1" 

We define the tensor product A| | @... N Bk by recurrence relations of the block 

matrix 

(A A ) (C1 C1 ) (Ck-1 Ck-1 ) (A.4) 
C1= p2 A , C2= C1 p~C1 ' C k = \ C k _ l  pkCk_12 " 

It is not difficult to see that  the matrix Ck coincides with the matrix (A.1), if we 

take the following order of divisors d' and d": 

1, 2, 4, p1(1,2,4), P211,2,4,pl(1,2,4)], . . . .  (A.5) 

It is easy to see now that the inverse matrix to Ck is coming from the recurrence relation 

-- 1 (p21A-1 -A-I) 
Cl 1 = P 2-1  k, - A  -1 A -1 ' 

1 (p cf 1 -c f  1) 
c;t  = p2-1 k, - C f  1 C11 ' (A.6) 

{p2C-1 ) 1 [ k k-1 -C~--ll 
c k l =  p~--I  ~ _ C 2 1  C ~ l  

Prom this follows that C~ -1 exists, and we can determine the coefficients ~d" from (5.3) 

explicitly. Actually, it is important to look now only at the first row in the inverse 
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C - 1  matrix k , since we want to prove / 3 1 5 0 .  Let us denote this first row of C~ -1 by et, 

l<~l<~k. From (A.6) follows 

1 
el - -  oo(i""p~ - 1) (p~ (48, -12,  0 ) -  (48, -12,  0)), 

1 2 e em+l- 2 _ l ( p m + l  m,-em), l<~m<~k-1. 
Pm "k 1 

(A.7) 

Let us look now at the right-hand side of (6.40). When d' runs through all positive 

divisors of 4N2 in the order of (A.5), we get the column vector, which has non-zero compo- 

nents only on places d '=2d l ,  dalN2, dl >0 equal to n2dl/m2dl. From (1.8), (1.10) follows 

m2dl=Nz/dl. We remind that  the coefficients n2d~----=kl with the only condition (6.11). 

Applying ek to this vector we obtain up to the common multiple 

36(p~-1)(p~-1)...(p~-l) 
(A.8) 

that/31 is equal to 

E n2d~X2d~, (A.9) 
dllN2 
d l > 0  

where X2dl are pairwise different integers with equal number of positives and negatives. 

From that  follows that  there exists the choice of coefficients n 2 a l = •  with condition 

(6.11) which makes (A.9) not equal to zero. 

The investigation of the system (6.42) is completely analogous. We have 4N3=8n, 

n=pl"p2 ...Pk is the product of different odd primes. Instead of the matrix A given by 

(A.2) we take 

A =  

1111) A-l= .  4J3o _lj3O o) 
1 4 4 4 /-1/3 5/12 -1 /12  0 

1 4 16 16 ' [ 0 - 1 / 1 2  5/48 -1 /48  ' 

1 4 16 64 0 -1 /48  1/48 

(A.10) 

and then repeat the proof. We obtain that  up to the common multiple 

48(p - 1) p2 �9 . . ( k - l )  
(A.11) 

the coefficient fll is equal to 

n2dl n4d2 
E X2dl -~ ~ X4d2, 
dlln m2dl d2]n m4d~ 
dl >0 d2 >0 

(A.12) 
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where X2dl, X4d 2 are integers with equal number of positives and negatives. There exists 

a choice of coefficients n2dl, n442 which makes (A.12) not equal to zero. We have proved 

Theorem 6.1. 
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