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0. I n t r o d u c t i o n  

0 .1 .  P r e f a c e  

(1) Preface. In  th i s  p a p e r  we p r o v e  de  B o o r ' s  c o n j e c t u r e  c o n c e r n i n g  t h e  L2-sp l ine  p ro-  

j e c to r .  T h e  e x a c t  f o r m u l a t i o n  is g iven  in w S ince  t h e  p r o o f  is r a t h e r  long,  i t  is d i v i d e d  

in to  t h r e e  chap te r s ,  w i t h  an  o u t l i n e  g iven  in w For  t h e  s a m e  reason ,  al l  t h e  c o m m e n t s  

(h i s to r i ca l  no tes ,  m o t i v a t i o n s ,  ana lys i s  o f  o t h e r  m e t h o d s ,  e tc . )  a re  m o v e d  to  t h e  end  of  

t h e  p a p e r .  T h e  p r o o f  is a l m o s t  s e l f - con ta ined ,  we c i te  ( w i t h o u t  p r o o f )  on ly  s o m e  bas ic  

sp l ine  p r o p e r t i e s  a n d  d e t e r m i n a n t  iden t i t i e s ,  a n d  two  s o m e w h a t  m o r e  spec ia l  l e m m a s  

( a c c o m p a n i e d  by  k n o w n  s i m p l e  proofs ) .  

(2) Notation. T h e r e  is s o m e  m i x t u r e  o f  n o t a t i o n s .  W e  use t h e  f ami l i a r  i , j  b o t h  as 

s ingle  a n d  m u l t i v a r i a t e  indices ,  a n d  we use  p as p : = k - 2  w h e n  dea l i ng  w i t h  k, t h e  o r d e r  
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of the splines, while in other cases p is just an integer. 

(3) Acknowledgements. I am grateful to W. Dahmen for giving me the opportunity 

to work at the RWTH in Aachen, and for his constant inspiring encouragement of my 

studies. Thanks are extended to H. Esser, who took a lively part in discussions and 

provided many constructive suggestions. It is a pleasure to acknowledge that  C. de Boor, 

in spite of some consequences for his finances, took an active part at all stages of the 

proof's evolution. To him I am obliged for a lot of hints and remarks, in particular, for 

essential simplification of some of my arguments and notations. 

0.2.  F o r m u l a t i o n  o f  T h e o r e m  I 

(1) For an integer k>0,  and a partit ion 

A : = A N  := {a=to< tl <... < tN=b}, 

denote by 

S := Sk (A) :=  Pk(A)ACk-2[a, b l 

the space of polynomial splines of order k (i.e., of degree <k)  with the knot sequence A 

satisfying k - 1  continuity conditions at each interior knot. 

Consider Ps, the orthoprojector onto S with respect to the ordinary inner product 
( f ,g)  b :=fa  fg' i.e., 

( f , s )= (P s ( f ) , s )  for all sES .  

We are interested in Ps as an operator from L ~  to Lo~, i.e., in bounds for its norm 

IIPs(f)ll~ lips I1~ : =  sup 
f IIfll~ 

In this paper we prove the following fact. 

THEOREM I. For any k, the L~o-norm of the L2-projector P onto the spline space 

Sk(A) is bounded independently of A, i.e., 

sup IIPs~(~)I1~ ~< ck. (0.2.1) 
A 

This theorem proves the conjecture of de Boor of 1972 made in [B2], see also w 

for details. 

Earlier the mesh-independent bound (0.2.1) was proved for k=2, 3, 4. 

For k>4 all previously known results proved boundedness of llPsll~ only under 

certain restrictions on the mesh A. (See w for a survey of earlier and related results.) 
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(2) Some of the earlier restrictions on A included spline spaces with multiple and/or  

(bi)infinite knot sequences. Therefore two corollaries of Theorem I are worthwhile to be 

mentioned. 

The first extends the result to the splines with a lower smoothness, the so-called 

splines with multiple knots. For k and A=( t i )  N as given above, we introduce a sequence 

of smoothness parameters m : =  (mi) N where O<~mi ~< k - 1 ,  and denote by S k(A, m) the 

space of polynomial splines of order k with the knot sequence A which, for every i, have 

m i -  1 continuous derivatives in a neighbourhood of ti. If all mi are equal to m, then 

Sk,m(A) := Sk(A, (m, ..., m)) = Pk(A)N C"- l [a ,  b], Sk(A) = Sk,k_l(A). 

COROLLARY I. For any k, 

sup [[Ps~(A,m) I[~ ~ ck. (0.2.2) 
A,m 

The second corollary extends Theorem I to the splines with (bi)infinite knot sequence 

Ao~ := (ti) and with smoothness parameters moo := (m~). We denote the space of these 

splines by Sk(Ao~, m ~ ) .  

COROLLARY II. For any k, 

sup JlPs;(z~,m~)Jloo ~< ck. (0.2.3) 
A~,moo 

0.3. Ou t l i ne  o f  t h e  p r o o f  

The proof is divided into three parts. 

(1) The first part (Chapter 1) describes the main ingredients of the proof. 

Let (M.),  (N.) be the L1- and the L~-normalized B-spline basis of Sk(A), respec- 

tively (see w Our starting point (w is the observation that  if r is a spline such 

that  

(A0) CeSk(A);  

(A1) ( -1 )~s ign( r  for all •; 

(A2) I(r for all L,; 

(A3) IlCll~ ~<Cmax; 
then 

Ilrs~(z~) IJ~ ~< dk. Cmax. 
Cmin 

This is an analytic version of de Boor's rather simple algebraic lemma (w on the 

inverse of a totally positive matrix applied to the Gram matrix {(M,,  N~)}. 
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Our main idea (w is the choice 

r  ( k - l )  , O" E S 2 k _ l ( n ) ,  (0.3.1) 

where a is the null-spline of the even degree 2 k - 2  such that 

a ( t . ) = 0 ,  , = 0 , . . . , N ;  

(r(z)(t0) =a (0 ( tN)  =0 ,  l =  1 , . . . , k -2 ;  (0.3.2) 

1 
(k -1 ) !  a (k- : ) ( tg)  = 1. 

The main claim, Theorem �9 of w is that  r so defined satisfies the properties (A0)-(A3) 

given above. 

As we show in w167 the choice (0.3.1) makes the most problematic property 

(A:) almost automatically fulfilled and provides also (A2) quite easily. To prove (A3), 

we use for the components of the vector 

z(1):= ~cr(l)(tv).[h~l l-l-p, p : = k - 2 ,  (0.3.3) Z~ = (z(vl): ...: z(2p-F1)), 

(where lb, I : = t , + : - t . ) ,  the estimate 

[Z(l)]~<ck, i f l > ~ p + l ,  L,<N-k. (0.3.4) 

This estimate forms the content of Theorem Z in w The rest of the proof (Chapters 2 

and 3) consists of deriving (0.3.4). 

(2) In Chapter 2, we show that, for each u, the vector z~ in (0.3.3) is a solution to 

a certain system of linear equations and provide intermediate estimates for it. 

The known linear equations (w connecting derivatives z, of a null-spline at the 

neighbouring knots are of the form 

z , + l = - D ( g ~ ) A z , ,  v=O,...,N. 

Here Q~:=h~,/h~,+l is the local mesh ratio, D(Q) and A are some special matrices. For a 

fixed p, this gives the equations 

B I z v  = Zo, C z v  = ZN~ 

with the matrices B I, C being products of A and D(Qs) in certain combinations. Our 

choice (0.3.2) of the null-spline a provides the boundary conditions 

Zo:=(O, . . . ,O ,z~p-} - l )  ZO-'(2pq-1))' ZN := (0, ...,0, 1 ,Z~ +2),..., _.(2p+1), , ..., z N ). 

p p + l  
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They allow us to determine the vector z~ as a solution of the linear system of equations 

Mz"=(O'""O'I)T'~2p+I M= C [ p + l ,  : B'[p, :] ] , 

where the matrix M is composed of the first p rows of B'  and the first p §  1 rows of C 

(see w We solve this system explicitly by Cramer's rule, 

z(l) = (_l)2p+l+l det M (1) 
det M ' 

and then apply the Laplace expansion by minors of B / and C to both determinants. 

Some elementary inequalities yield then (w the first estimates: 

]z(t)[ ~< max C(P' iz) / = 1,..., 2p+l .  (0.3.5) 
ieJ' C(p+l, i')' 

Here, J, jl are the sets of (multi)indices of the form 

J:={iENP:l<.~il<...<ip<...2p§ J l :={ icJ : i s~ l } ;  

bold n stands for the index (1, 2, ...,n); i r and i t are two different complements to iCJ t, 

iUi '=2p+l,  iUil=(2p+l)\{l} ,  

and C(i,j) are the corresponding minors (see w for detailed notation). 

The orders of the minors on the right-hand side of (0.3.5) differ by one. We use 

some relations to equalize them and obtain (w the second estimate: 

Iz(l)l ~ cp max C(p, i t) 
ieJ' C(p , i*) '  /=1 , . . . , 2p+1 .  (0.3.6) 

Here i*EJ is the index symmetric to i E J  l, i.e., i*=2p+2-ip+l-8. 

(3) In Chapter 3, in w167 we find a necessary and sufficient condition on the 

indices i, j denoted 

i~ j ,  i , jEJ,  

for the inequality 

C(p,  i) ~< cpC(p,j). 

In w we verify that  depending on l the indices i I and i* satisfy this condition, namely 

that  

iz2-'~i*-~i h , ll<..p+l<..12, 

which gives 

C(p, il)<~cpC(p,i*), l>~p+l. 

Combined with (0.3.6) this proves (0.3.4) and hence Theorem I. 

This part of the proof is a bit long and technical, and it would be interesting to find 

simpler arguments (see w167 for a discussion). 
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1. M a i n  ing red i en t s  of  t h e  p r o o f  

1.1. B-splines and their properties 

As before, for k, N c N ,  and a knot sequence 

the notation 

A =  {a=to< tl < ... < tN=b}, 

65 

LEMMA 1.1.2 

s~(zx). 

[B4, Theorem 3.1]. The B-spline sequence (Ni) forms a basis for 

s~(zx) := p~(zx)n  c~-2 [a ,  b] 

stands for the space of polynomial splines of order k (i.e., of degree <k) on A. 

The subintervals of A and their lengths will be denoted by 

Ij :=(tj,ti+l) , lhj[ :=t j+l - t  j, 

Let A(k)--(t .~N+k-1 be an extended knot sequence such that  - - \  ~ ] i = - k + l  

a = t _ k + l  = . . . = t 0  < t~<. . .  < tg . . . .  =tg+k- l=b.  

By N-1 (Nj)j=_k+ 1 we denote the B-spline sequence of order k on A (k) forming a partition 

of unity, i.e., 

N~ (x) := Ns,~ (x) := ([tj+,,..., tj+~]- [tj,..., t~+k_ 1])( �9 -x)§ , 

and by (Mj) the same sequence normalized with respect to the Ll-norm: 

k 
Mj(x )  := Mj,k(x) := k[tj ,  ..., t j + d (  �9 ~ - ~  - x ) §  . = - - g j ( x ) .  

tj+k - tj 

The following lemmas are well-known. 

LEMMA 1.1.1 [B4, (4.2)-(4.5)]. For any k and any A (k), one has 

suppNj=[tj,tj+k], Nj>~O, ~ N j = I ,  (1.1.1) 

p t j + k  

My(x)=~Nj(x)'tj+k-tj ]t~ My(t)dt=l .  (1.1.2) 
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LEMMA 1.1.3 [B4, Theorem 5.2]. For any k, there exists a constant xk,  the so-called 

B-spline basis condition number, such that, for any a=(aj )  and any A, 

x;lllalllor ~< E a j N j  L <~ Ilallloo. (1.1.3) 
3 

LEMMA 1.1.4 [Schu, Theorem 4.53]. Any spline s E S a ( A N )  has at most N + k - 2  

zeros counting multiplicities. 

LEMMA 1.1.5 [B4, (4.6)]. 

1 
Mi,1 (x) - ti+l - ti 

k 
- ( x ) -  

ti+k - t~ ' 

We will need two more lemmas. 

x G[ti, ti+l), i -=- O, ..., N -  1; (1.1.4) 

i =  - k + l ,  ..., N -  1. (1.1.5) 

LEMMA 1.1.6. Let MiESk(A)  be the Ll-normalized B-spline. Then 

signM~ k-l) . = ( - 1 )  "-1, u = l ,  k. (1.1.6) 
(ti+~-l,ti+~) ""~ 

Proof. Follows by induction from (1.1.4) and (1.1.5). 

LEMMA 1.1.7. Let Ii, be a largest subinterval of supp 2VLi=[ti,ti+k]. Then 

IM~k-1)(x)[ = const ~> [hi, I -k,  x E (ti,, ti,+l). (1.1.7) 

Proof. By induction. For k = l  due to (1.1.4) the lemma is true. Let xEIi, .  From 

(1.1.5) and (1.1.6) we obtain 

k (k-2)  (k-2)  
ti+k - t--i [Mi'k-1 ( x ) -  ~li+l,k-l(x)[ 

_ k 

ti+k - ti 

1 
~/ ~-~i~l "[hi ' l - (k-1)  --~ [hi, I - k .  

1.2. L 2 - p r o j e c t o r  an d  t he  inverse  o f  t h e  B-sp l ine  G r a m i a n  

Consider Ps, the orthogonal projector onto Sk(A) with respect to the ordinary inner 

product, i.e., 

( f , s ) = ( P s ( f ) , s )  for a l l s E S k ( A ) .  

For N ' = N + k - 1 ,  let G be the (N ' •  

f {M-  N A~N-1  
G = [ ~  ~, 3}Ji , j=-k+1" 
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LEMMA 1.2.1 [BI]. For any k, A, one has 

IIPs~tA)IIL~ ~< IIG-111~. 

Proof. Let feLoo, and Ps(f)=Ej %(f)Nj ,  so t ha t  for a=(ai(f)), 

(Ga)~ := E (M~, Nj)aj( f )  = (f, M.~) =: b~(f). 
J 

By (1.1.3), 

IIPs(f)llLoo <~ [[a(f)lll~, 

and by (1.1.1)-(1.1.2), 

IIb(f)llzo~ := m~x I(f, MJI ~< IIfllLo~" m~x IIM~IIL~ = IlfiiLo~- 

Thus  

IIPs(f)llro~ 
II P s  II ~ = s u p  

IlfllLoo 

as claimed. 

LEMMA 1.2.2 [B1]. 

LEMMA 1.2.3 [B1]. 

[[a(f)]]~ [[G-~b(f)llz~ 
sup - sup 

f IIb(f)[ll~ f IIb(f)lIzo~ 
~< 11a-111o~ 

The matrix G is totally positive, i.e., 

G(i.l'""iP. ~ 90. 
\31, .-.,3p/ 

~ - 1  / (-1)~ The matrix t ,  :=[gij ) is checkerboard, i.e., 

( - i )  i+j  ( - i )  
gij ~ - ( - 1 )  gij " 

Proof. Let  Gji be the algebraic adjoint  to gji. By C r a m e r ' s  rule, 

g(-1) ( _ 1 ) i +  j de t  Gji 
ij = det G ' 

and by L e m m a  1.2.2 b o t h  de t e rminan t s  det G, det  Gji are non-negat ive.  

67 

[] 

[] 
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LEMMA 1.2.4 [B1]. 

such that Ha=b and 

(al) ( -1 ) i s ignb i=cons t  for all i; 

(a2) mini [bil)Cmin ; 

(a3) IlaJl  <Cm x. 
Then 

Le t  H -1  be a checkerboard matrix, and let a, b ~ R  ~r be vectors 

IIH_I]I~ ~ Cm~___~. 
Cmin 

Pro@ Let a, b satisfy (al)-(a3),  and let 

H - l . = ( h ( : l ) i  ]h}; 1) I i+j (-1) �9 , is , '  = ( - 1 )  hij . 

Then 

]ail=l(H-lb)i] : =  E hl; 1)bj ] = E }hij(-1) bj I ~> rain ibj ] " E  h!~-l) I" j -~3 

J J J 

Therefore, 

[[all~ :=max~ la~l/> n~n I b j l ' m a x E .  -~3h!-l) =mini [bjl�9 
J 

[] 

1.3. Analytic version of de Boor's Lemma 1.2.4 

Let a E R  N' and let r  be a spline of order k on A that  has the expansion 

e= ajNj. 
J 

Then, since G:={(Mi,, Nj)}, one obtains 

bi := (Ga)i = E (Mi, N j )a j  = (Mi, 0). 
J 

By Lemma 1.1.3, we also have 

]lalll~ <~ Xkl]r 

where xk is the B-spline basis condition number�9 

Using these two facts, Lemma 1.2.4 applied to 

Lemma 1.2.1 implies 

the matrix G combined with 
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LEMMA 1.3.1. Let r be any spline such that 

(Ao) 

(A1) 

(A2) 

(A3) 

Then 

CeSk(A); 
( -1 ) i s i gn ( r  for all i; 

1(~9, Mi)]~Cmin(]~) for all i; 

IIPsk(~)ll~ ~ xk - -  
~ma~(k) 
Cmin(]~)  " 
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1.4. M a i n  idea: de f in i t ion  o f  ~b v ia  a nul l - sp l ine  er. F o r m u l a t i o n  o f  T h e o r e m  

Definition 1.4.1. Define the spline a as the spline of the even degree 2 k - 2  on A i.e., 

~ S2k-I(A) ,  (1.4.1) 

that  satisfies the conditions 

o(t~) = o ,  

~(z)(to) = ~(z)( tN) = o, 

1 
(k-- l ) !  G(k-1)(tN) = 1. 

i = 0 ,  ..., N; (1.4.2) 

l = 1, ..., k - 2 ;  (1.4.3) 

(1.4.4) 

The spline a defined by (1.4.1)-(1.4.4) exists and is unique, see [Schu, Theorem 4.67]. 

This fact will follow also from our further considerations where we show that  a results 

from the solution of a system of linear equations with some non-singular matrix. 

Our main idea is to define r as follows. 

Definition 1.4.2. Set 

r := ~(k-1)(x) .  (1.4.5) 

Example 1.4.3. For k=2,  a is a parabolic null-spline, and its first derivative r  

is the broken line that  alternates between +1 and - 1  at the knots, i.e., 

r  k = 2 .  

Our main result is 
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THEOREM (I). For any k there exist constants Cm~x(k), Cmin(k) such that for any 

A N with N ~ 2 k  the spline r defined via (1.4.5) satisfies the relations 

(ho )  CE Sk (/'kN); 

(A1) (-1)'sign(C, Md=const br  aU i; 
(A2) I(r for all i; 
(A3) IIr for all i. 

Remark. The restrictions N>~2k is needed only in the proof of (A3). 

Proof of (A0). Since aES2k-I(A) ,  clearly r  

1.5.  P r o o f  o f  T h e o r e m  I a n d  i ts  corol lar ies  

Proof of Theorem I. From Theorem ~, by Lemma 1.3.1, 

To complete the proof, it remains to cover the case N<2k .  As is known (see, e.g., [$1]), 

IlPs.zx~) I1~ ~< c(k, N), 

hence 

and finally 

IIPs.aN)ll~-~ ek, N<2k, 

IlPsk(/x)ll~ ~<c~ for all A. [] 

Proof of Corollary I. Let (Mi), (Ni) be the B-spline sequences for the space Sk(A, m) 

of splines with multiple knots defined on the extended knot sequence 

(To, ..., TN,) := (to, ..., to,..., ti, ..., ti, ..., tN, ..., tN). 

k - t o o  k - m i  k--rrtN 

Further, let (]t/}n)), ( N  (n)) be the B-spline sequences on the knot sequences A(n)--(tJ n)) 

chosen so that  
(~) - (~(n) lim t (y) = ~'j. t j  ~j+l,  n-+oc 3 

Then, as is known, 

.!ira (M}~), N) ~)) = ( i , ,  Nj), 

whence, for the corresponding Gramians, we have 

]]G-1]]~ = lim I](G(n))-lll~ <~Ck, 
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where that  last inequality is due to Theorem I. Thus, 

HPSk(A,m) I1~ <~ II G - 1  [Ic~ <~ ek. [] 

Proof of Corollary II. Let (Mi), (N,i) be the B-spline sequences for the space 

Sk(A~,  m ~ )  of splines with multiple (bi)infinite knot sequence. Then also 

where G/,~ := (M~, Nj) is the corresponding (bi)infinite Gram matrix. By Corollary I, all 

of its finite principal submatrices G/x~ are boundedly invertible. This implies that  Gp,~ 

is invertible, too, and 

IIGf, l~ll~ ~< lira IIG~x 1 II ~< ck [] 
N - + ~  N z~ 

1.6. P r o o f  of  Theorem ~: proof  of  (A1) 

{t AN-1 i.e., LEMMA 1.6.1. The spline ~ changes its sign exactly at the points ~ W~=l 

(-1)isignal( t~_l , t j  = const, i = 1, ..., N. 

Proof. By the definitions (1.4.2) and (1.4.3), the spline aES2k- I (A)  has at least 

N + 1 + 2 ( k - 2 )  zeros counting multiplicities, and by Lemma 1.1.4 any spline from 

S2k-I(A) has at most N + ( 2 k - 1 ) - 2  such zeros. Therefore, a has no zeros different 

from (1.4.2) and (1.4.3). [] 

PROPERTY (A1). Let r be the spline (1.4.5). Then 

(-1)~sign(O, Mi) = const for all i. 

Proof of (A1). Integration by parts yields 

f t i + k  

(r Mi ) :=  ] a(k-1)(t)M.i(t) dt (1.6.1) 
Jt~ 

f 
ti+k k--1 

= ( - - 1 )  k - 1  a(t)M}k-1)(t)dt+E(-1)t+la(k-l- t)(x)M}t-1)(x)l::  +k. 
J t i  l~_I 

At the point x = ti we have 

a ( k - l - t ) ( t i ) = 0 ,  t~=to, / = 1 , . . . , k - I ;  

M~l-1)( t i )=0,  t~>to, / = 1 , . . . , k - i ;  
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and similarly for x=ti+k, 

a(k--l-l)(ti+k)=O, ti+k=tN, / =  1 , . . . , k - I ;  

M~l-1)( t i+k)=0,  ti+k<tN, / = l , . . . , k - 1 .  

Thus, the sum in (1.6.1) vanishes and 

Fti+ k f ti+k 
(r : = /  a(k-1)( t )Mi( t )dt=(-1)  k-1 cr(t)M(k-1)(t)dt. 

Jti Jti 
(1.6.2) 

Since both a(t) and M~k-1)(t) alternate in sign on the sequence of subintervals of [ti, ti+k], 

we have 

(-1)isign(r = ( - 1 ) i - ( - I ) k - i  sign al(t,,t,+l)signM~k-1)t(t~,t~+~) 

= ( -1 )  i. ( - 1 )  k-1. ( -1 ) icons t  �9 1 

= ( -1 )k - l . cons t .  

Hence, 

( -1) is ign(r  Mi) = const, i = - k + l ,  ..., N - 1 .  [] 

1.7.  A n  i n v a r i a n t  

For the proof of (A2) and for some further use in w we will need the following cons/d- 

erations. 

Definition 1.7.1. For two functions f ,g  and n E N ,  set 

n + l  

G(f, g; x) := Z (-1)t f(Z)(x)g(~+l-l)(x)' 
/=0  

whenever the right-hand side makes sense. 

LEMMA 1.7.2. Let p,q be two polynomials of degree n + l  on I. Then 

G(p, q; x) = const(p, q) for all x �9 I. 

Proof. It is readily seen that  G'(p,q;x)=O for all x E R ,  hence the statement. [] 
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Then 

LEMMA 1.7.3. Let Sl,S2 be two nuU-splines of degree n + l  on A, i.e., 

s l , s2ES~+2(A) ,  s l ( t i )=s2( t i )=O,  i = 0 , . . . i N .  (1.7.1) 

G(sl,  s2; x) = const(sl,  s2), x e [a, b]. (1.7.2) 

Proof. By Lemma 1.7.2 the function G(Sl, s2) is piecewise constant. 

On the other hand, since the continuity conditions on sl, s2ESn+2(A) imply the 

inclusion sl , s2 E Cn[a, b], we have 

(0 (n+l-0,  (0 (n+l-0 
81 82 Its--0 ~ 8 1  s2 t~+0' l = l , . . . , n ,  

and due to the null-values of sl,  s2 on A also 

(0 (n+l-0 _(0s(,~+l-0 
81 82 t i_0=~l  2 t~+0=0, / = 0 ,  / = n + l ,  

i.e., the function G(Sl, 82) is continuous. [] 

As a corollary, we obtain 

LEMMA 1.7.4. Let aES2k- I (A)  be the nuU-spline defined in (1.4.1)-(1.4.3). Then 

k--1 
g ( x )  :=  [o'(k-1)(X)]2 J[-2 E(--1)ltT(k-l--l)(x)(T(k--lWl)(x) = (k-  1)! 2. (1.7.3) 

/=1 

Proof. The function H is obtained from G(sl,s2) if we set Sl=S2=a and n + l =  

2 k -  2, precisely 

g ( x )  = ( - -1 )k - - IG(G,  O'; X). 

Therefore, by (1.7.2), it is a constant function. 

The boundary conditions on a at tg  are 

a(1) (tg) = 0, 1 ~ k-- 2, 

a(k--1)(tN) = ( k -  1)!, 

and therefore for x = t g  the sum in (1.7.3) vanishes, i.e., 

H(tN) = [a(k-1)(tN)] 2 := ( k -  1)! 2. 

Thus, 

H ( x ) = H ( t N ) = ( k - 1 ) !  2 for all x e [a, b]. [] 
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LEMMA 1.7.5. We have 

1 le7(k-1)(to)l = 1. 
( k - I ) !  

Proof. The boundary conditions (1.4.3) on a at to are 

a(O(to) =0, l <<. k -  2. 

Therefore, for x=to ,  the sum in (1.7.3) vanishes, i.e., 

H(to) = [a(k-1)(to)] 2. 

On the other hand, by (1.7.3), 

H(to) = ( k -  1)! 2 

(1.7.4) 

[] 

1.8. P r o o f  o f  T h e o r e m  ~:  p r o o f  of  (A2) 

For the proof of (A2), we need the following estimate. 

LEMMA 1.8.1. There exists a positive constant Ck such that the inequality 

(1.8.1) 

holds uniformly in i. 

Proof. By (1.7.3), we have 

( k -  1)! 2 = g( t l )  

k - 2  

:= [~(k-1)(ti)]2 + 2 E (--1)mo'(k-l--rn)(ti)o'(k--l+m)(ti) 
m = l  

k - -2  

= [~(k-1)(ti)]2 + 2 ~ (-1)m[cr(k-l- '~)(tJ" Ihi Vm] "[~(k-l+m)(ti)" Ihilm]. 
m = l  

From the latter equality follows that  

max I~(k-l+m)(ti)l.lhil m >~Ck, 
[ml~<k-2 

or, equivalently, 
max la(O(ti)l.lhi[ 1+1 >>.cklhil k. 

1~/~<2k--3 

By the Markov inequality for polynomials, 

IlallLl[t~,t~+l] >~cllhill+llla(t)llL~[ti,t~+l] for all l, 

so that,  making use of (1.8.2), we obtain 

II llLllt,, ,+ l I> c'k fh f k" 

(1.8.2) 

[] 
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PROPERTY (A2). There exists a positive constant Cmin(k ) depending only on k such 

that, for any A, the spline r defined in (1.4.5) satisfies the relation 

I(r i = - k + l , . . . , N - 1 .  

Proof of (A2). Let I.z, be a largest subinterval of supp M~ := Its, t~+k]. Since 

signa(t).signM~k-1)(t) = const, te[ti,ti+k], 

we have 

f l i-kk 
I(r M~)h : =  ~(k-1)(t)M~(t) dt 

= ft'+~a(t)M(k-1)(t)d t 
Jti 

- / t i + k l a ( t ) M } k - ~ ) ( t ) l  dt 
-- Jti  

f 
$it-~l 

>1 la(t)M,~k-1)(t)] dt 

= [M~k-~)(x,,)l. ll~llLlE~,,~,+~ 1, 

and due to (1.8.1) and (1.1.7), 

(by (1.6.2)) 

I((P, Mi) l  ~ CkClk = :  Cmin(k) .  [] 

1.9. V e c t o r s  z,,. F o r m u l a t i o n  o f  T h e o r e m  Z 

Theorem Z formulated below enables us to verify in the next section the last condition 

(A3) of Theorem ~. 

Definition 1.9.1. Set 

z i : = ( Z !  1) z ( 2 k - 3 ) ~ E R  2k-a i = 0 , . . . , N - I ,  (1.9.1) 

with 
1 

Z~ l) :=  ~ ~(~)(ti). Lhil '-k+l, 

In the rest of the paper we are going to prove 

l = 1, ..., 2 k - 3 .  (1.9.2) 
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THEOREM Z. 

the estimates 

Iz}l)l~ck, l>~k-1, i = O , . . . , N - k ,  

hold uniformly in i and I. 

This theorem almost evidently implies the estimate 

which coincides with (A3) except for the indices i > N - k .  In the next section we prove 

this implication and show how to cover for N>~2k the case i > N - k  of (A3). 

There exists a constant ck depending only on k such that, for N>~k, 

(1.9.3) 

1.10. P r o o f  of T h e o r e m  4:  p roof  of  (Aa) 

PROPERTY (A3). There exists a constant Cmax(k) depending only on k such that, for 

any AN with N ) 2 k ,  the spline r defined in (1.4.5) satisfies the relation 

IIr ~<Cmax(k) for all i. (1.10.1) 

Proof of (A3). (1) The case N>~2k, i<~N-k. In this case, by (1.9.3) of Theorem Z, 

and by the definitions (1.9.2) and (1.4.5), we have 

1 1 
rn--~ Ir176 fh~l"~ = ~.' 1(7(k-l+m)(ti)]" Ih~Jm 

- -  / (k--l+m)!lz}k-l+"O]<~%, m = 0 ,  k--2. 
m! "*'~ 

On [ti, ti+l] the spline r is an algebraic polynomial of degree k - l ,  and by Taylor 
expansion, 

k--1 

r  = E ~.  r 
m : 0  

Hence, 
k - 2  1 im 

fO(k--1)(ti)f'Jhilk--1 <~ Ir ~ ~.1 Ir <" k'ck' 
m~O 

and finally 

k--1 1 
IIr ~ ~ ~ .  Ir "~ 

m=0 

<~(2k-1).c'k=:Cma• i<~N-k ,  N>~2k. 



A PROOF OF DE BOOR'S CONJECTURE 77 

(2) The case N ) 2 k ,  i ) N - k .  Let 5 be the null-spline that  is defined by the same 

interpolation and boundary conditions (1.4.2)-(1.4.3) as G, but with the normalization 

at the left endpoint 
1 

(k-1)!  a(t0) ---- 1. 

Accordingly, we set 
(~ ~ ~r(k-1). 

Then, due to symmetry, by Theorem Z applied to 5, we obtain 

ii~iiz~[ti,ti+l] ~ Cmax(k), i />  k. 

On the other hand, we established in (1.7.4) that  

1 
/,_ . ~ , a ( t 0 ) = + l -  
L~ 1): 

This implies the equality 

and, correspondingly, the estimate 

~=+r 

I]r < Cmax(k), i >/k. 

If N>~2k, then N - k ~ k ,  and thus 

llr i > ~ N - k ,  N>~2k. [] 

This completes the proof of Theorem (I). 

Remark. The size and the structure of the proof of Theorem Z (i.e., of (A3)) given 

in the next two chapters are in a sharp contrast with the short proofs of (A1) and (A2) 

given above. We conclude this chapter with a conjecture which probably could be useful 

in finding a simpler proof of (A3). 

CONJECTURE 1.10.1. Let r  (k-l) be the spline (1.4.5). Then it takes its maximal 

absolute values at the endpoints, i.e., 

ir ~< Ir (= Ir = (k - l ) ! )  for all x e  [a,b]. 

In particular, the sum in (1.7.3) is always non-negative, and zero only if x is a knot of 

high multiplicity. 



78 A. YU. SHADRIN 

2. P r o o f  o f  T h e o r e m  Z: i n t e r m e d i a t e  e s t i m a t e s  for zv 

2.1.  N o t a t i o n  a n d  a u x i l i a r y  s t a t e m e n t s  

Let U be any (n • n)-matrix. We denote by 

[ai,...,ap] 
u [ ~ ,  3]  : =  u [ 3 1 , . . . , / 3 q  

the submatrix of U (not necessarily square) whose (s, t)-entry is U[as, 3t] with a and 

3 sequences (indices) with increasing entries. The default sequence (:) stands for the 

sequence of all possible entries. So, U[c~, :] is the matrix made up from rows a l , . . . ,  ap 

of U. The sequence ( \s)  stands for all entries but one numbered s. For example, 

U[ \ I ,  \ l +  1] is the matrix made up from rows 2, ..., n and columns 1, ..., l, l+  2, ..., n of U. 

The notation 

U(a,  3) := det U /31, ..-, 3p J /31,...,/3p 

(now with #c~ = # 3 )  stands for the corresponding subdeterminant. 

A matrix U is called totally positive (TP)  if 

U(a, 3) >10 for all a,/3. 

As was already mentioned, by indices we mean sequences with increasing entries. 

For convenience we will also view indices as sets when writing, e.g., aC/3 to express that  

the components of a appear also in/3. 

For nCN,  the bold n denotes the index (1, 2, ..., n). Further, 

i p �9 ... ~ < n } .  Ipm:={iCn:#i=p}:={( s)s=l.l<~il< <ip 

For the special ease n = 2 p + l  we set 

J := Ip ,2 ;+ l ,  Jl:={icJ:{1}r l = l , . . . , 2 p + l .  

For iEIp,~, its complement i t and its conjugate index i* are given, respectively, by 

itEIn_p,n, i~:=n\i, 
i*EIp.n, i*:=(n+l-ip,... ,n+l-il). 

For i C J  z, we define also the/ -complement  

izEJ l, i~:=i'\{1}. 

Finally, for two indices i, j ~  Ip .... we denote 

i <~ j r i~ <~ j~ f o r a l l s ,  [ i [ : = E i s .  
5 

The following lemmas will be used frequently (see [K, pp. 1-6]). 
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LEMMA 2.1.1 (Cauchy-Binet formula). If U, V, W E R  nx~ and U=VW,  then for 
any i,jEIp,n, 

U(i, j)= E V(i,c~)W(a,j). 
c t E l p  n 

This relation will be referred to as 'the CB-formula' for short. 

LEMMA 2.1.2 (inverse determinants). If V=U -1, then for any i, jEIp,,, we have 

U ( f  ,i') v(i,j) = 

det U 

LEMMA 2.1.3 (Laplace expansion by minors). For any fixed index iEIp,n, we have 

d e t U =  E (-1)li+"lU(i'~)U(i"(~')" 

We will also use the following estimate. 

LEMMA 2.1.4. Let qEN and as,b~,cs>~O. Then 
q 

~ s = l  asbs bs r~n b~ ~< q ~< max -- .  
Cs Es= l  asCs s cs 

(2.1.1) 

Proof. Let 

Then gc~ <~ b~ ~< gc~ and 

min bs b~ --=_e, m a x - - = g .  
s a s  s C s 

q q q 

~_Eascs<~Easbs<~gEascs.  
s = l  s = l  s = I  

[] 

2.2.  R e d u c t i o n  t o  a l inear  s y s t e m  o f  e q u a t i o n s  

2.2.1. Derivatives of nuU-splines at knots. Let q be a null-spline on A of degree n §  

i.e, 

qESn+2(A), q(t,)=O for all ,. 

Set 
qu:=(q(~l),...,q(~n))ER n, q(ul):=~.q(l)(t,), /=O, . . . , n+ l .  

On [t. ,t ,+l], q is an algebraic polynomial, and by Taylor expansion of q at x=t ,  we 

obtain 

~.q( ) ( t ,+ t )=  ~ J=~ (j_i)------~.q(Y)(t,)'[h,] j-~=,=* ~.(j-i)! .q(Y)(t~)'[h'lJ-~' 
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i .e . ,  

Since (o) (o) q. = q u + t = U ,  w e  have 

v + l ' l t t v ]  = 

j = l  

and hence 

q(i) ,~. ,i ~ [ ( ~ ) _ ( n : l ) ] q ( j ) . l h ~ , , j  ' 
v + l ' l t t u [  = . 

For the vectors q. we have therefore the equality 

Do(h~,)q~,+l = -ADo(h~,)q~,, 

where A is the (n x n)-matrix given by 

and 

j n 

Do(h) = diag [h, h 2, ..., hnJ. 

By Taylor expansion of q at x=t ,+ l ,  we conclude that  

Do(-h~)qv = - ADo(-h,,)q~,+ l, 

so that  in view of (2.2.1) 

with 

i = l , . . . , n .  

(2.2.1) 

(2.2.2) 

(2.2.3) 

It is more convenient to employ another scaling of q, in (2.2.1), namely by the matrix 

Dh := D(h) := h-n/2-U2Do(h) 

= diag [h -n/2+1/2, h - n / 2 + 3 / 2  , ..., hn/2-1/2j, 
(2.2.6) 

which satisfies 

det D(h ) = 1. 

Do := D0 ( -1 )  = diag [ -1 ,  1 , - 1 ,  1, ...3. (2.2.5) 

A -1 = DoADo, (2.2.4) 
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Then we also have the equality 

which may  be rewri t ten as 

2.2.2. 

D(hv)q,+l = - A D ( h ~ ) q v ,  

D ( h , + l ) q , + l = - D ( h ~ + l / h , ) A D ( h ~ ) q v .  

The matrices B, B I, C. Set 

yv:=D(h, )q~,  u < N ,  

YN :=  D(hN-a)qN, 

i.e., for a null-spline qE Sn+2(A),  we define the  vectors 

Yv :=  (yO), ..., ,(~)~ ~ n n  

y(Z) :=  ~.q(O(t,).lh~lt-(n+l)/2, 

y~) :~- ~q(1)(tu).lhN_lll-(n+l)/2. 

hu+l 

h .  

with the components  

QV " ~  

Set also 

u = 0 , . . . , N - 1 ,  

Then from (2.2.7) follows that the vectors y. are connected by the rules 

and 

Y~,+I = -D(Q~,)Ay~,, u = O, ..., N - 2 ,  

YN -=- --AyN-1,  

Yv-1 = -DoAD(1/Q~,_I)Doyv, u = 1, ..., N -  1, 

YN-1 = -DoADoYN.  

Now fix an index u. Then  we have two systems of equat ions 

Cy~,= (--1)N-~'yN, B'yv = ( -1)~y0,  

81 

(2.2.7) 

(2.2.8) 
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with 
C := CN-. : :  AD(pN-1)AD(pN-2)... AD(pv)A, 

B := B .  := AD(1/po)AD(1/pl)... AD(1/p~,-1), 
! I B : :  B .  := DoBDo. 

(2.2.9) 

2.2.3. Linear system for z,. Now we rewri te  formula (2.2.8) for our special null- 

spline aGS2k_2(A)  defined in (1.4.1)-(1.4.4). For the sake of brevity, set 

p : = k - 2 .  

Then  the corresponding vectors are 

z .  := (z(~ n, ...,z(~2v+n) E R 2p+1, ~ = 0 ,  . . . ,N,  

with 

z(O:= ~a(O(t.).[h.I l - ( p + l ) , ,  v = 0, ..., N -  1, 

z~  ) : = ~ a ( t ) ( t N ) . l h N _ l l  l-(p+l), ~ : N .  

Moreover, by definition (1.4.2)-(1.4.4) of a, we know tha t  

/~ ~ (P+l) z(P+I)o _(2p+1)'~ ZO = I , ,~ '~y ,  ZO , ,-- . ,z 0 ), 

p=k-2 

ZN = ( ~ ,  1,Z(~ p+I), .--, z(2P+I)). 

p=k--2 

By (2.2.8), we have two systems of equations,  

B'z, = ( -1)~z0,  Cz~ = (--1)N-'zN, 

or in view of the prescribed values of the first components  of zo, ZN, 

B'z~ = ( - 1 )  ~ 

Ooi } p=k_~ ~ 
z~p+ 1 ) 

Z0 (p+2)  

Z(20 p + 1 ) 

Cz~ = (-1) N-~ 
0 p + l = k - - 1  

1 

z(V+2) 
N 

< z p§ j 

, y > 0 .  
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According to the notation introduced in w the upper half of these equations could be 

written as 

For v=O we have 

C N z o  = (--1)NzN, 

C [ p + l ,  :] x z , ( : )  = ( -1)  N-"  i)}p l. 
or  0} 

i p=k--2 
0 

Czo := C x Zo (p+I) 
Z; p+2) 

z;2p+ 1 ) 

In terms of the u n k n o w n s  zo:~-(z;P+l),z(oP+2) 

half of this system is equivalent to 

= ( - 1 )  ~ 

0} 
0 p+l=k--1 

1 , ~ = 0 .  

z(p+2) N 

z(2p+l) 
N 

,..., z~ 2p+l)) and in our notation, the upper 

C [ p + l ,  p'] • ~o = (-1)  N p+l. 

In summary, we can form one system with a known right-hand side and obtain the 

following result. 

THEOREM 2.2.1. Let 

~1 ( . (p+l )  .(p+2) z~2p+l)) Z. :=  \/Z (1). ' " "  Z(v2p+I))' Z(t):= cr(l)(tu)'[hul l-(p+x) , z0  : =  ~ 0  , ~ o  , ' " ,  " 

Then, the vector zuGa 2p+l is a solution to the sys tem 

M z ,  = ( - -1 )N-"  (O, ..., O, O, ..., O, 1), M : =  [ B ' [p , : ]  ] u > 0 ,  (2.2.10) 
~ [ C [ p + l , : ]  ' 

p p+l  

and the vector zoER p+I is a solution to the sys tem 

Mo20 = (--1)N (0, ..., 0, 1), Mo := C [ p + I , p ' ] .  (2.2.11) 

p+l 
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2.3. F i r s t  e s t i m a t e s  for  z~ 

2.3.1. Total positivity of the matrices A, B, C. By definition (2.2.9), 

C := CN-~ := A D ~ I A D ~  ... AD-rN_~A, 

B := B .  := ADzIAD6 2 ... AD6 v, 
? t 

B := B ,  := DoBDo, 

where %, (is are some positive numbers. 

LEMMA 2.3.1. The matrix A is totally positive. 

Proof. See e.g. [BS]. We present another proof in w [] 

LEMMA 2.3.2. The matrices B and C are totally positive. 

Proof. By Lemma 2.3.1, the matrix A is totally positive, and so is D(7),  as a diagonal 

matrix with positive entries. By the CB-formula, the product of TP-matrices is a TP-  

matrix. [] 

LEMMA 2.3.3. For any u E N ,  we have 

B' ,( i , j )  = (-1)fi+Jl B , ( i , j ) .  (2.3.1) 

Proof. By definition, we have 

Do := diag [(-1)lJ, 

and thus, by the CB-formula, 

Bt,(i , j)  = Do(i, i)B~(i, j )Do( j , j ) .  

But since 

D o ( i , i ) = ( - 1 )  li[, D o ( j , j ) = ( - 1 )  Ijl, 

the statement follows. 

2.3.2. First estimate for Zo. 

THEOREM 2.3.4. The solution 5o=(Z(o p+I), ...,z;ZP+a)) T to the problem 

M0~0 = (0, ..., 0, 1) T , Mo := C [ p + I ,  p'] 

p + l  

satisfies the relation 

[] 

(2.3.2) 

C(P '  Pl) l = p + l ,  ..., 2 p + l .  (2.3.3) 
Iz~Z)l = C ( p + I , p ,  ) , 



Mz, = (0, ..., 0, 1)T, 
2p+1 
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Proof. From (2.3.2) we infer 

20 = (z(0P+l) (2p+1)~ --., z0 ) =Mol"(O,...,O, 1)T=Mol[:,P+I], 
p+l 

i.e., 20 coincides with the last column of M o  1. By Cramer's rule, we obtain 

(1) _ -(t-p) = M o  1 [ l - p , p + l ]  = ( -1 )  1+1 det M(o I-p) 
z~ - z ~  detM0 ' 

where M(o I-p) is the algebraic adjoint to the element Mo[p+ l ,  l-p]. The formulas 

det M~ l-p) := M o ( \ p +  1, \ l -p ) := M0(p, \ l -p ) := C(p,  pt),  

det M0 := C ( p + l ,  p ' )  

follow from definitions and prove the theorem. 

2.3.3. First estimate for z,. 

THEOREM 2.3.5. The solution z,  c R  2p+1 to the problem 

[ Bt [P , : ]  ] R(2p+I)• 
M : =  [ C [ p + l , : ] J  �9 

admits the estimate 

Proof. 

Iz(~Z)l ~<max C ( p , S )  
y~j~ C ( p + l , j ' ) '  

(1) First we derive an expression for z~. Note that  

[ ] M:=LC[p+I , : ]  [ B'[p,:] ] : = /  C[p , : ] J= :M[2p ' : ]  . 
Lc[p+I,:] 

From (2.3.4) we infer that  

85 

[] 

(2.3.4) 

(2.3.5) 

(2.3.6) 

z ,  = M - I . ( 0 , . . . , 0 ,  1) T =- M - I [ : ,  2p+1], 

i.e., the vector z .  is equal to the last column of M -1. By Cramer's rule we obtain 

z (I) = M -1 If, 2p+l]  -- ( - 1 )  2p+1+l det M (1) 
det M ' (2.3.7) 
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where M (z) is the algebraic adjoint to the element M[2p+l ,  1], i.e., 

det M (t) := M ( \ 2 p +  1, \ l )  = M(2p,  \ l) .  

(2) Next we estimate det M (1). Expanding the determinant M(2p,  \ l )  in (2.3.6) by 

Laplace expansion by minors (Lemma 2.1.3) of B'(p, \l) and C(p,  \ l ) ,  we obtain 

det M (l) := M(2p,  \ l )  = ~ (-1)et(J)B'(p,j)C(p, jt), 
j E J  t 

where ez(j) are some integers. From (2.3.1) it follows that 

B ' ( p , j )  = (-1)~(J)B(p,j) 

for some integer ~(j). Therefore 

Idet M(1) I ~< ~ B(p,j)C(p,S) .  (2.3.8) 
j E J  l 

(3) We also need an expression for det M. Expanding the determinant det M in 

(2.3.6) by Laplace expansion by minors (Lemma 2.1.3) of B' and C, and using (2.3.1), 

we find 

get M = ~ ( -  1)IP+JlM(p, j ) M ( p ' ,  j ' )  
j E J  

:= ~ (-1)lp+Jl B' (p, j) C(p+ l, j ') 
j E J  

= ~'~ B(p,j)C(p+ l,j ') ,  
j E J  

i.e., 

det M = ~ B(p, j )C(p+l,  j'). 
j E J  

(4) Now we are able to bound z~. From (2.3.7)-(2.3.9), it follows that 

[det M(l) I ~j~jz B(p, j )C(p, j  I ) ~jcj~ B(p,j)C(p,J z ) 
Iz(1)l- IdetM[ ~ ~ j c j B ( p , j ) C ( p + l , j ' )  < ~-'~.j~j~B(p,j)C(p+l,j')" 

Applying Lemma 2.1.4 to the latter ratio we obtain 

iz(Z)l~<max C(P ,jl) 
jEj z C ( p T l , j ' ) "  

(2.3.9) 

[] 
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2.4. P r o p e r t i e s  of  t h e  m a t r i c e s  C 

The orders of the minors of C on the right-hand side of (2.3.3) and (2.3.5) differ by 

one. In this section we establish some relations between minors of C which allow us to 

equalize these orders. 

Definition 2.4.1. Define F E R nx n as an anti-diagonal matr ix  with the only non-zero 

elements 

F [ i , n + l - i ] = ( n : l )  -1. 

Recall that  by definition (2.2.5) 

Do := [ - 1 , + 1 ,  ...]. 

LEMMA 2.4.2. There holds the equality 

C -1 = (DoF)-IC*(DoF). (2.4.1) 

Proof. Consider two null-splines sl ,  s2 of degree n + l  on A, 

sl,s2ESn+2(A), sffG)=s2(G)=O for a l l t . E A ,  

and the vectors x , ,  y .  E R n of their normalized successive derivatives, 

x(2 l yy) ih L,_n/2+l 
: =  z! : =  . ( 2 . 4 . 2 )  

We proved in Lemma 1.7.3 the equality 

n §  

G(sl,s2;x):=E(-1)Is~O(x)s~+l-O(x)=const(st,s2), xE[a,b]. (2.4.3) 
/=0 

I t  follows, in particular, that  

G ( S l ,  82; tv)  = G ( S l ,  82; tN). (2.4.4) 

Notice that  due to the null-values of sl ,  s2 on A we can omit  in the sum (2.4.3) the terms 

corresponding to l = 0  and l = n + l ,  i.e., we have 

n 
G ( S l ,  S2; tv)  : E l(l) (re+l--l) ( - -1)  81 ( t v ) s  2 ( tv)-  

/=1 
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Using the equalities (2.4.2) we may rewrite the latter expression in terms of the vectors 

x ~ y  as 

1 x(J)y(: +1-0. (2.4.5) ( n + l ) ! G ( s t , s 2 ; t ~ ) = E ( _ l ) t  n 1 - 1  
/=1 

With the help of matrices Do and F one obtains 

Hence, 

so that  (2.4.5) becomes 

(-1)l ( n ; 1 ) - a =  (DoF)t,n+l_l. 

(-1)l ( n l l  ) y(~n+ l-O = ( DoFy. ) (0, 

( n + l ) !  
- -  G(sl, s2; t~) = (x~, DoFy~). 

Now, from (2.4.4) we conclude that  

(xv, DoFyv) = (XN, DoFyN ). (2.4.6) 

Recall that  we defined the matrix C in (2.2.8)-(2.2.9) through the relations 

( - - 1 ) N - U X N  = C x u ,  ( - - 1 ) N - U y N  = Cy.. 

Thus, from (2.4.6) it follows that  

(x,, DoFy~) = ( Cx~, OoFCy~) = (x~, C*DoFCy,). 

Since we have not made any assumptions on x . , y . ,  the latter equality holds for any 

x . ,  y . E R  n. Hence, 

DoF = C*DoFC, 

and therefore 

C-1 = (DoF)-IC*(DoF). [] 

LEMMA 2.4.3. For any i,jCIp,n, we have the equality 

�9 / "1  " " " *  " *  

C(z ,3  )= f[~,gl.C(z ,3 ), (2.4.7) 

where 

f[i,j] := - -  
H S = I  \ js  J F(i,i*) p (n+,) 

F ( j , j * ) ' -  P (n+l)" 
H S = I  \ is J 
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Pro@ From 

C -1 = ( D o F ) - I C * ( D o F )  (2.4.8) 

it follows that det C = d e t  C*=de t  C -1, and since C is a TP-matrix, we have 

det C = 1. 

Therefore, by the inverse determinants identity (Lemma 2.1.2), we obtain 

C( i', j ' )  = (-1)li+Jl C - l ( j ,  i). (2.4.9) 

To estimate the minor C - I ( j ,  i) we apply the CB-formula to the right-hand side of (2.4.8). 

Since the matrix Do (resp. F )  is diagonal (resp. anti-diagonal), it follows that  

D0(a , /3 ) r  if and only if a= /3 ,  

F(ct,/3) r 0 if and only if c~ =/3*. 

Thus, the CB-formula gives the equality 

C - l ( j ,  i) = F - I ( j ,  j * ) D o l ( j  *, j*)C*(j*, i*)Do(i*, i*)F(i*, i). 

Due to the relations 

Do(c~*, a*) = ( -1)  la*l := ( -1)  (n+l)p-lal, 

F - I ( o z ,  oz*) = [/7'(06 o~*)] - 1  = IF(or*,  o01 -1  , 

the latter formula for C - l ( j , i )  is reduced to 

C_l ( j , i )  = (_l)_lil_lj I F(i, i*)  C(i*,j*).  
F ( j , j * )  

Combining this expression with (2.4.9) gives (2.4.7). [] 

LEMMA 2.4.4. For any p, n E N  we have 

C ( n - p ,  p ')  = C(p,  p*), (2.4.10) 

t such that and there exist constants Cn, cn 

cnC(p , j* )<<.C(n-p ,3  ) .~cnC(p , j*  ) f o r a l l j E I p , n .  (2.4.11) 
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Proof. By definition, 

p : =  (1, ... ,p) = ( n - p +  1, ..., n)*, 

n - p  := (1, ..., n - p )  = ( n - p +  1, ..., n)'. 

Thus by (2.4.7) we obtain 

C ( n -  p, j ' )  = f [p ,  j] C(p,  j*). 

The equality (2.4.10) follows now if we take j = p ,  since f [ p , p ] = l .  

(2.4.11) follow with 

c~ := rain {f[p , j ]  : 1 <~p<~ n, jEIp,n} ,  
! 

cn:= max { f[p , j]  : 1 <~p<~ n, jCXp,n}. 

With n = 2 p + l ,  Lemma 2.4.4 takes the following form. 

LEMMA 2.4.5. For any p with n=2p+ l we have 

C ( p + l ,  p ')  = C(p,  p*), 

and there exist constants Cp, Cp such that 

cpC(p, j*)  <<. C ( p + l , j ' )  <~c~C(p,j*) for all j E J .  

(2.4.12) 

The inequalities 

[] 

(2.4.13) 

(2.4.14) 

2.5. Second  e s t i m a t e s  for z~ 

THEOREM 2.5.1. The components of the vector z .  satisfy the relations 

Iz~l)l - C(P'  PZ) l = p+ l, ..., 2p+ l, 
C(p ,p* ) '  

C(p ' J l )  / =  1,.. . ,2p+1. [@1 ~< cp max 
jez ~ C(p,  j*) '  

Remark. Since for l = p + l  we have p l = p . ,  it follows that 

iz0(P+l) i = C(p,  pp+l) 
C(p,  p*) =1 ,  

in accordance with (1.7.4). 

(2.5.1) 

(2.5.2) 
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Proof. By Theorem 2.3.4 we have 

[z;')l= C( p ' p l )  
C ( p + l ,  p ' ) '  

and by (2.4.13), 

l = p + l ,  ..., 2p+1, 

C ( p + l , p ' )  = C(p,  p*), 

which implies the first equality (2.5.1). 

Similarly, by Theorem 2.3.5 we have 

[z(O I < m a x  C(p'Jt) 
jeJ  ~ C ( p + l , j ' ) '  

and by (2.4.14), 

l = 1, ..., 2p+1, 

C ( p + l , j ' )  >~ cpC(p,j*), 

which leads to the second inequality. 
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[] 

3 .  

3.1. P r e l i m i n a r y  r e m a r k s  

To estimate the ratio 

P r o o f  of  T h e o r e m  Z: final e s t i m a t e s  for zv 

C(p , i )  

C ( p , j )  

for specific i,jEJ, in particular, for those given in (2.5.2), we may split the whole product 

into two arbitrary parts, 

N - / /  

C := H [AD.~].A 
r = l  

q 

C=KRe, Rq:= H[AD,~].A, (3.1.1) 
r = l  

and use the CB-formula keeping the total positivity of the matrices involved in mind. 

This gives 
C(p,  i) <~ max Rq(c~, i) (3.1.2) 
C(p,  j )  ~eJ Rq(ct, j)' 

so that  it is sufficient to estimate Rq((~,i)/Rq(c~,j) for some q. Clearly, the smaller the 

number q of the factors of Rq in (3.1.1), the simpler the work to be done. It would be 

ideal if we could take 

q = 0, R0 =A.  
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Unfortunately, A, though totally positive, is not strictly totally positive, i.e., 

A(a,  ~) = 0 for quite a lot of indices a,/3 E J.  

But fortunately, A is an oscillation matrix, and we prove in the next w that 

A(a,/3) > 0 

As we show in w this implies that 

Rp_l(~ , i )  > 0 

Thus, it suffices to estimate the ratio 

Q(~, j )  ' 

This will be done in w167 

if and only if a ,  ~< ~s+l. 

for all ~ , i e J .  

p--1 

Q := Rp-1 := 1-I [AD'r~] .A. 
r = l  

(3.1.3) 

3.2. T h e  m a t r i c e s  S a n d  A 

3.2.1. The matrix S. 

Definition 3.2.1. Set 

: =  S Sn+ 2 : =  
[<i/Ji , j=o [ \ i - -1 /J i , j= l"  

Example 3.2.2. 

1 1 1 )  
1 )  $ 3 =  0 1 2  , 
1 ' 0 0 1  4/i 2 

1 

0 

(3.2.1) 

LEMMA 3 . 2 . 3 .  

Moreover, we have 

The matrix S in (3.2.1) is a TP-matrix, i.e., 

S(a, /3) >~ 0 for all a, ~ 6 Ip,n. (3.2.2) 

S(a,/?) > 0 if and only if a <~/3. (3.2.3) 
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Pro@ The first part (3.2.2) of the lemma, i.e., the total positivity of S, was already 

proved by Schoenberg [Scho]. We present an alternative proof by induction which gives 

(3.2.3) as well. 

(i) Let Sn be a TP-matrix (as it is for n=2). Since 

it follows that  

where 

1 

S'~+l = 0 

0 

~(j--1)~ n+l 
S n + l  : =  [ \ i _ l j j i , j = l  = Sfn+ l'In+l' 

. . . . . . . . . . . . . . . . . . . . . . . .  0 

Sn := ( \  i - 2  ]Ji,y=2 

0 1 ... 
/ ~ + 1  ~ .. . �9 

.~  0 

(3.2.4) 

(3.2.5) 

The matrix In is totally positive (all its minors are either 0 or 1), and hence, by the 

CB-formula and the induction hypothesis, the total positivity of Sn+I follows. 

(2) Let us prove (3.2.3). 
(A) If 

a s > ~ s  for some sE{1,. . . ,p},  

then the entries of the matrix 

T : =  S[c~, ~], 

which is a (pxp)-submatrix of the lower triangular matrix S, satisfy 

T[A,#I=S[a)~,jt,]=O, l>>.s>>.#. 

Hence the rows {T[~," P �9 ]}a=~ are linearly dependent, i.e., 

det T := S(a, ~) = O. 

(B) Suppose that  for any % 5CIp,n we have the equivalence 

S n ( % 5 ) > 0  if and only if 7~<& 

Now let 

a ,~EIp ,n+l ,  as~<~s for a l l s = l , . . . , p .  (3.2.6) 
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We assume also that p<<.n, since for p = n + l  by definition we have det Sn+a=l .  

(3.2.4) and (3.2.5), by the CB-formula, we conclude that  

n+li~l,..., l~p.} = E ~ n + l ~  (~l,...,f~p / ~,,~l,...,~p.]" g 
We distinguish two cases. 

(B1) If a l > l ,  then, by (3.2.6) we also have/31>1. Hence 

(t3'1,--., OLp"~ (0~1-- 1, ..., Otp-- ~) 
Stn-I-l~l,...,t~p] =Sn ~l--1,...,~p-- " 

Taking from the sum (3.2.7) only one term with (~=/3 we obtain 

~[~l,...,~p] --1,...,/~p--1) n+l~ ~,,...,~p] 

(~1 - 1, ..., ~ p -  1~ 
=Sn fll--1,.. . ,flp--l/ >0, 

where the last inequality holds by the induction hypothesis. 

(B2) If a1=1,  then 

S~+l(1 ,a2 , . . . ,ap ,~={O , if/31 > 1, 
S {a2-1, . . . ,ap-l"~ ~'.~l,t~2,'",~p] n~/32__l,...,/3p__l], if/31 = 1. 

In this case taking from the sum (3.2.7) the term with 

~1=1, 

g~=3~, s~>2, 

we obtain 
..., a v -1  (1 ,  a2, ..., ap "~ S {'a2-1, /32, ..., /3p "~ Sn+l\l~l,~2,...,~p] ~ n~2--1,...,/3p-l)gn+l( l~:,~2,...,t~p] 

= S  /c~2-1,  ..., o~p- 1) 
'~ ~,/32-1, . . . , /3p- 1 /  >0.  

From 

(3.2.7) 

[] 

3.2.2. The matrix A. The matrix A was defined in (2.2.2). We recall this definition. 

Definition 3.2.4. Set 

A := As := (aij)i~j=l, 

Example 3.2.5. 

(i2i) (4 3 2i/ 
A2 = 2 ' 4 10 10 9 " 

5 5 5 

(3.2.8) 
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LEMMA 3 .2 .6 .  

Moreover~ 

A(a, 3) > 0 

The matrix A in (3.2.8) is a TP-matrix, i.e., 

A(a, 3) >1 0 for all a, 3 C Ip,n. 

if and only if a~ <~3~+1 for all s = l , . . . , p - 1 .  

(3.2.9) 

(3.2.10) 

Proof. The following considerations are due to [BS]. For the matrix S defined in 

(3.2.1), consider the matrix S-  obtained from S by subtracting the last column of S 

from all other columns. We have 

S - : =  
j . ~ n + l  n_/_l \ , n + l  [ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0 

{ ( ~ )  - ( n + l " ~  n = : - A n  
\ i ] ) i , j = l  

This implies that  for a, flEIp,n, 

0, OL1, ..., O~p-- 1, O'p "~ 

S \3~, 32, ..., 3p, n +  1]  
( 0~ 0~1, ..., C~p-- l ~ OLp 

= S- \ 3 1 , 3 2 ,  "", 3p, n - ~ l ]  

= ( -1 )  (p+1)+1 d e t ( - d [ a ,  fl]) 

= ( -  1) (p+1)+1 (-1)PA(o~, 3) 

=A(a,3) ,  

i.e.~ 

0, OZl, ..., O~p_ 1, o~ p ~/(~1, ..., C[p'~ 

By (3.2.2), S is totally positive, and by (3.2.3) one has 

s ( O, O~l , ..., OLp-- l , OJp ~ 

\31,32, ..., 3p, n + l J  
> 0 if and only if OL8 ~ 38-F'1 

Otp ~ n + l .  

for all s = l , . . . , p - 1 ,  

This is equivalent to (3.2.10), since the condition a,3EIp,n implies that  31J>l and 

a; <~ n. [] 
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3.3. The  matrices Q 

Definition 3.3.1. Set 

where 

A = A2p+l ~ 

p-1 
Q.y := AD.y, AD.y~ ... AD.y,_ I A = I-[ [AD.~j . A (3.3.1) 

r-----1 

D ~  := D(7~):= diag [l%.1 -p, ..., iTriPJ, A, D~ E R  (2p+1)• (3.3.2) 

In this section we establish a relation between indices/3, i, j C J of the form 

E[Z,~] c E[z,j], 

which implies the estimate 

Q~(~, i )  ~ c p Q ~ ( ~ , j )  for all 7 =  (~/1,--.,'7p-1)c Rp-1.  

Here Cp is a constant that  is independent of 7, i.e., independent of the knot sequence 

(we recall that  in (3.3.1) % stands for the local mesh ratio ~ = h , / h ~ + l  with some u). 

Let 

a(~)CJ, r=O, . . . , p ,  

be a sequence of indices with 

a (~ := 3, 

From (3.3.1) and the CB-formula, we infer 

a (v) := i. 

O~(1),...,oL(P-- 1)E J 

(3.3.3) 

Since by definition (3.3.2) we have 

D~.(a(r) , a(T)) = 3'T- EP=I [a(~)-(p+l)]s = 7~p(p+l).~/la(~)l 

we may rewrite (3.3.3) as 

p--1 p--1 ] 
Qff(O~(0)'oL(P))" H ~rP(P+I)= E [1-I A(OL(r-1)'OL(r))"~r~ A(oL(P-1)'o~(P)) 

r=l c~(1) ~(p-1)Ej Lr-1 

p p--1 
E H A(O~(r-x)'~ 1-I ~c~(r)l" (3.3.4) 

a(1),...,a(p- 1)Ej r-~l r~l 
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By L e m m a  3.2.6 the  condit ion 

A(c~ ( r - l ) ,  ct (r)) > 0 

is equivalent  to the  inequalities 

(~) 
0~ r - l )  ~ tXs+l ,  8 = 1, ...,p--1. (3.3.5) 

This  means  t ha t  in (3.3.4) we could restr ict  the  sum to the  non-vanishing minors  of A, 

i.e., to the  sequence of indices t h a t  sat isfy (3.3.5) for all r = l ,  . . . ,p s imultaneously.  

Set 
p--1 

e~ :-- 1 [  
r = l  

This  is the  factor  on the lef t -hand side of (3.3.4) t h a t  is independent  of ~ and i. Then  

f rom (3.3.4) we obta in  

p--1 p--1 

c; 1-[ " 

oe(1)...,o~(p-1)~J[]3,i] r = l  c~(1) ...,o~(p-1)EJ[~,i ] r = ]  

(3.3.6) 

where  for a fixed ~=:c~ (~ and i = : c t  (p), the  sum is t aken  over the  set J[~,i] of sequences 

JT=I of indices c~(~)E J which satisfy the  condit ion (3.3.5) s imultaneously.  

Precisely, we formulate  

Definition 3.3.2. For given ~ , i E J ,  we set 

c~ (~ :=/3,  c~ (p) :=  i. 

Fur ther ,  we write 
:= {0~ (r)'ip-1 E J~=l J[~,q, 

and  we say t ha t  the sequence c~ is admissible  for the  pair  [r i] if 

c~(~)E J ,  r = 1 , . . . , p - I ,  

(~-1)~<c~),  r = l , . . . , p ,  s = 2 , . . . , p .  OLs_ 1 

(3.3.7) 

Definition 3.3.3. For given/3,  i E J ,  we wri te  

e := (e, ,  ..., ep-1)  c E[o,i], 

and we say t ha t  the  p a t h  c is admissible for [~, i], if there  exists a sequence of indices 

c~ = (~(1), .-., ~(p-1))  E J[z,q 
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such that  

sr = Ic~(~)l, r = 1 , . . . ,p -1 .  

With such a definition, (3.3.6) becomes 

p--1 p--1 

cEE[~,i] r----1 ~EE[~,i ] r = l  

where the sum is taken over all different paths zEE[z,i]. 

Set 

Q[~,~I (7) :=  

The next lemma follows immediately. 

LEMMA 3.3.4. 

p-1  

E II ' rr 
eE E[~,i] r = l  

There exists a constant Cp such that if 

E[~,~ lCE[~,J1, /3,i, j E J ,  

then for any ~=('~1, ...,~p-1) we have 

Qiz,~] ('~) ~< Q[z,Jl (7), 

and consequently 

Q~(~, i) <~ cpQ.~(~,j). 

(3.3.s) 

(3.3.9) 

(3.3.1o) 

3.4. A f u r t h e r  s t r a t e g y  

(1) The function 
p--1 

Q[Z,i](~) := ~ r I  I%'[~" 
~EE[~,~] r = l  

defined in (3.3.9) is a multivariate polynomial in % All the coefficients of this polynomial 

are equal to 1. We want to find whether, for special i , j E J ,  the inequality 

Q[z,~I ('~) ~< cpQ[z,j] ('~) (3.4.1) 

holds for all 7ERr+ -1 (all 7's are positive). The condition (3.3.10) in Lemma 3.3.4 

provides, of course, this inequality, but we need to find a way to check its validity. 
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(2) A trivial necessary condition for the inequality (3.4.1) to be true is that 

(A) the minimal degree of Q[z,i] (2/)>~ the minimal degree of Q[z,j] (2/), 

(B) the maximal degree of Q[z,i] (2/) ~< the maximal degree of Q[z,j] (2/). 
This gives rise to the minimal and the maximal paths which we define in w These 

paths are nothing but the corresponding degrees of the monomials in Q[~,~]. 

As we show in w the set of admissible paths sEE[~,~ 1 (i.e., the set of monomials 

of the polynomial Q[z,~] (7)) has the properties: 

(a) the minimal path (degree) c [~] depends only on ~, 

(b) the maximal path (degree) ~[i] depends only on i. 

Hence, among the conditions (A) and (B), only (B) will remain under consideration. 

(3) For two arbitrary multivariate polynomials, the condition (B) is not sufficient to 

provide (3.4.1). For example, for 

Pl(x,y):= l+x2y, P2(x,y):= l+xay ~, 

P1 can not be bounded by (const. P2) for all positive values x, y. Therefore, we will prove 

in w that for our particular polynomials the condition (B) for the maximal degrees, or 

equivalently the condition 

(W) the maximal path g[il ~< the maximal path ~[J] 

for the maximal paths, implies that  

{the set of all monomials of Q[~,i]} c {the set of all monomials of Q[/~,j]}. 

In the path terminology it looks like 

~[~] ~ ~[J] ~ E[~,~ 1C E[~,j]. 

Then, by (3.3.10), the inequality (3.4.1) trivially follows. 

(4) To prove the last implication, we establish in w a criterion for the inclusion 

2/~ := "~ . . .  3,~ " G Q[~,i] (~), or equivalently, ~ C E[~,~]. 

With Q[z,~] being the polynomial of the highest maximal degree w (with the highest 

maximal path s[~]), the criterion is 

In words, a monomial 0/~ belongs to the polynomiM Q[z,i] (7) if and only if 

(i) it belongs to the highest polynomial Q[~,~o](7), 

(ii) its degree s does not exceed the maximal degree g[i] of the polynomial Q[z,i] (7)- 
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In the path terminology this can be rephrased as 

EEEIz,~], e~<~ {~] ~ EEE[z,~]. 

Only sufficiency needs to be proved, i.e. the implication 3 .  

(5) The latter will be proved by the iterative use of the following "elementary" step: 

for any i r which differs from i only in one component ira, the same implication holds: 

cEE[~,~,], ~<~[~] ~ cEEIz,~ ]. 

All of w is devoted to the proof of this latter statement. 

(a) We have a path E'EE[z,~,] (a monomial ~E'EQ{~,~,](~/)) with z ,~ [ i ] .  

(b) It is defined by a sequence (a'(T))EJi~,e] with ]a'{~)]=c'T. 

(c) Since iP>~i, this sequence may not be admissible for [3, i]. 

(d) But we can modify it to a sequence (a "(~)) such that  (a"(~))EJ[z,i] and 

These modifications are treated in Lemmas 3.6.1-3.6.3. The statements of these 

lemmas are summarized then in Lemmas 3.6.4-3.6.5. 

3.5.  M i n i m a l  a n d  m a x i m a l  p a t h s  

In this section we define the minimal and the maximal admissible sequences a_ (T), ~(T)E 

J[Z,j], and respectively the minimal and the maximal paths ~[~1, giJ] E E[Z,j]. 

We start with examples of what the admissible sequences (a(T))EJ[z,i] look like. 

According to definition (3.3.7) we have two strings of inequalities, 

l~{Xs_l<a~T)<2p+l, r = l , . . . , p - 1 ,  s=2,...,p, 

a~T_~l)~<a ( ' ) _  s , r - 1 , . . . , p ,  s=2 , . . . , p .  

In order to analyse these strings, we will frequently express them in the following matrix 

form.  

Example 3.5.1. (1) p - 2 ,  (~(1))EJ[~3,i]: 
(D((1) 

0'~ 11 ~ i2 

31 ~< a~ 11 
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(2) p=3,  (aO),a(2))EJ[~,i]: 

/33 

(~(~) 
$ 

~< (~1) 

(~(2) 
$ 

a~ 2) 

~< a~ 2) 

~< a(3 2) 

i l  

i2 

i3 

(3) Arbitrary p, (a(1), ..., a(p-l))  E J[~,~]: 

a(v-2) 

c~(2) 

c~(p-1) 
$ il 

a~ p-l) ~< i2 

c~ p-l) ~ i3 
a(1) 

~(p-2) ~(p-1) c~ 1) ~ a~ 2) ~ "'" ~ ~p-2 ~ ~p-1 ~ ip 

9, 

I01 

In such a representation, each column is an index from J, i.e., the following "vertical" 
inequalities are also valid: 

1 ~ ~r )  < ... < ~(~)~ 2p+1.  (3.5.1) 

In particular, it follows that 

s ~ a ~ r ) ~ p + l + s ,  s = l , . . . , p .  (3.5.2) 
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LEMMA 3.5.2. For any ~ , i E J  the set J[~,il is non-empty. 

Proof. The following sequence (a  (~)) is always admissible: 

$ 

1 

/31 < p + 3  

CIt(P -1  ) 

4 
~(p-2)  

4 1 
a(2) 

$ 1 < 2 

i l  

< i2 

< i3 

< 2 < ... < p - 2  < p - 1  < ip 

< p + 4  < ... < 2p < 2p+1 

/3p_2 < 2p < 2 p + l  

/3p-1 < 2 p + l  

[] 

LEMMA 3.5.3. For any/3, i E J ,  and any (a(r))EJ[z,i],  we have 

a (') ~< ~(r), (3.5.3) 

where 
( min(ip_r+s, p+ l + s), 

l p + l + s ,  

s<.r,  r = 1 , . . . , p - I ,  

s > r ,  r = 1 , . . . , p - 1 .  
(3.5.4) 

Proof. In view of (3.5.2), Table 1 presents the admissible sequence (5(~)) whose 

entries take the maximal  possible values. [] 

LEMMA 3.5.4. For any /3, iEJ ,  and any (o~(r))EJ[Z,i], we have 

a (') ~< a (~), (3.5.5) 

whe?~e 

~_(r) = ~ s. s ~< r, r = 1, . . . , p -  1, (3.5.6) 

( max(~  . . . .  s), s > r ,  r = l , . . . , p - 1 .  

Proof. In view of (3.5.2), Table 2 presents the admissible sequence (q(r)) whose 

entries take the minimal possible values. [] 
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8(~) 
+ 

~(v-1) 
$ i~ 

~(p-2) 
$ m i n ( i 2 , p + 2 )  ~< i2 

(~(2) 
$ m i n ( i 3 , p + 2 )  <~ m i n ( i 3 , p + 3 )  ~< i3 

r a i n ( i v , p + 2  ) <. r a i n ( i v , P + 3 )  <~ ... <~ m i n ( i p , 2 p - 1 )  <~ m i n ( i v , 2 p )  <~ ip 

~ < p + 3  < p + 4  < ... < 2p 

/3p-2 < 2p < 2 p +  1 

/3p-1 < 2 p + l  

< 2 p +  1 

Table 1. The maximal sequence (6~ (r)). 

~(1) 
.L 

QL(P - 1  ) 

+ 
~(p-2) 

+ 1 
_~(2) 
+ 1 < 2 

i l  

i2 

< i3 

1 

~1 ~< m a x ( ~ l ,  2) 

< 2 < ... < p - 2  < p - 1  < i v 

~< max(C31,3) <~ ... ~< m a x ( / 3 1 , p - 1 )  ~< max(/3~,p) 

Zv-2 < m~• < m~x(Zv_2,~) 

Zv-~ < m~,(Zv-x,;) 

Table 2. The minimal sequence (q(r)). 
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Definition 3.5.5. For/3, i E J  define the maximal path ~[i] and the minimal path r 

as follows: 

r P 

~[dEE[z,i] ' ~[i] := [5(r)l = E m i n ( i p - ~ + ~ , P + l + s )  + E ( p + l + s ) ,  (3.5.7) 
s = l  s = r + l  

p 

r E E[~,i], _r := I_~(~)l = s + E max(/3~_~, s). (3.5.8) 
s = l  s = r + l  

LEMMA 3.5.6. For any /3, iEJ ,  we have 

~[Z] ~<c~<~[i] for all cEEz, i .  (3.5.9) 

Proof. Follows directly from Lemmas 3.5.3 3.5.4 and Definition 3.5.5. [] 

3.6. Charac ter i za t ion  o f  E[f~,i] 

Here we will prove the equality 

E[z,i]={cEE[z,w]:e~<~[~]} for all/3, i E J ,  

where w := (p+2, ..., 2p+ 1) is the index from J with maximal possible entries. The latter 

will be proved by the iterative use of the following "elementary" step: for any i ~ that  

differs from i only in one component ira, the same implication holds: 

c E E[~,i,], ~ ~ ~[i] ~ c E E[~,i]. 

In this section exclusively, for i E J  we denote by i', i ' E J  some modifications of i which 

have nothing to do with unfortunately the same notation for the complementary index. 

LEMMA 3.6.1. For any given mE{l ,  ...,p}, let i,i~EJ be such that 

il~=i~, s ~ m ,  

~m'l = im + l. 

If  for a given ~3EJ we have 

then for the same/3 there exists a path 6, and a number /E{1, ...,p}, such that 

i r = 1, l - l ,  

eEE[~,i], e r =  I 1, r = l , . . . , p - 1 .  (3.6.1) 
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Proof. Let 

s 'E  E[fl,i,], e'~< g[i]. 

By definition, there exists a sequence c~'E J[~,i,] which satisfies the inequalities 

il 

O/1 ( p - l )  ~ i2 

, ( p - l )  c/l(p-m+l) ~ (,2(p . . . .  +2) ~ ... ~ ~m-1  ~ im+l 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  , (3.6.2) 

, J (p - -m+l )  ~ t(p--m+2) OL~(pll ) c~'1 (1) ~ -.. ~< ~ p - m + l  ~ (%-.~+2 ~< ... ~< ~< i~ 

t ( p - - m + l )  t(p--m+2) O~(p-- 1 ) fll ~a ;  (1)~.--~<%-.~+2 ~<%-.~+3 ~<-.. 

tip 

and moreover 

]c~'(~)l = r ~ e!:i], r = 1 , . . . , p - 1 .  

To produce a required sequence a E J i z , q ,  we change the values of the components  of 

cdCJiz,i,] only in the ru th  row: 

t(p--m+l).<:7....~ t (p--1)~ .t 
OZ 1 ~ C~ ~ Z,~ :=  i ,~+1.  

For a " s  in this row we have two possible relations. 

(1) The  first one is the  inequality 

(p-l) 
m--1 < i m + l .  

Then  

Therefore,  (~'E J [fi,il, hence 

t (p--m+l)  _~ t ( p - - 1 )  
~1 ~< ... ~< i .... O@n-- 1 

r C E[fl,i], 

and (3.6.1) is satisfied with l=p, i.e., we do not  have to do anything.  

(2) The second possibility is tha t  for some r E { l ,  ..., m - 1 }  we have the relations 

O/l(p--m+l) ~ . . .  / ,(p--mTt--1) _O/t(P--m4-t) _ t ( p - - 1 )  i r n §  (3.6.3) 
~-~ OLin_ 1 ~ -- ... -- o~m_ 1 
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In this case we set 

a~ p- '~+~) :=  a1~ (p-m+~) - 1 = i,~, s = t, ..., m -  1, 
(3.6.4) 

( ~ )  :=  d~ (~), otherwise;  

thus,  changing by - 1  only the  last m - t  entries of the ru th  row. 

(2a) By such a definition, the  second pa r t  of (3.6.1) holds evident ly  wi th  l = p - m + t .  

(2b) To show tha t  eEE[z,i], we need to prove tha t  

o~ E J [~,i]- 

Since the changes are res t r ic ted to the  ru th  row we need to care only abou t  the  inequalit ies 

where  the  changed values are involved, i.e., abou t  the inequalit ies 

( p - - r e + t )  A ( p - - l )  . 
OLt_ l . . .  o ~ m _  2 Zm--1  

A A A (3.6.5) 
o~(p - - rn+ t - -  1) ( p - - m - t - t )  _ ( p - - l )  

t - -1  ~ Cg t ~ . . .  ~ o t t o _  1 ~ i m .  

(2c) From (3.6.3) and (3.6.4) it follows tha t  in the ru th  row we have 

( p - - , n + t - - 1 )  ,~ ~ ( p - r e + t )  ^ ( p - - l )  . 
OQ_ 1 -< (x t ~-  . . .  = ( X k _  1 ~ Z m ,  

i.e., the "horizontal" inequalit ies in (3.6.5) are valid. 

(2d) In the  columns ( a ( P - m + ~ ) ) ~  1 we have 

c~(P-"+~)--  a ;~+~)  ~< im-a < im =: o ~ ( P - - m + s )  
s - -1  " - -  s , 

i.e., the  "vertical" inequalit ies in (3.6.5) are also true.  [] 

LEMMA 3.6.2.  For some /E{ I ,  . . . , p - i } ,  let E be a path such that 

t ~[i], 

Cr  

r = l , . . . , l - 1 ,  

r = l , . . . , p - 1 .  
3.6.6) 

Then there exists an l ' >  l and a path 

~'E E[Z,i] 3.6.7) 

such that 

I t  ~7" , 

' 1 < ~I~], C,/.-- 

r = 1, ..., l " -  1, 

r = l", ..., p -  1. 
3.6.8) 
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Proof. By definition, there  exists a sequence a={c~ (r) } such tha t  

, ~g[i],  r 1 , . . . , / - 1 ,  
c~EJ[~q,  I s ( r ) [ = ~ : =  ~ = 

' ' l < g ~  i], r=l,  p-1. 

We will change now by +1 a non-zero number  q + l  of successive elements of aEJ[z , i ]  in 

a certain row s tar t ing from an element (~z.) in the l th  column. 

(A) By such a change the equali ty (3.6.8) holds automatically.  

(B) The  task is to  find a s tar t ing element so tha t  the new sequence a "  would still 

be in J[z,i]. Since the changes are restr icted to a certain row we need to care only about  

the  inequalities where the changed values are involved, i.e., about  the  inequalities 

,, (1 + 1 ) H (l+q) ( l+q+ 1) 
OZ~ (1) ~ O~s*+l ~ ... ~ O~s*-l- q ~ O l s * + q + l  

A A A A (3.6.9) 
,(1) H(t+l) ,(l+q) 

OZs* +1  OLs* +2  .,. OLs* + q + l .  

Consider the index c~ (1). Since 

and by assumption (3.6.6), 

P P 

s = l  s = l  

there  exists a number  s' such tha t  

Ol s , . 

Set 

s* := max  {s E { 1, ..., p}:  (~!') < ~ l )  }. 

(1) If s*=p, then  we set 

a (l) = a (z) +1 ,  P P 

and the lemma is proved with l " = / + 1 .  

(2) Let  s*<p. Then,  by definition of s*, 

a(z) / =(z) / ~(1) ~(t) 
s* % ~ s *  ~" ~ s * + l : ~ s * + l ,  

(3.6.10) 

i.e., 

c~ z) + 1 < OL~/2+l . (3.6.11) 
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Set 

and let 

l"=max{l+tE{l,...,p-1} :a~ 0 q+t) = oes.+t }+1, 

/ " = : / + q + l ,  q E { 0 , . . . , p - l - l } .  

Then we have the following three possibilities for the position of l" in the table. 

(a) The case l+q<p-1, s*+q<p: 

... ~ a2 l?  ~ ( l + 1 )  (l+q) < ~ ( l + q + l )  
O~s .+ l  ---- ... __-- O:s.+q c ~ s * + q + l  ~ ... 

_ ( /+1)  (l+q) 
... ~ O'~/)+1 ~ C~s*+2 ~ ... ~< C t s * + q + l  ~ ... 

(b) The ease (l+q)<(p-1), s*+q=p: 

... ~ o~l?  - ( /+1)  ( / + q - - i )  (l+q) ] 
----~ (Ats .+l  ---~ ... = O~p_ 1 = O/p 

] ,~(l) _ ( l + l )  ~< ... ~< O ! ( / + q - 1 )  
"'" ~ ~ s * + l  ~ Ols*+2 

(c) The case (l+q)=(p-1) (then s*+q=m-l<p): 

Set 

... ~ L~S.+I  ~ ... 

(l) ~ ( / + 1 )  ~ . . . .  

, , ( l + t )  ( 1 + 0  . 
c%.+t = a s . + t + l ,  

~ (p-i) �9 ] 
~ m - - 1  ~ *m 

t=O,. . . ,q ,  

a , , ( r ) = a ~ r ) ,  otherwise; 

thus, increasing by +1 the elements in the upper row of the above subtables. 

(2.1) Let us verify the "vertical" inequalities in (3.6.9). Since, by (3.6.11), 

a!l. ) + 1 < oe2/)+1, 

and since, for the upper and lower row of the above subtables, the relations 

a ( l+ t )_ .  _(z)_l ,,(0 ~<_(t+t) 
s.+t-l-l  ~C~s . ~-x, ~ s * + l  ~ s * + t + l ~  t=O,...,q, 

are valid, we have 

i.e., 

_ ( l+ t )  oe~'+t~ + l = a !  0 + 1 < cz~/)+1 ~< ~ +t+l, 

q+t)_ . _q+t) 
O l s . + t  -1--1 < ~ s * + t + l "  

(3.6.12) 
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According to the definition (3.6.12), this gives 

H(l+t)  ~ ( l + t ) - -  ~ - -  ( l+t)  , , ( l+t )  
O~s.+t : ~ C ~ s . + t t l  C O ~ s . + t + l - - ~ : O Z s . + t + l ,  ~ O , . . . , q ,  

i.e., 
. ( l + t )  ~ , f G + t  ) 

OZs.+t % O ~ s . + t + l  , t = 0 , . . . , q .  

This proves the "vertical" inequalities in (3.6.9). 

(2.2) Let us prove the "horizontal" inequalities in (3.6.9). It is clear that,  due to the 

equalities 
c@ (1+1) (~+q) 

~ O Z s . + l  - -  . . .  ~ O l s . + q ,  

the definition (3.6.12) implies 

"(0 ,,(z+1) ,,(Z+q) 
Cts.  - - - -O~s .+ l  - - . . . - - O Z s . + q  �9 

Also in the case (a) we have 

O,t(l-t-q) :=  (I-Fq) _[_ 1 -<~ - ( / + q + l )  _ t , ( l + q + l )  
s*+q O~s*q-q "~. O~s*Tq+l ~ :  ~s*- t -q+l  ' 

and that  completes the "horizontal" part of (3.6.9) for this case. 

Further, since by definition (3.6.10) we have 

0~! l) -{- i < ~!/.), 

it follows that 

This implies 

(z+t) + 1 = a (z)sl + 1 ~ - (0  ~ - q + t )  O~s*+t ~ (~s* ~ C~s*+t " 

O/'(l+t)s*4-t ~ ( l+t)  __ 1 .~ - - ( l+t)  
: z  c~s .+ t  -~- I -.~ OLs. + t .  

i.e., the values of the modified c~" lie in the admissible intervals. In particular, in the 

case (b), 
~p(Z+q) - - (l+q) ~C~p =2p+1 ,  

and in the case (c), 

a,,(p-1) < ~(mp_-~) =- min(p+m,  i ra )  ~ i ra .  m - - 1  

This finishes the proof of the "horizontal" part of (3.6.9), and of the lemma. [] 
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Then 

LEMMA 3.6.3.  For some /E{1, . . . , p - l } ,  let c be a path such that 

, ~g[i] r 1, 1-1, 
eEE[z,i  1, e r :=  ], 

l < g ~  [i r l, ..., p - 1 .  

c'E E[Z,i]. 

Proof. An iterative use of Lemma 3.6.2. 

We summarize Lemmas 3.6.1-3.6.3 in the following two statements. 

LEMMA 3.6.4. For any given mE{l ,  ...,p}, let i , i ' E J  be such that 

i's=i~, s ~ m ,  

~m" = i m + l .  

I f  ~' is a path such that 

then 

[] 

~'E E[~,i,], ~, ~ g[i] 

e' E E[Z,~]. (3.6.13) 

Proof. By Lemma 3.6.1, for such a path c', there exists a path ~, and a number 

IE{1, . . . , p - l } ,  such that 

{, e~, r = 1 , . . . , / -1 ,  

eEE[~,i], e~ = e'T -1 ,  r= / , . . . , p - -1 .  

And, by Lemma 3.6.3, we have then the inclusion (3.6.13). [] 

LEMMA 3.6.5. For any given mE{l ,  ...,p}, let i , i ' EJ  be such that 

i 's=is, s r  

~,,~" = im + l. 

Then 

E[Z,i] = { s E  E[~,i,] : e ~< ~[i]}. 

Pro@ For i, i' so defined, the inclusion 

{e E E[~,~,] : e ~< g[i] } C E[~,i I 
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is j u s t  a r e f o r m u l a t i o n  of  L e m m a  3.6.4. O n  t h e  o t h e r  h a n d ,  s ince i<~i ~, i t  is c lear  t h a t  

E[~,~] C E[~,~,], 

a n d  it  r e m a i n s  to  recal l  t h a t ,  b y  (3.5.9),  for  eEE(~, i ]  we have  e~<~ [i]. 

Set  

w :=  ( p + 2 ,  ..., 2 p + l ) ,  w E J .  

T h e n  w is t h e  index  of  J w i t h  t h e  m a x i m a l  poss ib le  ent r ies ,  i.e., 

i~<w for a l l i E J .  

PROPOSITION 3 .6 .6 .  For  any  / ~ , i E J ,  we  have 

E[~,i] = {c E E[z,~o] : c <~ ~ [i] }. 

Proof .  Since i<. w, i.e., 

i~<<.w~, s = 1 , . . . , p - 1 ,  
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[] 

we have  

Since 

i ~ - t ) + l ,  s = rn~. 

i <~ i (1) ~< ... ~< i(N-1) ~< cr 

~[il ~< ~[i(1)1 ~< ... ~< g[i(N-1)] ~< g[~], 

and ,  b y  i t e r a t i ve  use  of  L e m m a  3.6.5, we o b t a i n  

E[/Li ] = {e E E[/~,i(1)] : e ~ Eli] } 

= {c E E [ ~ 9 )  ] : z ~< g [i(1)] e ~< g [~1 } 

= {e E E[~,~(2)] : E ~< g[~] } 

= { e E E [ ~ , i ( N  1 ) ] : e ~ < f  [i]} 

= { e E  E[~,~] : e ~< gid}. [] 

a n d  

t he r e  exis ts  a n u m b e r  N ,  a s equence  of  indices  [z )~=o, a n d  a sequence  of n u m b e r s  
N ( m ~ ) ~ = l ,  such  t h a t  

i (~ = i, i (N) = w, 
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PROPOSITION 3.6.7. 

then 

/f 
~[~] ~ g[J], i , j E J ,  

E[~,~ ] c E[fLj ] 

Proof. By Proposition 3.6.6, we have 

E[~,i] = { z  E E[~ ,~  l : z ~< ~ [i] }, 

and it is clear that 

for all/3 E J. 

E[Zd] = {~ E EIZ,~] : c ~< g[J] }, 

(~ E E[Z,~] : ~ ~< g[~]} c {~E E[~,~] : c ~< g[J]}. [] 

3 . 7 .  R e l a t i o n  b e t w e e n  t h e  m i n o r s  o f  Q a n d  C 

Definition 3.7.1. For i , j E J ,  we write 

i~_j ev g[i]~gb],  (3.7.1) 

or, equivalently, 

p - t  p - t  

i-<j <=~ Emin ( i s+ t , p+ l+s )<<,Emin ( j . ,+ t , p+ l+s ) ,  t = l , . . . , p - 1 .  (3.7.2) 
s = l  s = l  

Let us show the equivalence. By Definition 3.5.7, 

g[i]~g[j] r min( ip_r+~,p+l+s)<~Emin( jp_~+, ,p+l+s) ,  r = l , . . . , p - 1 .  
s = l  s= l  

(3.7.3) 
To see that the inequalities (3.7.2) and (3.7.3) are equivalent, one should set r = p - t .  

PROPOSITION 3.7.2. For any p E N ,  there exists a constant cp such that if 

i , j E J ,  i ~ j ,  

then 

Q(/3, i) <~ cpQ(/3,j) for al l /3EJ.  (3.7.4) 

Proof. By Definition 3.7.1, by Lemma 3.6.7 and by Lemma 3.3.4, we have the im- 

plications 

i ~ j  ~ g[~i~[J]  ~ E[fLi]CE[fLj ] =:~ Q(/~,i)<~cpQ(/3,j) f o r a l l ~ E J .  [] 
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PROPOSITION 3.7.3. For any pEN, there exists a constant cp such that if 

i , jEJ ,  i~_j, (3.7.5) 

then for any u~ N - p +  l we have 

Cg-u(p,i) < cpCg-u(p,j). 

Proof. If u ~ N - p + l ,  then N-l>~u+p-2  and we find that  

N - 1  ~ + p - 2  p - 1  

CN-,  := YI [AD(&)] .A = K- 1-I lAD(&)]-A = K. 1-I [AD(~u+s-1] .A = :  K. Q, 
.~ZJ 8~V 8~1 

with some totally positive matrix K. By the CB-formula, making use of (3.7.4), we 

obtain 

CN-,,(p,i)= ~-~ K(p, 13)Q(/3, i) <~ cp E K(p,/~)Q(~,j)=cpCN_~,(p,j ). [] 
f l e a  ~ E J  

3.8.  I n d e x  re la t ions  

3.8.1. The statement. Recall the definitions from w 

2 p + l  := (1, ..., 2 p + l ) ,  a : = { j C 2 p + l : # j = p } ,  

J l : = { j E a : { l } ~ j } ,  l = 1,..., 2p+l .  

For i E J  l we defined its/-complement i 1 and its conjugate index i* as 

iZEa l, i l = 2 p + l \ { l } \ i ,  

i 'E  J,  i*=(2p+2-ip,. . . ,2p+2-il) .  

In this section we will prove 

PROPOSITION 3.8.1. Let iCJ l. Then 

il2 -'< i*-< i zl, ll <~ pq- l <~12, 

or, equivalently, 

p--t p--t 

E min(iZs+ t'p+ 1+s) <. E min(i*+t'P+ 1 +s), 
s =1  s = l  

t = l , . . . , p - 1 ,  l>~p+l, (3.8.1) 

p--t p--t 

E min(iZ*+ t'p+ 1 +s) >1 E min(i;+ t'p+ 1 +s), t = l , . . . , p - 1 ,  l<~p+l. (3.8.2) 
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We will prove this statement in another equivalent formulation. It is clear that  we 

may compare the sums of the shifted values 

min(5~+t,s), j~ :=j~- (p+l) .  

We define, therefore, the sets of the shifted indices 

~rp := ( -p ,  ...,p), Jp:={jCrrp:Cf j=p},  

J tp :={ jEJ:{1}~j} ,  l=-p , . . . ,p .  

For j E jZp its/-complement and conjugate index are defined respectively as 

jzEjZp, j l : = Tr p \ { l } \ j  

j*E Jp, j* := - j .  

(3.8.3) 

For j E Jp we set also 
P 

8~1 

Thus, Proposition 3.8.1 follows from 

PROPOSITION 3.8.2. Let iEJZp. Then 

il2 -< i*--< i 11, 11<~ 0 <~12, 

(3.8.4) 

or, equivalently, 

p--t p--t 

E min(ils+ t' s) ~< E min(i;+ t' s), t = 0,..., p -  1, 1 ) 0, (3.8.5) 

p - t  p--t 

E m i n ( i l s + t , s ) ) E m i n ( i * + t , s ) ,  t = 0 , . . . , p - X ,  l~<0. (3.8.6) 

Remark 3.8.3. We have added also the inequalities with t=0.  

Now we start with the proof of Proposition 3.8.2. 

3.8.2. Proof: the case l=0.  

Definition 3.8.4. Let any p E N  and any jEJp be given. For t=0,  . . . ,p -1  define the 

indices 

j[t]EJp_t, j!t]:=min(js+t,s), s = l , . . . , p - t ,  
(3.8.7) 

j[-t] EJp- t ,  j!-t] := m a x ( j s , - ( p - t ) + ( s - 1 ) ) ,  s = 1 , . . . , p - t .  
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jE0] := ( j l ,  j2, ..., Jp-2, 

j [ 1 ] := (min ( j2 ,1 ) ,  min(j3,2) ,  ..., min(jp_l,p-2), 

j N : = ( m i n ( j 3 , 1 ) , ,  min( j4 ,2)  . . . .  , m i n ( j ~ , p - 2 ) )  

jp-l~ 

min(jp:p-1)) 

j[p-11 := ( min(jv ' 1) ) 

j~p-ll 

Table  3. The  indices j[tl. 

Since the components of j E Jp satisfy 

- p + ( s -  l) ~<js ~<s, 

we have 
j[-Ol = j[0] = j. 

For s=1,  ...,p-t, due to (3.8.8), we also have 

- ( p - t )  ~ min(js+t, s) <<. p - t ,  

- (p - t )  <. m a x ( j ~ , - ( p - t ) + ( s - 1 ) )  <~ p-t ,  

i.e., the inclusion j[t],j[-t] EJp-t in (3.8.7) really takes place. 

Tables 3 and 4 show what the indices j[t] and j[-t] look like. 

In notation (3.8.7) and (3.8.4), we have the equality 

p--t 
E min(js+t, s) =: Ij [tl I, 

so that ( fo r /=0)  the statement (3.8.5) to be proved is 

I(i~ t = 0 , . . . , p - 1 ,  for a l l i E J  ~ 

LEMMA 3.8.5. For any jEJp, 

jIt+l]=(j[t])[ll, j[-t-1]=(jI-tl)[-1], t = 0 , . . . , p - 2 .  

Jp) 

(3.8.8) 

(3.8.9) 

(3.8.1o) 

Pro@ Clear from Tables 3 and 4. [] 
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j[o] := ( j l ,  j2, j3, ..., Jr-*, Jp ) 

2[-11:= ( m a x ( j l , - p + l ) ,  max(Y2. -p+2) ,  ..., max(jp:2,-2! ,  m a x ( j p T 1 , - 1 ) )  

Jl--1] J[2--1] j ~p~_~ j [p~ 11] 

2 [-2] := (max(yl,y-p+2), ..., max(ypff3,-2), max(Yp:2 , -1 )  ) 

jr-P] := 

Table 4. The indices j[-t]. 

LEMMA 3.8.6. For any given p and any iEJ~ we have 

o i[-1] E 3p_l,  

( i [ -1 ] )  0 = ( i0)  [1] , 

(i[-1]). = (i.)[1]. 

( max(j1, -1) ) 
j~-v] 

(3.8.11a) 

(3.8.11b) 

(3.8.11c) 

Then we have two cases: 

(1) i p = - l ,  

(2) iv>O. 

Case 1: i p = - l .  In this case i~  and the only possible entries of i and i ~ are 

il i2 ip i ~ .o .o . . . . . .  Zp_ 1 Zp 

- p  - p + l  - 1  0 1 p - 1  p 

In this case we have 

i[-1] = ( - p + l ,  . . . , -1) ,  (i~ 

and the equalities (3.8.11a) and (3.8.11b) are evident. 

ip=:q, i~ 
Let 

Proof. We prove first the equalities (3.8.11a) and (3.8.11b). By definition, for i E J  ~ 

we have 

# i = # i  ~ iUi ~ iAi ~  
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i l  

- p  

In this case, 

Case 2: ip>O. In this case i~  and the entries of i, i ~ are located as follows: 

ir i ~ ip  .0 .0 . . . . . . . . .  Zq+l  "'" ~p 

- p + r - 1  - p + r  q q + l  p 

i! -1] := max( i~ , -p+s )  = { %-P+S", 

{o 
(i0)!1] := min(is+l,S) = Zs+l' 

8,  

Briefly, it can be written as 

s = l, ..., r, 

s = r + l , . . . , p - 1 ;  

s =  1 , . . . , q - i ,  

s = q , . . . , p - 1 .  

i[-1] = i U { i ~  (io)BI =iOU{ipI\{p}\{io}.  

It follows that 

d-11n(i~ Eu = o ,  d-l lu(i~ Ell =Trp_l\{0}, 

what is equivalent to (3.8.11a) and (3.8.11b). 

The equality (3.8.11c) is straightforward: 

=E-11 . _  _ m a x ( i p _ ~ ,  - ( p -  1 ) + ( p -  s -  1))  = - m a x ( i p _ ~ ,  -s) (i[-11)* :__ -~p-* . -  

= min(- ip_s,  s) = min(- ip+l-(s+t) ,  s) =: min(i;+l,  s) 

= :  (i*)~11. 

LEMMA 3.8.7. For any pEN,  any iEJp  ~ and any t=0,  . . . , p - l ,  we have 
(a)  i I- t]  o EJp- t ,  
(b) (i[-t])o= (io)[t], 

(c) (ik~l)*=(i*)E~1. 

Proof. Follows from Lemmas 3.8.5 and 3.8.6. 

�9 0 LEMMA 3.8.8. For any pEN,  and any 3EJp, 

IJ~ 

Proof. Since j u j~  and j * = - j ,  we have 

I j l+ l j~  131 13 [=0,  

i.e., Ij~ 

Now we are ready to prove the case l=O of Proposition 3.8.2. 

[] 

[] 

[] 
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LEMMA 3.8.9. For any iEJp  ~ 
i ~ ~ i*, (3.8.12) 

or, equivalently, 

p - t  p - t  

E man(i~ t' s) = E min(i~+t' s), t = 0, ..., p -  1. (3.8.13) 
s=l s = l  

Proof. By Lemma 3.8.7, 

satisfies the relations 

By Lemma 3.8.8, we have 

for any iEJp  ~ and any t = 0 , . . . , p - 1 ,  the index j := i  [-tl 

.* 0 (i~ ~ (i*)[t]=) , jEJp_t .  

- 0 IJ*l=[J~ for all gEJp-t .  

Thus 
I(i~ = I(i*){tl I, t - - 0 , . . . , p - 1 ,  

and that is equivalent to (3.8.13). [] 

This finishes the proof of Proposition 3.8.2 for l=0.  

3.8.3. Proof: the case l#O. It is clear that the following implications are valid: 

(a) i ~ j  ~ i~_j, 
(b) i=j  ~ i~ j .  

Case 1: iE t o {JpNJp}. This is the case if {0}~i. Since for iEJtp by definition (3.8.3) 

we have 

it is easy to see that  

J : =  rrp\ i \  {l}, 

and respectively 

i z2 ~< i ~ ~< i l~ i f  Ii < 0 < 12, 

i z2 -< i ~ --< i l~ i f  l l  < 0 < 12. 

Since i E J  ~ we have by Lemma 3.8.9 

i ~  *, 

and therefore, 
�9 0 l il2-<i*-<i h if 11<0<12,  ~E{JpAJp~}. 
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Case 2: iEJzp, i~J  ~ This is the case if {0}Ei. Then we have the inclusions 

�9 1 z i t E jop. Z E Jp, 

Set 

Then 

j := i\{0}U{I}. 

{ ~ < i ,  l<0 ,  (1) j E jo, (2) 
j~  <j ,  l>0 .  

From the first part of these relations, by Lemma 3.8.9, it follows that 

i l x j ~  *. 

From the second part one obtains 

i*<j* i f /<O,  

j*<i* if I>0,  

Thus, 

{ i * _ ~ j *  i f l < O ,  

j*~ i*  if l>0 .  

iz2-~i*-~i ~1 if 1 1 < 0 < / 2 ,  iEJ/p ~, i ~ J  7- 

Proposition 3.8.2, and hence Proposition 3.8.1, are proved. 
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(3.8.14) 

3.9. Comple t ion  of the  proof  of T h e o r e m  Z 

THEOREM Z (w There exists a constant cp depending only on p such that the in- 

equalities 

1 
=:  I@1  <cp, l = p + l , . . . , 2 p + l ,  , = 0 , . . . , N - p + 1 ,  

hold unifor~aly in u, I. 

Proof. By Theorem 2.5.1, we have 

IzY)l ~<max CN-~(P'Jl) 
jeJ ~ CN- . (p , j* ) '  l = l , . . . , 2 p + l .  

By Proposition 3.8.1, 
fl~_j* if l>~p+l, j E J  l, 

and by Proposition 3.7.3, this implies 

C N - , ( p , j  l) < CpCN-,(p,j*) if u ~ N - p + l .  [] 
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3.10.  Last  but  no t  least  

In [B2] C. de Boor wrote: 

"... I offer the modest  sum of m - 1 9 7 2  ten-dollar bills to the first person who 

communicates to me a proof or a counterexample (but not both) of his or her 

making for the following conjecture (known to be true when k = 2 or k = 3): 

CONJECTURE. For a given n and t,  let (AiOj) be the ( n x n ) - m a t r i x  whose 

entries are given by 
i *  N~k Njk . 

),iCj = k [  
ti+k -- ti J 

Then 

sup  H (,,~iOj) -1 I1~ < ~ "  
n , t  

Here m is the year A.D. of such communication." 

Added in proof. The cheque has been received. With m =  1999, and, to a nice sur- 

prise, doubled, the modest  sum turned out to be not that  modest.  Regarding the origin 

of the factor 2, C. de Boor replied: "... well, about  5-6 years ago, I s tated at some oc- 

casion that ,  given inflation and all that ,  I was doubling that  rate. In fact, Jia was kind 

enough to remind me of that ."  

4. C o m m e n t s  

4.1. A s u r v e y  o f  e a r l i e r  a n d  r e l a t e d  resu l t s  

Earlier the mesh-independent bound (0.2.1) was proved for k = 2 , 3 , 4  (the case k--1 is 

trivial). For k > 4 all previously known results proved boundedness of liPs II ~ only under 

certain restrictions on the mesh A. This included, in particular, meshes with multiple 

knots which correspond to the spline spaces 

Sk,m(A) : = P k ( A ) A C m - l [ a , b ] ,  S k ( A ) : =  Sk,k_l(/k) 

We summarize these results in two theorems. The number in the square brackets indicates 

the year of the result. 
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THEOREM A. Let K be one of the mesh classes given below. Then 

sup suPlIPs~,,.tA)II~ < c k ( K )  for all k c N .  
/ ' , cK  m 

hmax 
(K1) quasi-uniform - -  ~< M or like 

hmin 

hi• 
(K~) quasi-geometric - -  < l+~k 

hi 

(K2) strictly geometric hi+l = ~, ~ > 0 
hi 

Domsta [72], 

Douglas-Dupont-Wahlbin [751], 

de Boor [763], Demko [77] 

de Boor [763] 

Feng-Kozak [81], Hbllig [81], 

Mityagin [83], Jia [87] 

THEOREM B. If k, m are as given below, then 

sup Psk m(/x)]]c~ <ck. 
A 

m = k -  1 k = 2 Ciesielski [63] 

m = k -  1 k = 3, 4 de Boor [68], [79] 

m = 0 k ~> 1 trivial 

m = 1 k ~> 2 de Boor [763], Zmatrakov-Subbotin [83] 

m = 2 , 3  k > ( m + l )  2 Shadrin[98] 

4.1.1. L2-projector onto finite-element spaces. The arguments used by Douglas, 

Dupont, Wahlbin [DDW1], de Boor [B3] and Demko [Dem] for proving the boundedness 

of IIPs ll~ for the quasi-uniform meshes revealed that  such a boundedness has nothing 

to do with the particular spline nature. The essential structural requirements on a 

subspace S needed for these proofs can be summarized as follows: 

(B0) S =  span{r 

(B1) s u p p r  # { r  e j r  

(B2) the local condition number x((I)) of ~ :={r  is bounded, i.e., x(~)~<d for 

s o m e  d, 

(B3) partition of the domain is quasi-uniform. 
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A general result (for quasi-uniform partitions) including also the multivariate case 

was proved by Douglas, Dupont and Wahlbin in [DDW2], and in fact in an earlier paper 

by Descloux [Des]. 

To this end, a natural question is whether the mesh-independent bound of Ps could 

be extended to (and perhaps more simply derived for) general finite-element spaces. The 

answer is no. 

More precisely, denote by Sk,a the set of all finite-element spaces S that  satisfy 

(B0)-(B~). Then, for k=2 and any d>36, we have 

[ 1 1 3  
s u p  I I P s l l p = o c ,  - > -  

This result shows that  the mesh-independent L~-boundedness of the L2-spline projector 

is based on some peculiarities of the spline nature. 

On the other hand, one can show that,  for any kEN,  dER,  d>k, 

~ 1 1 
sup IlPsllp<c(k,d), - ~  < 2kd21n ~ ,  

SCSk.d 

i.e., the Lp-boundedness of the spline projector Ps for p in some neighbourhood of p=2  

(proved earlier in [$2]) is not something extraordinary. 

See [$5] for details. 

4.1.2. A general spline-interpolation problem. C. de Boor's problem is a particular 

case of a general problem concerned with spline interpolation. 

For pC [1, oc], and f from the Sobolev space Wlp[a, b], let s := S2kA(f) be a spline of 

the odd degree 2 k - 1  which interpolates f on A, i.e., 

sC S2k(A), slz~=fl~. 

To obtain uniqueness, one should add some boundary conditions, e.g., 

S(O(X)lx=a,V=f(l)(x)lx=a,b, / =  1 , . . . , k -1 .  

A general problem is to estimate the Lq-norm of such a spline-interpolation operator, 

i.e., to find 

8(m) ( f'~llq, L(k,l, rn, p,q,K):= sup sup Ilf ( '~ ) -  2k ,~  J 
A c K  Ilf(t)llp~l 

where K is a class of meshes, see [B7], [H], [S1], [Ma]. 

A particular problem is to determine whether the value 

s(0 I (4.1.1) L*(k,l,p):=sup sup II 2k,~( )lip 
A iif(t)llp~<l 
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is bounded (independently of the mesh). A necessary condition was found to be 

k--1 T/l/-k i /~/ -k+l~ L*(k, l ,p)<c~ ~ WZpe{W~ , , ' p , " l  ,. (4.1.2) 

It  was conjectured that  this is also a sufficient condition. For l=k this particular problem 

is known to be equivalent to de Boor's conjecture, since 

s(k) ( f~ 2k,A~ J = Psk(~)[f(k)] �9 (4.1.3) 

Now, by our Theorem I, due to (4.1.3), a particular converse of (4.1.2) follows: 

The question whether such a converse is also true for two other cases in (4.1.2), 

+1} 

remains open. 

4.1.3. A problem for the multivariate Dk-splines. The univariate splines can be de- 

fined through a variational approach. Now the question is that  perhaps the variational 

nature of splines determines the mesh-independent boundedness of the spline orthopro- 

jector. The answer is no, too. 

For another class of variational splines, the so-called multivariate Dk-splines on a 

domain of R n, the analogue of de Boor 's  conjecture is false, see [$4], [Ma]. In particular, 

in terms of the previous subsection, we have 

L*(k, l ,p)<c~ r l=k ,  p=2,  if n > 4 .  

4.2. O n  de  B o o r ' s  L e m m a  1.2.4 

4.2.1. Gram matrix and de Boor's Lemma 1.2.4. A simple intermediate est imate 

IIPsll  Ila-lll  

stated in Lemma 1.2.1 is a kind of folklore and has been used in most (but not all) 

papers on the subject cited in Theorems A and B above. C. de Boor [B2] proved that  

the converse (not so simple) inequality 

IIG-111  ck [IPsII  
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is also valid, i.e., to quote [B6], "in bounding [IPsll in the uniform norm, we are bounding 

IIG-~II~, whether we want to or not". 

For k=2,  G is strictly diagonally dominant, and the direct estimate by Ciesielski [C] 

w a s  

[[ a- l l l~  ~< 3. (4.2.1) 

For k>2,  G fails to be diagonally dominant, so a different argument has to be used. 

For k=3,  4, de Boor [B1], [B6] proved the boundedness of G -~ making use of his 

Lemma 1.2.4. Namely, he found that  the following "comparatively simple" choice of the 

vector (ai) works: 

k = 3 ,  ( - - 1 ) i a i : = l - 4  - (ti+2--ti+l)2 suppMi=[ti, t i+3], 
(ti+2 - t.i) (t~+3 - t i+ l ) '  (4.2.2) 

( t i + 3  - -  t i + l  )2 supp Mi = [ti, ti+4]. 
k = 4, (-1)iai : =  3 + 4  (ti+3-ti)(t~+4-t~+l)' 

This choice clearly provides the fulfillment of 

(a3) Ilalloc < Cmax, 
but makes the verification of (al) and (a2) "comparatively" problematic. (The proof of 

k=4  announced in 1979 has never been published.) 

In this sense our proof is of an opposite nature. We offer a construction which gives 

a simple proof of (A1) and (A2), but encounter the problems with (A3) instead. 

4.2.2. On the choice of the null-spline ~r. The main difficulty in using Lemma 1.2.4 

for estimating J l G-1 I I ~ is the problem of finding a vector a =  (ai) satisfying the condition 

(a~) of this lemma, or, respectively, the problem of finding a spline r = ~  a~ N~ satisfying 

the condition (A1) of Lemma 1.3.1. 

(1) Since the Gram matrix G is an oscillation matrix, a candidate for the vector 

a could be the eigenvector corresponding to the minimal eigenvalue. (By a theorem of 

Gantmacher-Krein such an eigenvector is sign-alternating.) 

(2) Consider 

5 (k)= {t-k+1 . . . . .  to = 0  < 1 = tl . . . . .  tk}, 

the mesh with the so-called Bernstein knots. In this case the B-spline basis reduces to 

the polynomials 

For the Bernstein Gramian Gz the explicit expression for the "minimal" eigenvector 

is available, namely 

a k ( : ~ : )  a =  ( i)i=1, ai = ( -1 )  i 



A P R O O F  OF DE B O O R ' S  C O N J E C T U R E  125 

Also, it is known that  the corresponding polynomial r  is the Legendre 

polynomial 

~b = c~  (k-l), kO(x) := I x ( l - x ) ]  k-l,  

i.e., the ( k - 1 ) s t  derivative of the null-spline ~ of degree 2 k - 2 .  

Our null-spline a may be viewed as a generalization of ko. 

(3) However, it turned out that  the coefficients of the spline r := a (k-l) have nothing 

to do (and could not have something to do, see below) with the "minimal" eigenvector. 

Nevertheless, this choice provides the fulfillment of (A1) in a simple and natural way. 

(4) Remark in retrospect. The "minimal" eigenvector (a~) of G can not be used in 

de Boor's lemma. Recall that  in order to use this lemma, one should have the relations 

b=Ga, maxlai/bjl < ck. 
~,.7 

For the "minimal" eigenvector (ai) of G they should therefore be 

"? I 
lamax/aminl ~ C k. 

This is, however, not true, as the following lemma shows. 

LEMMA 4 .2 .1 .  Let (ai) 
eigenvalue. Then, for k>2,  

be the eigenvector of GA corresponding to the minimal 

1 
G* := lim lim ... lim GA = 

hN--1--~'O hm-2-+O hl"'+O 10 

"6 4 

Proof. Let A =  N (ti)i=O and h i=t i+ l - t i  . Then, e.g., for k=3, 

Thus, 

6 4 

6 

3 

1 

�9 _ 1 the limit minimal eigenvalue is /~min--i0, and the corresponding limit eigenvector is 

4 a * = ( ( - - x ) N - I , ( - - x ) N - 2 , . . . , X 2 , - - X ,  1 , - -2 ,1) ,  6 x - 4 = x ,  x - g .  

5 N - 1  
s u p '  " ' -  ' ' l a m ~ •  . 

[ ]  
#A=N 

3 1 

4 3 

3 6 

sup [am~• I = ~ .  
A 
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4.3. Simplif icat ions in part icular cases 

The most elaborate part of the proof of Theorem I, viz. Chapter 3, is concerned with the 

estimate 
Rq( o~, i) q 

m a x - - < c  v, R q : = H [ A D ~ ] . A ,  
~eJ Rq(a,j)  

r ~ l  

with q=p-1 ,  The analysis would be simpler if we could take 

q = 0 ,  R 0 = A ,  (4.3.1) 

but we were forced to take q=p-1 ,  since A in general has vanishing minors. 

We indicate here the cases when considerations from Chapter 3 starting with 

w167 can be omitted. 

In Cases 1 and 2 below, the choice (4.3.1) works. Case 3 uses q = p - 1 ,  but the only 

ingredient taken from Chapter 3 is non-emptiness of the set J[Z,i], proved in w 

Case 1. Knots with multiplicity k - m  with m~<�89 Consider 

Sk,m(A) := Pk(A)AC"*-I[a ,  b], 

the spline space with the B-spline basis defined on the knot sequence A with knot multi- 

plicity k - re .  The following particular case of Theorem I does not rely on the analysis 

made in w167 

PROPOSITION 4.3.1. If  m ~ � 8 9  then 

sup IIPs~.m(~)ll~ < Ck. 
A 

The last step of the proof. For this space, the null-spline a is a spline with (k-re)-  

multiple zeros on A. The matrix A which connects the vectors z .  of the non-zero deriva- 

tives of a at t .  by the rule z ,+l=Az,  has the lower order 

AE R (2m-l) x (2m- 1) 

It could be obtained from the matrix S by k - m  successive transformations similar to 

those in w This gives the criterion 

\/31,.. . ,~q > 0  if and only if a , ~ + k - m ,  s = l , . . . , q - ( k - m ) .  (4.3.2) 

Here a,/3 are indices from Iq,2m-1; in particular, we have 

s <<.as <~ ( 2 m - 1 ) - ( q - s ) .  (4.3.3) 
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If k - r e > q ,  then the condition on c~,/3 in (4.3.2) is void. Now let 

(i) k - m < . q - 1 ,  

(ii) m~<�89 

Then 
(4.3.3) (ii) (i) (ii) (4.3.3) 

(~s <<. ( 2 m - 1 ) - ( q - s )  <~ k - q + s  <<. s + m - 1  <~ s + k - r n  <<. /3~+k-m, 

i.e., the condition on a,/3 in (4.3.2) is fulfilled. Thus, 

A(c~,/3)>0 for all c~, /3, i fm~< �89  

and accordingly, 

]z (t)] < m a x  C(p ' i l )  ~< max A(a, /3)  <.Cp. [] 
ieJ C(p, i*)  ~,~,~,~ A(V,~) 

Case 2. The estimate of zo. For u--0, the estimate ]z(01<c p of Theorem Z (see w 

can also be proved without analysis of w167 but with making use of properties of 
the matrix A only. 

LEMMA 4.3.2. There exists a constant Cp, depending only on p, such that the in- 

equalities 

~l~(1)(tu)l=:lZ(1)l~Cp, l = p + l , . . . , 2 p + l ,  u = 0 ,  

hold uniformly in 1. 

Proof. From (2.5.1), making use of the CB-formula we obtain 

Iz~l)]-- C ( p , P  l) A ( a , p  t) 
C(p ,p*)  ~<max , l . . . ,2p+l.  (4.3.4) 

- -  ~ J  A(a, p*) = p + l ,  

The criterion (see Lemma 3.2.9) 

A(c~,i)>0 if and only if c ~ < i s + l  for a l l s  

easily gives the implication 

i<. j  ~ A(c~,i)<~ cpA(a , j )  fo ra l l (~EJ .  (4.3.5) 

It is not hard to see that, for two different/-complements of iEJ ,  we have 

i 12 ~< i tl if l ]<  12, 

in particular, 

p Z < p p + l = p ,  i f l > ~ p + l .  (4.3.6) 

Altogether, (4.3.4)-(4.3.6) proves 

Iz0(t)l ~<ep, l = p + l , . . . , 2 p + l .  [] 

Case 3. The estimate in terms of a local mesh ratio. The next particular case of 

Theorem I does not need more than non-emptiness of the set J[~,i], proved in w 
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P R O P O S I T I O N  4 . 3 . 3 .  

ratio, i.e., 

Then 

Let L (M)  be the class of meshes with the bounded local mesh 

L(M) := {A: max hv /h ,  <~ M}.  (4.3.7) 
I--ul=l 

sup IlPs~(A)ll~ < ck(M). 
ZXeL(M) 

The last step of the proof. In w we proved the inequalities (3.3.6): 

p--1 p--1 

aCJ[~,i] r = l  ~EJ[/~,~] r : l  

We recall that  % stands for the local mesh ratio Qv with some u, i.e., 

% := Q. := h,/h~+l, 

that  c.~ is a constant independent of/3 and i, and that  the set J[~,i] is always non-empty 

(see w On account of (4.3.7), this yields the estimate 

cl(M,p)<.c~Q.~(/3, i )~c2(M,p)  for all fi, i C J ,  

i .e . ,  
Q(a,i)  
- -  <ep(M) for all i, j E J .  m a x  ~ Q(~,j) 

D 

4.4. Addit ional  facts 

Here we present some additional facts which we have not used at all in our proof of 

Theorem I, but which could be useful in finding a simpler proof. 

4.4.1. Orthogonality of CESk(A) to Sk-I (A) .  For the Bernstein knots, r being the 

Legendre polynomial of degree k -  1 is orthogonal to the polynomials of smaller degree. 

The following lemma generalizes this property to any A. 

LEMMA 4.4.1. The spline r of degree k - 1  on A defined via (1.4.1)-(1.4.5) is ortho- 

gonal to all splines of degree k - 2  on A, i.e., 

(r for aUsesk_l(~). 

Up to a constant factor, r is the unique spline from Sk(A) which possesses this property. 
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Proof. It can be shown (e.g., by integration by parts) that  if any function f E  

W~-l[a ,  b] satisfies the conditions 

f ( t , )  =0 ,  v = 0 , . . . , N ,  
(4.4.1) 

f(z)(to) = f(Z)(tN) = O, l = 1, ..., k - 2 ,  

then 

( f (k-1) , s )  = 0  for all s E S k - I ( A ) .  

Since a satisfies (4.4.1) (they are the same as (1.4.2) and (1.4.3)), and since r  (k-l), 

the statement follows. [] 

4.4.2. Null-splines with Birkhof f  boundary conditions at to. Let i C J  be any index, 

and let 5ES2k- I (A)  be the null-spline that  satisfies the conditions 

=o, ,=o , . . . ,N ,  

&(i~)( to)=~(s) ( tN):O,  s = 1 , . . . , k -2 ,  (4.4.2) 

1 &(~-l)(tN) 1. - -  z 

In comparison with the null-spline ~ defined in (1.4.2)-(1.4.4) we have changed at the left 

endpoint to the Hermite boundary conditions (1.4.3) into Birkhoff boundary conditions. 

The spline ~ also exists and is unique. 

LEMMA 4.4.2. We have the equalities 

1 .iholl_k+l=:~0(z)_ C ( p , i  l) 
l~ I~(/)(t~ C(p+ 1, i')' (4.4.3) 

Proof. Let p : = k - 2 ,  and let 

i := (il, ..., ip) 

be the index whose components are the orders of the derivatives involved in (4.4.2). Then 

we can find zo as a solution to the system of linear equations similar to (2.2.11), and, as 

in the proof of Theorem 2.3.5, one obtains 

C ( p , i  I) 
Iz~ [ -  C(p+l ,  i')' [] 

Lemma 4.4.2 is of some interest for the following reasons. 

established that 

Iz(I)l <~max C(p' iZ) 
iCJz  C ( p + l ,  i ')" 

In Theorem 2.3.5 we 
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Therefore, by (4.4.3), we have the est imate 

Iz(2) I .< (')l, 

where the maximum is taken over all null-splines ~ with various Birkhoff boundary 

conditions in (4.4.2). Maybe it is possible to obtain an easier proof of the inequality 

[~(ot)l<Cp, l>~p+l, 

for the left endpoint, as was the ease for IZo(01 in Lemma 4.3.2. 

4.4.3. Further properties of the matrices C. For x=(x(O)CR n, S-(x)  and S+(x) 

denote respectively the minimal and maximal number of sign changes in the sequence x. 

LEMMA 4.4.3. For any ~, the matrix C := C N - ,  is similar to its inverse. 

Proof. By (2.4.1), we have C-I=(DoF)- IC*(DoF) .  [] 

The fact that  C is an oscillation matr ix  permits the following conclusion. 

LEMMA 4.4.4. For any v, the spectrum of C N _ ~ E R  2p+1 consists of 2p+1 different 

positive numbers 

0 % ~1% ... ~ )~2p+1- 

Moreover, by Lemma 4.4.3, 

1 
- -  - -  , / ~ p + l  = 1.  

As "~2p+2--s 

If  {u,,~} is a corresponding sequence of eigenvectors of CN-, ,  then 

S (u, ,~)=S+(u~,s)=s-1, s = l , . . . , 2 p + l .  

The fact that ,  for any u, a solution z~ of the equations 

C N -  t, Zv ~" Z N  

remains bounded at least in the second half of its components indicates that  in the 

expansion 
2p+1 

z, = ~ asU,,s 
8~1 

the eigenvector U,,p+l corresponding to the eigenvalue 1 dominates in a sense. Here is 

one more evidence for this "dominance". 
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LEMMA 4.4.5.  For any ~, we have 

S-(Zv) =S+(Zv) = p  [=S(U~,p+I)]. 

Proof. By the Budan-Four ie r  Theorem for Splines [BS], with p := k - 2  we obta in  

Z~(a, b) <<. Z~(2p+2)(a, b)+S [cr(a+), ..., a(2P+e)(a+)] 

- S + [a(b- ),..., cr (2p+2) (b - ) ] ,  

131 

and since 

where Zy(a,  b) s tands for the number  of zeros of f on the interval (a, b) counting multi- 

plicities. Also, by Lemma  1.6.1, 

Since 

Z~(t~,t,) =Z~(2p+2)(t,,t#) for all u ,# ,  

and the  boundary  conditions (1.4.2)-(1.4.3) say tha t  

s . . . ,   <p+l < .. . ,  

Taking now (4.4.4) with 

(1) a=to, b=tN, 
(2) a=to, b=t,, 
(3) a=t,,  b=tN, 

successively, we obtain 

S+[a(t~-O), ..., (r(2p+2)(t~-0)] = S - [ c r ( t , + 0 ) ,  ..., cr(2P+2)(t~+0)] = p + l  for all t/. 

~r(l)(t~-0) = (r(0(t .  + 0), / = 1,..., 2p+1,  

a ( t ~ - O )  = cr(t~+O) = O, s igna(2v+2)( t~-O) = - s i g n a ( O ( t ~ + O ) ,  

w e  c o n c l u d e  t h a t  

S[a ' ( t , ) , . . . , ( r (2p+l) ( t , ) ]  = p  for all u. 

This, in view of the  relations 

z(, 0 = const.~r(z)(t~), 1 = 1, ..., 2p+1,  

proves the s ta tement .  [ ]  

(4.4.4) 
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4 .5 .  O n  t h e  c o n s t a n t  ck 

There are two constants in de Boor's problem: 

(a) the norm of the orthoprojector 

ck[P] := supck A[P], ck,A[P] : =  I lPsk(~) l l~ ,  
A 

(b) the norm of the inverse of the B-spline Gramian 

ck[a] := supck ,~ [a ] ,  ck.~[a] := IlaT,111~. 
A 

Our method based on properties of the spline 0 :=  CA : = ~ j  aj (CA)Nj provides also 

(c) the constant 

ck[r := sup Ck,a[r 
A 

Ck,.~[r := m a x  laJ(r 

These constants are related by the inequalities 

ck[P] <~ ck[G] <~ ck[r (4.5.1) 

5 (k):= {t-k+1 . . . . .  to = 0 <  l = t l  . . . . .  tk}, 

the mesh 5 with the Bernstein knots. In this case the corresponding B-splines are simply 

the polynomials 

N i ( x ) = ( k ~ i ) x i ( i - x )  k - l - i ,  

and the Gram matrix G~ is given by 

k 
G~ : = { ( M  i Nj )}  = k-1 , (gij)i,j=O, gij = 2 k - 1  

M~(x) = a ~ i ( x ) ,  

( k ~ l ) . ( k ~ l )  

( 2k-2"~ 

i+j / 

and we proved in Theorem I that  

cA.[~] ~< ck. 

It is possible of course to estimate all the constants involved in the proof, hence the final 

constant ck, but we find it more useful to give a comparative analysis of the constants 

in (4.5.1). 

(1) Lower bounds for ck[G] and ck[r Consider 
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The first values for the constants are as follows: 

k 2 3 4 

2 ck,5[G] 3 13 415 

ck,5[r 3 20 105 

They satisfy the relations 

5 6 

4 171 583~ 

756 4 620 

ck,~ [G] ~ k-1/24 k, 

7 

2 364 

34 320 

8 9 

s37  3, 737-  

225 225 1701700 

l ( 2 k )  (2kk) < ~k ,~ [c ]  < , 
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(4.5.2) 

k - 1  

To find ck,a[r we have used the formula 

c~,~[r = ~m~n" max a__~, 
i,j aj 

where Amin is the minimal eigenvalue of Ga, and 

is the corresponding eigenvector. 

The first values and the two-sided estimates for ck,a[G] were obtained with the help 

of the MAPLE package. It is possible to find an explicit expression for this constant, 

too. 

(2) Lower bound for ck[P]. For the Bernstein knots, Ps is simply the orthoprojector 

onto the space Pk of polynomials, and in this case 

c2,~[P] = 12 ck,~[P] ~ x/k. 5, 

For k=2, K. Oskolkov [O] improved the lower bound 12 5, and showed that  

c2[P] >~ 3. (4.5.3) 

His method is easily extended for arbitrary k. 

LEMMA 4.5.1. For any k, 

ck[P] > / 2 k -  1. (4.5.4) 
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Pro@ For f E L ~ ,  let its orthoprojection P s ( f )  onto Sk(AN) have the expansion 

N t 

Ps ( f  , x) = ~ aj (f ,  AN) Nj (x). 
j = l  

Then, the value of P( f ,  x) at the left endpoint x = t l  of AN is equal to the first coefficient 

of this expansion, i.e., 

Ps( f ,  t l)  = a l ( f ,  Ag) .  

Therefore, 

IIPs(f)ll~ ~ lat(f, AN)I, 

and it follows that  

I I P s k ( A N ) I I ~ / ( ( / k N )  , K ( / k N ) : =  s u p  la l ( f , /kN) l .  

Now let 

A N = ( t i )  N, A N + I = { t o } U A N ,  h : = t l - t o .  

Then, for the corresponding Gramians GN and GN+I we have the relation 

liln GN+I : 

h-*0 

b b2 I 0 p ... [0 

GN 

In the same way as in [O], one can prove the inequality 

K(AN+I) />  1 h-~olim ba + K ( A N )" 

This implies the estimate 

1 b2 K 
KN+I ~ bl ~- bl N, K N :=  s u p  K ( A N ) ,  

#AN=N 

and as a consequence 

lira KN>~ 1 ~c /b2,~ 1/bl 1 
- 

N - ~  -~1 _ ~ 1-b2/bl  bl-b2 

For any k, the corresponding values bl, b2 are easily computed as 

fo k k - 1  bl = k x~:- 1 x k- 1 dx - b2 = 1 - bl - , 
2 k - l  ' 2 k - 1  
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lim KN >~ 2 k -  1. [] 
N--+oc 

(3) Upper bounds. For k=2 ,  the exact values of all constants are known: 

k = 2, c2 [P] = c2 [a] = c2 [r = 3. 

Two further estimates of de Boor are available: 

that  

k = 3, c3 [a ]  ~< 30, 

k = 4 ,  c4[G]~<81~. 

(4) Expectations. Symbolic computat ions with MAPLE for k, N~<5 give evidence 

ck[a] = ck,~[C], ck[r = Q ~ [ r  

These relations are also supported by theoretical estimates for the classes 

AQ:= {A:h . /h .+]  = 6  for all u E N }  

of strictly geometric meshes. They are [HI 

2 k - 1 - -  lim Ck,Ao[G l < Ck,Ao[G ] <~ lim Ck Ao[G ] ~ (�89 2k. 
~o--~,o~ 0-+1 

In view of these inequalities and (4.5.4) it is plain to make the following 

C O N J E C T U R E .  For any kEN,  

II s.A)ll  = 2k- . sup IIPsk(A)II~ = i~f  G -1  
A 
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