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1. I n t r o d u c t i o n  

We derive sharp bounds  oil the rate of relaxat ion to equi l ibr ium for two models of r andom 

collisions connected with the Bo l t z ma nn  equat ion,  a~s well as several other  stochastic 

evolut ions of a related type. In fact, there is a fairly broad class of models to which 

the methods  used here may be applied. The  s ta r t ing  point  is a model  due to Mark 

Kac [10] of r andom energy-preserving "molecular collisions", and  its analysis  provides tile 

pa t t e rn  tot the analysis  of all of the models discussed here, inc luding a nlore physically 

realistic model of r andom energy- and  momentum-conse rv ing  collisions. However, since 
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the features of the Kac model have motivated tile method of analysis presented here, we 

begin by introducing it. 

The Kac model represents a system of N particles in one dimension evolving under 

a random collision mechanism. It is assumed that  the spatial distribution of the parti- 

cles is uniform, so that the state of the system is given by specifying the N velocities 

vl,v2, ...,VN. The random collision mechanism under which the state evolves is that  at 

random times Tj, a "pair collision" takes place in such a way that  the total energy 

N 

u= .1 (1.1) 
k = l  

is conserved. Since only a pair of one-dimensional velocities is involved in each collision, 

there are just two degrees of freedom active, and if the collisions were to conserve both 

energy and momentum, the only possible non-trivial result of a collision would be an 

exchange of the two velocities. Since Kac sought a model in which the distribution of 

the velocities would equilibriate over the energy surface specified by (1.1), he dropped 

the requirement of momentum conservation, and retained only energy conservation. 

With energy conservation being the only constraint on a pair collision, the kinemat- 

~* and vj, are ically possible "post-collisional" velocities when particles i and j collide, *i * 

of tile form 

v*(O)=vicos(O)+vjsin(O) and v;(O)=-visin(O)+vjcos(O) (1.2) 

where, of course, vi and vj are tile pre-collisional velocities, and 0E (-Tr, 7@ 

To sl)ecify the evolution, consider it first, in discrete time, collision by collision. Let 

v ( k )  = (v  I (]~), v 2 ( k )  . . . .  , v N ( k ) )  (1.3) 

denote the state of the system just after the kth collision. Evidently, ~'(k) is a random 

variable with values in s N - I ( v ~ ) ,  the sphere in R N of radius v ~ ,  where E is the 

energy. Let r be any continuous function oil S N-1 ( v ~ ) .  We will specify tim collision 

mechanism by giving a formula for computing tile conditional expectation of r  1)) 

given ~(k), which defines the one-step Markov transition operator Q through 

Qr = E{r  1)) I V(k) = ~}. (1.4) 

In the collision process to be modeled, the pair {i, j},  i<j,  of molecules that  collide 

is to be selected uniformly at random. Then the velocities vi and vj are updated by 
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choosing an angle 0, and letting (1.2) define the post-collisional velocities. Let t~(0) be a 

probability density oil the circle, i.e, 

/~ (0) dO = 1, (1.5) 
7 r  

and take 0 to be tile probability density for the outcome that the collision results in 

post-collisional velocities v* (0) and v~(0) as in (1.2). 

The one-step transition operator Q for this process is defined as follows: For any 

continuons function r on S N-1 (v/-E), 

Qr = e(0) r v; (o), ..., vj (o),..., vN) dO. (1.6) 
i<j re 

Ill terms of the process described above, E { O ( 7 ( k + l ) ) [ 7 ( k ) = 7 }  = 0 r  

The expression for Q can be simplified if for each i < j  we let Rij(O) denote the 

rotation in R N that  induces a clockwise rotation in the (vi, vj)-plane through an angle 0, 

and fixes the orthogonal complement of this plane. Then Ri,j  (0)7 is the post-collisional 

velocity vector corresponding to the pre-collisional velocity vector 7, and (1.6) can t)e 

rewritten as 

Qr = e(0) (0) 7) dO. (1.7) 
"i / - -  

Let 7-lg, E denote tile Hilbert space of square-integrahle flmctions r oll the st)here 

s N - I ( x / ~ )  equipped with tile normalized uniform measure dpN. Let ( . , .  > and [1. II 

denote the inner product and norm on 7-IN.E. It is clear from (1.7) that  Q is an average 

over isometries oil 7-lg, E, and hence is a contraction, i.e., [[Q0]]2~< 110115, and it is (:lear 

that  Q I = I .  

We now require that 0 (0 )=0( -0 ) ,  so that  Q is self-adjoint on 7-lg, E. We also require 

that  0 be continuous and strictly positive at 0=0.  The reason for this is that for any 

~)EHN, E, 

2((r162 Q0>) = (N)  -1 i<Nj /_~ [J~s- (,J-E) (r162 E 0(0) N 1 dO. 

Under our conditions, the right-hand side vanishes if and only if for every sufficiently 

small 0, r162 for almost every 7. This happens if and only if r is constant. 

Thus, (r162162 if and only if r is constant, so that 1 is an eigenvalue of Q of 

multiplicity one. This can be summarized in this context by saying that  Q is ergodic. 
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Because Q is self-adjoint, it updates the probability density fk for ~ as well. Indeed, 

for any test function r 

f s  r162162 N-I(v~) 

~- / 0(~) Qfk (~) d/aN, 
dS 

which of course means that  Qfk=fk+l. 
One passes to a continuous time description by letting the waiting times between 

collisions become continuously distributed random variables. To obtain a Markov process, 

the distribution of these waiting times must be memoryless, and hence exponential. 

Therefore, fix some parameter 7-g >0, and define the Markovian semigroup Gt, t>O, by 

Gtf = e -t/~N ~ (t/TN)a Qaf = e(t/,N)(Q-l)f, 
k! 

k = 0  

which gives the evolution of the probability density for ~, continuously in the time t. 

It remains to specify the dependence of TN on N. Let T (N) denote the waiting 

time between collisions in the N-particle model. Suppose that  the waiting time for any 

given particle to undergo a collision is independent of N, which corresponds roughly 

to adjusting tile size of tile container with N so that the particle density remains con- 

s t int .  Suppose also that these waiting times are all independent of one another, which 

should be more or less reasonable for a gas of many particles. (See Kac [10] for fur- 

ther discussion.) Then we would have Pr{T~N)>t}=Pr{T~l)>t} N, or e - t /~=e  -Nt/~l. 
That  is, 7N=T1/N. Changing the time scale, we put T1=1 and hence TN=I/N. There- 

fore, the semigroup is given by Gt=e tN(Q-I). For any initial probability density f0, 

f(~, t)=Gtfo(~) solves Kac's master equation 

O f(~, t) = N(Q-I)f('-5, t), (1.8) 

which is the evolution equation for the model in so far as we are concerned with the prob- 

ability density f (~,  t) for the velocities at time t, and not the velocities ~(t) themselves, 

which are random variables. 

Because of the ergodicity, if f0 is any initial probability density for the process, it 

is clear that  l i m t _ ~  Gtfo = 1. The question is how fast this relaxation to the invariant 

density 1 occurs. To quantify this, define 

)~N ---- sup{(f,  Q f> I Ilfl12 = 1, (f,  1) = 0}. (1.9) 
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Since Q is a self-adjoint contraction, its spectrum necessarily lies in the interval [-1, 1]. 

Also, since Q commutes with the unitary change of scale that relates ~-[N,E and ~-[N,E' for 

two different values, E and E', of the energy, the spectrum of Q, and A N in particular, 

is independent of E. 

We have already observed that  1 is an eigenvalue of Q of multiplicity one, so AN ~< 1. 

If AN<l, there is a "gap" in the spectrum of Q. The spectral gap for N ( Q - I )  is then 

AN = N(1--AN). (1.10) 

This quantity is of interest in quantifying the rate of relaxation of Gtfo to 1 since for any 

square-integrable initial probability density f0, as an easy consequence of the spectral 

theorem, 

IIGt(fo- l )tl2 < e - tan I l fo-  lll2- 

Mark Kac, who introduced this operator and process [10] in 1956, observed that  for 

each fixed l, the subspace of spherical harmonics of degree I in S N-1 ( v ~ )  is an invariant 

subspace under Q. (This is especially clear from (1.7) since if r is in such a subspace, 

then so is r  for each pair i< j  and each angle 0.) Since each of these subspaces is 

finite-dimensional, Q has a pure point spectrum. He remarks that it is not even evident 

that  A N >0 for all N, much less that there is a lower bound independent of N. (As 

Diaconis and Saloff-Coste noted in [5], Q is not compact.) He nonetheless conjectured 

that  

lira inf A N  = C > 0. (1.11) 
N--~ cr 

Kac's conjecture in this form, for the special case t~= 1/27r considered explicitly by 

Kac, was recently proved by Janvresse [9] using Yau's martingale inethod [13], [14]. Her 

proof gives no information on tile value of C. One result, already proved in [3], is that 

in the case t~=l/27r, 
1 N + 2  

AN--  2 N - l '  (1.12) 

and hence 
1 

lira inf AN = - .  (1.13) 
N-~or 2 

The result (1.12) has also been obtained by Maslen in unpublished work, using en- 

tirely different methods.(l) Some account of Maslen's results can be found in a paper [5] 

by Diaconis and Saloff-Coste in which it is shown that  AN ~ C/N 2 for the Kac model as 

well as a natural generalization of it in which the sphere S N-1 is replaced by the special 

(1) Note added in proof. Since th is  paper  was wr i t ten ,  the  work of Maslen  has  been wr i t t en  up and  
publ i shed  in: Maslen,  D. K., T h e  eigenvalues of  Kac ' s  m a s t e r  equat ion .  Math. Z., 243 (2003), 291-331.  
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orthogonal group SO(N). Our method gives exact results in this case too, as we shall 

see. 

Maslen's approach was based on tile representation ttleory of the group SO(N), and 

does not seem to extend to more general cases, such as a non-uniform density ~(0), or to 

momentum-conserving collisions. According to his thesis advisor, Persi Diaconis, this is 

one reason it was never published. We will comment further on the relation of our paper 

to previous work, especially [9], [13], [14] and [5], in w where we carry out our analysis 

of tile Kac model, and in w where we analyze the SO( N )-variant of the Kac model. 

Kac did not explicitly conjecture (1.13), only (1.11), though he discussed motivations 

for his conjecture that do suggest (1.13). In particular, he was motivated by a connection 

between the many-particle evolution described by the master equation (1.8), and a model 

Boltzmann equation, and he did rigorously establish the following connection: For each 

integer k, l<<.k<<.N, let 7r~: be the kth coordinate projection on S N-~ ( V ~ ) ;  i.e., 

7rk ( V l ,  V2, . . . ,  V N )  = V k.  (1.14) 

Given a probability density f on S N-~ (v/-E), define its kth single-particle marginal 

with rcspcct to Lebcsguc measure, [f](a:)(v), by 

for all continuous flmctions 4) on [ - v ~ ,  v /E l .  It is natural to consider initial data f0 for 

the Kac master equation that is invariant raider pernmtation of particle coordinates since 

this property is preserved by the evolution. For such a density f0, [f0]~,= [f0]~ for all k. 

Because [Gtf0], contains much of the information in Gtfo that is physically relevant, it 

is natural to seek an equation for [Gtfo]l. 
Kac showed that with E = N  (or just I)rot)ortional to N) ,  if a sequence of initial 

densities f(l N) on b'N-L(v:-E) satisfies a certain symmetry and independence property 

that he called "mole(:ular chaos", and if furthermore 

g(v) = aim [LIN)L(v) 
N ---+ cy.z 

exists in L l (R), then so does g(v, t )= l imN-4~  [Gtf(IN)(v)]l , and g(v, t) satisfies the Kac 

equation 

. ) ~g(v,t)=2 [g(v*(O),t)g(w*(O),t)-g(v,t)g(w,t)]dw e(O)dO. (1.15) 
"It 

The fact that there is a quadratic non-linearity on the right is due to the fact that  the 

underlying many-particle dynamics is generated by pair collisions. The factor of 2 on 
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the right-hand side comes from the 2 in the the normalization factor 2IN(N-1)  in the 

definition of Q, (1.6). The N is absorbed by the factor of N in N(Q- I ) ,  the generator 

of Gt, and the N - 1  is absorbed by summing over all the N - 1  particles with which the 

first particle can collide. 

Kac's limit theorem provides a direct link between tlle linear but many-particle 

master equation (1.8) and the one-variable but non-linear Kac equation (1.15). Kac's 

proposal was that  one should be able to obtain quantitative results about the behavior 

of the master equation, and from these, deduce quantitative results on the Kac equa- 

tion (1.15). Specifically, he was concerned with following this route to results on the rate 

of relaxation to equilibrium for solutions of (1.15). 

It is easy to see that for any /3>0 ,  

m z ( v )  = ~/-~- e -f~v:/2 
V 2T: 

(1.16) 

is a steady-state solution of the Kac equation (1.15). (In tile context of kinetic theory, the 

Gaussian density in (1.16) is known as the Maxwellian density with temperature  1/~.) 

Indeed, as is well known, rnf~ is the limit of the single-particle marginal o n  SN-I(~-~) 
as N tends to infinity. Kac wanted to show that  for any reasonable initial data  g(v), the 

Kac equation had a sohltion g(v, t) with l i m t _ ~  g(v, t)= mf~ (v) where fR v2g(v) dv = 1/~. 
Indeed, he wanted to show that  this convergence took place exponentially fast, and he 

boldly conjectured that one could prove this exponential convergence for tile master 

equation from whence (1.15) came. At the time Kac wrote his paper, very little was 

known about the nou-linear Boltzmann equation, Carlexnan's 1933 paper [2] being one of 

the few mathematical studies. Given the difficulties inherent in dealing directly with the 

non-linear equation, his suggested approach via the master equation was well motivated, 

though unfortunately he (lid not succeed himself in obtaining quantitative relaxation 

estimates by this route, and other workers choose to directly investigate the non-linear 

equation. 

Evidence for the conjectured exponential convergence came from linearizing the Kac 

equation about the steady-state solutions mrs. The resulting generator of the linearized 

Kac equation can be written in terms of averages of Mehler kernels, as shown in [12], 

and so all of the eigenfimctions are Hermite polynomials (as Kac had observed in w 

of [10]). The eigenvahle corresponding to the nth-degree Hermite polynomial, n~>l, is 

then readily worked out to be (see [12]) 

2 (sinn(O)+cosn(O)-l)o(O)dO. (1.17) 
7r 

The eigenvalue is zero for n=2 ,  corresponding to conservation of energy. As we have 

indicated, Kac actually only considered the special case in which ~ was uniform; i.e., 



E.A. CARLEN, M.C. CARVALHO AND M. LOSS 

Lo(0)=l/27r. In this case, the eigenvalues are - 2  for n odd, and are monotonically de- 

creasing toward - 2  for n even. Thus, the eigenvalue corresponding to the fourth-degree 

Hermite polynomial determines the spectral gap for the linearization of (1.15) in this 

1 is consis tent  with (1.13), and bears out Kac ' s  in tu i t ion  case. The fac t  that this gap is -~ 

that  there is a close quanti tat ive connect ion between his mas t e r  equation (1.8) and the 

Kac  equation (1.15). 

In fact, as we shall see, in the case considered by Kac and some other cases as well, 

~N is an eigenvalue of Q of multiplicity one, and Q f N ( ~ ) = ~ N f N ( ~ )  for 

N 

fN(V, , . . . ,VN)=E(V4--(1 ,V4)) .  
j = l  

(1.18) 

If E = N  and gN is defined by PI(fN)=gNoTrN, then 

Nli mc~ gN (V) : ~7tl (V) h(4  ) ( v ) ,  (1.19) 

where h(4) is the fourth-degree Hermite polynomial for the s tandard unit variance Gauss- 

ian measure on R. (This is fairly evident, but will be fully evident in view of the formula 

for P1 given in w Thus, the correspondence between the spectral gaps extends to a 

correspondence between the eigenflmctions too. 

McKean [12] and Gri inbaum [7], [8] have further investigated these issues. In partic- 

ular, McKean conjectured that  reasonable solutions of (1.15) should relax to tile Gaussian 

stat ionary solutions of the same energy in L l at the exponential rate e - t / 2  corresponding 

to the spectral gap in tile linearized equation. He proved this for nice initial data  but 

with exponential rate e -t': where c is an explicit constant, but about  an order of magni- 

l Later, in [4] this result was established with almost the sharp rate, tude smaller than ~. 

i.e., e -[1/2-e]t for nice initial data. See the papers for precise statements,  but note that  

all of this is in the ease 0=1/27r. (The results are stated differently in [12] and [4], which 

use a different t ime scale so that  the factor of 2 in (1.15) is absent.) 

If one expects that, the linearized version of (1.15) is a good guide to the behavior 

solutions of (1.15), one might guess that  (1.17) provides a good guide to the relaxation 

properties of solutions of (1.15). This would suggest that  in the case in which Q is uniform, 

the slowest mode of relaxation corresponds to initial data  of the form m~ (v)(1 +eh(4)(v)) 

for small e. 

If  one filrther believed that  the non-linear Kac equation (1.15) is a good guide to 

behavior of solutions of Kac 's  master  equation, then one might guess that  the slowest 

mode of relaxation for the master  equation is a symmetric  fourth-degree polynomial, 

at least for uniform L0. Such a line of reasoning suggests (1.18) as a candidate for the 
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slowest mode of relaxation for Kac's master equation. This turns out to be correct, as we 

have indicated, and this shows how well-constructed the Kac model is: A great deal of 

information is washed out and lost whenever one passes from the N-particle distribution 

function f (~)  to its single-particle marginal distribution g(v). In general, there would be 

no reason to expect that  the slowest mode of decay for the master equation would not 

be lost in passing to the marginal. Here, it nevertheless is true. 

Indeed, it is easy to see that  fN is in fact an eigenfunction of Q. We shall see 

that  for many choices of co, fg  is the optimizer in (1.9). This correspondence between 

Kac's master equation (1.8) and the linearized version of the Kac equation (1.15) is a 

full vindication of Kac's conjectures. It also shows that  his model is free of extraneous 

detail at the microscopic level; what happens at the microscopic level described by the 

master equation is what happens at the level described by (1.15). 

We conclude the introduction by briefly stating our results for the Kac model itself, 

and then describing the structure of the paper. The key result in our analysis of the Kac 

model is the following theorem which reduces the variational problem (1.9) to a much 

simpler, purely geometric, one-dimensional problem: 

THEOREM 1.1. For all N>~3, 

AN >1 (1 - -xN)AN-1  (1.20) 

where 
{ (g~176 l gEC(R), (go~rl,l>=O }. (1.21) 

XN = sup IIg~ 112 

Notice first of all that  g is a function of a single variable-- in contrast to (1.9), (1.21) 

is a one-dimensional variational problem. Also notice that  (1.21) doesn't  involve co, or 

otherwise directly refer to Q. 

The bound in Theorem 1.1 implies that  l imin fN~AN~>l - I~=3(1- -x j )A2 .  S{nce 

the necessary and sufficient condition for the infinite product to be non-zero is that  

c~ 

E . j  < c~, (1.22) 
j = 3  

proving that  the Kac conjecture in the form (1.11) is reduced to the problem of proving 

the summability of xj  and the strict positivity of A2. 

The second part is easy, since for two particles, Q is an operator on functions on S 1. 

Indeed, 

1i;i; <f' Qf> = ~ ~r ,f(r162 dO de, (1.23) 
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and writing this in terms of Fourier series leads to 

k#O t J-~ 

By the Riemann-Lebesgue lemma, A2 < 1, and hence A2 = 2 (1 - A2) > 0. 

As for the summabil i ty  of •N, note from (1.21) that  XN is a measure of the de- 

pendence of the coordinate functions on the sphere. Note also that ,  like AN, XN is 

independent of E.  This is for the exact same reason: K commutes with the unitary 

operator effecting a change of scale. For present purposes, choose E = N  so that  the 

marginal distribution of (vl, v2) induced by #N is 

]sN-3] (1 V2+V2\(N-4)/2 
NiSN-'I  1~  2) dvldV2. 

As N tends to infinity, this tends to 

1 e_(Vf+.,,~)/2 dvl dv2, 
27~ 

and under this limiting measure, the two coordinate functions Vl and v2 are independent. 

Hence for any admissible trial function g in (1.21), 

lim (gorl,goTr2) = 1 I R  N~,:x) ~ .:,g(vl )g(v2)e -(v~ +v~)/2 dvl dv2 

1 1 (1.25) = fRg(v2)e-v / dv2 

= lim (goTq,1){gor2 ,1}=0,  

which implies tha t  l i m N - ~  XN = 0, without, however, showing how fast. This is the last 

t ime in our discussion that  it is of use to choose E proportional to N. Henceforth we set 
E = I .  

In fact, it is not hard to compute xN exactly: 

THEOREM 1.2. For all N>~3, 

3 
x N - N 2 _ l .  

Since this is summable,  (1.22) holds, and so the Kac conjecture is proved. But  

Theorem 1.2 tells us much more than just  (1.22). One can exactly solve the recurrence 

relation in Theorem 1 with XN=3/(N 2-1). As we shall see, this leads to 
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THEOREM 1.3. For all N ~ 2 ,  

1-,k2 N + 2  
AN/> T N - l "  (1.26) 

Moreover, this result is sharp for the case considered by Kac, i.e., constant density Q, in 

which case A2=0, and more generally whenever 

J; /; 6(0) cos(k0) d0 ~< 6(8) cos(40) dO (1.27) 
71" 7r 

for all k~O. In all of these cases, )t N has multiplicity one, and the corresponding eigen- 

function is 
N 

v 4 - (  k, 1/)" (1.28) 
k = l  

The division of our results on the original Kac model into Theorems 1.1, 1.2 and 1.3 

of course reflects the steps in the method by which they are obtained. However, it also 

reflects a point of physical relevance, namely that ~N is completely independent of 6(8). 

The complicated details of the collision mechanism do not enter into xN. Rather, they 

enter our estimate for AN only through the value of the two-particle gap A2 =2(1 -As) .  

Once this is computed, there is a purely geometric relation between the values of the 

gap for different values of N. The fact that  there should be such a simple and purely 

geometric relation between the values of the gap for different values of N is a very 

interesting feature of the Kac model which expresses the strong sense in which it is a 

binary collision model. 

The paper is organized as follows: In w we identify the general features of the 

Kac model that  enable us to prove Theorem 1.1. We then introduce the notion of a 

Kac system, which embodies these features, and prove the results that lead to analogs 

of Theorem 1.1 for general Kac systems. This provides a convenient framework for the 

analysis of a number of models, as we illustrate in the next four sections. w is devoted to 

the Kac model itself, and contains the proofs of Theorems 1.1, 1.2 and 1.3. w is devoted 

to the analysis of the master equation for physical, three-dimensional, momentum- and 

energy-conserving Boltzmann collisions. w is devoted to a shuffling model that  has been 

studied in full detail by Diaconis and Shahshahani [6]. We include this here because 

it can be viewed as the Kac model with momentum conservation, and is very simple. 

(We hasten to add that Diaconis and Shahshahani do much more for this model than 

compute the spectral gap.) Then in w we treat  another generalization of the Kac model, 

this time in the direction of greater complexity: The SO( N )-model of Maslen, Diaconis 

and Saloff-Coste [5]. Finally, in w we show that  the quartic eigenfunction (1.18) is indeed 

the gap eigenfunction for a wide range of non-uniform densities p that  violate (1.27). 
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2. G e n e r a l  f ea tures  

The Kac model introduced in the previous section has the following general features tha t  

are shared by all of the models discussed here: 

Feature 1. For each N >  1 there is measure space (XN, SN, #N), with #N a probabil- 

ity measure, on which there is a measure-preserving action of HN, the symmetric  group 

on N letters. We denote 

7-lg = L2(Xg, #g ). (2.1) 

We think of XN as the "N-part icle  phase space" or "N-part icle s tate  space", and 

the action of HN as representing "exchange of particles". In the Kac model, XN is S N-l,  

SN is the Borel field, and PN is the rotation-invariant probabil i ty measure on S N- 1 = X N .  

A permutat ion aEHN acts on XN through 

O'(Vl,  V2, . . . ,  VN) = (Va( i )  , Va(2),'", Va(N))" 

Feature 2. There is another measure space (YN, TN, VN) and there are measurable 

maps 7rj: XN-+YN for j = l ,  2, ..., N such that  for all a E H N ,  and each j ,  

r j  oa = ra(j) .  (2.2) 

Moreover, for each j ,  and all A E TN, 

tt N (A) = #N (~'j- 1 (A)). (2.3) 

We denote 

]~N = L2(YN, IZN)" (2.4) 

We think of r j  (x) as giving the "state of the j t h  particle when the N-part icle system 

is in state x". For example, in the Kac model, we take 

7rj(vl, v2, ..., Vg) ---- vj E [--1, 1], (2.5) 

and thus we take YN=[--1, 1]. In this case, YN does not depend on N,  and it may seem 

strange to allow the single-particle state space itself to depend on N. However, the 

methods we use here permit  this generality, and some of the examples considered here 

require it. 

Notice tha t  once YN and the 7rj are given, vg is specified through (2.3). In the Kac 

model we therefore have 

N--2  
VN(V) = IS------~ (1-~  2~(N-3)/2 d~ (2.6) 

i S 2 v _ , l  , -  _ , - ~ .  
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Feature 3. For each N~>3 and each j = l , 2  ...,N, there is a map 

Oj:XN-1XYN"-~ XN (2.7) 

so that  

~3 (r (x, y)) = y (2.8) 

for all j =  1, ..., N and all (x, y)E XN-1 x YN. Moreover, Or has the property that  for all 

AES~, 
[ N-1 = (d),  (2.O) 

or equivalently, for all bounded measurable functions f on XN, all 1 <~j<~N, 

fxNf d#N = ~ [ fxN_ f ( r y) ) d#N_l (X) ] d~N(y ). (2.10) 

In the Kac model case, for any ?)EXN_I=S N-2 and any VEYN=[--1, 1] we put 

CN(~,V) = ( lx/~-v2 ~,v),  (2.11) 

and ~)j=O'j,NO~)N, where gj, N is the pair permutation interchanging j and N. In this 

case, (2.9) is easily verified. 

So far, none of the features we have considered involve the dynamics. That  is, the 

first three features are purely kinematical. The fourth feature brings in the Markov 

transition operator Q. We do not make the dependence of Q on N explicit in our 

notation, since this will always be clear from the context. 

Feature 4. For each N ~>2, there is a self-adjoint and positivity-preserving operator 

Q on 7-/iv such that  Q1=1. These operators are related to one another by the following: 

For each N >/3, each j = 1, 2 .... , N, and each square-integrable function f on XN, 

(f ' Qf)nN = ~ (f J,Y' Qf J,u)nN_, dVN(y) 
5 =  1 zN 

where for each j and each yEYN, 

(2.12) 

fj,y(" ) = f ( r  Y)). (2.13) 

It is easily verified that  the Kac model possesses this feature. 
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Definition. A Kac system is a system of probability spaces ( X N , S N , # N )  and 

(YN, rig, UN) for N c N ,  N~>2, together with, for each N, maps 7rj and Cj, j=l ,  2, ..., N, 
a measure-preserving action of II  g on (XN, SN, #N), and a Markov transition operator 

Q on "]'{=L2(XN,#N), related to one another in such a way that  they possess all of the 

properties specified in Features 1 through 4 above. 

In analyzing the spectral gaps of the operators Q in Kac systems, certain other 

operators related to conditional expectations will play a central role, as indicated in the 

previous section. Suppose that  ( X N , S N , # N ) ,  (YN,'-['N, PN), T'j and Cj are defined and 

related as specified above. 

For each j=l ,  2, ..., N, let Pj be the orthogonal projection onto the subspace of 7-/N 

consisting of functions of the form goTrj for some gE/CN. In probabilistic language, Pjf is 

the conditional expectation of f given 7rj; i.e., Pjf = E {f  [Trj }, with the expectation taken 

according to PN. 
The features of a Kac system provide useful formulas for the Pj: With y=Trj(x) and 

fj,y given by (2.13), 

where g(Y) = l  fJ,Y(YC)d#N-l(YC)" (2.14) Pjf(x)=g(rcj(x)) 
JX N-I 

In terms of these projections, define 

N 
1 y~ pj, (2.15) P = ~  

j----1 

which is clearly a positive contraction on 7-/g. This operator plays a fundamental role in 

what follows. Define A N b y  

AN = sup{(f ,  Qf)nN I Nflln~ = 1 and (f,  1)7.tN = 0}, (2.16) 

and then 

A N = N ( 1 - A N ) .  

In this section we derive a recursion relation 

for all N)3, where 

(2.17) 

PN = sup{(f ,  Pf)nN I [ I f l l~N = 1 and (1, f ) n N = 0 } .  (2.18) 
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Now suppose that  all of the projections 7rj were independent random variables. In 

analytic terms this means that  PiP~ f= f f  dl.tN , i~j .  Then, evidently, the spectrum of 

P would be {0, 1/N, 1} and #N=I/N,  so that  

This would imply that  AN is a non-decreasing function of N, which is too much to 

hope for. However, to the extent that the rrj are almost independent, we may hope to 

find 
1 N - 1  

#~  ~< ~ + - - - ~ ' ~ g  (2.19) 

with "YN rapidly decreasing in N. Inserting (2.19) in (2.17), we obtain 

A N /> ( 1 - - ~ [ N ) A N _ I  . (2.20) 

As observed in the introduction, this will imply that  lim infN--,~ /~N >0 provided A2 >0 
O O  

and that  ~-':-j=3 "b <oc. 

The spectrum of P turns out to be closely related to the spectrum of a relatively 

simple operator K in the single-particle space K:N. Define a contraction K on ~N by 

(Kg)oZrN = PN(goTrN-1). (2.21) 

Note that Kg(y) is the conditional expectation of gozr2 given that  7rl=y. That  is, 

K9(y) -= E(goTrNITrN-1 = y}. (2.22) 

In concrete examples, it is easy to deduce an explicit formula for K from (2.21) and 

(2.14) or directly from (2.22). By the permutation symmetry, specifically the invariance 

of #u  and (2.2), 

Pi(goTrj)=(Kg)oTh for all iCj,. (2.23) 

Combining (2.13), (2.14) and (2.21), we obtain 

gg(y) = fxu_ a 9(Trg- 1 ( r  (X, Y))) dl-tg- 1 (~:), (2.24) 

which provides an explicit form for the operator K. For example, in the case of the Kac 

model we obtain 

Kg(v)= fx _ d.N-I(W) =/_'19 (V/I--v2 W ) d V N - l ( W )  

(2.25) 
tSu_31 f l  

- ]SN_21 J-]g(X/1--v ~ w)(1 -w2)(N-4)/Zdw 
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from (2.6) and (2.24). 

Since K is a contraction, its spectrum lies in [-1,  1]. Define numbers XN and/3N by 

XN = sup{(g, Kg)~ N I ]]gHK:N = 1 and (1, g)K:N = 0} (2.26) 

and 

- ( g -  1)/3N = inf{ (g, Kg)IcN I Ilgll~: N = 1}. (2.27) 

(The factor of - ( N - l )  in the definition of/~g is included with (2.19) in mind.) 

THEOREM 2.1. Given any Kac system, let P and K be defined by (2.15) and (2.21). 

Let #N, x~V and /3N be defined by (2.18), (2.26) and (2.27), respectively. 

Then, either pg- - - -0  or  

1 N - 1  1 N - 1  ~ ] 
#N = max ~ + - - - ~ X N ,  ~ + - - - ~ / ~ N j  ~. (2.28) 

In case XN>~N, and XN is an eigenvalue of K, then #N is an eigenvalue of P, and 

both eigenvalues have the same multiplicity. In fact, the map 

1 ) E hoTrj 
h ~  N ( I + ( N T _ I ) X N ) .  j=i 

(2.29) 

is an isometry from the x N-eigenspace of K in EN onto the #N-eigenspace of P in 7-lN. 

Proof. Since P is self-adjoint, it suffices to consider trial functions in the range of P. 

Therefore, suppose that f = P g ,  (g, 1)nN=O. Then with hj defined by Nhjozg=Pjg , 

j = 1... N, we have 
N 

f = ~ hoTrj. 
j = l  

A simple calculation yields 

N N 

j = l  i , j = l  
iCj 

N N 

= E (hy'(I-K)hj)pcN + E (hi'ghJ}pcN" 
j = l  i , j=l  

(2.30) 

Now introduce tz--N -1 ~ ; = 1  hj and mj =hi -[~. Evidently, 

N 

E mj =0.  
j = l  

(2.31) 
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T h e n  the  result  (2.30) can be wr i t t en  as 

N 

Ilfll~ = N <h, (1+ ( N -  1 ) K )  h)~:N + ~-'~ <mj, ( I -  K)mj>x: ~ . 
j = t  

T h e  easiest way to see this is to in t roduce the  vector  

h2 

h 

and the  ( N x N ) - b l o c k  mat r ices  I!t~...!] life...!] [! o o ... 
I K . . .  I I I . . .  I 0 . . .  

= K + ( I - K )  
: : "" ! ! i " ' .  : : "'. 

K K . . .  I . I  I I . . .  0 0 . . .  

Then,  in the  obvious sense of the  dot  product ,  (2.30) can be wr i t t en  [hl]  llhi] Ilfll~N= h2 . I K K h2 
iN i i i " 

h K K I h 

Because of (2.31), 

[!//..-!][il I ] I I . . .  m 2  
: : . .  ~ 0~ 

I I . . .  N 

and (2.32) easily follows. 

In the same way, one computes  t ha t  

hi  I K K hi 

h2 I K . . .  h2 
N ( f ,  Pf)7.tN = . : : ".. 

h K K . . .  h 

This  reduces to 

N 

N (f ,  Pf}7-tN = N(h, ( I  + ( N - 1 ) g ) 2 h } t c N  + E (mj ,  ( I - K ) 2 m j } t c N .  
j = l  

!] 

(2.32) 

(2.33) 

(2.34) 
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It is clear from (2.32) and (2.34) that {f, Pf)nN/llf]]~N equals the greater of 

sup{(g, (I+(N-1)K)g>tcN I IIg[[~: = 1 and (g, l>x:N=O } 

sup{(9,  (I-K)g)~N I Ilgll~N = 1}. 

The identity (2.28) follows easily from this as the definition of ~3N. The final assertion is 

now easily checked. [] 

The next theorem provides the recurrence (2.17). 

THEOREM 2.2. Given any Kac system, let P, PN and )k N be defined by (2.15), 

(2.18) and (2.16), respectively. Then 

)~N ~ /~N-I-~-(1-- ~ N - 1 ) ~ N  �9 (2.35) 

Moreover, there is equality in (2.35) if and only if the suprema in (2.16) and (2.18) are 

attained at a common function f g. 

Proof. We start from (2.12), taking any function fET"LN satisfying the conditions 

imposed in (2.16): 

I N l (f' Qf)7-t N = -N E (fJ,Y' QfJ,Y}7-tN-, db'N (Y) 

1 N / y  N = -N E ([fj ,u-Pjf(y)l+Pjf(y),  Q([fj,u-Pjf(y)]+Pjf(y))}nN_ ' duN(y) 
j = l  

= -~ ([Ij,u-PjI(y)J,Q[Ij,u-PjI(y)]}nN_I dVN(y) 
j=l 

N 

+ N E ~yNIP3I(Yll2 d'N(Y)' 

since each Pjf(y) is constant on XN-1 and so on 7-/N-1, QPjf(y)=Pjf(y),  and 

But 

([fJ,Y-PJf(Y)]' PJf(Y))nN-1 = O. 

-~ IP~f(Y)I2 d 'N(Y)  = ( f  , P f ) u N ,  
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Then 

AN =N(1-AN).  (2.37) 

AN t> (1--max{xN, I~N})AN_I 

for all N>~3, and hence for all N>2, 

N 

AN > 1-I(1-max{xj, 
j = 3  

Proof. This follows directly from (2.28), (2.35) and (2.37). 

We see that a sufficient condition for lim infg-~o~ AN >0 is A2 >0 and 

H (1--max{xN, ~g}) > 0. 
N = 3  

Assuming that ma0f{XN, ~N } < 1 for all N >3, this last condition is of course satisfied 

whenever 
oo 

max{xN, fiN} < C~. 
N = 3  

(2.38) 

(2.39) 

[] 

and hence 

{f, Qf}nN = -~ {[fJ,y-PJf(Y)], Q[fJ,y-PJf(Y)]}nN-1 dvN(y) + (f, Pf}nN" 

(2.36) 

Now since ([fj,y-Pjf(y)], 1}n~_ =0 for each y and j ,  

([fJ,y-PJf(Y)]' Q[fJ,y-PJf(Y)])nN_, < AN-1 tlfj ,y-Pjf(y) ll~N_~ 

= AN-l(llfa,y : II N_ --IPjf(Y) 

Averaging over j and integrating over y, 

1 N 

j--I ~XN 

From this and (2.36), (2.35) follows, since f itself is an admissible trial function for PN. 

The final statement is an evident consequence of the proof of (2.35). [] 

COROLLARY 2.3. With X N and ~g defined as in (2.26) and (2.27), define 
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3. A n a l y s i s  o f  t h e  K a c  m o d e l  

The Kac model, with ( X N , S N , P N )  being S N-1 equipped with its rotation-invariant 

probability measure and 

Qf(v l ,  v2, ..., VN ) = Q(O) f ( v l ,  v2, ..., v* (8), ..., v~ (8), ..., Vn) dO, 
i<j ~r 

was the basic motivating example for the definition of a Kac system made in the previous 

section, where the rest of the elements of the system, namely the action of IIN, the spaces 

(YN, TN, VN), and the maps lrj and Cj, have all been specified. 

All that  remains to be done before we apply the results of w is to compute the 

spectrum of K.  There are a number  of ways that  this can be done. The method presented 

here is the one tha t  most readily adapts  to the case of three-dimensional momentum-  

conserving collisions, which we treat  in the next section. In a later section we shall use 

a more group-theoretic approach when we discuss the generalization of the Kac walk 

to S O ( N ) .  

THEOREM 3.1. There is a complete orthonormal set {gn}, n>~O, of eigenfunctions 

of K where gn is a polynomial of degree n and the corresponding eigenvalue (~n is zero 

if n is odd, and if n=2k,  an is given by 

~:k = (-1)  k ISN-31 f "  I SN-2] Jo (1-s in2(0))  k sinN-3(O) dO. (3.1) 

In particular, 
1 

O~ 2 ----- 
N - I '  

3 
O~4 ---- N 2 _ l ,  

15 
a6 = - ( N -  1 ) ( N +  1 ) (N+3)  ' 

105 
as = ( N - 1 ) ( N + I ) ( N + 3 ) ( N + 5 )  

and la2k+~l<lC~2kl for all k. Hence for the Kac model, 

3 
max{ ~Iv , ~N } = XN -- N2---1" 

(3.2) 

Proof. We have already deduced an explicit form (2.25) for K in the previous section. 

We note tha t  by an obvious change of variable, we may rewrite it as 

// IsN-31 g (~ /1 - -v  2 cos(P)) sinN-3(O) dO. Kg(v) = ISN_21 
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The right-hand side is clearly an even function of v. The operator  K evidently annihilates 

all odd functions. Hence we may assume that  g is even. 

Further, since (lx/i-27--v2)2k=(1--v2)k is a polynomial of degree 2k in v, we see that  

the space of polynomials of degree 2n or less is invariant under K for all n. This implies 

that  the eigenvectors are even polynomials, and tha t  there is exactly one such eigenvector 

for each degree 2k. 

Now let g2k be the eigenvector that  is a polynomial of degree 2k, and let O~2k be the 

corresponding eigenvalue. We may normalize g2k so that  the leading coefficient is 1, and 

we then have 

g2k = v 2k + h(v) 

where h(v) is an even polynomial in v of degree no more than  2 k - 2 .  Thus 

O~2k v2k -'1-O~2kh(v) = ~'2kg2k =- Kg2k  = Kv2k + Kh(v) .  

This implies that  

Kv  2k = C~2av2k+ lower order. 

The identity (3.1) now follows directly from the formula for K,  the recurrence relation 

/0 /o sinn(0) dO = n -  1 sinn-2(0) dO, (3.3) 
n 

and the fact that  K I = I .  Observe that  the leading coefficient of v in ( l - v 2 )  a is ( - 1 )  k. 

The final, and crucial, point is the monotonicity 1~2k+~l<l~2kl for all k. Without  

such a monotonicity property, it can be very difficult to identify the spectral  gap even if 

one has an explicit formula for each of the eigenvalues. We will encounter such a problem 

in w Here, we are fortunate: 

(1-s in2(0))  k > (1-s in2(0))  k+l 

for all k and almost all 0. From this and (3.1), the assertion easily follows. [] 

It  is evident from (3.2) that ,  using the notation of Theorem 2.1, XN =3/(N 2-1) and 

~ N = I / ( N - 1 )  2. Hence, for N~>3, XN>ZN, and Theorems 1.1 and 1.2 are now proved. 

In order to prove Theorem 1.3, it is necessary to determine A2. But in (1.24) we 

have already determined A2, and since A 2 = 2 ( 1 - A 2 ) ,  it follows that  

A2----2 kr ~" f (1-cos(kO))o(O)dO}. 

By the Riemann-Lebesgue lemma, A2<l ,  and so in any case A~>0.  In the case Kac 

considered, Q is just the projection onto the constants and A2=0 so that  A2=2.  
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It remains to solve the recurrence relation (1.20). Notice that  

(g-2)(g+2)  (3.4) 
1--XN = ( N - 1 ) ( N + I ) '  

The product of these terms collapses and 

jl~3 ( j - 2 ) ( j + 2 )  _ 1 N + 2  (3.5) 
= ( j - 1 ) ( j + l )  4 N - 1  

It then follows from (2.39) of Corollary 2.3 that 

1 N + 2  A 1 N + 2 2 . 1  A " 1-A2 N + 2  
AN /> 4 ~ i - - 1  2 - - 4  2 N - 1  ( - 2 ) -  (3.6) 

Now, we inquire into the sharpness of this result. By Theorems 2.1 and 3.1, 

PfN = #g fg  (3.7) 

N if and only if fN has the form fg=~~j=l ggoTr and ggN=(3/(g2--1))gg. That is, (3.7) 

holds exactly when, up to a multiple, 

N 

fN(~)=E(v4--<I,v4)).  
j = l  

2 (When doing the computation, bear in mind that on the sphere, any multiple of ~--~-;=1 vj 

is a constant.) By the last part of Theorem 2.2, the bound obtained in Theorem 1.3 

can only be sharp if QfN =ANfm for each N. Hence it is natural to compute QfN. The 

result is contained in the next lemma. 

N 
LEMMA 3.2. F o r  fN(v)=Ej=l(V~-(1,v4)), 

where 

AN=N(1--AN) is no larger than (N+2)/2(N-1).  

27(N+2) ,~  t 
QfN = 1 N----(-~_~ j j N  (3.8) 

1 (  S~cos ) '7= ~ 1 -  (40)0(0) dO . (3.9) 

Proof. This is a straightforward calculation. [] 

Clearly, for the original Kac model, with Q uniform, "7= �88 and so (3.8) implies that  

Since for the original Kac model 
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As=0, this upper bound on A N coincides with the lower bound in (3.6), and hence (3.6) 

is sharp in this case. 

In fact, the upper bound on AN provided by Lemma 3.2 coincides with the lower 

bound in (3.6) whenever f2(vl, v2)=v4+v 4 -  3 is such that  

Q f2 = A2f2. (3.10) 

Writing vl=cos(O) and v2=sin(O), we have 

f(cos(O), sin(0)) = lcos(40). 

Hence (3.10) certainly holds whenever (1.27) holds. Finally, the fact that  under the con- 

dition (1.27), fN is, up to a multiple, the only eigenfunction of Q with eigenvalue /~N 

follows directly from Theorem 3.1, which says that  •Y has multiplicity one, and Theo- 

rem 2.1. This completes the proof of Theorem 1.3. 

We shall show in w of this paper that  actually in a wide range of circumstances, 

OfN = ~NfN 

for all N sufficiently large, even if this is false for, say, N =2 .  Thus in a great many 

cases Lemma 3.2 provides the precise value of AN, and hence AN, for large N. However, 

before returning to analyze the Kac model in this detail, we proceed to give several more 

examples of Kac systems. 

Having explained how our exact determination of the gap for Kac's original model 

works it is appropriate to compare this approach with Janvresse's [9] application of Yau's 

martingale method [13], [14] to the same problem. There are similarities between our 

analysis and Yau's method, in that  Yau's martingale method uses induction on N, corre- 

lation estimates, and the same conditional expectation operators P~. There are, however, 

significant differences, as indicated by the difference between Janvresse's estimate and 

our exact calculation. 

First, in Yau's method the spectrum of the operators Pj is estimated not in HN, E, 
but in the Hilbert space whose inner product  is (h, ( I - Q ) h ) ,  the so-called Dirichlet form 

space associated to Q. This means that  the details of the dynamics enter (through Q) 

at each stage of the induction, while in our approach purely geometric estimates, as 

described in Theorem 1.1, relate AN to AN_I.  

Second, Yau's method was designed to handle problems without the permutat ion 

symmetry that  is present in the class of models considered here. The method just de- 

scribed makes full use of this symmetry. As an example, using this symmetry, we need 

only to produce spectral estimates on P,  the average of the Pj. That  the inductive ar- 

gument presented here makes full use of this permutat ion symmetry is one source of its 

incisiveness in this class of problems. 
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4. Analys is  of  the  B o l t z m a n n  coll is ion mode l  

Consider now a pair of identical particles with velocities vi and v 5 in a 3. Now we 

will require that  the collisions conserve momentum as well as energy. These are four 

constraints on six variables, and hence the set of all kinematically possible collisions is 

two-dimensional. It may be identified with S 2 as follows: For any unit vector w in S 2, 

define 

= (4.1) 

(4.2) 

where b is a non-negative function on [-1,  1] so that  

2~r b(cos(0)) sin(0) dO = 1. 

The function b puts a weight on the choice of w so as to determine the relative likelihood 

of various scattering angles. This definition differs from the corresponding definition for 

the Kac model chiefly through the more complicated formulas (4.1) and (4.2) parame- 

terizing three-dimensional momentum-conserving collisions. We begin the analysis of 

this Boltzmann collision model by specifying the structure needed to display it as a Kac 

system. 

By choice of scales and coordinates, we may assume that  

N N 

ZlVj[2=I and ~ - ~ v j = O  (4.5) 
5=1 5=1 

(4.4) 

Now specify N velocities g= (v l ,  v2, ..., VN) before the collision with 

N N 

Ivjl 2 = E  and ~ v j  =0 .  (4.3) 
j----1 j----1 

The random collision mechanism is now that  we pick a pair i , j ,  i < j ,  uniformly at 

random, and then pick an w in S 2 at random, and the post-collisional velocities then 

become 

( ( v l ,  . . . ,  . . . ,  v ;  . . . ,  v N ) .  

We then define the one-step transition operator Q by 

QA )= 2 
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both hold initially, and hence for all time. Thus our s tate  space XN is the set of all 

vectors 

= (Vl,V2,...,VN) C R 3N 

satisfying the constraints in (4.5). We equip XN with its Borel field and the metric 

and uniform probability measure inherited from its natural  embedding in a 3N. The 

symmetric  group HN acts on XN as follows: for aEHN, 

c~(v, , v2, ..., VN ) = (v~(1), Vo(2), ..., V,(~)). 

This action is clearly measure preserving. We note that  XN is geometrically equivalent 

to the unit sphere S 3N-4 in a 3N-3, but apar t  from identifying normalization factors 

in our probability measures, this identification is not conducive to efficient computat ion 

because any embedding in R 3N-3 obscures the action of the symmetr ic  group. 

To identify the single-particle s tate  space YN, note tha t  

N - 1  (4.6) sup{IvN] 2] (V,,V2,... ,VN)EXN}-- N 

To see this, fix VN and observe that  ~--]N_~I vj = - - ~ ) N  due to the momentum constraint 

in (4.5). To maximize lVNI, we must minimize the energy in the first N - 1  particles. 

However, by convexity it is clear that  

N - 1  N - 1  

"j-----1 j = l  

is at tained at 
1 

( v l  , v 2 ,  . . . ,  v N - ,  ) = - ( v N ,  v N ,  . . . ,  ) ,  

which leads directly to (4.6). 

In short, the momentum constraint prevents all of the energy from belonging to a 

single particle, and so each vj lies in the ball of radius v / ( N - 1 ) / N  in R 3. (While this 

is true for N=2, this case is somewhat  special. For N=2, v2=-v l  and so Iv2l=l/v/-2, 

rather  than tv21 ~< l / v / 2 . )  

We could take YN to be the ball of radius v / ( N - 1 ) / N  in R 3, for N~>3, which would 

then depend on N. However, certain calculations will work out more simply if we rescale 

and take YN to be the unit ball in R 3, independent of N. Therefore, we define, for N>~3, 

YN = {veR31M < I} 
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and let TN be the corresponding Borel field. We take }I2 to be the unit sphere in R a. We 

are then led to define 7rj:XN----~YN by 

/ N ~1/2 ~j(Vl,V2,...,vN)= t,-fwf ) vj. (4.7) 

The measure ~'N is now determined through (2.3), but before deducing an explicit formula 

for it, we introduce the maps r XN-1 • YN---~XN, through which this formula is readily 

determined. 

Consider any fixed N~>3, so that XN-1 is non-empty. Fix a point 

~-~ (Wl ,  W2, ..., WN-1)  E X N - 1 ,  

and a point vEYN. In order that we have 

7rN(ON(W , V)) = Y, 

the Nth  component of Cg(~,  v) must be x / ( N -  1)/N v. Now observe that  for any ~ E R ,  

( 1 1 
V = ( V l , V 2 , . . . , V N ) - ~  OZW 1 -  ~ V , . . . , ~ ' W N - I  V, V 

v/N 2 - N  

satisfies Y~;=I vj = 0, and 
N 

I~'~1 ~ = ~ + l v l  ~, 
j=l  

since y~;___~l iwj l2=l  an(l y~.7__~ w j = 0 .  Therefore, define 

(~2(v) = 1 - Ivl  e (4.8) 

and 

C N ( ( W l ,  W 2 , . . . ,  WN-1) ,  V) 

( 1 1 I N ~ l  ) (4.9) 
= v, . . . ,~(v)wN-1 N~v/-f~-=N_g v, - - v ,  a(v)wl x/N2_N 

and we have that r For j = I , . . . , N - 1 ,  let aj, N be the pair per- 

mutation exchanging j and N, and define r176 We now show that with these 

definitions (2.9) holds, and in the process, obtain an explicit formula for ~'N. 
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LEMMA 4.1. For N ) 3 ,  the measure VN induced on YN through (2.3) for the Boltz- 

mann collision model is 

ISaN-71 (1-Iv12) (:~N-s)/~ dr. (4.10) 
dVN(V)- iSaN_4 I 

In the case N=2, v2 is the uniform probability measure on $2--Y2. Moreover, for these 

measures vg, and with Cj defined as above, (2.9) holds for the Boltzmann collision model 

for all N>~3. 

Proof. The measure PN is defined through the natural embedding of XN in R 3N, 

and hence it is advantageous to consider the tangent spaces to XN as subspaces 

of R 3N. Making this identification, a vector ~--(~1,~2, ...,~N) is tangent to XN at 7 =  

(Vl, v2, ..., VN) E XN provided 

N N 

E { j ' v J  = 0  and E ~ J  =0.  (4.11) 
j = l  j = l  

Likewise, a vec tor  ~----(~l ,?~2, . . . , / ]N_l)  i8 tangent to XN-1 at ~=(wt ,w2 ..... wN-1)E 

XN-~ provided 
N-1 N-1 

E rlj'wj=O and E rlj=O" (4.12) 
j = l  j = l  

And finally, it is clear that the tangent space at any point v of YN is R a. 

Now let 

(r T.(XN-1) xT.(YN) --~ T.(XN) 

be the tangent bundle map induced by 0g .  One easily computes tile derivatives and 

finds that for a tangent vector (~, 0) at (~, v), 

(r 0) = (~(~,)~, 0). (4.13) 

Likewise, for a tangent vector (0, u) at (~, v), 

(r  (0, U) 

= - - ~ w ~  ~ ~' ""' ~(v) w ~ _ , -  ,/N"~Yr---vu'-N u . 

Now let ~x be any vector of the type in (4.13), and let @ be any vector of the type 

in (4.14). Obviously 

((x, CY) = 0 ( 4 . 1 5 )  
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where the inner product is the standard inner product in R 3N. Moreover, 

( (x ,  ~x> = a2(v) (~, ~) (4.16) 

where the inner product on the right is the standard one in R 3N-3. The determinant of 

the matrix corresponding to the quadratic form qx given by 

is 

det(q X) = c~ ~(3N-7) (v) (4.17) 

since XN- 1 is ( 3 N -  7)-dimensional. Finally, 

(v .u)  2 <CY'CY>- +lull (4.18) 
and the determinant of the matrix corresponding to the quadratic form qy given by 

is 

V'Zt) 2 

]vl 2 1 
det(qy) = 1+ a~(v--- ~ = ~2(v ) . (4.19) 

Now let fin and fiN-1 denote the unnormalized measures on XN and XN-1 
given by the Riemannian structures induced by their natural Euclidean embeddings. If 

(xl .... ,X3N-7) is any set of coordinates for XN-1, and if (Yl,Y2,Y3) are the obvious 

Euclidean coordinates for YN, then these induce, through Cg, a system of coordinates 

on XN. (Since XN-1 is a sphere, up to a set of measure zero, one chart of coordinates 

suffices.) The volume element dftg(x,y) in these coordinates can now be expressed in 

terms of the volume element dft N_ l(X) using (4.15), (4.17) and (4.19): 

dft N (x, y) = c~ :~N-7 (v) d~t N_ 1 (X) ~ dy. 

Since we know that 

xNdftN = [SaN-4I, 

we easily deduce from this that for all continuous functions f on XN, 
Is3N-7 l /xN f(v)d y- IS: g-41 /.N [/XN-/~ dv" (4.20) 

Finally, suppose that  f has the form f=gorN for some continuous function g on YN, 
N>~3. Then evidently foON(~,  v)=g(v) everywhere on XN-1 • YN, and hence by the 

definition (2.3) and (4.20), 

~gdUN=/xNfd#N--]s3N-7]~g(v)(1--,v,2)(3N-S)/2dv.]S3N_4 , (4.21) 

Hence we see that  (4.10) holds, and hence that  (2.9) holds for the Boltzmann collision 

model. [] 



DETERMINATION OF THE SPECTRAL GAP 29 

LEMMA 4.2. The Boltzmann collision model consisting of 

(XN,~N,~N), (YN,TN,IZN), 7rj, ~gj, j=I , . . . ,N,  

and Q as specified in this section constitute a Kac system as defined in w 

Proof. The properties not already established in Lemma 4.1 are now easily checked 

using (4.9). [] 

Now in order to apply the results of w to this Kac system, we need to determine 

the spectral properties of the operator  K.  The explicit form of K for the Bol tzmann 

collision model is easily obtained from (2.24): For all functions g on YN, the unit ball in 

in R 3, and all N > 3 ,  

WN-1-- 1 v 

2 N - 2  
= s  l~ - -M2~_21Y- -Nl~_ lV)  dUg-l(y ) (4.22) 

__ I s a N - 1 0 I  / [ t ~  ~/l--lV] 2 __lv~(l__,y12)(3N_ll)/2 dy. ISaN-71 Jlyl~<lg~, ~ Y _ . 

(The restriction to N > 3  is because (4.21) only gives us the right form for un in this 

range. Indeed, 3 N - 1 1  is negative for N = 3 .  The correct analogs of (4.21) and (4.22) 

are easily worked out by the same sort of analysis. We do not do this here, as we do not 

need these formulas.) 

Several properties of K are evident from (4.22). First, K commutes with rotations 

in R a. Tha t  is, if R: R a - + R  a is a rotation, then clearly 

K(goR) = (Kg)oR. 

Because K commutes with rotations, we may restrict our search for eigenfunctions g of 

K to functions of the form 

g(v) = h ( I v l ) I v l ~ Y z , m ( v / I - I )  

for some function h on R+,  and some spherical harmonic 3;1 ..... 

Second, for each n~>0, K preserves the space of polynomials of degree n or less. To 

see this, notice that  any monomial in ~ y that  is of odd degree is annihilated 

when integrated against (1- ly]2)  (3N-11)/2 dy, and any even monomial  in lx/-~-lvlUy is a 

polynomial in v. 
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Combining these two observations, we see that  K has a complete basis of eigenfunc- 

tions of the form 

gn,~,m(v) = h.,,~(Ivl2)lv]~ yt,m(v/Ivl) (4.23) 

where hn,l is a polynomial of degree n. 

A third observation leads to an explicit identification of these polynomials and a 

formula for the eigenfunctions: Suppose that Kg(v)=Ag(v).  Let ~ be any unit vector 

in R 3. Then since g is a polynomial and hence continuous, 

,$3N-10, ~ ( V~--2N t ^) 
t-+llim Kg(t~) = t-~llim IS3N_7 [ _1 g g - 1  ~ W -- - -~ -~e  ( l - - lwl2)(aN-11)/ idw 

since K I = I .  Combining this with Kg(v)=Ag(v),  we have 

Ag(~) = g ( - 7 _  1~) .  (4.24) 

Now consider any eigenfunction g,~,~,,, of the form given in (4.23), and let A,~,t be 

the correslbonding eigenvalue, which will not depend on m. Then taking any ~ so that  

Yl,,,(~)-~0, we have from (4.24) that 

h " ' l ( 1 / ( N - 1 ) 2 ) (  1 ) l (4.25) 
A.,z= h,.l(1) N - 1  " 

Finally, a fourth elementary ohservation identifies the polynomials h.,i. For all 

distinct positive integers n and p, the eigenflmctions g.,l, , ,  and gp,t,,, are orthogonal 

in K:N. Hence for each l, and for n~p ,  

hn,l(iVl2)hp,l(]Vl2)(l_lvl2)(3N_Sl/21Vl21dv=O. 

Taking r=lvl 2 as a new variable, we have 

fo lhn,l(r)hp,l(r)(1 = O. ~ r ~ ( ~ g ~ ~ ) / ~ r l  ~ l / 2 dr 

This is the orthogonality relation for a family of Jacobi polynomials in one standard 

form, and this identifies the polynomials hn,l. A more common standard form, and one 

that is used in the sources to which we shall refer, is obtained by the change of variable 

t = 2 r - 1 ,  so that  t ranges over the interval [-1, 1]. Then for c ~ , ~ > - l ,  J(~'~)(t) is the 
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orthogonal nth-degree polynomial for the weight (1 -  t) ~ ( l + t )  f~. Then with the variables 

t and Ivl 2 related as above, i.e., 

t = 2]vl2 - 1, (4.26) 

we have 

for 

(4.27) 

1 ( 3 N - 8 )  a n d  / ~ = l +  1 (4.28) ot=-~ 

The particular normalization of the Jacobi polynomials is irrelevant here, as we shall 

be concerned with ratios of the form J(~'~)(t)/J(~ ~'') (1). Indeed, notice that  from (4.26) 

when ]v12=l, t = l ,  and when Iv[2=1/(N-1) 2, t = - l + 2 / ( N - 1 )  2. Hence from (4.27) 

and (4.25), we see that 

J( ,~") ( - l+2/ (N-1)2)  ( 1 )l (4.29) 
An,t = J(~"':~)(1) i - 1  " 

We summarize this in the following lemma: 

LEMMA 4.3. Define the functions 

g.,.,z,,,.(v) = h,.l(lv[ 2) [vllYl,,,,,(v/Ivl), 

n>~O, l>~O and -l<<.m<.l, where the Yl ..... are an orthonormal family of spherical har- 
monics, and the h,,.l are polynomials expressible in terms of the Yacobi polynomials 
through (4.27). Then 

{g,,t,,,In>~O, l~>0,- l<~m<~l} 

is a complete orthonormal basis of eigenfunctions of K. Moreover, if An,t is the corre- 
sponding eigenvalue, then (4.29) holds. 

The problem of determining the spectral gap for K is thus reduced to the problem of 

determining the largest number of the form (4.29). The following integral representation 

of ratios of Jacobi polynomials, due to goornwinder [11] (see also [1, pp. 31 if.I), is useful 

in this regard. 

For all -l~<x~<l, all n and all a > ~ ,  

/:f J,(~'J~)(x) _ [ �89  (4.30) 

where 

m,,,f~(r, 0 ) = c,,,Z(1 -r2)~-/~-1 r2/~+1 (sin( O ) )2/~ dr dO, 
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and ca,z is a normalizing constant that makes dma,z a probability measure. 

Notice from (4.28) that c~>~ exactly when 2l<3N-9. Hence we define 

lo = �89  (4.31) 

For all l<lo, we may use (4.30) to compute An,l. 

First, however, observe that 

1�89 + x - ( 1 - x ) r 2 ) + i ~ r c ~  (4.32) 

- �88188 1 
- 5(1-xe)r2cos(20)  <. 1, 

with equality exactly when r =  1, and 0=0  or 7r. 

LEMMA 4.4. For all l<lo(N), and all m, 

I~xn,zl < ~n,Z 

where, with x = - l + 2 / ( N -  1) 2, 

lyo I ( 1 )  .n,,= ]�89 lx/-i=- -x rcos(o)lndm ,  (r,O) �9 

Moreover, for each l, n~-+ pn3 is monotone decreasing: 

~k,l < Pj,l for all k > j. 

Proof. The monotonicity follows directly from (4.32), and the rest is a summary of 

the discussion above. [] 

We now proceed to calculate the eigenvalues for l+  �89 < �89 ( 3 N - 8 )  using (4.30) and 

(4.29). The case n=O is trivial: 

�9 Xo,z = ( -1)Z#o, /= N--  1 (4.33) 

for all l<lo. The monotonicity in Lemma 4.4 now guarantees that for all n and all 

3~</</o, 
1 3 

[An,l' ~ ( - ~ - ~  l . (4.34) 

Next, it is straightforward to calculate )~l,t and A2,t using (3.3) and the beta integral 

fo x r (a)F(b)  (1-- t)a-l tb-ldt= F(a+b)  " 
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The results for n=l and n=2 are 

Al, l= [ e - O - c )  2 /+3  ] 
3 N - 6 J  ( - - -  

and 

where 

1 / l (4.35) 
N - 1  

A2z= [~2_4 l+10  "1 " "1 ,2 (2 /+5)(2 l+3)  ] 1 t 
' 3--N~-6 ~( - ~ ) + { - e )  ( ~ 4 ) J (  N--l)' (4.36) 

The eigenvalues 

AI,, __ _ [~.~__ 1 _.i - 21N ] 3(N_1)2J  ( N 1 - _ 1 )  l 

are negative for l even, and hence irrelevant for calculating the gap of K. For N odd, 

they are no larger than 1/(N-1) 2. Note that  A2,0 is asymptotically 5 / 3 N  2 and otherwise 
A2,z is O(1/N3). 

Finally, a very simple computation provides a constant C independent of N so that  

C C C 
#3,0 <~ ~-~, #2,1 ~< ~-~ and #1,2 ~< ~-~. (4.38) 

(The cases with n odd are most easily done through estimates on cases with even n, for 
<:.. 3/4 example, since #3j -~4,z  by H51der's inequality, it suffices to show that p4,1 =O(1 /N4) . )  

Therefore, again using the monotonicity from Lemma 4.4, the only values of (n, l) with 

l<lo such that IAnj[ is of order I /N 2 or larger are those for which n+l<~2. By the 

computations above, we then have 

and 

sup{AnJ I n+l >0,  l </o} = A2,o (4.39) 

inf{An,t I 1 </o} = Al,o. (4.40) 

Regarding the restriction l<lo in (4.39) and (4.40), it is reassuring to note that  

for the largest value of l in this range, the corresponding eigenvalues are no larger than 

( 1 / ( N - 1 ) )  (3N-n)/2. This suggests that  a fairly crude bound on the part of the spectrum 

corresponding to l>~lo will suffice to eliminate the restriction on l in (4.39) and (4.40). 

We shall show that this is the case. 

For this purpose we need the integral kernel corresponding to the operator K. From 

(4.22) we have that for all gE]CN, 

- - I s 3 N - 1 0 1  f f 2 (3N 11)/2 2 (3N 8)/2 
(g'Kg>~N [$3N-4--~ _,~,]N,]~< 1 _,../'.,1<~1 g(v)g(~t(y 'v))(1-[y[ )+ -- (I--IVl )+ -- dydv  

(4.41) 

1 
e - ( N -  1) - - - - - ~ "  (4.37) 
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where 
v/N2-2N ~/1_  iv12 1 

~ ( v , v ) - N - 1  Y - - f - : - i  v 

Here, (x)+ denotes the positive part of the quantity x. Although the limits of integration 

make use of this notation redundant in (4.41), we are about to make a change of variables 

after which it is essential. 

Under the change of variables (y, v)-~ (u(y, v), v) we find 

_ 1 (1 N~____11[N-1 2 N - l v 2  2 u.v]), 
J-lyl  2 t_lvl~ [~-s +~-~ +~--~ 

and the Jacobian is such that 

( N2_2 N \3/2 
dydV= \ N2_2N+ l ) (1-1vl2)3/2 dudv. 

Introduce 
N -  1 v2 2 v]. 

Then, since the integrations in (4.41) can be extended to run over all of R a, but g is 

supported in the unit ball, this change of variables gives 

(g, Kg)~ N - IS3N-41 N 2 - 2 N + l /  jl~l~<l ,1<~1 g(v)g(u)(1-p(u'v))(+3N-11)/2dudv" 
(4.42) 

Introducing the kernel K(u, v) by 

Is3N_,O[ ( N 2 _ 2 N  7/2 
K(u,v)-  IS3N_41 \N-~---~-~I ] (1-p(u,v))(~ aN-H)~2, (4.43) 

and letting g,~,z,,, be the normalized eigenfunctions introduced in Lemma 4.3, 

l 1 
An,l -- 21+ 1 E (gn,l,m, KgnJ,m) 

m ~ - ~  

/ ] = h(lullh(Ivl) 2 - ~  ~ Y , , m ( ~ ) Y , , m ( v )  g ( , ~ , v )  d v d w  
m = - l  

=/hn,t(lul2)hn,~(Ivl2)P~((uv)/luJ Ivl)K(v,w) dvdw 

(4.44) 

where Pz(cos(0)) is the Legendre polynomial of order l, and it is orthogonal to all other 

polynomials of degree strictly less than l. 
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Now suppose that 3 N - 1 1  is even, which is the case when N is odd. Then, were it 

not for the the positive part taken in (4.43), K(u,v) would be a polynomial of degree 

�89  in cos(O)=(u.v)/lu I H. If l>~lo, t h e n / > � 8 9  so for such values of l, 

the integral in (4.44) would vanish, and with it the eigenvalue A,~,l. 

The positive part in (4.43) prevents us from using this argument to conclude that 

An,l vanishes identically. However, we now show that for most values of ]u I and [v], 

the positive part does not matter, and so An,l is negligibly small for l>~lo. To do this, 

introduce the quadratic forms 

q+(x,y)=N-_....~l[N-lx2_N N - 1  2 2 ] 

on R 2. Notice that 

1 -q+( tu  l, iv[) <~ 1-p(u, v) <~ 1-q_ (Iul, Ivl). 

The eigenvalues of q+ are, in both cases, (N-1 ) /N  and (N-1) / (N-2) .  Hence 

N - 1  g - 1  (lu12+lv[2). g ( [ u [ 2 ~ [ v [ 2 )  ~< q~:([u], Iv[) ~< 

Therefore, 

(4.45) 

1-~_12(lul2+lv[2)<~ l-p(u,v)<~ l--~--~(lul2+lv]2). (4.46) 

that (1-p(u,v))+=O whenever lul2+lvl2>~N/(N-1), and it follows that 

Define KA(U, v) by 

( N2_2N : _1o I 
/s v) = \ N 5 - 2 ~ 1  ] IS3N_7 ] 

f~ 2 du= ILg~'~'"ll~N = I" 

(X--p(~t, V) )(+ 3N-11)/2 
(1--[Vl2)(3N-S)/4 (1--lUI2)(3N-S)/4 1A(U, V). 

so that  

It follows 
(1-p(u,v))+=l-p(u,v) whenever lul2+]vl2<~(N-2)/(N-1). Define ACR 6 by 

{ N - 2  N } (4.47) A =  ( u , v ) E R  6 ~ < l u l 2 + ] v l  2 < ~  . 

Hence we may replace K(u,v) in (4.44) by Kn(u,v)=lA(U,v)K(u,v). 
To draw a favorable conclusion from this we need only take into account the reference 

measure UN. It is convenient to absorb its density into the eigenfunctions. Define 

([saN_71 \x/2 On,t,,,,(u) = \ ~ "[: (1--[UI2)(aN-S)/2g"'t'm(U) 
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Then going back to (4.44), we have whenever N is odd and l>~lo, 

l 

1 flu ~vl~l ~n'l'm(u)~n'l'm(v)~A(u' And = 2/+----1 E v) dudv, (4.48) 
m=--l 141 

and so by (4.48) and the Schwarz inequality, whenever N is odd and l>~ lo, 

A~" ~< fu i~<1 y ,~l~<lf JKA(u'v)J2dudv" (4.49) 

Now suppose that  (u,v)6A and lul>~lvl. In this case Ivl~<~, no matter what the 

value of N~>3. Also, by completing the square, 

1 -p(u, v) <. 1 -q_ (lul, Ivl) = (1-lul :) 

Hence for such u and v, 

( N - l ) 2  QV,_N~,UO 2. 
N ( N - 2 )  

(1 --p(tt, V))(+ 3N-11)/2 (1 --p(u, V))(+ 3N-14)14 
~< (�88 , (1--1VI2)(3N-8)/4 (1--1U]2)(3N-8)/4 

and, from (4.46), 

(l_p(u,v))(3N_14)/4<~( 1 N~NI N_2~(3N-14)/4_N.~] : ( 2 ) ( 3 N - 1 4 ) / 4 .  

By symmetry in u and v, the same estimate holds when (u, v)EA and Iv[>~lul. Hence 

~u,.<l f IKA(u,,)l~dudv< (iS3N_lOl?/4r\2 ~ 8 \(3N-14)/4 
" 

This proves the following lemma: 

LEMMA 4.5. There is a finite integer No such that for all odd integers N>~No, and 
all l ~ lo, 

On account of this result, increasing No if need be, the condition l<lo in (4.39) 

and (4.40) may be dropped, and the estimates remain valid, for all odd integers N with 

N >~ No. Our next task is to remove the condition that N be odd. 
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LEMMA 4.6. Let X N and fin be defined for the Boltzmann collision model as in 
Theorem 2.1. Then for all N > 3 ,  

and for all N such that XN_I <1 ,  

I/~NI < I/~N-1 I, (4.50) 

X N - ~ I  (4.51) 
XN ~ 1--XN-I" 

Now, 

where 

Proof. First let 9 satisfy IIg]]~cN=l and Kg=xNg.  Then 

= (9, Kg) =/xNgO~rlgoTr2 dltg 2,f N 

= ~ [/XN_l(g~176176176162 dltN-1] dtIN �9 

goTrl OCN ('t~, V) = hvOTrl (~) 

(4.52) 

/" x/N 2 - 2N 1 ) 

Finally, let h,, be given by 

hv~ = hv~ - hvo~'l d#N-t  = h,  olr] -PN(goTrl) = hvorq --KgoTrN. 
N - - 1  

Going back to (4.52) and using the variational definition of XN-1 we have, much as in 

the proof of Theorem 2.2, 

XN ~ ~N-I s [ fxN_I'hv~ d"N-1] dUN(V) + (I--XN-1)'[Kg['2N 
(4.53) 

=-XN-I+(1--XN_I)X 2. 

Since XN-1 <1, this last inequality may be written as P2(xu)~>0 where 

P2(x) = x  2 -  1 XN-1 
1--XN-lXA 1--XN-I" 

The polynomial P2(x) has the roots x = l  and x = x g - 1 / ( 1 - - x y - 1 ) < l ,  and is negative 

between these two numbers. Since xN ~<1, (4.51) follows. 
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The proof of (4.50) is similar but simpler. Suppose that g satisfies Hgl]tZN=l and 

- 1  N 

i<j  

(4.54) 

(4.55) 

Ri,j f (~)  = fs2  f (v l ,  v2, ..., v* (w), ..., v~ (w), ..., vn) b(w. (vi - vj)/Ivi - vii ) dw, 

so that  by (4.4), 

Kg = ~N g where 

~N = inf{(h, Kh) lllhlllCN = 1}. 

The analysis that  lead to (4.53) now yields 

~N/> ~N-1 +(1-~N_1)II~:gll~N, 

which certainly implies (4.50). [] 

We are finally ready to prove the analog of the original Kac conjecture for the 

Boltzmann collision model: 

THEOREM 4.7. For the Boltzmann collision model, 

lim inf A N > 0. 
N-+0 

Proof. We choose No large enough so that  for all odd integers N > N o ,  

XN m "~2,0, 

where A2,0 is specified in (4.36) and (4.37). We can do this since A2,o,.,5/3N 2, and 

Lemma 4.6 tells us, increasing No if need be, that  

2 

for all N > No. Now by Corollary 2.3, 

l iminfAN > 1 1  1-- AN, , . 
N-~0 j=~Vo+ 1\ 3 / 

The infinite product is clearly strictly positive, and so it remains to verify that  AN >0 

for all N, and in particular for N = N o .  
This may as well be done by a compactness argument since we are not being specific 

about No. For l ~ i < j < . N ,  define 
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This operator is not compact. In the case where w is selected uniformly, one easily 

sees that  for any unit vector ~ER 3, and any odd integer k, fk (~ )=(~ i (~ ) .~ )  k is an 

eigenfunction of Q, with a non-zero eigenvalue independent of k. In the case of the Kac 

model this was explicitly observed by Diaconis and Saloff-Coste, and this may have been 

clear to Kac when he remarked on the difficulty of showing that  AN >0 for the original 

Kac model. 

However, consider Q2N. Observe from (4.54) and (4.55) that  Q2N is an average over 

monomials of degree 2N in the operators Ri,j. Each such monomial enters with the same 

positive weight, and each is a contraction on 7-/g, since clearly each Rid is a contraction 

o n  ~L~ N . 

Now one such monomial is 

A = (R1,2R2,3R3,4 . . .  R N , 1 ) ( R N , 1  . . .  R4,3R3,2 R2,1), 

which is positive. It follows that there is a positive number a so that  

Q:~N= aA + (1-a ) B, 

where B is a self-adjoint contraction on ?-/N. (B is the average over the remaining 

monomials.) Now it is easy to see that  A is compact. Since it entails averages over each 

of the variables, it has a continuous kernel, and hence is Hilbert-Schmidt.  Now 

sup{ (f, 2N Q f)nNlllfllnN=l,(1,f)n~=l} 
=sup{(f, aA+(1--a)Bf)lllfll~N= 1, (1, f)~N = 0 } 

~< a sup{ (f, Af) l[[fllnN = 1, (1, f)nN = O} + (1 - a ) .  

Now since A is compact, sup{ (f, Af)7.tN I IIfH~N-x, (1, f)nN =0} is attained. And clearly 

if f satisfies [Ifl[nN=l, (1, f)nN=O and (f, Af)n =l, then [[Rk,k+lf[[nN=l=[[fll.,,.tN , 
and this is impossible by our ergodicity assumptions. [] 

5. Analysis of  a shuffling model  

When momentum and energy are conserved for one-dimensional velocities, the only pos- 

sibility is an exchange of velocities. Thus the Kac walk in this case is simply a walk 

on the permutations of (Vl,V2, ...,vN), which, at least when all of these velocities are 

distinct, we may identify with a random walk on the permutation group HN. The cor- 

responding walk has been thoroughly analyzed by Diaconis and Shahshahani [6], but we 

briefly discuss it in this section to illustrate several features of our approach. (In fact, 
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they estimate approach to uniformity in the total  variation norm, for which they need, 

and derive, not only the spectral gap, but information on all of the eigenvalues and their 

multiplicities.) 

Let XN=I'IN, and let 

YN= {1,2,...,N}. (5.1) 

For (rEHN, define for j=l,  2, ..., N, 

~rj (a) = a ( j ) .  (5.2) 

Let /iN be normalized counting measure o n  XN, SO that  //N is normalized counting 

measure on YN. 
To define the transition function, fix a number  p with 0 < p <  1, which will represent 

the probabili ty of "success" in a coin toss. Consider a deck of N distinct cards which are 

to be "shuffled" as follows: Pick a pair i<j uniformly at random, and then toss a coin 

to generate independent Bernoulli variables with success probabili ty p. If the result of 

the coin toss is success, exchange cards at the i th  and j t h  positions from the top of the 

deck, and otherwise do nothing. This procedure is then repeated. 

We can identify the s tate  of the deck at each stage with the permutat ion a which 

puts it in that  order start ing from a canonical "unshuffied" order. In these terms, the 

current s tate  ~ is updated  by 

e-+ f f i , j  (Y 

where 6ri, j is the pair permutat ion exchanging i and j ,  and fixing all else. If the result is 

not success, the current s tate a is not altered. The one-step transition operator  is clearly 

- 1  

i<j 

To display this as a Kac system, define CN: XN-ix  YN "~XN by 

CN(a, k) = ak,N  (5.4) 

where ~(j)----a(j)  for j<~N-1, and 5(Y)=Y. Note that  rCNoCN(a,k)=ak,g(Cr(Y))= 
ak,N(N)=k. We then define Cj=r It  is clear tha t  these maps are bijections, 

and since ItN_I•VN is uniform counting measure on XN-1 • (2.9) is trivially true. 

Thus it is clear tha t  this shuffling model is a Kac system. 

Moreover it is easy to see that  

N 

Kg(i) = E Ki,yg(j) 
j=l 

(5.5) 
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where 
1 

Ki,j - N - 1  (1-5i,j) .  (5.6) 

Hence K has the eigenvalues 1, with multiplicity one, and - 1 / ( N - I ) ,  with multiplicity 

N - 1 .  Hence for this model, with x N and fiN as in Theorem 2.1, 

1 
-->ON = ( N -  1)/3N -- N - 1  (5.7) 

and thus by Corollary 2.3, 

N 

z x N ~ > I I (  1 1 ) j=3 ( j -x )2  zx2. (5.8) 

Again, this product collapses, and one finds 

N 

H ( 1  1 ) = ( ~ _ 1 ) 1  (5.9) 
j=3 ( J - l ) 2  2" 

Clearly Q2 may be identified with the matrix 

[ l p p  1-pP ] '  (5.10) 

and hence Q2 has the eigenvalues 1 and 1-2p.  Hence A2=l -2p ,  and A2----4 p. Combining 

this with (5.8) and (5.9), we have 

N 
AN > /~ - -~  2p. (5.11) 

To see that this result is sharp, we need to display an appropriate eigenfunction. We 
know from Theorem 2.2 that (5.11) can be sharp if and only if there is a function fg  sat- 

isfying both QfN=--ANfN and Pfg =#gfN. Theorem 2.1 then tells us that since ~N >XN 
for this problem, we get an eigenfunction of P with PfN =#NfN from eigenfunctions h 

of K with K h = - l / ( N - 1 ) h  through 

fN =hoTri-hoTrj for l <~ i < j <~ N (5.12) 

for some i<j. A tedious but straightforward computation, using )~;=1 h(j)=O, which is 

equivalent to K h = - I / ( N - 1 ) h ,  shows that 

(1 
This implies that AN/> 1 -- 2p/ (N-  1) and hence 

N 
A N <~ ~-Z~ 2p. (5.13) 

This leads to the following result: 
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THEOREM 5.1. The binary shuffling model is a Kac system, and 

N 
AN = N------1 2p. (5.14) 

Moreover, 

if and only if f has the form specified in (5.12) for some function h on {1, 2, ..., N} such 
N that ~y=l h(3) =0" In particular, )~N is an eigenvalue of Q of multiplicity ( N - l )  2. 

Proof. The equality (5.14) follows from (5.11) and (5.13), and this identifies AN. We 

have shown above that  every function f of the form (5.12) with ~--~N=l h ( j ) = 0  satisfies 

Qf=Agf ,  and by Theorem 2.2, the converse holds as well since any such f must also 

satisfy P f = # Y f ,  and this occurs only when f has the specified form. Finally, it is easily 

seen that the N - 1  functions 

hoTh-hozr2, hozr2-ho~3, hoTr3-hoTr4, ..., hoTrN-l--hoTrN 

are  a basis for the span of the functions of the form specified in (5.12) whenever 

[[hHpc#0 and ~-~N=I h(j)=O. Also if h and h are any two orthogonal eigenfunctions 

of K, horq-ho~rj is orthogonal to ho~rk-holh for all i<j  and k<l. Since the - 1 / ( N - 1 )  

has multiplicity N - 1  as an eigenvalue of K,  the final statement is now shown. [] 

Diaconis and Shahshahani actually devote most of their attention to the model in 

which the success probability p depends on N through p= 1-1/N.  The present methods 

are easily adapted to handle the case in which p depends on N. Let QT denote the 

transition operator defined in (5.3). Then clearly for two different success probabilities 

p and p', 

P 1 

This may be used to take into account the effects of the N-dependence in p on AN. 

6. T h e  K a c  w a l k  o n  SO(N) 

Let SO(N) denote the group of orthogonal (N•  with unit determinant. In 

this section we consider a generalization of the original Kac model in which the state 

space is SO(N) instead of S N-1. This generalization was introduced by Diaconis and 

Saloff-Coste [5], and studied by Maslen as well, both in the case of "uniformly selected 

rotations", i.e., t~(~)=l/27r. To explain the nature of the underlying process, which these 

authors call the "Kac walk on SO(N)", we let Ri,j (8) denote the same rotation in R N 
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that was used in (1.7), except now we identify it with the corresponding (N•  N)-matrix,  

and we will now consider our N-dimensional velocity vectors ~ as column vectors of an 

orthogonal matrix. Then multiplying R~,j (0) and the "pre-collisional velocity vector" 

produces the "post-collisional velocity vector", just as in the original Kac model. 

Given a continuous function f on SO(N), define 

Qf(G) = (N)-I do (6.1) 

where ~(0) satisfies the same conditions imposed on Q(/9) in the original Kac model. 

The connection with the Kac walk on S N- 1 becomes quite clear when one writes G 

in terms of its N columns, G=[~I ,  ~2, ..., ~g], since then 

n ,j(e)a = . . . ,  

Each of the ~j is an element of S N - l ,  and it is clear from (1.7) that under the Kac walk 

on SO(N), each column of G is a Markov process in its own right, and is in fact a copy 

of the original Kac walk on S N-1. Therefore, if f depends on G only through the first 

column of G, which is an element of S N-l, Qf  coincides with what  we would get by 

applying the operator Q for the Kac model to f considered as a function on S g-1. In 

this sense the Kac walk on SO(N) is a generalization, and indeed an extension, of the 

Kac walk on S g-1. 

This relation between the Kac walks on SO(N) and S g-1 provides an immediate 

upper bound on the spectral gap for the walk on SO(N): We see, by restricting the 

class of test functions to those that depend on G only through a single column, that the 

spectral gap for the Kac walk on SO(N) cannot be larger than the spectral gap for the 

Kac walk on S N- 1. 

In fact, as found by Maslen in the case in which Q(0) is uniform, the two gaps 

actually coincide. In this section, we prove that the bound (3.6) holds for the Kac walk 

on SO(N) when Q is not assumed to be uniform. The Kac walk on SO(N) provides 

a good illustration of the methods of this paper in which the "single-particle space" 

depends on N. This example goes beyond our previous examples in other ways as well, 

as we shall see as soon as we begin with displaying it as a Kac system. 

It turns out that  it is most convenient to do this through consideration of the Kac 

walk on O(N), the group of orthogonal (N•  For a continuous function 

f on O(N),  we define Qf exactly as above, except that now G ranges over O(N). 
We equip O(N) with its Borel field and its normalized Haar measure #N- Then by 

our assumptions on ~, Q extends to be a self-adjoint Markovian contraction on 7-/N = 
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L2(O(N),pN). However, it is not ergodic; the nullspace of Q is two-dimensional, and 

spanned by 1 and det. Of course, on the subspace L2(SO(N),#N), it is ergodic. 

The reason for working in the non-ergodic L2(O(N), #y) - se t t ing  is that  permutat ion 

symmetry  plays an important  role in our analysis. The natural  action of I-IN on O(N) 
is through interchange of rows. Note tha t  this extends the action of [IN on S N-l, 
considered as the first column of G, that  we used in our analysis of the original Kac 

model. Interchange of two rows of an element of SO(N) of course changes the sign of the 

determinant,  and so does not preserve SO(N). An alternative is to conjugate elements 

of SO(N) by the permutations;  that  is, to swap both rows and columns. This, however, 

complicates the construction of a Kac system for the model, and in any case, it is of some 

interest to show that  the methods used here can be applied when there is more than one 

ergodic component.  This said, we proceed with the construction of the Kac system. 

The "N-part icle  space" (XN, SN, #N) will of course be O(N) equipped with its Borel 

field, and its normalized Haar  measure is # g ,  as indicated above. Let O(N)+ denote the 

component  of O(N) on which the determinant  is positive, so that  O(N)+ is just  SO(N), 
and let O(N)_ denote the component  of O(N) on which the determinant  is negative. 

For any permutat ion a in I I g ,  let P~ denote the corresponding (N  • N) -pe rmuta t ion  

matrix. For G in O(N), define a(G) by 

=P G. 

Tha t  is, a acts on the matrix G by permuting its rows. Clearly this is a measure- 

preserving action of 1-IN on O(N). 
We take the single-particle space (YN,TN, PN) to be S g-1 equipped with its Borel 

field and normalized rotation-invariant measure vg.  For each j=I,2,...,N, let ej  be 

the j t h  s tandard basis vector in R N, written as a row vector, so that  for any ( N •  N) -  

matr ix  A, e jA is the j t h  row of A. We then define 

7rj (G) = e j G .  

Tha t  is, 7rj(G) is the j t h  row of G. It  is clear that  7cj:XN--+YN and that  

for each j and G. So far, we have verified the first two features required of a Kac system. 

The next steps in the construction of this Kac system are slightly more involved. 

We have to construct the maps Cj:XN-1 • but since there is no canonical 

embedding of O ( N - 1 )  into O(N), they have to be constructed "by hand", using a 

convenient coordinate chart. (Just  as with the original Kac model, the maps Cs cannot 
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be continuous since XN_  1 X ]IN and XN just do not have the same topology. But just as 

in that  case, we are only concerned with measure-theoretic properties of these mappings, 

and on a set of full measure they will be well behaved.) 

Let 

~_ = (0 ,0 , . . . , 0 , -1 )  

denote the "south pole" in S N-i. We may use the stereographic projection to iden- 

tify sN-I \ {~_)  with R N-1. At each point of R N-1 we of course have the standard 

orthonormal basis. The stereographic projection, which is conformal, carries this back 

to an orthogonal basis for the tangent space at the corresponding point in S N - I \ ( ~ _ ) .  

Normalizing these vectors, we thus obtain a smoothly varying frame of orthonormal 

vectors 

{ul(~), Us(~),..., UN-i(~)} 
in R N parameterized by ~' in s N - i \ { ~ _ } .  For each ~, they form an orthonormal basis 

for the tangent space to S g - i  at ~. 

Now for each ~ in s N - I \ { ~ _ } ,  define U(~) to be the ( ( g - 1 ) x g ) - m a t r i x  whose 

j t h  row is u/(~).  Let the j t h  row of U(~_) be ej. The map v~+U(~) is now defined on 

all of S N-l, though of course it is discontinuous at the "south pole", 0'_. This, however, 

will not be a problem. 

Now define the map 

CN: O ( N -  1) • S g - '  -~ O(N) 

as follows: Given 2 in O ( N - 1 )  and ~ in S N-i, first form the ( ( N - 1 ) •  

2 U ( ~ )  with U(~) as specified above. Because 2 is in O(N-1)  and the rows of U(~) 

are orthonormal, the rows of 2 U ( ~ )  are orthonormal. Moreover, since the rows of U(~) 

are a basis for the tangent space to S g-1 at ~, each one is orthogonal to ~. The rows of 

2 U ( ~ )  are linear combinations of the rows of U(~), and hence these too are orthogonal 

to ~. Therefore, if we form the ( N x  N)-matr ix  

by adjoining g to 2 U ( g )  as the final row, we obtain an orthogonal matrix. 

Next observe that the determinant of this matrix is just the determinant of G. 

Indeed, it is clear that  when g is the "north pole", so that  U(~) consists of the first N - 1  

rows of the ( N x  N)-identi ty matrix, then the determinant of this matrix is simply the 

determinant of G, which is either +1 or - 1 .  Now as g varies in s N - I \ { g _ } ,  

det ( [ 2 U ( ~ )  ] )  
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varies continuously. Hence the value is just det(G) for all such 7. Continuity fails at the 

"south pole", but there it is again obvious by the special form of the definition of CN 

at 7_ that still in this case the determinant is just that  of G. Hence the image of 

does indeed lie in O(N), and det(r  7 ) )=de t (G) .  It is also clear by construction that  

V)) = 7  

everywhere on O(N- 1) x S g-1. 
Finally, it remains to check that this map is well behaved with respect to the mea- 

sures #N- l ,  UN and #N. Given a hmction f on O(N), we may compute the average of 

f with respect to #N in two stages as follows: First compute the conditional expectation 

g(7) where 

g(7) = E{f(G) [ TrN(G) =7}, 

Then 

fo(N/(a) e N(a)= 
Also, it is clear that  we can compute the conditional expectation E{f (G)[TrN(G)=7}  by 

averaging over orbits generated by left multiplication of G by elements G' belonging to 

the subgroup of O(N) consisting of orthonormal matrices whose final row is eN. This 

subgroup is just a copy of O ( N - 1 ) ,  and so 

9(r f(G'G)d#N_I(G'). 
( N - l )  

It follows directly from this that  

fO(N)f(G)d,N(G)= jfSN_, [/O(N_I)f(r dUN(7). 

We define Cj for j = 1, 2 , . . ,  N -  1 in terms of Cg and the pair permutations exchanging j 

and N, in the natural way. Clearly the analogs of the results just derived for Cg hold for 

each q~j as well. Thus, with these definitions, the third feature required of a Kac system 

is verified. 

To complete the verification that the Kac walk on O(N) can be made into a Kac 

system, we only need to verify that 

(f, Qf)nN = -~ ((fJ,~' Qf3,~)uN-, ) dun (7) 
j = l  N 
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where for each j and each ~ E Y N ~ - S  N - l ,  

fj,~(" ) = f ( r  ~')). 

This is clear, given the definition and computations just above. 

We are not yet ready to apply Theorems 2.1 and 2.2 to this Kac system, since we 

must modify the definition of AN. We define 

AN = sup{ (f, Qf}7-tN I IIfl]n~ = 1, <f, 1)7~N = o, <f, det>n N = 0}, 

which differs from (2.16) due to the restriction that  f be orthogonal to the determinant. 

As a consequence, a modification of the operators Pj is also required. In the defi- 

nition (2.14) used in examples with a single ergodic component, we averaged over all of 

XN-1, or put differently, conditioned only on YN. Now we will condition on YN and the 

ergodic component. Given f in ~t~N, and j=l ,  2, ..., N, define g+ and g_ on Y N = S  g - 1  

as follows: 

g+ (7) = 2/O(N-,)+ :J'~(G) dpx- 1 ( G) 

and 

g_(J) = 2 fo(~_l)_fj(G)dttN-l(G) �9 

The definitions are such that  

g+(~) = E { f  I rrj = ~ and det = 4-1}. 

The factors of 2 are because O(N-  1)+ each accounts for exactly half of O(N) by volume. 

We now define 
g+(Trj(G)) if det(G) = + 1 ,  

Pjf(G)= g_(Trj(G)) if d e t ( G ) = - l .  

Since Pyf depends on G only through ~=Trj (G), it is again convenient to abuse notation 

by writing Pjf(~). 
The point of the definitions is the following: Note that  f in 74N satisfies both 

(f,  1}nN=0 and (f,  det}n =0  in case it satisfies both 

/o I(G)d#N(G)=O and / o  f(e)d#N(a)=O. 
(N)+ (N)_ 

But in this case, by the definition of Pj, 

JO(N_l)+ (fj,~(V ) -- Pjf(~)) dlZN-1 (G) = 0 
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and 

(fj,~(O)-Pjf(7)) d # N - I ( G )  = 0, 
( N - l ) _  

for almost every 7. Hence f j , v (G) -P j f (7 )  is, for almost every 7, orthogonal to both 

1 and det on O ( N - 1 ) .  This is the key requirement for the proof of Theorem 2.2 to 

hold with the modified definition of AN. We leave to the reader the easy verification of 

this. Of course the definitions of the quantities /A N in (2.18), and x g  in (2.26), have 

to be modified in the same way as was the definition of AN. With these modifications 

made, the analog of Theorem 2.1 holds as well, and again, as the proof is essentially the 

same, the verification of this is left to the reader. We summarize this by saying that 

the presence of more than one ergodic component can be taken into account within the 

framework of ideas described in w by conditioning not just on the single-particle space, 

but on the ergodic components as well. The present model is a case in point, which we 

choose to leave as an example rather than at tempting a general formulation. 

With these results in hand, our task is to compute the spectrum of the operator K 

for this system, which is still defined through (2.21). This is what is used in the proof 

of Theorem 2.1, though (2.24) no longer holds due to our modification of the definition 

of Pj. 

However, it is clear from the definition of K in terms of conditional expectations, 

through (2.22), that  

gg(7) = Jw.~=og(W) dug-2(W),  (6.2) 

where the integral on the right is computed with respect to the uniform probability 

measure on S N-2, identified with the subset of S N-1 consisting of those unit vectors W 

for which W.7=O, as indicated in the limits of integration. That  is, the value of Kg(7) 

is just the "equatorial average" of the values of g around the "equator" with respect to 

a pole running along 7. 

It is immediately clear that K preserves the space of polynomials of any fixed de- 

gree d, and hence the eigenfunctions of K are the spherical harmonics on S N-1. 

The zonal spherical harmonics of degree d are those that  depend on W only through 

e .W for some fixed unit vector e. Let zd,e(W) denote the corresponding zonal spherical 

harmonic, and let pd(X) be the polynomial of degree d so that  the zonal spherical harmonic 

Zd,e(W) on S g-1 is given by 

Zd,e(W ) =pd(e.W).  

The normalization is fixed so that  the reproducing kernel property holds: 

f s  h(W)zd,e(W) dVN-l(W) = h(e) 
N - - 1  
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for any spherical harmonic h of degree d o n  S N-1. This means that  

IlZd,ell 2 = pd(e.e) ---- pd(1). 

Now fix 7, and let h(W) be any spherical harmonic of degree d that is orthogonal 

to Zd,~. Then 

o h(GW)d#g-l(G) =0 ,  (6.3) 
( N - l )  

where G runs over those rotations of R N that  fix 7. This is because the left-hand side 

is a spherical harmonic of degree d that  depends on W only through ~.W. This means 

that  it is a multiple of Zd,~. However, since h was orthogonal to z4,~, so is the average, 

and hence the identity (6.3) is established. But comparing (6.2) and (6.3), we see that  

Kg(~) =/o(N_I)g(GWo ) d#N-1 (G) 

for any Wo with W0.~'=0. Hence, under our assumptions on h, Kh(~)=O. 
Now let g be any spherical harmonic of degree d. Let P~g be defined by 

) Pvg(W) = ~ N_ g(W')Zd,v(W') duN-l(W')) Zd,v(W), (6.4) 

which is simply the orthogonal projection of g onto the span of Zd,V. Evidently g-Pvg 
is a spherical harmonic of degree d that  is orthogonal to Zd,V, and hence by the above, 

K(g-Pvg)(~)=O. It follows that  

Kg(V) = K(P~g)(V). 

But the right-hand side is easy to compute as clearly KZd,~=pd(O). Now by (6.4) and 

the reproducing kernel property, we have 

. .  

Kg(~) =- p--~g(v). 

Now it is possible to compute the ratios pd(O)/pd(1) using generating functions, 

though it would not be so clear from this which value of d gives the largest ratio. However, 

none of this is necessary: If we fix any direction unit vector ~', and take any function r 

on [-1,  1], we have 

g(r  = (KKacr (~'~') 

where KKac is the operator K for the original Kac model, whose spectrum we have 

computed in Theorem 3.1. Hence the eigenvalues of K and KKac coincide and are 

provided by Theorem 3.1. 

This solves the eigenvalue problem for K. 
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THEOREM 6.1. Every spherical harmonic r on S N-1 of degree d, considered as 

a function r on O(N)  through r162  for any fixed vector ~ in S N-l ,  is an 

eigenfunction of K,  and the corresponding eigenvalue is pd(O)/pd(1). These eigenvalues 

are exactly the eigenvalues of the operator K for the original Kac model that are given 

in Theorem 3.1. 

Therefore, (3.4) and (3.5) hold just  as in w and we have once more that  

1 N + 2  
AN/> - - -  A2. 

4 N - 1  

It remains to calculate A2. But 0(2)  is just two copies of S 1, and the same Fourier 

analysis argument described around (1.23) once more gives us 

A2 -- sup Q(0) cos(k0) dO 
k#0  I, J -Tr  

for the second largest eigenvalue of Q when N--2.  

The generalization of Maslen's result to non-uniform Q now follows immediately from 

what has been said above. 

Altogether, we have proved 

THEOREM 6.2. Formula (3.6) yields a lower bound for the spectral gap for the Kac 

walk on SO(N)  with the transition operator Q given by (6.1) for all N ~ 2 .  There is 

equality if and only if there is equality for the spectral gap for the transition operator 

Qsac of the corresponding Kac walk on S N-l ,  as given in (1.7) with the same density Q. 

When Q is uniform, the multiplicity of the corresponding eigenvalue equals the dimension 

of the space of fourth-degree spherical harmonics on S N-1. 

7. Analysis of  maximizers for non-uniform 0(0) 

We return to the Kac model on S N-1 with a non-uniform density Q(0), so that  Q is given 

by (1.7), and we examine the circumstances under which the quartic function fN given 

in (1.18) is an optimizer for (1.9). Because of the very close relation of the Kac walk on 

SO(N)  to this model, as described in w our analysis is readily adapted to that  model 

as well, though we shall not carry out the adaptation here. 

According to Lemma 3.2, fN is an eigenfunction of Q with the eigenvalue 

1 2 7 ( N + 2 )  (7.1) 
N ( N - 1 )  

where 1/ 
7 =  ~ (1-cos(40))  ~)(0) d0. (7.2) 
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We therefore define FN by 

(IN, QfN) FN-2"7(N+2)-N 1 (7.3) 
N - 1  [[-~N~ ] '  

so that  if fN happens to be a maximizer for (1.9), then l~g : A N ,  but otherwise AN < I~g . 

That  is, 

AN < FN, (7.4) 

and there is equality in (7.4) if and only if fN is a maximizer for (1.9). 

Now the operator Q commutes with permutations, so the permutation-invariant 

functions f constitute an invariant subspace S of HN, E, and clearly this subspace in- 

cludes fg. It is the symmetric densities f that  are relevant in Kac's limit theorem relating 

the master equation (1.8) and the Kac equation (1.15). We will therefore restrict our 

attention to this subspace, where the result is especially striking, and which is physically 

the most significant. We therefore define AN to be the second largest eigenvalue of Q 

restricted to S: 

AN = sup{(f, Qf)[feS, 11fl12 = 1, (f, 1) =0},  (7.5) 

and we define ~xN=N(1--AN). Clearly 

'~N ~ r"N, (7.6) 

and there is equality in (7.6) if and only if fN is a maximizer for (7.5). 

Taking the symmetry constraints into account it is easy to compute/~2 using (1.23), 

with the result that  

/~2 = 2 min f(1-cos(kO))Q(o) dO. (7.7) 
k~>l J 

We see from (7.1) and (7.2) that  if the supremum in (7.7) occurs at k=4, then 

2~2 = r2. (7.8) 

It is easy to see tha t  ~/7~ N and /~N-1 are still related by the inequality proved in Theo- 

rem 1.1 for AN and AN_l: 

a N  I> (1--XN)/~N-1 �9 (7.9) 

We also know from Theorem 1.3 and the definition of FN in terms of fN that  FN solves 

this same recursion relation: 

FN = (1--XN)FN_I. (7.10) 

Notice that  (7.8), (7.9) and (7.10) together imply that  ~N~FN for all N~>2. But 

from (7.6) we have ~N<~FN for all N>~2. Hence ~N=FN, and fN is a maximizer. 
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We see that  if f2 is the maximizer for N =2 ,  then f g  is a maximizer for all N. So far 

we are simply translating old results into the symmetric case, but we have relied less on 

explicit calculation in order to bring out the following point: Suppose that  we had any 

sequence of admissible functions gN for the variational problem (7.5), and we defined FN 

by 

rN = N(1-<0N, QgN>). (7.11) 

Then if it happened that  the FN so defined satisfied the recurrence relation (7.10), and 

also satisfied (7.8), it would follow by simple comparison that  ~N=FN for all N~>2 and 

gY would be a maximizer for (7.5). All that was required of gY is that (7.11) leads to a 

solution of (7.10), and that (7.8) holds. 

The following simple observation leads to further progress: Suppose that  the mini- 

mum in (7.7) does not occur at k--4, and so (7.8) is false. But suppose that  for some No, 

/XNo=FN o. That  is, suppose that  for N= No ,  fN is a maximizer for (7.5). Then f g  is a 

maximizer for (7.5) for all N>~No, so that ~N=FN for all N ~ N o  and therefore 

l i ra  /~N = lira 1~N=27, (7.12) 
N--+oo N--~oo 

which is the result we would have gotten if  the maximizer for N = 2  had been quartic. 

Therefore, either (7.12) holds, or else f g  is never a maximizer for (7.5) for any N.  

Now we know that  fN spans the second eigenspace of P corresponding to its second 

largest eigenvalue, where P is the operator whose second largest eigenvalue #m is the key 

to the recursion in Theorem 2.2. (Recall that  P does not depend on p.) I f  for each N,  

the true maximizer hN for (7.5) is orthogonal to f g ,  which is the case whenever fN 

is never a maximizer for (7.5), then we can replace #N in Theorem 2.2 by a smaller 

number fZN, and hence can replace x g  in (7.9) by a smaller number ~'g. As we shall 

see, it turns out that  this strictly smaller number x g  is 

105 
~'N = c~s(g) = ( N + 5 ) ( N + 3 ) ( N + I ) ( N - 1 ) '  (7.13) 

where c~(8) is an eigenvalue of the operator K as described in Theorem 3.1, while 

3 
x g  = a(4) = ( N + I ) ( N - 1 ) "  

In summary, we have two things working for us: 

Either (7.9) holds with a )ON replaced by a strictly smaller number XN for all N,  

or else there is an No so that ~N=FN for all N>/No. 
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Now when XN is replaced by ~'N in (7.9), it leads to a much better lower bound 

for /XN. But this improved lower bound cannot violate (7.6). If it does, it can only mean 

that the second alternative holds and not the first. 

This argument leads to the following result: 

THEOREM 7.1 (conditions for fN to maximize for large N). Assume that 

/X2 > 0.45F2. (7.14) 

Then for all N sufficiently large, 

s  = FN (7.15) 

and f N is the corresponding eigenfunction. 

Proof. All of the key ideas have been explained above, and it only remains to check 

the details. As we have seen, if (7.15) does not hold for all sufficiently large N, then fg  
is orthogonal to the true gap eigenfunction hg for all N, since Q is self-adjoint and fg  
is always an eigenfunction. 

This means that hg is orthogonal to the constant function and to the function fg.  
Now we repeat the induction argument in the proof of Theorem 2.2 once more, but for 

the constraint that hg is orthogonal to both 1 and fg.  Under these new conditions, we 

obtain the recursion 

~N ~ ~N-I'~-(1--~N-1)f~N 
in place of (2.35), where /SN is given by (2.18), except that  now we require f to be 

orthogonal to both 1 and fN. Again, Theorem 2.1 shows that /2N can be computed in 

terms of the eigenvalues of K,  with the result that  it is a(8) that  is now relevant, not a(4), 

due to the new constraint. (Recall that  a6(N) is negative, and so is irrelevant.) Hence 

AN >~ AN-I(1--e~s(N)). (7.16) 

The inequality (7.16) can be solved recursively to yield 

AN>~90 F(N-1 )F(N+7)F(N+3+ix /~ )F(N+3- i v~ )  /X2. (7.17) 
r(g)r(5+iv  )r(5-iv  )r(N +6)r(g +4)r(N + 2) 

With the help of the relation 
7r 

r ( z ) r ( 1 - z ) -  sin(Trz) 

the limit as N--+co of (7.17) can be computed and yields 

l iminf/~N >/ 3 s i n h ( v ~ )  A2--:L/~2. 
N-+~ 770 v/-6 ~r 

This quantity has to be compared to 23/ and this shows that  whenever 2~/<L/X2 

(which is easily shown to be implied by (7.14)) there exists some finite N beyond which 

fN is the gap eigenfunction. [] 
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