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1. I n t r o d u c t i o n  

The goal of the present paper is to show that  the intersection exponents for planar 

Brownian motions are analytic. Let k~>l be a positive integer and let X 1 , . . . , X  k be 

independent Brownian motions in the complex plane C started from 0. Let Y, y1, y2, ... 

denote other independent planar Brownian motions started from 1, and let St be the 

random variable (measurable with respect to X 1, ..., X k) 

St = P[Y[0, t] N(X 1[0, t] U...UXk[0, t]) = O IX'J0, t] U...UXk[0, t]]. 

Note that 

P[(X 1 [0, t] U...UXk[0, t])n (Y 1 [0, t] U...U YP[0, t]) = O] = E[St~]. 

The intersection exponent ~(k, A) is defined for ~>0 by 

E[S,  ~] ~ t -~(k '~) /2 ,  t --+ oc, (1.1) 

that  is, 

~(k, A):= - 2  lim l~ 
t - ~  log t 

The existence of such exponents follows easily from a subadditivity argument. For a more 

detailed account of the definition and properties of these exponents, we refer the reader to 

our earlier papers [16], [12], [13]. Let us mention, however, that  they are related to other 

critical exponents arising in statistical physics, including those predicted by theoretical 

physicists for planar critical percolation and self-avoiding walks (see references in [12]). 

The first author was supported by the National Science Foundation. 
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In [13], the value of ~(k, A) was determined tbr a large collection of pairs (k, A). In 

particular, it was shown that  

~(k, A)= Ts ( ( ~ 1  + ~ - 2 )  2 -4 )  (1.2) 

holds for k=l ,  A > ~  q, and for k=2, A~>2. In [14], we then showed that  (1.2) holds for 

all integers k~>l and all real A~>I. The idea in the proofs is to compute the exponents 

associated to another conforrnally invariant process (called stochastic Loewner evolution 

and first introduced in [21]) and to identify them with the Brownian intersection expo- 

nents via a universality argument (introduced in [17]). This universality argument is not 

sufficient to derive the value of ~(k, A) when A<I.  

The exponents ~(2, A) are very closely related to the dimension and properties of the 

so-called outer boundary of a planar Brownian path. The outer boundary, or frontier, 

of the Brownian path B[0, 1] is the boundary of the unbounded connected component of 

C\B[0 ,  1]. The disconnection exponents r/k are defined by 

P[X 1[0, t] U...UXk[0, t] does not disconnect 1 from c~] ~ t -''k/2. 

It is easy to show that  q2=~(2,0) if we use the convention 0~ in the definition of 

~(k, A) when A=0. In [7] it was proved that the Hausdorff dimension of the frontier of 

B[0, 1] is Minost surely equal to 2-rl2. Moreover [8], the multifractal spectrum of the 

frontier with respect to harmonic ineasure is given in terms of the Legendre transform of 

the functioil ~(2, A). In [9] (see also [15]), it is also shown that  

lira ((k, A) = ( ( k ,  O) = 'rl~:. 
,XN, o 

The main result of tile present paper is the following: 

THEOREM 1.1. For all integers k~>l, the function A---~(k,A) is real analytic in 

(o, oo). 

This result is in fact a consequence of spectral gap estimates for a Markov process 

on non-disconnecting k-tuples of Brownian paths. In [6], Lawler had defined a Markov 

process on non-intersecting pairs of Brownian paths (corresponding to the exponent 

~(1, 1)). Similarly, each exponent ~(2, A) is associated to a process on non-disconnecting 

pairs of Brownian paths, where one introduces a weighting corresponding to the value 

of A. When A varies, the Markov process changes, and one then studies how the associated 

eigenvalues change. Such a strategy was also used in [9] to show that  the map A~+~(k, A) 

is strictly concave. Our theorem has the following consequences: 
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COROLLARY 1.2. Formula (1.2) is valid for all positive integers k and all non- 

negative real ~. In particular, 

rlk = s ( ( ~ -  1) ' ) -4) .  (1.3) 

Proof. For A>0, this follows from (1.2) and Theorein 1.1 by analytic continuation. 

For )~=0, the result follows by the continuity at 0 proved in [9], [15]. [] 

COROLLARY 1.3. The Hausdorff dimension of the outer boundary of a planar Brown- 
4 Jan path B[0, 1] is almost surely 5" 

Proof. The case k=2  in (1.3) gives 7/2= 2. The corollary follows from this and the 

result from [7] saying that the dimension of the frontier is 2-~]2. [] 

Note that  for this corollary, one does not need [14], since (1.2) appears in [13] 

for k=2  and A~>2. Corollary 1.3 has been conjectured by Mandelbrot [19], based on 

simulations and the analogous conjecture for self-avoiding walks. Non-rigorous arguments 

from theoretical physics involving quantum gravity [5] also lead to this conjecture. Before 

our series of papers [12], [13], [14], it had been proved [1], [3], [22], [7] that  tile Hausdorff 

dimension of the outer boundary of a planar Brownian path is in the interval (1.01, 1.48). 

The Hausdorff dimension of other exceptional subsets of the planar Brownian curve 

can be described in terms of disconnection expoI~ents. A point z is a pioneer point of 

B[0, 1] if there is some time tE [0, 1] such that z=Bt is in the outer boundary of B[0, t]. 

It is shown in [10] that the ttausdorff dimension of the set of pioneer t)oints is 2-, /1 

ahnost surely. Consequently, (1.3) gives 

COROLLARY 1.4. The Hausdorff dimension of the set of pioneer points of a planar 

Brownian path is almost surely 7 ~. [] 

In the same way, one gets that  the Hausdorff dimension of the set of double points 

of B[0, 1] that  are also o n  the outer boundary of B[0, 1] is 2-714 = ~4(1 + v / ~ )  (which is 

not a rational number). 

To prove Theorem 1.1, we show that for every )~>0, the function x ~ ( k , x )  can 

be extended to an analytic function in a neighborhood of ,k in the complex plane. For 

notational ease, we will restrict the proof to the case k=2;  the proof for other values of 

k is essentially the same. Onr proof has similarities with the proof that  the free energy 

of a one-dimensional Ising model with exponentially decaying interactions is an analytic 

function (see [20]). We shall show that e -~(2,~,) is the leading eigenvalue of an operator 

T~ on a space of functions on pairs of paths. A special norm will be chosen such that  on 

the space of functions with fiIfite norm, the dependence of T~: on x is analytic, and the 
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leading eigenvalue is an isolated simple eigenvalue. It then follows by a standard result 

from operator theory (see, e.g., [4]) that  ~(2, x) is an analytic function of x. 

Let us outline the argument in the paper. The Banach spaces and the operators are 

defined in w The operators act on spaces of functions of pairs of paths from the origin 

to the unit circle. The function spaces consist of functions with the property that  their 

dependence on the behavior of the paths near the origin decays exponentially. These 

spaces are reminiscent of the spaces defined in [20], but the precise definition in this 

paper is new. In w we review facts about ~(2, A) from [9] which are needed in the proof. 

Analyticity of the operator is proved in w using a coupling argument. The existence 

of the spectral gap is established in w The main tool to show that  the eigenvalue 

is isolated is also a coupl ing--but  this time a coupling of weighted Brownian paths. 

A similar coupling was used in [2] for a one-dimensional Ising-type model, and such a 

coupling was first used in [11] for weighted Brownian paths. 

We end the introduction with a few brief words regarding notation. In this paper, 

c, c ~, u, etc., denote constants whose values may change from line to line, while C and 

Co, C~o,Vo, etc., will denote constants whose values will not change. The values of these 

constants will depend on A. The notation f(t).~g(t) means log f(t)/log g(t)--+ 1 as t--+oo, 

while f(t)xg(t) means that there is a constant c>0  such that  c-l<~f/g<.c. The unit 

disk {z : [z [< l}  in C is denoted by U. 

2. The  operator  

Let F0 denote the set of all continuous paths c~: [0, 1]--+U such that  ~(0)=0,  ]c~(1)]=1 

and 0<[c~(t)I<l for tE(0,1) .  We identify two paths if one can be obtained from the 

other by increasing reparmneterization, and endow F0 with the metric 

d(a,~) := inf sup l a ( t ) -~ ( r  
r te[O,1] 

where r ranges over all increasing homeomorphisms r [0, 1]--+ [0, 1]. Let F C Fo • F0 denote 

the set of ~/=(c~,/3) such that  there exists a unique connected component 0=0(~/) of 

U \ ( a U ~ )  with 0 E 0 0  and 0 U M 0 0 r  Let A denote the set of bounded measurable 

functions f :  F -+C  and Ilf l i=sup~er If(~/)I. Here, measurability is with respect to the 

Borel sets from the metric on F (and this is the sole use of this metric in this paper). 

We are interested in functions fEA that  depend little on the part of 3' near the 

origin. For (~EFo and m ) 0 ,  let c~m be the arc of (~ after its first point in the circle 

r  of radius e - "  around 0, and for 7 = ( a , 3 ) E F  set %n=(am,3m). If k<j, we 

say that the path aEF0 has no downcrossing from e -k to e - j  if o~kFle-JV=o, in other 
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words, if c~ does not touch e-JU after its first visit to e-kOU. We say that  9'=(c~,/3) has 

no downcrossing if both c~ and ~/have no downcrossing. Let Ym be the set of all 9'EF 
11 such that for all kE [0, ~m],  "7 contains no downcrossing from e -k to e -k-m~12. Let Xm 

be the set of (%9'~)EF 2 such that  

(1) (7, 7')EY~• 
(2) 9'm ~ 9'm, and 

(3) o(9')nov=o(9")nov. 
For all f E A  and u>O, let 

I l f l lu :-- m a x { l l f l l ,  s u p { e  mu I f ( 9 ' ) - f ( 9 " ) l  : m --  1, 2, ..., (9', 9 " )  E A m } } .  

This is a norm on the Banach space A u : = { f E A :  I I f l lu<~}.  Let s denote the Banach 

space of continuous linear operators from .Au to A~ with the operator norm 

Nu(T) := sup IIT(/)I]~. 
IISll,=l 

For every 9'EF, let G and ~ be independent planar Brownian motions started, re- 

spectively, from the endpoints of c~ and/3 on the unit circle. Let ~'~ denote the path 

stopped when it hits enOV; let Gn be the path from 0 to enOV obtained by concatenating 

a and ~n; and let ~n:=e--n~n. Define ~n, ~n and ~'~ similarly, and l e t  ~n:=(~n,~n), 
~n :=(~n, ~n), ~n :=(~n,  ~n). We will often omit the superscript n when n = l .  

Define the event s := { ~ E  F}. Note that  almost surely this event is satisfied as long 

as ~n does not disconnect 0 from oc (since 0 ~  '~ almost surely). 

For every 9'EF, consider the h-process B started at 0 and conditioned to first leave 

0 = 0 ( 9 ' )  in 0 U N 0 0 .  Let us say a few words about how this process is defined: it can be 

viewed as the limit as z E O tends to 0 of Brownian motion starting from z conditioned to 

leave O in 0UM00 .  It is well-defined since 0 is a simple boundary point of O for 7EF.  

For instance, if we map conformally the strip (0, 1 ) •  onto 0 (7)  taking { 1 } x R  onto 

0 U M 0 0  and the origin to the origin, then the h-process in 0(9') is obtained (after time 

change, but we will actually only use the paths of the h-processes) as the image under 

the conformal map of the process X + i Y  in the strip, where X is a three-dimensional 

Bessel process started from 0 and stopped when it hits 1 (i.e., the limit when r of 

one-dimensional Brownian motion started from ~>0 conditioned to hit 1 before 0), and 

Y is an independent one-dimensional Brownian motion started from 0 (stopped at the 

same time). 

Attach to the endpoint of B on 0U an independent Brownian motion/~,  and define 

the paths / ~  and B n  a s  before. The path ~n  consists of two parts: the h-process (up 

to its hitting time of 0U) ,  and the (non-conditioned) Brownian motion ~n. Let 

Zn = Zn(~ n) : =  p[BnN~n=o I ~n] 
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and Z=Z1.  Note that although BA 3,=O almost surely, it can happen that  B A~ '" r  

with positive probability. That i s , / ~ ' A ~ " = O  can fail in two ways: it may happen that  

/~ "A~" r  and it may also happen that  BN~nr Note also that  Z , r  if and only if 

s occurs. We define C n = -  log Z,. and ~p=- log Z (with - log0=oc).  

For n, A>0 define the linear operator T~: .4--+.4 by 

T~"f(~/) := E l f (9  n) exp(-ACn)] = E l f ( 9  n) Z~], 

and let T:,=T~. Tile expectation is over the randomness in ~". Note that  T'~ '+~" =T~'~T~ '', 

so the notation is appropriate. Also, there is no need to restrict to real A; this defines 

Ts for complex z with Re(z)>0. We will prove the following: 

PROPOSITION 2.1. (i) For all real A>0, there exist an ~>0 and a v=v(A)>0 such 

that for all uE(O, v), z~-+T~ is an analytic function f i rm the disk {z: Iz-A I <s} into s 

(ii) For all real A>0, there exist an c '>0  and a uE(0, v(A)) such that the spectrum 

of T~ in s is the union of the simple eigenvalue e -~(2'~) and a subset of the disk 

(1 -~')e-~(2'A)U. 

Proof of Theorem 1.1 (assmning Proposition 2.1). The t)roposition implies that  

e -~('2'~) is an isolated simple eigenvalue of T~, for all A>0. By Theorem VII.6.9 in [4], 

it follows that  for all A>(), there exists r  such that x~-~(2, x) can be extended ana- 

lytically to the disk { z : I z - A  I< ~ }. Hence, there exists a neighborhood N" of the half-line 

(0, oc) such that z~-~((2, z) is analytic in N', proving the theorem in tile case k=2.  The 

l)roof for other k is tile salne. [] 

Tile I)roof~ of Proposition 2.1 (i) and (ii) both rely on coupling argmnents. The 

proof of (i) in w uses a coupling of the h.-t)rocesses B and B' ~sociated to two pairs of 

paths ~/an(t ~/' (when (% 3")E 2~,,,). In the proof of (ii) (w we couple the extensions "~" 

and ~'~ associated to "~ and ~t defined under a weighted probability measure. 

3. P r e v i o u s  r e s u l t s  o n  ~(2 , )~)  

In this section, we very briefly review s()me important facts about the intersection ex- 

ponent ((2, A) that will be useful. The results here were derived in [9] and apply to di- 

mensions 2 and 3. Since some of the arguments are simpler when one considers only the 

plane, we rewrote detailed self-contained proofs of all these facts ((3.2), (3.3) and (3.5)) 

in [15], which can be viewed as a preparation paper for the present paper. 
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3.1. E s t i m a t e s  up to  c o n s t a n t s  

Let x, yEOU, and let W = ( X , Y )  denote a pair of planar Brownian motions started 

at x, y, respectively. Let B denote another independent planar Brownian motion started 

from bEOU. Let B '~ be the path B until it reaches the circle e"OU for the first time, 

and similarly define X n and yn.  Let W'~=XnUY n, 

Zn = 2 n ( W  n) := sup p[BnNWn=OI  Wn] 
bEOU 

and 

qn=qn(/~): = sup E[2~]. 
x,yEOU 

Then qn+m<~qnqm holds, by the strong Markov property for X, Y and B. Hence, the 

limit ~ : = -  limn log(qn)/n=- inf~ log(q,)/n exists by subadditivity and 

q~ ~> e - ~ .  (3.1) 

It is not difficult to verify that, in fact, ~=~(2, A), as defined in the introduction. 

An opposite estimate also holds; that  is, there exists a constant c1=c1(~)>0 such 

that  

q~ <~ cle -~''. (3.2) 

This result is a variant of Theorem 2.1 in [9]. The fact that q,,~e -0~ (which is a more 

precise statement than the definition of ~, q,,~e -0') has been instrumental in showing 

that  2 - ~  correspond to Hausdorff dimensions of various subsets of the planar Brownian 

curve [8]. 

3.2. S e p a r a t i o n  and t h e  func t ions  P ~  

Let F + be the set of 7=  (c~,/3) E F such that  

(~1/2,/3,/2) C {e~,+i0 : ~E [-1, 01, eE (�89 ~ ) }  

and 

( - 1 , 0 ) ,  0e  c 

The Separation Lemma [9, Lemma 4.2] states that  there exists a c2 such that  for all 7EF,  

E[exp(-Ar l{~Er+}] ~> c2E[exp(-Ar (3.3) 

It is a kind of boundary Harnack principle for the operator T. This type of result was 

important in the derivation of (3.2). 
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Define for all n~>l, A>0 and 7EF, 

Rn(7) = Rn,~ (7):-- en~E[e - ~ n ]  -- en~ (T;~ 1)(7). 

By (3.2), Rn is uniformly bounded in n and 7. Note also that,  by the strong Markov 

property and (3.2), 

Rn(7) :en~(Tf l)(7) < e-n~qn-lT~ l(7) < cR1(7). (3.4) 

On the other hand, one can prove that  

5:-- inf inf Rn(7) >0.  (3.5) 
n>/0 ~EF+ 

This is, loosely speaking, due to the fact that  a positive fraction of the extensions /~n 

and ~'~ leave quickly the neighborhood of U, so that  they do not really feel the influence 

of 7 and B. As 7EF +, the starting points of 7 n and a positive fraction of the starting 

points o f / ~  are not so far from being optimal, so that qn is within a constant multiple 

of E[e-~r 

Using the strong Markov property and (3.3), then applying (3.5) to Rn-l(~) ,  gives 

for all 7EF and n~>l, 

Rn(7) >1 en~E[e -~'pn l{#er+}]/> en~Se -( .... 1)~E[e-X~ liver+}] ~> cc2R1(7). 

Combining this with (3.4) shows that  there is a Co such for all n, n'~> 1 and 7EF, 

R,,(7) <. con,,,(7). (3.6) 

In [9] it was shown that  the limit R ( 7 ) = l i m , , ~  Rn(7) exists. We will rederive this 

result in this paper and simultaneously improve the rate of convergence to the limit. 

4. A n a l y t i c i t y  

The goal of this section is to prove Proposition 2.1 (i). 

4.1.  C o u p l i n g  B a n d  B ~ 

Let %y 'EF .  Let B be the h-process associated with 7, and let B'  be the h-process 

associated with 7 p. In this section, we show that  there is fast decay for the dependence 

of B on 7. More precisely, we prove the following proposition. 
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PROPOSITION 4.1. There exist a c>0 and a Vo>0 such that for all m>~l, i f  

(7,7 ')EeYm, then one can couple B and B'  in such a way that 

P [ B \ e - m / 2 U  # B ' \ e - m / 2 U ]  < ce-VO ", 

(here B and B'  denote the curves of the processes B and B ' ) .  

By coupling B and B', we mean that  it is possible to define B and B'  on the same 

probability space in such a way that  the law of B (resp. B ') is that  of the h-process 

associated with 7 (resp. 7 ') .  A reference for facts about the coupling method is [18]. 

This result actually holds for all (7, 7 ' ) E F  with 

! 
7m=7m and O(7) \ e -mU=O(7 ' ) \ e -mU,  

but the proof is more complicated. Proposition 4.1 will be sufficient for our purposes. 

It is easy to verify that  the processes B and B '  satisfy the strong Markov property. 

This will be very useful in the following. 

In preparation for the proof of Proposition 4.1, we first focus on conditioned Brown- 

ian motions in the half-infinite rectangle 

J = { x + i y : O <  x < ~r, O< y <  oc}. 

There is a conformal transformation taking 0(7)  to J which takes the origin to infinity 

and O(y)fq0U to [0, T r], so that  conditioned Brownian motions in J can be conformally 

transformed (up to a time change) to conditioned Brownian motions in 0(7).  Hence 

results for conditioned Brownian motions in J imply results for conditioned Brownian 

motions in 0(7).  

LEMMA 4.2. (i) There exists a constant c such that for all z in J such that Im(z)~>l 

and for all y0~>l, i f  B denotes a Brownian motion started from z, and conditioned to 

leave J on the set [0, Tr], then 

P[/3 hits { w : I m ( w )  >~ Im(z )+yo}  before it leaves J] <~ ce -2y`). (4.1) 

(ii) There exists a constant c such that for every ~n >~O, every h >~ 1 and every z, z 'E J 

with Cn+h<~Im(z)<~Im(z'), one can find a coupling of B and B~, Brownian motions 

conditioned to leave J at [0, 7r], starting at z and z' respectively, such that 

P[/3n{w : Im(w) ~< ffz} # / 3 ' n { w  : Im(w) <~ ffz}] ~< c e - %  (4.2) 

Before proving this lemma, we first recall the following straightforward fact on cou- 

pling (see, e.g., [18]) that  we will use in this proof and that  will also be instrumental 
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later on in this paper: Suppose that  u is a probability measure on a measurable space 

(S ,8) ,  and that  /Jl and u2 are two other probability measures on this space such that  

the Radon-Nikodym derivative q(. ) (resp. q '( . ))  of/21 (resp. u2) with respect to u exists. 

Then, one can find a probability space (ft, 5 r ,  It) and measurable functions #: f ~ S  and 

5q ~ S  such that  the law of (~ is ul, the law of 6t is u2, and 

[ 1/ 1 
#[5 = 6'1 ~> min(q,q')dv=l--~ Iq-q'ldu=l--~llu~-~2JJ. (4.3) 

J S  

Proof of Lemma 4.2. Let ~ denote the first time a Brownian motion )(  (started from 

) ( = z  under the probability measure P~) leaves J,  and for all y0>0, let ~yo denote the 

first time at which Im(Jf)  hits Y0. 

Let h~(s), zEJ, sE(O, 7r), be the density of _~l{~=eo}, where .~o=z=x+iy. It is 

easy to show that  

h~(s) = 2 E s in(nx)sin(ns)e  -~2y, 
7r 

n>/1 

for instance, by separation of variables. In particular, this readily implies that  for all 

y ) l ,  

hz (s) = ~ sin(z) sin(s) e -y  (1 + O(e -u)) (4.4) 

and 

u(z) := P~ [5"o =T]  = _4 sin(x)c_Y(l+O(e_~j)) ' 
7r 

where the constants implicit in the notation O(c-:'Q do not depend on x, s or y. 

reflecting z on the line Im(w)=y+yo, it follows that 

(4.5) 

By 

P~ [&.~+:j,, < T = &o] <~ u(z+2iyo) = (1 + O(e-u)) e -2''j'' u(z), 

and (4.1) follows. 

We now use conditioned Brownian motions /3 and /~t as in the lemma that  are re- 

spectively started fronl z and zq Let 5 =iffz+~ be the first point on the segment i ~ +  [0, 7r] 

which /3 hits, and let U=iCn+g ~ be the corresponding point of/3~. A straightforward 

consequence of tile strong Markov property shows that  the density ttz of g is 

: =  

~ 

and a similar expression holds for the density h~, of ~. Using (4.4), this gives 

h ~ ( s )  _ h z _ i C ~ ( s ) u ( z ' )  = l+O(e_~).  
~z,(s) h~,_~(s)~(z) 
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A(7, k) 0 ( 7 ) ~  

/ . 

\ 

Fig .  4.1. T h e  s e p a r a t i n g  arcs .  

0U 

Therefore, using (4.3), we may couple tile parts of B and ]~ until their first hit of 

iK~+[0, ~r] so that P[5#5'] ~<O(e-;~). Oil tile event 5=5', we nmy continue B and /~' as 

the same path. This gives (4.2). [] 

Pwof of Proposition 4.1. Prior to the core of the proof, there is a need for sotne 

preliminary topological preparations. Suppose that "~ EF and k >0. Then, there exists at 

least one open subarc A=A(% k) of e-k0UnO(7)  with the property that the removal 

of A from 0(7) disconnects 0 from 0U in 0(7). See Figure 4.1. There may be many 

such arcs; if so, choose A=A(% k) as being the one closest to tim origin, in the sense 

that every path from tile origin to 0U in O(7) goes through A before any other such 

discoimecting arc. The arc A divides 0(7 ) into two coinponents; let 0+(% k) denote 

tile component whose boundary intersects 0U, and let O-(7, k) denote the component 

whose boundary contains 0. 

As in ~2, let %,=(an,~,~) be the part of 7 starting from the first visits to the 

circle of radius e-'". Note that 7~ contains paths connecting the endpoints of A(% k) 

to 9U. Suppose for a moment that j > k and 7 has no downcrossing from e -~: to c-J. 

Let ()k(7) denote tile connected component of U\(Th:UA(7, k)) that contains 0+(7, k). 

Since 7 has no downcrossing from e -k to e -j, we have Oq()k(7)Cle-JU=~, and there~bre 

(gk(7)Ne-JU=o. In particular, 

o+(~,k)ne-Ju=o. 
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An entirely similar argument shows that  

O_(%j)ce-kU 

if 7 has no downcrossing from e - k  t o  e - j .  In this case, one has to consider the connected 

component that  contains O - ( 7 , j )  of the complement of the union of A(7 , j )  with the 

parts of 7 until the last visit to the circle e-JOU. 
11 . 71 Now take ( % 7 ' ) E ' m ,  as in the proposition. Let kE [0, T~m], so that  7 and 

have no downcrossing from e -k to e -k-m/12. Observe that  ()(7, k)=('5(7' ,  k), since both 

can be characterized as the largest domain which does not contain 0, has 0 0 ( 7 ) N O U =  

0 0 ( 7 ' ) n 0 U  on its boundary, and is bounded by "Tk=Tt ' together with an arc of e - k 0 u .  

This gives A(7, e -k)  =A(7 ' ,  e-k) .  Set 

A1 := A(% e -  um/l~), 

A2 := A(% e-l~ 

Aa := A(7, e-9m/le),  

Ao~ := 00(7)AOU,  

O +  : =  O + ( % e - l l m / 1 2 ) ,  

O_ := 0 _ ( 7  , e-gin/12). 

Except for O_, these are the salne as the corresponding objects for 7'. The extremal 

distance from A1 to A2 in 0 (7 )  is bounded from below by the extremal distance in C 

from e-11"/120U to e-m'"/12OU, which is m/(12.2 . r@ Let r be the conformal map 

from 0 (7 )  onto J which takes 0 to oo and takes Aoo onto [0, r r]. Note that  r  is 

a path joining the two lines {Re(w)=0} and {Re(w)=rr}. By conforlnal invariance of 

extremal length, it follows that  there is a constant v > 0  such that  

VZl E r ), ktz2 E r Im(Zl) - Im(z2) >. v m -  1/v. 

It follows immediately from Lemma 4.2 (i), the strong Markov property and confor- 

mal invariance that  the probability that B hits A1 after its first hit to A2 is bounded by 

ce - 'm.  The same holds for B'.  Note that  if these processes do not hit A1 again, then 

they stay in 0+. 

To construct the coupling of B and B', let them evolve independently until they 

first hit A2 (at some random points z and z', respectively). The law of B (resp. B') after 

that  time is that of Brownian motion in 0('7) (resp. 0 ( 7 ' ) )  conditioned to exit 0 (7)  

(resp. 0(7'))  in Ao~. Each of these laws are at distance at most ce . . . .  from the law 

of Brownian motion starting from z and z', respectively, in O+ conditioned to exit O+ 
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in A~ ,  where distance is in the sense of the measure norm; that  is, Ll-distance. Hence, 

it suffices to show that for all z, z~EA2, it is possible to couple two Brownian motions 

started from z and z r, respectively, conditioned to exit 0 (7 )  in A~,  in such a way that  

they agree after their first hitting of A3 with probability at least 1-ce -~'m. (Note that  

before their first hitting of A3, they are in O_Ce-sm/12U.)  By conformal invariance, 

one can use the coupling described in Lemma 4.2 with 

:= sup Im(r ~ := inf Im(r  

By the conformal invariance of extremal length, as explained above, ~/rn is bounded away 

from 0, when m is large. Small values of m can be handled by adjusting the constant c 

in the statement of the proposition. This completes the proof of Proposition 4.1. [] 

4.2. E x p o n e n t i a l  decay 

If ~/cF and ~ E F  have the same terminal point (which will be the case, in particular, if 

Vm=7~ for some m>0) ,  then we will attach the same Brownian motions (~, ~)=~=~' 
to ~ and ~/~ in defining ~n and ~ n .  In this case, write r as shorthand for r  and 

r as a shorthand for Cn(~'n).  Similarly, Z'  - Z  / : ,n~ n - -  n C Y  )" 

PROPOSITION 4.3. For every A>0, there exist c>0  and Vl >O such that if n~O, 
m~  l and (% ~/')E Xm, then 

E[[e-A~, ,-  e-A~:,[l ~< ce-~"e -v~m. 

The proof of this proposition relies heavily on Proposition 4.1. An easy estimate on 

the disconnection exponent will also be needed. Let X denote a planar Brownian motion 

started from the unit circle. As before, for t)>0, let X e denote the part of X until its first 

hit of the circle e0bU. Let v~>0 be such that  the probability that  X 1 disconnects the 
P I , _ _  'IJ[} origin from infinity is 1 - e  -vo. Let Co.-e . The strong Markov property immediately 

implies that for all t~>0, 

P [ X  Q does not disconnect the origin from infinity] ~< e v'~(t-~) = eto e-v;~e. (4.6) 

Proof of Proposition 4.3. Suppose that  m~>l and that  (~,~)~2r Couple the 

h-processes B and B ~ as in Proposition 4.1. When the coupling succeeds, i.e., when 

the event 7"l:={B\e-m/2U=B'\e-m/2u} holds, then we attach to B and B' the same 

Brownian path B. 

Step 1. Define the events 

U(~) := {~nNe-m/2v=o} ,  U(~):= {~n{-le-m/2u=o} 
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and b/=L/(~):=U(G)C~L/(~). When L/(G) is not satisfied, then a hits the circle e-m/20U 

before the circle en0U. Let a be the first time at which 3z( t )Ce- '" /2OU,  and let 7- be the 

first time t>cr such that  ~(t)EOU. Let rt n be the path ~ after ~- and until its first hit of 

the circle en0U after time r. Conditioned on ~b/(~) (i.e., the complement of/X(~)), the 

probability that  ~[a, v] does not disconnect 0 from oo is bounded by croe-% '''42 by (4.6). 

Hence, we get 
< 

The same applies to 1 u(~)Z,,. Therefore, by (3.2), 

It remains to study 

E [ ( Z ~ + Z ~ )  l~u] ~< ce - ' ;m 'V2e  - ' ~ .  

E [ I Z ~ - Z : ~ [  1ul �9 

Step 2. We now show that 

l u  ]Zn-Z~,[ <~ ce . . . . .  Zn('~"), (4.7) 

assuming v~<Inin{v0, vD}. When U is satisfied, then the contribution to [Z,,-Z~,[ comes 

from two possible events: the coupling between B and B t does not succeed (this occurs 

with probability at most ce ......... , independently from ~, /~ and /3'), or the coupling 

succeeds, but /3" visits e - ' " U  and feels the difference between 7 and 7'. In the latter 

case, the Brownian motion B has a probability at most ' - " ' " '  toe ,, not to disconnect the 

origin from infinity after the first visit to c ..... (gU and before tile next visit to 0U, 

and after that,  it is again an ordinary Brownian motion up to its hitting time of the 

(:ircle e'~OU. From this, (4.7) follows. 

Step 3. Suppose first that A~> 1. Then, since max{Z, ,  Z~,} ~<Z,,(~"), 

E [ l u  IZ2- z;,~ I1 ~< AE[lu IZn-Z~,l 2~ -a] 
~<cAe ..... *E[2~] (by (4.7)) 

<~ e 'Ae - ' " ' e  - ' ~  (by (3.2)). 

When A~< 1, 

E [ l u  [Z2 - Z~,)'I ] <~ E [ l u  I Z n -  Z~nl "x ] 

~< c~E[e-X"'"2~l 
c t e - ~ V m e  - n (  . 

_ �9 1 t t This concludes the proof of Proposition 4.3 with v l - m m {  ~v0A, Vo, Vo, voA}. [] 
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4.3 .  P r o o f  o f  P r o p o s i t i o n  2 .1  (i) 

Fix A>0. Define for all integers k~>0, and all fEA,  ~/EF, 

Ukf(7)=E[f(')~w. e-~r 1 �9 

Taking y=Ar  in the inequality lYik/k! <elyl gives for all fEA and 7EF, 

IUkf(7)l < E[f(#)A -k] < IlfllA -k. (4.8) 

Hence, by dominated convergence, for all zEC such that [zl<A, for all fEA and 7EF, 
O()  

T~,-zf(~) =EzkUkf(7). 
k = 0  

We will show that there are constants a, c, v >0 such that Nu (Uk)<ca k for all u E (0, v) 

and all kEN. From this, Proposition 2.1 (i) immediately follows. 

To find an upper bound for Nu(Uk), first note that ]lUkiI <A -k by (4.8), and conse- 

quently, for all m<24, for all (% ~/')EXm, 

IUkf(7)--Ukf('T')l < 211f]lA -k. 

Suppose that m ) 2 4  and (% ~')E 2d,,,. As in Proposition 4.3, since ~ and ~' have tile 

same endpoints, we can choose ~='~'. Define the event/4'  that neither ~ nor/~ hit the 

circle e-m/240U before e0U. Note that when U' is satisfied and ~EF, then (~,~')EX,,, 

(this is where the assumption m ) 2 4  is needed), so that 

lu, l/(~)-/(~')l < {If flu e-urn, 

An elementary computation shows that if kEN and xE (0, 1), 

1 d 2 k 
~xx(X ( logx) )  43,  (4.9) 

so that 
1 

~. E[I(�89162 ( �89162 < 3E[le-~'/2-e-~'/~l]. 
Hence, for all fEA~ and for all (% ~')EX,,. (with m>~24), 

IVkf(~)--Vkf('~')l 

< E [(lw + l ~ w ) I f ( , ) - f ( ~ ' ) I  k, ]+I{f{l~.. E[i~ke-x~/:-r162 

< IISlIue ...... ~-~ +211Sll ~-~E[l~u, l~,~r] + IIfll'3(2/~)~ E [ l e - ~ / ~ -  e-~*'/~l] 

< ellfll~(2A)% - u '  

for all u<min{vl(�89 l v ~  }, by Proposition 4.3 and (4.6). 

Finally, combining the above estimates shows that for all u smaller than both vl(�89 
1 / and ~v0, there exists c>0 such that for all k>~O, Nu(Uk)<c(2/A) A:. This completes the 

proof of Proposition 2.1 (i). [] 
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5. Spectral gap 

We now study the spectru m of T~ for fixed A>0. The proof of the existence of a spectral 

gap will be based on a coupling argument. 

5.1. Coupling the weighted paths 

Let 6>0. For ~O-measurable events ,4 define the weighted probability measures 

E[1AZ~] 
P~[A] . -  E[Z~] (5.1) 

For O<k<~n, let 5(n,k,~/) denote a random variable with the same law that  @ has 
~ n  under P~. It is easy to verify that  

5(n - j ,  k, 5(n,j, "y)) has the same law as 5(n, k+j,  ",/), (5.2) 

when j+k<.n. 

The following coupling result will be crucial in our proof: 

PROPOSITION 5.1. There exist constants v2, c>0  such that for all n ~ l ,  for all 

~/,7'6F, one can define ~=5(n,n,'7) and 5'=5(n,n,~/') on the same probability space 
( ~, jz, p) such that 

x, , / :d < ce - ' 2n  

This subsection will be devoted to the proof of this proposition. The rough strategy 

of the proof is as follows. The first step is to get both paths to be in F + (recall the 

definition of F + from w The second step is to make the two paths match up and 

walk together a little while. The third step is to show that  if the two paths have walked 

together for some time, then it is unlikely that  they will decouple. If any of these steps 

fails, the coupling process returns to the beginning. (For technical reasons, the order in 

which we address these steps is different from the logical order indicated above.) 

Suppose that  u > 0  is fixed (and small enough), and choose C such that for all y E F  +, 

R1(7)~C. Define for all k ) l ,  

]~k = {(~ ,~/ ' )  e F2:  R I ( ~ )  ~ Ce -ku,  RI( '~ / ) />  Ce -ku  and (% ~f') 6 Xk}. 

LEMMA 5.2. There exist c , w > 0  such that for all n>~l, for all k>~24, and for all 

('~,'~')E~k, one can define 5=5(n, 1,~) and 5'=5(n, 1,'7') on the same probability space 
(~, .7 z, p) such that 

K:k+l]/> 1-ce  - w k  



ANALYTICITY OF INTERSECTION EXPONENTS FOR PLANAR BROWNIAN MOTION 195 

Proof of Lemma 5.2. In this proof, we will use (4.3). Suppose that (7,~')E/Ck with 

k~>24. The law of 5 has Radon-Nikodym derivative 

q :---- t~n(,./) 

with respect to the law of ~, and similarly for 5': 

q' := e~-;~r 
nn(7 ' )  

Since ~1 has the same law as ~,1, we may take them to be the same. Our first goal is to 

estimate E[Iq-q']] .  

Recall that Rn-I(~ ' )<Cl by (3.2), and that Rn(v')>~(C/co)e -uk by (3.6) and the 

fact that (7, V')E ]Ck. Hence, by Proposition 4.3, 

[Rn-l(7')~ '1 ceUke-Vlk E[ l e - ~ - e - ~ r  I ~< ~<ce -uk 

when u~< 1 ~Vl. On the other hand, using Proposition 4.3 again, it follows that  

E [l(,,~,)Ex~ IRn - l (~ ' ) -Rn - l (~ ) l  e-.Xr Rn(~/, ) <~ ceUkE[l(%.y,)exk IRn- l (~/ ) -Rn- l (~ ' ) l ]  

cteUke - v l k  ~ c'e - u k  

when u~< 1 ~vl. Since k~>24 and (3',~/')EPdk, if (~,~ ' )EFxF\2c 'k+I,  then ~1 has a down- 

crossing from 1 to e -k/24. This shows readily that 

E l(#,~,)~tx ~ ~ j ~< ~< 

for all u < lv[) .  Finally, 

E[Rn-I(~)  I R n ( 7 ) - l - R n ( 7 ' ) - l [ e  -;~] <~ ce2Uk]Rn(7)-Rn('~')l < e'e2uke-kv~ ~< c'e -uk 

1 for all u<. 5Vl. 
Putting all the pieces together, we see that if we take u<min(~sv~, 1 ~Vl), then 

E[ ]q-q'l]<. ce -uk, and hence there is a coupling of 5 and 6' with # [ h k + l  = h k + l ]  ~ 1 --ce -uk . 
We now check that #[RI(5)~Ce-~(k+I)]=P~[RI(~/)<~.Ce-~(k+I)] is also exponen- 

tially small in k. Recall that R~_~(~)<~coR](~/), by (3.6), so that 

~ n  -- [ P.y JR1 ('Y) < Ce -u(k+~)] = E [ l nd~)<<, c~-,,(~+~) e~-'XC Rn-  l (~/) ] 

[ e~-)~#~ e Pe -u(k+l)] 
~ E [Rn(.~ ) 0~ ] 

= coCe_U(~+l) RI('~) <~ c~)Ce_~, 
nn( ) 
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and a similar inequality holds for ~/'. 

Finally, it remains to bound the probability #[5~Yk+l]. Since ~/EYk and k~>24, if 

5~Yk+l then ~1 has  a downcrossing from 1 to e -k/24. Hence, 

= E [1,~yk+le~_~ v Rn-1 (~) ] #[5~Yk+l] #[5~Yk+l] 
< .  , -v'ok/24 . . . . .  k Z C o e  (COCl/C )e e 

Ce -uk 

when u<  ~v/). This completes the proof of the lemma. [] 

1 We now choose p/> 25 so that  (for the constants defined in Lemma 5.2) ce -~(~- 1)< ~" 

This is to make sure that  the coupling in Lemma 5.2 occurs with positive probability for 

all k>~p-1. 

LEMMA 5.3. There exists a constant c=c(p)>O such that for all ~,,~,'EF +, and for 

all n>~p, one can define 5=5(n,p,"/) and 5'=5(n,p,"S) on the same probability space 

(f~, .~, #), such that 

#[((~, (~t) E ]~p-1] ~ C. 

Pro@ Take 7, 7 'EF+. Define the Brownian motions ~ and ~ '  on the same probabil- 

ity space by mirror coupling. That is, we take I~(t)l= I~'(t)l and keep arg G(t) +arg ~'(t)  

constant up to the first time t at which 5( t )=G'( t ) .  After they have met, they stay 

together. Couple/)  and/ ) '  in the same way. 

It is easy to see that there is a c=c(p)>O, which does not depend on 7 or 3", such 

that with probability at least c, 

(1) ~ and "~' coalesce before they reach e0U, 

(2) ~P,~'PEF +, 

(3) (~P, ~'P) E,u 1, and 
(4) ~PU~'Pc{rc i~  - l /s ,  06(17r, 771)}. 

Let G denote this event. Tim law of 5 has Radon Nikodym derivative 

eP~-~r p) 
q : =  Rn(7)  

with respect to the law of ~, and similarly for 5': 

q' := eP~-~r R , - p ( ~  'p) 

Rn('y') 
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Since PIG] is bounded from below, to prove that  there is a constant c>0  such that for 

all n>>-p and all 3`,~EF + there is a coupling p with 

~[{~,,-1 = 5~-, } n { &  6'E r+} ]  ~> c, 

it suffices to show that q and q' are bounded away from 0 on ~. This does hold, since 
! R~ is bounded and bounded from 0 on F +, and one can verify directly that r and Cp 

are bounded on G. Because RI>~C on F +, such (6,6') are in /Cp-1, and hence the proof 

is now complete. [] 

Proof of Proposition 5.1. Set p * = p + l .  Suppose first that n=mp*, where m E N .  

Let %3`'EF. The coupling # is defined in the following way. Inductively, we construct 

a sequence (6( j ) ,6 ' ( j ) ) ,  j = 0 , 1 ,  ..., m, such that  6(0):=% 6'(0):=3`', 6 ( j + l )  has the 

law of 6(n-jp*,p*,6(j)), and 6 ' ( j + l )  has the law of 6(n-jp*,p*,6'(j)). Then, we set 

(6, 6 ' ) :=(6(m),  6'(m)). Repeated use of (5.2) shows that  6 and 6' have the desired laws. 

Let 

Kj := max{k ~> 1: (6(j),  6 ' ( j ) )E  1Ok}, 

and let Kj:=O if the set on the right-hand side is empty. 

It follows easily from Lemina 5.2 iterated p* times that it is possible to construct 

( 5 ( j + l ) ,  6 ' ( j + l ) )  in such a way that  

P[Kj+,  ) Kj+p*16(j ), 6'(j)] ) (1 -ce -'''Kj )"" 1g. , ) , , - , .  

For the case where Kj < p - 1 ,  tile construction of (6(j + 1), 6'(j + 1)) proceeds as follows. 

Note that the strong Markov property, the Separation Leinlna (3.3), and (3.5) imply that 

ilff iiff f is  +] > 0. 
t*~>l "/El" " 

Therefore, Lelnma 5.3 shows that  it is possible to construct ( ~ ( j + l ) , ~ ' ( j + l ) )  in such 

a way that 

inf infP[Kj+l>~p--lle~(j),6'(j)] >0.  
'n,j, y ,7 '  

By comparison with a Markov chain on the integers (see, e.g., Proposition 2 (iii) 

in [2]), this implies readily that  

P [K,,, >/!p'm]2 j~> 1 - c'e-'"""'. 

for some constants c ~, w ~ >0. This proves the proposition when n/p*EN. The general case 

follows easily. For instance, if n =rap* + m  ~ with rn~E [0,..., p*), we Call apply the result for 

n'=rnp* to 6=6(n,  m', 3`) and to 6' =6(n,  m', 3`'), and note that ~(n', n', 5) =6(n,  n, 3`) and 

6(n ~, n ~, ~ ) = 6 ( n ,  n, 3"). The small values of n can be handled by modifying the constant 

c in the statement of the lemma. [] 
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5.2. Proof  of  Propos i t ion  2.1 (ii) 

We now conclude the proof of Proposition 2.1 (ii) and thereby the proof of Theorem 1.1. 

Step 1. Let k>0.  Suppose that  7EF is fixed, and let ~/:=~(n+k,k,~/). Set ~:= 

~(n, n, ~/) and ~':=~(n, n, 3'). Then ~ has the law of ~(n+k,  n+k, ~/). By Proposition 5.1, 

and ~ may be defined on the same probability space (f~, 9 r', #) so that  

Hence, for all fEA~, 

Tnf(~ ,) T'~+kf(7) f 
Tnl(7)  Tn+kl(7) ~< If(~)-f(~')ld#<~ ]]fll~(2ce-~2+e-nu/3). (5.3) 

It follows that  for all fE.A~, Tnf(7)/Tnl('y) converges when n--+cc to some limit h(f,'7). 
The same kind of argument gives for all % 7~E F, 

Tnf(7) Tnf(7 ') 
T'~l(7') t ~< IIfll~(2ce-'~2+e-~"/3), 

and therefore the limit h(f, 7)=h(f) is in fact independent of 3'. Clearly, h:A--+C is 

linear and [h(f)l ~< Ilfll for all fEA,  so that h is a bounded linear functional on A~. 

Step 2. We are going to find an upper bound for the operator norm Nu of the 

operator f ~ T n f - h ( f ) T " l .  Inequality (5.3) shows that  for all fEAu and 7EF, 

IT"f('g-h(f)T"l('y)l <. Ilfll,,(2ce-"~+e-'~l:~)T"l('~) <<. c'llfll,,c -''~+'`1:~) 

for all sufficiently small u<<.3v2. Suppose now that  (7, 7~)EX, n and that m~< ~n. Then, 

the previous estimate gives 

IT '~ f (7 ) -h ( f )Zn(~ / ) -T ' " f (7 ' )+h ( f )Tn(~ ' ) l  <. 2c'llfll~e-n~e ..... /%-,,.~,. 

Assume now that  (7, 7 ~) E 2'm and 1 that  m>~ ~n. Defining ~ = ~ ,  and using Proposition 4.3 

and the fact that  Ih(f)[ ~< Ilfll, we get 

IZnf(~/)-T~f(~/)l + Ih(f)I [Tn 1(~ ') - Zn 1 (~/) I 

4 E[lf(~n)e-~r + Ilfll Elle - ~ : -  e-mr 

~< E[If(~ n) - f ( ~ ' n ) I  e-~r + 211fll E[I e - ~ <  - e-~W"l ] 

4 E[ lv  If(~ n) - f (~ 'n)  I e - ~ ]  + 2 Ilfll E[ l~v e - ~ ' ]  + 2 Ilfll E[ le -~r - e - ~ l  ], 
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where l; is the event that (~[n,~[In)~,~n+rn. We are going to bound the three terms 

separately. For the first one, we have 

E [ l v  [f(~n)- f(~/'n)le-Xr ] <~ [[f][ue-(n+m)uE[e -x~n] < c'l]fl]ue-n~e-mUe -nu. 

The last term is bounded by 2e[[fHe-nr ..... ' (and therefore by 2cllf[[e-n~e-mUe-n~/6 
1 for all u<  ~Vl) by Proposition 4.3. For the second term, note that  on {~nEF}\~; there 

is a jE{0,  1, 2, ..., 23} such that  ,~n has a downcrossing from e -yn/24 to e -(jn+m)/24. By 

estimating the contribution of each of these 24 possible values of j separately, one easily 

gets, using the strong Markov property, (4.6) and (3.2), that  

23 
_ ! t . 

E[l v e E[e 
j = 0  

ce-n~ e-V'om/24 

ce-n~ e-Um e -un/6 

for all u<  l v ~ .  Combining these three estimates shows that  for all sufficiently small u, 

there exists c--c(u, A) such that  for all n~>l, 

gu(Tn( �9 ) -h( .  )Tn l )  < ce-n~e -nu/6. (5.4) 

Step 3. Note that  Tn+'I(v)/Tnl(V)--+h(T1) and Tn+Jl(~/)/Tnl(V)-+h(TJl) as 
n--+co. Since Tnl(~/)~e -n~ for ~EF  +, we get h(T1)=e -~ and h(TJl)=e-Jr Recall also 

that  IITJlllu<<.ce -j~ by Proposition 4.3. Hence, (5.4) for f=TJ l  shows that  

iiTn+Jl _e-j~Tnlllu ~ ce-n~e-j~e . . . .  /6. 

Hence, Rn=e'~T ' l  converges in .4~ to some limit R, and 

IIR,-Rllu = Ilen~Tnl-Rllu <. ce ..... /6. (5.5) 

Since T is continuous we have T R = l i m n - ~  TRn=liInn--,oo e-~Rn+]=e-~R. Since 

h is continuous, h(R)=limn-+~h(Rn)=l. In particular, this shows that  h(.)R is a 

continuous projection on the vector space spanned by R. 

If h(f)=O, then Tnf/Tnl--+O on F and therefore Tn+lf/Tnl-+O, which implies 

h(Tf)=O. That  is, Tker(h)Cker(h). In particular, the n th  iterate of the operator 

T( . ) -e -~h( . )R  is equal to Tn( ' ) -e-n~h( ' )R.  (5.4) and (5.5) show that  

N~(e~T~( �9 ) -h( .  )R) <. c'e -n~/6, 

so that the operator norm of T( . ) - e -~h( . )R  is bounded by e -~-~/6. This implies 

Proposition 2.1 (ii). [] 
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