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How many geodesics start ing from a given point of a surface escape to infinity? In this 

paper, by a surface we shall mean a complete oriented non-compact Riemannian manifold 

A/[ of dimension 2. 

Let 34 be a surface and let p be a point of A4, denote by 8(p)=S(AJ,p) the unit 

circle of directions in the tangent plane of Ad at p; we are interested in the size of 

the set 

E(p) =E(M,p) 

of directions vC s so that  the unit-speed geodesic ~/emanating from p in the direction 

of v (~/ '(0)=v) escapes to oc, i.e. limt-~oo dis t (~/( t ) ,p)=+oc,  where dist means geodesic 

distance in Ad. 

We shall denote by T~(p)=7~(~/I, p) the set of directions at p which determine rays. 

A ray is a geodesic which minimizes the distance between any two of its points. Of 

course, 74(p)Cg(p). It  is easy to see that  in any surface A/I, there are at least as many  

different rays from a given point p as different ends of 3//. 

We shall be dealing with surfaces of negative curvature. A surface of constant 

negative curvature shall be termed a hyperbolic Riemann (on account of its canonically 

at tached complex structure) surface. For some related results in the cases of positive 

Gaussian curvature and of integrable curvature, we refer the reader to [CE], [Mae], 

[Shioh], [SST], [Shioy], [HT], [Ba] and [Wo]. 

From now on, 34 denotes a hyperbolic Riemann surface. Our main result is the 

following tricothomy: 
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Ciencia, Spain, and a grant from the HCM programme of the European Union. The second author was 
supported by a grant from Ministerio de Educacidn y Ciencia, Spain, and Grant PB96-0032. 
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THEOREM 1. There are three possibilities: 

(i) M has finite area. Then for every pE3d there is exactly a countable collection 

of directions in g(p). 

(ii) Ad is transient. Then for every pEA/t, $(p) has full measure. 

(iii) 2t4 is recurrent and of infinite area. Then g(p) has length zero, but its Haus- 

dorff dimension is 1. 

We are calling a surface transient (resp. recurrent) if Brownian motion on Ad is 

transient (resp. recurrent). Notice that  hyperbolic surfaces of finite area are recurrent. 

Therefore the cases above do not overlap and cover all possibilities. The Hausdorff di- 

mension in (iii) is Hausdorff dimension with respect to the intrinsic Riemannian distance 

in 8(p). 

The cases (i) and (ii) are well known, likewise the zero-measure s ta tement  in case (iii). 

Some partial results concerning this last case were obtained in [FL2]. 

There is also a version of Theorem 1 for a single recurrent end. A recurrent end 

~" of 3d is an end such that  the extremal length of the family of curves in $- from the 

boundary of ~- and escaping to infinity is infinite. The proof of Theorem 1 applies: 

from any point p of Ad there is a set of dimension 1 of geodesics emanat ing from p and 

escaping to infinity through the end ~ .  Besides, there is a version of Theorem 1 where 

the geodesics escape to infinity at a uniform speed, see w 

Some closely related results concerning bounded geodesics of hyperbolic surfaces have 

been obtained recently. Denote by 13(p)=t3(3d,p) the collection of directions v CS(p) 

such that  for the geodesic 7 from p in the direction v one has 

sup dist(~,(t),p) < +oo. 
0~t<+oo 

We shall denote by 6(34) the so-called exponent of convergence of 34, i.e. the infimum 

of the positive numbers s > 0  for which 

E e -s'length([w]) < -[-oc, 

where [w] runs on the fundamental  group of M at p, and length([w]) denotes the minimum 

length within the class [w] of the loop w. The exponent of convergence does not depend 

on p. 

The dimension of the set B(p) is determined by 6(34): 

THEOREM A. For every pC34, the Hausdorff dimension of 13(p) is (f(M). 

Theorem A has a long history. It has its roots in results on diophantine approx- 

imation due to V. Jarn~k in the 1920's. In the present context, Theorem A, but for 
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finite-area Riemann surfaces, was proved by Patterson, [Pa], and in full generality in 

[FM1] and [BJ]. It  also holds in higher dimensions, see [BJ], [FM1] and [St]. The proof 

in [BJ] is particularly simple and general, it applies to non-elementary underlying groups, 

while the two others require the groups to be geometrically finite. 

Observe that  in Theorem 1 there is no scale of different possibilities. 

We would like to remark that  Theorem 1, as well as Theorem A, has interesting 

applications in function theory, see e.g. [FN] and [FP], and w 

The proof of the main result of the paper, Theorem 1, is in w while w167 4 and 5 

contain the main ingredients of the actual construction of the large set of geodesics 

whose existence the theorem claims. w167 collect some preliminary material  on the 

geometry of Riemann surfaces and on Hausdorff dimension. 

In a nutshell, the proof of Theorem 1, par t  (iii), goes as follows: first we decompose 

the Riemann surface into a sequence of (bordered) geometrically finite Riemann surfaces 

which tend to infinity with exponents converging to 1 (w for each one of these pieces 

one then has to locate a large number of long geodesics connecting appropriate  boundary 

geodesics (w and finally we must join together these geodesics to form a network of 

geodesics that ,  when lifted to the universal cover, forms a tree whose "rim" has a large 

dimension (w 

A word about notation. There are many estimates in this paper  involving absolute 

constants. These are usually denoted by capital letters like C. Occasionally, we shall 

indicate a constant C depending on some parameter  s as C(,~). The symbol # A  denotes 

the number of elements of the set A. 
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and Antonio Ros for supplying some useful references. We are particularly grateful to 

Artur  Nicolau for sharing many ideas with us, to Chris Bishop for some helpful correspon- 

dence and for detecting some inaccuracies in an earlier draft, and to Lennart  Carleson 

and Peter Jones for encouragement. 

We are greatly indebted to the referee whose excellent report,  full with suggestions 

and simplifications, has allowed us to improve both  the mathemat ica l  content and the 

presentation of this paper. He/she deserves our sincere thanks. 

1. H y p e r b o l i c  s u r f a c e s  a n d  F u c h s i a n  g r o u p s  

In this section we shall assume throughout that  A/[ is a hyperbolic surface. 

The surface AA may be described as a quotient P / F ,  where P is the hyperbolic 

plane and F is a group of orientation-preserving isometrics which has no torsion and acts 
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discontinuously on P.  We shall only use this kind of representation of surfaces. If we 

use for P the Poincar~ disk model, then P - ~ D = { z c C :  [z[<l}.  The group F is then a 

Fuchsian group, i.e. a discrete subgroup of the group MSb(D) of orientation-preserving 

MSbius transformations of the unit disk D onto itself. We shall denote the natural 

projection from P onto 2 t d = P / F  by H. This projection II is a local isometry. The 

hyperbolic distance in P between p and q will be denoted by d(p, q). 
The orbit of 0, F(0), or the orbit of any other point for that  matter,  accumulates 

on a certain closed subset of 0D, A(F), called the limit set of F. A particularly relevant 

subset of A(F) is the so-called conical limit set, At(F), which may be described as the set 

of points ~EOD such that  there is a sequence of points in F(0) tending to ~ inside a cone 

in D with vertex (. The geometric meaning of At(F) is simple: it represents the set of 

directions of geodesics emanating from 0, which do not escape to c~. 

Let p be a point of M .  If we assume, as we may, that  II(0)=p,  and identify 0D 

with the circle of directions at 0, and also, with S(.M,p), then g(p) gets identified with 

0D\Ac(F) .  Moreover, if P is the Dirichlet fundamental polygon (see e.g. [Bea, p. 227]) 

of F then the set of rays T~(p) may be identified with OPNOD. 
Observe that  as a consequence of these identifications the sets g(p) of different p's 

are diffeomorphic; and, similarly, for the ~(p) ' s .  Thus the dimensions of these sets (or 

whether they have full measure or measure zero) are conformal invariants of the surface. 

We will systematically identify 8 (3d ,  p) with 0D. 

If the Laplace-Beltrami operator of 3d has a Green function then 

~ ( 1 - l T ( o ) l  ) < +oc, 
~/cF 

see [Ts, p. 522], and then the Borel-Cantelli lemma tells us that  Ao(F) has length zero. 

In particular, if M has a Green function, or equivalently if 3,4 is transient, then g(p) has 

full measure. The converse, namely, that  if Ar has length zero then 34 has a Green 

function, is also well known, see e.g. [Gal. 

In other terms, the set g has either length zero or full length; the first case occurs 

when 2t4 is recurrent, the second if 3d is transient. 

If A4 is written as P /F ,  then the exponent of convergence, (~(M), can be expressed 

as the infimum of all positive numbers s > 0 for which 

~ -~e  -s'd(0' 'y(0)) < -boo. 

3,EF 

The bottom of the spectrum of the Laplace-Beltrami operator of Ad is denoted by 

~ (M) .  In terms of Rayleigh's quot ients , /3(M) can be defined as 

13(M)=inf{ f ['Vrp[[2dAf a;2d A : I, E C : ( M ) } ,  
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where ]]. ]], V and dA refer to the Poincar@ metric of A/[. The following theorem of 

Els t rodt-Pat terson-Sul l ivan (see e.g. [Su2]) gives a relation between (~(M) and/3(Ad). 

T H E O R E M  B.  

1 if 0 < �89 

9 ( M )  = q < 1. 

In particular, i f /~(M)<s<�88 then 5 ( M ) > l - 2 s .  

Assume, finally, that  2~4 has finite area. In this case, A/I may be decomposed into 

a compact  set Q and a finite union of pseudospheres: AJ=QU[.JinlBi. Each Bi is 

isometric with { z E C  :0<  ]z] < 1} endowed with the metric 

ds - ]dzl 
]z{ log(l/{z]) 

(see e.g. [Bar], [CdV]). One sees readily tha t  g(p)  is countable. As a mat te r  of fact, for 

each end, say iC{1, 2, ..., n}, and each homotopy class of curves joining p with OBi (the 

extreme in OBi is allowed to move freely within OBi), there is a unique shortest curve "7; 

the direction of V at p belongs to s  and, conversely, every vEg(p )  is obtained in this 

manner.  

The above can be seen directly using the group description. One may assume, [Bea, 

w that  the fundamental  polygon P at 0 has finitely many sides and that  its vertices 

all lie on 0D. We may identify g(p)-~F(OT:'NOD). 

It  is not true, in general, that  s For instance, if A / [ = C \ Z  then 

g(p) has dimension 1 while 0PAcgD is countable. (See e.g. [FL2].) 

2. S o m e  bas i c  fac t s  a b o u t  R i e m a n n  s u r f a c e s  

Throughout  this section A/" denotes a hyperbolic surface, non-compact,  as always. It  will 

be represented as a quotient H - - P / F  with P = H 2 or P = D, whatever is more convenient. 

2.1. Cusps, funnels and collars. If YCAF is a domain isometric to S 1 • [log 27r, +cx~) 

with the metric dr2+e-2rdO 2, then we call the domain y a cusp or cuspidal end. If  Z c A f  

is a domain isometric to S 1 • [ai, +c~), for some ai > 0, with the metric dr 2 + cosh 2 r dO 2, 

then we will refer to Z, as a funnel. 

A Riemann surface Af of finite type may be split into a disjoint union of a compact  

set and a finite number of cusps and funnels, [Pal, [Bar], [CdV]; besides, if it has not 

funnels it has finite area. We remark that  any Riemann surface with a funnel is transient. 
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As a bordered Riemann surface, a funnel with boundary length l will be denoted 

byZl .  

Let G be a simple closed geodesic in N of length I. The collar of G, denoted by 

collar(G), is the f(l)-neighborhood of G in Af, where f ( t )  is the positive continuous 

decreasing function 
1 

f (t) = arcsinh sinh(�89 t~" 

The well-known collar's lemma, see e.g. [Ber], asserts that  collar(G) is topologically 

a cylinder, and that  if G1 and G2 are two disjoint simple closed geodesics in N ,  their 

corresponding collars are disjoint: 

collar(G1) N collar(G2) = ~. 

If G is a lifting of G, then by collar(G) we mean the f(/)-neighborhood of G in P. 

Of course, collar(G) projects onto collar(G). 

Let 7 � 9  be a primitive (i.e. without roots in F) hyperbolic transformation whose 

axis projects onto the closed geodesic G. Then the collar's lemma also claims that  

collar(G) A co l l a r  ("[1 ( G ) )  = ~ for al l  "/1 �9 F \ {,~rn : m �9 Z }. 

The hyperbolic transformation 3' is unique up to conjugation in F (see [Ra, p. 401]), 

and hereafter we will refer to 7 as a hyperbolic transformation associated to G. 

We shall need to express the collar's temma in terms of Euclidean quantities for later 

use. This we do next and we will use P = D. 

Let G be a geodesic in D. The diameter of G, denoted by diam(G), is defined as 

the Euclidean diameter of the whole (Euclidean) circle which contains G as an arc, if 

the Euclidean distance between the origin and G is at least log(2+ x/5). Otherwise, it 

is defined as 1. Thus, for instance, a geodesic through 0 has diameter 1. (The awkward 

constant log(2+ ~ )  is there simply to have continuity of this diameter.) 

The next lemma gives us an estimate on separation of liftings of simple closed geo- 

desics. The proof follows from the disjointness given by the collar's lemma. 

LEMMA 2.1. Let G1, G2 be two distinct liftings of G such that 

1 diam(G1) + diam(G2) < g. 

Then 

dEuc(G1, G2) > c min{diam(G1), diam(G2)}, 
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w h e r e  dEuc denotes Euclidean distance, and c>0  depends only on the length of G. In 

particular, if diam(Gi) >0  ( i=1,  2), then 

dEuc(G1, G2) > c0. 

2.2. Liftings of closed geodesics. Let G be an oriented simple closed geodesic in 

A / = D / F ,  and assume that  F is non-elementary (recall that  this only rules out the cyclic 

groups). 

The next proposition gives us a local estimate of t h e  number of liftings of G of 

(approximately) the same given diameter. 

PROPOSITION 2.2. Let I be an arc in OD which contains a hyperbolic fixed point 

of F. Consider the collection bt~ of those liftings G of G with 

e -(n+l) ~< diam(G) < e -n  

and with final endpoint in the interval I. Then 

n=l 

for any 0 < a < 5 ( F ) .  

Moreover, for each 0 < a < 5 ( F )  there is an increasing sequence of integers n such 

that for each one of those n there exists a subcolleetion "In of L[n which satisfies 

#'-]-n > e n a  

and has the additional property that if G1, G2E'-]-n then G1 does not separate G2 from O. 

If the group F is geometricMly finite, a more precise estimate is available: For Q 

small enough, the number of liftings of G with diameter approximately 0 n, and final 

endpoint in the interval I,  is comparable (for all n large enough) to 

1 6 

where # denotes the Patterson measure. But we do not need this sharper result in this 

paper. 

In our applications, the group F is always non-elementary, and the fixed points of 

hyperbolic transformations in F are dense in 0D. 

The proof of the proposition rests on the following simple recollection lemma. 
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LEMMA 2.2. Let G be a simple closed geodesic in A f = D / F ,  and let G denote the 

set of all liftings of G in D. If  

then 

Z e-ad(0,~(o))=oo, 

7EF 

Z e -a'd(O'~) = oc. 

5EG 

This is elementary, recall that  the G's are disjoint, see [Sul] for the analogous case 

of a cusp. 

Proof of Proposition 2.2. Fix 0 < a < ~ ( F ) .  Let 1)n denote the set of liftings G of G 

such that  

e -(n+l) ~< diam(G) < e -~. 

Notice that  there is no reference to I, yet. 

From Lemma 2.2 it follows that  

or / 1 , ~  
~__l@Yn~-ff) =OC. (2.2.1) 

Let gl E F denote the hyperbolic transformation which fixes the hyperbolic fixed point 
n I ~EI .  It is geometrically clear that  U n g l (  ) covers the set 0D\{~}.  Moreover, since F 

is non-elementary there exists 92 E F and n such that  {~} C 92 og~ (I). 

Hence, by compactness, the set 0D is covered by a finite number of images, by 

elements of F, of the arc I. We obtain that  the subeolleetion Hn of 12~ which contains 

the liftings with final endpoint in the interval I satisfies 

:~'~n ~ C" :~:~n (2.2.2) 

with C>0.  

Therefore, from (2.2.1) and (2.2.2) we obtain that  

# H n  7 =~ (2.2.3) 
n = i  

If GEHn, then d iam(G)E[e- (n+l ) , e -n ) .  Hence, using disjointness of collars (see 

Lemma 2.1) it is clear that  if GEH~, then the number of geodesics in Ha which are 

separated from 0 by G is bounded by a constant depending on the length of G. The 

existence of the subcollection T~ of H~ for n large follows easily from (2.2.3) and this last 

remark. 
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2.3. Pasting handles and funnels. A construction that  will be particularly useful is 

the pasting of hyperbolic surfaces with boundary. If A/l, Af2 are two hyperbolic surfaces 

with boundary, and G1 on All and G2 on Af2 are simple closed boundary geodesics with the 

same length, then we can construct from A;1UJV2 a new hyperbolic surface by identifying 

Gl(t) with G2(a-t)  for a fixed a E R  (see e.g. [Bu]). 

Frequently, we shall be interested in attaching simple bordered compact Riemann 

surfaces to some specified components of the boundary of a given hyperbolic surface. 

Given 1 > 0, let 0 < tz < 1 such that  

4t~ - c o s h l .  (2.3) 
(1- t~)  2 

Then we take vl:=-t l ,  v2:=tz, v 3 : = - t t v / L ~  and v4:=ttv/-A1 in D. 

Let Gj ( j = l ,  2, 3, 4) be the geodesics in D such that  vj E Gj and d(0, Gj)=d(O, vj). 
Moreover, let g be the hyperbolic transformation which fixes 1 , -1 ,  and maps G1 to G2. 

And let h be the hyperbolic transformation which fixes x/%---i, -v/-21,  and maps G3 

t o  G 4. 

We define F as the group generated by g and h, and we denote by St the Riemann 

surface of genus 1, S t = D / F .  We remark that  Sz can be split into the disjoint union 

of a compact region and a funnel Zt. Moreover, since sinh ld(0,  g(0)) sinh �89 h(0))= 

coshd(G~, Gj) (see e.g. [Bea, p. 192]), it follows from (2.3) that  for i=1,  2 and j = 3 ,  4, 

d(Gi,Gj)=l .  

Therefore, the geodesic bounding the funnel Zt has length l. 

We will use/At to denote the hyperbolic surface (with boundary) St \ Zt. We remark 

that/At has genus 1 and that  its boundary is a simple closed geodesic of length I. Here- 

after, we will refer to/At as an l-handle. 

We will use several times the following cutting and pasting operations: 

(1) Given a Riemann surface A /wi th  a funnel Z=Zt  whose boundary is a simple 

closed geodesic G of length l, we construct a new Riemann surface by cutting .hf along 

the closed geodesic G, removing the funnel and pasting there an/-handle.  

(2) Given a Riemann surface N" and a simple closed geodesic G (of length l) in N', 

we construct a new Riemann surface by cutting A/along G to obtain one or two bordered 

Riemann surfaces and pasting to one of them along the geodesic a funnel Zt. 

2.4. Some hyperbolic trigonometry. Let u and v be two geodesic arcs in the Rie- 

mann surface Af, and let 7: [a, b]-+Af and rl: [c,d]--+Af be parameterizations such that  

u=7([a  , b]), V=rl([C, d]). If v(b)=rl(C), then by the angle between u and v we mean the 
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angle from ~"(b) to r/(c). On the other hand, if ~/(a)=~(c), then by the angle between u 

and v we mean the angle from 3~(a) to rfl(c). Angles are given rood 27r and between -Tr 

and 7r. The case N '=  D shall be very frequent. 

Let E be a closed subset of D, and let z E D \ E .  We will denote by w(z ,E )  the 

harmonic measure from the point z of the set E in the component of D \ E  which con- 

tains z. The next lemma gives an estimate of the harmonic measure of a geodesic arc. 

This result appears in [FM2, Lemma 1.1.2] and its proof is simple. 

LEMMA 2.4.1. Let zED,  and let G be a geodesic arc in D. Then 

e d(z'd) = cotan(�88 G)).  

Moreover, there exists C> 1 such that if  d(z, G) ~ 1, then for all uE G, 

cW(Z,  G) sin 0,, ~< e -d(=''~) <~ Cw(z,  G) sin Ou, 

where Ou denotes the absolute value of the smallest angle at u between G and the geodesic 

through z and u. 

The next lemma will allow us to compare piecewise geodesics with proper geodesics. 

The proof is not difficult, and it appears in [FM2, Lemma 1.3.1]. 

LEMMA 2.4.2. Let {zn}n~=o be a sequence of points in D. Let 7n, n>~l, denote the 

oriented geodesic arc from z,~-i to zn. Assume that, for each n>~l, the (absolute value 
1 of the) angle at zn between ~[n and ~,+1 is at most ~Tr. 

There exists a constant A such that if 

{d(Zn_l,  Zn)} -= length(%~) >~ A, for each n >>. 1, 

then the following conclusions hold: 

(i) d(zo, zn)--+oc and, moreover, z ,  converges (in the Euclidean metric) to a single 

point, ~, say, in OD. 

(ii) There is an absolute constant C > 0  such that if  ~/ denotes the whole geodesic 

going from zo to ~ then for each n, and each z E % ,  

d(z, 7) < C. 
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3. A b o u n d  o n  H a u s d o r f f  d i m e n s i o n  

Patterns. A pattern 7) is given by a positive integer N >  1 and two real numbers r and R 

such tha t  0 < r < ~ R < l .  We will refer to (N, r, R) as the parameters  of 7). 

Given an interval J C R,  by applying the pat tern  7) to the interval J we simply mean 

the operation of choosing N disjoint open subintervals {Jj} of J satisfying 

r <  < R .  

Aside from the restrictions given by the parameters,  the intervals can be chosen arbi- 

trarily. 

We may apply the pat tern  7 ) again to each one of the intervals J j ,  and we say that  

we have applied twice the pat tern  7 ) to the original interval J .  This does not mean 

reproducing at a different scale the same intervals; but, simply, that  we choose the same 

number of intervals with the same bounds. We define to apply K times the pat tern  7 ) 

to the interval J in a similar way. 

Also, given a real number 0 < s ~< 1 we say tha t  we reduce the interval J with reduction 

bound s when we choose a subinterval J~ of J such that  

[J'] ~> s. [JI. 

Again, the subinterval can be chosen arbitrarily, as long as the restriction above, which 

is just an inequality, is fulfilled. 

Sequences of patterns. Let { i}~=1 be a sequence of patterns,  with respective para- 

meters (Ni, r~, Ri), and let {s~}~ 1 be a sequence of reduction bounds. 

Given a sequence {/(i}i~ 1 of number of repetitions we construct a Cantor-like set 

as follows: 

We star t  with I=  [0, 1]. The interval I is the only interval of the 0th generation, Ao. 

Now we apply the pat tern  7)1 to I ,  to obtain a first generation of intervals A1. To 

each of these intervals we again apply P l ,  to get A~. We continue to apply P l  a total  of 

K1 times obtaining generations A3, ..., AK1. 

We now reduce each one of the intervals in ~4K1 with bound sl ,  to get the next 

generation A~1+1. 

We star t  again, with these last intervals, apply 7)2 a total  o f / (2  times, and perform 

a final reduction with bound s2. Thus reaching generation fl[(KI+I)+(K2+I)" 
And so on. 

The Cantor set C is given by 

UJ.  
n=O J E A ~  
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It  is convenient to write 

n i : = K l + K 2 + . . . + K i + i - 1 ,  i>~l. 

These ni codify the generations just before the reductions. Then given .An with n>~K1 

there is an i such that  

?Z i ~ n < n i + l ,  

and there is an IE{0, 1, ..., Ki+l} such that  n = n i + l .  (Notice that  K i + l = n i + l - n i - 1 . )  

If  l=0 ,  then we get An+l by reducing each one of the intervals in An with bound si. 

Otherwise, we obtain .An+l by applying the pat tern  Pi+l  to each one of the intervals 

in An. 

We will need the following two bounds on the intervals in the n th  generation .an, 

with n = n i + l  and IE{0, 1, ..., Ki+t}:  

(3.1) An upper bound M ,  on the size of the intervals in An. We can take 

( RK1 RK~ 1 "'" i , i f / = 0 ,  

Mn := l l g K  1 lytKilzpl_ 1 if l r  
k ~ l  . . . . .  i ~ i + 1 ~  

(3.2) A lower bound F,~ on the size of the union of all the intervals in generation .An. 

We can write Fn as 

F n  ~--- 7 1  " "  "~n, 

where ~/j=Niri when we obtain Aj  from Aj -1  by applying the pat tern  Pi, and "yj=s 

when we obtain Aj from A j_ 1 by reducing each interval by s. Therefore, 

Fn = ~ sl ... S i - l ( N l r l )  KI ... (Niri)  K~ if l =  0, 

I Sl... s i(Nlrl)K~.. .  (Niri)K~(Ni+lri+l) z-1 if l r  

THEOREM 3.1. Let there be given a sequence of patterns {Pi} with parameters 

( Ni, ri, Ri ), and a sequence of reduction bounds {si}. Then there exists a sequence { Ki } 

of repetitions such that the associated Cantor-like set C satisfies 

Hausdorff dimension(C) ~> lim inf log(Nir i /Ri)  
i-+oo log(1/ Ri ) 

If there are no repetitions, i.e. K I = K 2  . . . . .  1, the result is false even with r i=Ri  

for each i. For instance, let / /0=2 ,  Hi=2 H~-~, and consider the Cantor set where each 

interval of the ( i -  1)-generation splits into Hi subintervals of the same length; we select 

(among them) a total  of H~/2 consecutive subintervals for the/ -generat ion.  This Cantor 

set has Hausdorff dimension 0. 

On the other hand, if we simply iterate a unique pattern,  then the result is well 

known, see [Hu]. Our proof is modeled upon his. 

We shall need the following elementary but crucial estimate. 
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LEMMA 3.1. If the Ki's grow sufficiently fast, then 

log(1/Fn+l) 
limn~sup log(1/Mn) 

~< 1 - lim inf log(Ni ri/Ri) 
i--+~ log(1/R~) 

This is a simple estimate, but we should remark that  the choice of each Ki depends 

not only on the previous K ' s ,  on sl up to s~, and on the parameters  of the pat terns  P l  

to 7~i, but also on the parameters  of Pi+I.  

Proof of Theorem 3.1. We let 

a := lim inf log(N~ri/Ri) 
~-+~ log(1/Ri) 

We construct a probability measure u with support  C in the following way: We define 

u ( I ) = l .  Then for each interval In in .An we define 

llnl 
"(In) = EJCA , JCX _, IJl 

where In-1 denotes the unique interval in ,An-1 such tha t  I n C I n _  1. Next, for any set 

L c R ,  

u(L) := inf E u(U), 
UC U 

where the infimum is taken over all the coverings b /o f  L with intervals in U .An. 
An easy calculation shows that  if Ij E.Aj then 

JGAj+I 
JC [j 

Hence, 

U(In) < - -  

Let U be an interval with length 

I in l  _ I In l  

"~1 --. "~n F n  
(3.3) 

Mn+l ~ IVl < Mn, 

and let ~ n + l  denote the set of intervals in -An+l which intersect the interval U. Notice 

that  

U Jc3u.  
JE~n+l 

Here by 3U we denote the interval with the same center as U, and radius 3 times as 

large. 
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Therefore using (3.3) we obtain that  

I ' n +  1 I ~ n + l  " 
JEgn+l 

From this estimate and Lemma 3.1, we have that, for /~<a, if ]U] is small enough 

(depending on ~), then 

~(U) ~< C(~) lg l  ~. 

Then, by the standard Frostman argument, we get that  

Hausdorff dimension(C) ~> a. 

4. C h a i n s  o f  g e o d e s i c  d o m a i n s  in a R i e m a n n  surface  

Let M be a recurrent hyperbolic surface with infinite area. 

By a geodesic domain in M ,  we mean a domain DCA/t whose relative boundary 

consists of finitely many non-intersecting closed simple geodesics and whose area is finite. 

For instance, if A 4 = C \ ( 0 ,  �89 2, oc}, then the region D \  {0, �89 is a geodesic domain. It 

is sometimes convenient to consider the punctures as geodesics of length zero; we shall 

adhere to that  convention. 

The aim of this section is to prove Theorem 4.1 below. This theorem will allow us 

to find in M a chain of escaping geodesic domains, which, when completed by pasting 

funnels along its boundary geodesics, become surfaces with exponents arbitrarily close 

to 1. 

THEOREM 4.1. Given a point p E M ,  there exists a family ~)={Di} of geodesic 

domains in M satisfying: 

(i) The Di's are pairwise disjoint. 

(ii) The boundaries of Di and Di+l have at least a simple closed geodesic Gi+l in 

c o m m o n .  

(iii) The Di's escape to infinity: 

lim dist(p, Di ) = oc. 
i---~ c~ 

(iv) If ~4~ denotes the Riemann surface obtained from Di by pasting a funnel along 

each one of the simple closed geodesics of its boundary, then 

lira 5(A4i) = 1. 
i - -+~  

Observe that  Di is the convex core of Adi (see e.g. [Ha]). 

In the proof of this theorem we will use several times the following statement, which 

appears in [AR]: 
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THEOREM C. If iV" is a recurrent hyperbolic surface, and B is a closed ball in iV, 

then there exists a geodesic domain D in Af such that B c D .  

Proof of Theorem 4.1. The construction of the sequence of geodesic domains Di in 

A4 proceeds inductively. As a matter  of fact the Di's will satisfy 

(iii') dist(p, D~) ~>i, 

(iv') d(AJi) ~> 1 - 1 / i .  

First, we choose a geodesic domain Do such that pEDo. Let gl be a component of 

Ad\D0 of infinite area. (Recall that area(Ad)=cc.)  One of the boundary components 

of Do, say G1, is also a component of the boundary of gl. The component G1 is a simple 

closed geodesic. 

Now, suppose that we have already determined a family {Dj}o~<y~<k of geodesic 

domains verifying the conditions (i), (ii) and (iv') above, and satisfying the following 

additional property, for j ~< k: 

There is a closed geodesic Gj+I in the boundary of Dy such that the component 

$j+1 of Ad\[_j~= 0 Dt which contains Gj+I on its boundary satisfies 

(4.1) area(Ej+l) =oo, 

(4.2) Cj+ICCj and dist(p, Cj)>~j. 

Let Gk+l and gk+l be, respectively, the simple closed geodesic and the component 
k of A4\Uz= 0 Dl with infinite area given by the property (4.1) for j=k .  

There are several steps to determine Dk+l. 

First, we construct a recurrent hyperbolic surface s containing gk+l isometri- 

cally. s is obtained from Ek+l by pasting handles along each one of the simple closed 

geodesics which are the components of the relative boundary of Ek+l. Let us denote the 

union of these handles by 7/: 

~ k + l  : 2 k + 1 \  ~t~" 

Observe that gk+l is recurrent and of infinite area. 

Next, we take a ball U in gk+l big enough so that 

(4.3) all the added handles are contained in U, 

(4.4) dist(s 0gk+l) ) 1, 

(4.5) area(U\7-/)~>R, where R is an appropriate constant (which depends only 

on Dk) which shall be fixed later. 

Let P be a geodesic domain in s which contains U. We take now an even bigger 

ball V such that 

(4.6) P c V ,  

(4.7) the family of curves F in V \ P  joining OP with OV has extremal length 

(see [Ah]) at least 1. 
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(V can be choosen so that  this extremal length is as large as desired, but the bound 1 is 

enough.) 

Now, let Q be a geodesic domain in gk+l which contains V. Repeatedly we have 

used that  gk+l is of infinite area and recurrent, and have applied Theorem C. Since gk+l 

has infinite area there is a simple closed geodesic G in the boundary of Q such that  the 

component of gk+l\Q which contains G on its boundary has infinite area. Observe that  

Uc Pc Vc Qc gk+I. 

Finally, we define the domain Dk+l as the geodesic domain Q\7-/, the geodesic Gk+2 

as the closed geodesic G, and, of course, the end gk+2 as the component of Ek+l\Dk+l 

which contains ak+2 on its boundary. 

Properties (4.1) and (4.2) for k + l  follow from the construction and properties (4.3) 

and (4.4). Also it is easy to see (by construction) that  Dk+l satisfies the conditions (i) 

and (ii) of the statement. The condition (iii') follows from (4.2). 

To finish the proof, we have to verify that  the Riemann surface Adk+l, obtained by 

pasting to the geodesic domain Dk+l a funnel along each one of the simple closed geodesics 

of its boundary, has exponent of convergence greater than or equal to 1 - 1 / ( k + l ) .  To 

do this we shall exhibit an appropriate test function to verify that  ~(Ad k+l)~< 1/2(k + 1). 
Then, by Theorem B of w we conclude that  (~(2Mk+l)~>l-1/(k+l) .  

Observe that  Adk+l is the union of Dk+l with J and /C, where ,7 is the union of 

the funnels attached to Dk+l on its boundary with Dk, and ]C is the union of the rest of 

the attached funnels. 

A test function �9 is defined as follows: 

�9 On Dk+l: We define �9 on P \7 - / a s  1, and on Q\P to be harmonic with boundary 

values I on OP and 0 on OQ (these two are boundaries relative to gk+l). 

�9 O n e :  ~ i s O .  

�9 On J :  ~P(q)=(1-dist(q, OJ)) +. 
We use (an approximation of) �9 to estimate /3(3,1k+1); from (4.5) and (4.7) we 

obtain 

9(Mk+l) < fJ IlWl12+l/ (r) 
a r e a ( P \ ~ )  

b it wt1 +  < fJ llWll 
a r e a ( U \ ~ )  R 

Hence, choosing R large enough it follows t hat /3  (M k + 1 ) ~< 1 / 2 (k + 1). 
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5. G e o d e s i c s  c o n n e c t i n g  tw o  c losed  geodes i c s  

Throughout  this section, A f = D / F  is a non-elementary Riemann surface with exponent 

of convergence 5. 

Fix two oriented simple closed geodesics, Ga and G2, in Af, and two points ql, q2 

such that  qiEG~ ( i=1,  2). The case Gl=G2 is allowed. The next theorem shows that  

we can find a large collection of long geodesics from ql to qu with precise control on the 

angles of intersection with G1 and G2. 

THEOREM 5.1. For any , > 0 ,  ~ ( 0 ,  ~ ) ,  and for L large enough (depending on 

and q!), there is a collection S of geodesic arcs in .hf from ql to q2 such that: 

(i) For all ~/ES, 

L ~< length ~/~ L+A(G2) ,  

where A(G2) is a positive constant which depends only on the length of G2. 

(ii) For all 7C8,  both the absolute value of the angle between ~/ and G1 at qx, and 

the absolute value of the angle between "~ and G2 at q2, are less than or equal to ~.  

(iii) The angle at q~ between any two geodesic arcs of ,_~ is (in absolute value) at 

least 
C e_L 

sin 
with c>0 an absolute constant. 

(iv) The number of geodesic arcs in S is at least 

eL(5-~l). 

It is important  to remark that  if GI and G2 are closed geodesics limiting funnels 

of Af, then every geodesic arc "f E S is contained in the convex core of Af. 

Proof. By conjugation, we may assume that  the interval ( -1 ,  1), oriented from - 1  

to 1, projects onto the oriented geodesic G1, and that  0 projects onto ql. 
1 1 Applying Proposition 2.2 to the interval I from -~qJ  to ~ ,  and with a < 5 ,  we can 

get, for n > 0  large enough, a set T of liffings of the geodesic G2 verifying: 

(5.1) Each G 2 E T  has 

e -(n+l) ~< diam(G2) < e -n. 

(5.2) Each G2 in T has both endpoints in 2 I = { e ~ ~  

(5.3) If G2,Gt2ET, zEG2 and z'EG~2, then the absolute value of the angle at 0 

between the radius through z and the radius through z ~ is at least e -(n+l).  (One has to 

get rid of at most half of T to obtain this separation property.) 

(5.4) #7-~>e n~. 
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To each o r i e n t e d  geodesic G2 E 7- we associate a point z2 in G2 as follows: z2 is the 

f i r s t  preimage (under the projection II) of q2 so that  the radius from 0 to z2 intersects 

G2 with angle at most ~P. From (5.1) and Lemma 2.4.1 we have that  

c l e  - n  sin kO ~< e -d (~  <~ c 2 e  - n  sin kO, (5.5) 

with cl, c2 positive constants; c2 is absolute, while c 1 depends only on the length of G2. 

The family of geodesics S consists of the projections (onto Af) of the radial segments 

from 0 to the points z2. 

Property (ii) is immediate. 

If 7 is an arc in S, then from (5.5) we have that  

L ~< length(3,) ~< L+A(G2) ,  

with 
C n 

L = l o g - -  and A(G2)=logC~.  
c2 sin �9 cl 

Observe that A(G2) only depends on the length of G2. This proves condition (i), if n is 

large enough. 

Writing 
e - - ( n + l )  _ e - ( L + I )  

c2 sin 

we see that  (5.3) implies condition (iii). 

Finally, the definition of L and (5.4) imply that 

# S  >~ t (c2 sin kO)~ e La = c a e  L ~  > e L(5- 'J )  

for n large enough and a > 5 - ~ .  

6. P r o o f  o f  T h e o r e m  1 

In this section we shall assume that  2k4 is a recurrent hyperbolic surface with infinite 

area. 

A cuspidal end .7-of/t4 may be represented as a tube T isometric to {z C C:0 <]zl< a} 

endowed with the metric 
d s  - -  Idz l  

Izl log(1/Izl) ' 

for some positive number a. A geodesic escaping from a point p escapes to cr through 

~- only if it intersects OT orthogonally. Therefore there is a unique escaping geodesic in 
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every homotopy class of curves which starts at p and ends on OT; in particular, there are 

exactly countably many geodesics from p escaping to c~ through ~-. 

To prove that  $(p) has Hausdorff dimension 1, we have to look for geodesics escaping 

from p to infinity through ends of infinite area. 

Proof of Theorem 1. We first get a family {Di} of geodesic domains in .M, with 

the corresponding collections {G~} of closed geodesics, and {Ad~} of Riemann surfaces, 

satisfying the conclusions of Theorem 4.1. Next, we fix a sequence of points {Pi}~=0 in 

2t4 such that  p0:=p and piCGi for i~>1. 

For each i>0 ,  we get a collection $i of geodesics in Adi, with initial and final 

endpoint piEGi, and satisfying the conclusions of Theorem 5.1 with Li (instead of L) 

appropriately large, a fixed ~P appropriately small, and ai, which tends to 1, instead of 

5-r ] .  (Here we are using that  5(M~)-+l . )  

Finally, for each i we also get one (sic!) geodesic w,i in M i  from piEG~ to P,+I~G,+I 
satisfying the conclusions (i) and (ii) of Theorem 5.1 (with the same Li and �9 as above), 

Observe that  the curve wi and all the curves in Si are contained in D~ (see the 

remark after the statement of Theorem 5.1). 

Let a;0 be a geodesic arc in M from P0 to Pl of length larger than, say, L0, and 

such that  the intersection angle at Pl between w0 and G1 is at most ~. We may assume 

that  0 projects on P0. So, if G1 denotes a lifting of G1 with endpoint ~, then a radial 

segment ending at a preimage of Pl in G1 which is close enough to ~ will project onto such 

a n  ~d 0 . 

The sequence of Li's and the value of @ shall be determined later. 

Now we are going to construct a tree T consisting of oriented geodesic arcs in D. 

First, lift w0 starting at 0. 

From the endpoints of the lifting of wo (which project onto Pl),  lift the family $1; 

from each of the endpoints of these liftings (which still project onto Pl), lift again the 

family 81. We keep lifting $~ in this way a total of K1 times. 

Next, from each one of the endpoints obtained in the process above, we lift ~1, and 

t h e n  from the endpoints of each one of those liftings of wl (which project onto P2), we 

perform/42 sucessive liffings of the family $2, in the same way as above. And so on. 

The sequence {/Ki} of repetitions shall be determinated later. 

The tree T contains an uncountable collection B of (infinite) branches which are 

piecewise geodesics starting at 0. Clearly, the projections of these branches escape to 

infinity in dye, since the geodesic domains Di do so. This means, in particular, that each 

branch in/3 converges to 0D. But more is true. 
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LEMMA 6.1. Each branch b of 7- converges non-tangentially to a point (its tip) 

in cOD. More precisely, if ~ is the tip of b, then every point in b is within distance C 

from the radius from 0 to ~, where C is some absolute positive constant. 

Given our freedom to choose q2 and the Li's, the above lemma follows directly from 

Lemma 2.4.2. 

The set of all the tips of the branches of the tree 7- is called the rim of 7-. 

As a consequence of Lemma 6.1, the projection of a radius ending at a point in the 

rim of 7- also escapes to infinity. But those projections are geodesics in J~4 emanating 

from P0- To finish the proof, all we have to do is to show that the rim of T has Hausdorff 

dimension 1. 

The vertices 12 of the tree 7- are classified into generations according to its graph 

distance from the root 0: 

Vn = {v C ~2 : graph distance(v, vo) = n}. 

The vertices in Vn are called the vertices of the generation n. Of course, the 0th generation 

is V0={0}. Let u be a vertex in Vn, and v be a vertex in Vn+l. If u and v are connected 

by an arc in T, then we will say that u is the mother of v, and consequently that v is 

a daughter of u. Moreover, we define the shadow of v, S(v), as the set of points w c O D  

such that the angle at v between the geodesic emanating from v with endpoint w and 
1 the geodesic emanating from u and going through v is less than or equal to ~7~. 

If the Li 's are large enough, and kO is small, then the shadow of a daughter is 

contained in the shadow of its mother, and the shadows of daughters of a given mother 

are disjoint. To guarantee this. one needs ko small so that the bound in Theorem 5.1 (iii) 

becomes Co e - L  where Co is some quite small absolute constant. We refer to Lemma 2.1.1 

and Corollary 2.1.1 in [FM2] for details. (The shadows in [FM2] are a bit more general.) 

The rim of 7- can now be described as 

rim of T =  N LJ S(v).  
n = l  vEV,~ 

To see that  the rim of 7- has Hausdorff dimension 1 we will use Theorem 3.1 on 

patterns. 

If v is a daughter of u, then 

1 e_d(u,v)~ IS(v)] -~ ~ < Ce -d(u'v), (6.1) 

where C > 0  is an absolute constant. Again this require large Li's and ~ 1 ~ ;  for details 

see [FM2, Lemma 2.1.2]. 
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With the notations of w we see that  the rim of 7- is a Cantor-like set obtained by 

a sequence {P.i} of patterns with parameters 

1 
ri ~ -~ e--L~-A(G~+I)~ Ri  ~ Ce -L~ and Ni ~ e a~L~. c' 

Here A(Gi+I) is a constant depending on the length of the closed geodesic Gi+l, and C 

is the constant in (6.1). We are using Theorem 5.1 (i) and (iv), and (6.1). 

We can take the si's in w as 

1 8 i = ~ e-length(w~) 

(We are using again (6.1).) 

The chain of domains D~ is our starting point. We remark that  the sequences of 

constants, A(Gi) and si, are known altogether from the very beginning. 

Therefore we may choose the Li's satisfying 

Li--+oo and A(Gi+I) -+0 
Li 

when i --+ oo. 

As a consequence we obtain that  

lim inf log(Nir i /Ri )  _ 1. (6.2) 
~--+~ log(1/Ri) 

Here we are using that  ai--+ 1. 

Hence, by Theorem 3.1 and (6.2) we have that  there exists a sequence of repetitions 

Ki so that  the rim of T has Hausdorff dimension 1. 

As it was mentioned in the introduction, there is a stronger version of Theorem 1: 

THEOREM 1/. Given an interval I on $(p) ,  and a recurrent end Jr, there exists a 

closed set A C  I A  C(p) and a homeomorphism ~: [0, oo)--+ [0, oo) such that: 

(i) I f  v E A  and ?v is the geodesic emanating from p with direction v, then 

dist(p~ %(t)) /> (I)(t), 

and for t >~ to, 

(ii) The Hausdorff dimension of A is 1. 

The proof of Theorem 1 / is a minor modification of the proof of Theorem 1. 
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7. Some applications and questions 

(A) Function theory. As we mentioned above, Theorem 1 has applications to classical 

function theory. 

Let f be a holomorphic function defined in the unit disk D, and let us denote its 

range by ft = f ( D ) .  A classical result of Nevanlinna claims: 

THEOREM F. If the logarithmic capacity of Oft is not zero, then f has radial bound- 

ary values a.e. in OD, i.e. 

~im a f ( re  i~ exists for a.e. Oe [0, 2r]. 

Recall that  the domain ~ is transient if and only if its boundary has positive logarith- 

mic capacity, and that  it has finite hyperbolic area if and only if has a finite complement 

in C. 

On the other hand, if E is a compact  subset of C of logarithmic capacity zero, then 

the covering maps from D onto ~ = C \ E  have radial boundary values almost nowhere 

in 0D. 

This result may be complemented in the following way: 

THEOREM G [FN]. If  the logarithmic capacity of On is zero, but On is an infinite 

set, then the radial limits exist for all 0 belonging to a set of Hausdorff dimension 1. 

If  f omits only finitely many points then all one can assure is that  there are countably 

many 0 where the radial boundary value exists. 

With  no restrictions on the range of f ,  and no further assumptions on f ,  nothing 

can be assured along these lines. There are positive results if the functions involved are 

Bloch functions, i.e. holomorphic functions in D which are Lipschitz from the hyperbolic 

metric of D to the Euclidean metric of C, see [Mak], [Ro], or have a restriction on its 

growth, [FL1]. 

If f :  D--+fl4 is a holomorphic mapping with values in a Riemann surface A~, we say 

tha t  f is inner if and only if the set 

{0 E [0, 2~): 3 lira f(re ~~ E .h4} 
r - + l  

has measure zero. In other words, if we factorize f as f = F o b  with F: D--+]~4 the covering 

mapping, then f is inner if and only if b is inner in the usual way. 

Using Theorem 1' and arguing as in [FP], we get the following general result: 
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THEOREM 7.1. Let Ad be a recurrent hyperbolic surface of infinite area, and let 

f: D--+AJ be an inner function. Then, for all points pEArl, the set 

{0: lim dist(f(rei~ p ) =  +oc} 
r--+l 

has Hausdorff dimension 1. 

(B) Variable curvature. One would expect that  some version of the results above 

should hold for complete surfaces with pinched Gaussian curvature K,  - b  2 ~<K~<-a 2 <0, 

or even filrther, for general Riemannian manifolds with pinched Gaussian curvature. 
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