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1. I n t r o d u c t i o n  a n d  p r e l i m i n a r y  r e m a r k s  

An important  combinatorial proper ty  of an ideal I on a set Z is the saturation of the ideal, 

i.e. the least upper  bound on the cardinality of a well-ordered chain in the completion 

of the Boolean algebra P(Z)/I. This is particularly interesting in the case where I is a 

naturally defined ideal, such as the non-stat ionary ideal. 

It  is known to be consistent for the non-stat ionary ideal on wl to be w2-saturated. 

This was shown first from strong determinacy hypotheses by Steel and Van Wesep [SV], 

and later from large cardinals by Foreman, Magidor and Shelah [FMS]. Shelah has the 

optimal  result, showing this property consistent relative to the existence of a Woodin 

cardinal. 

Shelah has shown that  the non-stat ionary ideal on a successor cardinal •>wl  can 

never be saturated,  by showing that  any saturated ideal on a successor cardinal must 

concentrate on a critical cofinality. Further, Gitik and Shelah (extending earlier work of 

Shelah) have shown that  for x a successor of a singular cardinal, the non-stat ionary ideal 

cannot be x+-saturated even when restricted to the critical cofinality. They have also 

shown that the non-stationary ideal on an inaccessible cardinal can never be saturated. 

Similar questions arise for the non-stationary ideal on Px(A). Burke and Matsubara, 

using work of Cummings, Gitik and Shelah, were able to establish that the non-stationary 

ideal on P• is not ~+-saturated in the cases where cof(~)~x, and when x>w] is a 
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successor cardinal. Shelah established the non-saturat ion of the non-stat ionary ideal on 

P~I(# +) for those # where # ~ = # .  

The main result of this paper  is that  the non-stat ionary ideal on Px(A) cannot be 

saturated unless ~ = ~ = a J t .  We give a complete proof of this theorem in the paper. 

The structure of the paper  is as follows: In w we state  important  results of Shelah 

and Cummings that  we will use in the sequel. For completeness we use these results to 

prove some of the theorems of Burke and Matsubara  [BMt]. 

In w we handle the case of x=a~l .  In this section we define the notion of mutually 
stationary sets, which we believe to be of independent interest. The crux of w is the result 

tha t  every sequence of s tat ionary sets of points of cofinality w is mutual ly stationary. 

In w we show that  if the cofinality of ~ is less than x,  the non-stat ionary ideal 

on Px(A) is not even ~++-saturated. These results strengthen the results of Burke and 

Matsubara.  

In w we show the non-saturation result in the case where x is a regular limit 

cardinal. 

In w we will give examples showing tha t  our results are sharp, or nearly sharp in 

several cases. For example, we force over L to give the consistency of the s ta tement  tha t  

the non-stat ionary ideal on P,~(A) is IP~(~)[-saturated. Thus one cannot always prove 

that  there is an antichain in Px(,k) modulo the non-stat ionary ideal that  has size [,k] <x. 

In w we discuss mutually s tat ionary sets abstractly, prove some splitting results 

and give an example in L of a sequence of s tat ionary subsets of the COn'S tha t  is not 

mutual ly stationary. 

The rest of this section is devoted to a cursory discussion of background information 

assumed by the paper  and of the notation used in the paper. 

For the most part  the notation of this paper  is standard. We denote the ordinals 

of cofinality x by cof(x) ,  and the cofinality of a particular ordinal a by cf(a) .  We will 

use the abbreviation NS for the non-stat ionary ideal, usually on P~(A), the collection of 

subsets of A of cardinality less than  ~. (We will use the definition of s tat ionari ty given by 

Jech in [J].) We adopt the convention that ,  unless we state otherwise, xEP~()~) implies 

tha t  x n x E x .  We will also concentrate our attention, without further notice, on those 

x where Ixl=lxnxl. 

An important  fact for this paper  is tha t  the non-stat ionary sets in P,~(A) form a 

tower as ~ ranges over cardinals greater than  or equal to x. In other words, if A<A t and 

7r: P,~(A')---~P~(A) by 7r(x)=xNA, then 7r induces a map from P(Px(A')) to P(P,~(A)) 
which we will also call 7c in an abuse of notation. The assertion that  the s tat ionary sets 

form a tower is the s ta tement  tha t  for a l l ' s ta t ionary  S c P x ( A t ) ,  ~r(S) is a s ta t ionary 

subset of P~(A); and tha t  for all s tat ionary TCPx(A), 7r- l (T)  is a s tat ionary subset 
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of 

The map 71---1: P(Pc()~))--+P(rc(~')) preserves order and incompatibility, although, 

as we show, it is never a neat embedding. Thus we conclude that  the saturation of the 

non-stat ionary ideal on Pc(A) is a monotone function of ~. 

We will frequently casually refer to "H(O)", without much further explanation. This 

is in the spirit of Shelah's Proper Forcing. The structure H(O) refers to a structure 

in a (usually) countable language whose domain is the collection of sets of hereditary 

cardinality less than  0 for some regular cardinal 0, large enough to contain all of the 

relevant information. We assume that  the structure had E in the language as well as a 

well-ordering A of H(O). We will also assume that  all of the relevant sets in the argument 

at hand are named in H(O). 
Without  mention, we will use the fact that  closed unbounded subsets of Pc(&) are 

determined by algebras on A, where an algebra on ,~ is a structure {A, fi)ic~- Using Skolem 

functions we can also take closed unbounded sets to be determined by any algebra on 

a set X with A c X .  We frequently will be considering closed unbounded sets {Nf3&: 

N~H(O)}. 
For the purposes of this paper, inaccessible means weakly inaccessible. 

If I is an ideal on a set Z, then we can form the Boolean algebra P(Z)/I and force 

with it. If  G is the resulting ultrafilter, then we can form the ul traproduct  of V by G, 

using functions lying in V. The result VZ/G is occasionally well-founded. In this case 

the ideal I is called precipitous. If I is precipitous, then we automatically replace VZ/G 
by its transitive collapse M. We then have a canonical elementary embedding j:  V--~M. 

It  is well known that  if a normal ideal I on Pc(A) is A+-saturated, then it is 

precipitous, and moreover, the generic ultrapower M is closed under ,~-sequences (e.g. 

MXNM=MXNV[G]). Further, if S~I and SIF-YcCM, there is a function f :  Pc(~)--+V, 
fEV, such that  SIt-[f]M=dC. 

The notion of an internally approachable set is quite useful in this paper. I t  was first 

formally defined in [FMS] and exposited in some detail in [FM1]. We give the definition 

here: a set N is said to be internally approachable of length # (or in IA(#))  if and only if 

there is a sequence (N~:c~<#) such that  N=[_J~<N~, and for a l l /3<p ,  (N~:c~</5)EN. 
If N-< (H(0), E, A} is internally approachable of length an ordinal of uncountable 

cofinality, then NNOR is countably closed. Suppose now that  N and M are inter- 

nally approachable of" length some uncountable regular cardinal #, and NN ~ = M N  ~ and 

s u p ( N n  A+) = s u p ( M N  A+). We must have that  MAN is cofinal in MNA +, and vice versa. 

Since M and N are elementary substructures of H(O), we deduce that  M N A + = N N A  +. 

PCF Theory. In w167 4 and 5 we will make heavy use of the "PCF" theory of Shelah. 

The pr imary reference for this theory is Shelah's book [Sh2]; however, [BMg] gives an 



274 M. F O R E M A N  A N D  M. M A G I D O R  

expository account. 

A basic notion in the PCF theory is that  of a scale. If A is a singular cardinal and hi 

(iEcf(A)) is an increasing cofinal sequence of regular cardinals, and I is an ideal on cf(A), 

a scale in l-'I~ec~(~)Ai/I is a sequence ( f o : a  <y)  such that  for a < a ' ,  {i: f~ (i)~> f~, (i)} E I 

(i.e. the sequence is increasing) and for all g E l-Lecf(~) A~, there is an a, {i: g(i) >1 f~ (i) } E I 
(i.e. the sequence is cofinal). 

One of the main results of Shelah is that  for all singular cardinals A there is a cofinal 

sequence (Ai:iEcf(A)) such that  if I is the ideal of bounded sets on cf(A) then there is 

a scale in lFIiEcf(~) Ai/I of length A +. In this case we will say that  l-Lecf(~) )~/I has true 
cofinality )~ +. 

Given a sequence of functions ( f ~ : a < ~ ) ,  a function g is called an exact upper bound 
for this sequence if and only if for all a < ~ ,  {i:f~(i)~g(i)}EI, and if hE1-Lecf(~) A~ is 

such that  {i:h(i)~>g(i)} E I, then there is an c~, {i:h(i)~>f~(i)} E I. Note that  if there is 

an exact upper bound then i ts /-equivalence class is unique. 

A scale ( f ~ : a < ~ )  is called continuous if and only if for all fl whenever there is an 

exact upper bound for ( f~ : a< f l ) ,  the function fz  is the exact upper bound. 

If we are given a scale (f~:a<~?), a point /3 is good if and only if there is a set 

B={h~ :~<cf(/3)} C 1-Lccf(~) A~ and a set S E I  such that  

(1) for all ~<~/<cf(/3), iEcf(A)\S,  h~(i)<hn(i ), 
(2) for all hEB there is an a such that  {i:h(i)>~fc,(i)}EI, 
(3) for all a</3  there is an hEB such that  {i:f~,(i)>~h(i)}EI. 
If I is generated by less than cf(/3) sets this is equivalent to the statement that  there 

is a cofinal set AC/3 and a set SEI  such that  for all jEc f (A) \S ,  (f~(j):aEA) is strictly 

increasing. If the ideal I is cf(A)-complete, then every point of cofinality less than cf(A) 

is good. We will assume of all of our scales that  if I is cf(A)-complete, and cf(fl)<cf(A), 

then there is a cofinal subset of fl, A such that  fz(i)=sup{f~(i): aEA} for all iEcf(A). 

For points/3 of cofinality larger than cf(A), being good is equivalent to the statement 

that  there is an exact upper bound g for ( f~ :a</3)  such that  {i:cf(g(i))r 
Shelah has shown that  there is always a stationary set of good points (see [Sh2] or [FM2]). 

Given a sequence (Ai) cofinal in A and a set N, we define XNEl-Lecf(~) A~, by setting 

XN(i)=sup(N~)~i). This XN is called the characteristic function of N with respect to 

the sequence (A~}. 

w167 6 of this paper were done in the Fall and Winter of 1996 97, during Magidor's 

visit to the University of California at Irvine. 
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2. Theorems of  Shelah, Cummings ,  Burke and Matsubara 

The following theorems, due to Shdah and Cummings, are central to many of the results: 

THEOREM 1 (Shelah's Theorem [Shl]). Let ~ be a regular cardinal and P a partial 

ordering that preserves ~+. Then for all generic GC P, V[G] satisfies the statement that 

ef(L~l) =cf(~) .  

As a corollary Shelah showed: 

THEOREM 2 (Shelah [Sh2]). Let ~=~+ be a regular cardinal. Then for all #~cf(Q) 

the non-stationary ideal on ~ restricted to cofinality p is not A +-saturated. 

Using Shelah's PCF theory, Cummings found a variation on this theorem for singular 

cardinals: 

THEOREM 3 (Cummings' Theorem [C]). Suppose that A is a singular cardinal and 

P is a partial ordering that preserves stationary subsets of ~+. Then for all generic 

G c P ,  V[G] satisfies the statement that cf(l~l)=cf(A). 

(Cummings tells us that  this exact version is due to Burke.) We note that  any 

,~+-chain condition forcing satisfies the hypothesis of both theorems, and hence if the 

non-stationary ideal on Px(A) is saturated, the theorems apply to partial ordering 

P(Px (A) ) /NS .  

For completeness, we now give proofs of the non-saturation in the case where 

cf(A) > z or x is a successor at least w2 and the cofinality of ~ is greater than or equal to x. 

(This is due to Burke and Matsubara.) In the case where c f (A )<x  we prove in w the 

more general and stronger result that  the non-stationary ideal is not even A++-saturated. 

The following lemma is standard (see [Ba] or [FMS] for a proof): 

LEMMA 4. Let ~ and A be cardinals with x regular. 

(1) Suppose that cf (A)>x,  and that #, z~ are regular cardinals less than x .  Let 

s =  { x ~ p x ( ~ ) :  Ixl = Ixnxl, cf(xnx) = #  and cf(supx) =~}.  

Then S is stationary. 

(2) Suppose that x=Q+ >~w2 and cf(A)~>x. Then 

S =  {xE Px(A): c f ( x n x )  = cf(sup x) r cf(co)} 

is stationary. 

We can now derive many of Burke and Matsubara's results from the lemma and the 

theorems of Shelah and Cummings. 
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We begin by remarking that  the s tandard theory of saturated ideals IF] shows 

that  when one forces with a normal A+-saturated ideal on P~(A) below S={xEP,~(A): 

Ixl=lxAxl, c f ( x N x ) = #  and c f ( supx )=u} ,  to get a model V[G], then 

V[GI~IA I=lXI ,  c f ( x ) = p  and c f (A)=u .  

To see this let j :  V-+McV[G]  be the generic elementary embedding. Since we forced 

below S, we know that  M satisfies the s tatements  that  IAl=x  and u = c f ( A ) r  

Because M is closed under A-sequences from V[G], we see that  V[G] satisfies these 

s tatements  as well. We note that  if x is a limit cardinal and the critical point of j is x 

we know that  x is a cardinal in M. 

Further, since the forcing is A+-saturated, it preserves s tat ionary subsets of A +. 

In the case where the cofinality of A is greater than x, and x is a regular limit, we 

choose distinct regular #, ~ <  x and force with the s tat ionary set described in part  (1) of 

the lemma. This contradicts the theorems of Shelah and Cummings. 

If x is the successor of Q~>col and the cofinality of A~>x, then we force below the 

s tat ionary set defined in (2). Then all cardinals and cofinalities less than or equal to 0 are 

preserved. In this case we see that  in M (and hence in V[G]), IAI=0, but cf(A)r 

Again this contradicts the results of Shelah and Cummings. 

This shows the Burke-Matsubara  results in these cases. 

In this section we introduce the notion of mutually stat ionari ty and use it to show tha t  

the non-stat ionary ideal on Px(A) is never saturated in the case where ~=aJ1 and A>wl.  

See w for more results about  mutually s tat ionary sets. 

Following Burke and Matsubara,  we first dispose of the case where A is a regular 

cardinal bigger than  a~l. 

We will use the following special case of a theorem of Gitik and Shelah [GS]. 

THEOREM 5 (Gitik Shelah). Suppose that A is a regular cardinal. Then the non- 

stationary ideal on A restricted to points of cofinality w is not A +-saturated. 

Thus there is an antichain .4 of cardinality A + consisting of s tat ionary subsets of 

A of points of cofinality w. Standard arguments then show that  for all AE.4, YA = 

{xEPx(A) : sup x c A }  is stationary. Hence, {YA: AE.4} is an antichain in P~(A) (modulo 

the non-stat ionary ideal) that  has cardinality A +. 

We now turn to the case where A is singular. We begin with a general definition. 
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Definition 6. Let K be a collection of regular cardinals with supremum (i, and 

suppose that  we have S x c  x for each x EK. Then the collection of sets { S ~ : x E K }  is 

mutually stationary if and only if for all algebras 91 on (f there is an N-< 91 such that  

for all x E N N K ,  supNAxES,~ .  

This definition has obvious equivalents; for example, we could equivalently require 

that  for all algebras 91 expanding any H(O) where 0~>~, there is an N-~91 satisfying the 

condition. Standard "proper forcing"-type tricks show that  this is also equivalent to 

the existence of a single elementary substructure of (H(0), E, { S x : x E K } ,  A) (for some 

0>>25), satisfying the condition. 

Note that  being mutually stationary implies that  every Sx is stationary. Further if 

every S~ is closed and unbounded, then the sequence is mutually stationary. The main 

theorem of this section is that  every sequence of stationary sets of points of countable 

cofinality is mutually stationary. 

THEOREM 7. Let (x~:c~ET) be an increasing sequence of regular cardinals. Let 

(S~: (~E ~/) be a sequence of stationary sets such that S a c  xa and Sa consists of points of 

countable eofinality. If  A=sup~<.~ ~a and 91 is an algebra on A, then there is a countable 

N-<91 such that for all a E N ,  supNV~xaESa. 

COROLLARY 8. Suppose that A is a singular cardinal of eofinality #. Then the 

non-stationary ideal on P~(A) is not At*-saturated. 

Proof of Corollary 8. Choose an increasing cofinal sequence (x~ :c~<#) of regular 

cardinals in A. For each c~, divide the points of countable cofinality in x~ into ~a dis- 

joint stationary sets, (S~:/~<x~). For each function fE l - I ,<~  x~, let SI={NEP~I(A):  

for all (~EN, supNAxaES~(a)} .  By the theorem, each Sf is stationary in P~(A). Fur- 

ther if f ~ g  then for any (~ with f(a)r {N: NCSfNSg  and c~EN} is empty. Hence 

the sets {SI: f E YL<,  xa } form an antichain in Pcol()~) of cardinality A ". [] 

Remark. In fact, if ( ~ :  c~<~,} is any increasing sequence of cardinals cofinal in A 

such that  the non-stationary ideal on x~ restricted to points of countable cofinality is 

not As-saturated, then the non-stationary ideal on P ~  (A) is not l-L<~ As-saturated. 

Proof of Theorem 7. Fix an algebra 91 on A. Without loss of generality we can 

assume that  91 codes all operations on A definable in (H(A), C, A) and has a predicate for 

{(c~, x~) : c~<~/}. Let TC ~<~ be a tree. We will take T so that  we can label the nodes of 

with a function l from T to {x~:c~<~,} constructed so that: 

(1) if (TET and l ( a )=x~ ,  then { 7 : a ~ , E T } C x ~  and has cardinality ~ ,  

(2) if a ~  and ~ s k ~ ( a ) ,  then there are infinitely many n e w  such that  if ~-D~r, 

~-ET has length n, then I ( T ) = ~ .  
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Assume that  2[ is a tree with such a labelling. Let 2[' be a subtree of ~ with stem a0. 

Let A1, ..., An be a finite collection of x~'s such that  each Ai Esk~(a0). Then we say that  

~ '  is an acceptable subtree (for {AI,..., An}) if and only if for all nodes ~re~',  if l (a)~ 

{A1, --., An} then {7 :a~VE2;}CI(~  ) and has cardinality I(c~), and if I(a)E{A1,...,A~} 

then there is a unique 7 such that  a~3`Eq ' .  If q '  is acceptable for {AI,..., An} and 

xE{A1, ...,An} we will say that  ~ '  is fixed for x.  

Our goal is to produce a decreasing sequence of acceptable subtrees 2[n such that  

the length of the stem of each ~n is at least n, and so that: 

(1) if x~ is in the Skolem hull of the stem of one of the ~n, there is an m > n  such 

that  2fro is fixed for x~, 

(2) if ~n is fixed for xo,  there is a / ~  E S~ such that  for all branches b through ~ ,  

sup(sk~(b)n x~) = f ~ .  

Clearly this suffices, as if b is the intersection of the 2[n we set N=sk~(b) .  Then for 

all x ~ E N  we have N N ~ = ~ E S ~ .  

What  remains to prove is that  there is such a sequence of ~:n'S. We describe how 

to pass from ~ n  to  ~n-t-1 given a particular xa  in the Skolem hull of the stem of ~n, 

SO that  x~ is fixed for 2[n+1, and 2;,~+~ satisfies (2). Easy "bookkeeping" completes the 

construction. Thus the following lemma is clearly enough. 

LEMMA 9. Given an acceptable tree 2[ for {A1, ..., An}, and a x~ in the Skolem 

hull of the stem of ~, there is a ~ E  S~ and a subtree ~' of 2[ that is acceptable for 

{A1, . . ,  An, x~} such that for all branches b through ~', 

s u p ( s k  n = 

Proof. To show this, for each ordinal SExy ,  we define a game @~ played on ~:. The 

two players in the game, G (good) and B (bad), will alternate plays determining a branch 

through the tree 2[. At a stage of the game where a node aE 2[ has been determined: 

(1) If l (a)E {A1, ..., An} then there is a unique 3  ̀such that  a~3`E~. The rules require 

that  B must play this 3'. 

(2) If l ( a ) < x ~ ,  B plays a 3  ̀so that  a~3`E2[. 

(3) If l ( a ) > x ~  (and not one of the A/s), then B chooses a subset D of l(a) of 

eardinality less than l(a), and G chooses an element of {3`:cr~3 'Ef}\D.  

(4) If l ( ~ ) = ~ ,  then B chooses an ordinal ~<6 ,  and G chooses a 3`>/3 so that  

cr~3`E2[. 

In this way the players determine a branch through the tree 2[. If either player is 

unable to play at any stage then that  player loses, and if an infinite play of the game 

determines a branch b, then G wins provided that  sk~(b)nx~<5 .  Note that  this game 

is an open game for B, and hence determined. 
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CLAIM. There is a closed unbounded set of 6<x~ such that G has a winning strategy 

in the game r 

Proof. Otherwise, let SC ~:~ be a stationary set of counterexamples. Since each 

game is determined, for each 6ES, we can fix a strategy $5 for B. Let 0 be a regular 

cardinal greater than A +5, and N-< <H(0), E, A, <$5:6ES>, 92, {A1, ..., An}, ~, ... > be such 

that  IN[< x~, and NM x~ is an ordinal 60 E S (where as usual A is a well-ordering of H(0)).  

We now derive a contradiction by exhibiting a play of the game according to 35o 

that  produces a branch b with sk~(b)M x~ ~<6o. 

Since B's plays are determined by the strategy 35o, we need only describe what G 

does. Inductively we ensure that for all n, b l n E N  and is a legal play, with B following 86. 

Since N is closed under finite sequences, it suffices to show that  each player plays ordinals 

that  are elements of N. 

I f / (a)E{A1,  ..., An}, then the unique "y such that  a~'TE2~ lies in N. 

At a stage where l(cr)< x~, B is supposed to extend some a E �9 by playing an ordinal 

7 with a ~ E ~ .  Since NMx~Ex~ ,  any ordinal 7<l(~r) is an element of N. 

Suppose that  the play has constructed a of length n, and that  l(cr)>x~. By the 

induction hypothesis, l(a)EN. Since {$5:6ES} is in N and is a set of size x~, and the 

cardinality of u = U { S ~ ( a ) : 6 E S  } is less than l(a), we know that  N ~ l ( a ) \ U # ~ .  At 

this stage G plays an element ~/ENn(l(c~)\V). Since TEN,  a ~ T E N ,  and 7~S5(a) .  

To handle the last case, suppose now that  the play has constructed a of length n, 

and l ( a ) = x ~ ,  and 85o tells B to play an ordinal/J<60. Then G plays an arbitrary ordinal 

"7 such that  a ~ / E ~  and ~<7<(~o. (Such an ordinal exists, since N ~  "the successors of 

a are unbounded in x~".)  Clearly, 7 is in N, and hence a ~ T E N  and is a legal play. 

Now suppose that  b is the branch through ~ produced in this way, and let M =  sk ~ (b). 

Then M-<N, and so s u p M N x ~  ~<(~0. 

This contradicts the fact that  b is the result of a play of the game ~5o according to 

the strategy $5o. This establishes the claim. [] 

To finish the proof of the lemma (and hence the proof of Theorem 7) we describe the 

tree %'. Choose/3~ E S~ such that  G has a winning strategy in ~hZ. Call this strategy S. 

Fix a sequence (6~: mew} increasing and cofinal in/3~. We define if7 by specifying, by 

induction on the length of crEW, whether a is in ~ .  We will assume inductively that  

each a E ~  ~ is the result of a partial play by G according to the strategy S, and that  if 

/(c~)~{A1, ..., An, x~}, then { ' y : a~TE~ '}  has cardinality l(a). 

Suppose that  we have put crE~ ~. We now break into cases, according to the rules of 

the game. 

If I(a)E{A1, ...,An}, then a has a unique successor in ~, and this is B's only non- 
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losing play in the game. We put  this successor into ~ ' .  

If l ( a ) < x ~ ,  then we let the successors of a in ~1 be the same as the successors of a 

in %. Note that  in this case it is B's move in the game qS~, and thus each successor of 

in E is a legal play of the game according to the s trategy S. 

If l ( a ) > x ~ ,  we must define a collection of 7 < l ( a )  of cardinality l(a) so tha t  for 

each 7, a~TC~:  and ~/is the response by G to a move by B. 

To do this, define by induction on u < l(a)  ordinals 7 ,  E l(a) so that  ~,  is the response 

by 8 to B playing {~/,, : u '<  u} at the stage in the game where cr is played. Then we let 

the successors of a in ~ '  be { a ~  : uEl(a)} .  

The inductive hypothesis are clearly satisfied in this case. 

The final case is where l (a )=xa .  In this case, since we want x~ to be fixed in ~ ' ,  we 

must put a single successor of a into ~ ' .  In the game, at this stage, B plays an ordinal 

~ < x ~ .  If the length of a is m, let 7 be G's  response to B playing the ordinal (~m- The 

only successor of a in ~ '  is a ~ 7 .  

This defines a subtree ~ ' C ~ .  We must  see that  it satisfies the conclusions of 

Lemma 9. We verified inductively during the construction all of the conclusions ex- 

cept for the claim tha t  if b is a branch through ~ ' ,  then sup(sk~(b)Ax~)=/3~.  This is 

clear, however, since such a branch b is the result of a play of the game where G follows 

his s t rategy S in the game ~ .  Hence sup(sk~(b)Nx~)~</~.  On the other hand, there 

are infinitely many rn such that  l(b [ m ) = ~ .  For each such m, we have that  the unique 

7 with b[rn~TE~' is bigger than or equal to 5m. Since the 5m are cofinal in ~ ,  b itself 

is cofinal in fl~, and hence the equality is verified. 

This completes the proof of Theorem 7. [] 

4. T h e  co f ina l i t y  o f  A is less t h a n  

In this section we consider the case where the cofinality of A is less than  x,  and x ) w 2 .  

We will show tha t  the non-stat ionary ideal on P~(A) is not even A++-saturated. These 

results extend the work of Burke and Matsubara,  who showed in this case tha t  the 

non-stat ionary ideal is not A+-saturated. 

Our t reatment  of this case uses the following result of Shelah: 

THEOREM 10 (Shelah [Sh2]). Let ~ be a singular cardinal, and suppose that #<i~ 

is a regular uncountable cardinal. Then there is a set RC)~ + and a stationary set AC)~ + 

consisting of ordinals of coflnality #, such that whenever N-<(H(O), E , A , R } ,  if (~= 

NNA+cA,  then there is a cofinal sequence C c a  of order type p such that for all 13<a, 

C n / 3 e N .  
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In Shelah's parlance, the set AEI[A+]. 

Our main use of this theorem is 

LEMMA 11. Let )~ be a singular cardinal, and suppose that # is a regular cardinal 

less than x.  Then there is a stationary set ACA + such that for all stationary B c A  and 

all expansions of 92= (H(O), E, A, R, ... }, there is an elementary substructure N-< 92 such 

that 

(1) I N i < x  and N N x E • ,  

(2) sup(NC'l.~+) ~ B, 

(3) N is internally approachable of length #. 

Note that  if # = w  then the result is immediate: A is the collection of all ordinals less 

than A of countable cofinality. If #>w, this follows easily from Shelah's Theorem 10. The 

set AEI[)q provided in the conclusion of Theorem 10 works for Lemma 11. Note that 

every stationary set B c A  is also in I[,~+]. Further, if BEI[A+], then the set of elements 

N of IA(#), of cardinality less than x with the property that  the supremum of their 

intersection NN k + lies in B, is stationary. (See [FM2] for a detailed proof of this fact. It 

is shown by finding an a E B  such that sk~(c~)N,~+=a. If C=(a~:iE#} is the witness to 

the approachability of a,  then letting Nj = sk~((ai : i < j ) U (Ni : i <j}) essentially works. 

A very similar lemma is in [BMg].) 

Fix a set A as in the conclusion of Shelah's Theorem 10. Choose an increasing 

sequence (Aj :jEcf(A)} of regular cardinals cofinal in A, such that  1-Ijecf(~))~j/I (where 

I is the ideal of bounded sets in cof(A)) has true cofinality A +. Fix a continuous scale 

(f~:aEA+). 
As is typical in the PCF theory if N-<H(O) we will define XN( j ) = s u p ( NAAj ) ,  so 

)~NE 11 1j" 
The main tool of this section is the following result: 

LEMMA 12. / f  N-< (H(0), E, A, (f~: ctEA+},... ) is an internally approachable struc- 

ture of length ##cf(A) with ] g l < x  , c f (A)ENClxEx and sup(NM/~+)=c~, then 

X N = f ~  mod(I) .  

Proof. Let (Ni: i<#}  be a witness to the fact that  N is internally approachable. 

Then, since Ni E N,  XN, E N,  and since cf(A) C N,  XN (J) = sup{xN,(j):  i < #}. Moreover, 

if i< i '<p ,  x m ( j ) < X N r  for all j<cf(A).  

CLAIM. There are cofinal subsets X C p  and Y c a N N ,  and a j0<cf(A) such that if 

i , i '  are successive elements of X ,  there is a unique/3EY such that 

for all J > Jo, )IN~(j) < f ~ ( j )  < XN~,(J). 
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Proof. For each ~ENAA + there is an i such that  f~ENi and f~cNi. Hence there 

is a cofinal subset XC# such that  if i, i ~ are successive points in X, there is a ~ E N N a  

such that  XN~ <~I f~ <~XN~,, where the latter inequality holds for all j <cf(A). 

Choose, for each successive pair in X, such a/3 and let Y be the resulting set. Let 

/~i be the element of Y corresponding to i, i'. Then for each successive pair i, iIEX, there 

is a j i<c f (~ )  such that  for all J>Ji, XN~(j)<f~i(j)<XN~,(J). 
We break into cases. 

(1) #<cf(A).  Then there is a jo>sup{ji:iEX}. Clearly this j0 works. 

(2) #>cf(A).  In this case we can refine X and Y, replacing them with cofinal subsets 

where for all i, j i  =J0 for a particular fixed jo- Again this j0 clearly works. 

This completes the proof of the claim. [] 

To finish the proof of the lemma, we argue again by cases. If #<cf(A),  then the 

equivalence class of f~ is arrived at by taking supremums along any cofinal subset of c~. 

Hence for sufficiently large j >Jo, f~ (J) =sup~ey  f~(J) =suPiEx XN~(J) =XN(J). 
If cf(A)<#,  then Y and J0 witness that  c~ satisfies one of the equivalent definitions 

of "good point" given in the introduction, and hence, again for sufficiently large j>jo, 

f~(J)=suP~EY fz(J) = supi~x XN,(j)=XN (j)- 
This concludes the proof of Lemma 12. [] 

THEOREM 13. Suppose that >~>~2 is regular and A>x is a cardinal with cf (A)<x .  

Then the non-stationary ideal on Px(A) is not A++-saturated. 

Proof. Since >~>R2 we can choose a regular cardinal p < x  such that  ##cf(A) .  Let 

A be as in Lemma 11. By Shelah's Theorem 2, we know that  there is an antichain 

.4 of cardinality A ++ in P(A) modulo the non-stationary ideal. If we enumerate A as 

{B~ :c~EA++}, then each B~ has non-stationary intersection with the diagonal union of 

{BZ:~ <a} .  By intersecting each B~ with a club set, we can assume that  the intersection 

is, in fact, empty. Thus without loss of generality, we can assume that  for all B1 and B2 

in .4, B1A B2 is bounded. 

By Lemma 11, for all stationary B c A ,  SB={NEPx(H(O)): sup(NAA+)EB and N 

is internally approachable of length #} is stationary in P~(A+). By Lemma 12, we know 

that  for all internally approachable N, XN--If~ where a = s u p ( N A  A+). 

For each BE.A, let TB={NAA:NESB}.  Then each TB is the projection to A of a 

stationary set, and hence is stationary. We will be done if we can show: 

If B, C are distinct elements of .4, then TBNTc is non-stationary. 

Let 7EA + be large enough that (BAC)\~/is empty. Let NETs be such that  for all j ,  

f.~(j)EN. Then, XN=f~ for some aEB\ ' y .  Hence, there is no MESc, with MNA=N. 
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To summarize, if N is in the closed unbounded set of elements of Px(A) including all 

of the ordinals f~(j)  for j<cf(A) ,  then N cannot be in both TB and To. Thus the 

intersection is non-stationary. 

This completes the proof of Theorem 13. [] 

5. ~ is w e a k l y  i n a c c e s s i b l e  

In this section we consider the case where x is weakly inaccessible and ~ has cofinality x. 

The main result of this section is 

THEOREM 14. Suppose that x is a weakly inaccessible cardinal and A> x. Then the 

non-stationary ideal on P~()~) is not A+-saturated. 

As we have shown non-saturation in the cases where the cofinality of A differs from x, 

we have only to handle the case where cf(A)=x.  

Define a map 7~:P~(s by ~(x)=xNA. Then ~ induces a map from 

P(Px(A+)) to P(P~()~)), which we shall also call ~. As remarked in the introduction, it 

is a standard fact that  ~ takes stationary sets to stationary sets and the inverse image 

by 7~ of a stationary set is stationary. 

LEMMA 15. Let S c P ~ ( A  +) be stationary. Suppose that the non-stationary ideal 

restricted to 7~(S) is saturated. Then there is a closed unbounded set C c P ~ ( A  +) such 

that for all stationary S'C 7r(CN S), the set {NE S : ~(N) E S'} is stationary. 

Proof. If B c ~ ( S )  is stationary, we will say that  B is bad if { N E S : N N A E B }  is 

not stationary. Let A c P ( P ~ ( A ) )  be a maximal antichain among the bad sets. By the 

saturation, we can assume that A={Ba:c~EA}.  Further we can assume that if NEBa, 

c~EN. 

For each a < A, let Ca C P~ (A+) be closed and unbounded such that for all NE Ca N S, 

NNA~Ba.  Let C=ACa,  and let TCTr(CNS) be stationary. If {NES:NN)~ET}  is not 

stationary, then T NBa is stationary for some a < A. Hence without loss of generality we 

may assume that TCBa.  Let N E C N S  with NNAET.  Then, since T c B a ,  s E N .  Hence 

NECaNS,  and so NNA~Ba.  [] 

Just for interest we prove 

PROPOSITION 16. The converse of this lemma is also true: if x,  A and ~+ have 

this projection property for all stationary sets, then the non-stationary ideal on P~(A) 

is saturated. This shows, a fortiori, that there is always a stationary set on which this 

projection property fails. 
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To see why the proposition is true, suppose that  if SCP~(A +) is stationary then 

there is a club set CcP,~(A +) such that  for all stationary TC~r(CNS), we know that  

7r-l(T) is stationary in P~(A). 

Towards a contradiction we assume that  {B~ :aEA + } is an antichain in Px(A). Let 

B '~=rr-I (B~)  and S be the diagonal union of the B ' .  Find a closed unbounded set 

CC P~(A +) as in the assumption. 

Then {B~}~c~+ is a maximal antichain below Ir(CNS). For if BCTr(CNS) is sta- 

tionary, and for all c~, BNB~ is not stationary, let D~ be a closed unbounded set such 

that  for all a, B~ND~NB is empty. Let D ' = r r - I ( D ~ )  and D'  be the diagonal intersec- 

tion of the ' ' D~ s. Let NGTr-I(B)NCND'NS. Then for some hEN,  NEB ' .  But then 

NMAED~NBNB~, a contradiction. 

Let T=P,~(A)\Tr(CNS). Then clearly {T}O{B~:aeA +} is a maximal antichain in 

P,~(A) modulo the non-stationary ideal. 

Let T'=~r-t(T). We show that  T '  together with the B"  form a maximal antichain in 

Px(A+). Otherwise there is a U' that  is stationary in Px(A +) such that  ~r(U')c it(CA S) 

and for all a, U'NB" is non-stationary. Choose D" such that  for all a,  U'NB 'ND'=O.  

Let D=AD" and U*= U'ND. By assumption we can assume (by further intersecting U* 

with a closed unbounded set if necessary) that  for all stationary RC 7r(U*), 7r- 1 (R) A U* 

is stationary. Since 7r(U*)cTr(CNS) and is stationary, there is an c~ such that  B~Nrr(U*) 

is stationary. Hence 7r-I(B~N~r(U*))NU * is stationary. Let Nerr-l(B~NTr(U*))nV * be 

such that  c~ E N. Then NE U* N D~ N B ' ,  a contradiction. 

Let P.l be an algebra on A + such that  any N-<gt in P• +) is in the diagonal union 

of this antichain. Let D c P x ( A )  be the closed and unbounded set of N such that  

sk~(N)NA=N.  Let NED be arbitrary. Let N ' = s k ~ ( N ) .  Then N '  is in the diago- 

B' T' nal union of the { ~}ae~+U{ }, and hence for some (~Esk~(N), NEB~UT. Thus D is 

contained in the diagonal union of {B~ :c~ E sk~(l)} U {T}. Since sk~(A) has cardinality A, 

we have a contradiction to the fact that  the antichain had cardinality A% [] 

We now fix, as usual, an increasing sequence of regular cardinals (Ai : iEx)  such that  

the true cofinality of the reduced product of the Ai's modulo the ideal of bounded sets 

on ~ is A +. Fix a continuous scale (f~:c~<A +) in this reduced product. 

LEMMA 17. Let T be the collection of MEP~(A +) such that 

(1) cf(Mn ): l, 
(2) there is a sequence (6n:nEw)CMNA +, and an ioEMNx,  such that XM(i)= 

sup{fh~(i): new}  for all i E x n M ,  i>io. 
Then T is stationary. 

Proof. As usual let 0 be a very large regular cardinal and H(O) be a sufficiently rich 
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structure to include all the information about the situation at hand, such as the scale, 

the various cardinals mentioned, etc. It suffices to produce an elementary substructure 

of H(O) in T. 

Let M-< H(0) be such that  x C M, M has cardinality x and is internally approachable 

by a sequence (Nk:kEoJ} of length w. Then for all k, there is a 5kENk+l such that  

XNk <*fs~. Choose an increasing sequence (M~:c~<x) such that  M o N ~ E ~ ,  IM~I<~, 

each NaEMo, and M,~cM. Then for some c~Ecf(wl), (M,,, (fs~)}-<(M, (fs~}). 
We show that  M ~ A  + is in T. Note that  since each fs~EM~, and c~ has uncount- 

able cofinality, there is an i o E M , ~  such that  for all i between i0 and ~, and all k, 

XN~ (i) < f,~ (i) < XN~+~ (i). Thus for all i between i0 and ~, XM~ (i) = sup{xN~ (i): k ~ w}-- 

sup{ fs~ (i): k �9 w}. [] 

For each N E T  we fix an increasing sequence (aN: i E a)l } of ordinals cofinal in N A x. 

Let GC P(P~(A))/NS be generic with zT(T) in G. If we form the generic ultrapower of V 

by G to get j:  V-+Mc V[G], where M is transitive, then j " A E M  and the sequence (c~J"~ : 

iEo21) is a cofinal increasing sequence in x. This sequence determines a subsequence of 

the cardinals (Ai: iEx},  which we will denote by (A~:iEwl). Since this is a subsequence 

of the hi's, it makes sense to view each f~ as an element f* of I-[i~r )~. Also, for a 

typical NE T, the sequence (aN: i E 0~1 ) determines a version of the sequence of ~ relative 

to NnA,  and for i>io each NN)~  has cofinality w. 

By Lemma 15, by intersecting T with a closed unbounded set if necessary, we can 

assume that  for all stationary SCTr(T), 7r-I(S)f~T is stationary. 

LEM~A 18. For every generic GcP(P~(s with r~(T)EG, V[G]~(f~:c~eA +} 
is unbounded in I-L<~, )~ (modulo the filter of countable sets). 

Proof. Suppose that the lemma fails, and take G generic with 7r(T)E G as a counter- 

example. Let j:  V-+McV[G] be the generic elementary embedding, where M is transi- 

tive. By shrinking T if necessary, we can assume that  7r(T)IF-(f~:a<A+l is bounded in 

I]~E~I )~' Hence there is an hEl~i<~ol J"~* such that  for all a < ~  + and all large enough 

i<wl ,  h(i)>f~(~)(i). Note that  hEM. Hence, by the saturation there is a g:Tr(T)-+V 
*N such that  for almost every xErr(T), g(x)EI]ie~()~ X), and such that  for all c~<A +, 

7r (T)Ik for all sufficiently large i < wl, [g] • (i) > fj(a)(i)- 

Let N be a typical element of T. Then g(NN)~)E[IiE,oI()~*MN). In particular, for 

all i < wl, g(NN A)(i) < )/~v (i) (where)C~v (i) = sup NN ~*). Since NE T, there is a sequence 

(an:nEw} such that  for all large enough iEwl, X*N(i)=sup{f~,~(i):nEw}. Hence for all 

large iEwl,  there is an n such that  g(NM)~)(i)<f~(i). Hence there is an unbounded set 

of i<wl, and an n, such that  f~=(i)>g(NA)~)(i). 
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Using a regressive function argument,  we can find a fixed (f and a s tat ionary T'C T 
such that  for all N E T ' ,  g(NA A) (i) < f~ (i) for unboundedly many i E wl. 

Suppose now that  7r(T')EG. Then in M, j(g)(j"A)(i)<f](~)(i) for unboundedly 

many i < wl, a contradiction. [] 

Using Lemmas 15-18 we can find a generic GcP(Px(A)) such tha t  in V[G]: 

(1) {f*:c~<A +) is unbounded in 1-[i<~1 )~, 

(2) c f ( ~ ) = w l  and for all i, cf(A~)=w. 

Working now in V[G], we apply the "Shelah Trichotomy Theorem" [Sh2] to see that  

in OR~l/{bounded sets}, the sequence (f~:(~<A+) either 

(1) has an exact upper  bound g in OR~l/{bounded sets} such that  for almost all 

i , j E w l ,  cf(g(i))=cf(g(j)), or 

(2) there are sets A~CA*, with IA~iEwl, and an ultrafilter DcP(w~) such that  for 

all a < A  + there is a / 3<A + and a gE1-L<~IAi such tha t  f~<Dg<Df~, or 

(3) there is a ge l -L<~ A; such tha t  the sequence of equivalence classes of {i: 

if(i) ~<g(i)} modulo the ideal of bounded sets in wl is not eventually constant. 

Note that  by Lemma 18, if the sequence ( f~ , :a<A +) has an exact upper bound 

then it must be given by the function g(i)=A~'. Since each A~ has cofinality w, we can 

choose cofinal countable sets Ai C ~*. Since g is an exact upper  bound, for every function 

h E ~IiE~l Ai, there is a ~ such tha t  h <*f~.  Further, since the Ai are cofinal, for all/3 < A +, 

there is an hEI] i~Ai  such tha t  f~<*h. Hence if there is an exact upper  bound, the 

sets {Ai} are a witness to being in case (2), for any ultrafilter D. 

We argue that  both (2) and (3) above lead to a contradiction. In either case there 

is an ordinal 5E~ + of cofinality w2 (in both V and V[G]) such that  either 

(in (2)) for all a< ( f  there is a / 3 < 5  and a gEI-L<~Ai such tha t  f*<Dg<Df~, 
o r  

(in (3)) the sequence of equivalence classes of {i :f~(i)<.g(i)} (modulo the ideal of 

bounded sets in wl) for c~<5 is not eventually constant. 

Returning to V for the moment,  choose a cofinal X C  5 of order type w2. Then, since x 

is regular in V, there is a j < x  such that  for all i>j and all c~<~ in X, f~(i)<f~(i). Thus, 

in V[G], there is an i0Ewl such that  for all a < ~ ,  a , ~ E X ,  and all i>io, f*(i)<f~(i). 
Work now again in V [G]. 

If (2) holds: Build a cofinal set X ' c X  such that  for all a < ~  in X ~, there is a 

9EYLe~Ai such that  f~<Dg<Df~. If  c~<a'  are successive elements of X', choose 

i~>io and a g~E[Iie~A~ such that  f~(i~)<g~(i~)<f~,(i~). Then there is a j>io such 

that  for cofinally many a E X  ~ we have that  i~=j, and hence we can assume that  for all 

aEX ~, i~ =j. But then if c~</3 are arbi t rary elements of X ~, 

i f(j)  < g~(j) < f~,(i) < f~(j) < gz(j). 
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But this is a contradiction, since it implies that  Aj  has cardinality at least 022. 

If (3) holds: Choose X ~ c X  cofinal in (~ so that  if a, f lEX ~ are distinct, then mod- 

ulo the bounded subsets of 021, [{i:f~(i)<~g(i)}] r [{i :fz(i)<~g(i)}]. Since the f~'s are 

increasing with c~EX ~ at every i>io, the sets {i>i0 :f~(i)<~g(i)} are strictly decreasing 

with a E X  ~. However, it is impossible to have a strictly decreasing sequence of subsets 

of 02 1 of length 022, a contradiction. 

This finishes the proof of Theorem 14 by showing that  if x is inaccessible, there is 

always an antichain in P ( P ~ ( A ) ) / N S  of cardinality A +. 

6. S o m e  e x a m p l e s  

In this section we give some examples to show that  our results cannot be extended in 

certain directions, by showing that  various saturation properties of the non-stationary 

ideal are consistent. Curiously, the examples are arrived at by forcing over L. 

One of the main tools in these results is a "reverse covering theorem" due to Magidor: 

THEOREM 19 (Magidor [M]). Suppose that there is no inner model with an Erd6s 

cardinal. Then for all regular x>~wl and all A>~x there is a closed unbounded set 

C C P x ( A )  such that each N E C  is a countable union of elements of L. 

An immediate corollary of this theorem is that  if one does countably closed forcing 

over L then there is a closed unbounded subset of Px(A) consisting of elements of L. 

THEOREM 20. Let x ~ A  be cardinals in L with ~ w 2  regular. Let #=A <~. I f  

V~#  ++ and G c A d d ( w ] , v )  is generic over L, then in L[G] the non-stationary ideal on 

P~(A) is #++-saturated. 

COROLLARY 21. More explicitly (working in L): 

(1) I f  x>~w2 and cf (A)<x,  we have A<~=A +. Hence adding A +3 generic subsets 

to wl makes the non-stationary ideal on P~(A) A+3-saturated. Since (A<~)L[C]=A +3, 

the non-stationary ideal on P~(A) is A <~-saturated. 

(2) I f  c f (A)~x~w2  then A<~=A, and adding A +2 generic subsets of Wl makes the 

non-stationary ideal on P~(A) be A + 2 = A <~-saturated. 

Proof. Let GcAdd(021,V) be generic over L. Then by Theorem 19 we know that  in 

L[G] there is a closed unbounded subset of P~ (A) that  lies in L. This set has cardinality #. 

Towards a contradiction, suppose that  (As :c~<# +2) is an antichain in Px(A) modulo 

the non-stationary ideal. We can assume that  As C L. 
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For each pair a, ~E#  +u, choose a term C~,Z for a closed unbounded set such that  

the empty condition forces that  

We can assume that  the empty condition forces C~,Z C L. 

Now, as usual, let 0 be a large regular cardinal. 

If M-~91=(H(0), E, A, (C~.z : ch ~<#+2) ,  {% A, ~}} is an elementary substructure of 

size < x  such that  M M x  is an ordinal, c~, ~ E M  and p is an M-generic condition for 

Add(w1, ~), then pI~-MA.~ECc~,f~. Moreover, since x~>w2 the empty condition is generic 

over M. 

In L[G], for each ch ~<#+2,  A~NC~,z is a stationary subset of L. Hence, working 

in L, for each pair c~</3Ep +2 we can choose M~,~-~91 such that  

(1) ~, ~EM.,~,  
(2) if N=M~,~MA then there is an 2tl~,~-generic condition p N  such that  

N p~,z Ik NE Am. 

Still in L, since IP~(A)I=#, we can apply the ErdSs-Rado Theorem to conclude 

that  there is a set XCp +2 of cardinality p+ and an NEPx(.~) such that  for all c~<~EX, 

M~,ZN)~=N. We claim that  for all ~ < / 3 < ~ < S E X ,  p~,z is incompatible with p~,~. This 

yields a contradiction to the w2-c.c, of Add(wl, @. 

Let c~</~EX. Then J~I~,~MA=N. Since the empty condition forces that  M~,~MAE 

C~,~ we see that  for all c~<~EX, the empty condition forces that  NEC,~,~. Since each 

p~,zIFNEA~ we see that if q<~p~,z,p~.~, then qli-NEA,~A.~C(~,.~, a contradiction. [] 

7. Mutual  stationarity 

In this section we give some results describing our meager knowledge of mutual station- 

arity. 

7.1. De f in i t i ons  a n d  bas ic  fac ts  

Recall: 

Definition 22. Let K be a collection of regular cardinals with supremum 5, and 

suppose that  we have S ~ C x  for each x E K .  Then the collection of sets {S~ : x E K }  is 

mutually stationary if and only if for all algebras 91 on 5 there is an N-< 91 such that  

for all xENnK,  s u p N M x E S x .  
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We begin with a few easy observations about mutual stationarity. These ideas are 

implicit in Baumgartner's paper [Ba]: 

(1) Any subset of a sequence of mutually stationary sets is mutually stationary. 

(2) If N-~(H(O),E,A,. . . )  (where 0>5 is regular) and ~,EN, then for all regular 

p, EN\(~ '+ 1), 

sup NN# = sup(sk ~(NU v) N#). 

(3) Suppose that {S, , :xEK} is mutually stationary, KD(~,+I)=~,  and for all 

x E K ,  S,,ccf(~<u). Then there is an N that witnesses mutual stationarity with INl=u. 

This last remark can be seen as follows: Let 92 be an expansion of H(O). By the 

second remark, we can assume that there is a witness M-< 92 to mutual stationarity such 

that u + l c M .  Choose F: (KDM)xu---~M such that for all x E M N K ,  F ( x , . ) : u - + x  

cofinally in sup(MNx). Then if we let N be the Skolem hull of the expansion of M 

determined by F, z/and the functions in 92, we find that for all x E N N K ,  sup(NNx)= 

sup(MAx). 

Using this it is easy to prove the following lemma (essentially due, in different form, 

to Baumgartner [BAD: 

LEMMA 23. Let v be a regular cardinal less than the least element of K.  If  {Sx: 

xEK} is mutually stationary, and for all x, S~ccf(~<~), then for all A1, ..., An greater 

than ~ and not in K,  and all sequences of stationary sets Sa~c Ai ncf(~< ~), the sequence 

{S~: xEK}U{SXl,... , S~,~} is mutually stationary. 

Pro@ Using induction it clearly suffices to prove this in the ease where n=  1. So 

suppose that A is a regular cardinal greater than v that is not in K, and SCANcf(~<v). 

Let 9.1 be an algebra expanding H(O) for some large 0. Suppose that K = A U B  where 

for all xEA, x>A, and for all xEB,  x<A. Then {Sx:xEA} is mutually stationary, 

so by the remark, we can find an M-492 such that for all xEMNA, sup(Mnx)ESx,  

, k+ICM and IMI=A. Choose a function F: (KNM)xv--+M such that for all x E A N M ,  

F(x , .  ): p-+xNMa cofinally. 

Let {Me :c~<A} be a continuous chain of elementary substructures of (M, F) such 

that AEM0, IMal<,k and M~NAEA. Then there is an a such that M~N,k=c~ESx. Let 

G: u-+c~ cofinally. 

Then Me and the functions F, G determine an algebra ~ on c~ such that if N0-<~ 

then the Skolem hull of No under the functions of 92 and F and G determines an elemen- 

tary substructure N-< (Ms, F, G) such that NAn=N0. 

Since the sequence (Hx :xEKN@ is mutually stationary, there is an N0-<~, vcN0, 

such that for all x ~ N o n K ,  sup(NoNx)ES,,. If we let N be the Skolem hull of N0 under 
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the functions of 91 and F and G, then: 

(1) for all xCKNc~, s u p ( N N x ) = s u p ( N o n x ) E S ~ ,  

(2) supNN~=c~CS~,  

(3) for all x E N N K ,  s u p ( N n x ) = s u p ( M n x ) E S x .  

Hence N is the witness to the mutual  stat ionari ty of {S~ : x E K U { ~ } } .  [] 

Thus with minor restrictions, the notion of mutual  stat ionari ty is invariant under 

finite variations in  the sequence. 

There are several situations where the notion of mutual  stat ionari ty is trivial. In w 

we showed that  if all of the sets S~ consist of points of countable cofinality then the 

sequence is mutually stationary. For orthogonal reasons, if all of the cardinals x c K  

are measurable and ]K I is not too big, then indiscernible arguments yield the mutual  

stat ionari ty of any sequence of s tat ionary sets. 

Thus we are mostly interested in the case where the cardinals x are relatively small, 

and the stat ionary sets consist of points of uncountable cofinality. 

Liu ILl, answering a question of Baumgartner ,  showed that  there are sequences 

S n c  ~nN cf(>w) that  are mutually stat ionary and such that  the cofinalities of the point 

in S ~ are not eventually constant. Shelah and Liu extended these results in [LS]. 

In what follows we generally restrict ourselves to sequences {S~} consisting of points 

of the same cofinality. For simplicity we focus on the case of a sequence of sets S n C Rn, 

though most of our results generalize in an obvious way. 

Remark. The statement  that  there is a mutual ly s tat ionary sequence of sets s n c  wn 

such that  Snccf(~>wk~) and {kn: nGw} is unbounded in w implies that  l ~  is Jonsson. 

Silver has shown a strong converse to this fact. (Silver showed that  if ~ is Jonsson, and 

2 ~ ~  then there is a sequence kn tending to oo such that  Sn={c~Cwn:cf(c~)=k~} is 

mutual ly stationary. See [KM].) 

For this reason for the rest of this section we will pay at tention to the case where 

(S n) concentrate on ordinals of bounded cofinality. 

At this t ime we do not know if it is consistent tha t  there is a model of set theory 

in which every sequence of s tat ionary subsets of the l%~'s of a fixed cofinality is mutually 

stationary. However, we do know that ,  unlike the case of countable cofinality, this is not 

a theorem of ZFC. 

7.2. M u t u a l  s ta t ionar i ty  in L 

THEOREM 24. Assume that V=L.  For all k ~  l there is a sequence of stationary sets 

(Sn:nEw} such that S,~C wn N cf(wk) that is not mutually stationary. 
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The proof of this theorem uses some elementary fine structure technique, as well as 

some of the techniques of Jensen's Covering Lemma. The theorem is actually much more 

general. We give a proof for the Wn'S for concreteness. It  is easily seen to generalize to 

other sequences of cardinals. 

For the rest of this discussion, assume that  V=L. For each singular ordinal c~, we 

can associate the least ordinal 7 such that  there is a ~<c~, a finite set ~ C ~  and an 

n e w  such that  Hu l l~ (~U~)  is cofinal in a (where Hull J~ denotes the E~-Skolem hull 

in 

If  c~ is singular, then such 7, ~,P, n exist, and we can associate to c~ the lexicograph- 

ically least tuple (% n, ~ ,~ )=(V(a ) ,  n(a), (~(c~),i~(a)) with HullJ~(6U~) cofinal in c~. 

Fix natural  numbers m > k ~> 1 and n ~> 1. Define 

s n  = e 

LEMMA 25. If k,m,  nEw\{O} and m > k  then S n is stationary. Moreover, for fixed 

n, k the sequence (Sn,~ : nEw} is mutually stationary. 

Proof. Fix m > k  and n~>l. Suppose that  S~  is not stationary. Let C, a closed 

unbounded subset of w~, be a witness. 

Let x = w,~+ 1. Recall that  an ordinal/3 < x is ( n -  1)-stable if and only if JZ ~ ~._1 J~- 

Standard arguments show tha t  the set of ( n -  1)-stable ordinals form a closed unbounded 

set in x. 

Let V be the wkth (n--1)-stable ordinal, above the stage where C is constructed. 

LEMMA 26. V is En_l-admissible, but not En-admissible. 

The first assertion follows from the fact that  the union of a E~_l-e lementary chain 

is a E~_l-e lementary extension of every structure on the chain. 

To see the latter, we go by contradiction. There is a function H:  J r  • w - + J r  that  

is E~_I,  and {~:CEJ~ and J~ is closed under H} is exactly the set of ( n -1 ) - s t ab l e  

ordinals less than "y that  construct C. (H  is a function coding E~_l-Skolem functions.) 

Since this set has order type wk and is definable in a An-way, we have a contradiction. 

The lemma follows. [] 

Let N=Hull~'(wkU{C}). The proof of the previous lemma shows that  N is cofinal 

in Jr. 
We show that  sup(NNwm)ES~MC. Let N'=Hull~_I(NUw,~_I). Then standard 

arguments verify: 

�9 a = s u p ( N n w , ~ )  is an ordinal in C. 

�9 N is a En- l -e lementa ry  substructure of N ' .  
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�9 I f  7" i s  a En_l- term in N for a function from win-1 to ~dm, then w is bounded in a. 

In particular, sup (N N w,n) = N ~ N win. 

�9 Similarly supN=supN'. Thus N-<znNq 
Let N be the transitive collapse of N ~. Then: 

�9 N =  J~ for some -.  

�9 J , = H u l l ~ ( w m _ l U { C } )  where C is the image of {C} under the collapse map. 
�9 

�9 

Thus, if a has cofinality wk, aECNS~. 

What  remains is to show that  the cofinality of c~ is wk. We show that  there is a closed 

unbounded set DCwk such that  if ~<~ are both in D, then sup(Hul l~(~U{C})nwm)< 

sup(HullJ~(~/U{C})Nwm). This suffices to see that  cf(a)=Wk. 

For ~<Wk, let Z~ satisfy ~re: J~e~Hullg~(~u{C}) and let 7e=sup(HullJ~(~U{C})).  

Then the sequence of 7~ is continuous, increasing and unbounded in 7. Without  loss of 

generality we can assume that for ~ED, J~e is a En_l-elementary substructure of Je. 

Hence the map 7r~, viewed as a map from Jze to J~e is En_Felementary  and coil- 

nal. Hence the map is E~-ele~entary, and thus Hullg~(~U{C})-~E.J~e. In particular, 

Hull J~ (~U {C}) = Hull J~ (~U {C}). 

Let ~<~/ be elements of D. Then 7~eHull,J~(~?U{C}). Hence Hullg~(~U{C})e 

Hull~?(~U{C}), and thus sup(Hull~(~U{V})Nwm)eHull~(~U{C}), as desired. 

To see the second claim (which is actually stronger) suppose that  it is false, and let 

P2 be a Skolemized algebra on R~ witnessing the non-mutual stationarity of (S~:mEw}. 
We let g be 1~+1 and "y be the wkth (n -1) - s tab le  ordinal in x above the stage where 

~t is constructed. Then as in the first part of the lemma, 7 is En_l-admissible, but not 

En-admissible. Moreover, the sequence of stable ordinals below 7 that  construct P.I is 

definable in a An-way. 

Let N=Hull~(wkU{P2}). Then (NNR~)-<P.I. 

Let a , ~ = s u p N N w ~ .  We claim that  amES~, yielding a contradiction to P2 being a 

counterexample to the mutual stationarity of the sequence {sn:  m>k I. From here the 

proof goes as in the previous case, noting that  the role of m in the previous case was 

only to fix 7. 

This finishes the proof of the lemma. 

THEOREM 27. Fix k>~l. Suppose that h:w--+w. Then the sequence (shm(m):m>k} 
is mutually stationary if and only if the function h is eventually constant. 

Proof. Suppose that h is eventually constant. Since mutual stationarity is preserved 

under finite variations we can assume that  h is constant everywhere. Hence this direction 
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of the theorem follows from the previous lemma. 

For the difficult direction suppose that  (sh(m):m>k} is mutually stationary. Let x 

be a large regular cardinal, and let N-<Jx be a witness to the mutual stationarity for 

the algebra (J,~, @. By earlier arguments we can assume that wkCN. Let N~J~ be the 

transitive collapse, and j:  J;~-+ Jx  be the inverse of the collapsing map. 

Let rh=w/~. Then for all l>>-k, cf(r/l)=wk and wkCJ~. 
Let 7 be the least ordinal such that for some I there are n, 5,fi (with 5<rll and/~C7) 

such that  Hull~(SUi6) is cofinal in r/l. The following claim is standard. 

CLAIM. For all l'>~l, Hull~(SuiY) is cofinal in 7?l,. Moreover, for all rEcv, 
H(wr) J~ =H(czr) J" (where H(w~) is the collection of sets of hereditary cardinality less 
than a~r ). 

Let no be the least integer such that  for some ~z, Hull~(SUfi) is cofinal in some r/l. 

We show that  h(m)=no for all rn>~l. 
Fix an m>~l, and let Nm=Hullg'~(NUw,~_I). Then the following claims are stan- 

dard: 

(1) If a,~=sup(NMw,~) then a,~=N,~Sw,~. 

(2) sup(NmNwm,)=sup(NAwm,) for all m'>/m. 
(3) sup(N) =sup(Nm). 

(4) j:  N ~ N , ~  is elementary. 

Following the proof of Jensen's Covering Lemma, we can form a directed system 

S of E~o_l-Skolem hulls of sets of the form (YU:Y' (for 5'<~7 and g 'E  [7] <~) in J~, and 

sending them by j to a directed system SJ of sets with E,o_l-embeddings between them. 

The elements of SJ and the embeddings lie in N,,~. 

We will argue later that  lim SJ is well-founded and hence isomorphic to some J~.~. 

Assuming this to be true, there is a cofinal Eno_l-embedding ): J ~ J ~ m .  Since j is 

cofinal, it is Eno-elementary. 

In particular, this implies that  

(1) Hull J~m (j(5)Uj(i~)) is unbounded in am, 

(2) for all 5'<am, ~E [%~]<~ we know that  HullJ~_'~(5'Ufi)EJ~m, 
J~r / 

(3) for all 7 '<7m, 5'<a,~, i~E [Tm] <~, we know that  Hull~ (5 Up)EJ~.~. 

Thus, we know that  n(am)=no, as desired. 

What  remains is to outline the Covering Lemma argument. 

Define a directed system of transitive structures indexed by pairs (5,i Y) such that 

5<r],~ and lYE [Tm] <~~ To such an index i=(5,iY), we associate the transitive collapse N~ 

of Hull~J;_i(StAiY). Note that  NiEH(~Tm) J~. 
If i=(5,f i )  and i'=(5',~') are indices, set i<*i' if and only if 5<5' and fiC~'. For 
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i<* i', Hull~_l(6Ui~ ) -<Z,o_, Hull~;_l(~'Ui~' ). This induces a natural E,o_l-embedding 

fi,i, from Ni into Ni, , induced by taking collapses. 

Thus we get a directed system 8 = {Ni, fi,i' : i <* i' } C HO?m) J~ =HO?m) J€ By apply- 

ing j pointwise to this system we get a new directed system 8J = { j (Ni) ,  J(fi#'): i<* i'}. 

We need to see that  the direct limit of S j is well-founded. 

If this fails there is a countable set of indices I such that  lim{j(N~),j(f~,~,): 

i<*i ~ and i , i~EI} is ill-founded. Since rlr~ has uncountable cofinality there is a v<r/m 

such that  for all iEI ,  if i=(&/~),  then ~Cv. Further there is a countable C such that  if 

i= (&i~)El ,  then/~EC.  Let Jo be the transitive collapse of HullJ;_~(vUC).  Since rlr~ 

has uncountable cofinality, 0<~?m. 

For all iE I ,  there is a natural ~no-l-embedding gi from Ni to Jo such that  if i<*i ~, 

then gi, ofi,i,=9i. Moreover, 9iEJ.~. Applying j ,  we get natural embeddings j(gi) from 

j (Ni )  to JJ(o) that  commute with J(fi,i,). Hence there is an embedding l imj(g i  ) =g from 

the direct limit of { j (N~) : iEI}  into JJ(o), contradicting ill-foundedness. 

7.3. Splitting mutually stationary sequences 

We now investigate the splitting properties of mutually stationary sets, about which we 

know very little. Again, we work on the Rn's for clarity, although the results clearly 

generalize. 

We will adopt the following notation for simplicity: If N is a set, we will define the 

characteristic function of N to be XN (n )=sup(NN wn). Thus the statement that  S n c  Wn 

(nEw) is mutually stationary can be formulated: for all algebras 91 on b~, there is an 

N-<91 such that  for all n, XN(n)ES n. 

THEOREM 28. Assume that 2s~ Suppose that snC~n (n>k)  is a mutu- 

ally stationary sequence of sets. I f  we split each S '~ into two sets S~ and S'~, then there 

is a function f: w-+ 2 such that the sequence S~(~) is mutually stationary. 

Proof. Suppose that  the theorem is false. Then for each f :  w--+2, there is an algebra 

9"11 on ~ such that  if N-<91 1 then there are arbitrarily large n such t h a t  Xg(n)~S~(n).  
Since 2s~ there is an algebra 91 on R~ such that  if 2~~ then for all f ,  N-<91f. 

Since the original sequence of S ~ is mutually stationary we can find an N such that  
>2~o N-<91, 2 ~ ~  and for all ~n , XN(n)@S n. Then this N determines an f:w--+2 such 

that  for all ~o I( ) R,~>2 , X N ( n ) E S n n .  

But N-~ 91f, a contradiction. [] 

We note that  this result, in conjunction with Lemma 23, gives similar results for 

sequences (S ,  : n>0)  of ordinals of the appropriate eofinality. 
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Definition 29. Let S n c  Rn be a mutually stat ionary sequence of sets. We say that  

the sequence weakly splits if there is a part i t ion of each S n into S~ and S{ ~, and functions 

f ,g:w-+2 such that  for infinitely many m, f(rn)~g(m), and both {Sn,~ "nEw} and 
f (  ) '  

{S~(~):nEw} are mutually stationary. Equivalently there is an infinite set ACw and a 

sequence of partit ions S~=S~tJS~ such tha t  for i = 0  or 1, the sequence T n defined by 

taking T~=-S n for nEA, and Tn=S  n for n~A, is mutually stationary. 

The sequence splits if and only if there is a parti t ion of each S '~ into $3 and S~, 
n " n  n . and a function f : w - ~ 2  such that  both {SS(,~ ). Ew} and {Sl_S(n).nEw } are stationary. 

Of course, in this case, we can always find S n so that  f is constantly 0. 

We do not know whether every mutually s tat ionary sequence of subsets of the Rn's 

can even be weakly split. However, we can show that  if the continuum is less than  ~ ,  

and there is a mutually s ta t ionary sequence SnCwn (nEw) that  does not weakly split, 

then there is an indecomposable ultrafilter on R~. This implies that  every sequence of 

mutual ly s tat ionary sets can be split in the constructible universe L. 

Definition 30. Suppose that  ACw, and tha t  U=(Un:nEA) and T=(T~:nEA)  are 

sequences of mutually s tat ionary sets. We say that  U C T  if and only if for all nEA, 
n T n  U C . If  5 r is a collection of mutual ly s tat ionary sequences of sets T=(Tn:n>k) ,  

then we say that  5 r is a filter provided that  5 r is closed upwards under c ,  and whenever 

T, U are elements of 9 r ,  there is a VE~- such that  for all large enough new, v n c  U n n T  n. 

LEMMA 31. Suppose that 2 ~ ~  and S=(Sn:n>k)  is a mutually stationary se- 

quence of sets that does not weakly split with S'~CwnMcof(<<.Wk). Let ~ be the collection 

of sequences TC S that are mutually stationary. Then jz is a filter that is closed under 

C-descending sequences of uncountable cofinality. 

Proof. We first show that  if T, UE~" then for some k ~ k ,  (U'~MTn:n>M) is mutu-  

ally stationary. 

Since S does not weakly split, for each infinite A c w  we can find a structure P-IA such 

that  for all N-< P-IA with XN (n)E S n for all n > k, there are infinitely many  n E A such that  

XN (n)E T ~. Put t ing all of the P-IA together into one structure we can find a structure 

P.lo such that  if N-<P-lo, 2 ~ ~  and for all large n, XN(n)ES n, then for all but finitely 

many  n, XN (n) E T ~. 

Similarly we can find an P21 such that  for all N-~P.I 1 with 2~~ and for all large 

enough n, XN(n)ES n, then for all but finitely many n, XN(n)EU ~. 

Put t ing P-lo and P.ll together we can find an algebra P.I such tha t  for all N-<P.I, if 

XN(n)ES ~ for all large enough n and 2 r 1 7 6  then XN(n)ETnnU ~ for all but finitely 

many n. 
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If ~ is any structure expanding 92, by the mutual  stationarity of S there is an N ~  

such that  XN(n)ES n for all large n. Since ~ is an expansion of 92, we know tha t  for 

all large enough n, ~(N(n)~U'~NT n. By the argument  of Lemma 23, we see tha t  the 

sequence (U n ('/T ~: k ~< n E w) is mutually stationary. 

Now suppose that  ( :F~ :a<x}  is a C-descending sequence of elements of ~ for some 
- -  n .  cardinal x,  w < x < l ~ .  Suppose that  T~=(T~,:n>k). Define U'~-N{T~.v~<x}.  It 

suffices to show that  for some L, the sequence V defined by setting Vn=U ~ for n>L, 

and Vn=S  n for k<n<~L, is mutual ly stationary. 

For each a there is a s tructure 92~ such that  if N-~92~ and XN(n)CS ~ for all n>k, 

there is an I such that  for all n>l, ~(N(n)ET,~. Let 92 be an algebra such that  if N-~92 and 

x c N  then for all c~<x, N-~92~. We can also assume that  if some U n is non-stationary, 

then for any N~92, XN(n)~ U ~. 

Let ~ expand 92 and suppose that  N ~ ,  x c N  and XN(n)ES n for all n>k, Wn>X. 

For each a < x ,  there is an I~ew such tha t  for all n>I~, XN(n)ET~. Since ~ is regular, 

there is an L such that  for cofinally many c~, l~=-L. 

Since the sequence of T~'s is decreasing, this implies that  for all c~<x and all l >L, 

xN(1)eT n. 

For each ~ ,  let L ( ~ )  be the least L such that  there is an N - < ~  such tha t  for all 

l>L, XN(1)EU z, and for all n>k, xN(n)ES n. Then L ( ~ ) ~ L ( ~ ' )  if ~ '  is an expansion 

of ~ .  Hence there is an L e w  such that  for all ~ ,  L(?D)~L. 

Define V as above, using this L. Then for all ~ ,  there is an N - < ~  such tha t  

xN(n)EV n, n>k. Hence V is mutual ly stat ionary and in )v. [] 

THEOREM 32. Suppose that 2s~ and that there is a mutually stationary se- 

quence Sncwn that does not weakly split. Then there is an ultrafilter on 1~,~ that is 

x-indecomposable for all x between 2 ~~ and ~ .  

COROLLARY 33. If there is a mutually stationary sequence that does not weakly 

split, then there is an inner model with a measurable cardinal (see [D]). In particular, if 

V=L,  every sequence of mutually stationary sets weakly splits. 

Proof of Theorem 32. We construct an ultrafilter !; on R~ that  is x-descendingly 

complete for all x between 2 ~0 and No~. 

Let L/ be an ultrafilter on w. For each set X C  ~ ,  associate the sequence X n  ~- 

(XNS~)\Wn_I .  Define an ultrafilter V on R~o by putt ing X E F  if and only if there is a 

set AC b / s uch  that  the sequence 

Y'~ = ~ X '~ ifnGA, 

t S n otherwise, 
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is mutual ly stationary. We show tha t  V is an ultrafilter. 

We first note that  Lemma 31 implies that  V is a filter. For if X, X '  are subsets of R~ 

that  lie in V, then we can take A, BE/ , /wi tness ing this. By Lemma 31, ACqB witnesses 

that  XnX'EI?. 

Moreover, an application of Theorem 28 shows that  if XC R~ then there is an AE/J  

such tha t  U { XnSn: n E A } E F  or U {sn\ X: nEA}EV. Hence ~ is an ultrafilter. 

Suppose that  (Xs :c~<x} is a decreasing sequence of elements of V. Then we can 

choose sets (As : c~ < x} C 5 / such  that  As witnesses tha t  X s  E 5/. Since x > 2 ~~ there is a 

set AE/g such that  for cofinally many a < x ,  A is a witness that  X~cU. It  follows that  

A is a witness for a tail of a < x.  Define y n  using A as in the definition of V. 

Then the sequence (Ys:c~<x} is a subset of the Y defined in Lemma al .  Hence 

there is a sequence Z C Y s  for all a such tha t  Z E Y .  Define Xx= OneA Z~. Then X ~ E F  

and X,~ C X s  for all a < x. [] 

We can present a sufficient condition for splitting. 

Definition 34. Let N-~H(O). Then N is tight if and only if N n l - I R n  is cofinal 

in I-[ (NN R,,). 

I t  is an easy exercise to show tha t  if N-~ H(0)  is internally approachable of length t, 

where ~ is an uncountable regular cardinal, then N is tight. 

With  the GCH one can give a criterion for tightness using Shelah's PCF  theory. 

(There are more complicated variants of this criterion with the failure of the GCH.) We 

give this criterion next, but will not use it for the results at the end of this section. 

Fix a continuous scale {fs:c~<R~o+l}Cl-IRn. Recall [Sh2] that  a point c~ of un- 

countable cofinality is good if and only if there is a eofinal set A c a  and an m such that  

for all n>m, {fz(n) : /3EA} is increasing. In this case there is an exact upper  bound for 

the sequence {f5 : f lEa},  and it is given by fs(m)=sup{f~(m): ~EA}. 

Shelah has shown that  there is always a s tat ionary set of good points in every 

uncountable cofinality (or see e.g. the section of this paper  covering the case where 

cf(A) < x ) .  Further, under the CH, every point a of cofinality at least w2 is good, and if 

very weak square principles hold, then almost every point of cofinality a31 is good [FM2]. 

We now remark that ,  for an N-~ H(0) with the property that  there is an uncountable 

v such that  for all n, c f ( sup(NNRn))=~ ,  the following are equivalent: 

(1) N is tight. 

(2) If q '=sup(NNR~+l ) ,  then "~ is good, and )(~y~f.y almost everywhere. 

Unfortunately it is not true in general that  almost all N of the right cofinMity are 

tight as the following example shows: 
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Example 35 (due to Zapletal). Suppose that the GCH holds, and let 91 be an algebra 

on H(0).  Choose a good ~ < ~ + 1  of cofinality (say) wl such that  s k ~ ( 7 ) n ~ + l = %  Let 

M=sk~(7 )  and build an increasing chain of elementary substructures ( N ~ : a < w l )  of 

M such that  f~CNo,  No is cofinal in 7, and for a < ~  and all n, XN~(n)<XNz(n ). If 

we let N = U ~ < ~ N ~ ,  then for all n, cf(xN(n))-~-Wl, s u p ( N A b s + l ) = %  but for all n, 

Xg(n)>f~(n) .  

We now define a more restrictive version of mutual stationarity, which is more 

tractable than the original. 

Definition 36. A sequence of sets {S~:nER~} is tightly stationary if and only if 

for all algebras PJ=(H(O),E,A,{S~}, . . .}  there is a tight N-<P2 such that for all n, 

XN(n)  E S  n. 

Tightly stationary sequences are invariant under similar finite variations as mutually 

stationary sequences. 

For tightly stationary sequences of sets we can show both a version of Fodor's The- 

orem and a splitting theorem. 

THEOREM 37 (Fodor's Lemma). Suppose that ( sn  : k < n < w I is a sequence of tightly 

stationary sets. I f  f:  R.~-~R.~ is regressive (i.e. for all a, f ( a ) < a ) ,  then there is a func- 

tion g E l-Ine~ ~,~ such that if T~ = { a C Sn : f ( a ) < g(n ) }, then the sequence ( T~ : k < n < w ) 
is tightly stationary. 

Again we remark that  this lemma can be generalized. However, if the set K of 

cardinals we are considering has limit points inside K,  we view the function f as a 

function on pairs. 

Proof of Theorem 37. Suppose that  the theorem is false. Then for each gE l"InEw ~ n ,  

there is an algebra ~g  on ~ witnessing the failure of the tight stationarity of the sequence 

(Tg:k<n<w} .  

Let P.I=(H(0), e,  A, (Sn}, {f},  (~g:  g e ] - In~ ~n}, ... }. Let N be a tight elementary 

substructure of PJ such that  for all n> k, XN (n)E S n. 

Consider the function hE 11 ~n defined by h(n )= f (XN (n)). (In other words, h enu- 

merates the values of f on the sequence of ordinals ( s u p ( N n ~ ) } . )  Then for all n>k,  

h(n)<xN(n)) ,  and hence by tightness there is a g c N N I - I ~  such that  for all n>k,  

g(n)>h(n).  But then N M ~ - ~ g ,  N is tight, and for all n>k,  XN(n)cTg, a contradic- 

tion. [] 

We can now show a splitting theorem: 
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THEOREM 38. Let ( s n  : k < n < w } be a tight sequence of stationary sets, and suppose 

that for all n, S~ccf(lqk).  Then there is a partition of each S n into {S~:j3<Rk} such 

that for all ~ the sequence (S~: k < n < w )  is tightly stationary. 

Proof. Let #=Nk- For each c~ES ~ choose a sequence (c~5:5<#} increasing and 

cofinal in a. By Fodor's Lemma for tightly stationary sequences, for each 5, we can find 

a function g5 E 1-I N~ such that  if we set 

then the sequence of T~,a's is tightly stationary. Since  I]n>k •n is p-closed (under 

everywhere domination), there is a single function gEI]n>kRn such that  for all 5<p ,  

Tg~5 = {c~ E Sn: c~ < g(n) } is tightly stationary. 

Note that the Tg]5 are decreasing as 5 is increasing. We claim that  there are cofinally 

many pairs 5<5~<# such that  the sequence T~,5\T~,5, is tightly stationary. This clearly 

suffices for the theorem. 

If the claim failed, then for all sufficiently large 5 < 5 r (say 5, 5 r > 50) there is an algebra 

~5,5, such that  if N-4~5,5, is tight and for all n>k ,  XN(n)ET~,5, then for infinitely 

many n, XN(n)ET~,5,. Again we can find an algebra ~ on R~o such that  if N-<~3 and 

p c N ,  then for all 5<5~<#, N-4~5,5,. 

By construction, the sequence T~,5o is tightly stationary, so we can find stationarily 

many tight N-<(H(O), e, A,~3, {g}, ...} such that  for all n>k ,  XN(n)ET~,5o. Fix such 

an N. For 5o<5, let Xd={n:xN(n)ET~ ,5} .  Since the sequence T~,5o\Tg~,5 is not tightly 

stationary, and N-<~3, for all 5, IXhl=w. Then for 5<d  ~, Xh, c X h c w .  Hence there is 

a 51 and a set X C  w such that  for all 5 > 51, X~ = X. 

Let n E X  and a=XN(n) .  Then for all 5, c~<g(n) .  Hence c~<.g(n). But y E N ,  so 

g(n) E N, a contradiction. [] 
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