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0 .  I n t r o d u c t i o n  

The classical setting. S u p p o s e  t h a t  p: E - + B  is a b u n d l e  of  s m o o t h  c o m p a c t  m a n i f o l d s .  

B y  t h i s  we m e a n  t h a t  p c o m e s  w i t h  a n  a t l a s  of  loca l  t r i v i a l i z a t i o n s  ~ i :  P - 1  (U i)--~ Ui X i i ,  

w h e r e  e a c h  Mi is a s m o o t h  c o m p a c t  m a n i f o l d ,  t h e  c h a n g e s  of  c h a r t s  

- '  (UinUj)xMi ~(UinUj)xMj ~J ~i : 

a r e  f i b e r w i s e  s m o o t h  a n d  t h e  i n d u c e d  m a p s  ( U i n U j ) • 2 1 5  a r e  con -  

t i n u o u s  for  e a c h  r > 0 .  

Research partially supported by NSF. 
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Let V be a complex vector bundle on E with discrete structure group (fiat complex 

vector bundle for short). Let Vi be the complex vector bundle on B whose fiber over bEB 
is the local-coefficient homology group Hi(p -1 (b); V). Denote by K(Ct)  the K-theory of 

the topological ring C, so that  K(Ct)--Z x BU and for a space X the group of homotopy 

classes [X,K(Ct)] is the topological complex K-theory of X. The vector bundles V 

and Vi for i~>0 give classes [VIE[E, K(Ct)],  [Vi]E[B, K(Ct)]. The Atiyah-Singer index 

theorem for families leads to the equation [BeS] 

tr* [V] = E (-1)~ [Vi] E [B, K(Ct)] .  (0.1) 

Here tr is the homotopy transfer of Becker-Gottlieb and Dold, a stable map from B+ 

to E+ determined by p, and tr*[V] is the image of [V] under the map on topological 

K-theory induced by tr. (The subscript + indicates an added disjoint base point.) 

The Bismut-Lott theorem. Let K(C) be the K-theory space of the discrete ring C, 

in other words, the space whose homotopy groups are the algebraic K-groups of C. Like 

K(C t), the space K(C)  represents a cohomology theory. The natural ring homomorphism 

from C with the discrete topology to C with the ordinary topology induces a map 

K(C)-+K(Ct). Since the vector bundles V and V~ above are flat, the elements [V] 

and [V/] lift back to elements in [E, K(C)] and [B, K(C)], respectively, which we still 

denote IV] and [Vi]. It is natural to ask whether equation (0.1) holds in [B, K(C)].  

Bismut and Lott have given strong evidence that this is the case. There are certain 

characteristic classes for flat bundles, constructed by Kamber and Tondeur, which for 

odd k yield homomorphisms ck: [B,K(C)]---~Hk(B;~). The Riemann-Roch theorem 

of Bismut and Lott [BL] t hen  states that equation (0.1) holds in [B,K(C)] after the 

homomorphisms ck are applied: 

ck(tr* [Y]) = E (-1)ick[Vi] E Hk(B; ~). (0.2) 

To prove this Bismut and Lott use Bismut's local version of the Atiyah-Singer index 

theorem for families. (They assume that  the fibers of p are closed manifolds, but we 

have been told that  this was mostly to simplify the presentation.) See also [Lo]. 

An improvement. In this paper we show that  the equation tr* [Y] =~-~ ( -1)  i [Vi] holds 

in [B, K(C)], but we go a little beyond that,  answering a question also raised by John 

Lott. 

Suppose that  p: E--~B is a smooth fiber bundle with compact fiber F,  as above. 

Let R be any discrete ring. Let V be a local coefficient system of f.g. projective left R- 

modules on E, in other words: a bundle of f.g. projective left R-modules on E. As above, 

Y determines an element [Y] E [E, K(R)]. Each fiber Eb =p- l (b)  of p has local-coefficient 
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homology groups Hi(Eb; V). For fixed i these homology groups form a bundle Vi of left 

R-modules on B. We assume that  the fibers of Vi are again projective, in which case 

they are also finitely generated. Each V~ determines an element [Vi] E [B, K(R)] .  In w 

especially Corollary 8.12, we show: 

Riemann-Roch Theorem: t r * [ V ] = E ( - 1 ) i [ V i  ] C [B,K(R)]. (0.3) 

Smoothness is an essential hypothesis in (0.3) and (0.2). In Par t  I I I  of this paper  we 

show, again in answer to a question raised by John Lott,  that  (0.2) and hence (0.3) can 

fail for a fiber bundle whose fibers are closed topological manifolds. 

We emphasize that  both sides of equation (0.3) are fiber homotopy invariants of 

p: E--+B. This is obvious for the right-hand side. It  is true for the left-hand side because 

there exists a fiber homotopy invariant definition of the transfer tr. See [BEG2]; compare 

the older definition in [BEG1]. Thus, (0.3) expresses a fiber homotopy theoretic property 

of bundles of smooth compact  manifolds. 

Like the Bismut--Lott proof of (0.2), our proof of (0.3) uses a family index theo- 

rem. It  is an index theorem of Hopf-Pontryagin  type, that  is, an index theorem stat ing 

that  Poincar@ duals of certain generalized Euler classes of tangent bundles of compact  

manifolds agree with certain generalized Euler characteristics of those manifolds. 

Generalized Euler characteristics. The notion of generalized Euler characteristic 

that  we use relies on the work of Waldhausen, especially [W2]. Waldhausen associates 

with any space Y an infinite loop space A(Y). This is designed to be the universal 

receptacle for Euler characteristics of retractive spaces over Y subject to certain rela- 

tive finiteness conditions. (A retractive space over Y is a space X together with maps 

r: X-+ Y and i: Y--+ X such that  ri=idy.) 
We write S" C ~  "+l for the s tandard n-sphere, with base point (1, 0, ...). If  the space 

Y itself has suitable finiteness properties, then S ~ • Y viewed as a retractive space over 

Y satisfies those relative finiteness conditions, so that  the relative Euler characteristic 

of S~215 Y is defined. We denote it by x(Y)EA(Y)  and we think of it as the "absolute" 

Euler characteristic of Y. Note tha t  it lives in a space A(Y) which depends on Y. 

The finiteness property that  we require of Y is that  it be homotopy finitely domi- 
nated; this means that  there exist a compact  CW-space Z and maps 

f : Z  ~ Y, g:Y-+ Z 

such that  fg is homotopic to idy. The relative finiteness conditions that  we impose on 

retractive spaces over Y are of a similar nature, with the result that  7roA(Y) is isomorphic 

to K0(Z1h(Y))  in the case where Y is path-connected and based. In tha t  case 

K0 (ZTl'l (Y)) ~ ZOK0(Z7rl (Y)) 
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and the component of x(Y) is the sum of the ordinary Euler characteristic of Y, in Z, and 

the Wall finiteness obstruction [Wa] of Y, in the reduced Ko-group of the ring ZTh(Y). 

The characteristic x(Y) depends "continuously" on Y in the following sense. If 

p: E-+B is any fibration with homotopy finitely dominated fibers, then we can evaluate 

X fiberwise. We obtain a section X(P) of another fibration, AB(E)-+B, whose fiber over 

bEB is A(p-l(b)). 

Generalized Euler classes. The generalized Euler class in our index theorem is a class 

[en] in the n th  cohomology of the pair ( B T O P ( n ) ,  B T O P ( n -  1)) with twisted coefficients 

in the spectrum A( , )  associated with the infinite loop space A(*). Here B T O P ( n )  is the 

classifying space for euclidean n-bundles, fiber bundles with fibers homeomorphic to R n. 

We work at this level of generality because our index theorem is for topological manifolds: 

tangent bundles of topological manifolds are euclidean bundles. Compare [Ki]. 

Assembly. The final ingredient in our index theorem is the assembly transforma- 

tion [WW1]. Let A(Y)  be the spectrum associated with the infinite loop space A(Y). 
Assembly is essentially a natural transformation a:  Y+ A A ( , ) - + A ( Y ) .  It agrees with the 

obvious identification ,+ A A ( , ) ~ A ( * )  when Y =  * and is essentially characterized by that  

property. (Every functor from spaces to spectra which respects homotopy equivalences 

has such an assembly transformation.) We like to think of a as a map of infinite loop 

spaces, from the space A%(Y):=f~~ to A(Y). 
(Most index theorems involve some map from the home of the symbols to the home 

of the indices. The map is usually some form of assembly, or assembly following on 

Poincar~ duality, depending on whether those symbols are viewed as representatives of 

generalized homology or cohomology. However, it is not always easily identified as such. 

See for example [BD1], [BD2] and the reformulation of the Mishchenko-Fomenko index 

theorem [MF] in [Rol, 3.1], [Ro2, 3.3], [Ro3, 2.2].) 

The index theorem. Assume now that  p: E---+B is a bundle of compact topological 
n-manifolds, possibly with boundary. Let (r, to) be the vertical tangent bundle pair of p. 

(This is short for a certain euclidean n-bundle T on E, a certain euclidean (n -1 ) -bund le  

To on OE = Ub OEb and an identification of v lOE with ~| where ~ is a trivial line bundle 

on OE.) The fiberwise Poincar~ dual of [e,,](T, TO) turns out to be a vertical homotopy 

class of sections of a fibration 

A~(E) -~ B 

with fiber A %(p-1 (b)) over b cB. The content of the index theorem is that fiberwise as- 

sembly a: A~ takes the fiberwise Poincar~ dual of [en](~-, Ta) to the fiberwise 

characteristic, up to a vertical homotopy: 

ap[enl(T, 7O) ~-- X(P). (0.4) 
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A vanishing theorem. Becker [Be] has defined a stable cohomotopy Euler class, liv- 

ing in n th  cohomology of the pair (BO(n), B O ( n - 1 ) )  with twisted coefficients in the 

sphere spectrum S ~ Using the unit map S~ determined by the point X(*)C A(*)= 

f ~ A ( * ) ,  we can view [bn] as a class with twisted coefficients in the spectrum A(*). It 

turns out that  

[bnl =j*[en] (0.5) 

where j:  (BO(n), B O ( n -  1))--+ (B TOP(n) ,  B T O P ( n -  1)) is the inclusion. The unit map 

S~ has a canonical splitting up to homotopy, so that  (0.5) identifies the stable 

cohomotopy component of [en] applied to any vector bundle (pair) and implies the van- 

ishing of the other component. The reasoning behind (0.5) is that  the forgetful passage 

from vector bundles to euclidean bundles factors through disk bundles, bundles with 

fibers homeomorphic to the n-disk II) n for some n; and we can learn something about 

those disk bundles by applying (0.4) with p equal to the disk bundle projection. Briefly, 

(0.5) is a distant corollary of (0.4). 

Outline of proof of (0.3). For a pointed space X, let Q(X):=~)~E~(X).  One needs 

to know that  the fiberwise Poincar6 dual of [bn] (T), viewed as a vertical homotopy class of 

sections of a fibration on B with fiber Q(p-l(b)§ over bE B, refines the Becker-Gott l ieb- 

Dold transfer, viewed as a homotopy class of maps B---~Q(E+). (This refinement is still 

a fiber homotopy invariant of p: E--+B.) Combining (0.4) with (0.5) gives 

~[bn](~) ~- X(~). (0.6) 

Applying an appropriate map of infinite loop spaces At~(E)-+K(R) determined by the 

module bundle V to the two sides of equation (0.6), we obtain (0.3). In [Wi] the transition 

from (0.6) to (0.3) is shown to be analogous to how Fulton and MacPherson [FM] establish 

a Riemann-Roch theorem in algebraic geometry by first proving a bivariant version. 

This outline of proof also suggests that  (0.6) should be viewed as essentially a special 

case of (0.3), the universal case--wi th  suitably generalized notions of ring and fiat vector 

bundle. We therefore sometimes refer to (0.6) as the universal Riemann-Roch formula 
for bundles of smooth compact manifolds. 

A converse Riemann-Roch theorem. The two sides of equation (0.6) are defined for 

any fibration with homotopy finitely dominated fibers, p: E-+B. It is therefore tempting 

to look for a geometric characterization of those fibrations p: E-+B for which the univer- 

sal Riemann-Roch equation (0.6) is a true equation. We show in Part  III of this work 

that  (0.6) holds for a fibration p: E-+B with homotopy finitely dominated fibers if and 

only if p is fiber homotopy equivalent to a bundle of smooth compact manifolds. This 
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converse depends very strongly on Waldhausen's work relating stabilized h-cobordism 

theory (alias concordance theory, alias pseudoisotopy theory) to algebraic K-theory. 

Further remarks. (1) Our construction of the characteristic class [e,~] is designed 

to give the shortest possible proof of the index theorem (0.4). There is an alternative 

description in which [en] appears as the stable part of the obstruction to splitting off 

trivial line bundles from euclidean n-bundles. For motivation we recall that  Becker 

designed his characteristic class [bn] to have the following property: 

Let ~ be an n-dimensional vector bundle on a CW-space X of dimension ~<2n-4. 

Then [b,,J(~)=0 if  and only if  ~ has a vector bundle splitting ~ ' 0 ~ ,  where c is a trivial 

line bundle. 

Becker found that  the correct coefficient spectrum for a characteristic class [bn] 
with this property had to be a spectrum with i th  term E(O( i ) /O( i -1 ) ) ,  in other words 

the sphere spectrum. By analogy, in the alternative description of [en] the coefficient 

spectrum has i th  term E ( T O P ( i ) / T O P ( i - 1 ) ) .  Again Waldhausen's theory is needed to 

identify the coefficient spectrum with A(*). Details may appear elsewhere. 

(2) After reading a preliminary version of the present paper, Waldhausen found 

another proof of (0.6) (for bundles of smooth compact manifolds) and the "converse" 

mentioned above. His proof is based on his manifold approach to (his) algebraic K-  

theory of spaces. An advantage of this proof is that  it is very direct, for a reader who 

knows his way through Waldhausen's work on h-cobordism theory and the algebraic K- 

theory of spaces. A disadvantage is that it does not make the connection with index 

theory. As a result it does not suggest tile generalizations that  our proof suggests. (The 

generalizations that  we have in mind are index theorems involving families of closed 

manifolds and their Euler characteristics, where the Euler characteristics are promoted 

to homotopy fixed points of actions of Z/2  by duality on the appropriate algebraic K- 

theory spaces.) Waldhausen's alternative proof will be sketched at the end of Part  III. 

Guide. Ii1 w we introduce the notion of a characteristic for a functor F from a small 

category C to spaces. We use it to explain how certain generalized Euler characteristics 

can be evaluated on "families" of spaces, such as the fibers of a fibration. What  one 

should have in mind here is the A-theory Euler characteristic described above. 

In w167 we have a much narrower framework, as follows. Let E" be the category of 

euclidean neighborhood retracts (ENR's), where a morphism from X to Y is a partial 

proper map from X to Y; that  is, a proper map V---~Y, where V is an open subset of X. 

Such a morphism, denoted X~.*Y, is a localization if the underlying proper  map V--+Y 

is cell-like ILl], [L2], [L3]; the cases where V--+Y is an identity map are particularly 

important to us. 
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The localization morphisms form a subcategory Is of s We now fix a functor 

F from E" to pointed spaces which is pro-excisive; this means that  the abelian group- 

valued functor 7r, F is a locally finite generalized homology theory on ~'. We then fix a 

characteristic X for FilE'. 

The F that  we have in mind in w167 is the pro-excisive functor corresponding 

to A(*), the connective spectrum determined by the infinite loop space A(*). The X that  

we have in mind in w167 is a refinement of the A-theory Euler characteristic outlined 

above--where  that  makes sense, i.e., for compact ENR's and cell-like maps between such. 

Our strategy is to prove the index theorem (0.4) by stating and proving a pre-assembly 

version of (0.4), a much sharper index theorem, in the abstract framework of pro-excisive 

functors F on ~" and characteristics for FILE'. 

The characteristic classes needed in the (sharper) index theorem are developed in w 

The index theorem itself occupies w In w we prove the vanishing theorem (0.5), in the 

abstract framework. w is about a pre-assembly version of (0.6), a consequence of w 

and w 

In w and w we finally present those examples of characteristics that  we had in mind 

in w and w167 respectively. It is shown in w that  the w example does indeed refine 

the main example of w This completes the proofs of (0.4) and (0.6). In w we show 

how (0.3) follows from (0.6) and discuss how (0.3) needs to be corrected to be valid for 

bundles of compact topological manifolds. In the last subsection of w we explain how 

our results give rise to a family Reidemeister torsion; compare [BL] and [IZ], [I3]. 

In w we state the Waldhausen theorems on the homotopy types of stabilized spaces 

of h-cobordisms, with all the background that  we need to use them. The last part of 

w is a guided tour around Waldhausen's writings on the subject. The main result of 

w is a characterization of bundles of compact topological manifolds among fibrations 

p: E-+B with finitely dominated fibers. This characterization is in terms of the fiberwise 

index X(P). The behavior of the basic index theorem of w under stabilization, i.e., 

product with [0, 1], is the subject of w Using w and w we finally obtain in w 

a characterization of bundles of compact smooth manifolds among fibrations p: E---~B 

with finitely dominated fibers. This characterization is again in terms of tile fiberwise 

index X(P). 

Conventions. Unless otherwise stated, the sets that  we use are small sets, i.e., they 

are elements of a fixed universe [Mac, Chapter I, w 

We use the word space to mean a compactly generated weak Hausdorff space (whose 

underlying set is small), unless otherwise stated. Products  and mapping spaces are 

formed in the category of these spaces in the usual way. 

All cofibrations are closed maps having the homotopy extension property. 
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A homotopy cartesian square is a commutat ive square of spaces in which the canon- 

ical map from the initial term to the homotopy pullback of the other three terms is a 

weak homotopy equivalence. 

We tend to use boldface notation for spectra. Specifically, if X is an infinite loop 

space, then X is the default notation for the corresponding ( -1) -connected  spectrum. 

P a r t  I. A n  i n d e x  t h e o r e m  

1. C h a r a c t e r i s t i c s  

Overview. A finitely dominated space X determines an Euler characteristic in the group 

K0(ZT~I(X)) whose image in the reduced Ko-group is the Wall finiteness obstruction. 

With  a view to extracting Wall finiteness obstructions fiberwise, i.e., from a fibration 

with finitely dominated fibers, we propose an abstract ion of the notion Euler character- 

istic which is applicable to parametrized families (of finitely dominated spaces, or other 

objects). 

To keep notation simple, we work in an abstract  setting which does not even mention 

algebraic K-theory. For illustrations with algebraic K-theory,  see w which can be read 

right after w 

Let e be a small category and let F be a functor from e to the category of spaces. 

For each C in C let C/C be the over category whose objects are the morphisms in C 

with codomain C. Later  we will also need the under category C/C whose objects are the 

morphisms in e with domain C. 

Definition 1.1. A characteristic for F is a natural  t ransformation X from the functor 

c le/cl to F.  

Remarks. (i) The space of characteristics for F is exactly holim F,  the homotopy 

limit of F.  

(ii) For C in C let )I(C):=x(idc)EF(C), the image under X of the identity vertex 

in le/cI.  In our favorite examples x(C) is something like an Euler characteristic of C. 

It  is a point in a space F(C) which may depend on C. 

Example 1.2. Let F be the constant functor with constant value equal to the classi- 

fying space lel. For each C in e we have the forgetful functor C / C ~ e  which, on passage 

to classifying spaces, yields X: ]e/CI-~F(C). 

Example 1.3. Let 9" be a functor from e to the category of small categories. Suppose 

that  we have a rule selecting, for each object C in e, an object C ! in 9"(C) and, for each 

morphism e: C ~ D  in e, a morphism e!: e , (C! )~D ! in 9"(D). We assume that  e ! is an 
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identity morphism whenever e is an identity morphism and that  the chain rule alias 

1-eocycle condition is satisfied: (ef)!=e! .e , ( f  !) whenever e and f are composable. 

In these circumstances we can define a' functor F from e to spaces by F(C):--[ff'(C)l. 

We can also define a characteristic for F,  as follows. For a fixed D in g the rule taking 

f: C-+D to f , (C  !) is a functor from e /D to 9"(D), inducing X: [C/D[-+F(D). 

Suppose again that  F is a functor from e to spaces. The homotopy colimit of F,  

denoted hocolim F,  is the geometric realization of the simplicial space 

In] I_[ 
u:[n]--+e 

See [BK]. When it is convenient we write hocolimcF(C) or hocol imF(?)  instead of 

hocol imF.  The homotopy colimit of F comes with a canonical map  to [e[, because [e] 

is the homotopy eolimit of the terminal functor from g to spaces. A characteristic for 

F determines, up to homotopy, a section of the canonical map  hocolimF--+]e[.  More 

precisely: 

OBSERVATION 1.4. A characteristic X for F induces a map from hocolim ]e/?] to 

hocolim F. The composition hocolim [e/?]-+hocolim F-+[e[  is a homotopy equivalence. 

Remark 1.5. Let u: B'-+B be a homotopy equivalence and let p: X - + B  be a fibra- 

tion. Then 

F(p) = maPB(B , X)  u ~ maPB(B, ' X )  

is a homotopy equivalence. Hence every map s: B'-+X over B determines, up to con- 

tractible choice, a section of p. 

In particular, in the situation of Observation 1.4, let u: B'-+B be the projection 

from hocolim le/?[ to [e I and let p: X-+B be the fibration associated with the projection 

hocolim F - +  le[. Now Observation 1.4 gives us a canonical map from holim F to 

mapB (B '  , X)  "~ r (p ) .  

It  follows from [Dw, 3.12] that  this map is a weak homotopy equivalence if F takes 

all morphisms to weak homotopy equivalences. Under these circumstances, therefore, 

we like to think of elements of hotim F as sections of the fibration associated with the 

quasifibration hocolim F - +  [ff[. 

1.6. Main application. Let p: E-+B be a fibration, where B is the geometric realiza- 

tion of a simplicial set ~B. Suppose that  e is a full subcategory of the category consisting 

of all spaces and the homotopy equivalences between them. Let F be a functor from ff 

to spaces taking all morphisms to homotopy equivalences. Suppose fnal ly  that ,  for any 
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simplex x in ~ ,  the pullback Ex of E under the characteristic map  i l x l - + B  belongs 

to e. We will make a fibration FB(E)-+B essentially by applying F to the fibers ofp .  If 

F comes with a characteristic X, we can evaluate it on the fibers of p to obtain a section 

X(P) of FB(E)-+B. 
Details. Let s i m p(~ )  be the category of simplices of ~ .  The objects are the simplices 

of ~ ;  a morphism x--+y is a monotone map f from {0, 1, ..., Ix[} to {0, 1, ..., lY]} for which 

f*y=x. 
Let B '  be the homotopy colimit of the functor x~-+lsimp(~)/xl  on s imp(~) .  This 

comes with a canonical projection to Isimp(~)l  which is a homotopy equivalence. For cos- 

metic purposes we like to compose it with another homotopy equivalence from Isimp(~)l  

to B. This is induced by Kan ' s  ' last vertex map '  [Kan], a simplicial map from the nerve 

of simp(ff~) to ~ .  The last vertex map takes an n-simplex 

XO"~X 1 ~ . . .  gn-1) Xn 

in the nerve to the n-simplex g*Xn in ~ ,  where g: {0, . . . ,n}-+{0, ..., Ixn]} is defined by 

g(i)-=gn-1 ... gi+lgi(Ixil) for O<~i<.n. 
Now define FB(E)-+B as the fibration associated with the composite projection 

(which is already a quasifibration) hocolim~F(Ex)-+lsimp(~)l-~B , where x runs 

through the simplices of ~ .  The characteristic X gives us an element 

X(P) E holim E(Ex). (1.7) 
x 

This in turn gives us a map  B~--4FB(E) over B, which we may regard as a section of 

FB(E)-+B, determined up to contractible choice, as explained in Remark  1.5. We em- 

phasize that  (1.7) is our rigorous definition of X(P). But we sometimes find it suggestive 

to write X(P): B-+FB(E) for (1.7). 

2. E x c i s i v e  c h a r a c t e r i s t i c s  a n d  c h a r a c t e r i s t i c  c l a s s e s  

Overview. In this section we introduce excisive characteristics x (Y)EF(Y)  defined for 

euclidean neighborhood retracts Y. We assume therefore tha t  F is defined on the cat- 

egory ~" whose morphisms are pointed maps between one-point compactifications of 

euclidean neighborhood retracts,  and tha t  ~r.F is a locally finite generalized homology 

theory (see Remark 2.2). However, we do not assume that  the characteristics x (Y)  be- 

have naturally for all morphisms in g ' ;  we only assume that  they behave naturally for 

what we call localization morphisms. 

Again we work in an abstract  setting to keep the notation simple. For illustrations 

with algebraic K-theory,  see w which can be read right after w 
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L o c a l l y  f in i te  h o m o l o g y  t h e o r i e s  a n d  exc i s ive  c h a r a c t e r i s t i c s  

A map X - + Y  between locally compact spaces is proper if it extends to a (continuous) 

pointed map X'-+Y" of the one-point compactifications. Euclidean neighborhood re- 

tracts (ENR's) are locally compact, so we can make a category E whose objects are the 

ENR's and whose morphisms are the proper maps. There is a larger category E" with the 

same objects, where a morphism from X to Y is a (continuous) pointed map f :  X ' - + Y ' .  

Remark-Notation. It is appropriate to think of a morphism in E" from X to Y 

as a partial proper map, i.e., a proper map to Y defined on an open subset of X. 

Namely, the morphism is a pointed map f :  X'-+Y" and so determines an open sub- 

set Y : = f - l ( Y ) = X \ f - l ( c c )  of X and a proper map g: V--+Y given by g(x):=f(x) for 

xEV. (We have V = X  if and only if f is a morphism in ECE' .)  Conversely, given X 

and Y, an arbitrary open set V in X and an arbitrary proper map g: V-+Y, we obtain 

a pointed map f:X'--~Y" alias morphism f from X to Y in E', by f(x):=g(x) for xEV 

and f ( x ) : = o c  for x C X ' \ V .  
To remind the reader that morphisms from X to Y in E" are, in general, not maps 

from X to Y, but only partial (proper) maps, we will preferably write such morphisms 

in the form 

f : X ~ Y .  

2.1. Terminology (compare [WW2, 1.1]). A commutative square of locally compact 

spaces and proper maps 

X1 ~ X2 

X3 ) X4 

is a proper homotopy pushout square if the resulting map from the homotopy pushout of 

X3+-X1 -+X2 to X4 is a proper homotopy equivalence. A covariant functor F from E to 

pointed spaces is homotopy invariant if it takes proper homotopy equivalences to weak 

homotopy equivalences. A homotopy invariant F is excisive if it takes proper homotopy 

pushout squares in E to weak homotopy pullback squares (also called homotopy cartesian 

squares) of spaces and F(X  x [0, oo[ ) is weakly contractible (weakly homotopy equivalent 

to a point) for all X in E. 

Finally we call F pro-excisive if it is homotopy invariant, excisive and satisfies an 

appropriate wedge axiom as follows. Suppose that  X is the coproduct in E of objects Xi 

for i E N = { 0 ,  1,2,...}. For each j E N  let X~ be the coproduct of Xj and all Xi • [0, cc[ 

for i # j .  The obvious inclusions induce 

7r.F(X) --+ 7r, F(X~) +-- ~r,F(Xj) 
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where the right-hand arrow is an isomorphism by excision. We use this as an identifi- 

cation, take the product over all j ,  and obtain u: 7r, F(X)-~I-[j~N 7r, F(Xj). The wedge 

axiom we want stipulates that  u be an isomorphism. 

A functor F from E" to pointed spaces is pro-excisive if its restriction to E is pro- 

excisive. In this situation the wedge axiom simplifies to the statement that,  for X =  

I-lieN Xi in E', the morphisms Pi: X~'*Xi given by pi(x)=x for xEXi and pi(x)=oo for 

x not in Xi induce a weak homotopy equivalence F(X)--+I-[iEN F(Xi). 

Remark 2.2. Suppose that  F is pro-excisive (defined on E, to begin with). Then each 

F(X) is an infinite loop space. Indeed, excision implies that the commutative diagram 

of pointed spaces 

F(X) �9 

L 1 
F ( X x  ] - o c ,  O]) > F ( X •  

is a homotopy cartesian square with contractible lower left and upper right term. Let 

F ( X )  be the CW-spectrum made from the spaces F (X•  using their singular sim- 

plicial sets and the method of [Go1, 0.1]. Then F is a functor from ~: to CW-spectra; 

it is pro-excisive in the sense of [WW2, 1.1]. Conversely, if J from E to CW-spectra is 

pro-excisive as in [WW2, 1.1], then ~o~j is pro-excisive in the sense of w above. (Use 

[WW2, 1.2].) Here ~o~ of a spectrum can be defined as the geometric realization of the 

simplicial set of maps to that  spectrum from the sphere spectrum. 

Consequently, the classification theorem of [WW2, 1.2] is also a classification theo- 

rem for pro-excisive functors on E as in w above. The result of the classification is that  

every pro-excisive F from E to pointed spaces is related by a chain of natural weak equiva- 

lences to the functor X~-~~176 (A natural transformation between functors 

F1, F2 from ~ to pointed spaces is a weak equivalence if the map FI(X)-+F2(X) is a 

weak homotopy equivalence for every X in E.) 

There is a similar classification theorem for pro-excisive functors from E" to spectra 

as in w every pro-excisive F from E" to pointed spaces is related by a chain of natural 

weak equivalences to the functor X ~ - + ~ ( X ' A F ( , ) ) .  See [WW2, 2.1]. If F from ~" to 

pointed spaces is pro-excisive, then the functor X~-+~r,F(X) on E" has all the properties 

that one expects from a locally finite generalized homology theory. 

2.3. More terminology. A compact subset C of ~n  is cellular [Br] if each neighbor- 

hood of C in Rn contains another neighborhood of C which is an n-cell, i.e., homeomor- 

phic to R". Then 

H*(C; Z) ~ H* (point; Z) 
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by the continuity property of Cech cohomology. A map g: X---~Y between ENR's  is 

cell-like if g-l(y) is homeomorphic to a cellular subset of some euclidean space, for all 

yEY. Lacher, who introduced the notion, also gave in [L1, 1.2] the following beautiful 

characterization of proper cell-like maps among the proper maps from X to Y. A proper 

map g: X-+Y (between ENR's)  is cell-like if and only if, for every open subset U of Y, 

the appropriate  restriction of g is a proper homotopy equivalence from g-l(U) to U. 

The only 'explicit '  cell-like maps tha t  we are going to see in this paper  are homeo- 

morphisms and disk bundle projections. 

We call a morphism f :  X~.-~Y in g" a localization if it is cell-like as a partial map; in 

other words, if the proper map from f - l ( y ) = X \  f-l(c~) to Y obtained by restricting f 

is cell-like. We denote the subcategory of ~" consisting of all objects and the localization 

morphisms by l~'. Then gNlE" (intersection in E') is the category of all ENR's,  with 

(proper) cell-like maps as morphisms. 

Examples. Let X be an ENR. For an arbi trary open subset V c X ,  the pointed map 

X'--+V" given by x~--~x for xEVcX"  and x~-~cx~ for x E X ' \ V  is a morphism X ~ V  in 

l~'Cg'. Indeed, the identity V---~V is cell-like. 

For any X in ~', the projection X •  [0, 1]--+X is proper and cell-like, and so belongs 

to the intersection E N l ~ ' c  ~ ' .  

Assumption 2.4. For the remainder of this section (and for use in w167 6) we fix a 

pro-excisive functor F from E" to pointed spaces and a characteristic X for F]lg'. We 

call such a characteristic an excisive characteristic. 

Excis ive  characterist ics  for  b u n d l e s  

Let p: E--+B be a fiber bundle whose fibers are compact  topological manifolds. Assume 

that  B = I~1 for a simplicial set ~ .  Our goal is to associate with this setup a section X(P) 

of FB( E)---~ B. 
This is of course the informal notation of w The true home of X(P) should be 

the homotopy limit holim~ F(Ex), where x runs over the objects of s imp(~ ) .  The space 

holimx F(E~) can be viewed as a section space; see Observation 1.4 and Remark 1.5. 

Unfortunately the characteristic X does not determine a point in holimx F(Ex). The 

difficulty stems from the fact that  X is a characteristic for F[ IE ' ,  while x~-+E~ is not 

a functor from s imp(~)  to lE" except in the trivial case B=~. (It is a functor from 

s i m p ( ~ )  to ECE' ,  but not to EAIE' ,  which is the category of ENR's  and cell-like maps. 

The maps E~---~Ey induced by morphisms x--+y in simp(~3) are not always surjective, 

therefore not always cell-like.) Heavy guns are needed to overcome this difficulty. 
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Let tfl3 be the simplicial set whose k-simplices are pairs (x, 0), where x is a k-simplex 

in f13 and 0 is an equivalence relation on Ex, with quotient space E ~ such that  the two 

projections make up a homeomorphism E~ ~ A k x E ~ 

THEOREM 2.5. The forgetful map t~--+f~ is a Kan fibration. Its fiber over any 

vertex x is isomorphic to TOP(Ex,OEx)/TOPo(Ex,OEx), where TOP(Ex,OEx) is the 

simplicial group of automorphisms of the pair (Ex, OEx) and TOP0(Ez ,  0E~) is the cor- 

responding discrete group. Hence by [Mc2] the fibers of t~-+f~ are acyclic. 

Remark. Suppose that  B is connected, with base vertex z. Let c from B to 

BTOP(Ez,OEz) be the classifying map for p. Then we think of tB:=[tf81 as the 

homotopy pullback of 

B 2+ BTOP(Ez,  OEz) +--" B TOPo(E~,  OEz). 

Proof of Theorem 2.5. The Kan fibration s ta tement  is true by inspection. Now fix 

a vertex x in B and write L=Ex=p- l ( x ) .  There is a map  from TOP(L ,  OL) to the fiber 

of t~--+flB over x which takes a k-simplex f: L •215 k to the equivalence relation 

0 on L • A k given by 

ZlOZ2 ~ f l (Z l )= f l ( z2 )EL ,  

where f l  is the first component  of f .  The map factors through the space of left cosets 

TOP(L ,  OL)/TOPo(L, OL), giving the isomorphism claimed in Theorem 2.5. The main 

result of [Mc2], building on work of Mather [Mat], Thurston [Thu] and Segal [$2], is that  

TOP(L ,  OL)/TOPo(L, OL) is acyclic. [] 

Let t B = It ~[  and let simp(t ~ )  be the category of simplices of t 93. The projections 

Ex--+E~ for (x, 8) in simp(t~B) consti tute a natural  t ransformation which induces a map 

of homotopy limits: 

holim F( Ex ) -+ holim F( E~). (2.6) 
x (x.e) 

COROLLARY 2.7. This map is a weak homotopy equivalence. 

Proof. Since we are comparing two func tors - -on  two different but related categories, 

s imp(~ )  and s i r n p ( t ~ ) - - t a k i n g  all morphisms to weak homotopy equivalences, we can 

translate tile s tatement  into one about  section spaces. Tha t  s ta tement  is a special case 

of the following: Let 

E1 > E2 

B1 9 �9 B~ 
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be a commutat ive pullback square, where q2 is a fibration whose fibers are componentwise 

nilpotent [HMR] (we have in mind the infinite loop spaces F(E~)) and g is a map  whose 

homotopy fiber over any point in B2 is acyclic. Suppose also that  B1 and B2 are homotopy 

equivalent to CW-spaces. Then the pullback map from F(q2) to F(ql) is a homotopy 

equivalence. 

The proof of the general s ta tement  is as follows. We can assume that  g is a fibration. 

Then r(ql)  can be identified with a space of sections r(q~) where q~: E~--~B2 is the 

fibration whose fiber over xEB2 is the space of maps from g-l(x) to q~l(x). Our map 

r ( q : ) - ~ r ( q l )  becomes a map induced by an evident map E2--+E~ over B2. 

This  is given on the fibers over x �9 B2 by the inclusion of the space of constant maps from 

g-l(x) to q~l(x) in the space of all maps from g-l(x) to q~l(x). By our hypotheses, 

E2-+E~ is a fiberwise weak homotopy equivalence. [] 

2.8. Definition-Summary. Let p: E-+B be a fiber bundle with compact  topological 

manifold fibers. Up to contractible choice, p determines a section X(P) of FB(E)-+B, in 

the informal notation of w but with Assumption 2.4. 

Details. We assume B = I ~  I as in Theorem 2.5 and observe that  (x,O)~-~E~ is a 

functor taking all morphisms to homeomorphisms, hence a functor from simp(tfl3) to IE'. 

Therefore the characteristic X for F[lE" determines a point 

X(P) �9 holim F( E~). (2.9) 
(~,0) 

The homotopy fiber C of (2.6) over X(P) is a weakly contractible space. Each point 

cEC determines a point in holim~F(Ex), which in turn determines, as in Remark 1.5 

and w a section of Fn(E)-+B. We emphasize once again that  (2.9) is our rigorous 

definition of X(P); but we find the informal notation X(P): B---~FB(E) suggestive. [] 

Characteristic classes 

We will show that  X in Assumption 2.4 determines a characteristic cohomology class 

[~n] for euclidean n-bundles, with twisted coefficients in the spectrum F(*). For more 

precision, write T O P ( n ) = T O P ( R  n) and let ~(n) be the tautological euclidean n-bundle 

on B T O P ( n ) ,  with fiberwise one-point compactification 7(n) ' .  We write 

[en] E H ~(n) (B TOP(n) ;  F(*)) 

to indicate tha t  [en] is a vertical homotopy class of sections of a bundle with base 

B T O P ( n )  and fiber ~ ( 7 ( n ) ~ A F ( * ) )  over xeBTOP(n). 
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Remark 2.10. We take the following view of euclidean n-bundles. Let ~ (n )  be the 

category of n-balls, i.e., the category of all spaces homeomorphic to It~ n, with reverse 
embeddings as morphisms. That  is, a morphism from V to W is an embedding of W 

in V. By our conventions, ~(n)  is a small category. Then 

]~(n)] ~ B T O P ( n )  (2.11) 

by [Mc2, 2.15]. A map from a paracompact space X to ]~(n)[ is therefore as good as a 

euclidean n-bundle on X. 

Remark 2.12. We take the following view of cohomology. Let C be a small category 

and let E be a functor from C to the category of f~-spectra; the morphisms in the 

category of ft-spectra are the functions in the sense of [A1, p. 140]. Suppose that  E 

takes all morphisms in e to weak homotopy equivalences. 

Then for fixed n � 9  we have a functor C~-~En(C) from e to spaces, picking out the 

n th  term of E(C) .  Now we regard E as a (possibly twisted) coefficient system on ICI for 

generalized cohomology and write 

7rk holim En = H=-k(lel; E ( - ) )  (2.13) 

for k~>0. We justify this by interpreting holim En as the section space of a suitable fibra- 

tion on lel, with fiber -~E , (C)  over a vertex C of ICI. The details are as in Remark 1.5. 

We identify 23(n) with a subcategory of lE', consisting of the objects V, W, ... which 

are homeomorphic to It~" and the morphisms f :  V ~  W which restrict to homeomorphisms 

from f - I ( W ) c V  to W. Let 

@,, := X 1:/3(n) �9 hol im(Fl~(n)) .  (2.14) 

Now (2.13) says that  7to hol im(Fl~(n) )  is the 0th cohomology of ]~(n)l with coefficients 

in the spectrum-valued functor F l~ (n ) .  Combining this observation with Remarks 2.10 

and 2.2, we can say that [~,,] e 7to ho l im(Fl~(n) )  is a characteristic cohomology class for 

euclidean n-bundles, 

[en] �9 H'~(n)(BWOP(n); F(*)). 

Relat ive  characterist ic  classes 

Remark 2.15. We take the following view of relative cohomology. Let A be a small 

category, OACA a subcategory. Suppose that  any morphism in A whose codomain is 

in OA belongs to OA. Let E be a functor from A to the category of f~-spectra (defined 
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as in Remark 2.12) taking all morphisms to weak homotopy equivalences. Let 0E be 

a functor from 0.4 to weakly contractible m-spectra. Let ~:OE--+E[OJt be a natural 

transformation. Define another functor E rel from Jt to ~-spectra by 

OE(a) 
Erel(a) := E(a) 

0E( f )  

Ere l ( f ) :=  E ( f )  

E ( f ) . r  

Then we allow ourselves to write 

if a is in OA, 

otherwise, 

if f is in OA, 

if the domain of f is not in OA, 

otherwise (where d is the domain of f ) .  

7rk holim Ern el = Hn-k([A[, [0,A[; E) 

for k>~0. To justify this, we refer to Remark 2.12 and observe in addition that  holim E r~l 

fits into a homotopy cartesian square with contractible lower left-hand term, 

holim E~ eJ , holim En 

holim 0E~ �9 holim(En[OA). [] 

For n~>0 let 9~(n)  be the category of generalized balls whose objects are the 

spaces homeomorphic to R n or [0, co[xll~ n-l ,  with reverse embeddings taking bound- 

ary to boundary as morphisms. That is, a morphism from V to W is an embedding of 

(W, 0W) in (V, OV). Note that  the inclusion ~B(n)--+9~B(n) induces a homotopy equiva- 

lence of the classifying spaces--because it has a left adjoint, the delete boundary functor. 

Let 09~B(n)C 9~B(n) be the full subcategory consisting of the objects homeomorphic to 

[0, cc[xlR n-1. Then we have 

g'n = X Ig~B (n) e holim(Fl9:g (n)) r~l , (2.16) 

improving on (2.14). It is shown in Lemma 2.17 below that  the pair (19~(n)l, [09~(n)l ) 

is homotopy equivalent to (BTOP(n),BTOP(n-1)") for n~>0, where T O P ( n - l ) "  is 

the group of homeomorphisms ] - oc, +oc] x N n-  1__~ ] _ oc, +oc] x N n-  1, viewed as a sub- 

group of TOP(n) by restriction. (For n=O read BTOP(n-1)7=~.) Therefore, using 

Remark 2.15, we may write 

[~n] r H ~(") (B TOP(n),  B T O P ( n -  1)"; F( , ) ) .  
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LEMMA 2.17. (19~3(n) I , [09~3(n) I )~(BTOP(n) ,BTOP(n-1)~) .  

Proof. Let ~3t(n) and 09~3~(n) be the topological categories corresponding to iB(n) 

and 923(n). It is enough to show that  the vertical arrows in the diagram of classifying 

spaces and inclusion maps 

109 (n)l �9 I (n)l 

are homotopy equivalences (the horizontal arrows are induced by the delete boundary 
functors). This is done in [Mc2, 2.18] for the right-hand vertical arrow. An entirely 

analogous argument works for the left-hand arrow. [] 

Remark 2.18. Pairs of categories (A,OA) as in Remark 2.15 tend to arise in the 

following way. Let v: ~3--+e be any functor between small categories. The right cylinder 
of v is the category obtained from ~3 H C by adjoining, for each object b in ~3 and each 

object c in C, a morphism set mor(b,c) equal to mor(v(b),c). The composition maps 

from mor(cl, c2)• mor(b, cl) to mor(b, c~) and from mor(b2, c) • mor(bl, b2) to mor(bl, c) 

are the obvious ones. See [Tho] for a generalization of this construction. 

Now let A be the right cylinder of v and let OA:=~3, viewed as a subcategory of A. 

Then the pair (.4, 0.4) has the property required in Remark 2.15. 

For example, the pair (9~(n) ,09~3(n))  can be obtained in this way: 9~3(n) is iso- 

morphic to the right cylinder of the delete boundary functor, a functor from 0923(n) 
to ~3(n). 

3. T h e  i n d e x  t h e o r e m  

Overview. We keep the notation and hypotheses of w specifically Assumption 2.4. The 

goal is to show that,  for a closed topological manifold M n, the element x(M)E F(M) is 

Poincar~ dual to en of the tangent bundle T of M. (However, e,, is only defined informally 

at the very end of the section, in Remark 3.19; it is the image of @n under a canonical 

involution on the space(s) in which @n lives. See Definition 3.9.) This formulation of 

the goal indicates that  we want to think of Poincar@ duality for M as a map between 

certain infinite loop spaces. The strategy of our proof is to look for a description of the 

classifying map for T adapted to the view of euclidean bundles developed in Remark 2.10. 

In the process we will be led to a description of Poincar@ duality which is adapted to the 

view of cohomology developed in Remark 2.12. 



P A R A M E T R I Z E D  I N D E X  T H E O R E M  19 

T h e  c l a s s i fy ing  m a p  for  t h e  t a n g e n t  b u n d l e  

Assume for now that  M n is a manifold without boundary, not necessarily compact .  Let 

(9=(9(M) be the set of open subsets of M which are homeomorphic to II( n. This is a 

poset, ordered by reverse inclusion. We will see that  

IOI -M. 

For a more precise statement,  we introduce an open subset WC ]01 • M. Note first that  

]O[ is the geometric realization of a simplicial set whose k-simplices are of the form 

(Uo, U1,...,Uk) with UiEO and UiDUi+I. We decree that  (x,y)Ei(OixM belongs to W 

if the (open) cell containing x corresponds to a nondegenerate simplex (Uo, ..., Uk) which 

has yEUo. 

PROPOSITION 3.1. The projections W-+ I O] and W--+ M are homotopy equivalences. 

Proof. Since W is open in the product [O I • M,  the projections in question are almost 
locally trivial in the sense of [$2, A.1]. By [$2, A.2] it is enough to verify tha t  both  have 

contractible fibers. Each fiber of W--~ IOI is homeomorphic to euclidean space R n. 

Let Wy be the fiber of W-+M over yEM. Under the projection this embeds in ]O], 

and we can describe it as the union of all open cells corresponding to nondegenerate 

simplices (Uo,...,Uk) where Uo contains y. There is a subspace VycW u defined as the 

union of all open cells corresponding to nondegenerate simplices (U0, ..., Uk) where Uk 
contains y. Note the following: 

(1) Vu is a deformation retract of Wy. Namely, suppose that  x in Wu belongs to a cell 

corresponding to a simplex (Uo .... , Uk) with yE Uo. Let (Xo, xl .... , xk) be the barycentric 

coordinates of x in that  simplex, all x i>0 ,  and let j<~k be the largest integer such that  

yE Uj. Define a deformation retraction by 

hl-t(x) : =  (tXnoWXyes) -1 (xo, ..., x j ,  t x j+ l , . . . ,  txk), 

Xoo::Zxi, Xyos::Exi, 
i>j i~j  

for te l0 ,  1], using the barycentric coordinates in the same simplex. 

(2) Vu is a CW-subspace of ]01 which can also be described as the classifying space 

of a subposet Oy C O, consisting of the UE 0 containing y. 

Finally we observe that  the category Oy is a directed poset. Therefore IOy] is con- 

tractible. [] 
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THEOREM 3.2. With the identifications of Proposition 3.1 and Remark 2.10, the 

inclusion of IO(M)I in I~(n)l is the classifying map for the tangent bundle T of M n. 

Proof. We cannot prove anything without explaining to some extent why Remark 

2.10 holds. Write ~ :=~ (n )  and let I~Blbig be the geometric realization of the A-set [RS1], 

[RS2] alias incomplete simplicial set whose k-simplices are the functors from the poset 

{0,1, ..., k} (with 0~<l~<...~<k) to ~B. (In other words, in making I~Blbig we choose to 

ignore degeneracy operators.) It is well known that  the identification map I~lbig-+l~l 

is a homotopy equivalence. I~lbig is the codomain of a map with fibers homeomorphic 

to l~ n, say V--+l~Blbig. The description of V is similar to that  of W in Proposition 3.1. 

Namely, V is the coend (diagonal colimit, see [Mac]) of 

(s, t) ~-~ s(min) x star(t) 

where the variables s and t are simplices of I~B]big, or equivalently, functors from one of 

the posets {0, ..., k} to ~; we write s(min) for the value of s on the minimal element, 

which is a space homeomorphic to I1~ n. We project V to the coend of 

(s, t) ~ star(t) 

which is [~[bi~. The projection is almost locally trivial in the sense of [$2, A.1]. If 

f :  X--+ [~ [bi~ is any map where X is a CW-space, then f* V-+ X is another almost locally 

trivial map with fibers homeomorphic to R n. It has no preferred section, but if we are 

willing to replace X by the homotopy equivalent f* V, then we have 

f * V x x f * V - +  f*V, (zl,z2)~-+Zl, (3.3) 

which has a preferred section (the diagonal) and qualifies therefore as a microbundle. 

This is how maps to [(B[big give rise to microbundles on the domain. It is not a very 

serious objection that  we had to modify the domain in order to see a microbundle on it. 

Returning to our business, let f be the inclusion map from IO(M)l to [(B[big. (We 

get an automatic factorization through [~Blbig because the nondegenerate simplices in the 

nerve of O(M) form a A-set.) Then f *V  is homeomorphic to what we previously (in 

the proof of Proposition 3.1) called W. We now have to find an isomorphism from the 

microbundle (3.3) on f * V = W  to the pullback of the tangent microbundle T under the 

projection W--+M. This is easy. [] 

Inverse Poincar@ duality by scanning 

Our next order of business is to come up with a description of (inverse) Poincar@ duality 

adapted to Remark 2.12. The method we use is inspired by [Mcl], [BS], [$3]. The charac- 

teristic X on F[l~" is not relevant at this stage (but it will be later on, in Theorem 3.11). 
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Let M n be a closed manifold. We note that  O(M)C~(n)clE" and that  each U in 

O(M) determines a morphism M~-*U in lE', the formal extension of idu to a partial  

map from M to U. The morphisms M~,*U in turn induce maps F(M)-+F(U). These 

maps for the various U constitute a natural  t ransformation from the constant functor on 

O(M) with value F(M) to the functor FIO(M ). The natural  t ransformation induces 

F(M) --~ holim F I O(M).  (3.4) 

We have already observed in Remark 2.12 tha t  the homotopy groups of the codomain of 

(3.4) are the cohomology groups of M with twisted coefficients in F(*).  We will show 

that  (3.4) is a variant of (inverse) Poincar~ duality. 

To begin, we simplify (3.4). By the classification theorem for pro-excisive functors, 

we may assume that  F ( X ) = f ~ ( X ' A J )  for some ~-CW-spec t rum J.  Then our map 

takes the form 

n ~ ( M ' A J ) - - +  holim ~ ( U ' A J )  (3.5) 
UcO(M) 

and is induced by the collapse maps from M'=M+ to the various U' .  We will compare 

it with another map  for which we give two versions: 

~ (M'A J )  -+ s r (~ ' ;  a),  

12~ (M'A J)  --+ sr(r'; J). 
(3.6i) 

(3.6ii) 

Explanations. Here T" is the fiberwise one-point compactification of the tangent 

bundle T of M; see [Ki]. It  is fiber homotopy equivalent to ~:', the bundle on M with fiber 

Mz • z over z E M, where Mz is the reduced mapping cone of the inclusion M" \ z -+ M ' ,  or 

equivalently, the unreduced mapping cone of the inclusion M\z-+M. An explicit chain 

of fiber homotopy equivalences will be given below. 

Let q be any fibration on a space Y with a distinguished ' tr ivial '  section, which we 

assume is a fiberwise cofibration; compare [Ja]. We write sF(q; J )  for the space of stable 
sections of q with coefficient spectrum J,  that  is, the space of sections of a fibration on Y 

with fiber ~ ( q - l ( y ) A J )  over yEY. 
The map (3.6i) is induced by the inclusions M'-+M~. For (3.6ii), we need an 

exponential map for T, which is a continuous family of embeddings exp~:T~--~M for 

xEM such that  xEim(exp~)  for all xEM. Then we have collapse maps from M" to 

( im(expx) ) '~ -~  which lead to (3.6ii). 

To compare the two versions of (3.6) we need an explicit chain of fiber homotopy 

equivalences relating T" to § For this purpose we introduce an intermediate bundle q 

on M whose fiber over xEM is the reduced mapping cone of the inclusion Vx\Xr-+T~, 
where x~=exp-~l(x). Both T k and ~" admit  fairly obvious fiber homotopy equivalences 
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to the new bundle q, respecting the trivial sections. Now we can compare the versions 

(3.6i) and (3.6ii) by viewing them as maps from ~ ( M ' A J )  to sF(q;J). We find that  

as such they are equal. 

To compare (3.5) with (3.6i) we note that  compactness of M has not been used in 

the definition of (3.6i). Thus we have similar maps 

n (u'A J) sr(e(u)'; J) 

for a noncompact manifold U with tangent bundle T(U). Here it is however important 

not to confuse U" with U+. It is also important to define Uz for z E U as the reduced 

mapping cone of U'\z"-+U', not as the unreduced mapping cone of U\zc--~U. We take 

U c 0 ( M )  and obtain a commutative diagram 

~t~(M.AJ  ) (3.5)�9 holimv 12~(U'AJ) 

1( 3.6 ) 1( 3.6 ) 

sF(T'; J)  �9 holimu sF(T(U)'; J)  

where the lower vertical arrow is induced by restriction and certain quotient maps 

Mz-~Uz which are pointed homotopy equivalences. 

OBSERVATION 3.7. The lower horizontal and right-hand vertical arrows in the dia- 

gram are homotopy equivalences. 

Proof. For the right-hand vertical arrow, this follows from the homotopy invariance 

property of homotopy limits, since ~(U'AJ)--+sF(~-(U)'; J)  is a homotopy equivalence 

for every U in O(M). The lower horizontal arrow can be rewritten as a composition 

sr(~:'; J )  -+ holim s r (~ ' lU;  J)  --+ holim s r (~ (U) ' ;  J)  
U U 

where the second arrow is induced by fiberwise weak homotopy equivalences from ~'IU 

to ~(U)' ,  one for each U. The first can be rewritten in the form 

sF('F; J)  --+ sF(p*~'; J)  

where p: hocolimu U--+M is the obvious map. (Here hocolimu U is the homotopy colimit 

of the functor on O(U) ~ which to each object U in (9(M) ~ associates the space U 

itself.) Thus we need to know that  p is a homotopy equivalence. This follows from 

Proposition 3.1, since p factors through W in Proposition 3.1 and the factorizing map 

hocolimu U--~W is a homotopy equivalence. [] 
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We conclude that  (3.5) and (3.6) can be identified by means of the diagram preceding 

Observation 3.7. It remains to unders tand (3.6). For this purpose we need "standard" 

Poincar6 duality, a weak homotopy equivalence 

p: sF(T'; J) --+ fl~ (M'A J) (3.8) 

which is commonly defined as the composition of a 'Thorn' weak homotopy equivalence 

(inducing the Thom isomorphism on homotopy groups) with an Atiyah-Milnor-Spanier- 

Whitehead duality map. 

Details. Let ~,=~(M) be a normal bundle of an embedding of M in IR ~, with Thom 

space th(u), collapse map c: Sw-+th(~,) and 'diagonal' d: th(L,)--+M'Ath(t/). The Thom 

weak homotopy equivalence 

sF(T'; J)  --+ map(th(u)A S ~ S~AJ 

associates to tEsF(~-'; J) the map whose restriction to u~AS ~ for x E M  is idAt(x) from 

u~AS 0 to UxAT~AJ~--SWAJ. The  dua l i t y  m a p  

map(th(t,) AS ~ SWAj) --+ ~ ( M ' A  J) 

associates to g: th(~)A S~ the composition 

SwAS 0 dcAid> (M.Ath(v))AS0 

M.A(th(u)AS0 ) id^g,  M.A(S~Aj).  

Strictly speaking, that  composition is an element of f~"f~(M+ASWAJ).  However, we 

have an inclusion f ~  (M'AJ)--+ f ~ ' f ~  (M'ASWA J) which is a homotopy equivalence. 

Definition 3.9. We define a map called reflection, t ~ t ,  from sr(r'; J) to sF(r ' ;  J). 

It is the map induced by the sphere bundle automorphism 

T'AM I]'AM T" ~ T'AM V'AM T', 

which interchanges the f rs t  and third factors. We regard it here as a stable fiberwise auto- 

morphism of ~-" via identifications T; A (v~ A T~) ~ r~ A S w. (Strictly speaking, reflection is 

an involution on f~sF(v ' ;  S"AJ).)  

Remark. If r is a vector bundle, the involution t~-+E has a simpler description. Up to 

homotopy it is the map induced by the automorphism of ~- which is scalar multiplication 

by -1  on each fiber. For the proof, let #s for nonzero sEC be the real vector bundle 

automorphism of T ~ ~- ~ T | C given by complex multiplication with s. Then conjugation 

with #s for s on the unit circle, between 1 and e i~/4, deforms the automorphism of T(~T 

given by permutation of the summands into that  given by (x, y)~-~(-x, y). 
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PROPOSITION-DEFINITION-SUMMARY 3.10. Up to a canonical vertical homotopy, 

the composition (3.6).(3.8) is given by reflection, t~-~[. Hence (3.6) is a weak homotopy 

inverse for ~, the composition of go in (3.8) with reflection t~-§ Therefore the maps 

(3.6) and (3.4) can be labelled 

~5 -1: 12~ (M+ A J) --+ sF(~'; J),  

~-1:  F(M) -+ holim F[O(M). 

Proof. The second sentence follows from the first because go is a weak homotopy 

equivalence. (A pointed map f :  X - + Y  is weakly homotopy inverse to another, g: Y-+X,  

if the singular simplicial set functor turns f and g into reciprocal homotopy inverses.) 

The third follows from the second; we use the 'identification' of (3.6) with (3.5) alias 

(3.4) resulting from Observation 3.7. 

We come to the proof of the first sentence. In the construction of (3.8), compactness 

of M was not really used; so if U is a noncompact manifold, embedded in ~ with a 

specified normal bundle v(U), we obtain a similar map 

go: J) nwa  (U'AS A J) 

(There is no obvious collapse map c from SW to th(u(U)), but there is still an obvious 

map S~--+ U'Ath(u(U)) replacing what was called dc earlier.) Moreover, the construction 

is natural; that  is, for open UC M, we get a commutative square 

s F ( r ' ; J )  ~' ) 12~(M'AJ) 

I restriction I collapse 

) 

(To achieve strict commutativity, choose T(U), p(U) and the trivialization of T(U)'A u(U)" 

by restricting T, ~ and the trivialization of T'A~* on M.) We apply this insight with 

U=im(exp~)-~%, for variable xEM.  The result is a commutative square 

s r ( r ' ;  J)  ) sr(exp*(r ' ) ;  J)  

l(3.s) l(a.s) 

~w~t~(M.AS~AJ) (3.6)) ~wsF(T.;SWAJ) 

where the upper horizontal arrow is induced by the exponential map, from the total space 

of 7- to M. The right-hand vertical arrow is induced by maps of type (3.8), 

s) n noo(  ; s, A a) 
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for xEM. We use the identification 7(Tx)~exp*(T). (Thus we view the upper right-hand 

term in the square as the space of sections of a bundle on M whose fiber over x E M is 

sr0-0-x)';  J). ) 
Going through the definition of the Milnor duality map p once again (but now with 

T~--im(exPx) in place of M),  one finds that  the composite map in the above square, from 

the upper left-hand term via the upper right-hand term to the lower right-hand term, is 

up to a canonical vertical homotopy the map induced by the compositions 

map(u~AS ~ S~AJ) < 

I stabilization 

map(Tx A u~ A S0 .rx ASWA j )  ~- 

) map(S~ 7~AJ) 

I stabilization 

map(u~ A S ~ u; AT~ A J) 

, ~ w ~ ( T ~  ASWAJ), 

one such for each xEM. Hence, up to that  canonical vertical homotopy, it is the map 

obtained by composing the stabilization sF(T';J)-+~WsF(T';SWAJ) with reflection on 

flWsF(r'; SWAJ). [] 

T h e  i n d e x  t h e o r e m  for a s ingle  c lo sed  m a n i f o l d  

Returning to (3.4), we ask how the image of x (M)E F(M) under 

-1: F(M) -+ holim F l O ( i  ) 

is related to the image of 6nEholim FI~B(n ) under the restriction map 

holim F I~B (n) -+ holim F[ (9 (M). 

THEOREM 3.11 (the index theorem for a single closed manifold). The two image 
points are connected by a canonical path w (M) in holim(F [(9 (M)). 

Proof. Enlarge O=(9(M) by adding M as an initial object. We can still write 

(0U{M}) C lE', by identifying the unique morphism in (9U{M} from M to an arbitrary 

U in (9 with the canonical morphism M~.*U in IE" (formal extension of idu to a partial 

map from M to U). So the characteristic X gives us an element z in the homotopy limit 

of F[((gU{M}), which is the same as the homotopy limit of the diagram 

F(M) ~-1> ho l imFI0 .  

Therefore z consists of a point z0 in F(M) and a path w in ho l imFI0  starting at 

~5-1(z0). Inspection shows that  z0=x(M)  and that  the endpoint of w is the image of gn 

in holim F[ (9. [] 
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T h e  c a s e  o f  a m a n i f o l d  w i t h  b o u n d a r y  

Remark 3.12. We indicate how Theorem 3.2 can be generalized to manifolds with bound- 

ary. Let M n be a manifold with boundary OM and interior Mo, where n>0 .  Let O(M) 
be the poset whose objects are the open subsets of M homeomorphic to either R n or 

]--(X), 00] X]I~ n-1. The partial order on O(M) is reverse inclusion as usual. Let O(9(M)c 
O(M) consist of the open subsets of M which are homeomorphic to ] - e c ,  oc] xl~ n-1. 

The delete interior functor from O0(M) to 0(011/1) induces a homotopy equivalence 

of the classifying spaces. (Namely, by Quillen's Theorem A [Q1] it is enough to show that  

for every UEO(OM) the poser of U'EOO(M) with U'DU has a contractible classifying 

space. This is clearly a directed poset.) Also, the inclusion O(Mo)-+O(M) induces a 

homotopy equivalence of the classifying spaces, since it has a left adjoint. It follows that  

the pair ([0(M)[,  [00(M)[)  is homotopy equivalent to (M, OM). The following inclusion 

can be thought of as the classifying map for the tangent bundle pair (T(M), ~-(0M)): 

(1O(M)I, 10O(M)I) -~ (19~(n)l, 109~(n)l). (3.13) 

Remark 3.14. We indicatehow (3.6) and Theorem 3.11 can be generalized to com- 

pact manifolds M with boundary. The analog of (3.5) has the form 

~5-1: F(M) -+ ho l im(F l0 (M)) .  (3.15) 

It is a weak homotopy equivalence and can be analyzed as in Proposition 3.10. Note that  

F IO(M) takes objects in O0(M)cO(M) to contractible spaces; therefore the codomain 

of (3.15) can be interpreted as relative cohomology of the pair (M, OM). Compare Re- 

mark 2.15. The domain of (3.15) should be interpreted as absolute homology of M. 

The analog of the Index Theorem 3.11 states that  the images of x ( M ) E  F(M) and 

~nEholim(Fig~B(n)) in holim(FiO(i)) are connected by a canonical path w(M). 

T h e  i n d e x  t h e o r e m  for  f a m i l i e s  

Let M n be a compact manifold. As we have just observed, stating and proving the index 

theorem for M amounts to specifying a point JM=(~n,w(M),x(M)) in the homotopy 

pullback of the diagram 

ho l im(F ig~(n) )  restriction ) ho l im(FlO(M) ) < ~-1 F( i ) .  (3.16) 

To make a family index theorem, we must understand how JM depends on M as a 

variable. We therefore return to the assumptions and notation of w In particular, 

p: E-+B is a bundle with compact manifold fibers (fiber dimension n). 
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PROPOSITION 3.17. The restriction map in (3.16) has a refinement, or parametrized 
version, 

holim(F [ ~iB (n)) -+ holim holim(F I 0 (Exe)). 
(x,o) 

Proof. Denote (somewhat informally) by O(p) the category whose objects are triples 

(x, 0, U) with (x, 0) in simp(t~) and UE(9(EOx). A morphism from (x, 0, U) to (y, a, V) 

is a morphism g from (x, 0) to (y,a) in simp(t~) such that the image of U under the 

induced homeomorphism g.: E~-+Ey contains V. Let ~l: O(p)-+9:B(n) be the forget- 

ful functor taking (x, 0, U) to U. The right-hand side in Proposition 3.17 simplifies to 

holim(F[~B(n)).~l.  This makes the map from ho l im(F[~ (n ) )  to it obvious. [] 

Again we ask how the image of X(p)Eholim(x,0)F(EOx), compare (2.9), under the 

fiberwise version of ~5 -1 in (3.4), 

holim F(E~) --~ holim holim(F I 0 (E~)), 
(~,o) (x,o) 

is related to the image of en under the map in Proposition 3.17, 

holim(F [ 9~B(n)) --+ holim holim(F[O(E~ 
(~,o) 

THEOREM 3.18 (the family index theorem). The two image points are related by a 
canonical path w(p) in holim(x,0) holim(FIO(E~) ). 

Proof. We use 0(p) from the proof of Proposition 3.17. Denote (somewhat infor- 

mally) by O(p)Usimp(t~) the category obtained from O(p)IIsimp(t~) by adjoining, 

for each (x,O) in simp(t~) and (y,a, V) in (9(p), a set of morphisms from (x,0) to 

(y,a, V) which is equal to the set of morphisms from (x, 0) to (y, a) in simp(t~). Let 

qo2: O(p)Usimp(t~)-+Ig" be the functor given by 

(y,a, v ) ~  y, 

on objects; the morphism ~2(f) induced by a morphism f in O(p)Usimp(t~) is an 

appropriate collapse map (a formal extension of a homeomorphism to a partial proper 

map). The path w(p) is the image of xEhol imF under the evident map from holimF 

to holim F~2. 

As in the proof of Theorem 3.11, this involves a reinterpretation of holim F~2. Think 

of holim F~2 as the space of paths in holim(F. (~2 [ 0(p))) = holim F~I  together with a 

lift of the starting point to holim(F. (~2 [simp(t~)). [] 
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Remark 3.19. We emphasize that Theorem 3.18 is the rigorous form of the family in- 

dex theorem. A more portable (but less precise) form of Theorem 3.18 is ~5(~n(T))--~ X(P) 

or go(en(T))~--X(p), where ~n(T) and en(T ) have the following meaning. 

(1) Formally, en(T) is the image of en under the map in Proposition 3.17. 

(2) Informally, en(T) is the pullback of a certain section ~n under the classifying map 

(E, OF,)--+ (B TOP(n) ,  B T O P ( n -  1) 7 ) for the vertical tangent bundle T of p. Furthermore 

(and still informally) ~n is a section of a certain fibration on B TOP(n)  whose fibers are 

infinite loop spaces homotopy equivalent to F(]t{n). It vanishes on B T O P ( n - 1 )  7) and 

so represents a class in the n th  cohomology of ( B T O P ( n ) ,  B T O P ( n - 1 )  7) with twisted 

coefficients in the spectrum F(*). Hence gn(v) is a section of a fibration on E with fibers 

-~F(llCn). It vanishes on OF, and so represents a class in the cohomology of (E, OF,) with 

twisted coefficients in the spectrum F(*). 

(3) Informally, en(T) is the image of ~n(T) under reflection, Definition 3.9, with the 

informal definition of en(T). We do not give a formal definition of en(T ). 

4. Disk  b u n d l e s  a n d  t h e  u n i t  t r a n s f o r m a t i o n  

T h e  un i t  t r a n s f o r m a t i o n  

Definition 4.1. We make a category of pairs (F, z) where F is a pro-excisive functor from 

E" to pointed spaces, see w and Remark 2.2, and z is a point in F(*). A morphism 
from (F, z) to (F  ~, z r) is a natural transformation F-~F ~ taking z to z ~. Such a inorphism 

is a weak equivalence if F(X)-+F~(X) is a weak homotopy equivalence for all X. We 

say that two objects (F, z) and (F  ~, z t) are weakly equivalent if they can be related by a 

chain of weak equivalences. 

LEMMA 4.2. For every. (F, z), there exists a morphism ~?: (C, y)--+ (F, z) where (C, y) 
is weakly equivalent to the pair 

( X ~  Q(X'), 1). 

Proof. By the classification theorem for excisive functors, mentioned in Remark 2.2, 

there exists a diagram of natural transformations 

F(X) F'(X) & F"(X) (4.3) 

where F " ( X ) = ~ ( X ' A F ( . ) )  and g,h are weak homotopy equivalences for every X. 

(The classification theorem speaks of a chain of natural transformations, but it is easy to 

reduce to a chain of length 2.) Specializing (4.3) to the case X = . ,  choose a point 2 in the 

homotopy fiber of h over g(z). An argument involving homotopy pullbacks shows that  
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it is enough to prove Lemma 4.2 for the excisive functor F "  and the point z"E F"(*)  which 

is the image of 2 under the projection. However, that  case is easy because z" determines 

a map of spectra S~  and then a natural  t ransformation from Q(X')=f~cc(X'AS ~ 
to F"(X). This takes the unit element in Q S ~  ") to z". [] 

Remark. The existence statement,  L e m m a  4.2, implies a uniqueness statement,  as 

follows. Suppose that  (Cl,yl)--+(F,z) and (C2,Y2)--+(F,z) are two morphisms as in 

Lemma 4.2. Assume or arrange that  Cl(X)--+F(X) and C2(X)-+F(X) are Serre fibra- 

tions for every X. Make another  object (P, x) where P(X) is the pullback of 

CI(X) F(X) +- C:(X) 

and xEP(*) is the point determined by Yl and Y2. Finally choose a morphism (C3, Y3)--+ 

(P, x) as in Lemma 4.2. Then the following compositions are weak equivalences over 

(c3, y3) -~ (P,x)  -~ (c1, yl), 

(c3, y3) --+ (P, x) -+ (c2, y2). 

Definition 4.4. If F is any pro-excisive functor from ~" to pointed spaces and X is 

a characteristic for FILE" , then we can take z=X(*)EF(*) in Lemma 4.2. The resulting 

natural  transformation r/: C-~F constructed as in Lemma 4.2 is the unit transformation 
for F and X. We shall also use informal notation such as ~?:Q(X')--+F(X) or even 

~1: Q'(X)---~F(X). Further, we write rt: S~  for the map of spectra corresponding 

to r/: Q(X')-+F(X) via the classification theorem; see Remark 2.2. 

T h e  B e c k e r - E u l e r  c l a s s e s  

Definition 4.5. Let G(n) be the simplicial monoid of homotopy equivalences S n-  1 __+ Sn-1. 

The classifying space BG(n )  carries a tautological spherical quasifibration ~(n) with 

fibers "~S n-1. We include G ( n - 1 )  in G(n) by 

(f:  S n-2 --+ S n-2 ) ~-~ ( l . f :  S~ n-2 -+ S~ n-2 ) 

using an identification of the join S~ n-2 with S " -1 .  

Definition 4.6. Let 0 be a spherical quasifibration on a space X and let J be any 

spectrum. For xEX, let 0x be the fiber of 0 over x. Let s be the trivial fibration 

S~215 and let r174 be the fiberwise join of s and t~. We denote by F - ( r 1 7 4  
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the space of sections of the fibration associated with the quasifibration on X with fiber 

12~((s |  over x. Here the base point of S ~  serves as base point for (x~)0)~, 

for each x E X. Let Y be a subspace of X. We write 

H~ 
H~ 

for 7r0 of F - (~e0 ;  J)  and 7r0 of the subspace consisting of the sections vanishing on Y, 

respectively. (A section vanishes on Y if its restriction to Y is the zero-section.) 

Suppose now that  X has the homotopy type of a compact CW-space. Choose 

a spherical quasifibration ~ on X such that  the fiberwise join 00~  admits a trivial- 

ization, i.e., a fiber homotopy equivalence 0| where e TM is the trivial fibration 

S w-1 xX-+X.  We can use this to define an involution s~-+$ called reflection (com- 

pare Definition 3.9) on F~(c@0; J) ,  strictly speaking on the homotopy equivalent space 

fl~F~(c@0@0ff)~; J).  This is induced by the automorphism of 0G0 which permutes the 

factors. Reflection induces involutions on He(X; J)  and He(X, Y; J).  

Definition 4.7. Following [Be], we now describe characteristic classes for spherical 

quasifibrations: the Becker-Euler classes 

[bn], [bn] E H r (BG(n) ,  BG(n-1); sO). (4.8) 

Becker designed [b,~] to have the following property. Let (X, Y) be a CW-pair of relative 

dimension ~< 2 n -  4. A map of pairs f :  (X, Y) -+ (B G (n), B G ( n -  1)) factors up to homot- 

opy through ( B G ( n -  1) ~, BG(n-  1)) if and only if f* [bn] = 0 in H ~('~) (X, Y; S~ We will 

see that  [bn] has exactly the same property. 

We begin by making a section of r the trivial bundle S ~ x BG(n)-+BG(n): the 

section picking the nonbase point of S ~ in each fiber. Then we regard it as a sec- 

tion s of r The section s is vertically nullhomotopic over B G ( n - 1 ) .  Namely, 

r lBG(n-1) is canonically identified with r 1 6 2  and s is already vertically 

nullhomotopic when viewed as a section of the subquasifibration ~GEC~G~G~(n-1 ) .  

However, s[BG(n-1) has two canonical vertical nullhomotopies, h and h, as a section of 

r  We may identify r  with a trivial bundle with fibers - S  1 c C ;  then s picks out - 1  

in each fiber and h uses the canonical contraction of $1(+), the intersection of S 1 with 

the upper half-plane, while h uses the canonical contraction of $1( - ) ,  the intersection of 

S 1 with the lower half-plane. These two vertical nullhomotopies h and / t  of s IBG(n-1) 
allow us, by dint of a vertical homotopy extension property, to deform s into sections 

trivial on BG(n-1) of the fibration on BG(n)  associated with c|  We view these 
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sections as sections bn and bn of a larger fibration on BG(n) ,  namely, the one associ- 

ated with the quasifibration on BG(n)  obtained from r by applying Q = f l ~ E  ~ to 

each fiber of r162 The relative vertical homotopy classes are denoted [bn] and [bn], 

respectively. 

We need to understand the homotopy theoretic relationship between bn and bn" As 

the notation suggests, they are related by reflection, see Definition 4.6. However, this 

is only meaningful when we restrict to a compact CW-subpair (X, Y) of the CW-pair 

(BG(n) ,  B G ( n - 1 ) ) .  To show that  b~lX is indeed (up to a specified vertical homotopy) 

the reflection of bnlX, recall how bn and bn were obtained from the pairs (s,h) and 

(s,/t), respectively, by an application of the vertical homotopy extension property. Thus 

it suffices to show that  reflection takes (siX, h lY) to (siX, h I Y), perhaps up to a specified 

deformation. Reflection does leave siX invariant, on the nose. The reflection of hlY can 

be deformed relative to endpoints into hlY by multiplying with e u, where 0~<t~<zr; here 

we are using an evident fiber-preserving action of the unit circle in C on sE3~IY, hence on 

EE3~(n-1)|174 which is identified with ~(n)O~(n)lY. (The fibers of ~@~]Y 

are circles, since the fibers of s are 0-spheres and E) stands for fiberwise join in the present 

context.) 

In the next subsection we will also think of [b~] as an element of the cohomology 

group H~(n)(BTOP(n), B T O P ( n - 1 ) " ;  S~ We can justify this for example by invoking 

a certain map of pairs from ((BTOP(n),BTOP(n-1)") to (BG(n),BG(n-1)). Alter- 

natively, we could redefine b,~ as a certain section of the bundle 7(n)" on B T O P ( n ) ,  

vanishing on B T O P ( n - 1 ) ' .  The details are left to the reader. 

C h a r a c t e r i s t i c  c l a s s e s  a s s o c i a t e d  w i t h  d i sk  b u n d l e s  

Notation. For a manifold V, let TOP(V, OV) be the topological group of homeomor- 

phisms V-+V; note that such a homeomorphism will automatically map OV to OV. Let 

TOP  (V) C TOP  (V, OV) be the subgroup consist ing of t he homeomorphisms V --+ V which 

restrict to the identity on OV. 

Let W =  I - o  c, oc] x R n-1. Then W" is an n-disk. There is a commutative diagram 

of topological groups and homomorphisms: 

TOP(W, OW) 

1: 
TOP(W, OW) 

c , TOP(W',O(W')) 

I restriction 

restriction > TOP(W\OW). 
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It leads to a map ~ of pairs: 

(B TOP (W ' ,  O(W')), B TOP(W, OW)) 

(BTOP(W\OW), B TOP(W, OW)) (4.9) 

(B TOP(n) ,  B T O P ( n -  1) 7 ). 

THEOREM 4.10. The equation ~*[~n]=rt, e*[l)n] holds in 

H'r(n) ( B TOP(W', O(W') ), B TOP(W, OW ); F(*)).  

Informally, Theorem 4.10 says that  [~n] applied to a euclidean n-bundle ~ equals 

rt, [bn] applied to ~, provided ~ has been obtained from an n-disk bundle by deleting the 

boundary sphere bundle. In particular, [en] applied to an n-dimensional vector bundle 

is rl, [bn] of ~. (Note however that  the formal statement is not only more formal but also 

more relative and therefore stronger.) 

Outline of proof. Let V be a space homeomorphic to IR n. We need to know that  any 

embedding of V into a manifold D homeomorphic to the n-disk determines a "lift" of 

x(V)EF(V) to Q'(V), across the unit map r/: Q'(V)-+F(V). By a "lift" we mean a point 

in the homotopy fiber of ~?:Q'(V)-~F(V) projecting to x(V)EF(V). The embedding 

V-+D determines a wrong-way morphism D~-,V in IE" (the inverse of that  embedding, 

formally extended to a partial map from D to V). The naturali ty property of X ap- 

plied to this morphism D-.-+V shows that  it is enough to specify a lift of x(D)EF(D) 
to Q'(D). Now the unique map D--~* is proper and cell-like! It is therefore a morphism 

in E N IE ' c  E'. The naturality property of X (which is a Characteristic for FilE" only, not 

for F )  applied to that  morphism, which induces homotopy equivalences Q" (D)-+Q" ( , )  

and F(D)--~F(,), shows that  it is enough to specify a lift of X(*)EF(*)  to Q ' ( , ) ,  across 

~?: Q'(,)-+F(,). But such a specified lift is part of the definition of rl. 

For the honest proof of Theorem 4.10 we replace the classifying spaces of topological 

groups involved by classifying spaces of appropriate discrete categories. We describe 

those discrete categories first. 

Our model for the pair (BTOP(W\OW), B T O P ( W ,  OW)) is that  of Lemma 2.17, 

the classifying space pair of the category pair (9~B(n), 09~B(n)). Our model for the pair 

( B T O P ( W ' ,  O(W')), B T O P ( W ,  OW)) will be a homology approximation only, again a 

classifying space pair determined by a category pair (Oq:)(n), O(9~D(n)) which we now 

describe. It comes with a forgetful functor to (9~B(n), 09~B(n)) which we again call L 

because it is our categorical model for the map ~ mentioned in Theorem 4.10. 
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The objects of 0 �9  are pairs (D, H)  where D is homeomorphic to the n-disk and 

HEO(D). A morphism from (D, H)  to (D', H ' )  is a homeomorphism f :  D--+D' for which 

H'cI(H). The forgetful functor ~ from 0 �9  to 9~B(n) is given by (D, H)~-+H. Let 

O0�9 be the inverse image of 09~B(n) under the forgetful functor. 

By construction, the category pair ( 0 � 9 1 6 9  is equivalent to a semidirect 

product of the discrete group TOP0(ID n, 0I~ n) with the pair ((.9(IDn),oO(]~n)). So the 

classifying space pair determined by  ( 0 � 9 1 6 9  is homotopy equivalent to the 

homotopy orbit pair of the canonical action of TOP0(D n, OD n) on 

(IO(D~)l, laO(D~)l) _~ (D n, alDn). 

It admits therefore a homology equivalence to the homotopy orbit pair of the canon- 

ical action of TOP(II) n, OD n) on (D n, 0Dn), which in turn is homotopy equivalent to 

(BTOP(W',O(W')), BTOP(W, OW)) of Theorem 4.10. (This homotopy equivalence 

is a consequence of the fact that the map TOP(W',O(W'))-+O(W')~OII} n given by 

g~+g(oo) is a fibration, with fiber over the base point oocO(W') equal to the subgroup 

TOP(W, OW).) More precisely, we can make a commutative square of pairs 

(IO~(~)1, IOO~)(n)l) 

(19~(n)l, lag~(n)l) .... ~- 

, ( B T O P ( W ' ,  O(W')), B T O P ( W ,  OW)) 

�9 ( B T O P ( W \ O W ) ,  B T O P ( m O W ) )  

(4.11) 

where the upper horizontal arrow is a homology equivalence. When we apply 

H'r(n)(...;F(*)) or g'r(")(...; S ~ to (4.11), we obtain a commutative square of abelian 

groups and homomorphisms in which the two horizontal arrows are isomorphisms. Here 

3'(n) denotes the usual bundle over BTOP(n)=BTOP(W\OW), but also its pullback 

to the various other spaces appearing in (4.11). 

The proof of Theorem 4.10 and also a sharper formulation of Theorem 4.10 will 

come out of the commutative diagram 

holimD Q'(*) ~ , holimD F(*)  

holimv Q'(D) ,1 , holimD F(D) 

holim(D,H) Q'(H) ,I , holim(D,H) F(H). 

(4.12) 

Here D runs through the category �9 of all n-disks, with homeomorphisms as mor- 

phisms, and (D, H)  runs through 0 �9  (The vertical arrows between rows 2 and 3 are 
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weak homotopy equivalences because (3.15) is a weak homotopy equivalence, in particular 

when M is a disk.) 

We begin by making a combinatorial model for ~*bn. Choose a point zl in the 

homotopy inverse limit of the left-hand column of (4.12) which projects to zEQ ' (* )C  

holimD Q'(*).  This is a contractible choice. The image of zl under the projection to 

holim(D,H) Q ' ( H )  is by definition 

~*bn E holim Q'(H). 
(D,H) 

Of course we also have a combinatorial model for 5" en. This is simply the pullback of X 

under the forgetful functor (D, H)~--~H from O�9 to Is 

e*~n E holim F(H). 
(D,H) 

THEOREM 4.13 (sharp version of Theorem 4.10). We construct a path Vn in 
holim(D,H) F(H) ending at t*en and starting at the image of t*[~n under 

holim Q'(H) ~ holim F(H). 
(D,H) (D,H) 

Proof (construction). 

in the homotopy limit of the following subdiagram of (4.12): 

The constructions and hypotheses so far determine a point z2 

holimD Q'(*) " �9 holimD F(*)  

holilnD Q" (D) holimv F(D) 

holim(D,H) Q'(H) holim(D,H) F(H). 

(4.14) 

Namely, to specify z2, we have to specify, for each space in the diagram (4.14), a point in 

that space; and for each arrow in (4.14), a path in the codomain of that  arrow connecting 

the image under that  arrow of the specified point in the domain with the specified point 

in the codomain; and for each pair of composable arrows in (4.14), a map from a standard 

2-simplex, and so on. For the spaces and arrows in the left-hand column, such choices 

were made when we selected Zl. For the spaces and arrows in the right-hand column, 

such choices are made for us by the characteristic X; see also the remark just below. For 

the horizontal arrow, we take the appropriate constant path; this works because of our 

hypothesis 

~(z) = X(*) E F(*)  C holim F(*).  
D 
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There is just one instance of (two) composable arrows in the diagram; for that  we have to 

specify a map from a 2-simplex to holimD F(*).  The map  is prescribed on two edges of 

the 2-simplex and constant on one of these; we can define it as the appropriate  degeneracy 

of its (prescribed) restriction to the appropriate  edge. 

Now that  z2 has been specified, we note that  the projection from the holim of (4.12) 

to the holim of (4.14) is a fibration and a homotopy equivalence. Therefore its fiber over 

z2 is contractible. Choose a point z3 in there. The image of z3 in the holim of the lower 

row of (4.12) is a triple of the form 

(L*bn,Vn, L* en). [] 

Remark 4.15. We have used the following general principle, which we shall have 

occasion to use again. Let U be a functor from a small category 9~ to the category of 

small categories. With U one can associate a new category, the (opposite) Grothendieck 

construction 

X f~ 

as follows. The objects are pairs (k, x) where k is an object of K and x is an object 

of U(k). A morphism from (ko,xo) to (kl,xl) is a pair ( f ,9 )  where f:kl--+ko is a 

morphism in 9r and g: x o ~ f ( x l )  is a morphism in U(k). Compare  [Tho]. 

Let E be a functor from 9r176 to spaces. For each object k in X we have an evident 

inclusion U(k)--+9~f~ and hence a projection 

holim E --+ holim( E lU ( k ) ). 

The general principle that  we are after states that  these projections, taken together, have 

a canonical refinement to a map 

holim E --+ holim holim(EIU(k)). 
k 

The proof is an exercise. - -  The special case that  we have used in Theorem 4.13 is this. 

Let X have three objects 1,2,3 and just  two nonidentity morphisms 1--+2 and 3--+2. 

Put  U(1)=U(2)=�9 and U(3)=O�9  The functor induced by 1--+2 is the identity 

of ~D(n); the functor induced by 3--+2 is the forgetful one, (D, H)~+D. We define E from 

Xf~ to spaces as a composition, E=FoE ~, where 

E': X f~ --+ l~" 

is given by (1, D ) ~ . ,  (2, D ) ~ D ,  (3, on objects. (We leave it to the reader 

to define E t on morphisms. Note that  E '  does not land in the subcategory IE of lE'.) The 

characteristic X is a point in holim F and determines a point in holim FoE~=ho l im E. 

Tha t  in turn determines, by the above reasoning, a point in holimk=l,2,3 hol im(E [U(k)), 

the homotopy limit of the right-hand column in (4.14). 
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5. The  transfer of  B e c k e r - G o t t l i e b  and D o ld  

Our goal here is to combine the Family Index Theorem 3.18 with Theorem 4.10 stating 

equality of [en] and r/. [bn] for n-disk bundles. Therefore we need to understand ~5[b,~], 

the reflected Poincar6 dual of [b,,] applied to the vertical tangent bundle pair of a bundle 

p: E--+B with compact n-manifold fibers. This is a vertical homotopy class of sections of 

Q~ ( E ) - + B  which we identify with a well-known fiber homotopy invariant of the bundle 

p: E--+B due to Becker-Gottl ieb [BEG2] and Dold [D2]. See also [C1] and [DP]. 

The  Poincar@ dual  of  the  Becker-Euler  class 

Let M n be compact, with tangent bundle r.  We write bM and bM for the Becker-Euler 

sections bn(T) and bn(r), understood as sections of r" which are trivial over OM. The 

goal here is to describe explicitly ~9bM, the Poincar@ dual of bM. Our interest in gabM 
comes from the fact that  it agrees with ~bbM (since ~=pr and bM=r(bM) where r is the 

reflection involution, Definition 3.9). 

Choose a locally flat embedding (M, 0M)--+ (IRW-1 • [-c~,  co[, ]RW-lx - c r  Choose 

a normal bundle ~,, increasing w if necessary. Let Ov=vlOM. Let c: $ ~ - + t h ( v ) / t h ( 0 v )  

be the collapse map. Now the Poincar6 dual gobM is the composition 

Sw A+ th(v) / th(Ov)  Od,bM)~ th(t ,@r) (5.1) 

where the map labelled (id, bM) takes zEL,, to (Z, bM(X)) in ~,, • T,. We think of (5.1) as 

an element in ~tw(SWAM')c ~ ' " ~ E ~ 1 7 6  to be consistent. 

The above description of gabM involves a contractible choice of embedding of M in a 

high-dimensional euclidean half-space and a choice of normal bundle ~(M). Also, bM is 

only determined up to contractible choice. 

Becker-Euler  class and S p a n i e r - W h i t e h e a d  dual i ty  

We recall the homotopy transfer of Becker-Gottl ieb and Dold. This is defined for any 

fibration p: E--+B where each fiber p- l (b)  is homotopy equivalent to a homotopy finitely 

dominated CW-space. It is a section trp of a fibration 

(Q+)B(E) -+ B 

with fiber Q+(p-l(x))=Q(p-l(x)+) over xeB,  where the + denotes an added base 

point. (Here we cannot write Q" because the fibers p-l(x) might not be compact.) 



PARAMETRIZED INDEX THEOREM 37 

The composition of trp with the inclusion of (Q+)B(E) in Q+(E) is a map B-+Q+(E), 
in other words a stable map from B+ to E+; hence the word transfer. 

First we assume B=*. Let E~ be a Spanier-Whitehead 0-dual of E+. In other 

words, E+ is a CW-spectrum with finitely many cells, equipped with a map 

x: S~ E+AE+ 

which is nondegenerate, i.e., slant product with [x] is an isomorphism from the cohomol- 

ogy of E+ to the homology of E$ (with integer coefficients). In this case trp is a point 

in Q+ (E),  namely, the composition 

S o 

E AE+ 

~LidAdiag 

E+A(E+AE+) 

(E+AE+)AE+) 

[ ~*Aid 

S~ E+. 

(5.2) 

Here x*: E+ A E+--+ S ~ is what one might call the adjunct of g. It must be chosen together 

with a homotopy h connecting the maps of bispectra 

SoAS o idA.> SOA(E+AE+), 

S0A sO ~(24)(~^ ~) ~ (E+ A E+) A (E+ A E+ ) ~'^ id > SOA (E+ A E+) 

where a(24) is the automorphism of (E~AE+)A(E~_AE+) interchanging the two fac- 

tors E+. The choice of a pair (x*, h) is a contractible choice. The point is that  E~ AE+ 

is self-dual, the self-duality being given by a(24)(xAx). 

In the case of an arbitrary base B, the choices of dual, etc., must be made fiberwise, 

for each fiber of p: E--+B. We omit the details. 

Example 5.3. Returning to the case B = , ,  assume that  E=M is a compact n- 

manifold, embedded in JR" with normal bundle v, and so on as in (5.1). Then we have 
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geometric choices for E+, ~ and x*. For E+ we take the formal w-fold desuspension of 

th(~) / th(0p) .  For x we take the formal w-fold desuspension of the composition 

S TM 2-4 th(u)/th(Ou) diag '~ th(u)/th(Ou)A M+ 

where "diag" denotes the map taking zEu~ to (z, x) in u~ x M. To make x* we choose 

an embedding u: M--+int(M), isotopic to idM. Then we choose a (continuous) function 

r [0, oc[--+[0, c~[ with r  c~[, where d is the distance from u(M) to the com- 

plement in ~ "  of the total space of u. Let x* be the formal w-fold desuspension of the 

map 

th(u)/th(Ou)AM+ --+ ~wt2c~ ~- S w, 

x-u(y) 
(x, u)  (Ix-u(y)l) ' 

With these choices, (5.2) is the composition 

S w ~ th(u)/th(Ov) A+ SWA M+ 

where j is induced by a certain map over M from the total space of u to ~w• M. By 

inspection, j agrees with (id, bM ) in (5.1), more precisely, the two agree after composition 

with SWAM+--+SW/KAM+ where KCS'" ~-R"Uc~ is a suitable disk containing the base 

point c~. Hence (5.2) and (5.1) agree in the case at hand. We spell out the fiberwise 

version of this insight (returning to the Q'-notat ion since the fibers are compact): 

THEOREM 5.4. Let p: E-+ B be a bundle with compact n-manifold fibers. Then 

trp: B-+Q'n(E ) agrees with pb,,, the fiberwise Poincard dual of b, of the vertical tangent 

bundle pair of p. 

Remark 5.5. Let F be the space of sections of Q'B(E)--+B. Then trp is, strictly 

speaking, not a point in F, but a map C1 --+F where C1 is a contractible space (the space of 

choices needed in the construction). Similarly, ggb,, is a map C2-+F with contractible C2. 

Our proof of Theorem 5.4 produces another map C3--+F with contractible C3 and maps 

C3-+C1 as well as C:~--~C2 over F. In this sense trp and ~Jbn agree. 

The index theorem for regular manifolds 

Definition 5.6. A regular manifold M n is a topological manifold (with boundary) to- 

gether with 

(1) an n-disk bundle q: L--+M; 

(2) an open embedding j:  U--+L over M, where U is an open neighborhood of the 

diagonal in M • M (viewed as a space over M by means of the first projection). 
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Remark. In practice we are only interested in the germ of (q, j) .  Two structures 

(q l , j l )  and (q2,j2) of regular manifold on M determine the same germ if ql=q2 and 

there exists an open neighborhood V of the diagonal in M x M such that  both j l  and j2 

are defined on V and agree there. 

The homotopy theoretic content of Definition 5.6 is that  the classifying map for the 

tangent bundle pair of (M, OM) comes with a specified lift across (4.9) to a map of pairs 

(M, aM) --+ (B TOP(W' ,  O(W')),  B TOP(W, OW)) 

where W =  ] - c o ,  +co] x ]I~ n-1. 

By a bundle of regular n-manifolds, we mean a bundle p: E-~B with n-manifold 

fibers, together with a disk bundle D--+E, an open neighborhood U of the diagonal in 

E x B E  and an embedding U-+D over E which has the properties listed above fiberwise; 

that  is, the embedding U IEb--+DIEb has those properties for each bE B. 

Example. A bundle p: E-+B of smooth n-manifolds has a canonical structure of 

bundle of regular n-manifolds. More precisely, the "smooth manifold bundle" structure 

on p determines up to contractible choice a germ of "regular manifold bundle" structures 

on p. 

THEOREM 5.7. Let p: E ~ B  be a bundle of compact regular n-manifolds. Then 
X(P): B---~ FB(E) is vertically homotopic to the composition 

U trp) Q'B(E) "'> Fu(E). 

Remark. Our proof gives a contractible choice of preferred vertical homotopies. 

Proof. Let T stand for the vertical tangent bundle pair of p: E-+B. We showed 

X(p)~-~n(T) in Theorem 3.18, see also Remark 3.19; and ~n(~-)=~7,bn(~-) in Theo- 

rem 4.10. Therefore X(p)~__~,(~bn(~-))=~,(ggbn(T))~__~,trp by Theorem 5.4. [] 

Part  II. Appl icat ions  

In Part  II we present the functors F and characteristics X that  we had in mind in Part  I, 

beginning with Definition 1.1. Specifically, w builds and explores characteristics (for 

certain spaces) which are natural under homotopy equivalences, whereas w builds an 

excisive characteristic (see Assumption 2.4). 
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6. Homotopy  invariant characteristics 

The A-theory characteristic 

Notation. A space Y is homotopy finite if it is homotopy equivalent to a compact  CW- 

space. It  is homotopy finitely dominated if there exists a compact  CW-space Z and maps 

r: Z-+Y,  i: Y - + Z  such that  ri~-idy. 

Example 6.1. The A-theory characteristic. We want to construct a characteristic 

as in Definition 1.1 for Waldhausen's A-theory functor, restricted to the category C of 

homotopy finitely dominated spaces with homotopy equivalences as morphisms. First we 

need to recall the definition of A(Y)  for a space Y. 

K-theory of Waldhausen categories. For any category �9 with cofibrations cof �9 and 

weak equivalences wD, Waldhausen [W2, w has constructed an infinite loop space 

~IwS.(D)I  which we shall denote by K(D) .  Furthermore, Waldhausen constructs a 

natural  t ransformation Iw�9169  which he observes is reminiscent of Segal's "group 

completion" process. Following Thomason we call a category with cofibrations and weak 

equivalences a Waldhausen category. 

Retractive spaces over a space Y. Waldhausen defines A(Y)  as the K- theory  of a 

certain Waldhausen category of retractive spaces over Y which we now describe; see 

[W2, w A retractive space over Y consists of a space X and a diagram 

r 

X ~ Y  

such that  rs=idy and s is a closed embedding having the homotopy extension property. 

The retractive spaces over Y form a category where the morphisms are maps over and 

relative to Y. A morphism is a cofibration if the underlying map of spaces is a closed 

embedding having the homotopy extension property. It  is a weak equivalence if the 

underlying map of spaces is a homotopy equivalence. With these notions of cofibration 

and weak equivalence, the category of retractive spaces over Y is a Waldhausen category. 

This follows from [Str]. A retractive space X over Y is homotopy finite if it is the 

codomain of a weak equivalence from another  retractive space over Y which is a CW-space 

relative to Y, with finitely many cells. A retractive space X over Y is homotopy finitely 

dominated if it fits into a diagram X~-+W-+X of retractive spaces over Y such that  W 

is homotopy finite and the composite morphism from X I to X is a weak equivalence. 

Let ff~ld(y) be the Waldhausen category of homotopy finitely dominated retractive 

spaces over Y. Define A(Y)  as the K- theory  of ff~ld(y). 
A continuous map f :  Y1 --+ ]I2 induces a functor f , :  ~fd (]i1) --+ ~fd (]i2), pushout with f 

alias cobase change along f ,  and then a map A(Y1)--+A(Y2). This suggests that  Y~-~.A(Y) 
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is a functor. Unfortunately, to establish that  we have to say exactly what we mean by 

pushout or cobase change. The procedure must be strictly associative and unital. We 

therefore make (belatedly) the following rather pedantic additional assumptions on our 

retractive spaces X-~Y: 
(1) X contains {1}• and s:Y-+X is given by y ~ ( 1 , y ) .  

(2) No element of X\s(Y)  is an ordered pair of the form (1, ...). 

(Think of 1 as an element of ]R, using your favorite description of IR within the universe.) 

For a retractive space X over Y1 satisfying these conditions (with retraction r and sec- 

tion s) and f :  Y1--+]/2 as above, let f ,X  be the (automatically disjoint) union of X\s(Y1) 
and {1} xY2. Then f ,X  has an evident topology making it into a pushout (colimit) of 

x : -  Y1 *-+Y2, 

and it is also a retractive space over Y2 satisfying the additional pedantic conditions. 

Most important: the rule f~-~f, respects composition, so that  g,f,=(gf), .  

We now construct a characteristic X for the A-theory functor defined on the cate- 

gory e (whose objects are the finitely dominated spaces and whose morphisms are the 

homotopy equivalences). 

Since we have a natural m a p  I w~J~fd (Y)]-----~ A(Y) (the one that is reminiscent of group 

completion) it is enough to construct a characteristic X for the functor Y~-~Iw~R/d(Y)I 
on e. We will do this using Example 1.3, with 97=w~/d. Accordingly, we must associate 

with every Y in C an object Y! in w~Yd(Y). Let 

Y! = S O x Y (6.2) 

with retraction r: Y!--+ Y equal to the projection and section s: Y--+ Y! given by y~-~ (1, y). 

For a morphism e: X--+Y in e, we have 

e,(X') = ({-1}  xX)U({1}  x Y ) .  

Let e ! from e,(X !) to Y! be given by (-1,x)~-~(-1, e(x)), (1,y)~+(1,y).  Then e is a 

morphism in wiR/d(Y). The 1-cocycle condition is satisfied: (e f) !=e !.e,(f !) whenever 

e and f are composable. By Example 1.3 we get the desired characteristic X for the 

functor Y~-~ Iwg~Yd(Y)l. 

6.3. Definition-Summary. Let p: E--+B be a fibration with homotopy finitely domi- 

nated fibers, where B is the geometric realization of a simplicial set ~ .  We apply w with 

e equal to the category of homotopy finitely dominated spaces, with homotopy equiva- 

lences as morphisms, and F=Ale. The characteristic X from (6.1) and (6.2) then yields 
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a section X(P): B---~AB(E), in the informal notation of w We call it the parametrized 
A-theory Euler characteristic of p. We will also sometimes write Xh(P): B--~AB(E), to 

stress the homotopy invariant nature of the construction. 

Remark. Let B=BG(Y), where G(Y) is the simplicial monoid of homotopy auto- 

morphisms of Y. Let p : E - + B G ( Y )  be the universal fibration with fibers homotopy 

equivalent to Y. We obtain X(P): B--+AB(E) as above. In homotopy theoretic terms, 

the fibration AB(E)--+B amounts to an A~-act ion of G(Y) on A(Y), and the section 

X(P) means that  x(Y)E A(Y) has been promoted to a homotopy fixed point of the action. 

In the case where Y is connected and based, this refines the rather trivial observation 

that  the sum of the ordinary Euler characteristic of Y, in Z, and the Wall finiteness 

obstruction of Y, in the reduced K0-group of Z~rl(Y), is an element of K0(ZTrl(Y)) 

which is invariant under the action of ~ro(G(Y)). 

Linearized characterist ics  

Let R be a (discrete) ring, with unit. Let Y be a space, homotopy equivalent to a 

CW-space. The bundles of f.g. projective left R-modules on Y, in other words covering 

spaces of Y where the fibers are continuously equipped with a structure of f.g. projective 

left R-module, are the objects of an exact category in the sense of Quillen [Q1]. See 

also [Karl. Let Ko(Y, R) be the Grothendieck group of that  exact category. There is a 

canonical homomorphism 

/~y: Ko(Y, R) ---+ [Y, K(R)] 

where the square brackets denote a set of homotopy classes of maps. It takes the class of 

a module bundle V to the homotopy class of ~cy, where cv is a classifying map for the 

bundle V and e is the inclusion of the classifying space for such bundles into its group 

completion, which is K(R). (The target of cw is l_I B G L ( P )  where P runs through a set 

of representatives of the isomorphism classes of f.g. projective left R-modules.) 

Now let p: E--+ B be a fibration where the base is homotopy equivalent to a CW-space 

and the fibers are homotopy finitely dominated. The Riemann-Roch problem raised by 

Bismut and Lott, as we see it, is to factorize a certain homomorphism 

flESh: Ko( E, R) ~ [B, K(R)]  

t h r o u g h  ~ E : K 0 ( E , R ) - + [ E , K ( R ) ] .  In w we obtain such factorizations under special 

hypotheses on p: E--+B. In this subsection, we merely define ~ESB, relate it to the 

parametrized characteristics of Example 6.1 and make it more explicit in special cases. 
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Definition of t3ESB. Because of [W2, w w we may redefine K(R) as the K-  

theory of a Waldhausen category C(R) of certain chain complexes. The objects of C(R) 

are the chain complexes of left projective R-modules which are chain homotopy equivalent 

to finitely generated ones (bounded below and above). The morphisms are the R-module 

chain maps. A morphism is a weak equivalence if it is a chain homotopy equivalence. 

It is a cofibration if it is split injective in each dimension. (We will usually shorten 'chain 

homotopic'  and 'chain homotopy equivalence' to 'homotopic' and 'homotopy equivalence', 

respectively.) 

As for p: E-+B, we adopt the notation of w assuming that  B is the geometric 

realization of a simplicial set ~3. Let V be a bundle of f.g. projective R-modules on E. 

For each simplex z in ~ let Jv(z) be the singular chain complex of E~ with twisted 

coefficients in V. Then Jy is a functor from s imp(~)  to we(R) and so induces a map 

from Isimp(~)l-~B to K(R), via the subspace Iwe(R)l of K(R). The homotopy class of 

this map depends only on the class [Y]eKo(E, R). We call it /~ESB([V]). 

Relation with the A-theory characteristic. Fix a bundle V of f.g. left projective R- 

modules on E. For a homotopy finitely dominated retractive space 

?- 

X ~ E  
8 

let )~v(X--~E) be the relative singular chain complex of the pair (X, E)  with (twisted) 

coefficients in the bundle of modules r* (V). The functor Ay induces a map of K- theory  

spaces, A(E)-+K(R); see the remark just below. 

Remark. John Klein pointed out that  the functor )~v is not an exact fimctor. It 

respects cofibrations and weak equivalences, but it does not respect cobase change. For 

example, suppose that  X-+Y is a cofibration (and also an inclusion) in the domain 

category of Av. We let 'Y/X'  denote the pushout YUx E in ff~Id(E). Then there is a 

canonical map from )~v(Y)/Av(X) to )~v(Y/X), but the map is rarely an isomorphism. 

Fortunately however, it is a homotopy equivalence. This suggests the remedy: Instead of 

using Waldhausen's S.-construction to define the K-theory  of a category with cofibrations 

and weak equivalences, use Thomason's  variation, given at the end of [W2, w This 

is natural with respect to functors which are slightly less than exact. In particular, 

qualifies. 

OBSERVATION 6.4. /~ESB applied to the class of a bundle V is the homotopy class 
of the composition (explanation follows) 

B x(P)~AB(E)--~A(E) ~V~K(R). 
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Explanation of terms. We still assume B=I~ I. The canonical maps Ez--+E induce 

a map from hocolimz A(E,) to A(E), which extends to a map from AB(E) to A(E). 
Compare w The characteristic determines as in Observation 1.4, Remark 1.5 and w 

a section X(P) of the projection AB(E)-+B. [] 

Assuming that  for each bEB and i~>0 the homology module Hi(p-l(b); V) has a fi- 

nite length resolution by f.g. projective left R-modules, we shall give a homology theoretic 

description of/~ESB applied to the class of V. Here is some K-theory  background. 

Recall that  an exact category :MZ is determined by an embedding of an additive cat- 

egory as a full subcategory of an abelian category A where ~ is closed under extensions 

in A. See [Q1, p. 16] and [ThoT, Appendix A]. A map f in ~ is an admissible monomor- 

phism if it is a monomorphism in Jt and the cokernel is isomorphic to an object in :h~. 

Dually, a map f in ~ is an admissible epimorphism if it is an epimorphism in A and the 

kernel is isomorphic to an object in :IV[. The two main examples for us are 

= TA, 

the category of projective objects in the abelian category A; and 

= NTA, 

consisting of those objects in the abelian category Jt which have finite length resolutions 

by objects in ~PA. The letter N" can be read as nearly. If A is the category of finitely 

generated left modules over a ring R, then we write Tn and ~N'~R instead of TA and NTA. 
Notice that  any morphism in TJt which is epic in Jt is admissible. A morphism in 

TJt which is monic in A is admissible if and only if it splits. However, all morphisms in 

NTA which are epic/monic in A are admissible. See [Ba, 1.6.2]. Quillen's Q-construction 

associates to an exact category ~ an infinite loop space K(:~) .  See [Q1]. Quillen's 

resolution theorem [Q1] implies that  the inclusion of K(TA) in K (N TA )  is a homotopy 

equivalence. 

If :~[ is an exact category, we can make ~ into a category with cofibrations and weak 

equivalences, by letting cof :M be the admissible monomorphisms in :)K and by letting w?d 

be tile isomorphisms in :IV[. Then there is a natural equivalence from K(ilY[) in the sense 

of Quillen to K(ilV[) in the sense of Waldhausen [W2, w [Gi, 9.3]. 

For geometric applications we want to have a chain complex theoretic description 

of K(?d).  Let ch(iM) be the category of chain complexes in :}V[ which are graded over Z and 

bounded above and below. We make ch(:M) into a category with cofibrations and weak 

equivalences by letting cofch(i)K) be the chain maps which are degreewise admissible 

monomorphisms and by letting wch(:~) be the quasi-isomorphisms, i.e., chain maps 
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which induce isomorphisms in homology. (The homology groups of a chain complex 

in 3V[ are objects of A.) The chain complexes concentrated in degree zero form a full 

subcategory which we identify with :TV[. In many cases the inclusion of Waldhausen 

K-theories, K(3V[)-+K(ch(3V[)), is a homotopy equivalence. 

EXAMPLE 6.5. The commutative square of inclusion maps 

K(TA) �9 K(ch(TA)) 

K(NTA) �9 K(ch(NTA)) 

consists entirely of homotopy equivalences. 

Proof. The upper horizontal arrow is a homotopy equivalence by [W2, 1.7.1] and 

the approximation theorem [W2, 1.6.7]. See [ThoT]. The right-hand vertical arrow is a 

homotopy equivalence by the approximation theorem, and the left-hand vertical arrow 

is a homotopy equivalence by Quillen's resolution theorem, mentioned earlier. [] 

Remark. Let A be the category of finitely generated left R-modules, so that  ~PA=TR. 

Replacing ch(~PR) by the larger category C(R) of chain complexes of left projective R- 

modules which are homotopy equivalent to objects in ch(iPA) does not change the homot- 

opy type of the K-theory space. This follows directly from the approximation theorem. 

Returning to an arbitrary exact category 3ViCA, we introduce certain full subcat- 

egories of ch(3V[). Let tch(3V[) consist of tile trivial chain complexes (with trivial differ- 

ential) and let sch(3V[) consist of the very ,special chain complexes C whose homology 

groups H/C belong to 3V[ for all i. Thus 

tch(:JV[) C sch(JV[) C ch(:~V(), 

and we define w tch(:M) := tch(JV[) N w:~s w sch(:~s := sch(:~s N w:M. Note: it is irrelevant 

to us whether sch(:M) is an exact subcategory of ch(:JV[) or not. 

In the proposition just below, we regard the homology functor H.  as a functor from 

sch(:~s to tch(:Y[). We also use a restricted product I-[' of pointed spaces. It consists of 

those points (xi) in the honest product for which xi #*  for only finitely many i. 

PROPOSITION 6.6. The following diagram commutes up to homotopy: 

iw sch(3V[) I H. _~ �9 Iwtch(~)l  �9 ' Iw~l H i E Z  

K(ch(:M)) = , K(ch(3v[)) , altern, sum t I-Lez K(ch(~) ) .  
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Proof. Given a chain complex C in sch(3V[), let PkC be the kth Postnikov approxi- 

mation to C. Thus (PkC)i=Ci for i<.k, (PkC)k+l=im(O: Ck+l--~Ck) and (PkC)i=O for 

i > k + l .  Let QkC be the kernel of the canonical projection from PkC to Pk-IC. Then 

QkC ~ PkC--+ Pk-aC 

is a functorial cofibration sequence in sch(ih~). The projection 

QkC --+ H, (QkC) 

is a weak equivalence in sch(iM). Of course H,(QkC) is concentrated in degree k and 

equal to HkC there. Using this and an observation [W2, 1.3.3] related to the additivity 

theorem, one finds that  the left-hand square in Proposition 6.6 commutes up to homotopy. 

Commutativity of the right-hand square follows from IT2,  1.6.2]. [] 

We return t o  ~ESB. Recall that  NiPR is the exact category of those left R-modules 

which admit fn i te  resolutions by f.g. projective ones. 

PROPOSITION 6.7. Suppose that B is connected and Hi(p-l(b); V) is in N~R for 
each bEB and i>/O. Then/3ESt~([V]) is the alternating sum ~ ( - 1 )  i ... of the homotopy 

classes of the composite maps 

B k(i))liso(NTR)Ic__+K(NTR)~K(R ) (i~>0) 

where k(i) classifies the bundle on B with fiber Hi(p-l(b); V) over bEB. 

Proof. Let j be the largest integer for which Hy(p-l(b);V) is nonzero for sonm 

(hence all) bEB. Let 11C wff(R) be the full subcategory consisting of the chain complexes 

having all homology groups in NTR and those in dimensions <0 and > j  equal to 0. In 

view of our definition of ~ESB, it suffices to show that  the composite inclusion [11[r 

[we(R)[c---~K(e(R))=K(R) is homotopic to the alternating sum, over i with O<.i<.j, of 

the composite maps [UI--+K(NTR)~-K(R) determined by the functors C~-+Hi(C; V) for 

C in II. We may replace [111 by the homotopy equivalent [l~Nwch(TR)[. This is contained 

in [wsch(3V[)[ with 3Vi=:NTR, so we can use Proposition 6.6 to complete the proof. [] 

7. An excisive characteristic 

Controlled A-theory 

Following [ACFP], [CP] and [CPV], we introduce control. For us, a control space is a 

pair (Q, Q) of locally compact Hausdorff spaces, with Q open in Q. 
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Let X1 and X2 be retractive spaces over Q (with retractions ri: Xi--+Q for i=1,  2). 

A retractive map X1---~X2 is, as usual, a map over Q and relative to Q. A retractive 
map germ from X1 to X2 is an equivalence class of pairs (U, f ) ,  where UcQ is an open 

neighborhood of 0 \ Q  and f :  r-(l(gnQ)--+Z2 is a refractive map (that is, a map relative 

to UNQ and over Q). Two such pairs (U, f )  and (V,g) are equivalent if f and g agree 

on r;I(WNQ) for some open neighborhood W of 0 \ Q  in 0 ,  with WcUnV. 
A controlled map from X] to X2 is a map f :  X1--+X2 (not necessarily over Q) which 

is relative to Q and satisfies the following control condition: 

For every zE(O\Q)" and every neighborhood L of z in Q', there exists a smaller 

neighborhood L'CL of z in 0" such that  r2f(x)eL whenever xeX1 and rl(X)EL'. 

A controlled map germ from X1 to X2 is an equivalence class of pairs (U, f ) ,  where U 

is an open neighborhood of 0 \ Q  in P and f :  r11(UNQ)---~X2 is a map relative to UNQ 
which satisfies the control condition above, for all xCr~I(UNQ). Again, two such pairs 

(U, f )  and (V,g) define the same controlled map germ if f and g agree on r~I(WAQ) 
for a sufficiently small open w c O  with O\QcW. Note that  a retractive map germ is 

also a controlled map germ. 

Let ~ ( 0 ,  Q), [R~(0, Q), e (0 ,  Q), e~ (0 ,  Q) be the categories whose objects are the 

retractive spaces over Q and whose morphisms are the retractive maps, retractive map 

germs, controlled maps and controlled map germs, respectively. (To ensure that  these 

categories depend functorially on (Q, Q), we impose certain conditions on the underlying 

sets of the retractive spaces involved, as in Example 6.1.) Then 

iR(0, Q) C e(0 ,  Q), 

~9(O, Q) c eg(Q, Q). 

We will now define notions of homotopy in if(Q, Q) and ffS(0, Q). This will lead very 

naturally to notions of cofibration and weak equivalence and homotopy locally finitely 
dominated object in if(Q,Q) and ffg(0,  Q). We will then use these notions in ~ ( 0 ,  Q) 

and ~9(O, Q). 

Homotopy. Let X be retractive over Q. We write XX I for the colinfit of 

X x l  e=QxI-+Q, 

which is again a retractive space over Q. Two morphisms ~, ~p: X-+Y in if(Q, Q) are 

homotopic if there exists a morphism "y:XXI-+Y in e(Q,Q) such that  ")'i0=~ and 

~ i1=r  where i0: X-+X/(I and i l :X-~XX I are the maps (morphisms) given by x~-> 

(x, 0) and x~-+(x, 1), respectively. Likewise, two morphisms ~a, ~p: X-+Y in f ig(0,  Q) are 

homotopic if there exists a morphism q,: XXI--+Y in eg(Q,Q)  such that  9'io=9~ and 

"yil=~.  
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Weak equivalences. We obtain homotopy categories 9s Q) and ~ce9(Q, Q) by 

identifying homotopic morphisms in C(O, Q) and in eg(O, Q), respectively. A morphisrn 

in e((~, Q) is a weak equivalence if it becomes an isomorphism in 9/e(Q, Q). A morphism 

in eg(Q, Q) is a weak equivalence if it becomes an isomorphism in 9/C9(Q, Q). 

Cofibrations. Let ~: X1-+X2 be a morphism in c(O, Q). Let ri: Xi -+Q be the re- 

tractions. We say that  ~ is a cofibration if it is a closed embedding and has the homotopy 

extension property (for homotopies in e((~, Q), as defined above). 

Let ~: X~--+X2 be a morphism in Cg(Q, Q). Let ri: Xi--+Q be the retractions. Say 

that ~ is a closed embedding if, for some representative (U, f )  of ~, there exists an open 

neighborhood V of O \ Q  in O such that (r2f)-l(YAQ) is contained in r~l(Uf~Q) and 

f restricts to a closed embedding from (r2f)-I(VNQ) to rfl(VNQ). Say that  p is a 

cofibration if it is a closed embedding and has the homotopy extension property (for 

homotopies in eg(Q, Q), as defined above). 

Homotopy locally finite domination. Let X be a retractive space over Q with retrac- 

tion r: X--+Q. A controlled CW-structure on X is a structure of relative CW-space on X 

(relative to Q) with the following property: 

For every zE(O\Q)" and neighborhood L of z in Q', there exists a smaller neigh- 

borhood L ~ of z in O" such that  any cell of X which has nonempty intersection with 

r-I(L'NQ) is contained in r-l(LNQ). 

An object Y in e(Q,Q) or Cg(Q,Q) is homotopy locally finitely dominated if, in 

9~c(O, Q) or in ~ffg(O,  Q), as appropriate, it is a retract of some X with a controlled 

CW-structure which is 

(1) locally finite (i.e., r: X-+Q is proper); 

(2) finite-dimensional (i.e., X equals its relative n-skeleton for some n). 

Definition 7.1. A morphism in :R(Q), Q) is a eofibration if it becomes a cofibration in 

c(O, Q); it is a weak equivalence if it becomes a weak equivalence in if(Q, Q). A morphism 

in :Rg(O, Q) is a cofibration if it becomes a cofibration in Cg(Q, Q); it is a weak equivalence 
if it becomes a weak equivalence in Cg(Q, Q). 

Let :Rta(O , Q) be the full subcategory of :R(O, Q) consisting of the objects which are 

homotopy locally finitely dominated, as objects of c(O,Q).  Let :Rgld(Q, Q) be the full 

subcategory of :Rg(Q), Q) consisting of the objects which are homotopy locally finitely 

dominated, as objects of C~(Q, Q). 

We leave it to the reader to verify that  :Rid(Q, Q) and :RgZd(O , Q) are Waldhausen 

categories, with the notions of cofibration and weak equivalence inherited from :R(Q, Q) 

and :Rg(Q, Q), respectively. 
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OBSERVATION 7.2. Let (Q,Q) and (Q',Q') be control spaces. A proper map u from 
Q to Qr with u-I(Qr)=Q induces an exact functorfrom ff~zd(Q,Q) to ~t~(Q,,Q,) and 

another from ~gZd(Q, Q) to ~gtd(Q ', Q'), by pushout along u (compare Example 6.1). 

Proof. We begin with the following fact. Suppose given a closed C c Q  ~. For any 

neighborhood V of u -  1 (C ~), there exists a neighborhood V r of C ~ such that  u -  1 (V t) C V. 

Now take ~ -~ t C = Q  \Q  and deduce that,  for any neighborhood V of Q\Q in Q, there 

exists a neighborhood V' of Q'\Q' in Q, such that u - I ( W ) c V .  Also, t ry  letting C'  

consist of a single point z ~ in Q~\Q and deduce that for any neighborhood V of u- l (z  ~) 

there exists a neighborhood V ~ of z ~ such that  u- I (Vr)cV.  Together, these observa- 

tions show that pushout along u takes controlled maps to controlled maps and controlled 

map germs to controlled map germs. They also show that  pushout along u takes ob- 

jects with controlled CW-structures to objects with controlled CW-structures. It follows 

easily that u.:  9~(Q, - '  ' Q)~ff~(Q,Q) and u . : ~ 9 ( Q ,  -+9~ - '  ' Q) 9 (Q ,  Q ) respect cofibrations, 

pushouts, weak equivalences and homotopy locally finite dominations. [] 

PROPOSITION 7.3. Let (Q,Q) be a control space. Let UcQ be open and let U= 
UNQ. For a retractive space X over Q, with retraction r:X-+Q, let X[U:=r- l (u ) ,  

a retractive space over U. 

The rule X~-~X[U is an exact functor from 9~gld(Q,Q) to ff~gld(u,u). If U con- 

tains Q, \Q, it is also an equivalence of categories. 

Details. The rule X~-+XIU can first of all be viewed as a functor from c g ( Q , Q )  

to c g ( u ,  u ) .  Namely, suppose that  a morphism XI-+X2 in C9(~), Q) is represented by 

(WQ, fQ) where WQ is an open neighborhood of Q\Q in Q and fQ is a map from the 

portion of X1 lying over WQ to X2, subject to the appropriate conditions. Choose an 

open neighborhood Wu of U \ U  in U, small enough so that  the restriction fv  of fQ to 

the portion of X1 lying over Wu N U is defined and maps that  portion of X1 to X2IU. 

Then the pair (Wu, fv)  represents a morphism XI[U--+X21U in eg(U,  U), which does 

not depend on the choice of Wu. 

A homotopy between morphisms ~,~b:XI~X2 in eg(Q,Q) induces a homotopy 

between the induced morphisms XI[U--~X2[U in eg (U ,U ) .  It follows easily that  the 

restriction functor X~+X[U, now viewed as a functor from ~9(Q),Q) to ~9 (U ,U ) ,  is 

exact. 

Moreover, if X in Cg(Q,Q) is isomorphic in e g ( Q , Q )  to an object with a con- 

trolled CW-structure which is locally finite and finite-dimensional, then the object X[U 

in eg(U,  U) is isomorphic to one with a controlled CW-structure which is locally finite 

and finite-dimensional. It follows that  the restriction functor X~+X[U, again viewed as 

a functor from ~9(Q,  Q) to ff~9(U, U), takes homotopy locally finitely dominated objects 
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to homotopy locally finitely dominated objects. 

For the last sentence of Proposition 7.3, suppose that UD~)\Q. Then we have 

a functor ~RgZd(U, U)--+~RgZd(Q, Q) taking X in ~Rgtd(u, U) to the pushout of the dia- 

gram X+--,Uc---~Q. Up to natural isomorphisms, this is inverse to the restriction functor 
~gld(Q, Q)-+f~gld (0, U). [] 

COROLLARY 7.4. Let 5 Y = ( Y x  [0, oc], Y x [0, oc[). The rule Y~K(~9*d(~Y)) is a 

functor from ~" to pointed spaces. 

Proof. Let f :  YI~,*Y2 be a morphism in E'. Let V=f - I (Y2) .  The restriction of f to 

V is a proper map V-+Y2 which induces an exact functor 

~Rg;d($v) -+ ~gtd($y2) 

as in Observation 7.2. There is another exact functor 

~9;~(5Y1) ~ ~gta($y) 

given by restriction as in Proposition 7.3. The map of K-theories induced by f that  we 

need to define is the map induced by the composite exact functor 

:Rgld(jlYl) ~ 9~gld(JY) -+ :Rgld(JY2). [] 

THEOREM 7.5. The functor Y ~  K(ff~gld(sY)) on E" is pro-excisive. 

This, together with Proposition 7.6 below, is a mild variation on [CPV, 2.21]; pre- 

cursors are the main theorems of [PW] and [Vo]. See [We] for a direct proof. [] 

PROPOSITION 7.6. The commutative square of K-theory spectra determined by the 

commutative square of Waldhausen categories and exact inclusion functors 

, �9 :Rgld(JY) 

is homotopy cartesian. In particular, this holds for Y=*; hence the pro-excisive functor 
Y ~-+ K ( ff~gld ( J Y  ) ) on E" has coefficient spectrum _~S1AA(,), where A(*) is the spectrum 

determined by the infinite loop space A( * ). 

Proof. For the first sentence, see [We]. For the second sentence, note that  the 

K-theory spectrum of ff~ld(j,) is contractible by a well-known Eilenberg swindle; see 

also [We]. 
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The excisive A-theory characteristic 

The goal is to define an excisive characteristic as in Assumption 2.4. The pro-excisive 

functor F on E" which we have in mind is essentially f~ of the one in Theorem 7.5. The 

characteristic is only defined for FILE', as in w 

Outline. For Y in E', we define a full subcategory V(Y) of :Rld(JY) and make it into 

a Waldhausen category in its own right. (The symbol V should suggest something in the 

direction of vanishing.) The important  properties of V(Y) are these: 

(1) the inclusion functor V(Y)-+ff(Zd(JY) is exact; 

(2) K(V(Y)) is contractible; 

(3) the space (Yx0) I I (Y•  oc[), as a retractive space over Yx[0,  c~[, belongs 

to V(Y). 

The object (Y x O) II (Y x [0, c~[) of V(Y) becomes isomorphic to the zero-object in 

~gZd(sY), and so determines a point x(Y) in 

F(Y) := hofiber[K(V(Y)) -+ K(ff~gld(sY ) )] ~-- aK(f~gZd(sY ) ). 

Convention. In the remainder of this section, we want to make sure that  all Wald- 

hausen categories in sight have a unique zero-object (an object which is initial and ter- 

minal). This means that our earlier definition of ~ld(,~y) needs to be modified slightly: 

identify all zero-objects. 

7.8. Details. Definition of V( Y ) and exactness of the inclusion functor. The objects 

of 7 (Y)  are, briefly, the proper retractive ENR's over Y x  [0, c~[. A proper retractive ENR 

over Yx  [0, co[ is a retractive space of the form 

r 

X V Y x [ O , ~ [  

where X is an ENR and r is a proper map. The morphisms in V(Y) are the retractive 

maps. A morphism in V(Y) is a cofibration if it is injective. 

For real s~>0 let ~ : Y x [ 0 ,  c~[--+Yx[0, c~[ be the shift, (y,t)~-+(y,t+s). A mor- 

phism f :  X1 ~ X 2  is a weak equivalence in V(Y) if, for every sequence of positive integers 

Co, cl, c2, ..., the morphism 
i X H ci~i*X1 --+ H ci~, 2 

i i 

induced by f is a weak equivalence in ~ld(jy). Here ci~i, X1 is short for a coproduct of 

ci copies of ~ X1; similarly with X2 instead of X1. With these notions of cofibration and 

weak equivalence, V(Y) is a Waldhausen category. In particular, (i) the pushout of a 

morphism f :  X1 --+X2 in V(Y) and a cofibration g: X1 --+)(3 in V(Y) exists in V(Y); and 
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(ii) if f is a weak equivalence, then the canonical morphism from )(3 to the pushout is 

also a weak equivalence. Statement (i) is a consequence of (i'): The pushout of a diagram 

Ae---B---+C of ENR's, where A+---B is proper and B---+C is a closed embedding, is an ENR. 

Statement (i') follows easily from [Hu, VI.1.2]. Statement (ii) is a consequence of the fact 

that  a closed embedding of ENR.'s has the homotopy extension property. See [Hu, IV.3.2], 

noting that  ENR's are ANR's (absolute neighborhood retracts); compare [D1, IV.8.13.1]. 

Since closed embeddings of ENR's have the homotopy extension property, cofibra- 

tions in V(Y) are still cofibrations in the larger category :Rld(~Y). (The homotopy 

extension property yields at first 'uncontrolled' extensions of controlled homotopies. An 

h,~ uncontrolled extension {ht} can always be improved to a suitably controlled one, { t }, 

by restriction and reparametrization: 

h~(x) :-- hx(x)t(x) 

for 0~<t~<l, where x is a function satisfying 0~<x(x)~l  for all x, among other things. 

We omit the details.) Hence the inclusion functor from V(Y) to :RZd($Y) is exact. 

Contractibility of K(V(Y)).  This is based on an Eilenberg swindle. We will show 

that  there exist self-maps 

a: K(V(Y)) --+ K(V(Y)),  b: K(V(Y)) --+ K(V(Y)) 

such that a-~ id and b-~ id +ab (where we use the infinite loop space structure on K(V(Y)) 

to make sense of the addition). Hence the identity map of K(V(Y)) is nullhomotopic. 

We write ~:=~1.  The map a is induced by the exact functor ~,  from V(Y) to V(Y). 

The map b is induced by the exact functor 

x ll :x 
iEN 

(N ={0, 1, 2, ...}) from V(Y) to V(Y). The additivity theorem implies immediately that 

b-~id +ab. To show that  a~-id, we introduce another exact functor 

r v(Y) 

and natural weak equivalences X--+~(X)+--~,(X). Namely, r  is the quotient of 

X • I by the relations (x, s) -~ (~S(x), 0) for x e Y  • [0, co[. (Remember that  X contains 

Yx [0, c~[ as a retract.) Then r  maps to Yx [0, cx~[ by means of (x,s)~-~S(r(x)), 
where r is the retraction for X, and Y• cx~[ maps to ~(X)  by z~-~(j(z),O) where 

j:Yx[O,~[-+X is the structural section for X. Therefore r  is retractive over 
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Vx [0, ec[. The natural weak equivalences X--+r and ~.(X)--+r are given by 

x~-+(x,0) and p(x)~-~(x, 1). (We have written ~(x) for the image of xEX under an 

obvious embedding Z--+~. (X) which covers the map ~: Y x [0, c~[--+Y x [0, ec[ .) 

The characteristic object. (Yx0)I I (Yx[0 ,  cx~[), with the evident retraction to 

Y• cx~[, is an object of V(Y) which we denote by Y!. It maps to the zero-object 

in 9~gld(bY), because the identity endomorphism and the zero-endomorphism of Y! 

determine the same controlled map germ from Y! to Y!. (Remember the convention 

preceding w In this way, Y~ determines a point x(Y)E F(Y). 
(The notation (Y• 0)H(Y • [0, oc[) only describes the object Y! of V(Y) up to unique 

isomorphism. What  we really mean is ({-1} •215  {0})U({1} x Y •  [0, cx~[). Compare 

Example 6.1.) 

Naturality. Let f:Y;-+Y~ be a pointed map, where Y1 and ]I2 are ENR's. We 

decompose f as in the proof of Corollary 7.4: 

Y;-~ w'-~ Yi 

where W=f  -1(]I2). Using that decomposition, we found that  f induces an exact functor 

This led to Corollary 7.4. The same recipe gives an exact functor from V(Y1) to V(Y2), 

and we conclude that Y~-~K(V(Y)) is a functor on E'. Hence F is a functor on E'. 

Moreover, it is clear that  the pullback alias restriction functor V(Y1)--+V(W) takes 

the characteristic object Y1 ! to W !. If f]W from W to Y2 is cell-like, then the retractive 

map 

(W x 0)II (Y2 • [0, co[) --+ (Y2 x 0)H(Y2 x [0, co[) 

taking (w,0) in the first summand W x 0 to (f(w), 0) in the first summand Y2 x0 is a 

weak equivalence in V(Y2). Hence we obtain by the recipe of Example 1.3 a characteristic 

X for the functor on IE" given by 

Y ~-~ hofiber(IwV(r)l--+ Iw~gtd(bY)]). 

This functor is a subfunctor of FILE', so that,  finally, we have a characteristic X for the 

functor FILE'. 

Remark 7.9. The functor F on E" is pro-excisive, with coefficient spectrum 

F(,) -~ A(,). 
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Proof. This follows from Proposition 7.6 and the contractibility of K(V(Y)) proved 

in w [] 

Notation 7.10. Because of Remark 7.9, we write F ( Y ) = : I I A % ( Y )  or, if Y is com- 

pact, F ( Y ) = A % ( Y ) .  See w for more justification. 

7.11. Definition-Summary. Let p: E-+ B be a fiber bundle with compact topological 

manifold fibers, where B is the geometric realization of a simplicial set ~3. Applying w 

with F=zIA  % and X as in w yields a section 

X(P): B -+ A~(E)  

of A~(E)-+B.  This is in the informal notation of w We call X(P) the parametrized 

A%-theory Euler characteristic of p. 

8. R i e m a n n - R o c h  t h e o r e m s  

A s s e m b l y  

Definition 8.1. Let e be the category of all spaces which are homotopy equivalent to 

compact CW-spaces. A functor F from C to CW-spectra is homotopy invariant if it 

takes homotopy equivalences to homotopy equivalences. A homotopy invariant F is 

excisive if F ( ~ )  is contractible and if F preserves homotopy pushout squares. 

PROPOSITION-DEFINITION 8.2. For any homotopy invariant functor F from C to 

CW-spectra, there exist an excisive (and homotopy invariant) functor F % from C to 

CW-spectra and a natural transformation 

~ = ~F:F%--~ F 

such that (~: F%(,) -+F(*)  is a homotopy equivalence. There is a construction of F % and 

~F which is natural in F. 

Proposition 8.2 is a mild variation on [WW1, Theorem 1.1]. The proof goes through. 

We call c~ the assembly. The concept and the name originated in Frank Quinn's thesis 

[Qnl], [Qn2]. 

Remark. There is a chain of natural homotopy equivalences relating F%(X) to 

X+AF(*). See [WWl, 1.2]. 

Remark. Natural dependence of C~F on F implies "universality" of aF. That  is, 

Cr F % -+F is the best approximation (from the left) of F by an excisive functor. Namely, 
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suppose that  ~: E--+F is another natural transformation where E is excisive on e. We 

have a commutative square 

E%(X ) mE E(X) 

l 1 
F%(X ) ~ F  ~. F(X) 

which is natural in X. The arrow C~E is a homotopy equivalence, showing tha t /~  essen- 

tially factors through C~F. If/3: E(*)--+F(.)  happens to be a homotopy equivalence, then 

/~%: E%(X)--+F%(X) is also a homotopy equivalence for all X. See [WW1, w For this 

reason, we will say that/3: E--+F is an assembly transformation if E is excisive on e and 

/~: E(*)--+F(*) is a homotopy equivalence. 

8.3. Notation-Example. The functor Y~+A(Y) has an ~t-spectrum-valued version, 

Y ~ A ( Y ) ,  so that  the zeroth term of A (Y )  is A(Y). We abbreviate ~t~A%(Y) to 

A%(Y), for Y in e. 

Comments. The space A(Y) is the underlying space of a F-space [S1] determined by 

the coproduct of retractive spaces over ]I, and the abelian monoid 7roA(Y) is an abelian 

group. Therefore Segal's machine delivers an ~-spectrum A(Y)  with zeroth term A(Y). 
We already have a definition of A%(Y) when Y is a compact ENR, from Nota- 

tion 7.10; but there is no serious clash, since both versions of A%(Y) are related to the 

infinite loop space ~o~ (y+ A A( , ) )  by a chain of natural homotopy equivalences. 

Universal  R i e m a n n - R o c h  

As in w let p: E-+B be a fibration, where B is the geometric realization of a simplicial 

set. Assume also that  the fibers of p belong to e, the category of Definition 8.1; in other 

words, they are homotopy finitely dominated. We apply w with this C and, in place 

of F,  the functors A (as defined in Example 6.1) and A % (constructed from the functor 

A following Proposition 8.2). The result is a fiberwise assembly map 

A~(E) -+ A s ( E ) ,  

in the informal notation of w It is a map over B. Recall from w that  the param- 

etrized Euler characteristic Xh(P) is a section B---~AB(E) of the projection AB(E)-+B. 
Note that the fiberwise assembly A~ (E)--+ A s  (E) and the parametrized Euler char- 

acteristic Xh(P): B--+AB(E) have been defned  in fiber homotopy theoretic terms. That  

is, if # :  Er~B is another fibration and g: E ~ E  is a fiberwise homotopy equivalence 
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over B, then 

A~(E')  " �9 AB(E')  

g*l ~- 9.1"" 
A~(E) ~ ) AB(E) 

commutes and the composition of Xh(P'): B--+AB(E') with g,: AB(E')--+AB(E) agrees 

with Xh(P) up to a preferred vertical homotopy. 

THEOREM 8.4. Let p: E--+ B be a bundle of compact topological manifolds (possibly 
with boundary). Then the section Xh(P): B--+AB(E) from w is vertically homotopic, 
by a preferred vertical homotopy, to the composition of X(P) in w with fiberwise 
assembly: 

B x(p))A~(E) --?-+AB(E). 

The proof will be given in the next subsection. 

Remark. The section X(P) and the preferred vertical homotopy from aX(P) to Xh(P) 
in Theorem 8.4 are not fiber homotopy invariants. They depend very strongly on the 

structure of p as a bundle of compact manifolds. The following example (without proofs) 

may serve as an illustration. Let g: M'--+ M be a homotopy equivalence between compact 

topological manifolds. We view it as a fiber homotopy equivalence between bundles 

p': M'--~, and p: M--+,. Applying Theorem 8.4 to both of these and using the homotopy 

invariance properties of Xh, we get an element (i in the homotopy pullback of 

A%(M ') .q"~) A(M)eT___A%(M). 

More precisely, 5 is the element determined by X(P') alias )/(M I) in A%(M'), X(P) alias 

x (M)  in A%(M) and a three-segment path in A(M) obtained by concatenating 

(1) the image under g,: A(M')-+A(M) of the preferred path in A(M') connecting 

a()~(M')) with Xh(M'), which we get from Theorem 8.4; 

(2) the preferred path from g,(Xh(M')) to Xh(M) which we get from the homotopy 

invariance properties of Xh; 

(3) the preferred path in A(M) from Xh(M) to a(x(M)), which we again get from 

Theorem 8.4. 

It is easy to identify 7r0 of the above homotopy pullback with the Whitehead group 

of 7riM, so that  5 represents an element in the Whitehead group. That  element is of 

course the Whitehead torsion of g; in particular, it can be nonzero. For more on this 

example and its long history, see [Chal] and [RAY]. 
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THEOREM 8.5. Let p: E-+ B be a bundle of compact regular manifolds (see Def- 
inition 5.6), possibly with boundary. Then the section Xh(p):B---~AB(E) from w is 

vertically homotopic to the composition of Becker-Gottlieb-Dold transfer trp: B - + Q ~  (E) 

with (~: Q'B(E)--+ AB(E). 

This follows directly from Theorems 8.4 and 5.7. Smooth manifolds are regular 

manifolds, so that  Theorem 8.5 can be seen as a statement about smooth manifold 

bundles. 

P r o o f  o f  T h e o r e m  8.4  

Here we must unravel the relationship between the excisive characteristic of w and 

the homotopy invariant characteristic of w in the case when Y is a compact ENR. 

At this point we clearly need different symbols for the two characteristics, so we write 

x ( Y ) 6 F ( Y )  for the excisive one, w and Xh(Y)EFh(Y)  for the homotopy invariant 

one, w Thus, F is the pro-excisive functor of w and Remark 7.9, with coefficient 

spectrum "~A(*), and Fh is the algebraic K-theory  of spaces functor Y~-+A(Y). We 

shall find that,  modulo formal inversion of a natural homotopy equivalence, there is an 

assembly transformation F(Y)-+Fh(Y)  which is defined when Y is a compact ENR and 

takes x(Y)  to Xh(Y). The word assembly is justified because a is a natural map between 

infinite loop spaces. 

For a more precise statement we need the commutative diagram of Waldhausen 

categories and exact functors 

V(Y) c , ~ ld ( jy )  , ff~fd(y) 

V(Y) c n �9 9~9~d(.~Y) ~ , 

(8.6) 

where Y in the right-hand column has been identified with Y x 0. We apply the K-theory 

functor and take homotopy pullbacks of the resulting rows to obtain a forgetful map 

F'(Y) 

F(Y). 

LEMMA 8.7. That map is a homotopy equivalence. 

Proof. The right-hand square in (8.6) is homotopy cartesian. See [CPV, 2.12]. [] 
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OBSERVATION 8.8. There is a canonical lift x ' ( Y ) E F ' ( Y )  of x ( Y ) e F ( Y ) .  Under 

the projection F'(Y)---~Fh(Y), this lift x ' (Y )  maps to Xh(Y). 

Explanation. Note tha t  the object Y! in V(Y) also belongs to the subcategory 
~/d (y )c~Id (~Y) .  [] 

OBSERVATION 8.9. The projection Ft--~ Fh is an assembly transformation. 

Explanation and proof. We view FI-~Fh as a natural  t ransformation between infi- 

nite loop space-valued functors and show that  the corresponding natural  t ransformation 

F I - ~ F h  between spectrum-valued functors is an assembly transformation.  

We know already tha t  F ~ is excisive. I t  remains to show that  F~(*)-+Fh(*) is a 

homotopy equivalence, or equivalently, that  F'(*)-+ Fh (*) is a homotopy equivalence. 

But this is obvious from the definition of F ~ and the contractibility of K(:RZd(J*)). [] 

Remark. Why did we bother with X when X ~ is apparent ly so much more convenient? 

The answer is, of course, that  X has bet ter  naturali ty properties: it is a characteristic 

on I~'. 

Conclusion of proof of Theorem 8.4. The best policy here is to stick with homotopy 

limits and to avoid mentioning section spaces explicitly. Therefore we use the rigorous 

definitions of (2.9) and (1.7): 

X'(P) E holim F~(E~x) , 
(~,o) 

Xh(P) �9 holim Fh(E~). 

To find out how X~(p) and Xh(P) might be related, we set up a commutat ive  square with 

forgetful vertical arrows 

holim(x,e) F'(E~) ( ~- holimx F~(E~) 

holim(x,o) Fh(E ~ �9 ~- holimx Fh(E~). 

(8.1o) 

We are searching for a pa th  connecting the images of X~(p) and Xh(P) in the lower 

left-hand term of (8.10). 

Now recall the natural  t ransformation Ex-+E~ for (x, O) in s i m p ( t ~ ) ,  which induces 

the horizontal arrows in (8.10). View it as a functor T on s i m p ( t ~ )  • {0, 1}, where {0, 1} 

is to be understood as a poset, with 0<  1, hence as a category (with a single nonidentity 

morphism, from 0 to 1). Using Xh once more, we obtain a point zEholimFhT. But 

holim FhT is exactly the space of natural  transformations from the diagram I+ -~ 0 to the 

lower row of (8.10). In particular, z determines a pa th  of the kind we are searching for. 

Tha t  path  does what we want. [] 



PARAMETRIZED INDEX THEOREM 59 

Linear R i e m a n n - R o c h :  General it ies  

In the remaining subsections we work mostly with a bundle p: E-+B of compact topo- 

logical manifolds and a ring R. We produce a transfer homomorphism t from [E, K(R)] 

to [B, K(R)] such that  

= tg : Ko(E, R) [B, K(R)] 

(see w the subsection Linearized characteristics). The case where p is a bundle of 

regular compact manifolds is easier to understand, so we deal with it first. In this case 

t is induced by the Becker-Gottlieb-Dold transfer trp, and so depends only on the fiber 

homotopy type of p. 

Linear R i e m a n n - R o c h  for regular manifolds  

THEOREM 8.11. Let p: E-+ B be a bundle of regular compact manifolds and let R be any 

ring. Then/3E~B: Ko(E, R)--+[B, K(R)] equals trp'/3E, where trp: [E, K(R)]--+[B, K(R)] 

is induced by the Becker-Gottlieb Dold transfer, a stable map from B+ to E+. 

COROLLARY 8.12. Let V be a bundle of f.g. projective left R-modules on E. Suppose 

that the homology groups Hi(Eb; V) all admit finite length resolutions by f.g. projective 

left R-modules; let Vi be the R-module bundle on B with fiber Hi(Eb; V) over bEB. 

Then 

trp[V] = E (-1) i  [v/] �9 [B, K(R)]. 
i 

Proof of Corollary 8.12 modulo Theorem 8.11. Use Proposition 6,7. [] 

Proof of Theorem 8.11. Assume first that B is the geometric realization of a sim- 

plicial set with finitely many nondegenerate simplices only. Combining Observation 6.4 

and Theorem 8.5, we find that  ~E$B applied to the class of some module bundle V on E 

is the homotopy class of the composition 

B trp) Q.B(E) ~,~ AB(E) ~ A(E) ~v ~ K(R),  

which is also the homotopy class of the composition 

B trp > Q.B(E) --+ Q'(E) ~'> A(E) Xv ) K(R).  

Note that  Ava~: Q" (E)--~ K(R)  is a map of infinite loop spaces. It is therefore determined 

by its restriction to E. We now examine that  restriction. 
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To this end we observe first that  ~:Q'(E)-+A%(E) is homotopic to the compo- 

sition of x(idE): E---+A~(E) with A~(E)---~A%(E). This follows from Theorem 5.7, 

because id: E--+E is a bundle of regular compact 0-manifolds. Then we conclude that  

a~?: Q" (E)--+A(E) is homotopic to the composition of Xh(idE): E-+AE(E) with the map 

AE(E)--+A(E). This makes it obvious that  Ava~IE is the map which "classifies" the 

module bundle V; so it is in the homotopy class ~E(V). 
This completes the proof in the case where B is the geometric realization of a 

finitely generated simplicial set. In the case where B is the geometric realization of a 

larger simplicial set, we reduce to the previous case using naturali ty arguments. [] 

P r o d u c t s  

For now we assume only that  p: E-+B is a fibration with finitely dominated fibers. We 

shall reformulate ~ESB: KO (E, R) ~ [B, K(R)]  in terms of a product 

#: K ( E ,  R) A A ( E )  --+ K(R)  

where K ( E ,  R) is the K-theory spectrum of the Waldhausen category of bundles of fig. 

projective left R-modules on E. 

Ingredients. We need three Waldhausen categories. The first is T(E, R), the cate- 

gory of bundles of fig. projective left R-modules on E. We make it into a Waldhausen 

category by decreeing that the split monomorphisms are the cofibrations and the iso- 

morphisms are the weak equivalences. The second Waldhausen category that  we need 

is ~R/d(E), defined in Example 6.1. The third is ch(R), the category of chain complexes 

C of projective left R-modules which, up to (chain) homotopy equivalence, are bounded 

and fig. projective in each degree. The cofibrations in ch(R) are the chain maps which 

are split monomorphisms of R-modules in each degree. The weak equivalences are the 

homotopy equivalences. The ch(R)-notation is not entirely consistent with w but it is 

short. The K- theory  spaces of these categories are then K(E, R) (by definition) and 

A(E) and K(R) ,  respectively. To be more precise, however, we decree 

K(E, R):= ~lw9-.~'(E, R)I, 

A( E) := ~lw9-.~fd( E )l, 

K(R) := ~2 iwwg-.T " ch(R)l, 

where 9". is the Thomason construction, a mild variation on Waldhausen's S.-construction 

which we have used earlier (just before Observation 6.4). It is described at the end of 

w in IT2]. Our unusual definition of K(R) is blessed by the digression following 1.5.3 

in [W2]. 
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The product at the space level. Here we describe a functor from T(E, R)x[Rfd(E) 
to ch(R). The functor is given by 

(v, (X E) )  v(X = E) 

where Av is the relative singular chain complex of (X, E)  with coefficients in V, as in 

Observation 6.4. The functor is not quite biexact because Av is not quite exact for 

fixed V, but it does induce (with the definitions just above) a map 

it: K(E, R)AA(E) --+ K(R). 

The product at the spectrum level. We make the spectra we need out of F-spaces, 

using Segal's machine [$1]. A F-space is a contravariant functor from a certain category F 

to spaces, subject to certain conditions. The category F ~ has as objects the finite sets S 

and as morphisms from S to T the pointed maps S+-+T+. The underlying space of a 

F-space S-+Z(S) is the space Z({1}). In particular, K(E, R) and A(E) are underlying 

spaces of F-spaces given by 

S~-+ K(SxE, R), 

S~+ A(SxE), 

respectively, with structure maps whose definition we leave to the reader. We like to 

think of K(R) as the underlying space of a bi-F-space (contravariant functor from F xF 

to spaces, subject to some conditions), as follows: 

(S, T) ~-+ K(RS• 

(Note in this connection that  the category of left modules over R $• is equivalent to the 

product of S • T copies of the category of left R-modules.) The Segal machine makes 

this bi-F-space into a bispectrum, which we denote (here) by K(R) .  In conclusion, we 

see that  it is easy to promote #: K(E, R)AA(E)--+K(R) to a binatural map 

K(S x E, R) A A(T x E) -+ K(R S• 

for S, T in F. The Sega] machine translates this into a map of bispectra, 

#: K ( E ,  R) A A ( E )  -+ K(R) .  [] 

Description of ~E$B in terms of #. We remember Ko(E, R)=lroK(E, R) and re- 

cover ~E$B as a composition 

Ko(E, R) --+ [A(E), K(R)]  --+ [B, K(R)] ,  

where the first arrow is obtained from # by adjunction and the second is composition 

with X(P). Compare Observation 6.4. 
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A s s e m b l y  ( s econd  e n c o u n t e r )  and coassembly 

Here we need an explicit description of the assembly transformation c~j:J%-+J for a 

covariant functor J from compact ENR's to spectra. The standard description, taken 

from [WWl], is 

J%(Y) = hocolim J (A  Ixl) 
x E Y  ~ 

where y s  denotes the singular simplicial set of Y and the simplices of y s  are viewed as 

objects of a category in the usual way. The characteristic maps A Ixl --+Y for the various 

x in YS give rise to a natural transformation J(AIxJ)--+J(Y), which in turn induces the 

required map ~ from J%(Y),  as defined just above, to J (Y) .  

Coassembly is the contravariant analog of assembly. Therefore let J be a contra- 

variant homotopy functor from compact ENR's to spectra. Then there exists an essen- 

tially unique natural transformation ~v: j _ ~ j u  with the following properties: 

(1) w: J(*)--+JU(*) is a weak equivalence; 

(2) j u ( , )  respects homotopy pushout squares and J ( O ) ~ . .  

One possible definition of J~:  First make sure that  the values of J are f~-spectra, made 

up of (geometric realizations of) Kan simplicial sets. Then let 

j U ( y )  := holim j(AI~I) 
x E Y  s 

where the homotopy limit is again taken over the category of singular simplices of Y. 

Proofs are very much like those in the covariant case. 

Now let J~ for i = 1, 2 be homotopy functors from the category of compact ENR's to 

the category of spectra. Suppose that  J1 is contravariant and J2 is covariant. Let J3 be 

a single bispectrum. Let 

#: J1 ( X ) A J 2 ( X )  -+ J3 

be a dinatural transformation. This is an informal extension of, or variation on, the 

definition of dinatural given in [Mac]; what it means here is that  for any map f :  X - + Y  

of ENR's, the following diagram of bispectra is commutative: 

J I ( Y ) A J 2 ( X )  �9 J I ( X ) A J 2 ( X )  

1 l" 
J I ( Y ) A J 2 ( Y )  " �9 J3. 

The example to have in mind is: J I ( X ) = K ( X , R )  and J 2 ( X ) = A ( X )  and J 3 = K ( R )  

(bispectrum version) and # as in the previous subsection. 



PARAMETRIZED INDEX THEOREM 63 

OBSERVATION 8.13. In this situation there exists a dinatural transformation 

J1u(X)AJ~(X) --+ J3 

making the following diagram of dinatural transformations commutative: 

J I A J ~  wAid:~ J ~ A J ~  

lidA~ t t 1 
J1AJ2 > J3. 

Proof. We use the above definitions of a and w. Fix Y, a compact ENR. Write simp 

for the category of singular simplices of Y. For x in simp let E(x) be the classifying 

space of the category of simp-objects under x, or equivalently, the classifying space of 

the category of simp~ over x. Then 

J~(Y)  --- holim J1 (A I~l) = end[(x, y) ~-+ JI(Alxl)E(Y)], xEsimpOp 

J~(Y)  = hocolim J2(A I~1) = coend[(x, y) ~ E(x)+ AJ2(A lyl )]. 
xEsimp 

Here Jl(Alxl) E(y) denotes a mapping spectrum, obtained from J I (A  I~1) by applying 

map(E(y), - )  termwise. 

Now define the missing map J~(Y)AJ~(Y)--+J3 in such a way that, for each x in 

simp, the following commutes: 

JI~(Y)A(E(x)+AJ2(AIxL)) ) J~(Y)AJ~~ 

,1 l 
JI(Alxl)E(x)A(E(x)+AJ2(Alzl)) ' J3 

where the arrow in the lower row is the composition of an evaluation map to 

JI(Alxl)AJ2(ALxl ) with #: JI(AlXl)AJ2(Alxl)--+J 3. [] 

Linear Riemann-Roch for topological manifolds 

Example 8.14. With # and K ( E , R )  as in the previous subsection, we easily get 

K(E, R)U~_K(R) E and then, from Observation 8.13, a homotopy commutative square 

of bispectra 

K(E,  R)AA%(E) wAid )~ K(R)EAA%(E ) 

1 1 
K(E, R)AA(E)  " > K(R) 
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and from that,  a square of spaces and maps which commutes up to homotopy, 

Ko(E,R)xA%(E) > [E,K(R)]xA%(E) 

1 1 
Ko(E, R) •  , K(R). 

(8.15) 

If now p: E-~B is a bundle with compact manifold fibers, then X(P): B-~AB(E) has 

a canonical lift B-+A~(E) by Theorem 8.4, and we obtain from (8.15) another square 

which commutes up to homotopy, 

(8.16) 
g o ( E , R )  x B  f Exid, [E,K(R)IxB 

1 1 
K o ( E , R ) •  u , K(R) .  

Definition 8.17. Let t: [E, K(R)]--+[B, K(R)]  be the adjoint of the right-hand verti- 

cal arrow in the commutative square (8.16). 

T H E O R E M  8 . 1 8 .  t~E:/~ESB: Ko(E, R)-~[B, K(R)] .  

Proof. Clearly t~E is adjoint to the diagonal map in (8.16), from upper left-hand 

term to lower right-hand term. Our earlier description of ~EJ.B in terms of # shows that  

/~ESB is also adjoint to the diagonal map in (8.16). [] 

8.19. Summary. Let p:E--+B be a fibration with homotopy finitely dominated 

fibers. In and around Observation 6.4, we defined an 'algebraic' transfer map ]~ESB 
from Ko(E, R) to [B, K(R)]  and showed that  /3ESB applied to the class of a bundle V 

of f.g. projective left R-modules on E can be thought of as a linearized fiberwise Euler 

characteristic of p, with coefficients in V. 

Theorem 8.18 states that,  in the case where p is a bundle Of compact topolog- 

ical manifolds, the algebraic transfer BEtS is the composition of an obvious 'forget- 

ful' homomorphism f~E: Ko(E, R)--+ [E, K(R)]  with a geometric transfer homomorphism 

t: [E, K(R)]-~[B,K(R)]. In this sense, Theorem 8.18 is another Riemann-Roch theo- 

rem, formally quite similar to Theorem 8.11. However, t in Theorem 8.18 is not defined 

in fiber homotopy invariant terms, unlike tr~ in Theorem 8.11. 

Reidemeis ter  tors ion  

Let p: E--+B be a fibration with homotopy finitely dominated fibers Eb, for bEB. Let R 

be a ring and let V be a bundle of fig. projective left R-modules on E. For a space X 
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over E with reference map r: X-~E let 

oh(x) := hofiber[~yr , :  A(X) ~ K(R)] ,  

Or(X) := hofiber[Ayr,  a:  A%(X) --+ K(R)] ,  

�9 d(x) := hofiber[Ayr, c~?: Q(X+) --+ K(R)] ,  

with Av: A(E)--+K(R) as in Observation 6.4 and a,  ~ the assembly and unit maps (de- 

fined under mild conditions on X which we suppress). Now suppose that  Hi(Eb; V ) = 0  

for all bEB; equivalently, the singular chain complexes with V-coefficients of the fibers 

Eb are all contractible (=  exact). Then the composition 

B xh(p) AB(E)--+K(R) 

is canonically nullhomotopic. 

fibration 

In other words, we have lifted Xh(P) to a section of a 

~hB(E)--+ B 

with fiber oh(Eb) o v e r  b~B. We call this lift the homotopy Reidemeister torsion of p. 

If p: E-+B happens to be a bundle of compact  topological manifolds, then using Theo- 

rem 8.4 we have a lift of the excisive family characteristic X(P): B-+A~(E) to a section 

of 

B. 

This is the topological Reidemeister torsion of p. And finally, if p happens to be a bundle 

of compact  regular manifolds, we have from Theorem 8.5 a lift of the Becker-Got t l ieb-  

Dold section B-+(Q+)B(E) to a section of 

(E) B, 

which we call the regular Reidemeister torsion of p. In particular, if p is a bundle of 

compact  smooth manifolds, its regular Reidemeister torsion is def ined-- in  that  case we 

also call it the smooth Reidemeister torsion. 

Remark. Earlier, Igusa and Klein [IK], [I3] used parametrized generalized Morse 

functions to define the (parametrized) Reidemeister torsion of a bundle of smooth com- 

pact manifolds, p: E-+B. Their  Reidemeister torsion is a map  from B to the homotopy 

fiber of Avc~: Q(E+)-+K(R). Also Bismut and Lott  have used a differential form ver- 

sion of their Riemann-Roch theorem to construct an analytic version of parametrized 

Reidemeister torsion in the special case R= C. It  is not clear at  this stage whether the 

parametrized Reidemeister torsions produced by [BL] are in agreement with ours. In 

the unparametrized setting, B- -* ,  they are; this is the theorem of Cheeger and Miiller, 

[Che], [Mii]. Put  differently again, our Theorem 8.5 and [BL] together make it possible 

to state a family version of the Cheeger-Mfiller theorem; we would like to know whether 

this is in fact true. 
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P a r t  I I I .  C o n v e r s e  R i e m a n n - R o c h  theory 

9. W a l d h a u s e n ' s  t h e o r e m s  in h - c o b o r d i s m  t h e o r y  

The theorems in question state, briefly, the following. Firstly, the space of stabilized 

topological h-cobordisms on a compact topological manifold L is homotopy equivalent 

to the homotopy fiber of the assembly map c~: A%(L)-+A(L). Secondly, the space of 

stabilized smooth h-cobordisms on a compact smooth manifold L is homotopy equivalent 

to the homotopy fiber of the map c~: Q(L+)-+A(L), where ~: Q(L+)--+A%(L) is the 

unit transformation. More details are given below; the theorems are stated again in 

Corollaries 9.7 and 9.9. 

These theorems have a long history. Modulo some stability theory they subsume 

for example the h-cobordism theorem of Smale [Sm], the classification of h-cobordisms 

due to Barden-Mazur-Stall ings [Maz], the pseudoisotopy implies isotopy theorem of 

Cerf [Ce] and the smooth pseudoisotopy classification of Hatcher and Wagoner [HAW], 

with corrections in Jill. Most of the required stability theory can be found in Igusa's big 

work [I2]. 

However that  may be, to use the Waldhausen theorems about h-cobordism spaces, 

we need to have a user-friendly description of the homotopy equivalences involved. We 

do not wish to prove again that  they are homotopy equivalences, but we offer a guide to 

Waldhausen's proofs. 

Retractlve manifolds 

Definition 9.1. A retractive manifold over a compact topological manifold L is a compact 

subset N of L • I which 

(1) contains a neighborhood of L •  in L• 
(2) is a manifold (with boundary) in its own right. 

A retractive manifold N over L becomes a retractive space N~--L with retraction equal 

to the projection and zero-section equal to the inclusion of L~-L • 0 in N. 

A family of retractive manifolds over L, parametrized by AJ, is a retractive manifold 

over AJ • L for which the composite projection N---.~AJ • L--+AJ is a bundle. Such families 

are the j-simplices of a simplicial set ~ (L) .  (The letter q/ indicates partitions; see the 

remark just below.) We abbreviate 

P(L) := Isimp(~(L))l. 

This will be slightly more important  to us than the realization [~(L)I, although it is 

I~(L) I which carries a tautological bundle of retractive manifolds over L. The two are 

of course homotopy equivalent; see w 
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For a retractive manifold N over L, let 

a(N) : = w ( N x I )  C ( L x I )  x I  

where w(z, s, t) = (z, t, s) for (z, s, t) E L x I x I .  Then a(N) is a retractive manifold over 

L x I.  This procedure extends in a straightforward way to families and gives the stabi- 

lization map a: 7~(L)-+P(L x I). We let 

P$( L ) := hocolim P( i x lr ). 

We get a map  Xh:P(L)--+A(L) by viewing retractive manifolds over L as retractive 

spaces over L. More precisely, we have an obvious functor from s imp(~(L) )  to wff~fd(i) 
which induces a map from 7)(i)=lsimp(~3(i))l to Iw~fd(L) lcA( i  ). We can extend 

Xh: P(L)-+A(L) to a map  

xh: P$(i) -+ A(L) 

in the following way. We identify P$(L) with a subspace of the classifying space of the 

category whose objects are pairs (r, N)  with r>~0 and N in s i m p ( ~ ( L x l r ) )  and where 

a morphism from (q, M)  to (r, N )  is a morphism from M to aq-rN in s i m p ( ~ ( L  x / q ) )  

if q>~r. (There is no morphism if q<r.) Then we make a functor from that  category to 

wff~fd(L) by associating to an object (r, N)  the pushout of N e - ( L x I  ~) x 0 - + L ,  viewed 

as a retractive space over L. 

Remark. What  we call a retractive manifold N over L is viewed in [W1] as the lower 

half of a parti t ion (N, M)  of L x I ,  with M equal to the closure of the complement of N 

in L x I.  Waldhausen imposes a few more conditions to ensure that  both parts N, M of 

a partition (N, M)  are submanifolds of codimension zero in L x I .  

Naturality and addition laws 

It  is clear from the above definitions that  a homeomorphism L-+L' of compact manifolds 

induces homeomorphisms P ( L ) - + P ( L ' )  and P$(L)-+7~$(L~). This is not much in the 

way of naturality; we need rather  more and we can get it by imposing some boundary 

conditions on retractive manifolds over L. 

Definition 9.2. Let (L;c0oL, cOIL) be a compact manifold triad; i.e., the boundary 

OL of L is the union of two compact  submanifolds cOoL and COiL whose intersection is 

CO( COoL )=cO( cOl L ). By a retractive manifold over L tel OoL we mean a compact  subset N 

of L x I which 

(1) contains a neighborhood of (L x 0) U (OoL x I) in L x I ,  

(2) is a manifold (with boundary) in its own right. 
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A retractive manifold N over L rel OoL is also a retractive manifold over L. Thus the 

retractive manifolds over L rel OoL determine a simplicial subset ~ ( L ;  OoL) of ~ (L) .  We 

let T'(L; OoL):= Is imp(~(L;  cOoL))] and 

P$ (L; OoL) := hocolim P ( L  x I~; OoL x I r). 
r 

A retractive manifold N over L rel OoL determines a retractive space over L: the pushout 

of 

Ne--~(LxO)U(OoL• pr~ ~ L" 

Extending this to families, we obtain by analogy with Definition 9.1 a map 

Xh: 7~$ (L; OoL) + A(L). 

Now assume given two compact  manifold triads (L; OoL, OiL) and (L'; OoL', OIL') and 

an embedding (read: injective continuous map) f :  L'-+L such tha t  f(OiL') is contained 

in 01L. With a retractive manifold N over L '  rel OoL' we can then associate a retractive 

manifold f , g  over L rel OoL: the union of ( f x id l ) (g )  and (L \ f (L ' ) ) x I  in LxI .  In 

this way we obtain induced maps 

f , :  T'(L';  OoL') --+ P(L;  OoL), 

f ,  : T'$ (L'; OoL') --+ P$(L; OoL). 

We make a category W having the compact  manifold triads (L; OoL, OiL) as its objects. 

A morphism from (L'; 0oL', 01L') to (L; 00 L, 01 L) is an embedding f :  L'-+ L • I k, with 

k=dim(L')-dim(L), such that  f(OiL') is contained in Oi(Lxlk), the closure of the 

complement in O(L • I k) of OoL x I k. There are no morphisms from (L'; OoL', OIL') to 

(L; OoL, O1 L) if d im(L ' )  < dim(L).  

A morphism in W is a homotopy equivalence if the underlying map (from L' to 

L • I k in the above notation) is a homotopy equivalence. A functor Z from W to spaces 

is homotopy invariant if it takes homotopy equivalences in W to homotopy equivalences 

of spaces. 

A functor Z from W to spaces is separating if it comes with a natural  and associative 

homeomorphism 

Z(L II L') ~- Z(L) • Z(L'), 

where L and L' are variable objects of W (in shorthand). Associativity means that  the 

two resulting ways of identifying Z(L H L' H L") with Z(L) x Z(L') • Z(L") agree. 
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Example. We note that  (L; tOoL, tO1L)F+'P$(L; tOoL) is a homotopy invariant and sep- 

arating functor on W. Namely, an embedding f :  L+-+L x I k as in Definition 9.2, definition 

of W, induces maps 

7~$ (L'; cOoL') -+ 7~$(L x Ik; tooL x I k) ~-+ 7~$ (L; tOoL). 

Example. There is a functor of the form (L; OoL, 01L)~+A(L) on W. An embedding 

f: L ' -+L•  k as in Definition 9.2, definition of W, induces a map A(L')-+A(L) which is 

the composition of A(L t)-+A(L x I k) induced by f and A(L x I k)-+A(L) induced by the 

projection L x Ik--+L. This functor is also homotopy invariant and separating. 

Example. The map Xh f rom ~~ tOoL ) to A(L) constructed in Definition 9.2 is 

unfortunately not a natural transformation between functors on W. In other words, for 

a morphism f :  (L'; OoL', to1L')-+ (L; tooL, to~ L) in W, the diagram 

P(L';OoL') ,~h �9 A(L') 

P(L;OoL) "~" , A(L) 

is usually not commutative. It is however commutative up to a preferred homotopy, 

essentially because of a preferred weak equivalence Xh ( f .  N)--+ ~'h (N) between retract ive 

spaces over L, for every retractive manifold N over L ~ rel OoL ~. In the same spirit, there 

are preferred higher homotopies corresponding to strings of composable morphisms in W, 

leading after all to a natural transformation 

, , hocolim 7)(L'; OoL', OIL') ---+ A(L). 
(L ;cOoL ,01L )-'~(L;COoL,COIL) 

Here the hocolim is taken over the category of W-objects over (L; OoL, 01L). Note that  

it contains 7~$(L; OoL) as a deformation retract. We omit the details. 

LEMMA 9.3. Let Z be a homotopy invariant and separating functor on W. Then Z 

can be refined to a functor from W to F-spaces. More precisely, there exist a functor Z ~ 

from W to F-spaces and a natural homotopy equivalence from Z~(L)(1) to Z(L) where 

Z~(L)(1) is the underlying space of the F-space Z~(L), for L=-(L; OoL, 01L) in W. 

We will prove Lemma 9.3 at the end of this chapter. Here we only describe the 

resulting addition law on Z(L), up to homotopy. This is given by 

Z(L) xZ(L) '~Z(LxI ' ) ---+ Z (Lx I )~_Z(L)  
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where I'=[0,�89 and the arrow is induced by inclusion. We assume of course 

that  L is an arbitrary object of W and make L x F and L x I into objects of W by letting 

Oo(L • I')=OoL • F and Oo(L x I) =OoL • I. 

Remark. Because of Lemma 9.3 and the preceding examples, Xh in Definition 9.1 

has now been promoted to a map respecting certain homotopy everything addition laws. 

Note that A(L) with the addition law just sketched is group-like, i.e., the abelian monoid 

7roA(L) is an abelian group; but P$(L; OoL) is not group-like unless L=O. Hence A(L) 
is an infinite loop space, but P$ (L) is not. 

T h e  t h e o r e m s  

We now state the Waldhausen theorems in h-cobordism theory, in the relatively user- 

friendly language of Waldhausen's "manifold approach" [Wl], [W3]. It is important  to 

realize that the manifold approach is not a self-contained approach to the theory - - i t  

relies heavily on the combinatorial approach of [W2, w and [WV1], [WV2] for proofs. 

We give detailed references in the next subsection. 

9.4. Notation. Define 7-/(L) like P(L) ,  allowing however only retractive manifolds 

N in which N is an h-cobordism on L •  (and families of such, parametrized by A k 

for some k). Define PJ(L)  like P(L) ,  allowing only retractive manifolds N in which 

N is obtained from an h-cobordism by attaching a finite number of handles of index j 

inside L • I and families of such. (Because of the retraction, the attaching maps for such 

handles will always be nullhomotopic; and if d i m ( L ) > 2 j +  1 they will be trivial.) There 

are stabilized versions 

7-l$(L), P~(L). 

They come with homotopy everything addition laws, induced/restricted from the one on 

P$(L) described in and around Lemma 9.3. 

The composition of the inclusion 7-I$(L)--+:P$(L) with Xh: P$(L)-+A(L) is canoni- 

cally nullhomotopic, in other words it has a canonical (nameless) extension 

cone(7/$ (L)) -+ A(L). 

Namely, X h restricted to 7-/$(L) factors through the classifying space of the full subcat- 

egory of w~/d(L) consisting of all objects for which the morphism to the zero-object is 

a weak equivalence. The subcategory has a terminal object, so its classifying space has 

a canonical contraction. 
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THEOREM 9.5 (fibration theorem). For any compact topological manifold L, the 

commutative square 

7-l$ (L) c > ,p~ (L) 

eone( ,(L)) , A(L) 

becomes (j-~)-cartesian upon applying group completion f tB.  Here ~ is some integer 

independent of j and L. 

Remark. Note that  ?-/$(L) is a connected component of P~(L); see w Group 

completion changes the homotopy type of only one of the four spaces in the diagram, 

P~ (L), since the other three are group-like. Group completion is possible because we can 

promote all the maps in the diagram to maps of F-spaces; the details are as in Lemma 9.3. 

We denote by B ~ Z  the spectrum obtained by Segal's method from a F-space with 

Underlying space Z. 

THEOREM 9.6 (excision theorem). Let L~, Lb and Lc be compact manifold triads. 

Let homeomorphisms f: O1La ~ OoLb and g: 01Lb-~ OoLc be given. The following square 

of maps of spectra, induced by evident morphisms in ~,V, is (j-r 

B~'P~ (Lb; OLb) 

1 
(C. II s Lb; Lb) 

B~P~ ( Lb H.q Lc; OoLb ) 

�9 B~TM$(L,,I_IILbHgL,.). 

COROLLARY 9.7. For a compact topological manifold we have 

7-/$ (L) -~ hofiber[a: A%(L) --+ A(L)]. 

Let dT-l$(L) and d'Pg(L) be the smooth analogs of 7-/$(L) and P~(L), respectively. 

They are defined for smooth compact L. (We give more details in the next subsection.) 

Here we only need the case L=*. Note that  Tr0B~dPg(*)~Z. The generator can be 

represented by some map of spectra 

uj: S o -+ B~dT)~ (*). 

THEOREM 9.8 (vanishing theorem). The connectivity of uj tends to infinity as 
j ---+ (X). 
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COROLLARY 9.9. For a compact smooth manifold L we have 

dT-l$( L ) ~- hofiber[a~: Q( L+ ) --+ A(L)]. 

Remark. We present Corollary 9.7 as a corollary to Theorems 9.5 and 9.6 because 

this is reasonable from a user perspective. Namely, Theorems 9.5 and 9.6 are matter-of- 

fact statements and they lead in a highly intelligible way to a homotopy fiber sequence 

7-l$(L) -+ A%(L) --~ A(L) .  

The hierarchy of proofs is different, though. Waldhausen proves Corollary 9.7 first and 

foremost. He offers Theorems 9.5 and 9.6 as afterthoughts. 

G u i d e  t o  t h e  l i t e r a t u r e  

The fibration theorem. This is simply the combination of parts (1) and (2) of Theorem 1 

of [W1]. Both are proved in w of [W1]; in the proof, however, Waldhausen uses a 

nonstandard definition of A(L) .  In Theorem 1.7.1 of [W2], this is shown to be equivalent 

to the standard definition. [] 

The excision theorem. This is the hardest of the three. The proof is outlined in 

w of [Wl] and to some extent in [W4]. The details of the proof can be found in w 

of [W2] and the preprints [WV1], [WV2]. Tile papers [Ste] and [Cha2] are closely related 

to [WV1] and [WV2], respectively, although unlike [WV1] and [WV2] they were not 

written to complement w of [W2] exactly. We feel compelled to present yet another 

outline, as follows. 

A disk bundle transfer argument [BuL2] allows us to reduce to the case where L is a 

piecewise linear manifold. In that  case, the piecewise linear version of P$(L) is defined. 

Triangulation theory shows that  it is homotopy equivalent to the original. Hence it 

suffices to prove the piecewise linear version of Theorem 9.6. The proof is in two major 

steps. 

The first step is to construct a map t from the square in Theorem 9.5 (in the piecewise 

linear setting) to the homotopy cartesian square 

A%(L) ) A%(L) 

l l ~ 
* -~ hofiber(ida(L)) , A(L)  
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where a is the assembly map, compare w and A%(L) is the homotopy fiber of the 

assembly map. (Think of the two commutative squares as two functors defined on a 

certain category with four objects; and think of t as a natural transformation between 

these two functors.) The construction of t is achieved in w of [W2], modulo some fine 

points treated in [WV1]. More specifically, w of [W2] supplies convenient combinatorial 

models for A% (L) and A % (L), in the setting of simplicial sets; [WV1] makes the transition 

to the piecewise linear setting and interprets those models, or suitable subspaces, as 

classifying spaces for piecewise linear fibrations, subject to suitable conditions. The 

piecewise linear fibrations of interest here are the 'tautological bundles' on I~(L • I~ )1 -  ~ 

P ( L x F ) ,  for all r~>0; see also the remark just below. The maps which classify them 

(suitably restricted and followed by appropriate inclusions) make up t ", the upper right- 

hand component of t. The lower right-hand coordinate t j  of t is the identity A(L)--~A(L). 
The remaining two components rt and ~t of t are essentially restrictions of t" and t j, 

respectively. 

The second step is to show that  rt: ?/$(L)--+A%(L) is a homotopy equivalence. This 

is done in [WV2]. The proof uses an identification of A%(L) with the loop space of the 

so-called piecewise linear Whitehead space of L; this is Theorem 3.3.1 of [W2]. 

It follows from these two steps, in conjunction with the Fibration Theorem 9.5, that  

the map 

t~: PJ$(L) --+ A%(L) 

is ( j -E) -connec ted  for some c independent of j .  A slight modification gives a ( j - z ) -  

connected map 

PJ$(L; OoL) --+ A%(L; OoL) 

defined for any compact manifold triad (L;OoL, OIL). This is sufficiently natural in 

the variable (L;OoL, OIL), viewed as an object in W; compare Definition 9.2. Now 

Theorem 9.6 follows since A % is excisive. [] 

The vanishing theorem. This has another formulation in functor calculus language. 

We begin with the other formulation. For a space X, let a~: Q(X+)-+A(X) be the com- 

position of the unit transformation Q(X+)-+A%(X) with the assembly map A%(X)--+ 
A(X). 

There exists an integer c such that the following commutative square is ( 2 r - c ) -  

cartesian for any r-connected X: 

Q(x+) " ' ,  A(X) 

Q(,+) A(,). 
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Modulo the fact that  the functor A is analytic, see [Gol], [Go2], this is equivalent 

to saying that  stabilization turns a~? into a homotopy equivalence, 

Q(X+) ~- Qs(X+) (~'l)s~ AS(X).  

In this form the statement is proved in [W3]. The proof uses the manifold approach, An 

alternative proof which does not use manifolds has recently been given by [Du]. See also 

the earlier work by [DuM]. 

Now we translate the above into manifold approach language. Smoothing the- 

ory [Mo], [KS], [BuLl] applied to the maps 

d74(L x l r ) -+  74(L • 

d 'PJ(LxI r) --+ 7)J (L x I r) 

and the group completion theorem [A2] show that  for any compact smooth L, the com- 

mutative square 

d745(L) , dT'~(L) 

745(L) , "PI(L) 

becomes ( j - e ) - ca r t e s i an  after group completion, for some ~ independent of j and L. 

It follows immediately that the Fibration and Excision Theorems 9,5 and 9.6 have smooth 

versions involving d745(i) and dP~(L) instead of 745(5) and T'~(L). Now suppose that  

L=S" for some large n and let DCS '~ be an n-disk. Choose j>>2n. Then we have a 

commutative diagram 

d745(D) c ,. (flB)dPJ$(D) "~ ~ A(D) 

d7-/$(S') c �9 ( f l B ) d P ~ ( S , ~ ) - h  ) A(S") 

with vertical arrows induced by inclusion, where the rows approximate homotopy fiber se- 

quences by the smooth version of Theorem 9.5. It is a consequence of Morlet 's disjunction 

lemma [BuLR] that  the left-hand vertical homotopy fiber is approximately 2n-connected. 

It follows that  the map from middle vertical homotopy fiber to right-hand vertical homot- 

opy fiber is (2n-r  for some r independent of n. But the middle homotopy 

fiber has the ( 2 n - e ) - t y p e  of an (n -1) - fo ld  delooping of 

(riB)dYe(,) 
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by the smooth version of Theorem 9.6. The right-hand vertical homotopy fiber has the 

(2n - r  of an (n -1) - sphere  by the result about A S. Summarizing, for sufficiently 

large j the connectivity of uj in Theorem 9.8 is at least n - r  But n was arbitrary. [] 

The corollaries. We remind the reader that  the deduction of Corollary 9.7 from 

Theorems 9.5 and 9.6 is intended as a formal exercise; see the remark after Corollary 9.9. 

The purpose of the exercise is to clarify what that  homotopy equivalence in Corollary 9.7 

i s .  

The key ingredient here is upper stabilization, a natural map ~:P(L) -+P(L•  

closely related to (lower) stabilization a. It is given by ~(N):- -a(N)U (L • J)• I where 

J : =  [0, �89 [2, 1] for a retractive manifold N over L. Upper stabilization commutes with 

lower stabilization, in other words, 

P(L) ~ , ~P(L•  (a}) 

P(Lx i {b t )  ~" , P(LxI{~,b}) 

(9.10) 

7-/$ (L) --+ 7-/$ (L), 
P~ (L) --+ ~j+l$ ,tL'), 

of which the first is a homotopy equivalence. - -  On the K-theoretic side, we have a closely 

related map A(L)--+A(L) induced by the fiberwise suspension EL. It is a homotopy 

equivalence. The square 

PJ$(L) ~ j+l ) :P$ (L) 

A(L) , A(L) 

commutes up to a preferred homotopy. Summarizing the reasoning so far: It is possible 

to stabilize Theorems 9.5, 9.6 and 9.8 with respect to j .  This procedure does not alter 

the homotopy types of the terms 7-/$(L) and A(L) in the diagram in Theorem 9.5. 

Now we can do our deduction: By Theorem 9.5, stabilized with respect to j and 

promoted to a statement about functors on 14;, there is a homotopy fiber sequence 

7-/$(L; OoL) -+ hocplim(flB)V~(L OoL) --+ A(L). 
3 

commutes. Hence d stabilizes to a map ~:P$(L)-+P$(L• Mostly for notational 

convenience we compose with e: P$(L • I)--+P$(L), the inclusion of a subtelescope. This 

gives e&: P$(L)--+P$(L). Restricting L~ we obtain maps 
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By Theorem 9.6, the term in the middle is an excisive functor of the variable (L; 00 L, (91L),  

in ]4;. By Theorem 9.5 again, the map on the right is an assembly map, since it has a 

contractible homotopy fiber when L is contractible. (To make sense of this statement, 

replace the infinite loop spaces involved by the associated spectra. Note that  7-/(ID i) 

is contractible for all i~>0 by the Alexander trick.) Hence there is a homotopy fiber 

sequence of infinite loop spaces 

7-l$(L) --+ A%(L) ~ A(L). 

In the case where L is smooth, we need the smooth versions of Theorems 9.5 and 9.6, 

which we deduce from the topological versions using smoothing theory. We find using 

the smooth Theorems 9.6 and 9.8 that the stabilization with respect to j of 

(12B )dT)~ ( L; cgoL ) 

is an excisive functor of (L; OoL, OIL) and is homotopy equivalent (as an infinite loop 

space) to Q(L+) when L is contractible; hence it is always homotopy equivalent to Q(L+) 
as an infinite loop space. The smooth version of Theorem 9.5, stabilized with respect 

to j ,  therefore implies a homotopy fiber sequence 

dT-l$(L) -+ Q(L+) ~ A(L). [] 

Smooth and regular retractive manifolds. Here we explain exactly what is meant 

by d~P(L). There is a need to explain because, without special precautions, the stabi- 

lization a will introduce "corners". Actually we find it more convenient to work with 

regular manifolds, for this reason. 

Suppose therefore that  L" is regular; see Definition 5.6. Then L x I has a canonical 

regular structure (q,U,j) in which q: K - + L x I  is an (n+l ) -d i sk  bundle, U is an open 

neighborhood of the diagonal in a certain subspace of (L x I )  x (L x I)  containing the di- 

agonal, and j:  U-+K is an embedding over L x I, subject to certain conditions. A regular 
retractive manifold over L is a retractive manifold N over L together with 

(1) a regular structure (q', U',j ') on N, 

(2) a one-parameter family, parametrized by [0, 1], of regular structures on in t (N)U 

(int(L) x 0), specializing to the restrictions of (q~, U', j ')  and (q, U, j) for the parameter 

values 0 and 1, respectively. 

It is straightforward to define families of regular retractive manifolds over L, param- 

etrized by AJ for some j .  These are the j-simplices of a simplicial set dg~(L). Let 

dP(L) = Isimp(d~(L))l.  We also define dT-l(L) C d~(L) as the space of regular (invertible) 

h-cobordisms on L. 
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The letter d is meant to indicate something like differentiable relative to L. Indeed 

smoothing theory shows (see the remark just below) that, in the case where L is smooth, 

dT)(L) does have the same homotopy type as the space of smooth retractive manifolds 

over L according to your favorite definition, provided d im(L)~3,  4. Also dT-l(L) in that 

case has the same homotopy type as the space of smooth (invertible) h-cobordisms on L, 

provided dim(L) ~ 3, 4. 

The stabilization a(N) of a regular retractive manifold N over L is in a canonical 

way a regular retractive manifold over L • I. In this way we get a stabilization map 

a: dT~(L)---~dP(L • I) and 

d~P$( L ) := hocolim d~P( L • IS), 
8 

d7/$ (L) :-- hocolim dT-l(L • 18). 
8 

We leave it to the reader to define an upper stabilization map # from dP(L) to d?')(L z I), 

compatible with the original ~ from P$(L) to P$(L •  This appears to be canonical 

up to contractible choice only, but it is easy to define it in such a way that the regular 

analog of (9.10) commutes. Hence it stabilizes (by means of lower stabilization o) to a 

map 

~: dT)$(L) --~ d'P$(L • I). 

Remark. Suppose that N is a retractive manifold over L, where L happens to be 

equipped with a smooth structure. The smooth structure on L determines, up to con- 

tractible choice, a regular structure on L. Assuming d im(L)~  3, 4 we will show that the 

space X d of smooth structures oil N (as a retractive manifold over L) maps by a homot- 

opy equivalence to the space Xr of regular structures on N (as a retractive manifold 

over L). In the course of this discussion, which we will keep informal, we will say what 

we mean by a smooth structure on N as a retractive manifold over L. 

Let W be the union of L •  and an open collar attached (outside) to O(L• I). We 

think of N as a subspace of the smooth manifold W. The boundary ON is a union 

O_NUO+N where O_N=LxOcON and O+N is the closure of the complement of O_N 

in ON. 

Let C c N  be an open collar, C~-ON• Write C=C_UC+ where C + ~  

O+N• [0, 1[. Observe that C has a structure of regular manifold which is unique up 

to contractible choice. This induces a regular structure on C\ON which we call Q1. On 

the other hand, C\ON also inherits a structure Q2 of regular (even smooth) manifold 

from W. The structures ~1 and Q2 agree on C_\O_N. 

On inspection, our definition of regular retractive manifolds over L boils down to 

the following. The space Xr of regular structures on N, as a retractive manifold over L, 

is (homotopy equivalent to) the space of isotopies from Q1 to Q2, relative to C_\O_N. 



78 W. DWYER,  M. WEISS AND B. WILLIAMS 

We now produce a similar description of the space X d of smooth structures on N, 

as a retractive manifold over L. By Morlet 's  smoothing theory [KS], we don' t  need to 

mention charts and atlases; it is enough to equip certain tangent bundles with certain 

structures. To be more precise, the classifying maps for various tangent bundles lead to 

a map  u: C-~B where B is the homotopy pullback of 

BO(n) 

B T O P ( n - 1 )  

, B T O P ( n )  

and n =  d im(N)  = dim(C) = dim(L) + 1. The restriction u lC_ has canonical factorization 

C_ --+BO(n- 1) --+B. We can define Xd as the space of factorizations of u: C--+B through 

BO(n-1) ,  up to a specified homotopy and relative to C_. 

Finally we have to check that  a certain forgetful map  from X d t o  X r is a homotopy 

equivalence. Up to homotopy equivalences, Xd and Xr can be viewed as spaces of 

sections, subject to boundary conditions, of certain fibrations over C+. The fibers of 

these fibrations are total  homotopy fibers of the commutat ive  squares 

B O ( n - 1 )  , B T O P ( n - 1 )  B T O P ( S n _ I )  id , B T O P ( g n _ l )  

1 1 I id l 
BO(n) , B T O P ( n ) ,  B T O P ( S  " -1 )  , B T O P ( n ) ,  

respectively. (A total  homotopy fiber of a commutat ive square of spaces is any homotopy 

fiber of the associated map from initial term to the homotopy pullback of the other three 

terms.) Hence it suffices to show that  the diagram in the shape of a 3-cube with these 

two squares as top and bo t tom faces, respectively, is homotopy cartesian. But this is 

easy. [] 

M o r e  o n  a d d i t i o n  l a w s  

Here we prove Lemma 9.3. Our point of view is that  a F-space is a covariant functor 

from a certain category F ~ to spaces, subject to certain conditions. The objects of F ~ 

are the finite sets. The morphisms from S to T are the pointed maps S+-+T+. Hence we 

have to say what Z~(L)(S) is for any L=(L;OoL, O1L) in W and finite set S. We decree 

Z~(L)(S) = hocolim Z(q, V) 
S+-L~---~L 

where the arrow LI-+L signifies a morphism in W with codomain (L;OoL, OIL) and 

S+-L ~ signifies an honest continuous map from the compact  manifold L ~ to S. The 
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diagrams of the form S+-L~-+L then form a category J(L, S) in an obvious way. The 

rule associating to such a diagram the space Z(L ~) is a functor on J(L, S). It is clear 

that  Z~(L)(S) is natural in L and S. It is also clear that  the natural projection from 

Z~(L)(1) to Z(L) is a homotopy equivalence, since ~(L, 1) has a terminal object; here the 

number 1 denotes a set of cardinality one. It only remains to check that  the canonical 

map Z~(L)(S)-~YIsEs Z~(L)(s) is a homotopy equivalence (Segal's condition). 

Let J~(L, S) be the full subcategory of J(L, S) consisting of all objects 

SJ--L ' -~  L 

where g restricted to f-l(s) is a homotopy equivalence (see Definition 9.2) for every 

sES. Note that  J(L, S) and consequently J '(L, S) are equivalent to posets, i.e., between 

any two objects there is at most one morphism. We now find it convenient to denote 

objects by single letters c, d,... and morphisms by a symbol ~<, as in c ~< d. It is sufficient 

to observe the following. For every finite subposet X of ~(L, S) there exist a functor 

~: ~K-+3(L, S) and an object d in 3'(L, S) with the following properties: ~(c)~<c for all 

c EX and ~(c)<~ d. [] 

10. C o n v e r s e  R i e m a n n - R o c h  for topological m a n i f o l d s  

Index-theoretic v iew o f  topological h-cobordisms 

Overview. Using relative excisive characteristics we construct a map from 7-/$(L) to 

A%(L) which fits into a homotopy fiber sequence 7-I$(L)-+A%(L)-+A(L). Of course 

we already have such a homotopy fiber sequence from w but here we want to rebuild it 

with index-theoretic methods. 

We begin with the construction of a map x:  7~$(L)-~A%(L) which refines the map 

Xh:7~$(L)-+A(L) of w The idea is not difficult. For a retractive manifold N over L, 

we form (N, L) !, the pushout of Ne-~L~-+N. The underlying set is the union of {1} • N 

and { -1}  x (N\L). The projection to N and the section x~+(1,x) from N make (N, L) ! 

into a retractive space over N and an object of 

~RSd( N) n V ( N )  C 9~ta(~N), 

see (8.6). Hence (N,L) ! determines a point in F~(N)=A%(N); see Lemma 8.7. We 

denote this by x(N, L). Its image in A%(L) under the map r, :A % (N)-+A%(L) induced 

by the retraction r: N--+L is by definition x ( N ) .  This procedure will also give us, for a 

retractive manifold N over L • 18, an element in A%(L • 18); we push it forward to A%(L) 
using the projection-induced map and call the result x ( N ) E  A%(L). 
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In trying to promote the assignments N~-+x(N) to a map defined on 7~$(L), we 

encounter the usual difficulties. Namely, it is not easy to evaluate excisive characteristics 

on families (bundles) with nondiscrete structure group. It will be solved in the usual 

manner, compare Theorem 2.5, Corollary 2.7. Thus the key statement is that  a certain 

map 

holim A % (N) --+ holim A % (N ~ (10.1) 
( s , g )  (s,N,O) 

analogous to (2.6) is a homotopy equivalence. The statement involves two indexing 

categories which we now define: 

(1) The first has objects (s, N)  where N is a simplex in ~ ( L  • IS); see Definition 9.1. 

A morphism from (s, N)  to (t, g ' )  is a morphism from N to g'•  I s-t in s imp(~(L • IS)). 

(2) The second has objects (s, N, 0) with s and N as before; the symbol O is used, as 

in Theorem 2.5, for an equivalence relation on N, with quotient space N ~ such that  the 

projections N----~A k and N--+N ~ define a homeomorphism N--+Ak • N ~ We also require 

that  the fibers of the projection N - - ~ ( L x F ) •  over points ((x, z), t) with sufficiently 

small tE I  are equivalence classes of 0. A morphism from (s,N,O) to (t, Nt, O t) is a 

morphism (s, N)--+ (t, N ~) as defined above, respecting the equivalence relations. 

The rules (s, N)~-+A%(N) and (s, N, O)~--~A%(N ~ are functors on these categories. 

The projections N-+N ~ induce the map (10.1). It is indeed a homotopy equivalence 

(compare Corollary 2.7). 

Definition 10.2. Let C be the (contractible) homotopy fiber of (10.1) over the point 

determined by the relative characteristics x (N  ~ L •  s) for all (s ,N,  0). Every choice 

of point in C determines a map x:  P(L)--~A%(L), the image of that  point under the 

composition 

C pr,.,j ~ holim A%(N) proj) map(7)$(L) ' A%(L))" 
(.~,N) 

The second arrow here uses the projection-induced maps A%(N)-+A%(L) and the fact 

that the classifying space of the category with objects (s, N)  contains ~O$(L). Compare 

Definition 9.1. 

PROPOSITION 10.3. The map x in Definition 10.2 respects the addition laws. 

A more detailed formulation and an extremely technical proof will be given in the 

next subsection. 

PROPOSITION 10.4. The following commutative square resulting from Definition 
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10.2 is homotopy cartesian: 

7-l$(L) ~ ~ A%(L) 

1 1 
cone(7-/$ (L)) , A(L). 

Explanation and proof. The upper horizontal arrow is x of (10.2), restricted 

to ~-/$(L). The composition a x  from 7/$(L) to A(L) is canonically homotopic to Xh 

(verification left to the reader), hence canonically nullhomotopic on 7-/$(L). This gives 

the rest of the square. To show that  the square is homotopy cartesian, we compare with 

Us(L) c 

cone(~s(L))  , A(L) 

(10.5) 

for j >>0. This is ( j  -e)-car tes ian after group completion because, up to some homotopies, 

it is identical with the square in the Fibration Theorem 9.5. Square (10.5) comes with 

a natural transformation to the square in Proposition 10.4 given by x on the upper 

right-hand term and by identity maps on the other terms. The Fibration Theorem 9.5 

implies that  the map between upper right-hand terms is highly connected after group 

completion when L is a disk; the Excision Theorem 9.6 then implies that  it is always 

highly connected. More precisely, the connectivity goes to co as j goes to co. Therefore 

the square in Proposition 10.4 is homotopy cartesian. [] 

Naturality, homotopy ends and addition laws 

Here we are concerned with the proof of Proposition 10.3. We know already from 

Lemma 9.3 that  it is enough to promote x in Definition 10.2 to a natural transfor- 

mation P$(L; OoL)-+A%(L) of functors on W. That  is not a trivial matter,  however. We 

need a very homotopy theoretic approach to natural transformations. 

Let e be a small category and let J be a functor from C ~  to spaces. It is 

customary to define the end or diagonal limit of J as the subspace of 

H J(c,c) 
c i n e  

consisting of all points (xc) which satisfy f,(xc)--f*(xd)EJ(c,d) for every morphism 

f :  c-~d in C. See [Mac]. For a standard example which is quite relevant here: suppose 
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that  U and V are functors from C to spaces. Let J(c,d)=map(U(c), V(d)). Then the 

end of J can be identified with the space of natural  t ransformations from U to V, 

We adopt a slightly different point of view where C ~ x C gets replaced by another  

category C ~. The objects of C ~ are the morphisms of C; a morphism from f l :  cl-+dl to 

f2:c2--~d2 is a commutat ive  diagram in C of the form 

fl  
C1 )- d l  

c2 ~- d2. 

There is a forgetful functor C ' -+e~  C which takes an object f :  c--+d in C' (alias mor- 

phism in e)  to the pair (c, d). Our point of view is that  what we need to make an end 

is (only) a functor J from C' to spaces. The end of J is then defined as the subspace of 

1-I J( idc)  
c i n e  

consisting of all points (Xc) which satisfy f.(x~)=f*(xd)EJ(f) for every morphism 

f:c--+d in e, alias object f of if'. Here f . :  J(id~)-~J(f) and f*: J(idd)--+J(f) are the 

maps which J associates to the following morphisms in e ' ,  respectively: 

id id 
c ) c  d ) d  

c ) d ,  c ) d.  

The end of a functor from C ~ x e can be (re)defined by composing with the forgetful 

functor e ~ ~ e ~ x C. 

In general, the end of a functor J from e '  or e ~ x e to spaces has a fairly unpre- 

dictable homotopy type. One is led to look for something like a homotopy end of J ,  with 

a more predictable homotopy type. 

Definition 10.6. The homotopy end of a functor J from C' to spaces, in symbols 

hoend J ,  is the corealization (Tot) of the cosimplicial space 

1-I J(co Ck). 
Co--+Cl ---~...---~Ck 

Here the product is indexed by the strings Co--+Cl-+...-+ck of k composable morphisms 

in e. The factor corresponding to such a string is J evaluated on the composite morphism 

Co---~Ck. For k- -0  the strings reduce to single objects in e; the factor corresponding to 

such an object c is J(idc).  The simplicial operators  are obvious. Remark: It  can be 

shown [GoKW] that  hoend J is homeomorphic to holim J .  
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Example. Suppose again that  U and V are functors from e to spaces. Define J 

from e'  to spaces by J(f: c---+d):=map(U(c), V(d)). One finds easily that  hoend J can 

be identified with the space of natural transformations from U fat to V, where U fat is 

defined by 

ufat(d) = hocolim U(c). 
a.--+ d 

Here the homotopy colimit is taken over the category of C-objects over d. Note that  there 

is a natural projection Ufat(d)-+U(d) which is a homotopy equivalence; the inclusion of 

U(d) in ufat(d) is a nonnatural homotopy inverse. 

The application to Proposition 10.3 is as follows, in outline. We take C---W, hence 

Cr=W t. We will construct two functors J1 and J2 from W t to spaces such that  for 

example 

J1 (idL) ---- holim A % (N),  
( s ,N)  

J2(idL) -= holim A%(N e) 
(s,N,e) 

for any L=(L;aoL, O1L) in W with empty OoL; the variables ( s ,N )  and (s,N,O) have 

the same meaning as in (10.1). The map (10.1) generalizes to a natural transformation 

Jl-+J2 which, evaluated at any object of W ~, is a homotopy equivalence. Hence we 

obtain an induced homotopy equivalence 

hoend J1--+hoendJ2. 

We also need the functor J3 from W ~ to spaces whose value on a morphism 

f :  (L'; OoL', 01L') ~ (L; OoL, 01L) 

is the space of maps P$(L'; OoL')---~A%(L). Now the diagram in Definition 10.2 has a 

refinement or generalization of the following sort: 

C u  proj ) h o e n d  J1 - +  h o e n d  J3. 

Here C~ is the (contractible) homotopy fiber of the above homotopy equivalence 

hoend Jl--+hoend J2 over a certain point in hoend J2 determined, much as in Defini- 

tion 10.2, by certain relative characteristics. The map hoend J1--+hoend J3 is induced 

by a natural transformation J l -+J3  which refines/generalizes the second arrow in the 

diagram in Definition 10.2. In conclusion, any choice of point in Cu determines a point 

in hoend J3; by the example right after Definition 10.6, this is all we want. [] 
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Some details. Let f be a morphism in W from (L'; OoL', 01L') to (L; OoL, 01L); so f 

is a codimension-zero embedding L'-~L • I k subject to a condition (see Definition 9.2). 

We define 

J1 ( f ) : =  holim A % ( f ,  N~), 
( s ,g )  

J2( f )  := holim A%(f.N~ (s,N,O) 

where s stands for a nonnegative integer and where N is a j -s implex (for some j )  in 

q3(L'x I~; OoL'x I~). By N~ we mean the retractive space over L ' x  I s associated with N 

according to Definition 9.2: the pushout of 

Ne_~Ajx((L, xlSxO)U(OoL, xi~xi)) proj> L, xi~. 

By f ,  N~ is meant the retractive space over L x I k+s obtained from N~ by pushforward 

along the embedding f • id from L ' •  18 to L x I k+s. It  is regarded here as a space in its 

own right. In the definition of J2(f ) ,  we also have an equivalence relation 0 on N, giving a 

product decomposition N ~ A  j x N ~ prescribed near A j x ((L' • I "~ x 0) U (00L' x I "* x I ) ) .  

By N ~ is meant the pushout of 

NOe._,(L,•215 xPx i )  p r o j ) L , •  ~. 

This contains a copy of L ' x  I'~, but does not have a preferred retraction to L ' •  I '~. By 

f ,  N ~ is meant the pushforward of N~ ~ along the embedding f x id from L'  x I '~ to L • ik+.~. 

This contains a copy of L • I k+'~, but does not have a preferred retraction to L x I k+'~. 

The pairs (s, N)  and the triples (s, N, 0) form categories, as in Definition 10.2 and 

preceding definitions. The relative characteristics x( f ,  N~ L • I k+'*) are sufficiently com- 

patible to give us a distinguished point yy in J2(f), for each f .  Furthermore,  the points 

yy for the various f in W '  are sufficiently compatible to give us a distinguished point y 

in hoend J2. We leave the verifications to the reader, with regrets and apologies. [] 

Trimmings 

Let X be an n-manifold without boundary, possibly noncompact.  A trimming of X 

is a subset N C X  which is a compact  topological n-manifold in its own right, with 

the property that  N--+X is a homotopy equivalence. More generally, a compact  subset 

N C  AJ x X is a family of trimmings of X parametrized by AJ if the projection N - +  AJ is a 

bundle of compact  n-manifolds and the inclusion N---~AJ x X is a homotopy equivalence. 

Such families are the j-simplices of a simplicial set T (X) .  Let T(X)=lsimp(~(X))l .  
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There is an obvious stabilization map T(X)---~T(X x R); here we are using the inclusion 

I--+ll~. We let 

T~ (X):= hocolim T(X x ]I(r ). 

Let N C  X be any trimming. 

There is an important  inclusion map  ? / (N)~-+T(X x N) because, with our conven- 

tions, any h-bordism over N is a subset of N x 1C X x I~. This stabilizes to an inclusion 

7Q( N)~-+ 7-$(X xI~ )~-~ ~(X) .  

DROPOSITION 10.7. The inclusion ?4$(N)-+ T$(X) is a homotopy equivalence, for 
any trimming N of X. 

Proof. Let T ' (XxR~)CT(X•  s) be the subspace determined by the tr immings L 

of X x R2 which are contained in N x I s and for which the inclusion aL--~ L is 1-connected. 

Note that  T' (X x ~2) contains 7-/(N x I s-l) for s >0. Topological immersion theory [Ga] 

and general position arguments show that  the inclusion 

hocolim T' (X x ~8) __+ hocolim T ( X  x R 2) = 75 (X)  
s~>l s~>0 

is a homotopy equivalence. By inspection, the stabilization map from T ' ( X x I ~  s - l )  

to T ' ( X •  2) factors through 7 - / (N•  up to homotopy. Therefore the following 

inclusion is also a homotopy equivalence: 

hocolim 7"/(N • I s -  1 ) ~ hocolim T' (X  x 1~2). [] 
2/>1 2/>1 

Trimmings and their characteristics 

Suppose that  X is homotopy finitely dominated (and a manifold without boundary, as in 

the previous subsection). We want to construct a map  from T(X)  to the homotopy fiber 

of the assembly o~: A % (X)-+ A(X) over the point Xh (X). (Here Xh (X) is the 'homotopy 

invariant'  characteristic of X,  represented by the retractive space X ! : = S ~  X.)  More 

precisely, we will make a commutat ive square 

T$(X) x �9 A%(X ) 
I c 1 

cone('  (X)) , A ( X )  

(10.8) 

using appropriate  models of A%(X) and A(X) which we are about  to describe. Namely, 

we interpret A%(X) as F'(X), with F' as in Observation 8.8. Strictly speaking F'(X) 
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is not clearly defined in or around Observation 8.8 since X might not be compact;  we 

decree however that  F ' ( X ) : =  colimMc X F ' ( M )  where M runs through the codimension- 

zero compact  submanifolds of M. 

The construction of (10.8) is similar to that  of the square in Proposit ion 10.4. More- 

over it is essentially a special case of w so we will be very brief. We begin by writing 

down a homotopy equivalence 

holim A%(N) -+ holim A%(N e) (10.9) 
(8,g) (8,N,v) 

where s~>0 and NCAk• X• ~ is a k-parameter  family of t r immings of X •  ~ for some 

k>~0 and 0 is an equivalence relation on N giving a product s tructure N~Ak• N ~ The 

excisive characteristics x(Ne), etc., determine a point in the codomain of (10.9); let C be 

the homotopy fiber of (10.9) over that  point. Now any choice of point * E C  determines 

a map T$(X)-+A%(X). This is the image of �9 under the composition 

C proj> holim A%(N) --~ holim A%(X) proj> map(T$(Y),  A%(X)). 
(s,N) (s,N) 

The composition of T$ (X)--+ A % (X)  with assembly is canonically homotopic to the con- 

stant  map with value Xh(X). This gives the rest of (10.8). 

THEOREM 10.10. Square (10.8) is homotopy cartesian. 

Proof. First, assume that  T$(X) is empty. Then we have to show tha t  the homotopy 

fiber of the assembly map  A%(X)-+A(X) over the point ~(h(X) is also empty; equiva- 

lently, we have to show that  the Wall finiteness obstruction of X, the class of xh(X) in 

the cokernel of the assembly 7roA%(X)-+roA(X), is nonzero. Suppose, if possible, that  

the Wall finiteness obstruction of X is zero. Then there exists a homotopy equivalence 

g: K--+M where K is a finite simplicial complex. We may assume that  K is a compact  

manifold also. Replacing X by X • ~ with s>>0 if necessary and deforming g if neces- 

sary, we may also assume that  g is a locally flat embedding with a normal disk bundle 

N(K) c X. Now N(K) is a t r imming of X, contradicting the assumption. 

We assume from now on that  T$(X) is not empty. Then we can easily reduce to the 

case where T(X) is nonempty; so choose a vertex L in T(X). Now we have a diagram 

H$(L) ~" ~ A%(L) 

1 
T$(X) • ) A%(X) 

cone(T$ (X))  > A(X) 

(10.11) 
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where the lower square is (10.8) and where the upper one uses the inclusion map of 

Proposition 10.7. The arrow labelled +x(L) is given by addition of the constant x(L) 
using the addition law in A%(L), followed by the inclusion-induced map from A%(L) 
to A%(X). By an inspection which we leave to the reader, the upper square in (10.11) 

is commutative up to a canonical homotopy (and the vertical arrows in it are homot- 

opy equivalences). Now the outer diagram in (10.11), obtained by deleting the middle 

horizontal arrow, is homotopy cartesian because it is identical with the one in Proposi- 

tion 10.4, up to some evident homotopy equivalences. [] 

Fiberwise trimmings 

Overview. We generalize our results about 7~ (X) to bundles of manifolds without bound- 

ary. Let p: E-+B be a fiber bundle where the fibers are n-manifolds without boundary, 

for some n, which are finitely dominated. We will define T(p) ,  the space of trimmings 

of p, and a stable version T$(p). Our goal is to obtain an index-theoretic description 

of the homotopy type of T$(p) when B is also finitely dominated. In that  case 7~(p) is 

homotopy equivalent to 

F - ( % B ( E  ) -~B) ,  

the space of sections of the fibration associated with the quasifibration TsB(E )---~B ob- 

tained essentially by applying T$ fiberwise (to the fibers of p). We shall show that  there 

is a homotopy cartesian square of spaces over B, 

TsB(E) x ~ A~(E) 

1 1  o 
coneB(TsB(E)) �9 AB(E). 

(10.12) 

The lower left-hand term is the mapping cylinder of the projection from TsB(E ) to B. 

The map from it to AB (E) which appears in the square extends the fiberwise (homotopy 

invariant) characteristic Xh(P): B~AB(E).  (Strictly speaking we will not work with B 

but with Isimp(~)h assuming that  B is the geometric realization of a simplicial set ~ .  

Compare w 

Definition 10.13. A trimming of p: E---~B is a subbundle pt of p with the property 

that  the inclusion p7l(b)-+p-l(b) is a trimming of p-l(b) for each bEB. A family of 
trimmings of p parametrized by AJ is a trimming of 

id•  AJ x E--+ A j x B .  
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Such families are the j-simplices of a simplicial set if(p). Let T(p) be the geometric 

realization of s imp( i (p) ) .  Let alp be the composition of p with the projection E • ]l(i--+E 

and let 

7~(p) := hocolim T(a 'p ) .  

Suppose now that  B is the geometric realization of a simplicial set ~ .  For x in 

s imp(~)  let p~: Ex-+A I~1 be the pullback of p under the characteristic map AIxI-+B 

of x. Restriction of trimmings gives canonical maps 

T(p)  --+ holim T(p~),  
X 

T$ (p) --+ holim 75 (px). 
X 

Induction over skeletons shows that the first one is always a homotopy equivalence and 

the second one is a homotopy equivalence if B is finitely dominated. On the other hand, 

we know (compare Remark 1.5) that  holim~T$(p~) is homotopy equivalent to F ~ of the 

projection 

hocolim 7~ (px) --~ Isimp(~)l. 
X 

We shall produce homotopy cartesian squares, one for each x in simp(~3), naturally in x: 

T~(px) x > A%(E~) 

cone(T(p~)) )~ A(E~). 

(10.14) 

Then, by taking homotopy colimits over all x in s imp(~) ,  we will have tile precise version 

of (10.12): 

hocolimxT~(px) x > hocolimxA%(Ex) 

hocolim~ cone(T(px))  ) hocolim~ A(E~). 

(10.15) 

For the construction of (10.14), simultaneously for all x, we make a contractible 

choice, namely, a choice of point in a certain homotopy fiber C of a certain map 

holim holim A%(N) ~ holim holim A%(N e) (10.16) 
x (8,N) (8,N,O) 

where s~>O and N c A k x  Ex xlR s is the total space of a trimming of the bundle 

A k x E ~  x R ~ --~ A k x AI~I  
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and tO is an equivalence relation on N, with quotient space N ~ giving a homeomorphism 

N~-Ne• Ak• A I~1. The map (10.16) is induced by the projections N--~N ~, and C is its 

homotopy fiber over the point determined by the (excisive) characteristic X. Once * E C 

has been selected, we obtain the upper horizontal arrow in (10.14) as the image of * 

under the composition 

C proj) holim A%(N) ~ holim A%(Ex) proj) map(%(px) ,  A%(Ex)) 
(s,N) (s,N) 

where s~>0 and N denotes simplices in T(aSpx). 

OBSERVATION 10.17. Square (10.15) alias (10.12) is homotopy cartesian. 

Proof. It is enough to show that  (10.14) is homotopy cartesian for each x. Naturality 

in x reduces this to the claim that  (10.14) is homotopy cartesian for each x with Ixl=0. 

This is identical with Theorem 10.10. [] 

COROLLARY 10.18 (Riemann-Roch with converse for topological manifolds). Sup- 

pose that p: E-+ B is a fibration with finitely dominated fibers and base. The following 
are equivalent: 

(1) p is fiber homotopy equivalent to a bundle of compact topological n-manifolds 

on B, for some n; 

(2) the component of the fiberwise characteristic Xh(P) is in the image of the map 

induced by fibeT"wise assembly, 

ror-(A~(E) ~ B) 

1 
~or'(AB(E) ~S). 

Proof. ~ is clear from Observation 10.17 and was also established in Parts  I and II. 

is also clear from Observation 10.17 if p is fiber homotopy equivalent to a bundle of 

open manifolds. It turns out that  p is always fiber homotopy equivalent to a bundle of 

open manifolds. Namely, Casson and Gottlieb [CaG] have shown that  p is fiber homotopy 

equivalent to a bundle of open manifolds if the fibers of p are homotopy equivalent to 

compact CW-spaces. If the fibers of p do not satisfy this condition, we can still apply the 

Casson-Gottlieb theorem to pq: $1• E--~B, where q: S i x  E--+E is the projection. Then 

the Wall finiteness obstructions of the fibers of pq vanish. Hence pq is fiber homotopy 

equivalent to a bundle of open manifolds. By taking suitable infinite cyclic covers we 

deduce that p is fiber homotopy equivalent to a bundle of open manifolds. [] 
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11. Stabil i ty mat ters  

Stabil ity of  the  i n d e x  t h e o r e m  

We return to the abstract  setting of w in order to make precise how the Index Theo- 

rem 3.11 and Remark 3.14 for a compact  manifold M n with boundary is related to the 

same index theorem for M • I .  We still think of the index theorem for M as a point 

(@,~, w(M) ,  x ( M ) )  in the homotopy pullback of diagram (3.16). Consequently the rela- 

tionship tha t  we are after should involve a suitable commutat ive  diagram whose upper  

row is (3.16) for M and whose lower row is (3.16) for M x I .  Such a diagram is easy to 

set up: it is 

holimg~(~ ) F �9 holimo(M) F ( ~ F ( M )  

T T 
h o l i m ~ ( ~ ) F ( - x I )  ~. holimo(M) F ( - x I )  < o F ( M x I )  

h o l i m ~ ( ~ / x o ( i  ) F :, holimo(M)• F .~ F ( M x I )  

l T l 
hol im~( , ,+ l )  F �9 holimo(Mxl) F �9 0 F ( M x I ) .  

(11.1) 

(For typographical reasons the indexing categories appear  with the holim sign, not to 

the right of it in the name of the functor.) All arrows in the diagram are obvious. 

All vertical arrows except possibly the one labelled ~ are homotopy equivalences. In 

particular, the first three rows of the diagram are essentially identical. 

THEOREM 11.2 (stability). The characteristic X determines a point in the homotopy 

limit of (11.1) which projects to (@n,w(M),x(M))  in the homotopy limit of the upper 

row and to ( @ n + l , w ( M x I ) , x ( M x I ) )  in the homotopy limit of the lower row. 

The proof of Theorem 11.2 is a formality. It  resembles the proof of Theorem 3.11 

and can be seen as an application of Remark 4.15. We leave it to the reader. We also 

leave to the reader to prove a family version of Theorem 11.2. 

Stabil ity of  the vanishing theorem 

In Theorem 4.10, we saw tha t  the characteristic classes [@n] and [bn] agree on n-disk 

bundles. A sharper version is Theorem 4.13. The  'vanishing theorem'  terminology comes 

from around (0.5). We will now establish a relationship between the dimension n case 
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and the dimension n + l  case of Theorem 4.13. To describe the relationship, we need the 

commutative diagram 

holim(D,H) Q'(H)  v �9 holim(D,H) F(H)  

holim(D,H) Q ' ( g x I )  'J > holim(D,H) F ( H x I )  

hol im(D,H) ,vQ'(HxV)  ~ > holim(D,H),u F ( H x V )  

T T 
holim(D,,H, ) Q'(H')  ,7 , holim(D,,H, ) F(H' )  

(11.3) 

where (D ,H)  runs through 0�9 (D' ,H')  runs through O~D(n+l), and V runs 

through 0( I ) .  The vertical arrows from the last row to the next one above are induced 

by the functor (D, H),  Y~-~ (D • I,  H x V) from 0~D(n) • 0 ( I )  to 0~D(n+ 1). 

THEOREM 11.4 (construction). We construct a point in the homotopy inverse limit 

of (11.3) projecting to 

(1) (~*Dn,vn,~*~n) in the holim of the upper row (see Theorem 4.13); 

(2) (~*bn+l,Vn+l, c*~n+l) in the holim of the lower row; 

(3) the point determined by X in the holim of the right-hand column (see Re- 

mark 4.15). 

Details of the construction. The natural transformation 7/from Q" to F gives us a 

map between the following (3 x 4)-diagrams: 

h01im(D,H) Q'(H)  , ~- holimD Q'(D) ~- �9 holimD Q'(*) 

holim(m,H) Q ' ( H x I )  ( ~- ho l immQ' (DxI )  ~- , holimDQ'(*) 

hol im(D,H),vQ'(HxV) .~. ~- ho l imDQ' (DxI )  ~- , hol imDQ'( . )  

holim(o,,H,) Q' (H ' )  - -~ holimD, Q'(D')  ~ , holimD, Q*(*), 
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holim(D,H) F ( H )  �9 -~ holimD F ( D )  -~ ) holimD F(*)  

holim(D,n) F ( H x I )  �9 ~- holimo F ( D x I )  ~- > holimD F ( , )  

holim(D,n),v F ( H x V )  ~ ~- h o l i m D F ( D x I )  -~ - hol imDF(*)  

t T 
holim(o, n,) F ( H ' )  < ~- holimD, F ( D ' )  -~ , holimD, F ( , ) .  

We can view the map as a (2 • 3 x 4)-diagram A with vertices Vijk, where i E {1, 2}, j E 

{1,2,3) and kE{1,2 ,3 ,4} .  The hypotheses and contractible choices made so far (in 

particular, z3 from the proof of Theorem 4.13) give us a point y in the homotopy limit of 

the subdiagram ~B obtained by deleting the vertices vijk with i = 1, j E { 1, 2} and k E {2, 3 }; 

in other words, by deleting the subdiagram 

holim(D,H) Q ' ( H x I )  < 

holim(D,H),V Q ' ( H  x V)  ~ 

holimD Q ' ( D x  I )  

1: 
~- h o l i m D Q ' ( D x I ) .  

The projection from the homotopy limit of ,4 to the homotopy limit of (B is a fibration 

and a homotopy equivalence. Its fiber over y is therefore contractible. Choose a point 

y' in there. Let y" be the image of y' under projection to the homotopy limit of the 

subdiagram spanned by the vertices v~j~: with j = 1, which is identical with (11.3). Then 

y" has all the required properties. [] 

12. C o n v e r s e  R i e m a n n - R o c h  for smooth  manifolds 

This chapter is somewhat analogous to w We will however need to use the index 

theorem and the vanishing theorem of Part  I, which we did not need in w They will 

be used in a stable form; for that  we rely on w The exposition will be kept informal; 

all the truly technical points have been taken care of in previous chapters. 

Index-theoret ic  v iew of  regular h-cobordisms 

Let L be a compact regular manifold. By analogy with w we begin with the construc- 
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tion of a map ~': dP$(L)--+Q(L+) which fits into a commutat ive  square 

dT~$(L) ~" ~ Q(L+) 

7~$(L) x , A%(L). 

(12.1) 

d'P$(L) Q(L+) 

1 T 
P , ( L )  x , A (L ) 

where the right-hand vertical arrow is a left homotopy inverse to ~ in (12.1). But each 

arrow in this composition extends to a natural  t ransformation between functors on W. [] 

The lower horizontal arrow ~ in (12.1) is canonically homotopic to 

r , X - x ( L ) ,  

the map which takes a retractive manifold N over L • I q (for some q~>0) to the difference 

r , x ( N ) - x ( L ) .  Here r: N - + L •  s is the retraction. We think of it as a map from N to 

L by dropping the second coordinate. The Index Theorem 3.11 and Remark  3.14 now 

tell us that  it is also canonically homotopic to 

r,~(edim(T, To))--x(L) 

where (T, TO) denotes the tangent bundle pair of a (variable) regular retractive mani- 

fold over L x I q  for some q and edim means  edim(g). The Vanishing Theorem 4.10 and 

Theorem 4.13, coupled with the stability result Theorem 11.4, show tha t  the map out of 

T'$ (L) which we have called r ,  ~o( edim (T, TO)) is canonically homotopic to r ,  ~ ~o(bdim (T, TO )) 

on dP$(L). Hence we may define ~, by the formula 

r ,  ~o(bdim (~', TO))- x(L): riPs(L) --+ Q(L+) 

bearing in mind that  ~((L) also has a canonical lift to Q(L+) by the same reasoning, or 

directly by Thereom 5.7. 

Remark. This is a definition of ~, up to contractible choice. It  makes (12.1) com- 

mutat ive up to a contractible choice of preferred homotopies. These shortfalls could be 

fixed in the usual way, by enlarging the spaces involved without changing their homotopy 

types. 

PROPOSITION 12.2. Up to natural homotopy equivalences, the map ~" in (12.1) 

extends to a natural transformation between functors on %1 (compare Lemma 9.3). 

Proof in outline. Up to a canonical homotopy, ~" can be writ ten as a composition 
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COROLLARY 12.3. 

Proof. 

The following commutative square is homotopy cartesian: 

dTi$(L) ~ �9 Q(L+) 

I f~ 17 

7 i , ( n )  x ) A%(L). 

We can enlarge the square to a commutative diagram 

d7i$ (L) c dP~ (L) ~" > , ~ Q ( L + )  

l ~176 l" 
7is(L) c , PJ$(L) x , A%(L ) 

(12.4) 

with j>>0. Here the left-hand square becomes ( j - r  after group completion 

by smoothing theory (compare w proof of the vanishing theorem). Now it is sufficient 

to show that  the horizontal arrows in the right-hand square are ( j -E)-connected .  The 

Excision Theorem 9.6 and its smooth alias regular version (see the proof of the vanishing 

theorem in w reduce this to the case where L - - , .  We have A%(,)-~A(*), so the lower 

horizontal arrow in the right-hand square is indeed ( j -~ ) -connec ted  for L = ,  (after group 

completion) by the Fibration Theorem 9.5. As regards the upper horizontal arrow in the 

right-hand square, we can first use the smooth version of Theorem 9.5 to show that  upper 

stabilization 

f l B (  dP~ ( * ) ) --~ f l B (  dP~+ l ( I ) ) 

is ( j - r  then we have Corollary 9.9 to deduce that  12B(dT~(*)) has the 

( j - e ) - t y p e  of QS ~ as an infinite loop space. Since 

~': dT:'~ ( * ) -+ Q( , + ) 

becomes a map of infinite loop spaces after group completion, it suffices to show that  the 

induced homomorphism on 7r0, which has the form N --+Z before group completion, takes 

1 to +1. But this is a consequence of commutativity of the right-hand square in (12.4). [] 

Regular trimmings 

Let X be a regular n-manifold without boundary, possibly noncompact. Let (q, U, j )  be 

the regular structure on X. A regular tr imming of X is a trimming N C  X with 

(1) a regular structure (ql, U ' , j ' )  on N; 

(2) a one-parameter family, parametrized by [0, 1], of regular structures on int(N),  

specializing to the restrictions of (ql, U ~, j l )  and (q, U, j )  for the parameter values 0 and 1, 

respectively. 
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It is straightforward to define families of regular trimmings of X parametrized by AJ. 

Such families are the j-simplices of a simplicial set dfs Let d T ( X ) =  I s imp(d~(X))l .  

There is an obvious stabilization map dT"(X)-+dT(X • ~) ;  here we are using the inclu- 

sion I-+I~. We let 

dT$ ( X ) := hocolim d T  ( X x l~ r ). 

Let N c X  be any trimming. There is an important  but obvious inclusion map dT-l(N)r 

d T ( X  • R ). This leads to another inclusion map dT/, (N)  ~ d% ( x  • ~)  ~ dT$ (X).  

PROPOSITION 12.5. The inclusion dT-l$(N)-+dT$(X) is a homotopy equivalence, 

for any regular trimming N of X .  [] 

Regular trimmings and their characteristics 

Suppose that  X is homotopy finitely dominated (and a regular manifold without bound- 

ary, as in the previous subsection). We want to construct a map from d T ( X )  to the 

homotopy fiber of c~r]: Q(X+)--+A(X) over the point Xh(X). More precisely, we will 

construct a map ~:: dT$(X)--+Q(X+) making the square 

dT"$(X) x , Q(X+) 

T$(X) x , A%(X ) 

commutative up to a preferred homotopy; combining this with (10.8) we get 

dTs(X) x , Q(X+) 

cone(7~(X)) ) A(X) .  

(12.6) 

(12.7) 

where (T, TO) denotes the tangent bundle pair of N. (We have dropped the Rq-coordinate 

of ~ to view 6, as a map from A%(N) to A%(X).) Hence we can define )~ in (12.6) by 

the formula ~.~9(bdim(T, TO)). [] 

b,V(edim(T, TO)) 

The construction of :~ in (12.6) is similar to (but easier than) that  of ~, in (12.1). We 

note that  X: T$(X)--+A%(X) in (12.6) is canonically homotopic to 6,~9(edim(T, C~T)), the 

map which takes a trimming N of X x R q  (for some q~>0) with inclusion 6: N - + X •  q to 
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THEOREM 12.8. Squares (12.6) and (12.7) are homotopy cartesian. 

Proof. Square (12.6) is homotopy cartesian by Corollary 12.3 and Proposition 12.5. 

Square (12.7) is homotopy cartesian because (12.6) and (10.8) are. [] 

Fiberwise regular trimmings 

Overview. We generalize our results about dT$(X) to bundles of regular manifolds with- 

out boundary. Let p: E-+B be a fiber bundle where the fibers are regular n-manifolds 

without boundary, for some n, which are finitely dominated. We will define dT(p), the 

space of regular trimmings of p, and a stable version dT$(p). Our goal is to obtain an 

index-theoretic description of the homotopy type of dT$(p) when B is also finitely domi- 

nated. We will not proceed exactly as in w subsection on fiberwise trimmings, because 

we do not have quite so much functoriality. Nevertheless we will produce a homotopy 

equivalence from dT$(p) to the homotopy fiber over Xh(P) of 

r'((Q+).(E+) ~B) 

F-(AB(E) ~B). 

Compare (10.18). 

Definition 12.10. A regular trimming of p: E---~B is a trimming pt of p where each 

fiber p~-I (b) is equipped with the structure of a regular trimming of p-1 (b), continuously 

in bE B. A family of regular trimmings of p parametrized by AJ is a regular trimming of 

id•  AJ x E --+ AJ x B. 

Such families are the j-simplices of a simplicial set which we denote by d~(p). Let 

dT(p):= Isimp(d~(p))l. Let aip be the composition of p with the projection E • ~i--+E 

and let 

dT$(p) := hocolim dT(aip). 

Suppose now that  B is the geometric realization of a simplicial set ~ .  We can make 

a square, commutative up to preferred homotopy, 

B• ~ ~ (Q+)B(E) 

1 1 
Bxcone(dT,(p)) xh . AB(E). 
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The upper horizontal arrow is the (refined) Becker-Gottl ieb transfer for the tautolog- 

ical bundle of compact regular manifolds on B xdT$(p). The lower horizontal arrow, 

restricted to BcBxcone( . . . ) ,  is the A-theory characteristic for the same bundle. Re- 

writing this in adjoint form, we obtain 

d%(p) ~ ~ r~((Q+)B(E+)~B) 

cone(d~(p ) )  xh . F- (AB(E)  -+B). 

(12.11) 

THEOREM 12.12. Square (12.11) is homotopy cartesian if B is finitely dominated. 

Proof. Suppose first that  ~ is finitely generated. We proceed by induction on the 

number of nondegenerate simplices of ff~. The case where ~ is a point is covered by 

Theorem 12.8. Otherwise write B = B ( 1 ) c B ( 2 )  where B(1) and B(2) are the geometric 

realizations of proper simplicial subsets of ~ .  By induction, Theorem 12.12 holds for the 

subspaces B ( 1 ), B (2), B ( 1 ) A B (2) and the appropriate restrictions of p to these subspaces 

of B. By excision, Theorem 12.12 must also hold for B. - -  Note in particular the excisive 

behavior of the upper left-hand term in (12.11): there is a homotopy cartesian square 

dT$(p) �9 dT$(plB(1)) 

dT~(plB(2)) . dT~(pI(B(1)nB(2))).  

To deduce the general case in which B is finitely dominated from the case where B is a 

finite CW-space, use the fact that  a (homotopy) retract of a homotopy cartesian square 

is a homotopy cartesian square. [] 

COROLLARY 12.13 (Riemann-Roch with converse for regular manifolds). Let 

p: E-+ B be a fibration with finitely dominated fibers and base. The following are equiva- 

lent: 

(1) p is fiber homotopy equivalent to a bundle of compact regular n-manifolds on B, 

for some n; 

(2) the component of the fiberwise characteristic Xh(P) is in the image of 

ror-((Q+)~(E) -~B) 

~roF-(AB(E) ~B).  
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Proof. As in the proof of Corollary 10.18, it is enough to show that  p is fiber homot- 

opy equivalent to a bundle of regular open manifolds. We may assume that  p is a bundle 

of open manifolds. Let % be the vertical tangent bundle of E. Let uv be a euclidean 

bundle on E which is Whitney sum inverse to ~'v. Then the total space of uv is also the 

total space of a bundle on B which is fiber homotopy equivalent to E and whose fibers 

are manifolds with trivialized tangent bundles. [] 

W a l d h a u s e n ' s  a l t e r n a t i v e  a p p r o a c h  

In the introduction we mentioned an alternative proof of the Riemann Roch theorems 

with converse, Corollaries 10.18 and 12.13, due to Waldhausen. This uses descriptions 

given in [W3] of A % (L) and Q(L+) for a manifold L which mimic Waldhausen's definition 

of A(X) for a space X, replacing however retractive spaces over X by retractive (regular) 

manifolds over L throughout. Following is a sketch; an elaboration would undoubtedly 

also fill many pages. 

Definition of A(X). Referring to [W2] for details, we recall that  Waldhausen defines 

A(X) as ~lwS.(~s(X))l where 

(1) ~Rhf(x) is the category of retractive spaces over X satisfying suitable finite 

domination conditions; 

(2) up to equivalence, $k(~Rhf(X)) is the category of strings 

YI-+Y2-+...-+Yk 

of cofibrations in :~hf(x);  

(3) up to equivalence, wSA:(~hf(X)) is the subcategory of the weak equivalences in 

Sk( hI(X)). 
It is of course important here that  the 8k(...) for all k are related by certain face 

and degeneracy functors, making 8.(...) and wS.(.. .)  into simplicial categories. 

The 8.-construction with retractive manifolds. Suppose that  L is a compact mani- 

fold. We fix k>~0 and introduce strings N1 C N2 C... C Nk of retractive manifolds over L. 

Denote the space of all such strings, suitably defined, by SkT)(L). This is intended to 

mimic IWSk(ff~hl(x))l above, especially for X=L, but it has a major shortcoming: not 

all the face operators 

Sk( hI(X)) Sk_ 1 

have analogs SJ:'(L)~,Sk-IT'(L). To illustrate: there is a face operator 8k(3~hf(x))-~ 

8k_l(3~hf(x)) which takes a string YI~Y2 of cofibrations in 3~hS(X) to the refractive 

space Y2/Y1 over X, the pushout of X~--Y1 --~Y2. Unfortunately, for a string N1cN2 of 



PARAMETRIZED INDEX THEOREM 99 

retractive maniiblds over L, the retractive space quotient N2/N1 is typically not a retrac- 

tive manifold over L. There are however retractive manifold candidates for something 

like the stabilization a(N2/N1) of N2/N1. One such is 

N2• ~]ON]•215215 

a subset of L z I • I and a retractive manifold over L • 0 • I ~ L x I .  In this way, al- 

though we do not have a simplicial space $kP(L) ,  we do get a simplicial space SkT)$(L). 
Waldhausen shows essentially that  

f~ I$.'P$(L)I ~_ A%(L), 

f~]S.dP$(L)I ~-Q(L+) for regular L. 

He also identifies the forgetful maps 

f~ IS.dT)$( n )] ---4 ~ IS.P$( L )I -+ ~ I$.~h/( L )l 

with ~ and a, respectively. (Actually Waldhausen prefers to use Thomason ' s  modification 

of the $.-construction in this context.) 

Characteristics of manifolds revisited. To concentrate on the most interesting case, 

suppose that  L is compact  and regular. The  retractive manifold 

L•  ([0, ~ ] , [ ~ , 1 ] )  C L •  

is a point in 

dP$( L ) C 12 tS.dP$( L )l ~_ Q( L+ ). 

Its image under at/: Q(L+)---~A(L) is clearly related to Xh(L) by a canonical path. This 

argument  works well with families of compact  regular manifolds and so re-proves the 

most important  part  of (0.6). 

The Riemann-Roch theorem with converse. It is also possible to prove Corol- 

lary 12.13 using this approach. The key step is to identify dT-$(X) with the homoto- 

py fiber of aT/: Q(X+)--~A(X) o v e r  Xh(X) in the case where X is an open manifold and 

finitely dominated. The appropriate  manifold model for Q(X+) can be described roughly 

a s  

IS.dP,(X; ~)l 

where P ( X ;  co) is the space of retractive manifolds over X with compact support. (A re- 

tractive manifold N c X •  I is said to have compact  support  if the closure of (X • I ) \ N  
in X •  I is compact.)  Using this, one does obtain a map from dT$(X) to the homotopy 

fiber of  ar]: Q(X+)-+A(X) o v e r  ~)(~h(X). TO show that  it is a homotopy equivalence, one 

can use the elementary Proposit ion 12.5 and the nonelementary Corollary 9.9. 
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