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1. I n t r o d u c t i o n  

This paper  is the follow-up of the paper  [27], in which we derived the exact value of 

intersection exponents between Brownian motions in a half-plane. In the present paper, 

we will derive the value of intersection exponents between planar Brownian motions (or 

simple random walks) in the whole plane. 

This problem is very closely related to the more general question of the existence 

and value of critical exponents for a wide class of two-dimensional systems from sta- 

tistical physics, including percolation, self-avoiding walks and other random processes. 

Theoretical physics predicts that  these systems behave in a conformally invariant way 

in the scaling limit, and uses this fact to predict certain critical exponents associated to 

these systems. We refer to [27] for a more detailed account on this link and for more 

references on this subject. 

Let us now briefly describe some of the results that  we shall derive in the present pa- 

per. Suppose that  B 1, ..., B n are n~>2 independent planar Brownian motions star ted from 

n different points in the plane. Then it is easy to see (using a subaddit ivity argument) 

that  there exists a constant (n such that  

P [Vir j E { 1, ..., n}, B i [0, t] N B j [0, t] = O] = t -r176 (1.1) 

when t--+ c~. We shall prove 
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THEOREM 1.1. For all n>~2, 

~,~: ~4 (4n~-  1). 

This result had been conjectured by Duplantier Kwon [14] (see also, more recently, 

Duplantier [11]), using ideas from theoretical physics (eonformal field theory, quantum 

gravity and analogies with some other models for which exponents had also been conjec- 

tured). 

It was shown in [5] that the exponent @ equals the corresponding exponent for simple 

random walks (see also [10]). This result was sharpened in [21], [26], where estimates 

were derived up to multiplicative constants. It follows from these results and Theorem 1.1 

that  if S and S' denote two independent simple random walks started from neighboring 

vertices in Z 2, then for some constant c>0, 

c - l k  -5/8 <~ P[S[0, k] n S'[0, k] = ~] ~< ck  -5 /s  

for all k ) 1 .  Similarly, [20] and Theorem 1.1 imply 

c ' l t  -5/s  <. P [ B  1 [0, t] A B 2 [0, t] = 0 ]  ~< ct -5/s 

for all t~>l, assuming that  the distance between BI(0) and B2(0) is 1, say. 

One can define more general exponents, allowing intersection between some Brown- 

ian motions, but forbidding intersection between different packets of Brownian motions. 

For instance, there exists a constant ~=~(n, m) such that  if B 1, ..., B n and B rl, ..., B 'm 

denote n + m  independent planar Brownian motions started from points such that Bi (0) r  

B~J(O) for all i<<.n and j~<m, then 

P[Vi ~< n, Vj ~< m, B ~ [0, t] ~ B ' j  [0, t] = 2~] = t -r176 (1.2) 

when t-+oe. Similarly, one can define exponents ~(nl , . . . ,nk)  corresponding to non- 

intersection between k packets of Brownian motions. 

It is easy to see (e.g. [23]) that  there is a natural extension of the definition of ~(n, rn) 

to pairs (n, A), where n is a positive integer and A is any positive real. In [31], it is shown 

that  there is also a natural definition of ~(A1, ..., Ak) where the Aj are positive reals with 

A1, A2~>1. In the present paper, we shall derive the value of the exponents for a certain 

class of k-tuples (A1,---, Ak) (see Theorem 5.3). In particular, we shall prove 

THEOREM 1.2. For all real )~>2, 

�9 1 2 ;(2, = ((5+ -4 ) .  (1.3) 
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It has been shown by Lawler [20], [22], [23], [25] that  some of these critical exponents 

are closely related to the Hausdorff dimension of exceptional subsets of a planar Brownian 

path. Recall that  a cut point of a connected set K is the set of points x E K  such that  

K \{x} is disconnected. The Hausdorff dimension of the set of cut points of the Brownian 

path B[0, 1] is 2-242 almost surely [20]. Consequently, we get the following corollary 

from Theorem 1.1. 

COROLLARY 1.3. Let B be Brownian motion in the plane. Then the Hausdorff 

3 almost surely. dimension of the set of cut points of B[0, 1] is 

Recall that  the frontier of a bounded set K c R  2 is its outer boundary, i.e., the 

boundary of the unbounded connected component of R 2 \ K .  The exponents 4(2, A) are 

closely related to the multifractal spectrum of the Brownian frontier [23]. In particu- 

lar [22], the Hausdorff dimension dF of the frontier of B[0, 1] is almost surely d F = 2 - ~ 2 ,  

where r/2 :=lima-,~0 2~(2, A) is called the disconnection exponent for two Brownian paths. 

(This is not the definition of the disconnection exponent used in [22]; however, the two 

definitions are equivalent; see [24], [30].) It had been conjectured by Mandelbrot [35] 

(by analogy with the conjectures for planar self-avoiding walks) that  dF = 4. Upper and 

lower bounds for ~2 from [6], [40], combined with the fact that  dF=2--rl2 [22], showed 

that  1.015<dr<1.5.  (See also [4] for another proof of d p > l . )  In the present paper, we 

derive the values of ~(2, A) only for A~>2, so that  we cannot directly apply our results to 
2 show that  r]2--5. However, in the subsequent paper [29], we prove 

THEOREM 1.4. The function A~-+4(2, A) is real analytic on (0, oo). 

Combining this with Theorem 1.2 shows immediately that  (1.3) holds for all ,~>0, 

and therefore ~2 = ~. This completes the proof of Mandelbrot's conjecture: 

COROLLARY 1.5. The Hausdorff dimension of the Brownian frontier is almost 
4 surely 5" 

The formula for the multifractal spectrum of the Brownian frontier also follows. This 

formula has been conjectured in [31] as a consequence of the conjectures of Duplant ie~ 

Kwon [14] and of the functional relations between generalized Brownian exponents de- 

rived in [31]; see also recent physics work on this subject by Duplantier [11], [12]. 

The pioneer points of B are the image under B of the set of times t such that  B(t) is 

in the frontier of B[0, t]. It has been shown [25] that  the dimension of the set of pioneer 

points of B is 2-U1, where rll:=lim~-,~o 24(1, A). Below, we show that  

C(1, A ) = 1 ( ( 3 + ~ ) 2 - 4 )  
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for all sufficiently large A (see (5.10)). In [29] it will be proved that  r A) is analytic for 

,k>0. Consequently, by analytic continuation of the above formula for ((1, A), it follows 
1 that  rh=~.  Hence, using the above-mentioned result of [25], we obtain 

COaOLLARY 1.6. The Hausdorff dimension of the set of pioneer points of Brownian 
7 motion is ~ almost surely. 

Let us briefly mention that  there is a (non-rigorous) link between our results and 

the conjectures concerning two-dimensional self-avoiding walks. For instance, there is 

a heuristic argument (see [32]) which uses the Brownian intersection exponents and ex- 

plains why the number of self-avoiding walks of length N on a planar lattice increases 

asymptotically like Nll/32# N, for some (lattice-dependent) constant # >  1, as conjectured 

by Nienhuis [36] (see also [34] for a mathematical account). 

Just as in [27], a central role in the present paper will be played by SLE6, the 

stochastic Lhwner evolution process with parameter 6, which is conjectured [39] to corre- 

spond to the scaling limit of two-dimensional critical percolation cluster boundaries. In 

[39] the processes SLE~ were introduced, and it was shown that  SLE2 is the scaling limit 

of loop-erased random walk, assuming the conjecture that the latter has a conformally 

invariant scaling limit. 

Actually, there are two versions of SLE~. In the first version, which we now call 

radial SLE~, one has a set Kt growing from a boundary point of the unit disk to the 

interior point 0, while in chordal SLE~, the set Kt grows from a point in R to cc within the 

upper half-plane. (The precise definitions will be recalled in w By applying conformal 

maps, these processes can be defined in any simply-connected proper subdomain of the 

plane. 

After recalling the definition of SLE~, we study in w some of its properties. In 

particular, the SLE~-analogues of the exponents ~(1,,~), A~>I, are computed. From 

Cardy's formula for SLE6 (that we proved in [27]) we then derive the asymptotic decay 

of the probability that  SLE6 crosses a long rectangle without touching the upper and 

lower boundaries of this rectangle, and show that  chordal and radial SLE6 are very closely 

related. 

We then turn our attention to the Brownian intersection exponents. In w the def- 

inition and some properties of the exponents are recalled. In particular, it is explained 

how to formulate these exponents in terms of non-intersection between two-dimensional 

Brownian excursions. Then, these facts (properties of SLE6, exponents for SLE6, de- 

scription of the Brownian exponents in terms of Brownian excursions, properties of these 

Brownian excursions) are combined to derive the value of the Brownian intersection 

exponents. 
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2. P r e l i m i n a r i e s  

2.1. N o t a t i o n  

Throughout  this paper, U will denote the unit disk in the complex plane C. C =  C1 = 0 U  

will denote the unit circle. For any r>O, Cr=rC1 will denote the circle of radius r 

centered at 0. H will denote the upper  half-plane H={x+iy:y>O}. When w#w ~ are 

two points on the unit circle C, then a(w, w ~) will denote the counterclockwise arc of C 

from w to w ~. 

Just  as in [31], [32], [27], it will be convenient to use 7r-extremal distances of quadri- 

laterals: this just means 7r times the usual extremal distance. (Extremal distance is also 

known as extremal length. See, e.g., [1] for the definition and basic properties of extremal 

length and conformal maps.) The 7r-extremal distance between sets A and B in a set O 

will be denoted by ~(A, B, O). 

Let f and g be functions, and let I E R  or l=ec .  We say that  f(x),.~g(x) when x-+l, 
if f(x)/g(x)-+ 1. We write f(x) ~g(x), if log f(x)/log g(x)--+ 1, and we write f(x) • 
if f(x)/g(x) is bounded above and below by positive finite constants when x is sufficiently 

close to I. 

2.2.  R a d i a l  and  chorda l  SLE 

In [27], we studied chordal SLE~ as a random increasing family (Kt, t~O) of bounded 

subsets of the upper  half-plane H (or, more generally, their image under a conformal 

map).  As t increases, the set Kt grows, and Ut Kt is unbounded. One can say tha t  Kt 
is growing towards c~, which we think of as a boundary point of H.  

Similarly, when looking at the conformal image of (Kt, t>~O) under the map ~ ( z ) =  

(z-i)/(z+i) tha t  maps H onto the unit disk and oc to 1, we get an increasing family of 

subsets of the unit disk that  is growing towards 1. 

In the present paper, we will mainly use a variant of this process, called radial SLE~, 

where (Kt, t>~O) is an increasing family of subsets of the unit disk tha t  grows towards 0. 

The main distinction is that  0 is an interior point of U, instead of a boundary point. 

Suppose that  ((~t, t~>0) is a continuous function taking values on the unit circle 

C~ = 0U.  Consider for each z E U the solution gt =gt (z) of the ordinary differential equa- 

tion 

~t+gt t>~O, (2.1) Ot gt = gt ~t --gt' 

with go =z .  This equation (and the corresponding equation for g~-l) was first considered 

by Lbwner (see [33], also [37]) and is called Lbwner's differential equation. For each 

z ~ U ,  it is well defined up to the time Tz where limt/~-z gt=6-rz, if there is such a 7z, 
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and otherwise %=oo.  Let Dt be the set of z E U  such that t<~-z (i.e., the set on which 

gt is defined), and K t = U \ D t .  It is easy to check that  gt is the unique conformal map 

from Dt onto U such that  g t (0)=0 and g~(0) is a positive real number. (The notation g' 

refers to differentiation with respect to z.) It is also easy to verify that  g~(0)=exp(t) by 

differentiating both sides of (2.1) with respect to z at z=O and noting that  gt(0)=0.  

Let (Bt, t>~O) be Brownian motion on the real line, starting at some point BOER, 

and let a~>0. Set 5t:=exp(iv/-nBt) and consider the solution to Lhwner's differential 

equation as defined above. (Note that (it is just Brownian motion on 0U with time 

scaled by ~.) The resulting process was defined in [39] and called SLE~ (this acronym 

stands for stochastic Lhwner evolution with parameter g). The set Kt is called the hull 

of SLE~, and (St)t>o its driving process. 

If f :  D--+U is a conformal map, then radial SLE.  in D starting from f can be defined 

as the composition gtof, where gt is radial SLE~ in U. Its hull is f - l ( K t ) ,  where Kt 

is the hull of gt. If OD is sufficiently tame, then f - 1  extends continuously to 0U, and 

hence f - I (50)  is well defined, where 5 is the driving parameter of gt. We may then refer 

to the resulting SLE~-process in D as SLE~ from f-1(50) to f - I ( 0 )  in D. 

In [39], another variant SLE was also defined (see also [27]), which we now call 

chordal SLE~. Let H be the upper half-plane, let 5t = v ~ Bt, and consider for each z C H 

the solution [~t=Ot(z) of the differential equation 

- 2  
0 t ~ t -  5 ~ _ ~ ,  t >/0, (2.2) 

with ~0(z)=z.  As before, le t /g t  be the set of points z E H  for which (2.2) has a solution 

in some interval [0, t'], t '>t,  and let K t : = H \ / ) t .  Then the process ((h)t>~o is chordal 

SLE~ in H, and Kt is its hull. Recall that  Kt is bounded for each t, but Ut )0-~ t  is 

unbounded. If f :  D--+U is a conformal map, then f~ is called chordal SLE~ in D. Its 

hull is f - l ( K t )  , where Kt is the hull of the process gt. If OD is sufficiently tame, f - l ( o c )  

and f-1(50) are well defined. In this case, we refer to the process f~ as SLE~ from 

f - l (50 )  to f - l ( o c )  in D. This terminology is explained more fully in [27]. 

For the main results of this paper, only the ease a = 6  will be used. As we shall see 

in w radial SLE6 is essentially the same process as chordal SLE6. For ~r  the radial 

and chordal SLE~-processes are closely related, but the equivalence is weaker. 

3. A n n u l u s - c r o s s i n g  e x p o n e n t s  for  SLE 

3.1. S t a t e m e n t  

Consider a radial SLE.-process (with n~>0) in the unit disk U, with driving element 

5t starting at 50=1. As described before, let gt be the conformal map gt: Dt--~U, with 
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gt(0)=0 and g~(0)=exp(t). Let 

At : :  OU \ Kt. 

It is easy to see that  At is either an arc on 0U, or At=~.  

Let b~>0, and set 

u = u(n, b):= ~ ( 8 b + n - 4  + X/r(n- 4) 2 + 16bn ). (3.1) 

THEOREM 3.1. Let n > 0  and rE(O, 1), and let T(r) be the least t > 0  such that Kt 

intersects the circle Cr.. Let 12@) be the :r-extremal distance from Cr to C1 in U\KT(~)  

(we set 12(r):=oo if At=~) .  Then for b>~l, as r-+O, 

E[exp( -bs  • r ~. 

This theorem gives an analogue of Theorem 3.1 in [27] for crossing an annulus. Its 

proof and usage will also be similar. 

Remarks. The constants implicit in the x-nota t ion may depend on n and b. 

One can also show that  the theorem holds when bE (0, 1), but we only need the case 

b~>l (and n=6)  in the present paper. Observe that  the case n = 0  is also correct, and 

easy to verify, for then KT(r) = [r, 1]. 

One should also note that  the values of the exponents for n =2  fit with the conjecture 

that  SLE2 is the scaling limit of two-dimensional loop-erased random walks [39] and the 

exponents computed by Kenyon [16], [17], [18] for loop-erased walks. For instance, the 

definition of loop-erased random walks suggests that  the number of vertices in the loop 

erasure of an N2-step walk is roughly N 2-u(2'1) = N 5/4 (loosely speaking, in order for one 

of the N 2 steps of the simple random walk to remain in the loop erasure, the future of 

the random walk beyond that  step has to avoid the past loop-erased walk), in accordance 

with Kenyon's results. 

Similarly, combining this result (with n=6)  with the non-intersection exponents 

between SLE6 in a rectangle (see the discussion at the end of [27]) and the restriction 

property for SLEd (which was proved for chordal SLE6 in [27] and will be proved for radial 

SLE6 in w leads to the value of non-intersection exponents between independent SLE6 

in an annulus that  agree with predictions for annulus crossings in a critical percolation 

cluster (see [15], [9], [2]). 

The proof of Theorem 3.1 will consist of three steps. First, we will obtain an estimate 

on E[Ig~(eix)lb ] for large (deterministic) times. We deduce from it a result concerning 

the large-time behavior of the arc length of gt(At), and then show that  this implies 

Theorem 3.1. 
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3.2.  D e r i v a t i v e  e x p o n e n t s  

Assume that g>0  and b>0. Let 7-/(x,t) denote the event {exp( ix)e  At},  LEMMA 3.2. 

and set 

f ( x ,  t):= E[[g~(exp(ix) )lbln(x,t)], 

~ - 4 +  X/(~-4)~+16bn 
q = q(n, b) :-- 2n ' 

h*(x, t ) :=  exp(-tu)(sin(�89 q, 

where u is as in (3.1). Then there is a constant c>0 such that 

Vt~>I, VxE(0,2~), h*(x , t )<. f (x , t )<.ch*(x , t ) .  

Proof. Let 5t = e x p ( i v ~  Bt) be the driving process of the SLE~, with B0=0. For all 

xE(0, 2~), let Yt ~ be the continuous real-valued function of t which satisfies 

gt(e ix) = (St exp(iYt z) 

and Y~=x .  The function Yt ~ is defined on the set of pairs (x, t) such that  7-/(x, t) holds. 

Since gt satisfies Lbwner's differential equation 

we find that  

Let 

o 9t(z) = g (z) 5t + g (z) (3.2) 
(~t--gt(z) ' 

dYt x = ~ dBt + cot (�89 x) dt. 

w x := inf{t >~ 0: YtxE {0, 2zr}} 

denote the time at which exp(ix) is absorbed by Kt, and define for all t<T  ~ 

�9 ~ := [g't(exp(ix))[. 

On t~>~ -~ set ff>~:=O. Note that  on t<~ -x, 

�9 =Ox5 

By differentiating (3.2) with respect to z, we find that  for t<T  x, 

1 
Ot log ~P~ = 

2 sin2 (1YtX) ' 

(3.3) 

(3.4) 
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and hence (since q5~=1), 

for t < T x. 

\ 2 Jo sin2(�89 
(3.5) 

We now show that  the right-hand side of (3.5) is 0 when t=T x. For all xE(0, 27r), 

choose m E N  such that  xE(2 -m, 27r--2--rn), and define for all n>~rn the stopping times 

0n := inf{t > 0: YtX~ (2 -n,  27r- 2--n)}, 

0~ := inf{t > 0n: lYnX- 1/> 2-n-l}, 

and the event ~ : = { 0 ~ - 0 n > 4 - ~ } .  It is easy to see (for instance by comparing Y~ with 

two Bessel processes and using their scaling property, or alternatively, by comparing 

with Brownian motions with constant drifts; see, e.g., [38] for the definition of Bessel 

processes) that  there is some constant d > 0  such that  for every n>~rn, 

p[n . ]  > 

The strong Markov property shows that  the events (74,~, 74,~+1, ...) are independent, so 

that  almost surely there exist infinitely many values of n E N  such that Y/n holds. For 

these values of n, 

fo 0~+1 dt 4 -n 
-sin2~-ytz) ) sin2(2_n ) >/1. 

Hence, almost surely, 

~0 T~_ d t  
sin2(�89 

A similar argument shows that  

-cx~. (3.6) 

lim f ( x ,  t) = lim f ( x ,  t) = 0 (3.7) 
x'-.~0 x/~27r 

holds for all fixed t>0.  Suppose, for instance, that  x~<2-n~ �89 define 0~'=0, 

x0 = x, and for all n ~> 1, 

L)~ =inf{s~> " " x I x On_l : S = O n _ l  + ( X n _ l )  2 or INs - -Xn- l I  >~ ~ n - l }  

and xn=Yo~. Clearly, for all n<<.no, 0<xn<�89 and o~<t. By comparing y x  with 

Bessel processes or Brownian motions with constant drift, it is easy to check that  for 
! .__ some (sufficiently small) e>0 (independent of n and x), if we define the events TEn.- 
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{COn t/ 2 "=&~_l+(Xn-1)  }, then for all n<~no, P[7~'1~7~-1]~>c', where Y,~-I denotes the or- 

field generated by the even t s /~ , . . . ,  ;W_, .  It therefore easily follows that when x'N0, 

f 0  rnin{rx t} s ' ds 
in2-~y[)  -+oc 

in probability, and therefore also that f (x,  t)--+O. 
Let F: [0, 2rr]-+R be a continuous function with F (0 )=F(2 r r )=0 ,  which is smooth 

in (0, 2rr), and set 

h(x, t) = hF(X, t):= E[(r 

By (3.5) and the general theory of diffusion Markov processes (see, e.g., [3]), we know 

that h is smooth in (0, 2rr) x R+. From the Markov property for Yt :~ and (3.5), it follows 

that h(Yt~,t'-t)(ep~) b is a local martingale on t<min{r~ , t ' } .  Consequently, the drift 

term of the stochastic differential d(h(Yt ~, t'--t)((p~)b) is zero at t=0 .  By It6's formula, 

this means 

o, h = Ah, (3.8) 

where 
b 1 2 1 

A h : = ~ n 0 ~ h + e o t ( ~ X ) 0 x h  2sin2(�89 )h .  

It can be verified directly that  h* from the statement of the lemma solves (3.8). We 

therefore choose 
F(x):=(sin(�89 q, 

and claim that h*=hF. Indeed, both satisfy (3.8) on [0, 2rr] x [0, oo), and h*(x, 0 ) = F ( x ) =  

hF(z,O) on [0,2rr]. Moreover, F~<I implies that hr<.f  everywhere, so h * - h F = 0  on 

{0, 2re} x (0, oo), by (3.7). It is also immediate to verify that hF(X, t)--+O as (x, t)--+ (0, O) 
or (x, t)-+(2rr, 0). Set M=h F- h * .  Then M is smooth in (0, 2rr) • (0, oo), continuous on 

[0, 2rr] x [0, oo), and satisfies OtM=AM. 
The proof that M = 0  can be viewed as a straightforward application of the maximum 

principle. Fix some e>0,  and suppose that M>~e at some point (x, t)E [0, 27r] x [0, oo). 

Among such points, let (xo, to) be a point with to minimal. It is clear that there must 

be such a minimal point and that xoE(0, 2re), t0>0. At (xo,to) we must have OtM>~O, 
by minimality of to. Similarly, O~M(xo, to)=0, 02M(xo, to) <.0 and M(xo, to)=e.  How- 

ever, this gives 0 ~< Ot M(xo, to) = (AM)(x0, to) <<. -be~2 sin 2 (�89 x0), by the definition of the 

operator A, a contradiction. Since e was arbitrary, this gives M ~<0. The same argument 

applied to - M  shows that M~>0, which verifies (the subscript will henceforth be omitted 

from hF) 
h(x, t) = h*(x, t) = exp(- tu)(s in( �89 q. (3.9) 
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As mentioned above, F~<I implies h(x,t)<~f(x,t). Therefore, it remains to prove 

that for all t~>l and xE(0,2rr), f(x,t)<.ch(x,t) for some fixed c>0. By the Markov 

property at time t - l ,  we have for t > l ,  

h(x, t) = E[((I)~_z)bh(yt~_l, 1)], 

and similarly with f replacing h on both sides. Hence, it suffices to prove ch(x, 1)~> 

f(x, 1); i.e., 
cE[(~)bF(y?)] >~ E[((I)~)b]. 

Let O-y----ay * be the first time s~>0 such that Y:~=y, and if no such s exists, set ay=CX:). 

By (3.9), h(x, t) is a decreasing function of t. This and the strong Markov property give 

E[F(Y~)I(ay<I}(~P~) b] >~ It(y, 1)E[l{%<l}(~x )b]. (3.10) 

Let 

and consider the event 

a:=min{y>O:y-cot(ly)=-2rr}, 

A:= N a)}. 
s~[0,1] 

From (3.3) it then follows that on the event A, v/~Bl<.a-cot(la)=-2rr. Define the 

Brownian motion B on [0, 1] by Bs:=Bs-2sB1, and define Y~ by the equation (3.3), 

but wi th /~  replacing B. Note that on A we have Bz < 0, and hence 

Vs e [0, 1], Yx > rx .  (3.11) 

Moreover, given A, there is a minimal s0c [0, 1] with :Y~=rr. Since (3.11) holds on A, it 

follows from (3.5) that  
(~x  x x 

so ~ (])so ~ (1)1' 

where @ is the analogue of @ for the process ~x. Since ~x has the same law as Y*, 
with (3.10) this implies 

h(x, 1) ~> h(rr, 1)E[I{,~<I} ((I)X) b]/> h(rr, 1)E[1A((I)~)b]. 

The same proof gives this relation with ,4 replaced by the event 

A ' : =  N { vxe(2rr-a,2rr)}. 
sC [0,1] 

However, for the event 

A " : =  { 3 s e  [0, 1] :Y~e[a, 2rr-a]}, 
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we have 

h(x, 1) ~> h(a, 1)E[1A,,(~P~)b]. 

Since AuA' t2A"DT/ (x ,  1) and h(a, 1)~<h(zr, 1), we get 

h(x, 1) >/�89 1)f(x,  1). 

This completes the proof of the lemma. [] 

3.3.  H a r m o n i c  m e a s u r e  e x p o n e n t s  

By conformal invariance, the harmonic measure from 0 of At in Dt=U\Kt  is Lt127c, 
where Lt is the length of the arc gt(At). 

THEOREM 3.3. Suppose that n >0  and b>~l. Then, when t--+oc, 

E[(Lt) b] • exp( -~ t ) .  

Proof. We have to relate the behavior of Ig~(e*:~)l b, which we have studied above, to 

the behavior of 

(n,)b= Ig'<(e")ldx = rio 07 dx), 

where we set ~ = 0  if rx~<t. By convexity of the function a~-+a b, it is clear that  

f27r , -~b] 27r 

(21rt)bE[(Lt)b]=E[( ~-7 Jo O~dx) J ~<E[ ~-~~ L (r 

1 L 2~ = 2---~ f(x, t) dx <<. e exp(-t+t), 

where we have used Lemma 3.2 for the last inequality. Consequently, we only need to 

prove the lower bound for E[(Lt)b]. 

We will find constants cl, c2 >0 and an event L/; such that  

and on the event b/t* , 

Then 

E[(o~)b lU;] >/cle TM, 

Ilog~-logOtYl ~<c2, VyE[~,Tr+c~]. 

r r r  "§ 7 ]  >.c -,,< E[(Lt)bl>~E[lu;t]. O~dx ~(c,e-c=)bE[lu;(O~[)b]~ 3e , 
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which will prove the theorem. 

Assume (with no loss of generality) that  t>3,  and let t '  be the integer in ( t - 2 ,  t -  1]. 

Define the event 

y t = { 1  3 VsE[t',t]}. ~ < Y ~ <  ~ ,  

It follows from Lemma 3.2 that  there is some constant c4>0 such that  

This clearly implies 

x b E[(~t,-1) l{Yt~ 1C[c4,27r--c4]} ] ~ C 4  e - u t .  

for some c5 > 0. 

Let btt=Dlt(v~) be the event 

E[(4~)blv,] /> c5e - ' t  

u, := { ~ - s / s  << vy  <~ 2 ~ - a e  -~/s, vsE [0, t]}. 

We claim that  for some a > 0 ,  and every t>3,  

1 C e - u t  (3.12) E[(~;)blu~lv~] >/~ 5 . 

To prove this it suffices to show that  for some a > 0 ,  

1 ~ - -u t  (3.13) E[(~)bl~u~ lye] < ~5~ . 

For u=O,. . . , t ' - l ,  and c~E (0, 1), let Wu=W~(a) be the event 

W~ := {ae -~/s <. Y~ <. 27r- ae  -u/s,  Vs E [u, u+l]} .  

Note that  
if--1 
U ~w,  ~ v~ n ~u~. 

u=0 

Hence, 
i f -1  

E[(~)b  l~u~ lv,] ~< ~ E[(O~)b l~w.]. (3.14) 
u=0 

Note that  for u=0,  ..., t ' - l ,  the strong Markov property shows that  

E[(~;) ~ L ~ .  I J:.] ~< (~x?f(~- . /~ ,  t - . -  1) 

(here 5r~ denotes the or-field generated by (Y~, s<.u)). Hence, by Lemma 3.2, 

E[(~;) ~ 1 ~ o ]  < c ~ - u ~ / %  -~. 
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Now (3.14) gives 

E [ ( ~ )  b l~ut lv,] ~< czctqe -"t, 

and hence by choosing a sufficiently small, we get (3.13) and therefore (3.12). Fix such 

an a e ( 0 ,  ~), and let L/t*:=L/t MI2 t. 

Observe that (3.3) implies that if 0<x<y<27r ,  

_ l ( y y _ v x ~  Ot(YtY-YtX)=c~189176189 z) <~ 2t t *t J 

(since cot ' (u)~<-I  in the range uE(0, lr)) as long as t <min{r  x, TY}, so that 

ly?-Y~l <. Ix-yle -t/2. (3.15) 

Let yC(Tr, Tr+�89 Then 

0 < Y ~ - Y [  <<. e-s/2(y-Tr) <<. �89 -s/2, Vs <<. min{~ -~, r~}. 

On the event L/t*, we must therefore have t < min{7 ~, T y } and 

Y:, Y: e �89 

for all sE[0,t]. By (3.4), this shows that on the event L/t*, for all s<~t, 

y 7r [0s (log ~5 s - l o g  ~s )l ~< ]Y~Y- Ys~l max { �89 [0x (sin-2 (�89 x)) l :  x E [�89 -s/8, 27r- �89 -s/8] } 

<~ cTJYY-Y~Je 3s/s. 

Now (3.15) gives 

Therefore, on the event L/t* , 

10s(log ~ Y -  log ~ ) 1  ~< cs e-s/s. 

[log(q~tY/eP~) I ~< 8Cs. 

This completes the proof of the theorem. [] 

3.4. E x t r e m a l  d i s t a n c e  e x p o n e n t s  

Proof of Theorem 3.1. Let o(t):=inf(iz] :zEKt}.  Recall that 

T(r) = inf{t : o(t) = r}, 

A t=OU\Kt  and that Lt is the length of the arc gt(At). Recall that the Schwarz lemma 

says that  if G: U ~ U  is analytic, then IG'(0)I~<I, and the Koebe �88 says that  
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1 if G:U--+C is conformal with G(0)=0,  then G(U)D~IG' (0) IU.  (See, e.g., [1].) 

gg(0)--exp(t), applying the former to z~-+gt(Q(t)z) and the latter t o  g t  1 give 

1 --t e - - t .  ~e ~<Q(t)~< 

1 In particular, if we fix the radius r <  ~ and define the deterministic times 

then 

and 

1 1 
t '=t ' (r):=logr,  t = t ( r ) : = l o g ~ r r ,  

Since 

t < T ( r ) ~ t ' ~ T ( I r )  

~(t)/> 2~/> ~/> e(t') ~>1~ ~> ~.1 

In the following lines, g(S, St; U) will stand for the 7r-extremal distance between the sets 

S and S' in U. Recall that l~(r)=g(C~, C1; U\KT(~))  and define l~=g(C~, C1; U\Kt(~)) .  

It follows from the above that 

l~ <~ s <~ l,./8. (3.16) 

Hence, it will be sufficient to study the asymptotic behavior of E[exp( -b4) ] .  

Note that gt: Dt--+U is a conformal map defined on DtD2rU, that g t (0)=0 and 

that g~ (0)= 1/Sr. Hence, it follows immediately from the Schwarz lemma and the Koebe 

�88 that for any r <  ~, 

Hence, 

2-~u c g~(~u) c �89 

g(C2-5, gt (At); U)  >1 l~ >1 ~(C1/2, gt (At); U) ,  

and this implies easily that 

exp(-/~)  ~ Lt(~). 

Theorem 3.1 now follows from Theorem 3.3 and (3.16). [] 

4. Properties of  SLE6 

We now turn our attention towards specific properties of SLE6. 

4.1. Equivalence of  chordal and radial SLE6 

The following result shows that chordal SLE6 and radial SLE6 are nearly the same pro- 

cess. (When a r  a weaker form of equivalence holds.) A consequence of the equivalence 
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of radial and chordal SLE6 is that  radial SLE6 satisfies a restriction property, since in 

[27] a restriction property for chordal SLE6 has been established. The significance of the 

restriction property to the Brownian intersection exponents has been evident since [32]. 

THEOREM 4.1. Let 0EOU\{1}, and let Kt be the hull of a radial SLE6-process in 

the unit disk U with driving process 5t satisfying 50=0. Set 

T :=sup{t >~O: l ~ Kt}. 

Let fi[~ be the hull of a chordal SLE6-process in U starting also at 0 and growing to- 

wards 1, and let 

:F:= sup{u ~> 0 : 0~K~}.  

Then, up to a random time change, the process t~-+Kt restricted to [0, T) has the same 

law as the process u~-~ ~[~ restricted to [0, T). 

Note that  T (resp. 5F) is the first time where Kt (resp. Ku) disconnects 0 from 1. 

Proof. In order to point out where the assumption n=6  is important, we let 

(Kt, t)O) and (K~,u~>0) be SLE~-processes, without fixing the value of n for the mo- 

ment. 

Let us first briefly recall (see, e.g., [27]) how K~ is defined. Let ~ be the Mhbius 

transformation that  satisfies 0 ( U ) = H ,  e (1)=ec ,  ~ ( - 1 ) = 0  and ~(0)=i ;  i.e., 

l + z  
~(z) = i 1 -----2" 

Suppose that  u~-~/3~ is a real-valued Brownian motion such that  v/~/30=r176 For all 

zEU,  define the function ~ = ~ ( z )  such that  ~0(z)=~(z) and 

2 

F~-v~Bu 

This function is defined up to the (possibly infinite) time az where ~u(z) hits v~/3u.  

Then, /~u is defined b y / 4 u = { z e U :  az<~U}, so that  ~ is a conformal map from U\ /4~  

onto the upper half-plane. This defines the process (~'~, u~>0) (the scaling property of 

Brownian motion shows that  the choice of the conformal map r only influences the law 

of (Ku)~>0 via a time change). 

We are now going to study the radial SLE~. Let 9t: U\Kt--~U be the conformal 

map normalized by gt (0) = 0 and g~ (0) > 0. Recall that  

5+g (4.1) Otg=g h_g,  
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where 5t=exp(ix/~Bt), and B is Brownian motion on R with exp(iBo)=O. Let r be the 

M6bius t ransformation as before, and define 

et := at( l ) ,  

ft(z) := ~(gt(z)/et), 

These are well defined, as long as t<T. Note that  ft is a conformal map from U\Kt 
onto the upper  half-plane, f t ( 1 )=oc  and ~ tER.  From (4.1) it follows that  

at f=  ( 1 + 7 2 ) ( 1 + f 2 )  
2 ( ' / - f )  

Let 

where 

and 

Set 

Ct(z) = a(t)z+b(t) 

a(O)=l, Ota=-�89 

b(O) = 0 ,  Otb=-l(l+72)a"/. 

ht := Ct oft, 

Z~ := Cd~(t)). 

Then (and this is the reason for the choice of the functions a and b) 

"1+ 2~2 1 2 2 2 ( 7 )  ~(l+"y ) a 
ath ~ ~ a 

"Tf- f l-h 

ht is also a conformal map from U\Kt onto the upper half-plane with h t (1)=oc .  Note 

also that  ho(z)=r We introduce a new time parameter  u=u(t) by setting 

Otu=l(1+72)2a2, u(O)=O. 

Then 
Oh -2 
On f l -  h 

Since this is the equation defining the chordal SLE6-process, it remains to show that  

u~--~flt(~)/v~ is Brownian motion (stopped at some random time). This is a direct but 

tedious application of Ith 's  formula: 

1 2 1 
d " / t  = �89 +~/2)v~ dBt +~/( l  + 2~ )(~t;-1) dt 
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and 

d~t = �89 (1 +72) a(v/-~ dBt + ( - 3 +  �89 dr). 

This proves the claim, and establishes the theorem. [] 

Note that  when ~r  even though u~-+~ is not a local martingale, its law is absolutely 

continuous with respect to that  of v ~ times a Brownian motion, as long as 7 and u 

remain bounded. More precisely: 

PROPOSITION 4.2. Let (Kt, t>~O), (B2~,u>>.O), T and T be defined just as in The- 

orem 4.1, except that they are SLE~ with general a>0 .  There exist two non-decreasing 

families of stopping times, (Tn,n~>l) and (:F,~,n~>l), such that almost surely Tn--+T 

and Tn-+T when n-+oc, and such that for each n>~l, the laws of (Kt,tc[O, Tn]) and 

(R'~, u e  [0, Tn]) are equivalent (in the sense that they have a positive density with respect 

to each other) modulo increasing time change. 

Proof. It suffices to take 

T,, = min{n, inf{t > 0: I~,-etl  < l /n}} .  

Then, it is easy to see that  before Tn, 171 remains bounded, a is bounded away from 0 

(note also that  a~<l always), so that  t /u  is bounded and bounded away from 0. Hence, 

u(Tn) is also bounded (since Tn ~<n). 

It now follows directly from Girsanov's theorem (see, e.g., [38]) that  the law of 

(/~(U)/v/~)u~u(Tn) i s  equivalent to that  of Brownian motion up to some (bounded) stop- 

ping time, and Proposition 4.2 follows. [] 

4.2. The  crossing exponent  for SLE6 

In this section, we are going to study the probability that  chordal SLE6 started at some 

point on the left-hand side of a rectangle crosses the rectangle from the left to the right 

without touching the upper and lower boundaries of the rectangle. As we shall see, the 

estimate obtained is a direct consequence of Cardy's formula for SLE6 proved in [27]. 

The notation turns out to be simpler when considering crossings of a quadrilateral 

in the unit disk, which is equivalent to the rectangle case by conformal invariance. We 

now describe the setup more precisely. Recall that  when w, w~E 0U, the counterclockwise 
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wj 

! 
Wl 

w l  

W4 

! 

W3 

~3 

Fig. 4.1. A successful crossing. 

1 ( -1 ,  1), and define the points arc from w to w' is denoted a(w, w'). Let 0E (0, ~Tr), c~E 

W 1 : =  exp(i ( rc-e)) ,  

' exp( i (~+~e) ) ,  W 1 : ~  

w2 := exp(i(Tr+e)), 

w3 := exp( - i0 ) ,  

W 4 : =  exp(i0), 

and note that  they appear in counterclockwise order on 0U. See Figure 4.1. Let w~ 

be any point in a(wa,w4). Consider a chordal SLE6 in U started from w~ and growing 

towards w~. Let Kt be the hull, and let T be the first time t such that  Kt intersects the 

arc a(w3, W4). Set 

~ : =  U K , .  
t < T  

As shown in [27], the restriction property for SLE6 shows that  up to a monotone time 

change, the law of the process (Kt)t<T does not depend on the choice of w~. Since we 

use the restriction property, the result derived in this subsection is specific to n=6.  

We are interested in the event 

g := {.~ n (a(w2, wa)Ua(w4, Wl)) = o } .  

LEMMA 4.3. Suppose that aoC(0, 1) is fixed. When O'NO, 

P[8]  • 0 2, 

and this estimate is uniform for a C ( - a 0 , a o ) .  Moreover, when O'NO, 

max P[E] x 02. 
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Recall also that  02~exp(-~)  as 0"~0, where ~=~(a(Wl, w2), a(w3, w4); U) denotes 

the 7r-extremal distance between a(wl, w2) and a(w3, w4) in U. 

The lemma is hardly surprising. Suppose for a moment that we take w ~ = - l ,  and 

let T' be the first time such that  Kt intersects a(-i,i). Let z be the point in a(-i,i) 
which is on the boundary of Ut<T, Kt. It is then easy to believe that  the probability 

density for the location of z should be bounded away from 0 and infinity in every compact 

subset of a(-i, i). By conformal invariance, this implies the first part of the lemma for 

the case a = 0 .  Although it should not be too hard to prove the lemma with some general 

arguments such as these, we find it easier to rely on the more refined results from [27]. 

Proof. Define the events 

$ ' =  {/4t hits a(w2, w4) before a(w4, Wl)}, 

g " =  {Kt hits a(w2, w3) before a(w3, wl)}. 

Note that  8 " c s  and that  g = g ' \ s  Cardy's formula for SLE6 derived in [27] (Theo- 

rein 3.2 in the case where b=0) gives the exact value of P(E')  and P($") ,  as follows. 

Define the cross ratios 

C t : =  (Wl --Wtl)(Wn--W2) art : :  ( w l - - W t l ) ( W 3 - - w 2 )  

(w4--Wtl)(Wl - - w 2 )  (W3--Wl)(Wl--W2) 

and set 
V ~ X l / 3  G(x):=2FI(1,2,4"x) 5, 

(where 2F1 denotes the hypergeometric function). Then 

P[$'] = G(c'), Big"] = G(c"), P[s = G(c')-G(c"). 

(To compute P[g'], we view Kt as an SLE6 from w~ to w4, while to compute PIE"], we 
I view Kt as an SLE6 from w I to w3. As remarked above, the choice of w~3 E a(w3, w4) does 

not matter.) Note that  

c'=cotOtan(�89 c"= s in ( l ( l+a )O)  
sin 0 cos (�89 (1 - a) 0) '  

Both c' and c" converge to �89  when 0"~0 and c'-c"~�88 2. Since G ' (x)= 
(�89 V / ~ ) 2 - 1 / 3 F ( 1 ) - l F ( 7 ) - l ( ( l -  x)x) -2/3, it follows that 

1 --1 7 --1 

as 0",u0, and the lemma follows. [] 
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5. Brow n ia n  intersect ion e x p o n e n t s  

5.1. De f in i t i ons  a n d  s t a t e m e n t  o f  r e su l t s  

This section begins with a review of the definitions and some general facts concerning 

intersection exponents between planar Brownian paths, and proceeds with a statement 

of some theorems. For more details concerning the background results on intersection 

exponents, as well as some references to the literature, see [31], [32]. 

Suppose that  n §  independent Brownian motions B 1, ..., B ~ and B ~1, ..., B t'~ are 

started from points BI(0) . . . . .  Bn(0)- - i  and B~I(0) . . . . .  Brm(0)--1 in the complex 

plane, and let ~ ,  ~tk denote the traces (i.e., images) of the paths up to the first time 

they reach the circle C~. Consider the probability fn,,~(r) that  the ~- t races  do not 

intersect the ~ - t r ace s ,  i.e., 

\ j = l  : " l = ]  

It is easy to see that  as r--+oc this probability decays like a power law; the (n, re)- 

intersection exponent ~(n, m) is defined by 

f n , m ( r ) = r  -~(n'm)+~ r -+oc .  

We call ~(n, m) the intersection exponent between one packet of n Brownian motions 

and one packet of m Brownian motions. It is easy to see (e.g. [31]) that  the exponent 

; (n ,  m) described in the introduction is equal to �89 m). 

By using the conformal map z~-~ 1/z  and invariance of planar Brownian motion under 

conformal mapping, it is clear that  

= 

so that  the exponents also measure the decay of fn,~n when r".~0. 

Similarly, one can define corresponding probabilities for intersection exponents in a 

half-plane, 

[( 0 and ( 0 0 

where H is some half-plane through the origin containing 1 and i. (in,re(r) does depend 

on H . ) I n  plain words, we are looking at the probability that  all Brownian motions stay 

in the half-plane H and that all the ~- t races  avoid all the ~ - t r aces .  It is also easy to 

see that  there exists a ~(n, m) (which does not depend on H )  such that  
~ 

/ n , m ( r )  - ~ r  - 5 ( n ' m ) + ~  

when r--+ co. 
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These intersection exponents can be generalized in a number of ways. For example, 

set 

j=l j- 

Then fn,m(r)=E[Z~], and define ~(n, A) for all A)0  by the relation 

E [ Z ~ ] ~ r  -~("'~), r--+oc. 

It has been proved by Lawler [24] that  in fact 

E[Z~] ~ r -~(2'~). 

The same proof, with minor notational modifications, applies to the other exponents as 

well. See also [30] for a new self-contained proof of this result. 

One can also define the exponents ~(n],n2, ...,nk) and ~(nl ,n2, . . . ,nk)  describing 

the probability of non-intersection of k packets of Brownian motions. In fact, [31] proves 

that  there is a natural and rigorous way to generalize these definitions to the case where 

the numbers nj are positive reals (i.e., not required to be integers). For the definition 

of ~(Ai,..., Ak) one only needs to assume that  at least two of the numbers A1,...,Ak 

are at least 1, and for ~ even this assumption is not necessary. What  makes these ex- 

tended definitions natural is that  they are uniquely determined by certain identities and 

relations. For one, the functions ~ and ~ are invariant under permutations of their ar- 

guments. Moreover, they satisfy the so-called cascade relations [31]: for any 1 ~ q ~4 m -  1 

and (A1, ...,Am) such that AI>~I and max{A2, ...,Am}~>l, 

~(AI,. . . ,  Am) = ~(A~ .... , A~, ~(A~+~,..., A~)) .  (5.1) 

In [31] it was also established that  the cascade relations imply the existence of a con- 

tinuous increasing function ~: [3(1, 1), c~)--+ [4(1, 1), oo) such that  for all (A1,..., Am) E R ~  

such that  at least two of the Aj's are at least 1, 

~(A~, ..., Am) = ~(~(A~, ..., Am)). (5.2) 

In [27], we have determined the exact value of exponents ~(A1 .... , Am) for a 

certain class of numbers (AI, -.., Am); namely, for all m~2, and all (AI,...,Am)E 

{ ~l(l+ l): I C N } m - I •  

~(A1, ..., Am)= ~ ( ( ~ + 1  + . . .+  ~ 1  - ( m -  1))2-1).  (5.3) 

In particular, 

~(1, 1, A) = ~4 ( ( 8 + ~ ) 2 - 1 ) ,  

3(1,1,1, A) -- ~ ((12+ ~ ) 2 - 1 ) .  

In the next section, we will prove the following two results: 

(5.4) 

(5.5) 
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T H E O R E M  5. I. 

THEOREM 5.2. For every A~>0, 

~(1, 1) = -~. (5.6) 

~(1, 1, 1, A) = ~s ( ( 1 1 + ~ ) 2 - 4 ) .  (5.7) 

Let us now see what these two results directly imply: 

THEOREM 5.3. For all x>~7, 

~(x) = ~s (( 24v/~-S~-~ - 1) 2 - 4 ) .  (5.8) 

Moreover, for all m ~ 2  and for all (A1, ..., Am)e { l l ( l+  1): l e N } ' ~ - I  • R+, 

~(A1, ..., Am) : ~S ( ( ~ + 1 + . . . +  ~ - - m ) 2 - - 4 ) ,  (5.9) 

provided that at least two of the numbers AI,..., Am are at least 1, and the right-hand 

side of (5.9) is at least 35 -~. 

In particular, for all A~>~ and A~>~2, 

~(1, A) = ~s ( ( 3 + ~ ) 2 - 4 ) ,  (5.10) 

~(2, A') = ~ ( ( 5 + ~ ) 2 - 4 ) ,  (5.11) 

and for all integers m~>2 (using (5.6) for the case rn=2),  

~(1 | : ~ ( 4 m Z -  1), 

where l |  (1, ..., 1 )EN m. 

(5.12) 

Proof of Theorem 5.3 (assuming (5.6) and (5.7)). Combining (5.5), (5.7) and (5.2) 

gives (5.8). Hence, we get (5.9) from (5.3), (5.2) and (5.8). [] 

Proof of Theorems 1.1 and 1.2 (assuming (5.6) and (5.7)). In view of the fact that  
the time exponents differ by a factor of 2 from the space exponents, the theorems follow 

from Theorem 5.3. [] 

Remark. In [28], we will show that  (5.3) holds for all (A1, ..-, A m ) e R + .  The proofs 
in the present paper can then be very easily adapted to show that  (5.9) holds for all 

(A1, ..., ,~)ER+ such that  at least two of the Aj's are at least 1. 
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5.2. E x c u r s i o n  m e a s u r e s  

In [31], [32] a characterization of the intersection exponents was given in terms of excur- 

sions. The Brownian excursion measures are natural  and interesting objects. The utility 

of the excursion measures in [31], [32] arises from the fact that  in the context of excursion 

measures, one can s tudy Brownian motions without specifying the start ing point. This 

significantly simplifies some arguments and estimates. 

Roughly speaking, Brownian excursions in a domain D are Brownian motions star ted 

on the boundary, conditioned to immediately enter D, and stopped upon leaving. Since 

Brownian excursions stay in the domain D, conformal t ransformations of D can be 

applied to the excursions. 

Let us now describe these Brownian excursions more precisely. For any bounded 

simply-connected open domain D, there exists a Brownian excursion measure #D in D. 

This is an infinite measure on the set of paths (B(t), t<<.~-) in D such that  B(0, ~-)C D and 

B(O),B(T)EOD (these endpoints can be viewed as prime ends if necessary), x~ :=B(0)  

and xe:=B(~-) will denote the start ing point and terminal point of the excursion. In 

this discussion, we will identify two paths (two excursions) when one is obtained by an 

increasing t ime change of the other. 

One possible definition of #D is the following. Consider first D = U ,  the unit disc. 

For every s E (0, 1) let P~ be the law of a Brownian motion started uniformly on the circle 

of radius s, and stopped when it exits U (modulo continuous increasing t ime change). 

Since z~-~log Izl is harmonic, for any rE(0,  s), 

log( i / s )  
PS[B hits C r ] -  log( I / r )  

Set 
27r 

# u  := lim - -  p s  
s/"l tog( l / s )  

as a weak limit. Note that  the #u-measure  of the set of paths that  hit the circle Cr is 

27r / log(1/r). 
One can then check tha t  for any MSbius t ransformation r from U onto U, 

r  This makes it possible to extend the definition of # o  to any simply- 

connected domain D, by conformal invariance. These Brownian excursions also have 

a "restriction" property [32], which is a result of the fact that  the Brownian paths only 

feel the boundary of D when they hit it (and then stop). 

In [27], we made an extensive use of the Brownian excursion measure in rectangles 

RL = (0, L) • (0, 7r). It  is easy to see that  the measure #RL, restricted to those excursions 

with start ing point on the left-hand side of the rectangle [0, i~r], is obtained as the limit 

when s--+0 of 7rs-lp~, where P~ is the law of a Brownian motion with uniform start ing 
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point on Is, s+irc] which is stopped when it exits Rc. In particular, this leads to the 

following result: 

LEMMA 5.4. Let gL denote the event that the Brownian excursion B in RL crosses 

the rectangle from the left to the right (i.e., x~E(0, iTr) and x~E(L,L+iTr)). Then, when 

L--+ oc , 

~R~ [ELI • e -L.  (5.13) 

Pro@ Let hz denote harmonic measure from z on OqRL, where Z ERL. Since 

Im(expz)  is a harmonic function, it easily follows that  for all L > I  and zC(1, l+ i : r ) ,  

h,([L, L+iTr]) 

Im(exp (z ) ) -  1" 

It is easy to verify (e.g., by conformal invariance or by a reflection argument) that  there 

is a constant c such that  hz([L,L+iTr])<<.chz([L+�88 L+3iTr]) holds for all L > 2  and 

zE(1, 1+i7r). Hence, for such L and z, 

clhz([L, L+iTr]) <<. e -L <<. c2hz([L, L+iTr]) l{im(z) E [�88 

with some constants cl ,c~>0.  Since the #RL-measure of the excursions which reach 

the line {Re(z)=1} does not depend on L, and from these a fixed proportion first hit 

{Re(z )= l}  in [l+�88 l+~-~r], (5.13) now follows from the Markov property, which is 

valid for the excursion measures. [] 

Similarly, one can define Brownian excursions in non-simply-connected domains. 

For instance, consider the annulus A(r, 1) bounded between the circles CT and C1 (where 

rC(0, 1)). Rather than defining the excursion in A(r, 1) directly, we base the definition 

on the excursions in U. If 7 is a path, let % ( 7 )  be the initial segment of % until the 

first hit of C~, or all of 7, if 7 does not hit Cr. Now set # ~ : = % ( # u ) .  This will be called 

the Brownian excursion measure on A(r, 1) for excursions started on C. It is clear that  

# u  = liln<.~0 #[. 

The measures #D and #'~ are also related by restriction and conformal invariance. 

Suppose that  O is a simply-connected subset of A(r, 1) such that each of the sets O n C r  

and O A C  is an arc of positive length. Let L denote the 7r-extremal distance between 

these two arcs in O, and let r denote the conformal map from O onto RL =(0, L) x (0, 7r) 

such that  O N C  corresponds to (0, iTc) and O n C r  corresponds to (L, L+i:r) under 0- 

Let gl be the set of paths starting in C that  reach C~ without exiting (9. Consider 

the image under r of the measure #[ restricted to $1. Then (up to time change) the 
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image measure is exactly #RL restricted to the set of excursions that  cross the rectangle 

from the left to the right. (5.13) therefore shows that when L - + ~ ,  

P~[gl] ~ exp(-L) .  (5.14) 

This may also be easily verified directly. 

The mapping z~-+r/z maps A(r, 1) conformally onto itself. Let pl  be the image of 

#~ under this map; this is a measure on Brownian excursions started on C~ and stopped 

upon leaving A(r, 1). By symmetry, it follows that #l[gl] =#~[$1] x e x p ( - L )  when L-+oc. 

Although we will not use this here, it is worthwhile to note that  the measures #1 

and p[ agree on the set of paths crossing the annulus, up to time reversal of the path. 

5.3. E x p o n e n t s  and excurs ions  

We now describe the intersection exponents in terms of excursions (referring to [31], [32] 

for the proofs). Let (B(t), t~T) be an excursion in RL, and, as above, let 

EL := {Re(xs) = 0  and Re(xe) = L} 

be the event that  B crosses RL from left to right. Let ~ denote the image of B. When 

CL holds, let O~ be the component of R L \ ~  above ~ ,  and let O B be the component of 

RL\~ below ~ .  Let s  (resp. s  denote the ~r-extremal distance between [0,xs] and 

[L, x~] in O~ (resp. [x~, irr] and [xe, L+izr] in Oh). (We use script fonts for these s to 

indicate that  they are random variables.) Then, for any c~>O and cd~>O, the exponent 

~(c~, 1, c~')=~(1, ~(c~, cd)) is characterized by 

Qexp(-c~s  --~'s dpRL(B) = exp(--~(c~', 1, oOL+o(L)), (5.15) 

as L-+ec. 

Let SL 2 be the set of pairs of paths (B, B ' )E SL • gL such that  the trace ~3 t of B'  

is contained in O B. It follows from (5.15), Lemma 5.4 and conformal invariance of the 

excursion measures that  

~c e x p ( - a ~ )  dpRL(B) d#RL(B') = exp(-~(1, 1, oOL+o(L)), (5.16) 

as L--+oc. On $L 2, let s s, be the 7r-extremal distance from [0, irr] to [L, L+irr] in the 

domain between ~3 and ~ ' .  Given B', it is clear by conformal invariance and the re- 

striction property of the excursion measure that  1E[12 B, has the same law as 1E~12 ~. 

Consequently, (5.16) gives 

fc  exp(--a~B,) dpR~(B) dpRL(B') = exp(-~(1, 1, c~)L+o(L)). (5.17) 
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Similarly, one can characterize the exponents ~ in terms of the excursion measure #~. 

For any r < l ,  consider two independent excursions B and B' of the annulus A(r, 1). 

Define the events 

g = $(r) := {~  crosses the annulus without separating C~ from C}, 

g = g ( r ) :=  {~3 and ~3' are disjoint and both cross the annulus}. 

When g holds, let 12B be the 7r-extremal distance between C~ and C in A(r, 1 ) \ ~ .  

Similarly, when g is satisfied, let O1 and 02 be the two components of A(r, 1 ) \ ( ~ t J ~ ' )  

which have arcs of C on their boundaries, in such a way that  the sequence ~ ,  O1, ~ ' ,  02 

is in counterclockwise order around A(r, 1). Let s be the 7r-extremal distance from Cr 

to C in O1, and let 132 be the corresponding quantity for 02. Then for A, A1,/~2ER+, 

the exponents ~(1, A) and ~(1, A1, 1, A2) can be described [32] as 

~ exp(-)~13) d# l (B)  .~ r ~(1'~) (5.18) 

and 

as r%0.  

j i g  exp(-A1131- A2122) d# l (B)  d#lr(B ') ~ r ~(1'~'1'~2) , (5.19) 

5.4.  A useful  t echn ica l  l e m m a  

We now derive a technical refinement of (5.18) and (5.19) (in the case A1=1) that  will be 

useful to identify the Brownian intersection exponents with those computed for SLE6. 

Keep the same notation as above, and on $, let r denote the conformal map that  

maps O onto Rn in such a way that  the images of CIA () and Cr N () are mapped onto 

the left and right edges of the rectangle, respectively. Similarly, on g, let r be the 

corresponding conformal map from O1 onto Rnl. For all a > 0  set 

7-/a := g N { i e O  and r e [ia, i(Tr-a)]}, 

7 ~  := g A ( i e  (Ji and r [ia, i(~r-a)]}. 

LEMMA 5.5. Let )~>0. Then there are sequences xn~,~O and yn~',~O, and an a > 0 ,  

such that 

/Tg eXD(--/~,~B) d ,  lxn(J~) ,~ (Xn) ~(I'A) , St -~ (5.20) OO, 
c~ 

f exp(- l- a122) d, 9) (5.21) 
c~ 
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Actually (see, e.g., [30]), much stronger statements hold: In the above, ~ may be 

replaced by ~,  and these statements hold for every sequence tending to c~. But the 

present statement will be sufficient to determine the values of the Brownian intersection 

exponents, and it can be easily proved as follows. 

Proof. We will only give the detailed proof of (5.21). The proof of (5.20) is easier, 

follows exactly the same lines, and is safely left to the reader. 

Because of (5.19), it suffices to find the lower bound for the left-hand side of (5.21). 

Let us first introduce some notation. Let rE (0, �88 and consider the measure #~ x #~ on 

the space of pairs (B, B~). Let 

f(r) := fg(~)exp(-s -As dpl~( B) d#~( B'). 

Let B* be the path B stopped when it hits C1/4, if it does, and B*=B, if it does not 

hit CU4. Similarly, define B'* from B ~. Let ~ and ~3' be the traces of B and B ~, 

respectively. Let s be the event that the traces of B* and B p* are disjoint. On $*, let 

O~ and O~ be the domains defined for B* and B'*, as O1 and 02 were defined for B 

and B'. Then O 3 C Oj on s j = 1, 2. For j = 1, 2, on g*, let 12~ be the ~r-extremal distance 

between C~ and C1/4 in 0 9. Otherwise, set s =oc. 

For a > 0, let ~)a be the event that  the distance between ~ N A (�89 1) and ~ '  A A (�89 1) 

is at least a. Suppose that  ae(0 ,  �89 Observe that for (B, B ' )~Da,  there is for j = l  or 

1 1) which separates C,. from C1 in Oj. It j = 2  a path of length at most a in OjfflA(~, 
then follows that  s  ~>s +c l  log(l /a) ,  for some constant c1>0. Consequently, 

fig exp(-s  - A122) dp~(B) dp~(B') 
(T)\Va 

~< a~ min{A,1} f exp(--s --As d#~(B) dp~(B p) (5.22) 
jg ,  

= a . . . .  i n { ~ , l } f ( 4 r ) ,  

since the image of #~ under the map B~-~4B* is #41~. 

By (5.19), we have f(r)~r ~0,~,~,1) (and f is non-decreasing). Consequently, if a is 

chosen sufficiently small, there is a sequence y~"~0 (for instance a subsequence of 4 -n) 

such that  f(yn)>~2aC~min{'X'l}f(4yn). For these y~, (5.22) gives 

fs  exp(--~l --As d#~,~(B) dply.(B ') I> aCl min{A'l} f (4yn). (5.23) 

Fix such an a and such a y~. Let Za be the event that  iE()l  and the distance from i to 

U ~ is at least ~ a. Observe that  if we apply an independent random uniform rotation 
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about 0 to a pair (B, B ' )ED~Ag,  then with probability at least a/lOTr the rotated pair 

is in fla. Since the integrand in (5.23) is invariant under rotations, (5.23) and (5.19) give 

dpy~(B ) ( y n )  ~( i '1 '~ '1)  
4 

It therefore suffices to show that  when c~>0 is small, we have Z a N g C T ~ .  To prove this, 

consider a pair (B, B ' )EZa.  Let A be the subarc of OIAC1 that  has i as one endpoint 

and the other endpoint is in ~ ,  and let A ~ be the subarc of OIAC1 that  has i as one 

endpoint and the other endpoint is in ~3'. Then the extremal distance from A to ~ '  in O1 

is bounded from below by a positive constant depending only on a, as is the extremal 

distance from A ~ to ~ in O1. Conformal invariance of extremal distance therefore shows 

that  the distance from q~(i) to {0, irr} is bounded from below by a constant depending 

only on a, which proves that  (B, B ' ) E ~ ,  where ~ > 0  depends only on a. [] 

6. T h e  u n i v e r s a l i t y  a r g u m e n t  

We are now ready to combine the results derived so far to prove our main theorems. As 

in [27], we follow the universality ideas presented in [a2]. First, Theorem 5.6 (~(1, 1)= 5) 

will be proved, followed by Theorem 5.7 (giving ~(1, 1, 1, ,~)). As we have seen, Theo- 

rems 1.1 and 1.2 are immediate consequences. 

5 6.1. P r o o f  o f  ~(1, 1 ) =  5 

Let r>0 ,  let Kt be a radial SLE6-process in U starting at i, and let T=T(r) be the least 

t such that  KtOC.rr Set J~:=KT, let P~ denote the law of J~, and let E~ denote expec- 

tation with respect to this measure. As before, we let #~ denote the Brownian excursion 

measure in A(r, 1) started from Cr, and let ~3 denote the trace of the excursion B. We 

are interested in the event g* in which J~N~3=~ and ~3 crosses A(r, 1) (i.e., ~ N C i r  

The proof will proceed by computing (P~ • #~)[g*] in two different ways. In the first 

computation, we begin by conditioning on J~ and then taking the expectation, while the 

second computation begins by conditioning on B. 

When ~ does not separate C~ from C in U, let OB denote the connected component 

of A(r, 1 ) \ ~  that  touches both circles C~ and C, and s the corresponding ~r-extremal 

distance. 

When J~ does not disconnect C~ from C in U, let O~ denote the connected component 

of A(r, 1)\J~ that  touches both circles, and ~ the corresponding ~r-extremal distance. 
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Suppose first that .q is given and that  11~<oc. Note that  s  as r 'N0. By 

the restriction property and conformal invariance of the Brownian excursion measure 

(see w and Lemma 5.4, 

#lr[B crosses the annulus in O~] = #R~[gg~] x exp( - s  r ' N  0, 

where gn is as in Lemma 5.4. On the other hand, we know from Theorem 3.1, with b= l ,  

~=6, that  

E r [ e x p ( - ~ ) ]  ~ r  5/4, r'NO. 

Combining these two facts implies that  

(Prxp~)[g*]~r 5/4, r'NO. (6.1) 

Suppose now that  B is given and that it does cross the annulus without separating 

the disk C~ from C. The second part of Lemma 4.3 shows that  there exists a constant 

c > 0 such that  

P~[g*] < cexp( -~B) .  

Hence, combining this with (5.18) shows that  

(P~ x ,1)[$ *] ~< r ~(1'1)+~ . (6.2) 

On the other hand, suppose now that B is given and that  BET-/~, where 7-/~ is as 

in Lemma 5.5. Then by the first part of Lemma 4.3, there exists a constant c ~ such that  

P~[g*] ) c' exp(--l~B). 

Combining this with Lemma 5.5, we find that  

[~xn)[~ ] ~ (PxnN.ln)[~-~o~["le *] ~ (Xn) '~(1'1)+~ n--.-~oo. 

Comparing with (6.2) gives 

(P~ x # l  )[g *] ~ ( X n )  ~(1'1), T/--~ (X). 

Now, by (6.1), 

(Xn)5/4 ,~ ( p x ~  X 1 * 

when n--+oc, which proves 4(1, 1)= 5. 
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6.2. T h e  d e t e r m i n a t i o n  of  ~(1, 1, 1, )Q 

The goal now is to prove (5.7). As ~-+~(1, 1, 1, ~)=~(1, 1, ~(1, A)) is continuous on [0, oc) 

(see [31]), we can restrict ourselves to the case where ~>0. The proof goes along similar 

lines as the proof of ~(1, 1)= 5. This time, we will consider two independent Brownian 

excursions B and B' in the annulus A(r, 1), and one SLE6 ~ as before. We are interested 

in the event that  B, B'  and J~ all cross the annulus, that  they remain disjoint, and that  

B, ~ and B r are in clockwise order. Let us call this event 1. Note that  in this case, 

crosses the annulus in O1, where we use the notations of w 

We shall compute in two different ways the quantity 

~ e x p ( - ~ 2 )  d#~(B) dpl(B ') dP~(~). 

On the one hand, we know from conformal invariance and the restriction property of 

Brownian excursions and from (5.17) that  when ~ crosses the annulus without separating 

C~ from C, 

j exp(-~2)d#~(B)d#l~(B')~exp(-~sl~(1,1,~)), r".~O. (6.3) 

But we know from Theorem 3.1 that  

where 

/ e x p ( - b ~ )  dP~ ~ r ", (6.4) 

~=~(b)  = ~ ( 4 b + 1 + ~ ) .  

Note that  ~ is a continuous increasing function of b on (0, o~). Consequently, (6.3) and 

(6.4) give 

jfz exp(-~s  d#~(B')dP,(~) rV(~(1,1,;~)), 

Combining this with (5.4) shows that  

f exp(-As dp~(B) dp~(B') dP~(~) ~ r a, (6.5) 

where 

a = a(A):= v(~(1, 1, l ) )  : ~8 ((11+ 24x' /~-~) 2 -4 ) .  

Suppose now that  B and B'  are given and that  g is satisfied; i.e., that  B and B'  

cross the annulus without intersecting each other. Then Lemma 4.3 shows that  

P~ [~ C O1] ~< c exp( -~ l ) ,  
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for some constant c. Hence, combining this with (5.19) shows that 

fz exp(-As d#~(B)dp~(B') <<. r ((1'1'1'~)+~ (6.6) dPr(J~) 

Suppose now that B and B' are given and that (B, B')C 7~.  Then Lemma 4.3 shows 
that there exists a constant c '>0 such that 

Pr[~C O1] ) c' exp(-l~l). 

Combining this with Lemma 5.5 gives 

f exp(-As dPyn(J~ ) dp~,,(B)dp~,(B') >1 (yn) ~O'1'1'a)+~ 

Comparing with (6.6) implies that 

~ exp(-As ) dp~,,(B)d#~,,(B') ~ (yn)~0,1,1,.x), 

when n-+oc. Consequently, by (6.5), ~(1, 1, 1, •)=a(A). [] 
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