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1. I n t r o d u c t i o n  a n d  m a i n  r e s u l t  

Many  problems in approx ima t ion  theory  can be connected  with  the p rob lem of approxi-  

ma t ing  the  funct ion Ixl a on a set having the  origin as an inner point .  One of the  ma in  

reasons for t ha t  is the fact t ha t  ]xl ~ can be seen as a p ro to type  of functions t ha t  are 

a-Lipschi tz  continuous.  In the present  pape r  we are concerned with the  ra t ional  approx-  

imat ion  of the funct ion x ~ on [0, 1]. It  is not  difficult to see t ha t  this app rox ima t ion  

problem is equivalent  to the approx ima t ion  of ]xI 2a on [ -1 ,  1], and the  a sympto t i c  error  

es t imates  for bo th  cases can easily be t ransfer red  f rom one to the other  s i tua t ion  (see 

T h e o r e m  2). 

We s ta r t  with the  s t a t emen t  of the main  result  and shall then  cont inue with  a 

very short  review of related invest igat ions in polynomia l  and ra t ional  approx imat ion .  

Let  P,~ denote  the  set of all polynomials  of degree a t  most  h E N  with  real coeffi- 

cients, T~ .... the  set of ra t ional  functions {p/qlpET~,n, qE~)n, q ~ 0 } ,  m,  n E N ,  and rmn* ---- 

r*n(f~,  [0, 1];' )ET~m~, m,  n E N ,  the  rational best approximant to f~:=x ~ in the uni form 

norm on [0, 1]. The  min imal  approx imat ion  error for n u m e r a t o r  and denomina to r  degrees 

a t  most  m and n, respectively, is denoted by 

E m .  : = E m . ( f ~ ,  [0, 1 ] )=  IIf~-r~nll{o,1] : inf IIf~-rllEo,xl (i.i) 

with ]1 " IlK denot ing the  sup-norm on KC_ R .  I t  is well known tha t  the  best  a p p r o x i m a n t  

r *  n exists and is unique within T~mn for each re, h E N  (cf. [15, w167 and 9.2], [14, 

Chap t e r  7.2] or [17, w T h e  central  t a sk  in this pape r  is to prove 
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THEOREM 1. The limit 

lim e2~rx/-SKEnn(X a, [0, 1]) = 41+~ Isin 7rc~ I 
n - - ~ o o  

(1.2) 

holds for each a > 0 .  

Since Ixl (~ is an even function, xER,  it is not difficult to verify that  the uniquely ex- 

isting best approximant r *  n-= r *  n (Ixl a, [ -  1, 1];. ) is also an even function. Consequently, 

a substitution of x 2 by x shows that  

E2m,2ntr I/ 'x'2~,[-1,1l)=Emn(X~,[0,1]) f o r a l l m ,  n C N ,  (1.a) 

and as a corollary to Theorem 1 we have 

THEOREM 2. The limit 

lirnooe'~'/-~Enn(lXl ~, [-1, 1])= 41+'~/2 ]sin 17rc~[ (1.4) 

holds for each a > O. 

The analogue of (1.4) in polynomial approximation is connected with a conjecture 

by S. N. Bernstein, which, however, has been disproved in the 1980s by A. S. Varga and 

A.J.  Carpenter with the help of high-precision numerical calculations (cf. [26], [27]). 

Because of its relevance for rational approximation, we will repeat some of the results that  

form tile background of this conjecture. From Jackson's and Bernstein's theorems (cf. 

[15, w167 5.5 and 5.6]) we know that  the polynomial approximation error Em,()([xl '~, [-1, 1]) 

behaves like (.O(m -~) as m-+oc and that the exponent - ~  in the estimate is best possible. 

(By 50(. ) we denote Landau's big oh.) In [2] and [3] S. N. nernstein has proved that  the 

limit 

lim m-'~E,,~,o(Ixl '', [-1, 1])=: ~((~) (1.5) 

exists and is different from zero for each c~>0, ( ~ 2 N .  This result is nmch stronger and 

more difficult to prove than general conclusions of Jackson's and Bernstein's theorems, 

where only the order of the error development is taken into consideration. In [2] the 

special case ~=1  of (1.5) had been studied. The existence of the constant fl:=/~(1) has 

been proved there, and numerical bounds 0.278<~<0.286 ([2, p. 41]) had been calculated. 

In this connection S.N. Bernstein raised the question, whether the value of/~, which 

now carries the name Bernstein constant, could be expressed by known transcendentals. 

Since 1/2v/~=2.82(• lies well inside his numerical bounds for /3, he raised the 

question whether f l s  1/2x/~ (cf. [2, p. 56]). This speculation is now known as Bernstein's 

conjecture, and it has been disproved in [26] by high-precision calculations. An answer to 
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Bernstein's original question about an expression of/3 by known transcendentals is still 

open. In [3] only an asymptotic formula has been proved for/3(c~). Numerical calculations 

of D(c~) for a selection of values of c~ have been presented in [27]. 

There are two striking differences between polynomial and rational best approxima- 

tion to the function Ix[ ~ on [-1, 1] or [0, 1], on which we want to comment. Rational 

approximants converge much faster than the polynomial ones, which can rather impres- 

sively be seen by a comparison of the two formulae (1.4) and (1.5). It is also quite 

surprising that  in the somewhat simpler polynomial approximation problem no explicit 

formula is known for the constant/3((~), while in the rational case we have the compara- 

tively simple expression on the right-hand side of formula (1.4). In the case of c~=1 we 

have the very simple number 8 as leading coefficient in the asymptotic error estimate, 

which has been proved in [19]. 

Bernstein's investigations [2] and [3] have been published in 1914 and 1938. The 

study of best rational approximation of txl was started only in 1964 by D.J.  Newman's 

surprising (at the time) result in [16] that  

�89 for all n = 4 , 5 , . . . .  (1.6) 

The result already shows that  rational approximants converge indeed much faster 

than the polynomial analogues. 

Newman's investigation has triggered a whole series of contributions, we mention 

only those that  contain substantial improvements of the error estimate in the uniform 

n o r m :  

E,,~(x",[O, 1])~e -'~(~)~/~, ~ E R + ,  

En, (x  t/3, [0, 1]) ~ e -~v~7, 

En,,(x'~,[O, 1])<~e -':(")v~, a E R + ,  

�89 -'~'/~ .< E~n(X 1/2, [0, 11) <. ~ - . ~ ( ~ - o / n - ' ~ ) )  
e-~:(~)~f~<~En,~(x~,[0,1]), a E Q+\N,  

e -4~r <~ Enn(x ~, [0, 1]) ~< e -''/7;-~(1-~) , 

a E Q + \ N ,  s > 0 ,  n>~no(a,r 

En,~(x W2, [0, 1]) ~< cne - '~'/~, 

~e - ' ' / r ~  <. E,,~(~ ~/~ , [0, 1]) < ~e - ~ ,  

e-~'('~)'J~ <~ E,~,~(C/x,[O, 1]) <~ e -~(~)'/-~, s e N ,  

([6], 1967), 

([41, 1968), 

([8], 1967), 

([5], 1968), 

([9], 1972), 

([10], 1974), 

([30], 1974), 

([31], 1975), 
([241, 1976). 

Here c, c(a), ... denote constants that  are independent of n. The estimates are given only 

for approximation on [0, 1]; relation (1.3) shows teat  these results can immediately be 

transferred to the problem of approximating Ix] ~ on [-1, 1]. 
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The sharpest results about asymptotic error estimates for best rational approxi- 

mants to f~=x  ~ in the uniform norm on [0, 1] have been obtained independently by 

T. Ganelius [7] in 1979 and by N. S. Vyacheslavov [32] in 1980. Both authors proved that  

for a E R + \ N  there exists a constant c1=c1(c~)>0 such that  

liminfe2~'/-~Enn(x(~, [0, 1]) ~> Cl (c~), (1.7) 
n - - + ~  

and conversely that  for each positive rational number c~EQ+ there exists a constant 

c2=c2(a) such that  

limsupe2'~'/-~Enn(x ~, [0, 1]) ~< c2(c~). (1.8) 
n " ~  (X? 

In both investigations it could not be shown that  c2=c2(c~) depends continuously on c~. 

Thus, the estimate (1.8) remained open for a E R + \ Q .  However, T. Ganelius was able to 

prove the somewhat weaker result 

En,~(x~,[O, 1])<~c2(a)e -2'~v~a-~+ca(~)'~/-~ for n>~no(c2(ol),Ca(Ct)), (1.9) 

which holds for all c~>0 (cf. [70. In (1.9), c2(c 0 and c3(c~) are constants depending only 

on c~. For approximation in the LP-norm, l < p < o c ,  the upper estimate (1.8) has been 

proved in [1] for all c~>0; however, in the uniform norm the problem seems to have been 

solved only for rational a up to now. 

The results (1.7)-(1.9) give the correct exponent -2rrx/~-~ in the error formula, 

but not much is said about the coefficient in front of the error formula. This problem 

has now been settled by Theorem 1. Like ill the analogous situation in polynomial 

approximation, it is proved that  the limit (1.2) exists and has the value given on the 

right-hand side of (1.2). Contrary to the estimate (1.8), the limit (1.2) holds for all c~>0. 

Theorem 2 has been proved in [19] for the special case of c~=1, which corresponds to 

a =  �89 in Theorem 1. A simplified proof of this result has been given in [14, Chapter 8]. 

The investigation of strong error estimates with precise information about the lead- 

ing coefficient in front of the error formula received a strong impetus from the surprising 

numerical results obtained by R.S. Varga, A. Rut tan and R.S. Carpenter in [26], [29] 

and [27]. Starting with numerical investigations of the Bernstein conjecture, R. S. Varga 

has developed numerical tools that  are based on the Remez algorithm, Richardson ex- 

trapolation and the use of high numbers of significant digits, which allow mathematical 

conjectures to be checked by numerical means (for a survey of different applications, 

see [25]). In [28], R.S. Varga and R.S. Carpenter were the first to conjecture the con- 

crete form of the right-hand side of (1.2). Independently, formula (1.2) was announced 

in [20]. The present research owes much to the impetus it received from Richard Varga's 

discoveries and numerical explorations. 
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The present paper is structured as follows: The proof of Theorem 1 will be prepared 

by auxiliary results in w167 In w we prove several results about the behavior of the 

error function f ~ - r *  n. To a large extent these results are consequences of Chebyshev's 

theorem on alternation points. The results allow us to derive a rather explicit integral 

formula for the approximation error in w Besides of that  in w results about the loca- 

tion of poles and zeros of the approximants r*+l+[a],n are proved. In w we study an 

auxiliary function rn. These investigations are rather technical. The proof of Theorem 1 

is contained in w In the proof, a special logarithmic potential plays an essential role, 

which has already been studied in [19] and in [14, Chapter 8]. 

In the different sections the following mathematical tools are dominant: In w these 

are mainly results from the theory of best rational approximants, in w results from 

rational interpolation and multipoint Pad@ approximation, in w different techniques 

from complex analysis, and in w elements from potential theory. 

2. Basic propert ies  of  rational best  approx imants  

In the present section we show that  the rational best approximants rmn have maximal 

numerator and denominator degree. We further prove that  Theorem 1 holds for all 

close-to-diagonal sequences if it holds for one of these sequences, and we investigate the 

extreme points of the error function x~-r~m(X) on [0, 1]. 

Since r~n(x )=x  ~ for s E N  and m>(~, the limit (1.2) is trivial for c~EN, and we can 

assume without loss of generality that  ( ~ N .  In the sequel we assume that  ~ E R + \ N  is 

a fixed number, we set f~:=x ~. 

LEMMA 1. If the limit 

e2~ ~x/7~E /~ r 0 lim .+k,n~.j~, [ , 1]) =41+'~]sinTral 
n ---). o~ 

(2.1) 

holds for one k6Z ,  then it holds for every k6Z .  

Proof. Set Emn:=Emn(fa, [0, 1]). We have Emn>~EMN if m<.M and n<.N. 

kl, k2EZ, d:=kl-k2>O,  it follows that  

For 

e2~ , / -~ En+k2," >1 ~2,~ ~ - ~  r, E./n-i-kl,n 

> / e 2 r ~  E(n+d)+k2 ,n+d e27rv/'~ (x/~ - ~ ) 
(2.2) 

Because of the estimate 

e 2 7 r v / " a ( v ' ~ - - ~ n " ~ )  = e 2 7 r ~ / - ~ ( 1 - ~ )  = l+O (1 /x / -n )  as n--+ oc, (2.3) 
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it follows from the inequalities (2.2) that  we have identical limits in (2.1) for kl>k2.  The 

case k l<  k2 can be treated in the same way. [] 

r *  Lemma 1 shows that  we can use any paradiagonal sequence { n+k,n}nE N i n  the 

proof of Theorem 1. It turns out that  the sequence {rmnn}nE N with numerator degree 

mn:=n+l+[o~], h e N ,  (2.4) 

is suited best for carrying through the proof of Theorem 1. By [a] we denote the greatest 

integer not larger than a. In order to simplify notation in the sequel, the subindex mn 

will be suppressed, i.e., we write r* instead of r * n .  

Using estimate (2.3) and the inequalities (2.2), we see that  Theorem 1 can be ex- 

tended to a rather broad class of close-to-diagonal sequences. Of course, an analogous 

generalization of Theorem 2 holds true in the same way. We have 

THEOREM 3. For a > 0  and any sequence { ( n j , m j ) E N a [ j = l , 2 , . . . }  satisfying 

nj+mj--+oc and I n j - m j [ = O ( v ~ )  as j -+oc ,  (2.5) 

the limit 

lim e2'~f-a~E (x ~, [0, 1]) = 41+~ [sin 7ral (2.6) j--+ oc m j, nj  

holds. By o(. ) we denote Landau's little oh. 

It has already been mentioned in the introduction that  the approximants r* uniquely 

exist for all nEN.  In the next lemma more specific properties of the approximants r~ 

will be proved. 

LEMMA 2. The approximant r,*, has exactly the numerator degree m n = n +  l +[a] 

and the denominator degree n. The error function 

e n : = f ~ - r * ,  n E N ,  

has exactly mn+n+2=2n+3+[a]  extreme points ~?nj on [0, 1]. 

numeration we can assume that 

(2.7) 

With an appropriate 

and we have 

with 

0 = Tin,0 ~ 7In,1 < ... < 7 ]n ,2nT2+[a  ] : 1, 

Tlne~j - - r ~ ( T l n j )  = (-1)J+l+[c~]en for j = 0, ..., 2 n + 2 + [ a ]  

(2.8) 

(2.9) 

Cn := Emn,n(f~, [0, 1]). (2.10) 
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Proof. Set r*=pn/qn with Pn and qn coprime polynomials, m~:=deg(pn) and n':= 

deg(qn). The restriction of the product qnen to [0, 1] belongs to the space 

Wn := span{l,  z, ..., z m', z ~, ..., za+n'} .  (2.11) 

Since Wn forms a Chebyshev system on [0, 1] of dimension m ' + n ' + 2  (see [12, Chap- 

ter 1, w we conclude that qnen has at most m'+ n' + 1 zeros on [0, 1], and consequently 

en has also at most m~+n~+l  zeros on [0, 1]. Therefore, the error function en has at 

most m~+n~+2 alternation points on [0, 1]. 

From Chebyshev's theorem about alternation points for rational best approximants 

(see [14, Chapter 7, Theorem 2.6] or [15, Theorem 23]) we know that  there exist 

m n + n + 2 - d  points satisfying the alternation condition (2.9) and d is given by 

d = m i n ( m , ~ - m ' , n - n ' ) .  (2.12) 

From the earlier upper estimate it then follows that  

m / + n l + 2  ~> m n + n + 2 - d ,  (2.13) 

which implies that d~>0, and with (2.12), it further follows that  

d ~  ( m ~ - m ' ) + ( n - n ' )  ~ 2d. (2.14) 

Hence d=0,  m n = m  t, and n = n  ~. 

It remains only to show that  the smallest and the largest extreme points YT,,0 and 

7/n,2,,+~+[~], respectively, are the end points of the interval [0, 1] and that at z =  1 we have 

en(1) = - E n .  Indeed, if one of the two points ;/~,0 or U,,,2,,+2+[~] were not an end point 

of [0, 1], then there would exist a constant c E R  such that 

e , , - c  = L -(r,*~+c) (2.15) 

has at least ran+n+2 zeros in [0, 1]. But this contradicts the fact that  the restriction of 

qn(en--C) to [0, 1] belongs to W~. For zER+  near infinity we have e~(z)<0.  Since e,, 

can have no sign change on (1, co), it follows that e n ( 1 ) = - e n .  [] 

As an immediate consequence of Lemma 2 we know that  the error function en has 

m n + n + l = 2 n + 2 + [ a ]  different zeros Znj in the open interval (0, 1); more precisely, we 

have 

?~n,j-1 < znj < ?~nj for j = 1, ..., 2 n + 2 + [ a ]  (2.16) 

and 

en(znj) = zn~j-r*(znj) = 0 for j = 1, ..., 2 n +2 +[a ] .  (2.17) 

From (2.17) we deduce that the rational best approximant r~ET4n+l+[~],~ interpolates 

f~ at the 2n+2+[a ]  points z,,j. In the next section we shall see that  this interpolation 

property has interesting consequences, and it allows us to prove basic properties of the 

rational approximant rn. 
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3. C o n s e q u e n c e s  of  t h e  i n t e r p o l a t i o n  p r o p e r t y  

An explicit formula for the approximation error e n - ~ f a - r *  will be derived, and some 

information about the location of poles and zeros of the approximant r~ will be given. 

Unfortunately the location of some zeros of r* remains unclear. This lack of more precise 

knowledge will cause a lot of additional work in w167 4 and 5. 

We denote by wn the polynomial 

2n+2+[~] 

Wn(Z) : :  1--~ (Z - -Zn j ) ,  (3.1) 
j = l  

where the znj are the zeros of en introduced in (2.16). Since ZnjE(O, 1), j = l , . . . ,  

2n§247 we have 

s i g n w n ( Z ) = ( - 1 )  [c~] for z E R _  :---- { x E R i x < 0  }. (3.2) 

For formula (3.3) we make the temporary assumption that  -1<(~<0.  If C is an 

integration path in C \ R _  surrounding z, then from Cauchy's integral formula it follows 

that the principal branch of f~ can be represented as 

1 / c  ~C~d~ - s i n T r a / _ o  ixl~dx for 
f (z) = r  - - V -  x - z  z E C \ R _ .  (3.3) 

The second equality in (3.3) results from moving C towards R_.  The second integral 

exists because of our temporary assumption that  the integrand has a zero of order l - ~ - -  

1§ at infinity, and a pole of order a > - l  at the origin. 

The representation (3.3) shows that  f~ is a Stieltjes function if ~E ( - i ,  0). From the 

standard theory of rational interpolants to Stieltjes or Markov functions we have rather 

detailed information about the structure of these interpolants (cf. [111 or [22, Chap- 

ter 6.1]). If (~>0, then the last integral in (3.3) does no longer exist. But, nevertheless, 

we can deduce results similar to those that  hold in the case of Stieltjes functions (see for 

more details [22, Chapters 6.1-6.3]). In the sequel we assume as before that  c~ER+\N. 

LEMMA 3. Se t  r*=pn/q,~, qn(z)=zn+.. .EP,~,  p,~EP,,~+x+[(~I. The denominator poly- 

nomial qn satisfies the orthogonality relation 

q x J q n ( x )  iXl c~ dx  
oo wu(x----~ --0 for j----0, . . . ,n-1.  (3.4) 

The n zeros 7rn,1,...,Trnn of qn are all simple and contained in ( -oc ,0) .  With an appro- 

priate numeration we have 

--OC < 7Fn, 1 < ... < 7rnn < O. (3.5) 
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For the approximation error en=fa-r* we have the representation 

en(z)_Sin77_____~ Wn(Z) /~  (gnqn)(X)ixiadx for zEC\R_, (3.6) 
7r (g~qn)(Z) ~ Wn(X)(X--Z) 

where gnET~n\ (O} is an arbitrary polynomial. 

Remark. Because of (3.2) the measure ~n defined by 

d/~n sin77a IxI~ dx, x E R _ ,  (3.7) 
dx (x ) . - -  T Wn(X-------- ~ 

is positive. Since W n is of degree 2n+2+[c~], and since all zeros of W n are contained in 

(0, 1), the mass of Pn is finite. We have supp(#~)=R_ for all nEN.  

Proof. The interpolation property (2.17) of r* implies that  the expression 

qnf~-Pn (z) is analytic in C \ R _ .  (3.8) 
Wn 

Let C be a positively oriented, closed integration path in C \ R _  surrounding all inter- 

polation points z~j, and let g~EPn\  {0}. Cauchy's integration formula yields 

(gn -~ ) )= ~ i  f (z 1 a~ gn(~) qn(~)~-pn(~)~ ~-zd~ 

= 1___/c (g~q~)(~)~d~ 1 Jc (gnp,~)(~)d~ 
277i wn(r162 277i 

(3.9) 

for zE Int(C). The last term on the last line of (3.9) is identically zero since the integrand 

is analytic outside of C and has a zero of order /> 2 at infinity. Hence, we have 

( ) 1 fc(gnqn)(~)~ad ~ qnfa--Pn (Z) = ~ i  Wn(~)(~--Z) gn Wn (3.10) 

For any gnEPn the integrand in (3.10) has a zero of order larger than 1 at infinity. 

Therefore, in (3.10) we can shrink the integration path C to R_,  which yields 

(gnqn~vCPn)(z)=Sin77a cr (gnqn)(X)wn(x) [xpdXx_z for z E C \ R _ .  (3.11) 

From that  formula, (3.6) follows immediately. 

Taking gn(Z)=Z j+l with j=O, ..., n - 1  and considering (3.11) near the origin yields 

s i n 7 7 c ~  //ooXJqn(X ) ]xp dx 
77 wn(x----~ --0 for j=O,...,n-1, (3.12) 
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which proves (3.4). 

We know from (3.7) that  the measure #n is positive. Since relation (3.12) shows that  

qn is orthogonal with respect to this positive measure, it follows from the elementary 

theory of orthogonal polynomials that  all zeros of qn are simple and contained in the 

interior of supp(#n)=R_ (cf. [23, Chapter III]). This proves (3.5). [] 

Since we know that the best approximant r* has only simple poles, we have the 

partial fraction representation 
n 

r ;~( z )=hn(z ) .~_E ~nj (3 .13)  
Z j = 1 - -  7(nj 

with hn a polynomial of the form 

hn(z) = AnZ [~]+1 +... E P[~]+I. (3.14) 

- * j = l ,  ..., n, and choose in If we multiply the error function e n - f ~ - r  n by z-r~nj, 

formula (3.6) g,,:=qn/("--Zrnj), then we have 

_)~nj=[(Z_7~nj)en(Z) ] . . . .  j sin__~c~ Wn(7(nj ) fO ( qn(X__~) ~21xpdx 
~ 1  [TT .'12 ~r ~,~ ,~3J , l _ ~ \ x - r , , j /  wn(x) 

(3.15) 

- sinTrC~wn(rnj)-- 1,4(x) 2 dx, j = 1,. . . ,n, 
7"( oo 

where ln jE~n-1  is the Lagrangian basis polynomial satisfying 1,,y(Tr,,i)=5~y for i , j =  
1,...,n. Formula (3.6) holds only for z~tR_; however, the extension to z=TrnjER_ is 

possible from both sides of R_ for the specific choice of g, .  Note that  the integrand 

in (3.6) remains bounded if z tends to 7r,,i vertically to the real line. From (3.15), the 

positivity of the measure #n in (3.7), and (3.6), it then follows that 

(-- 1)[r :> 0 for j = 1,.. . ,n. (3.16) 

From the error formula (3.6) we (:an deduce also an expression for the leading coef- 

ficient A,, in (3.14). We have 

e , , ( z )=( f~-r* , ) ( z )  = z ~ - A , z [ ' d + l + O ( z  [~1) as z-+oc.  (3.17) 

Inserting gn := q,, into formula (3.6) and multiplying by z-[~]- 1 yields 

A,, = -[z-[~]-le,~(z)]~=o~ - sin 7r_______~ lim wn(z) / ~  qn(X)21xl~ dx 
~r ~ - ~  z(~]+2q,,(z) 2 ~_~  w n ( x ) ( 1 - x / z )  

(3.18) 

_ sin~c~ "a]_ qn(x) 2 ixl~dx ' 

which implies together with (3.7) that  An>0.  From (3.13), (3.16) and (3.18) we deduce 

the next lemma. 
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i.e., 

LEMMA 4. Let r j = l ,  . . . ,n+l+[c~],  be the zeros of the numerator polynomial p , ,  

n+l+[cz]  

p~(z) =An  Y I  ( z - ( ~ j ) .  (3.19) 
j = l  

The zeros ~nj can be numbered in such a way that the n + l  first zeros of p,, lie on R_  

and satisfy the inequalities 

--(20 < ~n,1 < T'n,1 < ~n ,2  < "fin,2 < "" < ~ n n  < 7rnn < ~n,n+l < O. (3.20) 

Remarks. (1) The inequalities in (3.20) complement those from (3.5). 

(2) In the lemma nothing has been said about the location of the [(~] zeros 

~n,~+2, ..., r of r*, which do not appear in (3.20). It will be shown below that  

these zeros converge to the origin with a certain speed. It follows from the proof of 

Lemma 4 that for [a] odd there exists at least one positive zero of r~ on (0, 1). 

Proof. From (3.16) we know that  all coefficients A,~j, j = l ,  ...,n, in (3.13) have the 

same sign for a given n. Hence, between two adjacent poles Tfnj and 7r,,j+l, j = 1, ..., n -  1, 

there lies at least one zero of r,~. 

Since A,~>0, it follows from (3.16) and (3.14) that  

)~,,,1 r,*~(z) > 0 (3.21) 

'* has a sign for z E R _  near infinity, and from (3.13) and (3.21) we then deduce that 7,  

change between - o c  and 7rn,. Hence, there is at least one zero in the interval ( -0c ,  7r,,,,). 

If we choose g,~:=qn in formula (3.6), then we deduce from the positivity of the 

measure #,, defined in (3.7) that  

en (z )<O for all z e [ 1 , ~ ) .  (3.22) 

From (2.8) and (2.9) we know that 

rn(O ) = -en(O) = ( - 1 ) [ ~  .... (3.23) 

This together with (3.13) and (3.16) shows that  r,* has a sign change between 7rn,1 and 

the origin. Hence, there is at least one zero in the interval (Trn,1,0). 

If [c~] is odd, then it follows from e~>0  and (3.23) tha t  r* (0 )<0  and r~,(1)>0, and 

therefore there exists at least one zero of r* in the interval (0, 1). [] 
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4. Auxil iary functions I 

In the present section a function r,, will be studied which is a rational t ransformation 

of the error function en. This type of function played already a fundamental  role in 

D.J .  Newman's  paper  [16]. In the proof of Theorem 1, below, we have to use a further 

refined machinery, which includes a quadratic t ransformation that  will be studied in w 

The results of the present section lay the ground work for these later investigations. Two 

of the four lemmas demand quite lengthy and involved proofs. 

The auxiliary function r,~ is defined as 

rn(Z ) .-- f ~ ( z ) - r * ( z )  _ en(z) -- 1 - z - ~ r * ( z )  (4.1) 
f~(z )+r*(z)  2 f ~ ( z ) - e n ( z )  l + z - ~ r * ( z )  

for z E C \ R _ .  

In the next lemma we assemble properties of r,~ which follow directly from the 

definition in (4.1) or from properties of the extreme points ~]nj of the error function en that  

have been introduced and studied in Lemma 2. Note that  in (2.10) we have introduced 

the abbreviation ~n :=En+l+H,n(fc~, [0, 1]). 

LEMMA 5. We have 

rn(z)>~ - en  for ze[O, 1], (4.2) 
2z~-~-~n 

_ _  1 - 1 / < ~  E,, for zC[(~r ,1]. (4.3) r,,(z) <~ 2z"-e , ,  

At the 2 n + 3 + [ a ]  extreme points q,,j of the error function e,,., the function r,, assumes 

the values 
(--1)J+l+[<~]C, ~ 

r,,(7]nj) = ~ (_l)j+[<,] , j = 0, ..., 2n+2+[(~]. (4.4) 
2 7],,j + c,, 

At the zeros znj of the error function en, and at the poles 7rnj and the zeros ~nj o f  the 

approximant r~*, the function rn assumes the following values: 

r,~(z,j) = 0, j = 1, ..., 2 n + 2 + [ a ] ,  

rn(Trnj)=rn(O)=r,~(cr j =  l , . . . ,n ,  

rn(~,~j) = 1, j = 1, ..., n +  l+[c~]. 

The function rn has no other zeros in C \ R _  than those given in (4.5). 

If Ks  denotes the disk 

K s : =  zE Iz+ieotTr(~l< isinaTr---- ~ 

(4.6) 
(4.w) 

(4.8) 
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(note that we have assumed a ~ N ) ,  then we have 

{ OK~ for z E R _ + i 0 ,  
r n ( Z  ) �9 (4.9) 

O K ~ : = { 2 1 z � 9  } for z � 9  

where the two banks of R_  are denoted by R _ •  

Proof. The assertions (4.2)-(4.7) follow immediately from the definition of rn in (4.1) 

together with (2.8) and (2.9) in Lemma 2, and the assertions (3.17), (3.18) and (3.23). 

From (1.1), the error formula (3.6), and the fact that  all poles of f ~ - r *  are contained in 

R_ U{c~}, it follows that  the function rn has no other zeros in C \ R _  than those given 

in (4.5). 

The mapping g: ~t-+OK~ defined by 

1 - r e  - i ~  1-r2+2irsin~r(~ 
r ~-~ g(r) = l + re_i~r ~ = l + r2 + 2r cos T~(~ (4.10) 

is bijective, and we have 

g ( 0 ) = l ,  g(1)=itan(17rc~),  g ( -1 )=- i co t ( �89  g ( c o ) = - l .  (4.11) 

At the values g(1) and g ( -1 )  the smallest and largest modulus on the circle OK~ is 

assumed. The assertions in (4.9) follow from a comparison of the last term in (4.1) 

with (4.10). Note that * - r n ( z ) E R  for all z E R _ .  [] 

Since we know from (3.16) that all coefficients Amy, j = l ,  ..., n, in the partial fraction 

representation (3.13) have identical signs, the value r,*~(x) runs through the extended 

real line ~t when x is moved along the interval (~r,4,Tr,,j+l) with T'nj and 7rn,j+l two 

adjacent poles. From the definition of the function r,, in (4.1) and the bijectivity of the 

mapping (4.10) it follows that  argr , , (z)  grows exactly by 27r if z is moved from r~j to 

7r,,,j+l on R_ +i0.  Correspondingly, argr~(z)  grows by 2~ if z is moved in the opposite 

direction from 7r,,j+l to Tr,,j on the other bank R _ - i 0  of R_.  Because of (4.6) the same 

conclusions hold for the intervals (-c~,Tr,,,,) and (rn,1,0), since from (3.17), (3.18) and 

(3.23) we know that at infinity and at the origin r* is the dominant term in en. 

The information about the poles of r* established in the inequalities (3.5) of Lemma 3 

together with the considerations just made show that  argrn(Z) grows by 47r(n+l)  if z 

moves once around the boundary of the domain C \ R _ .  This boundary consists of the 

two banks R _ + i 0  and R _ - i 0  of R_ .  At c~ the function r~ has the boundary value - 1  

for all limiting directions. From Lemma 5 we know that  rn has exactly 2 n + 2 +  [a] simple 

zeros in C \ R _ .  These are the zeros of the polynomial w~. Since the growth of arg rn(z) 

along the boundary of C \ R _  is 4 ~ ( n + l ) ,  it follows from the argument principle that  
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the function rn has poles with a total order [a] in C \ R _ .  These poles will be denoted 

by 
b,,,~, ..., bn,[~ ] E C \ R _ .  (4.12) 

The precise location of the poles bn,1, ..., bn,[~] seems difficult to determine, but in the 

next lemma we shall show that they converge to the origin with a certain speed as n-+cc.  

It turns out that  the same behavior can be proved for the [(~] zeros ~,n+2, ..., ~n,n+l+[~] 

of the approxinmnt r* that have not been covered by assertion (3.20) in Lemma 4. As 

before, the approximation error En+l+H,n(f~, [0, 1]) is denoted by sn. 

LEMMA 6. For each j =  1, ..., [o~] we have 

b n j = - O ( ~  1/c~) as n ~ o c ,  (4.13) 

~n,n+l+j ---- (-~(~ln/a) as n -+ c~. (4.14) 

Proof. (i) Transformations z~-+W:-~Z/an of the independent variable z will play a 
a fimdamental role. In tile first part of the proof the sequence { n}n=l will be chosen in 

OO such a way that it converges to zero slower than {cn }n=l" 
We start  with the introduction of some technical notations. The fimction B(z, x) is 

defined by 

B(z,x)  .-- v/-Z-v/-x z, x e C \ R _ ,  (4.15) 

with x/':- denoting tile principal branch. We have 

IB(z,x)l < 1 for z, x e C \ R _ ,  

IB(z ,x ) l=l  f o r z E R _ + i 0 ,  x E C \ R _ ,  (4.16) 

IB(x,x)l  = 0  for x e C \ R _ .  

If we set 

~n(z) :=rn(z)Qn(z), Qn(z):= r I  B(z, bnj), (4.17) 
j= l  

then § is analytic in C \ R _ ,  and it follows from (4.9) in Lemma 5 together with (4.11) 

that 

Irn(z)l ~< max(I tan �89 Ic~ �89  for z E C ,  (4.18) 

where in case of z E R _  the point z can lie on each one of the two banks of R_ .  

We now assume that  the sequence {anER+ I n = l ,  ..., c~} satisfies 

lim an = 0 (4.19) 
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1/~ (4.20) Z n = O(an) as n--+ c~ 

with o(. ) denoting Landau's little oh. As new independent variable we define 

W := Z/an .  (4.21) 

Functions or constants resulting from transformation (4.21) are marked by a tilde, i.e., 

we set 

r n ( W ) : = r n ( a n W ) ,  ~ 'n (W):=~n(anW) ,  [~n j :=bn j /an ,  Onj :=?~nj /an ,  . . . .  (4.22) 

H1 ~1/~/ 1~an] we deduce from (4.3) that  For wEi~-~en) ~an, 

~ n  - -  ~ n a n ~  = O(~,~an ~) as n-+ co. (4.23) I' n(w)l < 2(anw) 

Because of (4.20), the estimate (4.23) implies that ~,~(w)=o(1) as n-+cx~ uniformly on 

compact subsets of (0, co), because of (4.16) and (4.17) the function I~nl dominates I~,,I 

in C \ R _ ,  and because of (4.18) the function ~'n is analytic and bounded in C k R _ .  It 

therefore follows from (4.23) that  

lim ~,~(w) = 0 locally uniformly for w E C \ R _ .  (4.24) 
n - -+  c')o 

From any infinite sequence N C N  we can select an infinite subsequence, which we 

continue to denote by N, such that  the limits 

bnj=bnj/a,~-+bj, ~n,n+I+j=(n,,~+,+j/a,~-~(j as n--+co, heN,  (4.25) 

exist in the cordial metric for j = l ,  ..., [c~], bj, (j eC .  For the flmctions Qn(w):=Qn(anW) 
with Qn defined in (4.17), we have 

[~l 
~)n(w)-~Q(w):= I I  B(w,{~j) as n-~oo, neW, (4.26) 

j = l  

locally uniformly in C \ R _ .  Note that  B(z,x) is invariant under scale changes, i.e., 

B(z, x)=B(az, ax) for all heR+. From (4.17), (4.24) and (4.26), we deduce that  

l i m ~ n ( w )  = 0  locally uniformly for w e C \ ( R _ U { b j } ~ l ) .  (4.27) 
hEN 
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~ $  , _  $ c~ From (4.27), the third term in (4.1), and the definition rn(W).-rn(anw)/an, it then 

follows that  

l i rn ~*(w)= w" locally uniformly for wE C \ R _ .  (4.28) 
h E N  

Note that  ~ is a rational function with all its poles in R _ .  

As an immediate consequence of (4.28) it follows that  the zeros ~,n+~+j,  j = 1, ..., [a], 

of the approximant r* can cluster only on R_.  However, this is not good enough for 

a proof of (4.13) and (4.14), we have to prove that  the [a] zeros ~n,~+l+j, j = l ,  ..., [a], 

converge to the origin. For this we need a more detailed analysis, which will be carried 

out next. 

(ii) Let the rational function r~~+ be defined by the factorization 

with (4.29) 
j = l  

It follows from Lemma 4 that r n~+ is a rational function of numerator degree n + l  and 

denominator degree n having all its zeros and poles interlacing and lying on R_.  As a 

consequence of the interlacing property given in (3.20), and since A~>0 in (3.19), we 

have 

0 ~< arg ~n+(W) ~< arg(w) for w E H+\{0} (4.30) 

with H+:={wiIm(w)>0}.  Corresponding inequalities hold for w EH_\{0} with H_ de- 

noting the lower half-plane. From (4.28), (4.29) and (4.30) it follows that  necessarily we 

have 

l i m  ~'n,~+l+j = ~j -- 0 for j = 1, ..., [(~], (4.31) 
n E N  

and 

nlirn argiS*(w) = [a] arg(w) locally uniformly for w E C \ R _ .  (4.32) 
n E N  

Note that because of (4.31) argiS* is well defined in C\(R_U{[wI~<E}) for any E>0 and 

h E N  sufficiently large if on (r c~) we start with the principal branch of the argument 

function. 

We now assume that  (4.14) is false. Then there exists a sequence a,~>0, hEN, with 

NC_N an infinite subsequence such that  the sequence {a~}~eN satisfies (4.19), (4.20) 
and 

an ~ max{ l~n,n+2 I, ..., ICn,,+l+[,]I} for all nEN. (4.33) 

The sequence N contains an infinite subsequence, which we continue to denote by N, such 

that  the limits (4.25), (4.26), and consequently also the limits (4.31) and (4.32), exist. 
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From the inequalities (4.33) we conclude that  at least one of the limits ~j, j - -1,  ..., [a], 

introduced in (4.31), is of modulus larger than or equal to 1. However, this contradicts 

the conclusions made in (4.31), and thus proves (4.14). 

(iii) From definition (4.1) and from the definition of F~ made just before (4.28), we 

immediately deduce t h a t  r n ( b n j ) -  -a  - - b n j  holds for each of the poles listed in (4.12), which 

implies that  

arg~n(~)nj ) =aargbnj-4-Tr mod(2~r) for j - -  1,..., [a]. (4.34) 

Let again {an}hEN be a sequence that  satisfies the assumptions (4.19) and (4.20) 

with NC_ N an infinite subsequence substituting N in (4.19) and (4.20), and assume that  

the limits (4.25) and (4.26) exist. From (4.29), (4.30) and (4.32) we deduce that  the 

estimates 

[a] arg(w) ~< liminf arg ~,~(w) ~< lim sup arg ~ ( w )  ~< (l + [a]) arg(w) (4.35) 
7~--+ OO n - - - ~ o Q  

nON hEN 

hold for w uniformly on compact subsets of H+\{0}. On H_\{0} corresponding esti- 

mates hold. The function argO* is well defined in C\(R_U{IwI~<e}) for any ~>0 and 

n E N  sufficiently large if on (~, c~) one starts with the principal branch of the argument 

function. On ( - o c , - E ) ~ i 0  the function argF* is defined by continuation from both 

sides. 

From (4.34), (4.35) and the corresponding estimates in H_\{0}, it then follows that  

we necessarily have 

lirnbnj = lim bnSan = 0 for j = 1, ..., [a]. (4.36) 
hEN nEN 

Note that  for finite n E N ,  it follows from Lemma 5 that  bnjq~R_ for j=l ,  ..., [a]. 

Let us now assume that  (4.13) is false. Then there exists a sequence an>0,  nEN, 
with N C N  an infinite subsequence such that  the sequence {an}heN satisfies (4.19), 

(4.20), and we have 

a ,  ~<max{ibn,ll,..., Ibn,[~]l} for all neN.  (4.37) 

As a consequence we know from (4.36) that  each sequence {bnj/an}neN, j=l,. . . ,  [c~], 

contains an infinite subsequence that  converges to 0. However, this contradicts the 

inequalities (4.37), and therefore it proves (4.13). [] 

While the last lemma already demanded a rather involved proof, the next one will 

be not less complicated to prove, and in addition also its statements are rather technical 

and lengthy. 
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LEMMA 7. (i) Any infinite sequence NC_N contains an infinite subsequence, which 

we continue to denote by N,  such that the limits 

l i r n e ~ / ~ z , ~ j  =: 2j E [0, ~) ,  (4.38) 
hEN 

l i m  s n+2-4 = :  ~j E ( - o c ,  0) ,  (4 .39)  n--+~ ' J 

hEN 

l i m  E21/~Tr~ n+1--4 = :  T'j ~ ( - - ~ ,  0) (4 .40)  n--~ oo ~ ' J 

hEN 

exist for j = l ,  2, ..., the limits 

l i m  Enl/C~n,n+l-j =: aj E C \ R _ ,  
nEN 

nl[mEnl/C~bnj = :  bj e C \ R _  
nEN 

(4.41) 

(4.42) 

exist for j =  1,... [a], the limit 

l i m  r,,(c 1/~w) =: ~(w) (4.43) 
hEN 

exists in the cordial metric uniformly for w varying on compact subsets of (C\R_)U 
(-cc ,0)+i0,  and the limit 

lira --1%*'tenl/" w)" =: ~*(w) (4.44) ~'t ---+ OC) C7 ~ 
nE N 

exists in the cordial metric locally uniformly for w E C .  The somewhat complicated for- 

mulation ( C \ R _ ) U ( - c c , 0 ) + i 0  after (4.43) means that we consider this set as a subset 

of the Riemann surface associated with the multivalued function fi~(w)=w% 

(ii) In (4.38)-(4.42) the points z,~j, j = l  .... ,2n+2+[c~], are the zeros of the func- 

tion r , ,  which have been investigated in Lemma 5, the ~nj, J= 1, ..., n+ 1, and the 7rnj, 

j = l ,  ...,n, are the zeros and the poles that the rational best approximant r~ has on R_, 
and which have been investigated in Lemmas 3 and 4, the points ~n,n+l+j, j = l ,  ..., [a], 
are those [c~] zeros of the approximant r,* from which we know that they exist in C \ R _ ,  
and the bnj, j = l ,  ..., [c~], are the [a] poles of the function rn in C \ R _ ,  which have first 

been mentioned in (4.12). 
(iii) We have 0=21 . . . . .  5jo<Sj,,+l<2jo+:<... with an index joEN that satisfies 

0~<jo~<[a]+l. Further, we have ...<~3<772<~2<#1<~1<0. With respect to the 2[a] 
limit points ?zj,[~j, j = l ,  ..., [c~], we only know that 5 j ,b jEC\( -cx~,O)  for j = l ,  ..., [c~]. 
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(iv) The limit function f in (4.43) is analytic in C\(R_U{bl , . . . ,b[~]}) ,  meromor- 

phic in C \ R _ ,  at each 2j, j > j 0 + l ,  it has a simple zero, it is different from zero for all 

w E C \ ( R _ U { ~ l , 2 2 ,  ...}), and it has analytic boundary values f (w) for all wE(R_:k i0 ) .  

The boundary values f (w)  are contained in aK~ for wE(--co, O)+ iO, and contained in 

OR~ for w e ( - c o ,  O)-io.  

(v) The limit function f* in (4.44) is meromorphie in C, it has a simple zero at 

each ~j, j E  N,  a simple pole at each #j, j E N ,  and [a] zeros at the points 51,..., 5[~]. 

(vi) The only cluster point of the sequence {~j}jEN is co, and the only cluster point 

of the two s e q u e n c e s  {~j}jeN and { ~ ' j } j e N  i s  -co .  

(vii) For any R>co we have 

lim sup card{znj <~ r  R [ j E { 1, ..., 2 n +  2 + [al}  } < oo, 
n - - + o o  

lim sup card{~Tnj < gln/aR]j E {0, ..., 2n+2+[c~]}} < co, 
n - - + o o  

lira sup card{i~j  ] - �92 <r  ~ l j E { 1  .... , n + l } }  < co, 
n - - ~  

limsupcard{iTrnji ~ ~n ,t  [ j  E {1, ..., n}} < co. 
n ---r cx~ 

(4.45) 

(4.46) 

(4.47) 

(4.48) 

In (4.46) the ~?nj, j=O, ..., 2n+2+[a ] ,  are the extreme points of the error function e,  on 

[0,1]. 

Remarks. (1) As in the proof of Lemma 6 a transformation of the form (4.21) will 

play a fundamental role in the proof of Lemma 7, but  now it has the special form 

. _  g -  1 /~  z w . - -  ,, , n = l , 2  . . . .  , (4 .49)  

which does not satisfy condition (4.20). Transformation (4.21) is implicitly already con- 

tained in the limits (4.38) through (4.48). A comparison of the limit (4.27) with (4.43) 

shows that the precise form of (4.49) is crucial. If, for instance, one had used transforma- 

tion (4.21) with a sequence {a,,) satisfying (4.20) instead of transformation (4.49), then 

the limit function f in (4.43) would have been identically zero, and as a consequence, 

most of the results of Lemma 7 could not be formulated. 

(2) It follows from (4.42) that limit (4.43) holds in the ordinary metric uniformly on 

compact subsets of ((C \ R _  ) U ( - co ,  0) • i0 ) \  {bl, ..., D[~] }. 

(3) With more effort it could have been proved that the limits (4.38) through (4.44) 

hold for the full sequence N and not only for subsequences NC N. However, since the 

results of Lemma 7 are only of technical relevance for later proofs, the necessary extra 

work for a proof of the stronger result has been avoided. 



260 H.R. STAHL 

(4) With more effort, it could also have been proved that  in the inequalities between 

the zeros 5j in part (iii) of the lemma the index j0 is equal to 0, but again such a stronger 

result is not needed in later proofs. 

Proof. (a) We start  with an investigation of the sequence of functions r~. In the 

first step we deduce properties that  follow rather immediately from results established 

in Lemmas 5 and 4. 

In the same way as in the proof of Lemma 6 we denote all functions and constants 

that  result from an application of transformation (4.49) by a tilde. Thus, we have 

rn(W)  : :  rn(gl/e~W), 

l]nj := ~nj e~ 11~, 

Znj : :  ZnjEn l /a,  

"Knj := "Knj ~n 1/~ , 

j = 0, . . . ,  2 n + 2 +  [c~], 

j = 1, ..., 2 n +2 +[a ] ,  

j = 1, ..., [a], 

j = 1 , . . . , n + l + [ a ] ,  

j = l, ..., n. 

(4.50) 

Under transformation (4.49), the interval (0, 1] in the >variable is transformed into the 

interval (0, -~/~' c,~ I in the w-variable. From (4.2) and (4.3) we deduce that 

1 for wE [2-1/",r (4.51) G,(w)l ~ 2w"---------~ 

From (4.4) and (4.50) it follows that  at the transformed extreme points ~,~j we have 

(-1)J+l+[ 'q 
G~(~b'J)= "" - 1  J+['~]' j = 0 ,  2n+2+[c~]. (4.52) 

2r/,~j + ( ) "'" 

As a consequence of (4.9) in Lemma 5 in combination with (4.10) and (4.11), it follows 

that  
,n := rain( Itan ~ . a l ,  I c~ �89  < I ~- ( x •  i0)l 

(4.53) 
~< max(I tan  �89 I c~ �89 M 

for all x E R _ .  Thus, we have a rather good knowledge of the behavior of G~ on R _ •  

and on [2-1/% -1/~, E,~ J. It is immediate that  m = l / M .  Based on (4.15), we define 

Q, (w)  := Q,~(e, w) = 1-I B(w,  b,j). 
j=l  

(4.54) 

From the asymptotic estimate (4.13) in Lemma 6 it follows that  any infinite sequence 

NC_N contains an infinite subsequence, which we continue to denote by N, such that  
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the limits 

l i m  bnj = bj, j = 1 .... , [c~], (4.55) 
HEN 

[~l 
nlim Qn(W) = ~)(W) = U B(W, bj) (4.56) 
HEN j=l 

exist and are finite. The limits (4.55) are identical with those in (4.42). The limit (4.56) 

holds locally uniformly in C \ R _ .  The function ~n is analytic in C \ R _  except for the 

[c~] poles at bn,1, ..., bn,[~]. Hence, we deduce from (4.16) and (4.53) that  

M 
I~n(w)l < _ for wE C \ R _ .  (4.57) 

IQn(w)l 

With (4.56) it follows from Montel's theorem that  we can select an infinite subsequence 

of N, which we continue to denote by N, such that  the limit 

l i r n  ~ ( w )  =: § (4.58) 
HEN 

exists locally uniformly for w E C \ (R_ U { D1, ...,/~[~l }), which partially proves (4.43). The 

extension to a proof of uniform convergence in the cordial metric on compact subsets of 

( C \ R _ )  U ( - o c ,  0):ki0 will be done below at the end of step (f). 

The interlacing property between the transformed extreme points ~)nj, j - -0 , . . . ,  

2n+2+[aJ ,  and the zeros ~,0, j = l , . . . , 2 n + 2 + [ a ] ,  of the functions ~,~, which has been 

established in Lemma 5, wilt be used in the sequel at many places. It is a consequence 

of this property that  at most [(~] + 1 extreme points ~nj and at most [c~] + 1 zeros 5nj can 

lie in the interval [0, 1]. 

Indeed, it follows from (2.9) in Lemma 2 that if e n  has k + l  extreme points 

~n,o, ...,~n,[~] in the interval [0, 1/ . . . .  En ], then the rational best approximant r n has at least 

k zeros in this interval. From remark (2) to Lemma 4 we know that  r n has at most 

[a] zeros outside of R_.  Hence, not more than [a] + 1 extreme points r/nj can lie in the 

interval [0, 1/~ r  ]. With transformation (4.49) the assertion then follows for ~nT, and from 

the interlacing property together with On,o=0 the assertion follows for the zeros 5nj. 

By choosing an infinite subsequence of N if necessary, which we continue to denote 

by N, we can assume that  the limits (4.38), (4.39), (4.40) and (4.41) hold in the cordial 

metric. The limits (4.42) have already been assumed in (4.55). From Lemma 6 it follows 

that  the limits (4.41) and (4.42) exist also in the ordinary metric if they exist in the 

cordial one. In case of the limits (4.38), (4.39) and (4.40) we cannot draw this conclusion 

at the present stage, and therefore infinity can so far not be excluded as limit point. 
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(b) In the next step of the proof we show that any infinite sequence NC_N con- 

tains an infinite subsequence, which we continue to denote by N, such that  the sets 

{~,,j [ j=0, . . . ,  2n+2+[a ]}  have necessarily infinitely many cluster points in [0, c~) as 

n---~, hEN. The assertion follows from (4.52), (4.51) and an argument that  is of a 

type used in the proof of tile Phragm~n-LindelSf maximum principle. The proof will be 

carried out indirectly; conclusions of the results will be drawn in step (c). 

Let us assume that  there exist only finitely many cluster points of the sets 

{~/,~j [ j=0, . . . ,  2n+2+[a]} ,  n E N ,  in (0, c~). Then there exists an infinite subsequence 

of N, which we continue to denote by N, such that there exists j l  E N and 

(/,~j -+ ~j E [0, oo) for j = 0, ..., Jl ,  while 
(4.59) 

~]nj ""+ (:X:) for j = Jl + 1,... 

as n-+cc,  hEN. Because of the interlacing property between the ~,~j and 5nj, we can 

further assume that  there exists j~ E N with jz =ja  or j2 = j l  + 1 such that  

2,.j ---> Yj E [0, oc) for j = 1,... ,j2, 
(4.60) 

5, 4 -+ oc for j = j2 + 1,... 

as n--+oc, hEN. With the function B(w,x) introduced in (4.15) and already used in 

(4.54), we define 

2n+2+[,~1 f i  B(w, 7-,nj) 
t ) , (w) :=  I I  B(w,Y,,j), ]t, ,(w):= 11  = (4.61) 

j=j~+l j=l Qn(w) 

with ~),, defined like in (4.54). Since 7:,,/(.0,/t,~) is analytic and different from zero in 

C \ R _ ,  we deduce from (4.53) and m = l / M  that 

m << l ([~'~h")(w) [ ( , (w)  ~<M for w E C \ R _  (4.62) 

and all hEN.  Note that from the definition of r~, in (4.1) together with (4.6) and (4.9) in 

Lemma 5 we know that there exist neighborhoods of 0 and c~ such that  rn is continuous 

in the intersection of C \ R _  with these neighborhoods, and it has continuous boundary 

values on R _ + i 0  for any approach from inside of the intersection of C \ R _  with the 

neighborhoods. 

It is not difficult to deduce from the definition of B(w, x) in (4.15) that  1 i> IB(w, x)]/> 

1 - 2 ~  for [w[>.[x[. From the estimate (4.13) in Lemma 6 (or equivalently from 

the convergence (4.58)) and the estimate (4.16), it follows that  there exist R >  1 and c>0  

such that 
1 c 

[ v'[Wi]~tn(w)"-"''"7>/IQ'n(W)[>/1-~ for Iw]>R, wEC\R_. (4.63) 
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From definition (4.15) we deduce that [B(re it, x)l is a monotonically increasing func- 

tion of It I for fixed x, r E R +  and tE(-r~, r~). It may be best for verifying this conclusion 

by looking at the map from C \ R _  onto the half-plane {Re(w)>0}. Since all zeros ~,,4, 

j = j 2 + l ,  ...,2n+2+[a], of the function .qn lie on (0, o c), the function ]gnl is also mono- 

tonicMly increasing along circles, i.e., we have 

I~n(rd~)l ~< I~n(reit')l if  Itl ~< It'l, rER+, t,t 'E(-rr, rc). (4.64) 

We consider the function 

I-. i -  x/~ ] 
H(w) := exp L~log ~ ] for wE D \ R _ ,  (4.65) 

which is analytic in D \ R _  with D denoting the unit disc { Iw[ < 1}, has boundary values 

IH(w)l =1 for wE ( - h  0]• 

IH(w)l = e  -=/2 for [wl : 1 ,  largw] <Tr, 

(4.66) 

(4.67) 

and there exists c > 0 such that 

1 - 3 v ~  ~< IH(w)l ~ 1 - v ~  for all wE[0, c]. (4.68) 

From (4.52), the estimates (4.62), (4.63), and the convergence (4.59), we conclude 

that 

I~n(#n,j,+l)l ~m I=~n(#..j,+,)l /> 
Ihn(~,~,j,+,)l 27),, j , + l _  1 >1 -~?Zj,+~ (4.69) 

for n E N sufficiently large. We note that from (4.59) we know that ~)n, jl + 1 -+ oo as n--+ oo, 

nEN. 
The function gn is analytic in the domain { w E C \ R _  I lwi<~n, j l+l} ,  and both func- 

tions IgnI and IH(./7)n,jl+l)] have boundary value 1 on the intervals (--~n,jx+l,O]~iO. 
Prom (4.67), the inequalities (4.64), (4.69), and the maximum principle, we conclude that 

(2/lr)log((m/3)~t j 1 + i  ) (4.70) 

for w E C \ R _  with Iw i~n , j lq_ l  . Since ~n,jl+l-'~(X) a s  n-+cc, nEN,  it follows that 

2 log (-~- ~?n,jl+l)m __~ = :2 log m3 +--2c~ log ~n,j:+l -+ c~ 
7f 

(4.71) 
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as n-+oc, nEN. Using the left-hand side estimate of (4.68) and the right-hand side of 

(4.70) yields that  

I~,(w)l ~> ( 1 - 3  ~,~ ~ (21~)lOg(3/?Tt)-~(20~l~)lOg~n,jl+l (4.72) 

for all w E (0, co) and n E N sufficiently large. For w E (0, c~) fixed, we therefore have 

l o g ( l  v/-W~ (2/'x) l~176176 

l__/2 3 2Ol ) V/~ .- ['log/)n j l+l  ) k = - - -  kO . . . . . .  (4.73) 
 n,jl+l 

--o( l~ as -- \ ~ / n-+c~, nEN, 

which proves 

lim It~n(w)l = 1 (4.74) 
n - "~  OO 

n c N  

for all wE(0, c~). From the definition of B(z,x) in (4.15) together with (4.17), (4.61), 

the estimate (4.13) in Lemma 6, and the assumptions made in (4.60), we conclude that  

we have 

lim [ t t , (w) [= l  uniformly for nEN. (4.75) 
w - - - ~  o ~  

wEC\R_ 

The limits (4.74) and (4.75) together contradicts the estimate (4.51), and thus the asser- 

tion has been proved that  the sets {~nj I j = 0 ,  ..., 2n+2+[c~]} have necessarily infinitely 

many cluster points in (0, c~) as n--+c~, nEN. 
(c) In the present step we shall draw some conclusions from the assertion proved in 

part (b). As a first consequence, we conclude that  the limit function f in (4.58) is not 

identically zero. Indeed, from (4.52) it follows that  if we had f - 0  in (4.43), then the sets 

{~nj I j = 0 ,  ..., 2n+2+[(~]} could have no cluster points in the interval (0, co) as n--+c~, 

nEN, since because of (4.52) the values of f are bounded away from zero at any point 

in (0, c~), at which a sequence of extreme points ~)n,jn clusters as n--+c~, hEN. From 

part (b) we know that  there exist infinitely many finite cluster points. 

Further, it follows from the assertions proved in part (b), together with Hurwitz's 

theorem (or the argument principle) and the locally uniform convergence (4.58), that  

has infinitely many zeros in (0, c~) and no zero in C \ R .  Indeed, between two transformed 

extreme points 7)nj and ~n,j+l there always lies a zero znJ of rn, which implies that  the 

limit function f has to have infinitely many zeros 5j in (0, co). On the other hand, all 
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values ~n(w), nEN, are different from zero for w E C \ R ,  which implies that  ~ is either 

identically zero or different from zero in C \ R .  Because of (4.52), ~ cannot be identically 

zero. It further follows that  all limits (4.38) are finite, and therefore they exist also in 

the ordinary metric. The zeros 5j of ~ are the limit points in (4.38). 

Since the function ~ is analytic in C \ R _  except at the [c~] possible poles/h,  ..-, t)[~], 

and it is not identically zero, we can conclude that  the zeros 5j of ~ can have no cluster 

points in (0, cx~). We have already earlier proved that  each function rn can have at most 

[c~] +1 zeros in the interval [0, 1]. Hence, it follows from the locally uniform convergence 

(4.58) that the zeros 5j, j= l ,  2, ..., cannot cluster at w=0.  However, we cannot exclude 

that up to [a] + 1 of the first ;~j can be equal to 0. These observations prove limit (4.45) 

and the order relations 

0 -~ Zl . . . . .  5jo < Zjo+l < 5jo+2 < ... 0 ~ jo <. [c~]+ 1. (4.76) 

Analogously to the limits (4.38), we can assume that  the limits 

lim e~l/~n~ = lim ~nj =: ~j (4.77) 
n--~o~ J n---~o~ 
nEN nEN 

exist for j = 0, 1 . . . . .  We have f]j E [0, co) for each j E N, and each ~j satisfies relation (4.52). 

With respect to the limit function ~ it only remains to prove in the present step that  

all zeros 5j, j>jo, of ~ are simple, which then proves that all inequalities in (4.76) are 

valid in a strict sense, from which the inequalities in part (iii) of the lemma follow. 

Indeed, since between two adjacent zeros 5nj and Zn,j+ 1 of ~,, there lies exactly 

one transformed extreme point ~,,,j+l, it follows from (4.52) and the locally uniform 

convergence in (4.58) that  for j E N  fixed, the two sequences {5,,j},,eN and {Sn,j+l}neN 

cannot converge to the same limit point as n-+oc, nEN. Therefore, all zeros 5j of 

have to be simple. Of course, it has to be excluded that  some of the [a] poles, which the 

function rn has at the points t)nj, may cancel out with zeros 5nj of rn in the limiting case 

as n--+ oc, n E N, i.e., that  5j = Dz for some j > jo and l E { 1, ..., [c~] }. This possibility cannot 

be excluded by the locally uniform convergence (4.58) in C \ (R_U{t ) I ,  ..., b[,~]}). But it 

will be shown at the end of step (f) that the convergence (4.58) holds locally uniformly 

in the cordial metric in C \ R _ ,  which implies that  the poles and zeros of rn cannot have 

common limit points in C \ R _ .  
As a by-product of the interlacing property between the extreme points ~nj and the 

zeros 5nj, we conclude that  the asymptotic estimate (4.46) is a consequence of (4.45). 

(d) In the next three steps we investigate the convergence behavior of the sequence 

of transformed rational best approximants 

:= lrn(~ln/~W), nEW, (4.78) ~*(w) 
~n 
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and properties of its limit function ~*. In this investigation we use properties of the 

approximants r* and its denominator polynomials qnET)n, which have been proved in 

Lemma 3. Further, a comparison of the convergence behavior of the sequence of approx- 

imants {~*} with that  of the sequence {~,~} will be used. This part of the proof is rather 

technical and lengthy. 

From the boundedness (4.57), the existence of the limits (4.38) and (4.45), the 

properties (4.16) of the function B(w, z), and the identities (4.52), we deduce that  the 

infinite product 
o ~  

H B(w, 2j) (4.79) 
j = l  

exists and is not identically zero in C \ R _ .  Indeed, otherwise the limit function ~ in (4.58) 

would be identically zero, but this would contradict (4.52). From (4.15) we deduce that  

the product (4.79) is not identically zero in C \ R _  if, and only if, we have 

j=I,~l+2 v/~-7 < ~"  (4.80) 

By choosing an infinite subsequence of N, which we continue to denote by N, we 

can assume that  the limits 

lirn ~r ..... +,_j =:#j  and lim 4-n,.+2_j =: ~j (4.81) 
h E N  h E N  

exist in the cordial metric for j = 1, 2 .... , and because of the estimates (4.14) in Lemma 6, 

we can further assume that  the [a] limits 

lirn~ ...... +l+j(w) =:S j ,  j =  1,...,[c~], (4.82) 
n E N  

exist in the ordinary metric, and from (4.14) we know that  5 j E C  for j=l,...,[c~]. In 
~ 

(4.81) the possibilities #j=-oc or Q=-oc cannot be excluded at the present stage. 

From the interlacing property (3.20) in Lemma 4 it follows that 

(4.83) 

With (4.81) and (4.82), the limits (4.39), (4.40) and (4.41) in the lemma are proved. 

However, the proof of the strong inequalities between the ~j and the ~j, which are 

stated in part (iii) of the lemma, remains still open. For this purpose, and also for a 

complete proof of the limit (4.44), it is necessary to bring more specific properties of the 

approximants r* into play. We start  with some definitions. 
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Using transformation (4.49) together with definitions introduced in Lemma 3, we 

define 

~,~(w) := * - - - ~ n ( d n / ~ W ) = W ~ - - , ~ ( W )  
~n 

(4.84) 
~ (w)  sin~a f_ ~ qn(X) 2 I x l ~ d x  w E e \ R _ ,  

= On(w)2 7 ~ ~n(x) x-----7' 

with the polynomials ?~n and qn defined by 

~n(W) := ~;l~"+~+I<)/"w,,(~*/~w) = w~"+=+E< + . . . ,  

qn(W) := Cn'Z/a qn(E1/aw)  -~ wn-'} - . . . ,  

(4.85) 

(4.86) 

and the polynomials wn and q,~ introduced in (3.1) and in Lemma 3, respectively. In 

(4.84) the last equality follows from (3.6). Further, we define 

/ :n(w) . -  sinrra [ ~  an(X) 2 Ixi~dx (4.87) 
rrCn a_~ ~n(X) X--W 

with constants c,~>O determined by the condition 

] n ( 1 ) = - I  for n E N .  (4.88) 

From (3.2), (4.85) and the fact that all zeros Znj of the polynomials ~n are contained in 

(0, oo), it follows that the measures 

dftn(x) . -  sinrra 0n(x) 2 
rrc,----7 ~n(X------7 IxU dx, xER_, nEW, (4.89) 

are positive and of finite mass. From standardization (4.88) and the positivity of the 

measures/5,~ we deduce that for each cone C~:={wEClarg(w)<<.~} ,  ~<Tr, there exists 

a constant c~ such that 

[In(w)l <~ c~o < oo for all w E C ~  and n E N .  (4.90) 

By Montel's theorem we therefore know that there exists an infinite subsequence of N, 

which we continue to denote by N, such that the limit 

jL m in(w) =: i(w) (4.91) 
n E N  

exists locally uniformly for w E C \ R _ .  From standardization (4.88) it follows that we 

also have I ( 1 ) = - l ,  and by Hurwitz's theorem we further conclude that 

/= (1 )=-1  and / : (w) r  oc for all w E C \ R _ .  (4.92) 
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(e) In the present step we prove limit (4.44) in part. The complete proof will follow 

in step (f). We start the analysis by showing that  the limit 

lim C n ~  - - :  . q l ( w )  
n---* ao ~ { W'~ 
n E  N "In ~, ] 

(4.93) 

exists locally uniformly for wEC\{0}  in the cordial metric. 

From (4.84), the defining properties (2.9) of the extreme points ~?nj, and the trans- 

formations (4.50), it follows that  [~n(~nj)I=l for j = l ,  ..., 2n+2+[a] .  From the fact that  

at most [a]+l  of the transformed extreme points ~ j  can lie in the interval [0, 1), which 

has been proved at the end of step (a), and from the existence of the limits (4.77) together 

with limit (4.91) and its properties (4.92), we then deduce that  

2 i ~ c  n I~,~(#,~j)l 1 for each j > [a]+l.  (4.94) 

Let R > I  be arbitrary, and let j 2 c N ,  j2>[a ]+2 ,  be chosen so that  ~ j > R  for all 

J>j2. We can assume that  R is so large that  5[,~]+5<R. We define 

2 n + 2 + [ a ]  

J = J 2  

(4.95) 

Then for v, v0 E { [w I < R}, Vo fixed, the limit 

2n+2+[,~]  ~ 2 n + 2 + [ e ~ ] /  \ 

n , i m r I I  v_,,,, ) lira ~,,,,j~ (v) lira v -  znj = ,, - 1 - +  = 
n--~.oo W n , j 2  (Vo) n--~ ~ V 0 --  Z,,.j  V 0 - -  Z n j  
h E N  rI, E N  J = j 2  h E N  3=32  

= f i  (l+ V-V~ 
J =J2 V 0 - -  Z j  

(4.96) 

exists locally uniformly for vE{[w[<R},  and it is different from zero for [v[<R if, and 

only if, we have 

-:- < c~. (4.97) 
j=[e~]+2 Z j  

From (4.80) we know that (4.97) holds true, and therefore the limit (4.96) holds true 

locally uniformly for vE{[wl<R} ,  and we have 

02,j~(v)#0 for Ivl<R. (4.9s) 



BEST UNIFORM RATIONAL APPROXIMATION OF x a ON [0, 1] 269 

Let now j a E N  be such that  0<Oj3<~)j3+I<R. From the properties (2.9) of the 

extreme points r]~j together with the transformations (4.50) and the definitions (4.84) 

and (4.87), we conclude that  

-1 = Cn(7]n'ja+l) -- in(~n'j3+l) Wn(~n,ja+l) qn(~n,ja) 2 

~n(~On,j~) -- in(O,.,j~) ~n(~).,j~) 0.(~),,,j~+l) ~ 
(4.99) 

~-+~+E~1,II \ - ) j ~ (  - )2 In(~]n'j3"~l) ~1-~ ~n'j3+l--f]n'j3 1 -~n' j3+l-?]n' j3 
I n ( ~ n j ~ )  j=~ Vn,j~ --Znj _ V,,,j~+~ --~rn~ 

With the limits (4.77), (4.91), (4.38) and (4.82), it follows that  also in the limiting case 

we have 

-1-- I(~Ja+l) f i  (l-4- rlj3+l:r]J~ ~ f i  (l rlJa+l--rlj3 ) 2 (4.100) 
/(~J3) j= l  ?~Ja--ZJ / j = l  ~ j a + l - - ~ j  " 

From (4.100) and (4.97), we conclude that  besides of estimate (4.97) also the estimate 

~j~--1 I#J -~J3+1] -1 < c~ holds true, which is equivalent to 

E i# j_ l l  <oc.  (4.101) 
j = l  

As one of the consequences of (4.101), we see that  the sequence {7rj}j= 1 has - c o  as 

its only cluster point, which together with (4.83) completes the proof of part (vi) in the 

lemma. 

Let j 4EN be chosen so that  Ifrjl>R for all j)j4. We define 

gl,,j4(w) := 12 I (w-~r ...... + t - j ) .  (4.102) 
j =j4 

From error representation (4.84), the definitions (4.87), (4.95), (4.102), and a considera- 

tion of the transformed error function ~,~ simultaneously at the two points v and 7)j~, we 

derive that  

2n+2+[~] ~ Wn'j2(v) -- II ~--~nj 
Cn ~ ?=;2 ~J3 -- ZnJ 

~ { ~ j  _ #  .... + ,_ j .2  ,-,J,-, . . . .  . 

j=j4 \ V--~n'n+l--J ) ~ j = l  (~j3-- nj) L(?Tj3) 

(4.103) 

With the same arguments as applied in (4.99), (4.100) and (4.101), we deduce from 

(4.103) together with (4.94), (4.97) and (4.101) that  the limit 

lira c wn'j2(v) , - ~  ",~ . (,,~2-:t)J2J4(v) (4.104) 
nEN "1n,.14 \~) 
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exists locally uniformly for Iv[ <R,  and that  we have 

[?j~,j4(v)#O, ec forallve{[w[<R}. (4.105) 

Since the left-hand sides of (4.93) and (4.103) differ only in a finite number of factors, 

and since R >  1 has been chosen arbitrarily, from the limits (4.104), (4.38), (4.39), (4.40) 

and (4.41), it follows that  limit (4.93) exists locally uniformly in the cordial metric in 

C\{0}.  Note that  the poles #nj and zeros Znj of the functions on the left-hand side of 

(4.93) are lying on different sides of the origin. The limit function gl in (4.93) has its 

zeros in C\{0} at the points 5j, and its poles at the points #j, j E N .  

The following conclusions, which will be used in the next step, follow rather imme- 

diately from limit (4.93). Because of (4.91), (4.92) and (4.93), the limit 

lirn @.(w) =: ~(w) (4.106) 
ncN 

exists locally uniformly for w E C \ R _ ,  and we have 

@(w) 9~0 for all weC\ (R_U{s  

From (4.93) we deduce that  the limit 

lim sinTrr~ 0,,(v)_.....~ 2 ivl~ sinzro~ [vl '~ (4.107) 
n-.-+cx~ 7rCn ~n(V ) 71" g , ( v )  nE N 

holds locally uniformly for v E (-c~,  0), and because of (3.2), we have 

~2(v):>0 for all ve(-o<~,0)\{~l,~'2,. . .}.  (4.108) 

Since we know from (4.105) that the limit function tTj2,j4 in (4.104) is different from zero, 

it follows that  for every s > 0  there exists a constant c~ <c~ such that  

~n(V)2lv[ '~ 
Cnl~)n(V)l 

< I v r - H - '  Iv- .n I = for v E ( - s ,  0) (4.109) 

and all n E N .  Indeed, limit (4.104) together with the fact that at most [a]+l  zeros s 

of the polynomials wn can lie in the interval (0, 1] implies inequality (4.109). 

From (4.101) and the interlacing property (4.83), we conclude that  we have 

E l~j_l- ~ < oo. (4.110) 
j=l 
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From (4.106) we derive that  the limit 

lim ~*(w) = w~-~(w) (4.111) 
hEN 

holds true locally uniformly for wE C \ R _ .  With the help of estimate (4.110) and limit 

(4.111) we can deduce a weak and preliminary version of limit (4.44). 

Indeed, let analogously to qn,j4 in (4.102) the monic polynomial Pn,j4 be defined as 

n + l  

P n , j 4 ( W )  : =  I I  (W--~n'n+2-J) ( 4 . 1 1 2 )  
j = j 4 + l  

with j4 chosen as in (4.102). Let w 0 e ( 0 , ~ )  be such that  w~-~(wo)r  and let v be 

arbitrarily chosen from { Iwl < R}. By considering simultaneously the two points v and wo, 

we can show as in (4.103) and (4.104) that  because of (4.101), (4.110) and (4.111), the 

limit 
lim 15n,j~(v) - :  ~a,/~(v) (4.113) 

n--.~ an,j4 (V) 

exists locally uniformly for Ivl<R, and we have 

~a,3,(v)r oc for all ve{IwE<R}. (4.114) 

Since ~* differs from 15,,j 4/qn,ja only in a finite number of linear factors, it follows from 

(4.113), the limits (4.81) and the arbitrary choice of R > I  that  the limit 

lim ~,:(w) =: ~*(w) (4.115) 
n - ~ ( x 3  
nE N 

exists locally uniformly for w E C \ { frl, #2,... }. 

By this last conclusion we have proved limit (4.44) partially. A complete proof has 

to establish locally uniform convergence in the cordial metric throughout t2. For this aim 

it is necessary to show that all limit points #1, #2, ..., and ~1, ~2, ..., are pairwise different, 

which is equivalent to the assertion that  in (4.83) strong inequalities hold true. 

(f) In order to prove strong inequalities in (4.83), we use properties of the approxi- 

mants r* and its denominator polynomials q,~ which have been established in Lemma 3, 

and also some properties which have been stated immediately after the proof of Lemma 3. 

All these properties are consequences of the fact that the approximants r* have been 

identified as rational interpolants of the function fi~. 

From (3.4) in Lemma 3 we know that  

f o On(x)a (x)ixl. dx=O (4.116) 
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for all polynomials gn E li:~n- 1. 
Let us assume first that  

#j = #j+l  for some j E N with #j < 0. (4.117) 

From (4.107) and the limits (4.81), it then follows that  

s inwa ~n(v)21vl ~ ~2(v) 
lim - (4.118) 

n-+oo ~C  n ~ ) n ( V ) ( V _ ~ n , n W l _ j ) ( V _  ~ . . . .  j )  (V--~j) 2 
h E N  

locally uniformly for v E ( - c c , 0 ) .  From (4.81) and (4.107), we know that  g2 has a zero 

of order at least 4 at #j.  Therefore, we have 

~n(V)21vl `~ 
lim max 

. . . .  j~V<~rn,n-t-l--j  C n ] ~ ) n ( V ) l ( V - - ~ n , n A - l _ j ) ( V - - ~ n , n _ j )  n-.4* cK~ ~r 
h E N  

= 0 .  (4.119) 

From (4.116) and the fact that  ~ / ( . - -~n ,n+ l - - j ) ( " - - ' ~n ,n - - j )  is a polynomial of degree 

n - 2 ,  we conclude that  

lim sinTra Jq__ q~(x)21xp dx 
n- -~  T:C------~ ~,~(X)(X--#,~,n+l-jl(x--#,~,n-j)  =0 .  (4.120) 
n E N  oo 

On the other hand, from Fatou's  lemma, (4.118), (4.119) and (4.108), we deduce that  

liminf sin 7r~ f~) q,,(x)21xl'~dx j f  D2(x)dx 
' ; 2 ~  ~c .  ~ ~ ,~(X)(X- -~ . , ,~+I- j ) (X- -~ . ,n_ j )  ~ ~ (x--~rj)---------~ >0.  

(4.121) 

Tile contradiction between (4.120) and (4.121) shows that  assumption (4.117) is wrong, 

and we have proved that  ~rj+l<#j for all j E N  with # j < 0 .  

Let us now assume that  

~h=0 .  (4.122) 

Because of (4.109) and the limits (4.81), we then conclude analogously to (4.119) that  

On(v)21vl `~ lim max n--,~ ~,n<~v<~O Cn I~n(V)(V--#nn)l = 0. (4.123) 
n E N  

Since On/(" - - ~ n n )  is a polynomial of degree n -  1, we can derive a contradiction to (4.123) 

in the same way as done in (4.120) and (4.121), which shows that  assumption (4.122) 

is false, and it is proved that  #1 <0. Together with the earlier conclusion, we thus have 

shown that  

�9 .. < ~j < ... < #2 < #1 < 0. (4.124) 
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In order to prove that the limit points ~1, ~2, ... and a l ,  . . . ,  a[a] in (4.81) and (4.82) 

are different from the limit points #1, #2, ..., we consider the asymptotic behavior of the 

residua Anj of the transformed approximants rn* at its poles #~j, j = l ,  ..., n. From (3.13) 

we deduce the representation 

n 

~* (W) ~. -~n r* (al/aw) = hn(w)-'}-~_ 1 w A'~_.___2_ #nj ' (4.125) 

and from (3.15) we further derive that 

~nj - - I - - i / ~  - s i n  T'Ol Wn(#nj) fO ( On(V ) ~2 iVlC ~ dv 
= C  n A n j - -  - -  ~ !  ~ 2 - -  ~ } n ( V )  (4 .126)  7~ qn(Trnj) J_~\V--#nj]  

for j - -  1, ..., n. The asymptotic behavior of the residua An,n+l-j will be studied for n-+ oc, 

nEN, and j E N  fixed. We use tools that have already been applied in (4.118), (4.119) 

and (4.121), but now we use Lebesgue's theorem on dominated convergence instead of 

Fatou's lemma. 

From (4.81) we know that l imn-+~,neg #n,n+l-j -'-":--#j, and from (4.107) and (4.124), 

it follows that the limit 

lim sinTra ( qn(V) ~2 ]v],~ _ g2(v) 
(4.127) n ~  7ten ~V--#n,n-I-l_j] Wn(V) ( V - - # j )  2 

holds locally uniformly for v E ( - o c , 0 ) .  By Lebesgue's theorem on dominated conver- 

gence, it follows from (4.127) that 

aim sin~ra f ( ~ n ( x )  )21xl"dx_f[12(x)dx 
nn-~ 7"fC-""~ oc\X--TVn,n+l_j Wn(X) oo (x-#j)  -------~ < co. (4.128) 

Indeed, near the origin an integrable upper bound for the integrand in (4.128) is provided 

by (4.109). On the lower end of R _ ,  we have the estimate 

( ~(~) Ixl----~ < ~ - -  f o r x < # j - 1 ,  (4.129) 
\ X - - T r n , n . . { - 1 - - j  I~n(x)l I x - l l  ]~n(X)l 

which shows that the integrand in (4.128) is dominated by that in (4.87). We note 

that  the integrands in (4.87) and (4.128) are both non-negative, and integral (4.87) is 

standardized by (4.88). 

From the limits (4.93), (4.104), (4.107), together with the properties (4.105) and 

(4.124), it follows that the limit function g2 in (4.107) and (4.127) has a zero of order 

exactly 2 at the point #j.  Therefore we have 

~2(v) ~=~J 1 ,, 
( v _ # j )  2 ----- ~g2 (#j) # O. (4.130) 
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From (4.130) and (4.127), we then deduce that  

W n ( 7 ? n , n + l - - j )  ~- 2sinTra 17?jl (~ (4.131) 
lira Cnz~/7? ~2 -"  - ' 

~ - ~  ~n~ n,n+l--jJ lr g2(Trj) n E N  

and with (4.126), (4.128) and (4.130), it further follows that  the limit 

_2sin_~a lT?j['~ f '~ (~2(x) dx 
n--+~176 ~lim/~n,n+l--j: ~tt[7?.'~ j _  ( X _ 7 ? j ) 2  r  (4.132) 
n ~ N  7"( 2 \ 31 or 

exists and is different from 0 and c~. 

From (4.132), (4.125), the limits (4.81), (4.82), and the strong inequalities in (4.124), 

we deduce that  the two sets {51, ..., aI~], ~1, ~2, ..-} and {7?1,7?2, ...} are disjoint, since other- 

wise some of the residua An,~+l-y had to converge to zero as n--+cc. Hence, we have 

proved 

�9 .. < ~j+l < 77j < ~j < ... < 771 < ~1 <0.  (4.133) 

The last inequality in (4.133) follows from (2.8) and (2.9) in Lemma 2. 

Since the two sets {31, ...,5[,1, ~1, ~2, ...} and {771, #2, ...} are disjoint, it follows that 

limit (4.115) holds not only in C\{771, #2, ...}; instead it holds in the cordial metric locally 

uniformly throughout C, which proves limit (4.44). 

From the extended validity of limit (4.115), we can then derive an extension of 

limit (4.58). Actually, we shall prove slightly more than stated in the lemma. 

Let ~ denote the Riemann surface over C\{0} which is defined by analytic contin- 

uation of the function f ,~(w)=w% Like the function f,~, so also the function ~, can be 

lifted to 7~. We shall use the same notation for functions defined on (3 or on ~ .  From 

(4.1) and transformation (4.49) we know that 

w" - ~* (w) w" - ~'* (w) (4.134) 
~ , , ( W ) - w , + ~ ( w )  and §  

Since the functions ?n and ? are Mhbius transforms of ?,~ and ?*, respectively, the con- 

vergence in the cordial metric, which has been proved for limit (4.115), implies that  the 

limit 

l i m  ~n (w) = ~(w) (4.135) 
n E N  

holds true also locally uniformly for w E ~ in the cordial metric. Since the set (C \R_) t2  

( - c ~ , 0 ) + i 0  can be embedded into T/, limit (4.43) follows from (4.135). 

We have ?*(w)ER. for all wER.  From (4.134) and the validity of limit (4.44) in the 

cordial metric in C, it then is immediate that  

{ OK,~ for w E ( - o c ,  O)+iO, 
f,~(w) E _ _  (4.136) 

OK~ for wE(--oc ,  O)--iO, 
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with Ks  the disc defined in (4.8). 

With the completion of the proof of limit (4.43) the proof of the lemma is com- 

pleted. [] 

The last lemma in the present section contains information about the behavior of 

the function rn in the domain C \ R _  away from the origin. 

LEMMA 8. There exists a constant R > 0  such that for n E N  sufficiently large we 

have 

Irn(~e")l <~ Jr~(~e"')J for t, t 'e  [-~, ~], Itl ~< It'l, Q/> R~r (4.137) 

and 
,~ i/s CI(Ks) forO<.t~Tr, O>~nr , 

r'(oeit) E CI(R~) for-Tr<~.t<-~O,o>/nr n i / ,  (4.138) 

with CI(.)  denoting the closure, and the disc Ks has been defined in (4.8) of Lemma 5. 

For the error function e n = f s - r * ,  we have the monotonicity 

O:>x--Sen(X) > (Xt)--C~en(X t) for I < x < x ' .  (4.139) 

Remark. The existence of the poles b,~,l, ..., buds ] in case of (~> 1 shows that at least 

estimate (4.138) cannot hold for all z E C \ R _  if ~>1 .  

Proof. (i) We start with a proof of (4.137). As in the proof of Lemma 7, we use trans- 

formation (4.49), and based on this transformation, the notations introduced in (4.50). 
~ ~ 1 / c ~  Thus, for instance, rn is defined by r,~(w):=rn(~n w). An important piece of the proof 

of relation (4.137) is the verification of the inequality 

0 
0--0 arg ~n(oe it) <~ 0 for all 0 >/R, n/> no, t E [0, 7r]. (4.140) 

Note that contrary to the function arg ~ ,  its derivative in (4.140) is single-valued in any 

domain in which ~,~ is analytic and different from zero. 

The function ~,~ has poles at b~j, j = l ,  ..., [a], and zeros a t  ~'nj, j = l ,  ..., 2n+2+[a ] .  

We define 

[Slw_Dn j [a] 1 ~_~) := =jl~__l ( - (4.141)  o(w) II  w 
j=l 

2n+2+[~] 
Gn(w):= ~ I  (w-Snj)  (4.142) 

j = l  
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and 

~n(W ) : : ~ n ( W  ) ~ n ( W ) .  (4.143) 
" " Gn(W) 

The rational function (~n in (4.141) has similarities with the function (4.54), but both 

functions are different. For the next steps of the analysis it is important that the quotient 

O,,,/Gn has no sign change on R_ .  Indeed, since /~nj~R-,  j=l , . . . ,  [a], and since all 

inj C (0, ~ ) ,  it follows that 

w [~]Qn(w)- > 0  for w e a _ .  (4.144) 
G.(w) 

The function § is analytic and different from zero in C \ R _ .  From Lemma 5 we know 

that it has analytic continuations to ( - ce ,  0 ) + i 0  and (-cx~, 0 ) -  i0. 

From (4.144) we know that arg ~,,(w) = arg ~n(W) + (--1) [~] 7r for w E R _  + i0, and from 

(4.9) in Lemma 5 and the discussion after Lemma 5, we further know that arg§ 

is monotonically increasing for wE ( -c~,  0 ) + i 0  and monotonically decreasing for w e  

(-cx~, 0 ) - i 0 .  From (4.1), (4.141) and (4.144), we conclude that 

w[~]§ .... o <0.  (4.145) 

From (4.1) it further follows that 

arg((-1)H+l§ = - arg((-1)[~]+l§ (4.146) 

for w C ( - c e ,  0). At the origin w=0,  the function arg((-1)['~]+l§ has a jump about  

Trial if this function is considered with an argument running along the two banks R_  + i 0  

and R _ - i 0  of R _ .  

Tile two functions arg§ and a rg ( ( -1 )H+l§  are harmonic in C \ R _  and have 

harmonic extensions to ( -c~,  0)+i0 .  Also the expression 

0 0 
p~-~Q arg(P,,(pe't)) = p~ arg((-1)H+1§ w = pc 't, 

is harmonic in C\R_, which can easily be seen by mapping C\R_ conformally onto 

the strip {vl]Im(v)l<;r  }. From the monotonicity of arg(§ on R _ §  and R _ - i 0 ,  it 

follows that p(0/0p) arg(§ <0 and p(0/0p) arg(§ >0 for pe  ( ~ ,  0). From 

this observation together with the symmetry property (4.146) and the harmonicity of 

p(0/0p) arg(-§ in C \ R _ ,  we conclude that 

f f - - •  arg( Pn ( peit) ) < 0 

_0 = 0 
0p 

arg(rn(peit) ) > 0 
Op 

for tE(O,~], p>O, 

for t=O,  p>O, 

for t e  [-Tr,0), p > 0 .  

(4.147) 
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It follows from definition (4.143) that we have to study also the behavior of the 

arguments of the functions ( ~  and Gn if we want to verify (4.140). For this purpose we 

use the identity 
0 arg(coeit _ b) - - b sin t (4.148) 
Oco ]coe i t -  bl2 ' 

which holds for bE (0, ec), coE (0, co) \ {b}, tE [--7r, 7r], and the inequality 

~-- -~arg( (1-~e- i t ) (1 -~e- i t ) )  21bl(co+lbl) 2 IsintI 
<. icoe~t_bl2icoe~t Di2, (4.149) 

which holds for b E C \ R ,  0>0  and tE(0,~r]. Both relations will be verified only after 

(4.155), below. 

With the help of (4.148) and (4.149) we show that there exist R > 0  and n0EN such 

that 

0 arg~)n(Oeit ) ~.~ - -~0 <~- argGn(Qe it) for co )R ,  n ) n o ,  tE(0,  zr]. (4.150) 

Indeed, it follows from the definition of the transformed poles 1)n j, j =  1, ._., [c~j, in 

(4.12) that we either have 1)~j E (0, oc) or the b~j appear in conjugated pairs {bnj, bnj}. 
From (4.13) in Lemma 6, we know that there exists R > 0  such that Ibnjl<R for all 

j = l , . . . ,  [c~] and hEN.  Using estimate (4.149) for the conjugated pairs {D,~j,bnj}, and 

identity (4.148) for the poles b~jE(0, cx~), we deduce from (4.141), (4.148) and (4.149) 

that there exist R>0 ,  n0EN and a constant c<oo  such that 

_~_~Qarg~.n(Oeit <~ -~c isintl for o>~R, n>.no, tE [-rr, Tr]. (4.151) 

On the other hand, from (4.142) and (4.148) we deduce that 

2 n + 2 + [ , * ]  _ 2n+2+[r  ~ 

0 arg~n(oei t )=_sint  E znj - -  ~<-s in t  ~-" znj 
(:90 j=l Ioeit--Snjl2 ~ j= l  ICO-t- ZnJ 12 

(4.152) 

for all o>~R and tE(0, rr]. With the limits (4.38) in Lemma 7, we conclude that 

2 n + ~ + [ ~ l  2 n + 2 + [ ~ ]  
COs ~ Z'nj __ 5nj 1 ~ 1 

Io+~.njl 2 E Ii_t_~.nj/OI2 >/4 E znJ-+-4 E 5j j=l j=l s.j <<.o ~j<~e 
as n--+oc. (4.153) 

Since from the inequalities in part (iii) of Lemma 7 together with limit (4.38) in Lemma 7, 

we know that there exist infinitely many points 5j <oc, j E N ,  we further conclude that 

1 
E 5j --> oc as n --+ co. (4.154) 

~ ~<o 
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From the relations (4.151) through (4.154), it then follows that (4.150) has to hold true. 

From (4.150) together with (4.143) and (4.147), we then deduce inequality (4.140). 

By using the Cauchy-Riemann differential equations in polar coordinates, it follows 

that (4.140) implies 

0 
O--~logi~,~(geit)l >10 for Q>>.R, n>~no, tE(0,  zr], (4.155) 

with R>0 ,  and n0EN, chosen as in (4.140). This inequality proves (4.137) for t, t 'E [0, zr]. 

Since the hmction rn is of real type, the same inequality follows for t, t~E [-Tr, 0]. 

For a completion of the proof of (4.137) it is still necessary to verify the two relations 

(4.148) and (4.149). Identity (4.148) follows rather immediately from considering the 

derivative of log(toe i t -  b) and a subsequent taking of the imaginary part. Let now b= 

[blei~EC\R. Proceeding as in the verification of (4.148) we arrive at 

( ( - e - i t )  ( 1 -  ~ e - U ) )  = ~ ,2 im O a r g  1 _ b  -[bl s i n ( t - ~ )  -Ib] s in(t+Z) 
o~ Io-Ible-i(t-Z)12 ]Q-]ble-i(t+~) 

(4.156) 
_ - 2  Ibl (co+ Ibl)2 cos ~3 sin t + 2~olbl 2 sin(2t) 

[Q- [bl e-i(t-f~) 12 IO- Ibl e-i(t+/~) I s 

From (4.156) the estimate (4.149) follows rather directly by trigonometric inequalities. 

(ii) We now come to the proof of the relations (4.138). Let R I > 0  be so large 

that (4.137) holds true for all n)noEN. Then for the [a] poles of ~,, in C \ R _ ,  

we have It)nil<R1, j = l , . . . ,  [o], and the function r is analytic in the domain DR1:= 

C\ (R-U{IwI~<RI}) .  

Knowing that the limits (4.39) and (4.40) exist and that the limit (4.43) exists locally 

uniformly on R _ + i 0 ,  we conclude from the discussion of the behavior of the function 

arg ~,~ on R_ + i0 after the proof of Lemma 5 that we can choose R > R1 such that arg ~, 

grows by more than 27r on the interval [ - R , - R 1 ] + i 0  for each n)no. 
Let Ka be the disc defined by (4.8) in Lemma 5, and let v~,EOK~ be the point which 

lies closest to the origin. This point is unique if a + 0 . 5 ~ N ,  and it is not difficult to verify 

that 

a r g ( v , ) =  }7r(-1) [2(~J mod(27r). (4.157) 

In ease of a + 0 . h E N ,  the point v ,  is no longer unique, since in this case K~={]w]< l} ;  

however, we can assume that (4.157) holds true. 

For each n>~no, we can choose R(~) such that R1 <~R(n)<~R and arg~,,(R(n)ei~)= 

�89 2~1 mod(27r). Since r it) approaches OK~ as t--+rr-O, it follows from the 

monotonieity (4.137) that at a point that lies nearest to the origin, we have 

cn(n(,~)eit)eCl(Ko) for all te(0,1r]. (4.158) 
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From (4.9) in Lemma 5, we know that 

~n(Qei(rr-~ for RI~<Q~<cc. 

279 

(4.159) 

From (4.2) and (4.3) in Lemma 5, it follows that rn(W)E ( -1 ,  1) for wE [R1, g'n 1, and 

from (3.22) together with (4.1), it further follows that ~n(w)E[-1,0]  for wE[enl/~,~c]. 

Hence, with (4.158) and (4.159), we have proved that 

~n(w)ECI(K~) for WE(OH(n ) (4.160) 

with H(n):={pei~]R(,~) ~<~<oc, 0~<t~<~}. 

Since analytic functions are open mappings, it follows that (4.160) implies ~n(W)E 

Cl(K~) for all wEH(n), and since the function ~ is of real type, it further follows that 

~n(w)ECI(K~) for wE{oeiTr[R(n) <~O<~oc, --Ir~<t~<0}. Because of R(~) ~<R, the last two 

assertions imply that (4.138) holds true. 

(iii) At last, we prove monotonicity (4.139). From (3.6) in Lemma 3 and definition 

(3.7) of the positive measure #n, we have the representation 

wn(z) / qn(x) 2 wn(z) 
lz-~en(z)t- z,~q,(z)2 ~ d#~(x) -- z~q~(z)2 I(z) (4.161) 

with the polynomial wn defined in (3.1) and qn being the denominator of r,*. Since 

s u p p ( # n ) = R _ ,  it follows that 

f [zI(z)l = Ix~z- 1-----~] d#n(x) (4.162) 

is a strictly monotonically increasing function for zE (1, oc). Since all zeros of 

wn(z) (4.163) 
z'~+lqn(z)2 

are contained in (0, 1) and all poles in R_ ,  function (4.163) is also strictly monotonically 

increasing for zE(1, oc). The two monotonicities together with (4.161) prove (4.139). [] 

5. Tools from potential  theory 

Several aspects in the proofs of Lemmas 6 and 7 were already in spirit of a potential- 

theoretic nature; this orientation will become more dominant in the last two sections 

of the present paper. In the present section we start with the introduction of some 

terminology related to potential theory. We continue with an important result, which 



280 H.R. STAHL 

will be stated in Proposition 1. It deals with the representation of the log-function by a 

Green potential. Fortunately, the underlying problem has already been studied in [19] 

and in [14, Chapter 8]. Ftlrther, some special potential, theoretic results of an auxiliary 

nature will be proved. 

The (logarithmic) potential of a measure # is denoted by p(#; .  ) and defined as 

p(p; z) := / log 1 dp(x). (5.1) 

By cap( . )  we denote the (logarithmic) capacity (for a definition see [22, Appendix I] 

or [13, Chapter II]). For a domain DC_C we denote the Green function in D by gD(z, v), 

z, vEC (for a definition see [22, Appendix V] or [13, Chapter IV]). We assume that 

gD(' , ' )  is defined throughout C •  If D = C \ R _ ,  then it follows from (4.15) and 

(4.16) that 

go\R_ (z, v) = log IB(z, v)l = log [v/_~ _ v ~  ] (5.2) 

with x/:- denoting the principle branch. For the domain Do:={Re(z )>0}  the Green 

function is given by 
Iz+vl 

gDo(Z, v) = log iz_------ ~. (5.3) 

It follows from (5.2) and (5.3) that for vE(0, c~) the Green functions gb(reit, v), D= 
C \ R_ or /9  = Do, are monotonically decreasing functions of ]t] with ]t] E [0, 7r] for a given 

r>0 .  For an arbitrary domain DC_C and a measure p we define the Green potential as 

z)  := f g,(z, x) d,(x). (5.4) g(#, D; 

A useful tool in potential-theoretical investigations is the technique of balayage. A def- 

inition for logarithmic potentials can be found in [22, Appendix VIII, [13, Chapter IV] 

or [18, Chapter II.4]. In our investigation we use this technique for Green potentials. 

In order to avoid technical subtilities, we assume that all domains involved are regular 

(with respect to Dirichlet problems) (cf. [22, Appendix II] or [18, Chapter 1.5]). Let 

DC_C be a regular domain with c a p ( C \ D ) > 0 ,  # a positive measure carried by D, i.e., 

#(D)=]I#]], and GC_D a regular subdomain. Then there exists a positive measure ~, 

called the balayage measure, such that 

g(ft, D; z) = g(p,D; z) for a l l z E C \ G ,  (5.5) 

ft is carried by D\G, and we have 

II~II-~(G) =#(D\G) <~ I1~11 ~ I1~11. (5.6) 



B E S T  U N I F O R M  R A T I O N A L  A P P R O X I M A T I O N  O F  x c~ O N  [0, 1] 281 

By II " II we denote the total mass of a measure (or the total variation in case of a signed 

measure). We have s u p p ( f t ) C ( s u p p ( # ) \ G U O G ) N D  since fi is carried by D\G.  The 

balayage technique for Green potentials can be seen as a special case of balayage for 

logarithmic potentials since Green potentials can be represented as the difference of two 

logarithmic potentials (cf. [22, Appendix V] or [18, Chapter II.4]). The inequalities in 

(5.6) are consequences of the possibility that  parts of the measure # are swept on pieces 

of OG that are contained in OD, and that  the mass swept there becomes irrelevant for the 

Green potential g(fi, D;.  ). Since it is assumed that  the balayage measure ~ is carried 

by D\G,  these parts of the swept-out measure p are no longer part of the balayage 

measure ~. 

Green potentials in the domain C \ R _ ,  which represent linear transformations 

c+o~log]. I of the log-function on a given interval [R,x]C_R+, will play a fundamen- 

tal role in the proof of Theorem 1. These potentials are studied in the next proposition. 

PROPOSITION 1. Let c � 9  (~>0, R>~4e -c/~ and x>  R. Then there exists a positive 

measure u=ux,Rx,~ with supp(u)=[R,x]  such that 

g ( u , C \ R _ ; z ) = / g c \ R _ ( z , x ) d u ( x ) = c + l o g l z l  ~ for all zE[R,x] ,  (5.7) 

and for x--+c~ we have 

l im(r~ ~ - a l o g  x) = c + a  log 4. (5.8) 

Remark. Proposition 1 shows that  for x--+(x~ the total mass Ilu]] of the measure u 

tends to infinity. However, the limit (5.8) shows more; it gives a quantitative estimate 

for the growth. 

The proof of Proposition 1 follows after the next theorem, which has already been 

proved in [19], and with a more transparent and shorter proof in [14, Theorems 8.3.2 

and 8.3.3]. 

THEOREM 4 ([19, Theorem 2]). For the domain Do={Re(z )>O} and for any 

a � 9  (0, 1) there exists a positive measure ua with supp(Ua)= [a, b(a)], a <b(a)< 1, such that 

the Green potential 

dua(x) (5.9) 
Z-'~ X 

g~(z):=g(ua,  D o ; z ) =  log z - x  

satisfies 
] 

ga(Z) = log [-~ 

1 
ga(z) > log 7-7 

[zl 

for z E [a, b(a)], 

for z �9 (b(a), c~). 

(5.10) 
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We have II~a'll>ll~ll and b'=b(a')<b=b(a) for a'<a, 

s  for a e ( 0 , 1 ) ,  2 
lim 1 ~_~0+b(a)=~, 

u~((ao,b(a)l)=O(1 ) as a-+O+ 

(5.11) 

(5.12) 

(5.13) 

for any O<ao~<�89 and 
lim aexp(~" ~v/~ll)=2. 

a--~0+ 
(5.14) 

The proof of Theorem 4 in [19] is based on a systematic s tudy of the function 

1 f Z d ~  [ ~  (c~+t2) dt 
f" (z ) :=coJo ~ Jo V/(1-t2)(c2-t2) ' z ,~EDo, (5.15) 

with the three constants Co, cl >0, c2 > 1 determined by the three conditions 

fo ~ (c~-t~) dt 
v/(l+t2)(c~+t 2) 

=0 ,  

fo ~ (c~+t2) dt 
v/(l_t2)(c~_t2 ) =Co, (5.16) 

fi e dx f~  (c~ + t 2) dt 1 
-~-Jo ~/(1-t2)(cl- t2)  =c~176 ac2" 

The proof of Theorem 4 demands delicate estimates of elliptical integrals and will not 

be repeated here. 

Proof of Proposition 1. The proposition follows from Theorem 4 by choosing the 

constant a=ax in the theorem in an appropriate way for each x, and by transforming the 

domain of definition Do of g, in (5.9) into C \ R _ .  Finally, it is necessary to use balayage 

in order to make sure that  supp(u)=[R,  x]. The appropriate choice for the parameter a 

in Theorem 4 is 
. . . .  

a=ax := . (5.17) 

With this choice we define the function ~ as 

:= 2.g~ 

J V w - V v  

(5.18) 
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The second equality in (5.18) follows from (5.9), with #~ the image of the measure v~ 

in (5.9) under the mapping z~-+w=e-C/'~z -2. The third equality in (5.18) follows from 

(5.2) and the definition 5:=2a#a.  Thus, we have 

I1511 : 2 II 'a=ll. (5.19) 

Under z~+w=e-C/~z -2 the interval lax, b(ax)] transforms into [e-~/'~b(ax) -2, x]. From 

(5.11) and the assumptions made in the proposition we deduce that [~x:=e-r 
4e -r ~< R. Hence, we have 

supp(5) = [bx, x] D [R, x]. (5.20) 

From (5.10) and the definition of ..5 in (5.18), we deduce that 

O(w) := 2a log(er = e+a log(w) for w e  JR, x]. (5.21) 

It is immediate from (5.18) that ..5 is a Green potential defined by the positive measure 5. 

However, the support [bx, x] is larger than JR, x]. Therefore we use balayage to remove 

the measure z) from the subinterval [bx, R). Let # be the balayage measure of the measure 

5 resulting from balayage out of the domain C\ (R_tO[R,x] ) .  We then have supp(5)= 

JR, x], and from (5.5) we learn that  (5.21) implies (5.7) if we take u :=# .  From (5.6) we 

deduce that 

llSI1-5([bx, R)) ~< 11511 <~ 11511 . (5.22) 

It only remains to prove the limit (5.8). The interval [bx,R) is the image of 

[e-C/2'~lx/~,b(a~,)) under the mapping z~w=e-C/'~z -2. From (5.12) and (5.13) we 

deduce that 

lim 5([bx, R)) = 2a lim uax([bx, R)) < co. (5.23) 
X--~OO X- '+ OO 

From (5.14), (5.9), (5.17), (5.18), (5.22), and taking u=# ,  we deduce that 

2 = lim a x e x p ( T r ~  ) = lim x-1/2e-C/2'~exp(Trv/IIuII/2a+O(1)) 
X --~ OO X- +O<:) (5.24) 

= nm 
x--~ oo 

since IIuII-*  as x - + ~ .  By taking logarithms and multiplying by 2a it follows from 

(5.24) that 

l im(~r  ~ - a  log x ) =  c + 2 a  log 2, (5.25) 

which proves (5.8). [] 

The section is closed by two technical lemmas. 
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LEMMA 9. (i) For any 0 < a <  �89 and any R > 0  there exists a positive measure As with 

supp(Aa)--JR, cx~] and I1~ II < co such that the Green potential g~(z):=g(Aa, C \ R _  ;z) 

satisfies 

g~(z)=z -~ for z e [R ,  co). (5.26) 

(ii) Let the function ha be harmonic in the domain DR:=C\(R_U{IzI<.R}) with 

0<c~<�89 R > 0 ,  and assume that h~ has boundary values ha(z)=lzl -~ for zeODR. Then 

there exists a constant c=c~ such that 

O<h~(z)<clz] -a for zeDR.  (5.27) 

Proof. (i) For 0<(~< �89 we consider the function 

~ Re(ei(-~ z-~)/s in ~r~ 

~(z) := [ Re(@(os_~)~z_~)/sin 7r(~ 

define the positive measure ~ by 

d~(x) := ~ (cot 7ra)x -(1+~) dx . . . .  

and then show that ~ = g ( ~ , C \ R _ ; .  ). 

for zEH+, 
(5.28) 

for zEH_,  

1 0 
~y[?(x+iy)ly=+odx, xe(O, co), (5.29) 

Proving the representation of ~ by the Green 

potential g ( ~ , C \ R _ ; . )  demands some care since ~ is unbounded in C \ R _ ,  and the 

measure ~ has infinite mass. Both problems appear near the origin. We therefore consider 

the domains D1/n = C \ (R_ LJ {[z I ~< 1/n}), n E N. Since the normal derivatives O/Oy of 

to both sides of (0, co) are negative, we see that ~ is superharmonic in C \ R _ .  From the 

Riesz decomposition theorem (cf. [18, Theorem II.3.1]) we therefore know that ~ can be 

represented as 

= v) dX(v) for z e 0 1 / .  (5.30) 

with hn being the solution of the Dirichlet problem in the domain D1/n with bound- 

ary values hn:[? o n  OD1/n. Actually, tile Riesz decomposition theorem only ascertains 

that there exists a positive measure defining the Green potential on the right-hand side 

of (5.30). However, using the representation of ~ given after the second equality in (5.29), 

it can be shown with the help of the Green formula that the defining measure in the Green 

potential in (5.30) has to be the measure ~ which has been defined in (5.29). A method for 

recovering the defining measure of a potential has been shown in detail in Theorem II.1.5 

of [18] under conditions that are applicable in the present situation. 

The function ~(z) :=v/~ maps the domain C \ R _  onto D0:--{Re(z)>0}.  Let ~z,n 
be the balayage measure of the Dirac measure (~z, zED1/n, out of D1/n (cf. [22, Appen- 

dix VII] or [18, Chapter II.4]). By considering measures on Do that correspond to (~z,n 
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and 5z under the mapping ~, it is not too difficult to verify that  there exists a constant 

cl<co,  which is independent of n, such that 

and zED1/no fixed. Since 

Cl  8z,n({Izl < l /n}) for n ~> no (5.31) 

O(z)~lzl  -~ for z E C \ R _ ,  (5.32) 

c~ < �89 and ~(z)--0 for all z E cOD1/n\ { I zl l /n} ,  it follows from standard tools of potential 

theory (the construction of a solution of a Dirichlet problem with the help of harmonic 

measures) that  

lim hn(z) =0 locally uniformly for z E C \ R _ .  (5.33) 
n---> oo 

This proves that  

= c \ m ; .  ). (5.34) 

We note that from (5.2) we can deduce that there exists a constant c2<co such that 

go\R_(z,v)<~c2Re(vZV) for vEC,  Ivi<r, r > 0  small, and z E C \ R _  fixed. This estimate 

together with (5.29) and c~< 1 shows that  the Green function go\R_ (z, .)  is ~-integrable, 

and therefore the Green potential g(~, C \ R _ ; .  ) is well defined. 

Let now R > 0 be fixed and let ~ be the measure that  results from balayage of the 

Green potential g(~, C \ R _ ; . )  out of the domain C \ ( R _  U[R, c o ) ) c C \ R _ .  Then we 

have 
z" for z E [R, co), 

g (z) := C \ R _  ;z) = (5.35) 
0 for z E (-co,0] .  

Since the balayage measure As is carried by C \ (R_ U JR, co)) (cf. the introduction of the 

balayage technique in (5.5) and (5.6) for the special situation of a Green potential), we 

have supp(A(~)C_C_ JR, co). Thus, it only remains to show that  A~ is of finite mass. 

Indeed, from the definition of balayage (cf. [22, Formula A.15]) we know that  

g(A~, C \ R _ ; .  ) can be presented as 

/? g(,~,~,C\R_;z)--g(~,C\R_;z)- gc\(R_u[n,oo))(z,v)d~(v). (5.36) 

Since C \ ( R _ U [ R ,  co)) is a subdomain of C \ R _ ,  we have 

go\(a_u[n,oo))(z, v) <~ gokR_ (z, v) 

for all v E C and z E (0, R). Hence, from the ~-integrability of gc\R_ (z, . )  we deduce the 

~-integrability of gok(R_O[R,oo))(z," ), which shows that  the second term on the right- 

hand side of (5.36) is bounded in a neighborhood of JR, co] seen as a subset of C, which 



2 8 6  H . R .  S T A H L  

implies that the difference As--AI[R,~] is a measure of finite mass, and therefore A~ is, 

like AI[R,ocl, also of finite mass. Note that  by a Mbbius transform, a neighborhood of 

[R, cr can always be mapped on a neighborhood of a finite interval. 

(ii) Let the function h be defined by 

h ( z ) . -  1 Re(z_~) for zEDR. (5.37) 
COS 71"Ol 

The function ~t is harmonic in DR and has boundary values 

~ ( z ) = l z l  -~  for zE(-~,0]• 

s  R - ~  for Izl = R .  

Comparing the boundary values of h with those of h~ on ODR, we see that 

(5.38) 

t t ( z ) -h~(z)  >10 for all ZEDR. (5.39) 

If we choose c=l/cosTrc~ we deduce from (5.37) and (5.39) that 

h~(z) <.h(z) <~ciz] -'~ for all ZEDR, (5.40) 

which proves (5.27). [] 

LEMMA 10. Set, as in Lemma 9, DR:=C\(R_U{IzI<.R}) ,  R > 0 .  

(i) Let the function h be harmonic in the domain DR with boundary values h(z)=O 

for zE(-c~ , -R)-4- iO,  h ( z ) = l  for Iz[=R, z # - R ,  and let h be bounded in a neighborhood 

of infinity. Then for every r > R there exists a constant C=CR,,. such that 

O<~h(z)~<cRe(1/v~) for all zEDr.  (5.41) 

(ii) For ZoE(R,cr and r>zo there exist two constants cl=Cl,zo,r>O and e2= 

C2,zo,r<cr such that 

c l a e ( 1 / v ~ )  <.gDn(zO, v)~<c2Re(1/v~) for all vEDr.  (5.42) 

(iii) For z0E(R,cr  and r> R there exists a constant C=Czo,R,~ such that 

go\R_ (z0, x) <. cgD,(zo, x) for all x E [r, cr (5.43) 
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Proof. (i) We use the function H introduced in (4.65), and define the function h by 

2 1 
h ( z )  : =  - l og  . ( 5 . 4 4 )  7r IH(R/z)l 

Then it follows from (4.66) and (4.67) that  h possesses the required boundary values, 

and (5.41) follows from a geometric consideration of the function h. 

(ii) Let p: DR--+ Do -- {Re(w) > 0} be the Riemann mapping function with ~ ( R +  1) -- 1 

and ~(R)=cx~. Near infinity we then have the development 

cp(z)-~ ~zz+O(1 ) as z---4oo, zEDR, ( 5 . 4 5 )  

with Co>0. From (5.45) and the concrete form (5.3) of gDo(Z,V) the inequalities (5.42) 

follow. 

(iii) For x EIro, cx~), r0 > Zo, the estimate (5.43) is an immediate consequence of the 

lower estimate in (5.42) and the concrete definition of gc\~t_ (z0, v) in (5.2), from which 

we see that  there exists a constant c3<c~ such that  gc\R_ (z0, v)<C 3Re(1/x/~) for 

vEDro. For the interval Jr, r0] the estimate (5.43) is rather immediate. [] 

6. Auxi l iary  funct ions  I I  

In the present section we introduce and study a quadratic transformation of the func- 

tion r~. The function rn is a rational transform of the error function e,,, and it has 

been investigated in detail in w The final form of the quadratic transformation is the 

function ~n, which will be defined via two intermediate functions R~, and ~,,. We define 

Rn as 
Rn(W) .-  4w2~-lr~(e~P~W)-w---------j--- w -'-~'1 n E N ,  (6.1) 

with rn defined in (4.1). Comparing (4.1) with (6.1) shows that  implicitly in (6.1) the 

independent variable w of transformation (4.49) has been used. Based on Rn we define 

~n(W):=8-~(Rn(w)+v/Rn(w)2-4), neN,  (6.2) 

where the sign of the root is chosen so that  R,~(w) and the square root v/Rn(w) 2-4 
have the same sign for wER+ near infinity. A MSbius transform r is defined by 

z 

r  := sin 7rc~ +/(cos 7rc~) z" (6.3) 
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It is immediate that  ~p:K~-~D = { I wl < 1} is a bijective map of the disc K~, introduced 

in (4.8) in Lemma 5, onto the unit disc D. Finally, the function o2~ is defined as 

m 
r ) for weH+:= {Im(w)>~O), 

�9 n(w) := (6.4) 
r f o r w E H _ : = { I m ( w ) < 0 } .  

In the next three lemmas relevant properties of the functions Rn, On, ~n will be 

proved. Each of these lemmas deals with one of the three functions. The last lemma 

(Lemma 13) deals with ~n, and it contains all information that is relevant for the proof 

of Theorem 1. The two earlier lemmas are only of intermediate interest, like the functions 

R~ and ~ themselves. 

LEMMA 11. As in (2.10) and (2.8) of Lemma 2, we denote by gn the minimal 

error En+l+[a],n(fa, [0, 1]), by ~n3, j----0, . . . ,2n+2+[a] ,  the extreme points of the error 
~ - - ] / o c  

function en, and by ~nj := ?~nj Cn the transformed extreme points. For the function Rn 

defined in (6.1), we have 

- -2~ Rn(W) ~ 2 for wE[2-1/~,Cnl/(~], 

Rn(~nj)=2(-1)  j+[']+l for j--1,. . . ,2n+2+[a]. 

(6.5) 
(6.6) 

For R >11 sufficiently large, we further have 

IR,~(w)l > 2 for all Iwl=~n,2k_l+H, w~R+,  (6.7) 

kE{1, . . . , n+ l} ,  and 7),,~,2k_1+[,~1 ) R ,  

nn(W)~[-2,2] for all weC\(R_u{Iw[<~R}u[O, cEl/'~]), (6.8) 

Rn(w) < - 2  for wE (r c~), (6.9) 

the function w-~Rn(w) is strictly monotonically decreasing for . -1/~ wE(Sn ,c~), the func- 
tion R ,  is analytic in DR := C \ ( R_ U { I wl <~ R } ) , and it has analytic continuations across 

the interval ( - c o , - R )  from both sides. 

Proof. We use the same notation as used in the proofs of Lemmas 7 and 8. The 

independent variable w of Rn is connected with the original variable z via transforma- 

tion (4.49). It follows from (4.2) and (4.3) that 

-1  - 1  
f , (w) . -  2w~+----- ~ ~ "~n(W)~ 2w~----- ~ - :  f2(w) (6.10) 
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for wE[2 -1/~, - 1 / ~  ~,. ]. If we substitute the functions fk, k=1,2 ,  instead of ~n(w)= 

rn~fin W) into definition (6.1) of Rn, then this yields the upper and the lower bounds 

4w2~-1 1 ( f k ( w ) )  
Fk(w):= w ~ - - ~ f k ( w )  w ~ -- f l (w)fz(w) ~-1 w -~ (6.11) 

:--((--1)k+12wa--l+l)w-~ k =  1,2, 

for Rn and WE[2-1/a, cnl/a]. From (6.10) and (6.11), we then deduce the bounds (6.5). 

From (4.52) we know that  at each transformed extreme point 0ny, J = 1, ..., 2n + 2 + [a], 

equality holds in one of the two inequalities in (6.10), and therefore also in (6.5). From 

(4.52) together with transformation (4.49) and the inequalities in (6.10) and (6.5), we 

then deduce the identities (6.6). 

From the monotonicity (4.137) proved in Lemma 8, we know that  there exists 

R~>0 such that  l~nl is monotonically increasing and decreasing on the two half-circles 

{reit [tE [0, ~r]} and {re~t[tE[-~r, 0]}, respectively, for any r ~ R .  For the factor in front 

of ~ in definition (6.1) of R~, we have the lower estimate 

4 w ~ - i  4[w[2~-1 
w '~ ~> [w[~ for wED2-1/.DD1. (6.12) 

Hence, it follows from (6.1) and (4.137) in Lemma 8 that  the lower estimate (6.7) holds 

on circles passing through transformed extreme points ~/~j with Rn(Onj)=2. Indeed, it 

follows from (6.12), (6.1) and the monotonicity proved in (4.137) that  for [wi=O,j we 

have 

4[w[2'~-1 [rn(el/ w)l_ 1 4(h  -I 1 
>1 iwl  >1 - -  r n Q h d ) - - -  = = 2. (6.13) 

07 j 

From (6.6) we know that Rn(~,j)=2 holds for j=2k - l+[a] ,  kE{1 , . . . , n+ l} .  In (6.7), 

the index kE{1 , . . . , n+ l}  has to be chosen so large that /{=~n,2k-l+[~] is as large as 

required in Lemma 8. It follows from (4.38) in Lemma 7, part (vi) of Lemma 7, and the 

interlacing (2.16), that  such a choice of k E N  is always possible if n E N  is sufficiently 

large. 

From the limits (4.38) and the limit (4.46) in Lemma 7, it follows that  for a given 

R >/1 only a finite number of transformed extreme points ~nj c a n  be contained in the 

interval [0, R], and we can choose j n E N  so that  ~n,j, ~<R<~n,yn+l. In the sequel we shall 

exclude the j~ + 1 first extreme points ~nj, j - -0,  ..., j~, from our considerations. Note that 

the number jn depends on R ~> 1, but it follows from (4.46) in Lemma 7 that  there exists 

j0EN such that  J~<<.jo for all nEN.  From the alternation property (6.6), we conclude 
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that  the function Rn has a zero xnj between two adjacent transformed extreme points 

~n,j-1 and F/nj, i.e., we have 

~ , j - 1  <5~nj <~)nj for j = j ~ + l , . . . , 2 n + 2 + [ a ] .  (6.14) 

The z e r o s  Xnj are in general different from the zeros Znj, which have been studied in 

Lemmas 5 and 7, but each pair {5:nj,2nj} always lies in the open interval (~l~,j-l,~I~j) 
for j = j n + l ,  ..., 2n+2+[a] .  

Next, we show that  relation (6.8) holds true for R~>I sufficiently large. We choose 

n E N  fixed, and set 

D:=DR =C\(R-k-J{Iw I ~<R}) with R:=~n,2k_l+[a ] (6.15) 

and 2k-l+[a]=jn.  We have already earlier mentioned that  it follows from (4.46) in 

Lemma 7 that  R ) 1  can be made arbitrarily large if k E N  is chosen sufficiently large. 

In a first step we show that  the function Rn has in D exactly 2 ( n + 1 - k ) + 1  zeros, 

which all lie in the open interval (R,e~I/~).  Indeed, from (6.6) and (6.15) we know that  

R~(R)=2.  From Lemma 5 together with (6.15), we further know that  ~n has no other 

zeros in D than the 2 ( n + 1 - k ) + 1  zeros 5nj, j = 2 k + [ a ] ,  ..., 2n+2+[ct]. It is immediate 

that  the function (4w2~-l )w- '~n(w)  has exactly the same zeros in D. From (4.4) 

in Lemma 5 we conclude that  the zeros 5nj interlace with the 2 ( n + 2 - k )  transformed 

extreme points Onj, j=2k- l+[a]  .... , 2n+2+[a] ,  i.e., each zero 5~j is lying in the open 

interval (~n,j+l, ~ j ) ,  j = 2 k +  [a], ..., 2 n + 2 +  [a]. 

From (6.7) together with (4.9) in Lemma 5 in combination with (6.12), we deduce 

that  

IR~(w)l > 2  for all wEOD\{R} (6.16) 

and R/> 1 sufficiently large. Hence, we have 

1 - ~ "  - ~ - ~  - -  2 1 1 
Iwl~ < 1 < ~< IR.(w)l <~ R.(w)+ 

14w 2~ - 1 - w • ]r for w e a N  

(6.17) 

and R~>I sufficiently large. By Rouchs theorem we therefore deduce from (6.16) 

and (6.17) that  Rn has only the 2 ( n + l - k ) + l  zeros 5~,~j, j=2k+[a],...,2n+2+[c~], 
in D which are the ones that  have been listed in (6.14) with k and j~ chosen so that  

2 k -  l + [ a ] = j n .  

Let us now assume that  h E ( - 2 ,  2) is arbitrary. From (6.16) we deduce 

lal < [Rn(w)[ for all weOD. (6.18) 
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Hence, it follows again from Rouch@'s theorem that  the two functions Rn and R n - a  

have the same number of 2 ( n + l - k ) + l  zeros in D. From (6.6) we deduce that  R n - a  

has these 2 (n+  1 - k) + 1 zeros in the interval (R, Cn l/a]. Hence, it follows that  Rn (w) ~ a 

for all weD\[O, c~i/~], which proves (6.8) for the open interval ( - 2 ,  2). 

That  the conclusion holds also true for the two limiting cases a--2 and a = - 2  follows 

from the detailed investigation of the zeros of the function R n - a  in the domain D that  

just has been done for h E ( - 2 , 2 ) .  Indeed, the zeros of the functions R n - a  depend 

continuously on a. If R n - 2  or Rn-k-2 would have a zero at a point w0 E D \  [0, e~ ], then 

in every neighborhood of w0 there should be a zero of R n - a  with aE ( -2 ,  2). However, 

this possibility has already been excluded. Hence, (6.8) is completely proved. 

It follows from (6.6) that  the largest transformed extreme point 7 ) n , 2 n + 2 + [ a  ] =gn 1/a is 

a zero of the function Rn+2, and a zero counting shows that  this zero has to be simple. 

The function R,~-a has exactly one zero in the open interval L~],~,2n+I+H,E,~ ) for 

h E ( - 2 , 2 ) ,  and this zero converges to ~n,2n+2+[~]=~ 1/~" as a - + - 2 + 0 .  From this it 

follows that  (6.9) has to hold true for all WE(En 1/~, OC) since R n - a  has no zero in the 

interval (Sn 1/~, c~). 

It remains to prove that  the function w-~'Rn(w) is strictly decreasing for wE 
( - 1 / ~  , cn , c~). Inserting the identity ~n(W)=@n(W)/(2W~--@n(W)) in (6.1) yields after some 

simplifications that  

Rn(w) = 4Warn (w) - (1 +rn(w) )w -~ 

~w _ 4w ~ w - ~ @ n ( w ) - -  = - - a w e  ~ n ( W ) _  l -c* l w - - 2 a  ( 6 . 1 9 )  

a~(w)-2w '~ w-"~n(w)-2  

--1 t 1/cx \ Since @n(w)=c~ e~tE~ w), it follows from (4.137) in Lemma 8 that  0 > w - ~ n ( w ) >  
-- l /c* ! (w~)-'*~n(w') for ~,~ < w < w .  The monotonicity of w-'~R~(w) then follows from 

(6.19). [] 

LEMMA 12. Let D(R)  denote the disc {Iwl<~R}, and let further DR and DR,n be 

the domains D R : = C \ ( R _ U D ( R ) )  and DR,n:=C\(R_UD(R)U[O,r with R>>.I 

and nEN.  As in (2.10) and (2.8) of Lemma 2 (and also in Lemma 11), we denote the 

minimal error E~+l+H,n(f~ ,  [0, 1]) by en, the extreme points of the error function en 
- -- 1 /a  by ~lnj, j = O , . . . , 2 n + 2 + [ a ] ,  and the transformed extreme points by y,~j=71,~jcn . For 

the function ~n defined in (6.2), for R ~ 1, and for no E N sufficiently large, the following 

assertions hold true: 

(i) We have 

Iq4~(w)[=�88 -c~ for we[2-1/~,e~l/~]+iO, n>>.no, (6.20) 

i - - 1 / a  and the function ICn(w)l is monotonically increasing in Len , c~). 
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(ii) The function On is analytic and different from zero in DR,n. It has analytic 

continuations across the intervals (2 -1/", e~ 1/") and (-oc,  O) from both sides, there exists 

a constant c<oc such that for n>~no we have 

dist((I)n(w),Ca(K,)) <~ clwl-" for wEH+\D(R) ,  
(6.21) 

dist(On(W), Cl (K, ) )  ~ clwl-" for wC H _ \ D ( R ) ,  

with Cl( . )  denoting the closure, and 

dist(~Pn(W),OK,) < clw]-" for w E ( - o o , - R ) + i O ,  
(6.22) 

dist((I)~(w),0R,) <~clwl-" for w e ( - c c , - R ) - i 0 .  

(iii) The constant c<c~ in (ii) can be chosen so that 

1 for ]w] = R, n >~ no. (6.23) ICn(W)I >1 C 

(iv) For log I(I)nl we have the representation 

log IOn(W)l = ~n(W)- f gn(z,x) df~(x)  for w e D n  (6.24) 

with a positive measure fin on [R, -U.~ e. ] that is defined by 

dft,,(x)= n~(x)  dx for xe[n ,e ;1 /"] ,  (6.25) 

and the function ~,, in (6.24) is the solution of a Dirichlet problem, i.e., it is harmonic 

in the domain DR and has boundary values 

~n(w) := l o g l ~ ( w ) l  for weODR. (6.26) 

(v) On the intervals [~nj, On,j+1] between consecutive extreme points ~nj and ~n,j+l, 
we have 

fitn([~nj,~n,j+l]): l if ~n.7 >~ R, (6.27) 

and consequently 

ft,([R,e~l/'~])= 2n+O(1) as n--+oo. (6.28) 

Proof. (i) Since we know from (6.8) in Lemma 11 that  Rn(w) 2 - 4 ~ 0  for all WEDR .... 

it follows that  (I)n is analytic in DR,n for R~>I and n E N  sufficiently large. Since from 
(6.5) and (6.6) we know that  Rn(w)2-4 has double zeros at ~nj, j = l ,  ..., 2n+l+[c~],  the 
function (I)  n has analytic continuations across the interval (2-1/ , ,  _-1/,~ ~,~ ) from both sides. 
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~ - - 1 / ~  Only at the last transformed extreme point ~,~,2,~+2+[~] =~n , the function R, , (w)2-4  

has a simple zero, and consequently the function ~n has an algebraic singularity there. 

From (6.5) we deduce that 

[Rn(w)"b ~Rn(W) 2 -4  [2 = Rn(w)2..b(4_Rn(W)2 ) = 4 (6.29) 

for we[2-1/%en1/~], which proves (6.20). From (6.9) and the assumption made after 

(6.2) with respect to the sign of the square root in the definition of On, we conclude 
-1/a that  both functions Rn and ~Pn are negative on the interval [ ~  , oc). From (6.2) we 

therefore get 

]r = l (]w-aRn(W)]+ ~w-2aRn(W)2-4w-2~ ) (6.30) 

. - - 1 / o  for wE(en ,c~). Since it has been proved in Lemma 11 that  Iw-aRn(w)l is strictly 
--1/c~ monotonically increasing for w �9 [s , oc), the monotonicity of I On(w)l on (e~ i/s, oc) 

follows from (6.30). 

(ii) First, we derive estimates for I@nl that hold throughout DR for R~>I and n E N  

sufficiently large. These estimates will be derived in the upper half-plane H+; the corre- 

sponding results in the lower half-plane H_ then are a consequence of the symmetry of 

the function I ~ ]  with respect to R.  

Let the two sets D1 and D2 be defined as DI:={wEH+ IIR,~(w)l>2} and D2:= 

H+\D1. It follows immediately from (6.2) that  on the set D2 we have 

1 (2+v~)~< 5 
IOn(W)l < ~ 81wl-------- 7 for weD2. (6.31) 

To prove a corresponding estimate on D1 turns out to be more involved. Because 

of (4,13) in Lemma 6 the function R ,  is analytic in Dn for R~>I sufficiently large. 

The set D1 is open in H+. From (4.9) in Lemma 5 together with (6,1) it follows that  

IR,(x+iO)l >2 for x � 9  if R~>I is sufficiently large. Taking into consideration 

(6.7) in Lemma 11, it follows that the domain D I \ D ( R )  is contained in a single com- 

ponent of D1 if R>~I is chosen as in (6.7) and sufficiently large. From the assumption 

made after (6.2) with respect to the sign of the square root in the definition of �9 .... we 

then deduce that  

arg [ v /R, , (w)2-4  ] 0v v/Rn(w)2-4 
R,,(w) < ~ and Rn(w) <" v/~ (6.32) 

for w�9 It is immediate that for zeD(1) ,  we have I+ lx/T-L'~-z 2 -ll~<lzl 2. From 

(6.2), it then follows that 

r ) Rn(W)4w~, --IRn(w)I81wI~, ]~/1-4/Rn(w) 2 -11 
(6.33) 

4 1 
~< 8lwl~lR~(wDl - 8Iwl ~ for w�9 
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From (4.138) in Lemma 8 we know that  there exists c l<oc  such that  ]rn(W)i---- 
t /a  Irn(e, w)l<~cl for wEDR and R~>I sufficiently large. From (6.1) and (6.33) we therefore 

conclude that  there exist R ~> 1 and c2 <oc such that  

I~(~)-~(w)l< cn(~) R~(~) 4 ~ -  + 4~  ~) ~(w) 
1 I~,~(w)l+l c2 

~< 8 - ~ - ~  4iwi2~ <~ ~ for wEDI\D(R). 

(6.34) 

Since 0EKe,  and since from (4.138) in Lemma 8 we know that  ~n(w)ECI(Ka) for wE 

DRNH+ and R~>I sufficiently large, it follows from (6.31) and (6.34) that  there exists 

Ca < oc such that  

C3 
dist((I)n(w),Cl(K,)) ~< ~ for wEDRNH+, (6.35) 

where R is the same constant as that  used in (6.34), and the constant c 3 is the maximum 

of 5 and c2. (The closure of the open disc K~ has been denoted by Cl(K~) since the 

notation R~ has already been used to denote conjugation.) Since (I)n is a function of real 

type, a conjugated result of (6.35) holds in H_, which then proves (6.21). 

Above, we have seen that  ( - c c , - R ) C D 1  for R~>I sufficiently large. From (6.34) 

and relation (4.9) in Lemma 5, estimate (6.22) therefore follows. The constants c and R 

are the same as those in (6.34). 

(iii) Choose kl, k2 E { 1, ..., n +  1} so that  

R(I,,,,) :=  ?)'n,2k~-l+[~] ~ R < R(2,,0 := 7),,,2t,:- 1+[,~1 

for all n>~no, nEN. Because of tile limits (4.77), the limits (4.38) in Lemma 7, and the 

interlacing (2.16), such a choice is always possible. Because of (6.7) in Lemma 11, the 

ha l f  circles {wEH+IIwI=R(j,,)}, j = 1 , 2 ,  are contained in DI. For kl, k2EN and nEN 
sufficiently large, from (6.2) and (6.32) we deduce that  

i ( ~ ( w ) l  _ IR,~(w)........~ il  + ~ 1 _ 4 / R , ~ ( w ) 2  t >1 _ _  
81~l '~ 

IR,~(w)l 1 
8}wi,~ >1 ~liwi. (6.36) 

for Iwi=R(1,,~), and also for Iwi=R(2,n). Since (I)n is analytic and different from zero in 

the half-annulus {wEH+IR(1,n)< ]wl <R(2,n)}, it follows from (6.36), (6.20), (6.22) and 

R(1,n) sufficiently large that ]On(W)i>~l/4R(2,n) for wEH+, R(1,~)<IwI<R(2,,~). This 

conclusion proves (6.23). 
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(iv) Next, we prove (6.24). From definition (6.2) and identity (6.20) we deduce that  

0 
~yy log ]O~(w)] ----- l~ l~ 

i i = i ( n ~ + ~ ) ' ( w ) =  {Rn+ nnR" ~, , 
Rn+RV/~-4,-4 R , , + ~  \ ~)~,w) (6.37) 

iR',,(w) R'n(W) 
v / R , ( w ) 2 - 4  V / 4 - R , ( w )  2 

for W=x+iyE[2-1/~,~nl/~]+iO. From (6.5) and (6.6) in Lemma 11 we deduce that  at 

each transformed extreme point ~]nj in the open interval (2--1/~,~nl/~) both functions 

R~ and ~ have a simple zero. These two zeros cancel out in the quotient in 

the last term of (6.37). Consequently, this quotient has no sign changes in the interval 

(2 -1/~, e~l/~). From (6.9) in Lemma 11 and the assumptions made with respect to the 

sign of the square root in (6.2), it follows that  the last term of (6.37) is positive imaginary 
--1/a --1/c~ --1/c~ for w E (~n , zn + ~), 6 > 0 small. Since 4 - R 2 has a simple zero at sn = 7}n, 2n+2+ [~], 

it follows that  the last term of (6.37) is positive on (2 -1/~, ~ 1 / ~ ) + i 0 .  Hence, the measure 

t~n defined by 
R~(x) dx [R ~-l/,~l 

dftn(x):= 7rX/4_Rn(x)2, xEL , n ,, (6.38) 

is positive. The constant R~>I in (6.37) has to be chosen large enough so that  On is 

analytic and different from zero in Dn, and n E N  has to be so large that  ~,~I/~'>R. 
Let the function r in (6.24) be tile solution of the Dirichlet problem in DR with 

boundary values (6.26). The representation (6.24) follows from the Riesz representation 

theorem (cf. [18, Theorem II.3.1]) together with (6.37) and (6.38) in the same way, as this 

theorem has been applied for the proof of representation (5.34) in the proof of Lemma 9. 

The place of (5.29) is now taken by (6.37). Again, the Riesz decomposition theorem 

only ascertains that  there exists a representation of the form (6.24); the more specific 

assertion that  the measure fi,, in (6.24) is given by (6.38) can be shown with the help 

of the Green formula. Details of this method for recovering the defining measure from a 

potential has been proved in Theorem II.1.5 of [18] under conditions that  are applicable 

in the present situation. 

(v) For two adjacent transformed extreme points 7)nj, ~,~,j+l E [R, ~ 1/~], we have 

,~ ~ ~1 f'~'"J+'X/4_Rn(x) 2 R ~ n ( x )  dx -~1 f~2 dt ]hn([~nj , ,nj+d) = J,),,~ = ~/4_t-------- ~ -- 1, (6.39) 

which proves (6.27). In the last equality in (6.39) we have applied the substitution 

x~-~t :=Rn(x) and have used (6.6). Note that  between two adjacent transformed extreme 



296 H.R. STAHL 

points the function Rn is monotonic. Since the interval [2 -1/~, - 1 / (~  Ca J contains 2n+2+[c~] 
transformed extreme points ~)nj, the estimate (6.28) follows from (4.46) in Lamina 7 for 
any R>~I. [] 

LEMMA 13. Let the domain D R : = C \ ( R _ U D ( R ) )  and the minimal error en be 

defined as before in Lamina 12, let further n o � 9  be chosen so that en-lo/~> R.  Then the 

following assertions hold true for the function r  defined in (6.4): 
(i) For R>~ 1 sufficiently large, there exists a constant c<c~ such that 

Ilog I~n(W)I I < c lw l  - ~  

I log(14W ~ sin(Tree) ~.,(w) I)1 ~ c Iwl -'~ 

Ilog [~Pn(w)[ [ ~< c 

for we  [ - o ~ , - R ] + i 0 ,  (6.40) 

for w � 9  [R, c;1/ '~]+i0, (6.41) 

for Iw[ = R, (6.42) 

and n >~ no . 

(ii) For R>~ 1 sufficiently large, we have the representation 

log [g2n (w)[ = r  (w) - / g D ~  (z, x) d#n (x) for w �9 DR (6.43) 

and # ,  a measure of finite mass defined on [R,c~]. On [R, en 1/~] the measure #n is 

very similar to the positive measure fi,, in representation (6.24) of Lemma 12. With the 

same constant c as used in (6.40), (6.41) and (6.42), we have 

Ip , ( [R,x]) - f~ , ( [R,x]) l  ~ c x - "  for all x e  [R,--1/"~ ~n J~ (6.44) 

and further we have 

~tn([Xn,j--1, Xnj]) : f2n([Xn,j--1, ~nj])  : 1 (6.45) 

for j =j l , . . . ,  2 n + 2 +  [a], where 2nj, j = 1, ..., 2 n + 2 +  [a], are the zeros of the function Rn,  

which have been studied in Lemma 11, and the index Jl is determined by the condition 

] : n , j l _ l ~ R < x n j  1 . On [cn ,(:X:)] we have the estimate 

H~tn][e~l/~,o~)]] < 1 for n ~ n o ( R  ). (6.46) 

The function Cn in (6.43) is harmonic in the domain DR and has boundary values 

On(w) =log [~n(W)[ for wEODR. (6.47) 
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Proof. The proof of the lemma will be carried out in the upper half-plane H+ = 

{wcCiIm(w)~>0}. The transfer to the lower half-plane H_ is immediate. Since the 

Mhbius transform ~ defined in (6.3) is analytic in a neighborhood of the closed disc 

CI(K~), it follows from (6.21) in Lemma 12 that  ~n is analytic in H + \ ( D ~ u { ~ I / ~ } )  

for n E N  and R~>I sufficiently large. Note that  On and therefore also ~I3 n has analytic 

continuations across the three subintervals of R \  {0, 2-1/~, - 1/~ Cn ~. 

(i) The Mhbius transform r is a bijective map of the circle OK~ onto the unit 

circle cgD. Hence, from estimate (6.22) in Lemma 12, it follows that  there exists a 

constant c>0 such that  for n E N  and R ~ I  sufficiently large, we have 

I I~n(w)l -1  I<~ciw] - ~  f o r w E ( - c ~ , - R ] + i 0 .  (6.48) 

Since the same considerations can be repeated on H_, estimate (6.40) follows from (6.48). 

At the origin the M6bius transform ~b has the development 

w 1 . cos~ra 2 c~ 3+.. .  (6.49) 
r = sin ira +/(cos 7ra)w - sin ~r-----~ w - z  sin21r------ ~ w sin37r---- ~ . 

From definition (6.4) it therefore follows that  

Odn(W)= . 1 +n(W)jc_O(On(W)2 ) a s  O n ( w ) - - 4 0 .  ( 6 . 5 0 )  
s l n  7r(~ 

Using identity (6.20) of Lemma 12 together with (6.49), we deduce that there exists a 

constant c>0 such that  for n E N  and R>~I sufficiently large, we have 

[[k~n(w)4w'~sin~rc~[ - 11 <~ ciw[ - ~  for w e  [ R , ~ l / " ] + i O .  (6.51) 

The same inequality holds for w E [ R ,  -11~,1 cn j - i 0  since I~n] is symmetric with respect 

to R. Hence, estimate (6.41) follows from (6.51). 

From estimate (6.21) and (6.23) in Lemma 12, we deduce that  there exists a constant 

c l<oc  such that  for n E N  and R>~I sufficiently large we have 

1 
--  ~ [~n(w)l < cl for Iwl = n .  (6.52) 
C1 

The estimate (6.42) follows from (6.52). Note that  in (6.42) the radius R>~I is fixed. 

(ii) Repeating the analysis that  has been done for proving representation (6.24) in 

part (iv) of the proof of Lemma 12, or the derivation of representation (5.34) in the proof 

of Lemma 9, we again apply the Riesz representation theorem (cf. [18, Theorem II.3.1]) 

for a proof of representation (6.43). Using, as before, Theorem II.1.5 from [18], where 



298 H.R. STAHL 

a technique for recovering the defining measure from a potential has been described in 

detail, we see that  the measure ~n in representation (6.43) is given by 

1 ~_~logi~n(x+iy)idx for xe[R, oc), y- -+0 .  (6.53) d l~n ( X ) = -~ 

The harmonic function Cn in (6.43) is the solution of the Dirichlet problem in Dn 

with boundary values given by (6.47). 

From the Cauchy-Riemann differential equations we know that  

0 log[~n(X+iy)l = 0 arg~n(x+iy), w=x+iyeDRnH+. (6.54) 
-Yx 

In the simply-connected domain DRNH+, the functions a r g o n  and arg(I)n are well 

defined if we fix their value at one point. From (6.54), (6.53), (6.38) and (6.37), we 

deduce that  

#n([R, x]) = arg •n(RWiO)-arg l~n(xWiO), 
f~n([R,x])=arg~n(R+iO)-arg#2n(x+iO) for xE[R,snl/a]. (6.55) 

From the definition of the MSbius transform r in (6.3), it follows that 

arg ~ ,  (w) = arg Cn (w) - arg(sin 7ra +/(cos 7ra) ~n (w)) (6.56) 

for wEDRAH+. From (6.55), (6.56) and identity (6.20) in Lemma 12, it then further 

follows that 

I#,([R,x])-f~,([R,x]) I ~<sin-'((cot~ra)�88 -~) for xE[R, enl/"], (6.57) 

which proves (6.44). From (6.2) and the definition of the points knj, j = l ,  ..., 2n+2+[a] ,  

as the zeros of the function Rn, it follows that ~ n ( ~ n j ) 6 i R  for j = l , . . . , 2 n + 2 + [ a ] ,  

and therefore the identities (6.45) are a consequence of (6.55) and (6.56). 

The M6bius transform r maps the interval [-1, 1] C CI(K,)  onto tim semi-circle 

t sin(~r(~)- it2cos(~a) 
C~: r = sin2(Tra) +t2cos2(rr(~) with - 1 ~< t ~< 1. (6.58) 

By {a} we denote d is t (a ,N) .  If a E N +  1, then we have r  

From part (i) of Lemma 12 together with (6.9) and the definitions (6.1), (6.2) and 

(6.4), we know that  (I),~(x) is monotonically decreasing from 1 - ~ ~,~ to - 1 if x runs through 

the interval [r 1/~, cr from r 1/~ to +oc. Consequently, arg kOn (x) varies monotonically 
r - - 1 / a  if x runs through the interval [en , c~). The maximal span of this variation is 7r{a} < �89 

Hence, estimate (6.46) follows from (6.53) together with (6.54). [] 
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7. P r o o f  o f  T h e o r e m  1 

The proof of Theorem 1 is based on a comparison of the function log Ikonl studied in 

the last section with a special Green potential of the type introduced in Proposition 1 

of w Representation (6.43) of log Iko,~l in Lemma 13 contains a Green potential with 

defining measure Pn, its total mass IlPnll being approximately 2n. The comparison with 

the potential from Proposition 1 will allow us to derive an asymptotic estimate of gn that 

is precise enough to prove the limit (1.1) in Theorem 1. 

In Lemma 1 it has been shown that  there exists some freedom in choosing the 

numerator degree mn of the approximant r~. Instead of considering identical numerator 

and denominator degrees ran=n, as has been done in Theorem 1, it turns out that  the 

choice of numerator degrees mn=n+l+[c~] is more favorable, and this has indeed been 

the degree chosen in (2.4) and used throughout w167 3, 4 and 6. 

The two domains C \ R _  and DR:=C\(R_UD(R)) will frequently be used, where 

R > 0  is a fixed number chosen large enough so that  all the conclusions of Lemmas 13, 9 

and 10 hold true. In Proposition 1 of w the existence of a Green potential g(L,, C \ R _  ;. ) 

with special properties has been established. In in this proposition we choose for the 

constants c and x the values 

c:=log(4]sinTral) and x,~:=c~ 1/~ for n E N .  (7.1) 

We assume that  R > 4 e  -~'/'~ and n E N  so large that c~l/~>R. With the special choice 

(7.1) the defining measure of the Green potential in (5.7) of Proposition 1 is denoted 

by ~n. It is a positive measure supported on the interval [R, x,,.] = JR, c~ 1/(~]. Relation 

(5.7) in Proposition 1 then has the form 

g( o, c \ a _ ;  w) = lo (41sil,= l)+ log (7.2) 

for we[R,~nl/'~], and from (5.8) in Proposition 1, we know that the total mass II~nll of 

the measure v,~ in (7.2) satisfies the relation 

,!~I~ (u ~ + log c,.) -- log(4 Isin rc~l) + c~ log 4. (7.3) 

Note that because of e,,,--+0 as n-+co,  we have x,,--+cc as n-+r 

We consider the sum 

dn(w):=log[kO,(w)]+g(,n,C\R_;w) for w e C \ R _ ,  n E N ,  (7.4) 

and derive estimates for the functions dn o n  ODR. Since g(L,n,C\R_;w)=O for all 

w E ( - c c , 0 ) ,  we deduce from (7.4) and (6.40) in Lemma 13 that  there exists c < c c  such 

that  

Ida(w)] <clw[ - a  for w e  ( - c o , - R ) .  (7.5) 
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From (7.4), (7.2) and (6.41) in Lemma 13, we deduce that 

Idn(w)[<~clwl -~ for we[R,  cnl/~]. (7.6) 

The Green function gc \R_("  ,u), u E R + ,  is monotonic on circles around the origin, as 

has been discussed after (5.3) and follows directly from (5.2). Since ~n is a positive 

measure, it follows from the monotonicity that the Green potential g(Vn, C \ R _ ;  re it) is 

a monotonically decreasing function of I tl for It] E [0, 7r] and r > O. We deduce from (6.42) 

in Lemma 13 and the monotonicity that the constant c in (7.5) and (7.6) can be chosen 

so that 

Idn(w)] <.cR -~ for I w l = R .  (7.7) 

Putt ing the estimates (7.5), (7.6) and (7.7) together, we see that Idn(w)l<clwl -a for 

wEODR. 

The Green potential in representation (6.43) of Lemma 13 for log IkOn I and the Green 

potential g(~n, C \ R _ ; .  ) in (7.2) are defined in two different domains DR and C \ R _ .  

We will develop estimates for a comparison of both types of Green potentials. With 

representation (6.43) in Lemma 13, we rewrite (7.4) as 

J J (7.8) 
P 

~,~ (w) + ~,~ (w) + ] gc\R_ (w, u) g(~, - ~,, )(u) 
J 

with 
f 

5,~(w) := J [gc\R_ (w, u)--gD,(W, u)] d#,~(u). (7.9) 

LEMMA 14. Both functions ~.,~ and 5n in (7.8) are harmonic in DR, and there exists 

a constant c<oc such that for R > 0  sufficiently large we have 

r~n(w)l ~<cw -~176 for w/> R (7.10) 

and 

[hn(w)[ ~ cV/-I/w for w ~ R, (7.11) 

with So:--man(a, l - e )  for a given r  

Proof. From the definition of Ca in (6.47) of Lemma 13 and the estimates (6.40) 

and (6.42) in Lemma 13, we know that there exists a constant c l < c o  such that 

[~n(w)[ ~cl[wl-"  for wEODR and n E i .  (7.12) 
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By choosing, if necessary, a new constant cl, we can assume that  (7.12) holds also true 

with the exponent - a 0  instead of - a .  From part (ii) of Lemma 9 we know that  there 

exists a function h~ o which is harmonic and bounded in DR, and from (7.12) and (5.27) 

in Lemma 9 we deduce that  

I n(w)l <clh~o(W)~<c21wl -~~ for WEDR, (7.13) 

where c2<oc is an appropriately chosen constant. Assertion (7.10) follows from (7.13). 

Next, we come to the proof of (7.11). We shall show further down that  for R3>R 
there exists c3 < ec such that  

19(tZn[(R,c~), On; w)l < c3 for R < Iw[ • R3 and all h E N .  (7.14) 

The difference dR(.,U):=gc\R_(.,u)--gDR(.,U) is harmonic in Da and d R ( . , u ) =  

gC\R_(" ,u) on ODR for all uEDR. Hence, it follows from (7.9) and (7.14) that 

[~n(W)[~<C3 for [w[=R,  
(7.15) 

I~n(W)[ = 0  for wE [ -cx~, -n] ,  

for all nEN.  Since ~n is harmonic in DR, it follows from (7.15) and part (i) of Lemma 10 

that  for R4 > R there exists ca < oc such that 

[~n(W)l ~< c4Re(x/ lx /~)  for [w[/>R4, h E N .  (7.16) 

Estimate (7.11) then follows from (7.14) and (7.16). 

It remains to verify (7.14). For this purpose we investigate the behavior of the 

measure #n as n-~ec.  From (4.43) in Lemma 7 together with part (iv) of the same 
~ i 1/a lemma, we know that the sequence of functions rn=r~[En .), n E N ,  converges locally 

uniformly in DR to a function ~ that  is analytic in DR if R > 0  is chosen so large that 

81, ..., b[~] ED(R) .  With definition (6.1) it then further follows that  also the sequence Rn, 

nE N, converges to the function/~(w) :=w-~(4w 2~- 1) ~ ( w ) - w  -~  locally uniformly for 

wEDR. From the definitions (6.2) and (6.4) it follows that  the two sequences ~n and ~ ,  

n E N ,  converge to functions �9 and ~, respectively, uniformly on a neighborhood of every 

compact subset of [R,c~):ki0 as n--+ec. The limit functions ~ and ~ have analytic 

continuations across JR, o c) from both sides, but these continuations define different 

branches. All functions involved are analytic and different from zero in a neighborhood 

of compact subsets of [R, c~). 

From representation (6.53) of the measure #~ and the convergence of the func- 

tions �9 ~, n E N ,  we deduce that  the density functions 

dpn(x)_ 1 c3 
log[ff~n(X-'~iO)l, X E JR,  cK)), (7 .17)  

dx 7r Oy 
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of the measures ~t n converge uniformly on a neighborhood of every compact subset of 

[R, oc) to the density function 

d~(x____))_ 1 0 log l~(x+ i0 ) l ,  x e [ R , ~ ) ,  (7.18) 
dx 7r Oy 

of the limit measure # of the sequence of measures {Pn}. AS a uniform limit, the function 

q~ and its derivatives are bounded on compact subsets of [R, ec). From (7.18) we therefore 

know that the limit measure # has a bounded density function on JR, oc). Consequently, 

for any R5 > R there exists c5 < ec such that  

0 <~ Ig(p,~I(R,Rs), C \ R _ ;  w)I <~ g(IltnlI(R,Rs), C \ R - ;  w) 

/R 
a~ (7.19) 

= gC\Ft_(W,U) d]pnI(U)<~C5 f o r w E C a n d n E N .  

In the proof of Lemma 7, and there especially in the proof of (4.81), it has been 
2n+2+[o~] shown that the sequence of products 1-[j=l B(.  , Z n j ) ,  nCN, converges to the infinite 

product (4.79) locally uniformly in C as n--+cc, and the infinite product  (4.79) is not 

identically zero. With the same arguments as applied after (4.79), we conclude that  there 

exist c~ < oc and n6 E N such that 

2n+2+[c~] 

E 1 j=2+[~] ~ ~< c(~ for all n >/ha, (7.20) 

where tile znj, j - - l ,  ..., 2n+2+[(~], are the zeros that the function rn has in C \ R _ .  

From (7.20) and the estimates (6.44), the equalities (6.45), and estimate (6.46), it 

follows that  for any R7>R there exist constants CT,cs<oC and nTEN such that  the 

estimate 

/? 
2n+1+[(~] 

J=J~ (7.21) 

+ (1.5+ c~?-" ~-~  .... 2,,+2+[~,])gc\a-(w, ,~,2n+2+[,]) 

2n+1+[(~] 

< e7 
j =j7 - 1 

holds true for Iwl=R and n)n7 ,  where the 5:nj, j=JT, ..., 2n+2+[c~], are the zeros of the 

function R~ in DR,, the index j7 is determined by the condition &,,j~_ 1 ~< R7 < Xnjv, and 

the znj, j = j r -  1, ..., 2n+  1 + [c~], are zeros of the function ~n. 
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Indeed, the Green function gc\R_(w, u) is monotonically decreasing for uE [R, oc) 

and Iwi=R fixed, which implies the second inequality in (7.21). Note that it fol- 

lows from (6.44) and (6.45) in Lemma 13 that  lpnl([hc~,j_l,~c~j])<~l+chc~,~_ 1 for j =  

jT , . . . , 2n+ l+[a ] ,  and from (6.44), (6.45) and (6.46) that  [#,~l([~L,2~+2+i~),e~))<~ 

1.5+c~?~,~,~+2+[~ ]. The third inequality in (7.21) is a consequence of the inequalities 

s <hCnj, j = 2 ,  ..., 2 n + 2 +  [a], which follow from (6.14) and the discussion after (6.14). 

From the explicit definition of gc\R_(W,U) in (5.2), it is immediate that  there exists 

c9 < ec such that  

1 
O<~gc\R_(w,u) <C9"~ f o r  [wl = R  and uE(R, oo). (7.22) 

The last inequality in (7.21) follows from (7.22) and (7.20). Prom (7.19) and (7.21), then 

inequality (7.14) follows. [] 

After the completion of the proof of Lemma 14, we come back to the main stream of 

the proof of Theorem 1. From (7.8), (7.10), (7.11) and (7.6) we deduce that  there exists 

a constant c < ~ such that  

/ gc\R_(w,u) d(~n-#n)(u) ~<ciw[ -~~ for w E [ R , ~  lp~] (7.23) 

with ao := min (a, 1 7 - r  ~>0. From the estimate (7.23) we shall deduce a relation be- 

tween the two masses 11#,,11 and [[unl[ of the measures #7, and ~,~, respectively. Let 

tin denote the measure resulting from balayage of the nmasure #,~ out of the domain 

C \ ( R _ U [ R ,  e~l/'~]). From inequality (6.46) in Lemma 13 together with (5.5) and (5.6), 

we deduce that  

1 (7.24) I ll..ll-II , lll < 

Using the measure A~,) and the Green potential g~,,,(z)=g(A ..... C \ R _  ;z) introduced be- 

fore (5.26) in Lemma 9, it follows from (7.23) and identity (5.26) in Lemma 9 that 

dl,n(W) :=/go\a_(w, u) d(u,,-n,,- ca,,,,)(u) .< 0 (7.25) 

for wE JR, e~l/~]. Since the measure A,~ o is positive, the function dl,n is subharmonic in 

C\ (R_U[R,snW~]) .  We have dl,n(w)=O for wER_.  Hence, from (7.25) it follows that  

dl,~(w)~<0 for wEC\R_, which implies that  (O/Oy)dl,,~(x-t-iO)<~O for x E R _ .  Prom the 

Gauss theorem (cf. [18, Theorem II.l.1]) applied to C \ R _  it then follows that  

(Vn-~n-CAr , (7.26) 
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which implies with (7.24) that 

II~nll ~ I1~11+1+C11~oll �9 

Complementary to (7.25), we consider 

d2,n(w) : = / g D ( w ,  u) d(u~ -[~,~ +c,~o)(u ) ) 0 for we [R, e~l/~], 

where the estimate again follows from (7.23) and (5.26) in Lemma 9. 

then follows that  

('n--Pn + C~o)([R, ~ ) ) />  0, 

(7.27) 

which implies that 

(7.28) 

From (7.28), it 

(7.29) 

where (,9(1) denotes tile Landau symbol from (7.31). From (7.32) we deduce that 

Jirnoc (27r ~ + log en) = log t sin 7r(~ I + ( 1 + o~) log 4 (7.33) 

o r  

lim e,,e 2 ~ v ~  = 4 '+~ [sin 7ra[, (7.34) 

which proves (1.2) in Theorem 1. With this last conclusion the purpose of the paper is 

completed. 
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,!im (Tr V/2a(2n+ O(1)) + log r = log(4 Isin rra[) + a log 4, 

Prom (7.3) (or from (5.8) in Proposition 1) we know that (7.31) implies that 

(7.32) 

IIv,~ll =2n+(.9(1) as n--+oc. (7.31) 

1 _ C II/~c~o II. (7.30) II'nll /> II'nll-- ~ 

From Lemma 9 we know that II)~oll <oc .  Hence, we deduce from the relations (6.44) and 

(6.45) in Lemma 13, the relations (6.27) and (6.28) in Lemma 12, (7.27) and (7.30) that 
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