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I n t r o d u c t i o n - - T h e  T r e v e s  c o n j e c t u r e  

In 1983 F. Treves IT1] initiated the study of the local solvability for the class of differential 

complexes defined by a smooth, locally integrable structure of rank n in a n + l .  If Z 

denotes a local first integral of the structure, Treves conjectured that  the vanishing of 

the local cohomology in degree q of such a differential complex would be related to the 

vanishing of the singular homology of the sets Z =  const, in dimension q - 1 .  It is the 

purpose of this article to complete the proof of this conjecture in its full generality. 

(A) In order to motivate and state the problem more precisely we first recall the 

question of local solvability for a single vector field in two variables. Let thus 

0 0 
L = a(x, t) -~ + b(x, t) ~x 

be a complex vector field defined in a neighborhood X of the origin in a 2 with no 

singularities. We say that  L is solvable (at the origin) if the induced map L: C ~ - + C ~  is 

surjective, where we have written C~ to denote the space of germs of smooth functions 

at the origin. 

The solvability of L is characterized by the so-called condition (P) of Nirenberg- 

Treves (cf. [H, Chapter XXVI], [NT]). For the purpose of our presentation it is convenient 

to make an extra assumption and assume the integrability of L, in the sense that  there 

exists ZEC~ such that L Z = 0  and dZT~0 at every point of X. 

It takes an elementary argument to show that  we can choose such a solution Z that  

can be written, in an appropriate coordinate system around the origin, as 

Z(x,t)  =x+ip(x , t ) ,  
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where ~o is smooth, real-valued and satisfies 

~(0, 0 ) =  Vx(0, 0 ) = 0 .  

In particular, we obtain that L is a non-vanishing multiple of the vector field 

0 ~ot 0 
i - -  (0.1) 

Ot 1 +i~ox Ox' 

and consequently its solvability at the origin is equivalent to the solvability at the origin 

of (0.1). 

Assume now that X is a small rectangle centered at the origin and with sides parallel 

to the coordinate axes. Within this set-up the Nirenberg-Treves condition (P) (cf. [NT]) 

can be stated as follows: 

t ~ ~o(x, t) is monotone, for all x. (0.2) 

Since for a fixed zo=xo+iyo the pre-image of the set {z0} by the map Z is given by 

{(x0, t): ~o(xo, t)=Yo}, it follows that (0.2) is equivalent to: 

{(x, t) C X: Z(x, t) = z0} is connected, for all z0. (0.3) 

(B) We generalize the solvability problem just described taking as a starting point 

the special coordinates described in the preceding item. Let a and r be positive real 

numbers and set 

x = { ( x , t ) e R •  Ixl <a ,  ft I < r} .  

We take a smooth function 

Z(x, t )=x+i~(x, t ) ,  (x , t )eX,  (O.4) 

where ~o is a real-valued, smooth function satisfying 

~(0, 0 ) =  ~ ( 0 ,  0 ) = 0 .  (0.5) 

The orthogonal of {dZ} is spanned by the pairwise commuting vector fields 

0 ~otj 0 
Lj - Otj i--1+i~ Ox' j = 1,...,n. (0.6) 

We introduce the space of differential forms on the open set Y c X ,  

C~(Y, AP) - { u =  E u,(x , t )dt j ,  uaEC~(Y)},  (0.7) 
IJl=p 
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and further introduce the differential complex 

L: C~(Y, M) -~ c~( Y, A p+I ) 

defined by 
n 

L ( u ) =  E E ( L j u j ) d t j A d t j  

(0.8) 

(0.9) 
IJl=p j = l  

(the fact that  L2=0 follows from the relations [Lj, Lk]=O). We are now ready to gener- 

alize the previously discussed local solvability concept: 

Definition 0.1. The operator L is said to be solvable at the origin in degree q 

(l<q~<n) if for every feC~~ Lf=O,  there i s  UeC~:~(A q- l )  such that  Lu=f. 

Here we are again denoting by C ~ ( A  ~) the space of germs limy_~{0} C~(Y, A"). 
By an elementary category argument it is easily seen that  this notion is equivalent 

to the following property: 

(.)q Given any open neighborhood Y of the origin in X there is another open neigh- 

borhood of the origin Y'cY such that for every fcg~176 A q) satisfying L f = 0  there is 

uEC~(Y ', A q- l )  such that  Lu=f in Y'. 

We notice some special cases. When n = l  there is only one operator and we get 

the situation already discussed in (A). Solvability in degree one means to solve the over- 

determined system Lju =fj under the compatibility conditions Lj fk = L k fj, whereas solv- 

ability in degree n means to solve the underdetermined system LlUl +...-t-Lnun=f with 

no conditions on f whatsoever. 

(C) Invariance. We first recall that  a complex line subbundle T~C CT*X defines a 

locally integrable structure (in the sense of [T2]) if it is locally generated by the differential 

of a smooth function. To such a structure there is canonically associated a differential 

complex: it is simply the complex induced by the exterior derivative acting on the bundles 

Aq(CT*U/T~). Let us then fix such a structure. In a neighborhood of the origin, T ~ is 

spanned by the differential of a smooth function which can always be written, in an 

appropriate system of coordinates, as Z(x, t)=x+i~(z, t), where ~ has the properties 

described in the preceding item. The complex L is nothing else than the realization 

of the differential complex associated to T ~, after choosing these local coordinates and 

{dtj, IJl=q} as a basis for the sections of the bundle Aq(CT*U/T'). 

(D) If z0 E C and YC X we will refer to the set he(z0, Y) = { (x, t) C Y: Z (x, t) = z0 } as a 

fiber of the map Z: X - + C  over Y. The germs of such fibers at the origin are invariants of 

the locally integrable structure T ~, a fact that  follows from the so-called Baouendi-Treves 

approximation formula [BT]. We may now introduce the following property: 
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(*)q Given any open neighborhood Y of the origin in X there is another open neigh- 

borhood of the origin Y'C Y such that,  for every regular value zoE C of Z: X - ~ C ,  either 

9r(Zo, Y ' ) = ~  or else the homomorphism 

 q(7(zo, r'), c)  q(f(z0, Y), c) 

induced by the inclusion map 5~(z0, Y')C.T'(Zo, Y )  vanishes identically. 

Here J~. ( . ,  C) denotes reduced homology with complex coefficients. 

It was conjectured by F. Treves in 1983 that  solvability at the origin in degree q for 

the complex L should be equivalent to the validity of property (*)q-l- The particular 

case n= 1 is of course valid, since (*)0 is equivalent to condition (T') according to our 

previous discussion. 

Several articles have been published towards the verification of this conjecture. In 

[CT1] it is proved that  (O)q ~ (*)q-1 for all q = l ,  ..., n. Indeed, if (*)q-1 does not hold, 

it is possible to violate an a priori inequality which, in turn, follows from (~ in a now 

familiar way introduced by L. HSrmander. 

The reverse implication was proved for q = l  in [MT], and, for q=n, it follows from 

the arguments in [CH2]. The method of proof in this work owes a lot to the previous 

two papers: the approach of reducing the problem to the study of the boundary equa- 

tions induced by an elliptic complex is taken from the former, whereas a key technical 

decomposition of closed forms is obtained from the Bochner formula already used in the 

latter. 

If we furthermore make the extra assumption that  the structure T '  is real-analytic 

then the work [ChT] gives a complete proof that  (*)q-1 ~ (~ for all q=l,  ..., n, a result 

that  had been previously proved in the cases q = l  [T1] and q=n [CH1]. The basic 

idea for the proof in [ChT] is to study the de Rham equation on regular fibers and to 

analyze the size of the solution as regular fibers approach the singular set. That  solutions 

with tempered growth can be obtained depends in an essential way on the analyticity 

assumptions. 

We also mention that  it is possible to give a meaning for hyperfunction solvability of 

the complex L (which generalizes the natural concept within the real-analytic category), 

and to prove that  condition (*)q-1 is in fact equivalent to the hyperfunction solvability 

at the origin in degree q, for every q = l , . . . , n .  On this subject we refer to [CT2] and 

[CT3]. 

Summing up, in order to complete the proof of the conjecture, it remains to be 

proved that the implication (*)q-1 ~ (~ holds for 2<~q<~n-1 when T'  is a smooth 

structure. The purpose of the present article is to present a complete proof of this 

statement, showing then the validity of the Treves conjecture in general: 
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THEOREM 0.1. Suppose that ZEC ~ and let qE{1,2, . . . ,n}.  Then condition (*)q--1  

implies the local solvability at the origin of the complex L in degree q. 

In the work [MT] it is also proved that  (*)q-1 and (*)q-2 together imply the local 

solvability of L in degree q if q~>2. Some of the arguments of this article will be used in 

the proof of Theorem 0.1. 

We shall organize our presentation as follows. In the first section we introduce 

the standard differential complex 0~ + dt in C x R n, and apply a Mayer-Vietoris exact 

sequence argument to explain why our solvability problem is equivalent to the solvability 

of 0 s+d t  on both sides of a certain hypersurface constructed by means of the given 

function Z (this is, of course, a similar device to the one used to study the solvability of 

the tangential Cauchy Riemann complex in a hypersurface of the complex space). We 

will also follow an argument from [MT] in order to split the condition (*)q-1 into two 
, + conditions ( )q-1 and (*)q-1 which will correspond to solvability on each side of the 

hypersurface. 

In the remaining of the article we focus on the study of one-sided solvability on the 
+ side that  corresponds to condition (*)q-l,  and present the full proof of the "micro-local" 

version of Theorem 0.1 (cf. Theorem 1.1 below). We have also found appropriate to 

present in an appendix a brief general discussion on condition (*)~, where we do not pay 

attention to the growth of the solutions when approaching the hypersurfaee, but rather 

explain its meaning conceptually in terms of the partial de Rham operator de acting on 

C x R n. This sheds some light on the refinement of the argument in [MT] that is required 

to get the complete proof of the Treves conjecture. 

1. T h e  e l l ip t ic  c o m p l e x  in C x R '~ 

(A) We shall write the coordinates in the space C •  n as (z,t)=(z, tl,...,tn), and if 

�9 ft C C • R ~ is open we shall denote by C~0 ,~ (ft) the space of smooth differential forms on 

ft of the kind 

f =  E fK(z,t) d~AdtK+ E fa(z,t) dtj. (1.1) 
Igl=p-1 IJl=p 

We shall also set 

c~( f~ ,A~ { f =  E fa ( z ' t )d ta: faEC~(a)}  (1.2) 
l,,'l=p 

and 

R.(f~, A ~ = { f  EC~(f~, A~ oq~f = 0}. (1.3) 
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We have the standard elliptic differential complex 

8e + d t :  C(O~176 ~ C(~,p+ 1 ) ( a )  

defined in the standard way, as well as its subcomplex 

dr: ?~(ft, A ~ ~ ~( f t ,  A~ 

(1.4) 

Finally we denote by H ~ (f~) (resp. H ~ (a)) the cohomology of the complex (1.4) (resp. 

(1.5)). A standard (and easy) argument allows one to prove (cf. [CT3, Lemma 3.4]) 

LEMMA 1.1. If f~ is (8/O2)-convex (i.e. if 8/82 defines a surjective endomorphism 

of C~(f~)) then the natural maps 

H~ --4 H~ (1.6) 

are isomorphisms for all p=0,  ... n. 

(B) Now we return to the complex L given by (0.8), (0.9). Taking advantage of the 

special form of the map Z defined in (0.4), and also of the properties in (0.5), it is easy 

to see that  if X is sufficiently contracted about the origin, the set 

- {(Z(x,  t), t ) :  (z, t) e x }  (1.7) 

defines a hypersurface in C x R  n containing the origin. Moreover, the complex 8e+dt 
induces a tangential complex on E which is nothing else than the complex L after making 

the identification X _ E  via the map (x, t)~-+ (Z(x, t), t) (cf. [T2, w167 II.1, V.2]). Let us now 

assume that  w is an open neighborhood of the origin in C x R '~. We set 

~+ - { ( z , t )  e .~  : z = x  + i y ,  y >  ~(x , t )} ,  

~ -  - { (z , t )  e ~ :  z = x + i y ,  y < ~(x ,  t)},  

~-i -~• 

(1.8) 

(1.9) 

(1.1o) 

If we moreover denote by H*(wNE, L) the cohomology of the complex (0.8) over the open 

set X D Y -  w n E, we can apply IT2, Theorem V.3.1] and obtain the Mayer- Vietoris exact 

sequence 
...--+ lim H~ --~ lim H~ lim H~ -=) --+ 

co--+0 w-->O co--+0 
(1.11) 

--+ lim HB(wnE, L) -~ lim H~ --+ ..., 
w--+0 oa--+0 

from which we conclude (notice that  (1.4) is locally exact) 

(1.5) 
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PROPOSITION 1.1. The operator L is solvable in degree q if and only if 

lira H~ -~) = 0. (1.12) 
w-+0  

(C) The preceding proposition decomposes the solvability problem for the non- 

elliptic complex (0.8) into two problems involving an elliptic complex, thus shifting the 

obstruction to the geometry of the hypersurface E. In order to deal with these two 

problems separately we must decompose the solvability condition (*)q, and for this we 

follow [MT]. Without loss of generality we can assume that X contains the closure of 

Q = { ( x , t ) E R •  Ixl < 1, Itl < 1}. 

Given aE]0, 1[ and zo=xo+YoEC we let 9r_ (Zo) (the sublevel set) be defined by 

9 v_ (Zo, a) - {t: Itl < a, ~(Xo, t) < Yo}, (1.13) 

and introduce 

(*)+ Given aE]0, 1[ there is a'E]0, a[ such that the following is true for any Zo: 

(1) if q=0, every smooth and closed 0-form on ~'-(zo, a) is constant on 5r_ (Zo, a ') ,  

(2) if q~> 1, every smooth and closed q-form on $'-(Zo, a) is exact on 5r_ (zo, a ' ) .  

Likewise we can introduce condition ( .)q.  We prove 

LEMMA 1.2. (*)q ~ (*)~ and (*)~. 

Proof. Let hE]0, 1[ be fixed. According to (*)q there is a'E]0, a[ such that 

~ q ( { t  : Itl < ~ ' ,  ~(xo,t) = y0}, c )  -~ ~ q ( { t  : Itl < ~ ,  ~(xo,t) = y0}, c )  (~) 

is trivial for every regular value zo=xo+iyo. 
According to [Br, II.10.3] there are exact sequences for cohomology with compact 

supports and coefficients in the constant sheaf C 

�9 .. --+ HP({t : Itl < ~, ~(x0, t) # yo}, c )  -~ HP({t : [tl < 0}, C) --+ 

-+ HP({ t  : Itl < e ,  ~(xo,t)=yo},C)~... 

which are natural in QE]0, 1[. Taking this into account together with the fact that 

HP({t  : Itl < e, ~(Xo, t) = Y0}, C) _~ Hn-p({t: Itl < Q, ~(x0, t) -- yo}, c ) ,  

we conclude the existence of natural isomorphisms 

Hq({t : Itl < ~, ~(x0, t) = Yo}, C) ~ Hq({t : Itl < ~, ~(Xo, t) # Y0}, C). 
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Since (~) is trivial we obtain in particular that 

~q(S_(zo, ~'), c) -~ fIq(S_(zo, ~), c) 

also vanishes for all such z0, and then for arbitrary Y0 by Sard's theorem, as an easy conti- 

nuity argument for compactly supported cohomology shows. By de Rham's isomorphism 

it follows that  (*)q holds true. The other implication is analogous. [] 

By Lemma 1.1 it follows that  Theorem 0.1 will be a consequence of the implications 

(*);-1 ::~ lim H~ (1.14 +) 
w-+0 

(*)q-1 ~ aim H~ -:) =0. (1.14-) 
w--~0 

In the remaining of the paper we shall concentrate in the proof of (1.14+), the proof of 

(1.14-) being of course analogous.(1) We will now make a more precise statement. 

(D) We recall that  we are given a smooth ~(x, t) defined in a neighborhood of the 

closure of Q. Moreover, thanks to (0.5), we can assume the validity of the properties 

I~(x, t ) -p(x ' ,  t)l ~< l l x - x '  I, "(x, t), (x', t) eQ, (1.15) 

I~(x, t)l--.< C(Ixl2 +ltl), (x , t )eQ.  (1.16) 

We shall also introduce the notation 

~ - { ( x + i y ,  t ) c C x R ~ :  Ixl < 1, Itl < 1, ~(x, t ) < y } ,  (1.17) 

- { ( x + i u ,  t) e c • a n :  I/I < 1, Itl < 1, v ( x ,  t) ~< y} ,  ( ] ~ )  

as well as we will denote by 0 the set of all neighborhoods of the origin in C x R n of 

the form A = R x O ,  where R (resp. O) is an open rectangle with sides parallel to the 

coordinate axes (resp. a ball) centered at the origin in C (resp. Rn). 

The following theorem may be considered the main result of this work: 

THEOREM 1.1. Assume that condition (*)q-1 holds. Then given AE~) there is 
A~EO, A ' c  A such that the following is true: 

Given FET~(~NA, A ~ with d t F = 0  there is UCT~(~NA', A ~ so that d tU=F 
in ~t NA'. 

Remark. This statement shows that  

(*)~-1 ::v lim H~ 7) =0, 
~ - ~ 0  

(1) In an unpubl ished manuscr ip t  by F. Treves and the  first author ,  the  reverse implications in 
(1.14 + ) and (1 .14-)  are also proved to be true. 
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and this immediately implies (1.14+), for, according to the argument that  leads to the 

proof of Lemma 1.1, the surjectivity of 0/02:lim~-~0 C~(oa +)-+limbo-+0 C*~(co +) shows 

that  the natural map 

lira Hl~ (~ -v) -+ lim H~ -7) 
~o--+0 w--+0 

is an isomorphism. 

2. P r o o f  of  T h e o r e m  1 . 1 - - b e g i n n i n g  

(A) The Bochnerformula. Let c>0,  zEC and k c N  be fixed. We have 

r cr ) e-rr  k-1 eiZ~-(r+~)~ d~ dr  
dO \ J 0  

oo oc 1 

: ~ 0  e--rTk--l(1--Or)k !~0  (l~2)keiz{-(rq-s)~2d~! aT-" 
qk>) 

If we integrate this last expression by parts k times, we conclude that  its value equals 

C[lqk(O) (where Ck is a constant which depends only on k), and thus we obtain 

(lq_{2)k eiZV-~ad{ = Ck e -rr  k-1 dr, 

which can further be written, after the change of variables ~/=v/7-47 {, as 

~0 c~~ 1 , _ 2 I~~176 e-- r T k-1 
(l+{2)ke*Z~ ~ 'd {=CkJo  ~ ( foO~e iVZ / ( '+~)* /=-V=d~)dr .  (2.1) 

Remark. Notice that  this formula is a generalization of the Boehner formula used in 

[CH2, ef. (1.9)]. Indeed, if the integration in { is carried over all the real line, we would 

obtain (2.1) where the ~/-integral is also over R. It suffices to use the identity 

eiZV-~d~ = _ _  e-Z /4 
2v~ 

(B) Let F be as in the statement of Theorem 1.1. There is no loss of generality 

in assuming that  all the derivatives of F are bounded in ~AA.  Moreover, thanks to 

(1.16), we can even assume that  A={(z ,  t): Ix I <r ,  lY] <s,  Itl <0} is such that  the following 

estimate holds: 

II~IIA --" sup  I~1 < ~ < l r .  (2.2)  
A 
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We set 

1 / ~ [  . , 2 , , F~(z,t) = -  t / e * ~ ( z - z ( ~ ' t ) ) - ~ ( x ) F ( Z ( x , t ) , t ) d Z ( x ' , t ) d G  (2.3) 
7f JO J x ' C R  

where r  is a cut-off function which is equal to one on [- �89 �89 Of course, 

the following property is of the foremost importance: 

LEMMA 2.1. FE converses in T~(~,A~ as s'NO, to an clement F* which satisfies 
the property: 

Setting A ' =  { (z, t): Ix I< �89 lYl < s, Jt[ < L)}, the restriction of F - E "  to ~ Fl A" extends 
as an element of g ( A ' ,  A~ 

Proof. The first statement is absolutely routine. For the second we introduce 

F~(z,t)= If ~_ ~ i~(z-Z(x"~))-~2 ' , e r  )F(Z(x',t),t)dZ(x',t)d~. (2.4) 
oc x E R  

~-~ -0  q~ c'N0. Here we have written Then F~-+F~ in T~(~ , A '  ) as 

~ - -  {(x+iy, t) ECxR~:  Ixl < 1, I t ] < 1, ~(x, t )  ~> y}. 

Since we also have 

F(Z(x, t), t) -F ' (Z(x ,  t), t) =Ftt  (Z(x, t), t), 

when Ixl<�89 ]t[<e, the result follows. [] 

(C) We write f(x, t ) -F(Z(x ,  t), t) and g - [ 1 - M U ] k ( ~ f ) ,  where M=Z;IO/Ox, and 

observe that L g = 0  when txt<~�89 since M and L commute and L f = 0 .  We make the 

usual integration by parts 

F~(z,t)= l fo~~ L 1 7 'eR (1 +--~2)k ei~(z-Z(x"t))-~g(x" t) dZ(x',  t) d~, 

and apply our identity (2.1). We obtain 

F~(z,t)=--CkL~e-" ~.k-1 ~]0 ] / root . (z-Z(~',t)) ~ ) 
71" (T_~_s e ~" (~+~)'/: - 'g(x ' , t )dZ(x' , t )&l d~ ' .  (2.5) 

We shall then make the dyadic decomposition 

F~,p(Z,t) 

i (/07 ) Ck 2-~ T k-1 (z-Z(x"t))-Ug(x,,t)dZ(x, t)d ~ 
="_ e -T _ _  

-~-~ (T+e)I/2 e i" (~+~)~/~ 

F~,_~(z,t) 

Ck fLC  T k-1 (/o f ) (27) "-- - -  e - ' r  
71" (T+E)I/2 e "  (r - ,  9(x', t) dZ(x', t) dq dT. 
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Thus 
oo 

F~ = E F~,p+F~,_I. (2.8) 
p = 0  

In the sequel we shall use the notation 

ftp "---- {(z, t) : Ix[ < r ,  Itl < 0 ,  ~ ( x , t ) - 2 - P / 2 < y < s }  �9 (2.9) 

Remark. The role of the decomposition (2.8) is as follows. The form F~ is an entire 

function of z, and we may est imate its size for ~ ( x , t ) - e < y < s  (Ix I and It] small); so as 

c--+ 0 we may only control sizes uniformly in e on the set ~(x, t)~< y < s. On the other hand, 

each te rm F~,p in (2.8) may be controlled uniformly in e > 0  on the larger set ~p, where it 

converges to a form Fp which is holomorphic on both sides of the graph y=9(x,  t). This 

is quantitatively expressed by the next lemma. 

There are constants Cm,k>0 such that for every p E N  and every c > 0  LEMMA 2.2. 

we have 
IIF~,vllm,~p - sup sup IO~F~,pl <. C,~,k2 -(k-l-m)p. (2.10) 

~p lak<m 

Proof. We first consider the case m=O. In the definition of F~,p perform first the in- 

tegral in the q-variable. We fix (z, t)E~p and write z=x§  t)+a) where a >  - 2  -p/2. 

After we deform the ~]-integration to the chain 

i x-x'  
~ 1+ 2 I x - x ' l )  ' 

we get as the real part  of the exponent the quantity 

1 
Q -  (~_+e)l/2 ( - �89 t ) - ~ ( x ,  t ) - a ) ~ -  372. (2.11) 

From (1.15) we obtain 

- a  3 2 2-P/2 3 2 

Since in the domain of the T-integration in the definition of F~p we have ~->2 - p - i ,  we 

conclude that  
2. 

Hence we obtain 
2 -P  

IIF~,pllo,~p -< C f Tk-3/2dT. 
j 2 - p - 1  

For the other values of m the estimates follow from differentiation under the integral 

sign. [] 
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LEMMA 2.2q There are constants C,,~,k >O such that for every c>0  we have 

[[F~,-lllm,~ ~< Cm,k. (2.10') 

Proof. It follows immediately from derivation under the integral sign. [] 

(D) Next we shall consider the action of the exterior derivative dt in the expressions 

(2.6). If we apply [T2, Lemma II.2.2] and make the change of variables r / = ~ ,  we 

obtain 

dtFe,p(Z,t) 

e-~ T k - 1  i ( ( z - Z ( x ' , t ) ) - ( r + e ) (  2 I -- -- e Lg (x ,  t) dZ(x ' ,  t) d~ d~-. 
7r j 2 _ p _ l  

Here we again shift the ~-integral to the chain 

i x - x ~  
~-+~ 1A 2 Iz-z'l]' 

where we are writing z = x + i y .  The real part of the exponent becomes 

Q ' =  ( - �89  I x - x ' l + ~ ( x ' ,  t ) + y ) r t -  3 (~-+e)~2. (2.13) 

Since in the x'-integral we have Ix'l/> 1 ~r, we obtain from 2.13, for Ixl<�88 and Itl<e, and 

taking account of (2.2), that  

Q'~< ( - ~ r + l l ~ l l ~ + s ) ~  ~< - l r ~ .  (2.14) 

If we let 

zx'-~ {(x+iy,  t): lxl < �88 IYl < s, Itl < Q}, (2.15) 

inequality (2.14) allows us to state 

LEMMA 2.3. There are constants Cm,k>0 such that for every p C N  and every e > 0  

we have 

IId~f~,pllm,A- ~< Cm,k2-(k-l-m)P. (2.16) 

Our next step is to solve the equations 

dtGe,p =dtF~,p in A', 

with estimates 

IIG~,pllm,z~" ~< Cm,k 2- (k - l -m)p .  (2.17) 

To that  extent we use Poincard's lemma in the t-variables, obtaining a solution that  

depends holomorphically on z. We set 

He,p "-- F~,p- G~,p. (2. lS) 

The forms H~,p are of course dr-closed (and consequently dr-exact) in A'; moreover, 

Lemma 2.2 and (2.17) give 
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LEMMA 2.4.  

have 

There are constants Cm,k>0 such that for p E N  and every E>0 we 

IIH~,pll.~,a.nA" ~< Cm,k2- (k - l -m)P ,  

IIg~,-1 I Im,~n~ �9 ~ cm,k.  

(2.19) 

(2.19') 

3. T h e  m a i n  s t ep  

(A) Before we proceed we pause to discuss a crucial tool that  will be borrowed from 

[MT]. For this we fix Ao E ~), 

ZXo = {(z, t) :  Ixl < r0, lyl < so, Itl < Qo}, 

and for 5>0 also fixed we introduce the Lipschitz-continuous function 

,~Ao,5 (z, t) = m i n { y - ~ ( x ,  t)+5, to - IxI ,  so - lyI ,  L)o -ItI}. (3.1) 

Notice that  there is a Lipschitz constant C > 0  for/~Ao,5 which depends only on ~. We 

shall also set, for pcZ+ ,  

o~ = {(z, t): .~Ao,~(z, t) > o}, (3.2) 

0~ , ,  = {(z,  t): ~ o , ~ ( z ,  t) > Cv~/2"}. (3.3) 

Finally, for a subset A of C x R '~ we shall write A(z) to denote the slice {t C R n : (z, t) C A}. 

PROPOSITION 3.1 (cf. [MT, Lemma 4.1]). There exist constants Cm>O such that 

the following is true: given any S E C t ( 0 5 ,  A ~ whose restriction to {z} x ON(z) is dt- 

exact for any z, then for any # so that 05, ,r  there exists u~EC~(O~,u, A ~ such 

that d tu#=S in 05,~ and 

Iiut~iim,o~,. ~ Cm2(m+n+l)tLiiSIIm,o~,,+2. (3.4) 

(B) With this result in hand we can now state and prove the most important tool 

to be used in the proof of Theorem 2.1. 

PROPOSITION 3.2. If  condition (*)q-1 holds true then there exist p0EN and A1C~) 

(both depending only on A), AI CA ' ,  and f owns V~,pC'R(f~NA1,A q-l) (p>~po) solving 

dtV~,p=He,p i n  ~ I - I A  1 (3 .5 )  
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and satisfying 
IIVs,p[[rn,f~n&l ~ Cm2(m+n+3)pttgs,p][rn+2,apn,.~'. (3.6) 

Proof. We start by applying Proposition 3.1 to the following choices: Ao=A' ,  (~= 

2 -p/2. Then (95=f~pMA', and consequently, since He,p is dr-exact on A', we can find 

Uz,p,tt E ~oc) (05,it) such that 

du~,p,u = H~,p in (.9~,~ (3.7) 

and 

Ilu~,~,. IIm,o~.. < Cm2 (~+~+~)" IIg~,~ I I ~ , n . ~ "  

Next we select A"E0,  A"CA"  and p0EN such that  

(z , t )EA'"  ~ XA. 2- , /~(z , t )=y-~(x , t )+2 -p/2 

for all P)Po. Thus 

(3.s) 

(3.9) 

Ilu~,pllm,a.+2nA.. ~< Cm 2(m+n+l)p/2 IIH~,pllm,a,nA.. (3.12) 

Since (O/02)H~,p =0 we have dt(O/O2)ue, p =0. We have now reached the point where 

we use property (*)~--1" If we write A " = R " x  {Itl<o"}, it follows that  

(f~p+2n A")(z) = {t: Itl < 0", y > ~(x, t ) - 2  -(p+2)/2} (z = x + i y ) .  

Hence by condition (*)~-1 there is ATE0, A t C A  "', such that  the following is true: 

(a) If q= 1, the restriction of (O/O2)U~,p to any slice {z} x (ftp+2 NAt)(z) is constant; 

(b) If q~>2, the restriction of (O/02)u~,p to any slice {z} x (ftp+2 AAt)(z) is exact. 

To complete the proof we must now distinguish two cases. 

Case 1: q>~2. We avail ourselves of (b). Applying the procedure described above to 

solve the equation 

dtc~ = ( O/O2)U~,p 

and 

0~, ,  n z~'" = {(z, t)E A": y > ~,(x, t)+C,/-~2-"- 2-P/2}. (3.10) 

If we now take # =  [�89 + N ,  with N conveniently large but independent of p, in such 

a way that  f tp+2nA"C O6,uAA", we can summarize: 

F~r every P>~Po and e>0  there is uE, ;EC~(f lp+2AA",A ~ such that  

dtUE,p = Hs,p in ftp+2AA'" (3.11) 
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we obtain Art  E ~, A H C A t, and, for an enlarged Po, a sequence 

c~,pEC~~ A~ (P>-Po) 

such that  

and 

dta~,p= (O/OS)U~,p in f~p+~nA H (3.13) 

IIOle,pllm,f2p+4nAtt ~ Cllm2(m+n-F1)p/2 II(O/O~')U~,pllrn,~p+2nAt. (3.14) 

Finally we select xpEC ~176 (R) satisfying 

0 for T < 2 -(p+6)/2, 

XP('r)= 1 for ~->2 -(p+s)/2, 

10k~pl ~< ck2 k~/2' (3.15) 

as well as -yEC~(R tt) which is identically one in an open rectangle R1cR tt centered 

at the origin and with sides parallel to the coordinate axes (where we are writing A tt = 

Rtt x {Itl < ott}). 
We set 

&~,p(z, t) - 7(z)xp(y-~(x,  t))a~,p(z, t). (3.16) 

Observe that  (~,p is defined in C•  {ltl<L)tt}, it has compact support  in the z-variable 

and coincides with a~,p in ~p+S N A1 if we set A 1 - R 1  x { Itl < 0 t* }. From this we see that  

V~,p - U~,p-dt [ E *(~r (3.17) 

where E(z)=l/~rz and the convolution is performed in the z-variable only, satisfies (cf. 

(3.11) and (3.13)) 

dtVe,p=He,p, (O/Oz.)Ve,p=O in f~p+8NA~. (3.18) 

Moreover, 

IIVe,pllm,~nAi ~ C(ml)[llUe,pllm,~nAi'l-IIE*~e,pllm+l,~nA1] 

< c~)[ %~,p IIm,.o~, + II ~,p IIm+1,~1 ], 

and then we can apply (3.12), (3.14) and (3.15) to obtain 

C(m 3) [2(m+n+l)P/2 [[H~,pNm,gt,nA.~-2(m+n+2)P/2 ]](O/02)Ue,p[Im+l,~p+2nAt] 

< C(m 4) [ 2(m+n+l)p/2 HHe,p[[m,gt,nA . -t-2(m+n+2)p/22(m+n+3)p/2 [[He,pHm+2,gtpnA']. 

Consequently (3.6) holds and the proof is concluded in this case. 



206 P.D. CORDARO AND J.G. HOUNIE 

Case 2: q = l .  Let/3~,p be the function (O/02)u~,p r e s t r i c t e d t o  ~ p + 2 n A t .  By con- 

dition (a) above we know that/3~,p is independent of t. More precisely, if we denote by 

~o: C • the projection map, it follows that /3E,p is smooth in ~o(~tp+2nA t) and 

satisfies the bounds 

Writing 

and 

it follows that  

At  : R t  x {Itl < ~t} : {(z, t ) :  Ixl < r t, lYl < s t, Itl < Qt} 

~*(x) =" inf{~(x, t ) :  [tl < Qt} 

~9(~p+2 n A t ) = {z: Ixl < r t, ~* (x ) - -2  - (p+2) /2  < y < s t} .  

(3.19) 

Let R t c c  R t be an open rectangle centered at the origin and with sides parallel to the co- 

ordinate axes, and set A1-R1 • {[t[<gt}. Next we select a cut-off qpCC~(~o(~tp+2AAt)) 

which is identically one in ~O(~p+4nAt) and satisfies the bounds(2) 

I]0krlV[[Rt ~ Ck 2 Iklp/2. 

Proceeding as in Case 1 it is easy to show that  

�89 - u~,p-E*(nkZ~,p) 

satisfies 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

dtV~,p = HE,p, (O/05) V~,p =O in ~p+2nA1 

and, from (3.12), (3.19) and (3.20), 

[[V~,p[[m,~n~l < Cry2 ('~+n+2)p/2 [[H~,p[],,~+l,~nA'. 

This completes the proof of Proposition 3.2. 

(2) Since ~* is only Lipschitz continuous, for the construction of 7]p we must recall some results on 
the regularized distance presented in IS, Chapter VI]. In particular, we apply IS, Lemma 2 on p. 182]. 
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4. P r o o f  o f  T h e o r e m  1.1 (conclus ion)  

(A) Fix I c N .  If we apply (2.19) and (3.6), we conclude that  choosing k large enough in 

comparison with n and l allows us to make the series 

v~ -- ~ y~,~ (4.1) 
P)Po 

to be convergent in the Cl+2-topology on f~nA1 (k=21+n+lO does the job). Moreover, 

the same estimates show that  

sup IIV~ll~+2,~na~ < o~. (4.2) 
~>0 

We have (cf. (2.8), (2.18) and (3.5)) 

dtVe=Fe- Ge,p+ in ft NA1. (4.3) 

Set 
Po-- 1 

p p = - - i  

(4.4) 

such that 

vcc~(finA~,A~ ~ e d ( ~ , A  ~ 

dtV=F'-G i n a n A 1 ,  (4.6) 

(O/02)V=O in ftNA1, (4.7) 

( 0 / 0 5 ) G = 0  in A1. (4.8) 

By Lemma 2.1 we can correct G, maintaining of course the validity of (4.8), in such 

a way that  now instead of (4.6) we have 

dtV=F-G in ~NA1. (4.6') 

But then we have d t G = 0  in f~ n A1, and consequently also in A1 by analytic continuation. 

If we finally solve 

dtW=G in A1, 

where WCdt(A1,A ~ satisfies (O/O2)W=O, then U--V-WECI(~tNA1,A ~ satisfies 

dtU=F, (O/02~)U=O in ~2NA 1. We summarize: 

By Ascoli's theorem we obtain forms 

Using Lemma 2.2' in conjunction with (2.17) and an appropriate choice of k we obtain 

sup IIG~lll+l,~' < oc. (4.5) 
e > 0  
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PROPOSITION 4.1. Assume that condition (*)~-1 holds. Then given AEO there is 

A1EO, A1CA, such that the following is true: 

Given FET~(~nA,  A ~ with d t F = 0  and IEN there is U~eC~(flnA1,A ~ so 

that dtUl=F and (O/02)Ul=O in 12NA1. 

Remark. Recalling that  k is the number of times the second-order differential opera- 

tor [ 1 - M  2] is applied to the trace o f F  in y=~o(x, t), we see that the choice k=21+n+lO 

shows that,  roughly speaking, [�89 +6 derivatives are lost in the construction of U in 

the sense that  derivatives up to order 1 of the trace of U in a neighborhood of the origin 

may be estimated by the size of derivatives of the trace of F of order ~ l +  [�89 +6 in a 

larger neighborhood. 

(B) In order to complete the proof of Theorem 1.1 we must show how to obtain 

smooth solutions from the statement in Proposition 4.1. The argument is of course 

standard provided a convenient approximation result for closed forms with holomorphic 

coefficients is available. We now pause to obtain such a result. 

PROPOSITION 4.2. Let q>~l and AE1). Then there is A'E~, A ' C A ,  such that the 

following is true, whatever IEN: 

Given FEC~(~MA, A ~ with d t F = 0  and (O/O~)F=O there is a sequence f~E 

d t ~ ( ~ N A ' , A  ~ so that f~-+F in the cl-l-topology of ~CGA'. 

Proof. We begin by recalling the so-called Baouendi-Treves approximation scheme. 

Let @EC~(R) be identically one in a small interval centered at the origin, and form 

= 

There is ALE0, A1cA,  such that  the following is true: 

Fv--+F in Ct(~NA1,A~ (4.10) 

dtF~--+O in CZ(A1,A ~ (4.11) 

(notice that  (4.10) is obtained applying Cauchy's theorem in order to shift the z-integral 

inside ~). If we solve dtG,=dtF~, (O/02)G~=O in A1, with G~-+0 in Ct(A1,A~ it 

follows that  H~ - F ~  - G~ E C l (A1, A ~ satisfies 

(O/O2)Hv=O, d t H v = 0  in A1 (4.12) 

and 

H~-+F in ct(finA1,A~ (4.13) 
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Now we solve dtg~,=H,, (O/02)g,=O, with g, ECZ(A1,A~ For a fixed A'Ev~, 

A ' C C A ,  we can find g~ET~(A1, A ~ such that  

IIg -g'  IIz, , < (4.14) 

Taking f,=dtg~ gives our desired conclusion. [] 

(C) We can now easily conclude the proof of Theorem 1.1. We first apply Propo- 

sition 4.1 in order to obtain A l E 0  and the sequence {Ut} as stated. Then we apply 

Proposition 4.2: there are A'Ev~, A~cA1 and a sequence fIEdt']P~(~CI/V,A 0'q-1) such 

that  

I l g l + l - g l - - f l l l l _ l , f t n A , < 2  - I  , 1>~2. (4.15) 

It follows from .(4.15) that  the series 

o o  

/=2  

converges in g ( ~ A A ' ,  A ~ to a solution of the equation dtU=F. 

A p p e n d i x :  G e n e r a l  r e m a r k s  on  t h e  slice c o n d i t i o n  

In this appendix we return to the notation established in w In particular, for an open and 

bounded set ~ C  C • R ~, we shall consider the complex of differential operators between 

Fr6chet spaces 

dr: C~ (~; A ~ --+ c ~  (12; A~ (A.1) 

and analyze its cohomology in some of its aspects. 

As before we let 7r: C x R n--+ C denote the natural projection and Y -  7r(~); for z E Y 

we set a (z) .  Recalling that  for an open subset U of R n and for 

l<~r<<.n-1 we have 

Hr(U, C) --~ (Hn-r(U, C))* 

(de Rham's isomorphism), we conclude that  both conditions stated below are equivalent: 

Hr(f~ z, C) = 0 for all z E Y, (A.2) 

Hn-~'(12 z C ~ = 0  for all zEY. (A.2') 
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PROPOSITION A.1. Condition (A.2) is equivalent to the following property: 

(A.3) To every #Eg ' ( f t ,  A ~ . . . . .  ) satisfying dr#=0  there is flEg'(12, A ~ . . . . . .  1) such 

that dtf l=#. 

Proof. Let ~(O,q) denote the sheaf of germs of currents of the kind 

w= E wJ(z't) dtj' wjEl:)', 
Idl=q 

and let j r  denote the sheaf of germs of distributions on C x R n that are independent of t. 

By considering the fine resolution of jr, 

then (A.3) is equivalent to 

0_+ jr_+ :D'(O,0)~+ _D'(0,1) -%. . . ,  

H~'~-~ (12, jr)  =0 .  (A.4) 

Consider the Leray sheaves 74g(Tr, jr).  These are fine sheaves on Y, and an elementary 

application of the Leray spectral sequence (cf. [Br, IV.6]) gives 

H2-~(ft ,  jr) ~ H~ 7-12-~ (Tr, jr) ). 

Thus 

H n - ~ ( ~ ,  jr)  = 0 r  ~ 2 - ~ ( . ,  jr)  = 0. 

Next we make use of the Universal Coefficient Theorem (ef. [Br, II.15]) to conclude that,  

for all zEY,  the stalk of the Leray sheaf .~c74'*-~(7r~ , jr)  at z is isomorphic to 

Consequently 

H; ( a , ~ z )  n-~  z , 

Hn-~(12c , , j r )=O r H~-~(f t  z , c ) = O  for a l l zEY,  

which completes the proof. 

Let us set 

Z~ = {fEC~(12, A~ d t f  = 0}. 

From Proposition A.1 we obtain 

[] 



L O C A L  S O L V A B I L I T Y  F O R  A CLASS OF D I F F E R E N T I A L  C O M P L E X E S  211 

COROLLARY A.1. Condition (A.2) is equivalent to the conjunction of the following 
properties: 

(I) dt{C~(f~, A~ is dense in Z~ 

(II) dr: C~(~ ,  A ~  A ~ has closed image. 

Proof. ( A . 2 ) ~  (I): By the Hahn-Banach theorem it suffices to show that if #C 

$'(fl; A ~ satisfies d r # = 0  then # ( g ) = 0  for every geZ~ which is of course a 

consequence of Proposition A.1. 

(A.2) ~ (II): This follows from Proposition A.1 by taking into account the Banach 

theorem. 

Conversely let us assume that (II) holds. Then again by the Banach theorem we 

derive 

Im{dt: g ' (a ,  A ~ . . . . . .  1) -+ $ ' (a ,  A ~ . . . . .  )} = Z~ ~ 

But (I) implies that z~176 ~ Thus (A.2) holds and the 

proof is complete. [] 

We conclude by describing the approach followed in [MT], paying however no atten- 

tion to estimates. In order to verify the Treves conjecture we must verify, roughly, that 

for an open and bounded subset ft of C x R n which is (O/02)-convex and satisfies (A.2) 

for r=q-1,  the map 

dr: 7r163 A ~ -+ n ( ~ ,  A ~ (A.5) 

has closed image. 

Let f belong to its closure. From property (II) in Corollary A.1 we obtain that f=dtv  
for some vEC~(Vt, A~ We have dt(O/O2)v=(O/Oz)f=O, and applying part (I) of 

Corollary A.1 we conclude that (O/02)v belongs to the closure of dt{C~(~,A~ 
If we assume the additional hypothesis that 

dc c (a, A ~ -+ c A ~ 

has also closed image (a property that is implied by the validity of (A.2) for r = q - 2 )  

then we would be able to solve 

dtc~ = (O/O~)v, ( i .6)  

and consequently u - v-dr/3,  where/3E C ~ (~, A ~ satisfies (0/02)/3=c~, would belong 

to 7~(fL A ~ and would satisfy dtu=f. 

This is the sketch of the argument in [MT]; it is now clear why both conditions (*)$_ 1 

and (*)$-2 must be imposed in order to obtain, with such an approach, a solvability 

theorem in degree q when q >~ 2. 
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