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1. I n t r o d u c t i o n  

Let M g  denote  the modul i  space of R i e m a n n  surfaces of genus g, and  Modg-~rrl(dt4g) 

the mapping-class  group of genus g. Closed geodesics for the Teichmiiller metr ic  on Adg 

correspond to pseudo-Anosov elements  r  

Let f :  R--+A//9 be a Teichmiiller geodesic whose image is a closed loop represent ing 

CETrl(A//g). The  complexification of this geodesic yields a holomorphic  map  

F : H - +  Adg 

satisfying f (s)=F(ie~8).  The  ma p  F descends to the R i e m a n n  surface 

vr = H / r e ,  re = {A G A u t ( H )  : F(Az )  = F(z)} ,  

and  the induced map  Vr is generically injective. 

Research partially supported by the NSF. 
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l + a  

Fig. 1. The polygon S(a) built from three squares. 

Clearly Fr contains the cyclic subgroup generated by the hyperbolic element A corre- 

sponding to r Accordingly, one might expect that  Vr is typically a cylinder, isomorphic 

to H/(A) .  

Our main result shows that  in fact, for genus 9=2,  the topology of V, is often much 

more complex. 

THEOREM 1.1. Let r162 be a pseudo-Anosov mapping class with orientable 

foliations, and let 

v~ = H / F ,  - .  ~42 

be the eomplezification of the Teiehmiiller geodesic representing CETrl(Ad2). Then the 

limit set of F ,  is equal to OH. 

Since its limit set is OH, F ,  is either a lattice or an infinitely generated group. 

Lattice examples are studied in [Mc]. Here we show: 

THEOREM 1.2. There exist infinitely many distinct complex geodesics V,--+ M2 with 

7ra (V,) infinitely generated. 

Holomorphic 1-forms. The results above admit a more precise formulation in terms 

of the moduli space of holomorphic 1-forms. 

Let f~Mg--+Adg be the bundle of pairs (X,w), where wT~0 is a holomorphic 1-form 

on X e M g .  There is a natural action of SL2(R) on f~Adg (w whose orbits project to 

complex geodesics in Adg. 

Let SL(X,a:)CSL2(R) denote the stabilizer of (X,a~). In w we show: 

THEOREM 1.3. When X has genus two, the limit set of SL(X, w) is either the empty 

set, a singleton, or OH. 

Now consider the polygon S ( a ) c C  built from squares of side lengths 1, l + a  and a 

as shown in Figure 1. We also show: 

THEOREM 1.4. Let bCQ+ be a positive rational such that a = b - l + x f l ~ - b + l  is 

irrational. Construct (X, cv)Ef~Ad2 from (S(a),dz) by identifying opposite sides. Then 

SL(X, cv) is an infinitely generated group. 
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The groups Fr and SL(X, w) are related as follows. When the stable and unstable 

foliations of CEModg are orientable, they can be represented by the vertical and horizon- 

tal foliations of a holomorphic l-form (X, co)E~jt4~. Then Fr is conjugate to SL(X,w) 

in Aut(H), and the image of Vr is the same as the projection of the orbit 

SL:(R). (X, aMg. 

Conversely, provided it contains a hyperbolic element, SL(X, ~) is conjugate to Fr for 

some pseudo-Anosov element CEModg. 

Thus Theorems 1.1 and 1.2 follow from the two preceding results on SL(X, aJ). 

Cusps of triangle groups. Many triangle groups occur as SL(X, aJ) for suitable (X, w). 

By studying these groups from the perspective of complex geodesics, in the Appendix 

we show: 

THEOREM 1.5. Let F be a triangle group with signature 

(2, 2n, oc) or (3, n, oc), where n = 4, 5, 6, 

o r  

(2, n, oc), where n = 5. 

Then the set of cross-ratios of the cusps of F coincides with PI(K~)-{0 ,  1, oc}, where 

Note that Ks=Q( ) and 
The cusp set was previously determined by Leutbecher for signatures (2, n, oo), 

n=5, 8, 10, 12, and by Seibold for signatures (3, n, ~ ) ,  n=4, 5, 6, using quite different 

methods [Le], [Se]. 

Dehn twists. Our results on SL(X,w) can be compared to a basic construction of 

pseudo-Anosov mappings from [Th, Theorem 7]. This construction starts with two sys- 

terns of simple closed curves a and /3 filling a surface S. It yields a complex geodesic 

H--+3dg stabilized by the subgroup (T~,T~}cMod~ generated by Dehn twists on a 

and 3- 

When the complementary regions S - ( a U 3 )  are 4k-gons, the complex geodesic 

comes from a holomorphic 1-form (X, a J)EQAJg, and the Dehn twists generate a sub- 

group of the form 

/(10 ~ )  ( 1 01))CSL(X,w ) F =  (T~,T3) = , - I  t 
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for some #>0.  The hyperbolic elements of F correspond to pseudo-Anosov elements 

r  

Typically one has #>2,  in which case the limit set of F is a Cantor set. On the other 

hand, in genus two the limit set of SL(X, co) is always the full circle, by Theorem 1.1 

above. So even in this explicit construction, SL(X, w) is generally much larger than its 

manifest subgroup (To, T~}. 

Galois flux. We conclude by sketching the proof of Theorem 1.3. The proof involves 

the dynamics of interval exchange transformations, the arithmetic of quadratic numbers, 

and the topology of measured foliations. 

Let K = Q ( v / d )  be a real quadratic field, and let k~-~k' denote the Galois involution 

sending x/d to - v ~ .  

(1) Let f :  I + I  be an interval exchange transformation, satisfying f (x)=x+tj  on 

subintervals Ij forming a partition of I. Assuming that  the translation lengths tj lie 

in K,  we define the Galois flux of f by 

flux(f) = ~ Iljlt}. 

The Galois flux measures the average growth rate of (fn(x))' for xEInK.  
If f is uniquely ergodic, then f lux( f ) r  (w 

(2) Now consider (X, co)E f~Adg, and let ~c e be the measured foliation of X defined 

by L)=Rea~. Assume that  ~ has relative periods in K,  meaning f.roEK for any path 

joining a pair of zeros of L). Let d represent its Galois conjugate cohomology class. Then 

the flux of the first return map f :  I -~I  for any full transversal to ~-o satisfies 

= - f v  0A ~0'. (1.1) flux(f) 

We therefore define the flux of ~ by the expression above (w 

(3) Let us restrict to the case where the flux of 0 vanishes. Then 5rQ cannot be 

uniquely ergodic. 

By a result of Masur, the failure of unique ergodicity implies that  the Teichmiiller 

geodesic Xt generated by (X, a;) tends to infinity in 3d~. Therefore the length of the 

shortest closed geodesic on Xt is very small for t>>0. Using Diophantine properties 

of ~ ,  we conclude in w that  this short geodesic is isotopic to a loop L running along 

leaves of 5c~. 

(4) Next we specialize to the case of genus g = 2. By analyzing the possible config- 

urations for L, we establish the following dichotomy (w 

Either 5co is periodic (all its leaves are closed), or (X, 9ca) is the connected sum of a 

pair of tori with irrational foliations. 
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(5) Now impose the stronger condition that  the complez fluz vanishes, meaning that  

co has relative periods in K(i) and 

Then for any s c p l ( K ) ,  the foliation 3 c of (X, [eel) by geodesics of slope s satisfies the 

dichotomy above. 

Suppose that  s is the slope of a geodesic joining a Weierstrass point of X to a zero 

of co. Then the possibilities for the foliation are more limited: 

~" is periodic, with two cylinders whose moduli have rational ratio. 

A suitable product of Dehn twists in these cylinders yields a parabolic element 

AESL(X,a:) fixing 1/s. In particular, 1/s belongs to the limit set. Since slopes s as 

above are dense in PI (R) ,  we conclude (w 

The limit set of SL(X, co) is OH. 
(6) Finally we turn to the proof of Theorem 1.3. Consider (X, co)E f~Ad2 such that  

the limit set of SL(X, co) contains two or more points. Then there is a hyperbolic element 

AESL(X,a:). 

If K = Q ( t r ( A ) ) ~ Q ,  then (X,w) arises via a branched covering of a torus, and 

SL(X, co) is commensurable to SL2(Z). In particular, its limit set is OH. 

Otherwise, K is a real quadratic field. Replacing (X, co) with B. (X, co) for suitable 

B e  SL2 (R), we may assume that  w has relative periods in K(i) and zero complex flux (w 

then the limit set is OH by the analysis above. 

Notes and references. The topological theory of measured foliations, and its cen- 

tral role in Thurston's classification of surface diffeomorphisms, is presented in [FLP] 

and [Th]. Foliations which need not be transversally orientable are represented by holo- 

morphic quadratic differentials [HM]. For more details from the complex-analytic per- 

spective, see [Be], [St] and [Ga]. 

The action of SL2(R) on f~Adg and on spaces of quadratic differentials is discussed 

in [Masl], IV2] and [Ko]. The group SL(X, w) has been much studied, especially in 

connection with polygonal billiards; see, for example, IV3], [V4], [Wa], [KS], [Vo], [GJ], 

[Mc] and [MT]. 

The Galois flux can be considered as a projection of the Sah Arnoux Pathi invariant 

of an interval exchange transformation, defined by ~ IIjl| ~R| Jar], IV1]. The 

SAF-invariant is in turn related to the Kenyon Smillie invariant of a translation surface, 

J(X, co)CR2AQR 2, in a manner similar to (1.1) above [KS, w For more on interval 

exchange transformations, see [Ke], [CFS, Chapter 5] and [Man, II.4]. 
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Hubert  and Schmidt have recently constructed examples of genus g ~ 4  where 

SL(X, w) is infinitely generated [HS]. See also [Ca], in which Boshernitzan, Calta and 

Eskin announce results related to Corollary 4.2 and Theorem A.1 below. 

This paper is a sequel to [Mc], which provides additional background on Teichmiiller 

geodesics. I would like to thank H. Masur, J. Smillie and the referees for many useful 

suggestions. 

2. Galo i s  flux and interval  d y n a m i c s  

Interval exchange transformations are among the simplest measure-preserving dynamical 

systems. When f :  I-+I is algebraic, the behavior of its Galois conjugates can shed light 

on its dynamics over R. In this section we show: 

THEOREM 2.1. If f: I-+I is a uniquely ergodie interval exchange transformation 

defined over a real quadratic field K, then its Galois flux is nonzero. 

Quadratic fields. Throughout  this paper, K c R  denotes a real quadratic field with a 

fixed embedding in R. There is a unique square-free integer d > 0  such that  K - - Q ( x / d ) .  

We denote the Galois conjugate of k=u+vx/d by kt=u-vx/d.  

Interval exchange transformations. Let I=[a, b)c R. A bijective mapping f : I - + I  

is an interval exchange transformation if there is a finite partit ion 

I = U Ij = U [aj, b j) 

and a sequence tj E a such that 

f(x) =x+t j  for all xEIj .  (2.1) 

In other words, f cuts I into subintervals and rearranges them in a new order. 

Clearly f preserves Lebesgue measure # on I.  We say that  f is uniquely ergodic if 

every f-invariant Borel measure on I is proportional to #. Unique ergodicity is equivalent 

to the condition that  every orbit of x is equidistributed, meaning that  

N - 1  1 i f /  -~ E r -+ • r dx 
0 

for all bounded piecewise-continuous functions r I - + R  and all xEI. 

Galois flux. An interval exchange transformation f is defined over K if its transla- 

tion lengths tj all lie in K.  In this case we define its Galois flux by 

flux(f) = E Iljlt}" 
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Here are some basic properties of the flux. 

�9 We have flux(fn)=nflux(f). Thus f l ux ( f )=0  if f is periodic. 

�9 Let g(x)=TfT-l(z), where T(x)=az+b, aEK. Then we have 

flux(g) = N(a) flux(f),  

where N(a)=aa~EQ is the norm of a. In particular, the flux is invariant under conjuga- 

tion by translations. 

�9 The interval exchange transformation 

x+t for xE  [0, l - t ) ,  

f ( x ) =  x+t-1 f o r x E [ 1 - t ,  1) 

models a rotation of the unit circle by tE(0, 1). The map f is periodic when tEQ,  and 

uniquely ergodic otherwise. 

For tEK we have flux(f)=t~-t. Thus the flux of a rotation vanishes if and only if 

f is periodic. 

Proof of Theorem 2.1. Recall that  the map t~(t, t ')  sends the ring of integers 

OKCK to a lattice in R 2. Let A be the intersection of this lattice with I x R .  Since OK 
is dense in R, A r  Note that  the number of lattice points in a rectangle satisfies 

IAnZ x [ - M ,  M] I  = O(M). (2.2) 

After rescaling f ,  we can assume that  its translation lengths satisfy tj E OK. Define 

F: IxR-+IxR  by 

F(x,y) =(x+tj,y+t~j) if xEIj. 

Then F preserves h.  Moreover, the orbit (x,~, y~)=F~(xo, Yo) of a point in A satisfies 

x~= fn(xo ) and 
n- -1  

yn = y0+  ,(xj), 
0 

where r  for xEIj. Since f is uniquely ergodic, we have 

Yn Yo ~_1 n-1 ~1 fX r ~I I E ]ijltlj_ flux(f)  
0 III 

a s  n---} ~ .  

Now suppose that  the flux of f is zero. Then y~/n-+O, so ly~l=o(n). Since the set 

Sn={(xo,  y0),-.., (x~, y~)} lies in A, by (2.2) above we have IS~l=o(n) as well. Therefore 
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(xi, Yi)=(xj,yj) for some i<j, and thus f has a periodic point, contradicting unique 

ergodicity. [] 

Growth rates. The same argument shows that  the flux measures the rate of growth 

of Galois conjugates: for any xcKNI ,  we have 

lim f n ( x ) '  - -  flux(f) (2.3) 
n 15 

when f is uniquely ergodic. 

Periodicity. A similar theorem holds in the presence of periodic points. 

THEOREM 2.2. If f is defined over K and uniquely ergodic on its aperiodic points, 
then flux(f) ~ 0. 

Proof. Let I=POA be the parti t ion of I into periodic and aperiodic points. One 

can check that  P and A are finite unions of intervals permuted by f .  (Use the fact 

that  a maximal periodic interval contains the orbit of a discontinuity of f among its 

endpoints.) Since f lA  is uniquely ergodic, the intervals A1, ...,A,~ comprising A are 

permuted cyclically, and fnlAi is uniquely ergodic for each i. Using the fact that  a 

periodic map has zero flux, we then find: 

f lux(f)  = flux(fnlA1) ~ 0 

by the preceding theorem. [] 

Notes. The Galois flux can be defined for arbitrary number fields K by taking t~E 

R ~ - l x  C ~ to be the vector of values of t at the other infinite places of K.  As in the 

quadratic case, (2.3) holds when f is uniquely ergodic. 

3. R i e m a n n  s u r f a c e s  a n d  m e a s u r e d  f o l i a t i o n s  

This section summarizes background on measured foliations from the complex perspec- 

tive. 

Geometry of holomorphic 1-forms. Let w be a holomorphic 1-form on a compact 

Riemann surface X of genus g. We denote the space of all such 1-forms by f t (X).  

Assume w~0, and let Z(w)cX  be its zero-set. We have IZ(w)l<~2g-2. 
The form w determines a conformal metric Iwl on X,  with negative curvature con- 

centrated on Z(w), and otherwise flat. Any two points of (X, Iwl) are joined by a unique 

geodesic. A geodesic is straight if its interior is disjoint from Z(w). Since a straight 

geodesic does not change direction, its length satisfies f~ Iwl = I f  7 w I. 
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Saddle connections. A saddle connection is a straight geodesic (of positive length) 

that  begins and ends at a zero of cv (a saddle). When X has genus g~>2, every essential 

loop on X is homotopic to a closed geodesic that  is a finite union of saddle connections. 

Affine structure. From w we also obtain a branched complex affine structure on X,  

with local charts r U--+C satisfying dqS=~v. These complex charts are well-defined up to 

translation, injective away from the zeros of a~, and of the form r  p+I near a zero 

of order p. 

Foliations. The harmonic form t )=Re a~ determines a measured foliation 3co on X.  

Two points x, y C X  lie on the same leaf of 3c0 if and only if they are joined by a 

pa th  satisfying 6(3"( t ) )=  0. The leaves are locally smooth 1-manifolds tangent to Ker 6, 

coming together in groups of 2p at the zeros of a~ of order p. The leaves are oriented by 

the condition Im 6>0.  In a complex affine chart, ~=dx and the leaves of 3c0 are vertical 

lines in C. 

A transversal w: I--+X for 3c0 is a smooth embedding of an interval into X such that  

7*6 is everywhere positive on I .  A transverse measure It for 3ce is a measure on its space of 

leaves. Formally, It is the assignment of a finite Borel measure It~ on I to each transversal  

~-: I--+X, such that  the measures are consistent under restriction, reparameterizat ion and 

isotopy along leaves. It  is conventional to require that  #~ be nonatomic, so any individual 

leaf has measure zero. 

The foliation 3co comes equipped with the transverse measure defined by a~=T*Q. 

Unique ergodicity. If Q is the only transverse measure for 3ce, up to scale, then 3c0 

is uniquely ergodic. 

Slopes. Straight geodesics on (X, I~1) become straight lines in C in any complex 

affine chart determined by w. Thus 3co can alternatively be described as the foliation of 

X by parallel geodesics of constant slope oc. Similarly, 3cae(x+iy)~ gives the foliation of 

X by geodesics of slope x/y. 

The spine. The union of all saddle connections running along leaves of 2-- 0 is the 

spine of the foliation. The spine is a finite graph embedded in X.  

Cylinders. A cylinder A c X  is a maximal  open region swept out by circular leaves 

of ~-0. The subsurface (A, I~1) is isometric to a right circular cylinder of height h(A) and 

circumference c(A); its modulus mod(A)=h(A) / c (A) i s  a conformal invariant. Provided 

X is not a toms,  OA is a union of saddle connections. 

Periodicity. The foliation 3co is periodic if all its leaves are compact.  In this case, 

either X is a torus foliated by circles, or the complement of the spine of )c o in X is a 

finite union of cylinders AI, ..., An. 
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Action of GL~ (R). Let 34g denote the moduli space of compact Riemann surfaces of 

genus g. The space of all pairs (X, co), consisting of a Riemann surface of genus g equipped 

with a nonzero holomorphic 1-form, forms a punctured vector bundle f~34g-+2Mg. 

Let GL~(R) denote the group of automorphisms of R 2 with det(A)>0. There is a 

natural action of GL+(R) on Q34g. To define A.(X,  co) for 

consider the harmonic 1-form 

A = ( ~  bd) E GL; (R) ,  

COA=(1 i)  d k, Imco 

on X. There is a unique complex structure with respect to which coA is holomorphic; its 

charts yield a new Riemann surface XA, and we define d .  (X, co)= (XA, COA); cf. [Mc, w 

It is often convenient to regard COA as h form on X. Note that  

for any 1-cycle C on X, where A acts R-linear on C. 

Teichmiiller geodesics. Restricting to elements of the diagonal subgroup 

{ o) } 
Gt = e- t : t E R  , 

(3.2) 

we obtain a path (Xt, cot)=Gt �9 (X, co) whose projection to 349 is the Teichmiiller geodesic 
generated by (X, co). 

The geodesics on X for the metric Iwtl are the same as those for Icol (although their 

lengths may be different). 

Real-affine maps and SL(X, co). The stabilizer of (X, co)E ftAd 9 is the discrete group 

SL(X, co)C SL2(R). 

Here is an intrinsic definition of SL(X,w). A map r  is real-aJfine with 

respect to co if, after passing to the universal cover, there is an A~GL2(R) and bER 

such that  the diagram 

C Av+b> C 

commutes. Here I~(q)=f ;w is obtained by integrating the lift of w. 
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We denote the linear part  of r by D r  Then SL(X,w) is the image of 

the group Aft + (X, w) of orientation-preserving real-affine automorphisms of (X, w) under 

r 

Periods. We define the (absolute) periods of a closed 1-form a on X by 

Per(a) = { / c a  : C C Hl (X; Z) } c C. 

Thus a has periods in a field K C  C if and only if it represents a cohomology class in 

H 1 (X; K )  c g 1 (X; C). 

Similarly, the relative periods of a are the values of fc  a as C ranges over all 1-cycles 

with boundaries in the zero-set Z(a). The form a has relative periods in K if and only 

if it represents a cohomology class in HI(x ,  Z(a) ;  K) .  

Any nonzero form wEft(X) has a pair of periods pl,p2EC that  form a basis for 

C over R;  otherwise X would carry a harmonic form with trivial periods, and hence a 

nonconstant harmonic function. 

4. F l u x  and  fo l ia t ions  

In this section we apply the Galois flux to the study of measured foliations. 

First return maps. Let 5c~ be a measured foliation of a compact Riemann surface X,  

determined by p = R e  c~, c~Cf~(X). 

A transversal T: I-+X for bee is normalized if ~-*p=dx. Any transversal  can be 

normalized by a change of coordinates in its domain. 

A normalized transversal  ~-: I-+X is full if it crosses every leaf of X.  For such a 

transversal the first return map 
f : I -+ I 

is defined so that  T(f(x)) is the first point where the positively directed leaf through 

7(x) again crosses T(I) .  

Since p is a transverse invariant measure for "To and T*p=dx, the map f preserves 

linear measure. Moreover, f is discontinuous only when a leaf runs into a zero or an 

endpoint of T(I) .  Thus with a suitable convention for such leaves, f is an interval 

exchange transformation. Compare  [Man, p. 119], [St, IV.12.4]. 

Flux. The translation lengths of f are periods of ~. In fact we have 

r x x - f  ( x )  = = 
Jf(x) 

(4.1) 
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.///// 
\\\\2 

Fig. 2. Leaves of )c o and the first return map. 

where 3' is a loop that  runs from r(x) to r( f (x))  along a leaf of 5co, and then returns 

along T(I) to ~-(x). 

If the periods of Q lie in a real quadratic field KC R equivalently, if we have 

It)] E H 1 (X; K )  C Hi(X;  R) 

on the level of cohomology-- then the interval exchange f :  I--+I is also defined over K.  

In addition, [6] determines a unique Galois conjugate cohomology class [Q'] E H 1 (X;/~), 
characterized by f~ 6 '=  (f~ 6)' for all loops % We use 6' to denote any representative of 

the cohomology class Galois conjugate to [L)]. 

The main result of this section is a formula for the flux of f .  

THEOREM 4.1. Let :Pe be a measured foliation with periods in a real quadratic 

field K. Then the first return map f: I--+ I for any full transversal 7: I---~ X is defined 
over K, and we have 

nux(f) : - ] ;  d. 

In particular, the flux is the same for all full transversals. 

Proof. Let I =  [.J Ij = [.J [aj, bj) be a parti t ion of I into intervals on which f ( x ) = x + t j .  
Let -yj: SI--+X be a smooth loop that  starts at T(aj), runs positively along a leaf to 

7(f(aj)) and then returns along 7(I )  to 7(aj).  Define Cj: Ij xSI--+X by 

where the sum above is defined using the local complex affine structure determined by w. 

The map Cj sweeps out a singular annulus on X, connecting T(Ij) to T(I(Ij)) along the 

leaves of ~-~ (see Figure 2). The 2-cycle ~ Cj represents the fundamental class of X. 

* ' ' Since the loops Cj ( z , . ) : S  1---kX are homologous for By (4.1) we have fsl~/jQ = - t j .  



TEICHMfJLLER GEODESICS OF INFINITE COMPLEXITY 203 

all x E I j ,  the period of t)' around each one is - t j .  Therefore we have 

j dIJ •  j dIJ xS1 

E fSl'~j (6)  ~ ' : flux(f). = I%1 * ' :- l%Itj 
J 

[] 

Flux of a foliation. Motivated by the result above, we define the flux of a real-valued 

l-form ~ with periods in K by 

flux(@) = -- I x  toAd. 

COROLLARY 4.2. If J:o is uniquely ergodic, then flux(t))#0. 

Proof. A measured foliation is uniquely ergodic if and only if its first return map is, 

so this follows from Theorem 2.1. [] 

Cylinders for .7- 0 correspond to periodic intervals for the first return map. Thus 

Theorem 2.2 implies: 

COROLLARY 4.3. Let P c X  be a finite union of cylinders for J:e. If the restriction 
of the foliation ~ to X \ P  is uniquely ergodic, then flux(t))r 

Complex flux. Let K ( i ) c C  be the extension of K by x/Z1. Elements of K(i) have 

the form k=ki+ik2, k i ,k2EK. Let (kl+ik2)'=k'l+ik' 2 and kl+ik2=kl- ik2 .  These 

involutions generate the Galois group Z/2 x Z/2 of K(i)/Q. 

Now suppose that  wE~(X)  has periods in K(i), and that  its Galois conjugate [co'] E 

Hi(X ,  K ( i) ) satisfies 

l wAw'= O. 

We then define the complex flux of w by 

Flux(w) = - / x  w A J .  

Note that  Flux(kw)=kk'  Flux(w) for any kEK(i).  

We emphasize that, whenever we consider the complex flux, we assume that 

f wAw'= 0. This condition holds, for example, if [w'] 6 H I(X, K(i)) is represented by 

a holomorphic l-form. 

Flux at varying slopes. The flux of 0 : R e  w satisfies 

:- 4 : i Re flux(w). (4.2) 
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Here we have used the condition f aJAcol= 0 to eliminate half of the cross-terms. 

In particular, if the complex flux of co vanishes, so does the real flux of Q. More 

generally we have: 

THEOREM 4.4. Let w have periods in K(i) and zero complex flux. Let Jz o be the 

foliation of X by geodesics of slope k, where 

k = ~ l / k 2 E P  1, ~I,]~2EI(, and o=Re(kl+ik2)w. 

Then Jz e has periods in K, and flux(0)--0. 

Periodic foliations. The next result sheds light on the meaning of the imaginary part  

of the complex flux. As in w we let h(A) and c(A) denote the height and circumference 

of a cylinder A in the Ic0l-metric. 

THEOREM 4.5. Consider (X,w)EfLAdg, 9>12, such that w has periods in K(i) and 
f co/~w'=O. Suppose that the foliation :Po determined by G=Re w is periodic, with cylin- 
ders (Ai)~ ~. Then we have 

~ 1 Im Flux(c@ (4.3) E h(Ai)c(Ai)'= 
1 

Proof. Note that  c(A~) =fL Im w for any positively oriented closed leaf L contained 

in A/. In particular, we have c(Ai)EK since it is a period of Imw. Since A~ is swept out 

by parallels of L, we have fA~ Re w AIm u / =  h(Ai)e(Ai)'. Thus we find 

~ h(Ai)c(A~)'=- / x R e w A I m w ' =  l /x(W+W)A(w'-w') 
1 

1 /x(C~Aw,_ajAch,) 1 ImFlux(w), 
4i 2 

using the fact that  U Ai has full measure in X. [] 

Recall that the norm N(k)=kk' is a rational number for any kEK, and h(A)/c(A)= 

rood(A). Thus equation (4.3) yields: 

COROLLARY 4.6. Suppose that the complex flux of a~ vanishes and . T I ~  is periodic. 

Then the moduIi of its cylinders satisfy the rational linear relation 

~ mod(Ai) N(c(Ai)) = O. 
1 

In particular, we have n>~2, and mod(A1)/mod(A2)eQ if n =2 .  
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5. S a d d l e  c o n n e c t i o n s  

In this section we use the Diophantine properties of square roots to study short saddle 

connections along a Teichmiiller geodesic. 

Recall that  any (X, w)E f~A4g determines a pa th  (Xt, ~ot)E f~AJg such that  Xt moves 

along a Teichmiiller geodesic. Let ~ be the foliation determined by Q----Re ~. As t 

increases, the leaves of ) c  are contracted exponentially fast; that  is, we have f~ [~otl= 

e-t f7 I~ol for any arc 7 comained in a leaf. 

We will show: 

THEOREM 5.1. Suppose that Q has relative periods in a real quadratic field K, where 
g = R e  w for (X,w)E~2.h4g. Then there exists an r>O such that for all t>~O and all saddle 
connections V, 

f l~tl<r ~ v lies in a leaf of F~. 

Proof. We begin with a definition: a rectangle R c X  is a region tha t  maps homeo- 

morphically to [0, a] x [0, b] under a suitable affine chart r  with d r  It  is 

straightforward to show that  X can be tiled by a finite number of rectangles. The zeros 

of w are included in the rectangles'  vertices. We allow a vertex of one rectangle to lie on 

an edge of another. 

The boundaries of the rectangles, taken together, give a finite graph G c X .  Each 

edge E of G is either horizontal or vertical; that  is, writing 

EW=X(E)+iy(E) ,  

we have x ( E ) = 0  or y ( E ) = 0 .  

Let K = Q ( v ~ )  where d > 0  is a square-free integer. Since Re ~ has relative periods 

in K, we can choose the tiles so that  x ( E ) E K  for all edges E of G. In fact, after 

rescaling ~, we can assume that  x (E)=a(E)+b(E)v~  with a(E), b(E)EZ. 

Consider a saddle connection 7 on (X,~) ,  with f ~ = x o + i y o .  Letting (xt,Yt)= 
(etxo, e-tyo), we have 

f I.~r = Ix~+iy~l. 
We may assume x0 ~ 0, since otherwise 7 lies along a leaf of ~-o" 

To complete the proof, we must find a uniform lower bound for f~ I~t[. Note that  

there is a lower bound s > 0  to the length of all saddle connections on (X, I~1). Thus we 

m a y  assume  lY01 > Ix01, since otherwise  we have 

flail  ~f~ I~l ~8>0 
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for t>0 .  

The pa th  3' is homotopic, rel its endpoints, to a chain of edges El ,  ..., En joining a 

pair of vertices of G. Choose this chain so that  n is minimal. Then the number of edges 

is controlled by the length Ixo+iyol of 3`; since Ix0l < ly0l, we have n=O(lyol). Integrat ing 

Re co along this chain, we obtain 

x 0 =  :a+b  
1 I 

Since G has only a finite number of edges, a(Ei) and b(Ei) are O(1), and thus a and b are 

O (n) = O (lY0 I)- We may assume b # 0, since otherwise we have I xt + iyt I >~ I xt I >~ I xo I = I a I >~ 1 
(since aEZ) .  

Now recall tha t  square roots are poorly approximated by rationals: there exists a 

Cd>0  such tha t  for all a / b c Q  we have 

+ Ce 
a v/-d > b_ V 

[HW, w 11.7]. Therefore we have 

0 < Cd < b + b V q  I Ibi = O(Ixoyol); 

in other words, Iz0y01 > r  2 for some r > 0  independent of 3'. It  follows tha t  

~ laJtl = Ixt + iytl >~ V/21xtYtl = ~ 1  > r > O, 

as desired. [] 

6. L o o p s  in t h e  sp ine  

In this section we show that  ari thmetic properties of ~) imply topological properties of )c a. 

Recall that  the union of all the saddle connections running along leaves of 5ca is the 

spine of the foliation. We will establish: 

THEOREM 6.1. Let iP a be a measured foliation of a compact Riemann surface X of 

genus g>~2. Suppose that Q has relative periods in a real quadratic field K and zero flux. 

Then there is a closed loop in the spine of the foliation. 

Recurrence. A Teichmiiller geodesic ray (Xt:t~>0) is recurrent if there is a compact 

set BCJ~4g such tha t  X t c B  for arbitrari ly large values of t; otherwise it is divergent. 

Let L(X,  g) denote the length of the shortest closed geodesic on X in the metric g. 

Then a geodesic is divergent if and only if L(Xt,gt)-+O for the hyperbolic metrics gt 

on X~ [Mu]. 

The proof of Theorem 6.1 will use the following result from [Mas2]: 
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THEOREM 6.2 (Masur). If the Teichmiiller geodesic ray generated by (X, cv)~t2Adg 
is recurrent, then the foliation JzRe~ is uniquely ergodic. 

Proof of Theorem 6.1. Let t )=Rew and let Xt be the Teichmiiller geodesic ray 

generated by (X, w). Since t) has zero flux, Jr  o is not uniquely ergodic (Corollary 4.2); 

hence Xt is divergent and lt=L(Xt, gt)-+O. 
We claim that  L(Xt, Icvtl) tends to zero as well. Indeed, once It is small, a collar 

around the short geodesic provides an essential annulus At c Xt with 1/mod(At)=O(It). 
Now the modulus can be defined in terms of extremal length by 

inf (Z  )2 
rood(At) -1 = sup 

a fAte r2 

where a ranges over all conformal metrics on Xt, and 7 ranges over all essential simple 

closed curves in At. Taking a =  lwtl we find 

L(Xt, 1~l)2 = O(mod(At)-lf fA ,wt 12 )=  O(lt I x  l 12) ' 

and thus L(Xt, Icot[2)~0 as t ~ o c .  

By Theorem 5.1, there is an r > 0  such that  any saddle connection of length less 

than  r on (Xt, I~l) lies in the spine. Choose t such that  L(Xt, 1~12)<r, and let *y 

be a closed geodesic with f~ Icotl<r. Since 9 ) 2  we may assume that  "~ is a chain of 

saddle connections. (Any closed geodesic disjoint from Z(w) lies in a cylinder of parallel 

geodesics whose boundary is made up of saddle connections.) Each saddle connection in 

"/ is  also shorter than r, and hence 7 is a closed loop in the spine of the foliation. [] 

Remarks. For g = 1 the hypotheses of the theorem imply that  5 e gives a foliation of 

the torus by circles. Theorem 6.1 can also be deduced from properties of zero flux and 

results of [Bo]. Theorem 6.2 comes from [Mas2, Theorem 1.1]; note that  the condition 

of minimality assumed there is unnecessary. 

7. G e n u s  two:  f o l i a t i o n s  

In this section we specialize the analysis of foliations to the case of genus two, and 

establish: 

THEOREM 7.1. Let X be a surface of genus two, and let Yre be a zero-flux measured 
foliation of X with a loop in its spine. Then either 

(1) Jr e is periodic, or 
(2) (X, ~e) is the connected sum of a pair of tori with irrational foliations. 
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t .  t 
Fig. 3. Local  p ic ture  of the  connec ted  s u m  X A ~ Y  B. 

We will give examples of the second case in w 

Foliations of surfaces with boundary. We begin by discussing surgery operations on 

measured foliations. 

Let Y be a compact  Riemann surface with boundary. Let f t (Y)  denote the holomor- 

phic 1-forms on Y tha t  reduce to real-valued forms along OY. Any wEf t (Y)  extends by 

Sehwarz reflection to a holomorphic form on the double of Y across its boundary. The 

multiplicity of a zero of a form at pEOY is defined to be the multiplicity of its extension 

to the double of Y. 

Provided toe0,  L)=Re aa determines a measured foliation bre of Y with each compo- 

nent of 0Y contained in a leaf. The form 0 has an even number of zeros (counted with 

multiplicity) on each component  of OY. 

For example, given (X, c~)E f t M g  and a compact  interval A contained in the smooth 

part  of a leaf of Y R ~ ,  we can slit X open along A to obtain a foliated surface with 

boundary XA. The new foliation has two simple zeros along OXA, one at each end of the 

slit. 

Connected sum. Let (X, (~) E ftJt4g and (]I,/3) E ftAdh be a pair of surfaces with mea- 

sured foliations 3cae~ and )ca~Z. Let A c X  and B c Y  be compact  intervals along the 

leaves of the corresponding foliations and disjoint from their zeros. Suppose that  A and B 

have the same length: that  is, fA Ic~l =fB 1/31 . Then there is a unique way to glue OXA 

isometrically to coYB preserving the orientations of the foliations. Joining the l-forms 

and/3 together across the boundary, we obtain the connected sum 

(z, ~) = (xA, a) # (Y., Z) E OMg+h. 

The foliation 9cae~ restricts to 5Re~ and 9CReZ on the subsurfaces XA, YB c Z. See 

Figure 3. 

Boundary contraction. Now let 3re be a measured foliation of a surface with bound- 

ary X. Suppose that  L) has at least one zero on each component  of OX. Then ~-Q descends 
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Fig. 4. Contracting the boundary. 

to a measured foliation 6 of the surface Y=X/OX obtained by collapsing each component 

of 0X to a single point. A component of 0X carrying 2p zeros of ~e gives rise to a zero 

of order p - 1  for (Y, 6).  

This surgery is more radical than connected sum; although the quotient foliation 6 

is defined by a smooth 1-form, there is no canonical complex structure on X/OX. 
On the other hand, every leaf of 5~e meets the interior of X by our assumption on 

its zeros, and thus there is a bijection between the leaves of ~-~ and 6. This implies that  

the dynamics is preserved by boundary contraction; for example, 6 is uniquely ergodic 

or periodic if and only if the same property holds for ~'e- 

Figure 4 shows examples of boundary contraction where the boundary contains 

(i) two simple zeros; 

(ii) a single double zero; 

(iii) two simple zeros and one double zero. 

Proof of Theorem 7.1. Since X has genus two, p has two zeros Zl,Z2EX. We will 

assume zl~z2; the case Zl=Z2 is similar (but simpler). Let ~/: X--+X be the hyperel]iptic 

involution. Note that  zI(zl)=z2 and z/*~=-Q. Thus ~/ preserves the leaves of ~e, but 

reverses their orientation. 

Let L be a loop in the spine of ~e. We distinguish three cases, shown in Figure 5. 

(A) First suppose that L contains exactly one zero of 6- Then 71(L) is a loop through 

the other zero, disjoint from L and homologous to - L .  Thus X splits along LOci(L) into 

a pair of foliated surfaces with boundary, X=Xo OX1, of genus zero and one respectively. 

The foliation of X0 has no zeros (since its double is a toms),  and therefore int(X0) 

is a cylinder of ~e. In particular, ~'elX0 is periodic. 

There is a simple zero on each component of OX1, so we obtain a foliated torus 
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Fig. 5. Results of splitting along a loop in the spine. 

Y=X1/OX1 upon contracting its boundary  to a pair of points. Any measured foliation 

of a torus such as Y is either periodic or uniquely ergodic. Since the foliations of Y 

and X1 are dynamically equivalent, 9C01X1 is also periodic or uniquely ergodic. 

By Corollary 4.3, a foliation with zero flux cannot be decomposed into a union of 

cylinders and a single uniquely ergodic component. Thus the foliation of X1, and hence 

of X,  is actually periodic. 

(B) Now suppose that  L contains both  zeros of 6. Then L=LIOL2 is a pair of 

saddle connections. We may assume r / (L)=L;  indeed, if rI(L1)~_L then we can replace L 

with LIO*I(L1). 
Suppose that  L is not homologous to zero. Cutt ing X open along L, we obtain a sur- 

face X1 of genus one. The map r 1 interchanges the boundary components of X1, so there 

are two zeros on each component.  (The case of simple zeros is shown in Figure 5 (B).) As 

in case (A), upon contracting the boundary of X1 to a pair of points we obtain a foliated 

torus Y. The foliation of Y is either uniquely ergodic or periodic, and the former is ruled 

out by the zero-flux condition. Thus the foliation of X is periodic in this case as well. 

(C) Finally assume tha t  L contains both  zeros of O and is homologous to zero. Then 

L consists of a pair of saddle connections with the same la~l-length, connecting zl to z2 

in the same direction (otherwise a~ would have a nontrivial period around L). Cutt ing 

along L and regluing, we obtain a pair of foliated tori T1 and T2 whose connected sum 

is (X, 5co). 

If the foliations of T1 and 272 are both  periodic, then 5co is also periodic. If  both  

foliations are uniquely ergodic, then (X, 9co) is a connected sum of irrationally foliated 

tori. The mixed case (one periodic and the other uniquely ergodic) is ruled out by the 

zero-flux condition. [] 
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Weierstrass points. Here is a useful way to obtain periodicity from the theorem 

above. Recall that the six Weierstrass points on a surface of genus two are the fixed 

points of its hyperelliptic involution. 

THEOREM 7.2. Let (X, j r )  be a zero-flux measured foliation of a surface of genus 

two. Suppose that the spine of the foliation contains both a loop and a Weierstrass point. 

Then jz is periodic with at most two cylinders. 

Proof. First suppose that  ~e is periodic, with open cylinders A1,..., An. Each cylin- 

der contains exactly two Weierstrass points, since it is invariant under the hyperelliptic 

involution. At least one of the six Weierstrass points lies in the spine (by assumption), 

so there are at most two cylinders. 

Now suppose that  9re is not periodic. Then, by the preceding theorem, (X,.Ye) is 

the connected sum of a pair of irrational foliations of tori. The spine of such a foliation 

is a circle on which the hyperelliptic involution acts by 180 ~ rotation. Thus there are no 

Weierstrass points in the spine, contrary to assumption. [] 

8. Genus  two: parabolics  

In this section we study the foliations of varying slope attached to a fixed holomorphic 

l-form. Throughout we fix the data of 

�9 a real quadratic field K c R ,  

�9 a compact Riemann surface X of genus two, and 

�9 a holomorphic l-form w%0 in ~ (X) ,  

such that  

�9 ~ has relative periods in K(i) and zero complex flux. 

We will show that  the limit set of SL(X, w) is the full circle at infinity. 

Dehn twists. Here is a general method for constructing elements of SL(X, w). 

LEMMA 8.1. Let j r ,  Q=Re ~, be a periodic measured foliation of X with cylin- 

ders A1, ...,An. Assume that the moduli mi=mod(Ai )  have rational ratios, and let 

t = l c m ( m l  1, ..., m~l) .  Then there is a parabolic element 

1 ~ ) E S L ( X , w ) ,  D e =  ( t  

represented by an affine automorphism r X ~ X preserving the leaves of ~o" 

Pro@ Let t be the least common multiple of mod(Ai) -1, and let ng=t/mod(Ai).  

Let r be the affine automorphism of Ai that  shears along the leaves of ~r o and effects 
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an ni th  power of a Dehn twist. Then 

D r  It 0)1 and r 

so these maps fit together to give the desired automorphism of X (cf. 

Lemma 9.7]). 

Action of SL(X,w). As usual 

Iv3, 2.41, [Mc, 
[] 

c 1 
- = the slope of a = 
b the slope of ~0 

in P1(R). 

Consolidating the preceding results, we can now establish: 

THEOREM 8.2. Let jzQ be the foliation of X determined by 6 = R e ( k w ) r  with 

kEK( i ) .  Then either jz  is periodic, or (X,J:o) is the connected sum of a pair of irra- 

tionally foliated tori. 

Proof. By our assmnptions on w, the form 6 has relative periods in K and vanishing 

flux (Theorem 4.4). By Theorem 6.1, 2-~ has a closed loop in its spine, and hence it is 

periodic or a connected sum by Theorem 7.1. [] 

THEOREM 8.3. Suppose that Yz o as above contains a leaf connecting a Weierstrass 

point of X to a zero of 6. Then 

(1) Jr o is periodic with two cylinders, satisfying rood(A1) / rood (A2) E Q, and 

(2) SL(X,a;) contains a parabolic element A fixing 1 / s E p I ( R ) ,  where s is the slope 

of 

Proof. By assumption there is a straight geodesic segment S running along a leaf 

of 9~ from a Weierstrass point p to a zero z of 6. Then either S or SU~?(S) is a saddle 

acts on R 2 and on H U p I ( R )  by (x,y)~-~(ax+by, cx+dy) and by z~+(az+b)/(cz+d).  

Let 

A = D e  E SL(X, w) c SL2(R) 

be the linear part  of a real-affine automorphism r X - + X .  Suppose that  r preserves the 

foliation 5~ with leaves of slope c/b defined by 6 =Re  aw, a=b+ic. Then (c, b) is an 

eigenvector for A, and thus A fixes 
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connection for (X, w) (where ~] is the hyperelliptic involution). In either case, the spine 

of jre contains both a loop (by the argument above) and a Weierstrass point. 

By Theorem 7.2, jre is periodic with at most two cylinders. The vanishing of the 

complex flux implies the rational relation ~ mod(Ai)N(h i )=  0; thus jre has exactly two 

cylinders, with mod(A1)/mod(A2) �9 Q (Corollary 4.6). 

By Lemma 8.1, a suitable product of Dehn twists in each cylinder gives rise to an 

affine automorphism with parabolic derivative A=DCE SL(X, w). Since r preserves the 

leaves of jr~, A fixes 1/s. [] 

THEOREM 8.4. Let (X,w) be a holomorphic l-form in genus two, with periods in 

K(i)  and zero complex flux. Then the limit set of the Fuchsian group SL(X, w) is the 

full circle at infinity. 

Proof. Let p be a Weierstrass point of X,  and let S be an oriented straight geodesic 

on (X, lwl) joining p to Z(w). Since w has relative periods in K(i) and SUv(S)  joins a 

pair of zeros, we have 

w = - . (s )  w =- kl+ik2 C K(i).  

Thus S has slope s=k2/k l  and lies along a leaf of jre, ~=Re((k2+ikl)W). By the 

preceding theorem, 1/s is the fixed point of a parabolic element AESL(X, w), and hence 

belongs to the limit set. 

Since the slopes of straight geodesics from p to Z(w) fill out a dense subset of P I (R) ,  

the limit set of SL(X, w) is the full circle. [] 

9. Trace  fields 

In this section we establish a criterion for the vanishing of the complex flux, valid for a 

Riemann surface of any genus. 

THEOREM 9.1. Let SL(X,w) be an infinite group with real quadratic trace field K. 

Then after replacing (X, w) by B. (X, w) for suitable B e GL~ (R), the form w has relative 

periods in K(i)  and zero complex flux. 

This theorem permits the following more invariant formulation of the results of w 

THEOREM 9.2. Let X have genus two and suppose that SL(X, w) is an infinite group 

with real quadratic trace field. Then: 

(1) The limit set of SL(X, w) is the full circle at infinity. 

(2) Let jr be a foliation of (X, ]w]) by geodesics with the same slope as a period 

of w. Then either jr is periodic, or (X, jr)  is the connected sum of a pair of irrationally 

foliated tori. 
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(3) If s is the slope of a saddle connection passing through a Weierstrass point, then 

(a) the foliation by geodesics of slope s is periodic with two cylinders~ satisfying 

mod(Al)/mod(A2) c Q, and 

(b) SL(X,a~) contains a parabolic element fixing 1/s. 

Similarly the results of w and w yield: 

THEOREM 9.3. Let X have genus g>>.2, and suppose that SL(X,a~) is an infinite 

group with real quadratic trace field. Let jr be a foliation of X by geodesics with the same 

slope as a period of w. Then jr fails to be uniquely ergodic, and there is a loop in the 

spine of jr. 

Trace fields. The trace field of FCSL2(R) is given by K = Q ( t r F ) C R .  The degree 

of K / Q  is bounded by the genus g of X [Mc, 5.1]. 

We begin by studying the impact of hyperbolic elements A C EL(X, co) on the periods 

and flux of co. Every such element has the form A=Dr  where r is a pseudo-Anosov 

real-alline automorphism of (X, co). 

THEOREM 9.4. If  SL(X,a~) contains a hyperbolic element, then the relative and 

absolute periods of w span the same vector space over Q. 

Proof. Let 7 be an oriented path joining a pair of zeros of w, and let p =f~ aJ be the 

corresponding relative period. We will show that  p is in the span of the absolute periods, 

V = P e r ( ~ ) |  

Let A = D r  be a hyperbolic element of SL(X, co). Replacing r by a Cn for suitable 

n>0 ,  we can assume that  r fixes the zeros of w. In particular, r fixes the endpoints of 7, 

so 7 - r  is a 1-cycle on X. By equation (3.2) we have 

= f~ a J = ( I - A ) ( p ) e V .  
q _r 

Since A is hyperbolic, ( I - A )  is invertible on C. But A ( V ) = V ,  and therefore p =  

( I - A ) - l ( q )  also lies in V. [] 

THEOREM 9.5. i f  SL(X,w) contains a hyperbolic element A, then 

V =  Per(co) |  c C 

is a 2-dimensional vector space over L = Q(tr  A) c R .  

Proof. Let A = D r  be a hyperbolic element in SL(X,w) ,  let t=tr (A) ,  let T=r  

acting on H i ( X ,  R), and let 

S = K e r ( t I - T - T  1). 
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It is known that  the eigenvalues )+1 of A are also simple eigenvalues of T [Mc, Theo- 

rem 5.3]; since t=A+A -1, we have d im(S)=2.  Moreover, S is spanned by [Rew] and 

Jim ~], since 

((~* ~-( r  = t r ( d ) ~ d  = t ~ .  

The rational periods V can be identified with the image of H1 (X, Q) in S*. 

Let 

S(L)=SAHI(X,L) .  

Since rational cycles define elements of S(L)*=Hom(S(L), L), we can alternatively de- 

scribe V as the image of the natural map 

Hi(X, Q) S(L)*. 

Letting T . = r  acting on HI(X, Q), we have 

7r( (T, -~- T . 1 ) n  x) = tnTr(x). 

Thus V is already a vector space over L = Q ( t ) ,  so it coincides with the image of the 

natural extension of 7r to H i (X ,  L). But this extension is the composition of the iso- 

morphism HI(X~ L)~-HI(X~ L)* and the surjection Hi(X, L)*-+S(L)*, so we have V ~  

S(L)*~L 2. [] 

COROLLARY 9.6. The traces of any two hyperbolic elements in SL(X, aJ) generate 

the same field over Q. 

THEOREM 9.7. If SL(X,~)  contains a hyperbolic element such that K = Q ( t r ( A ) )  

is real quadratic, and w has periods in K(i), then the complex flux of ~ is zero. 

Proof. Let A=Dr let t = t r ( A )  and let T = r  acting on Hi(X, R) as before. Then 

we have a pair of 2-dimensional eigenspaces 

S| c Hi(X, R) 

on which U=T+T -1 acts with eigenvalues t, t~EK respectively. Since U is self-adjoint, 

S and S t are orthogonal under the cup product. 

The eigenspace S is spanned by Re ~, Im w. These forms actually lie in H 1 (X, K ) n  S, 

since w has periods in K(i). The Galois conjugate of any form QEHI(X, I()NS satisfies 

U~t=ttQ ', and hence belongs to S'. In particular, (Re w)' and (Im w)' are orthogonal to 

Re w and Im w. This shows 

/ w A w ' = / w A ~ t = O ,  

and thus w has zero complex flux. [] 
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Branched covers of tori. We say that  (X,w)EftAd~ arises via a torus if there is 

a Riemann surface E = C / A  of genus one, and a holomorphic map f :  X - ~ E ,  such that  

f is branched over torsion points on E and w=f*(dz) .  In this case, SL(X,w) is com- 

mensurable to SL2(Z) (up to conjugation), and its trace field is Q (cf. [GJ]). Here is a 

converse: 

THEOREM 9.8. If SL(X,w) contains a hyperbolic element with t r (A)EQ,  then 

(X, w) arises via a torus. 

Proof. Since L=Q( t r (A) )=Q,  we have P e r ( w ) |  2 by Theorem 9.5 above. 

Thus Pe r (w)~Z 2 is a lattice in C, and E = C / P e r ( w )  is a complex torus. 

We may assume that  X has genus g~>2, since the case g = l  is immediate. Let p 

be a zero of w, and define f :X--+E by f ( q ) - - f / w .  By construction, f*(dz)=w.  By 

Theorem 9.4, the relative periods of w lie in Per(w)|  so f is branched over torsion 

points on E. Therefore (X, w) arises via a torus. [] 

Proof of Theorem 9.1. Assume that  SL(X,w) is infinite with real quadratic trace 

field K. Since K r  Q, there is a hyperbolic element A E SL(X, w). If t r (A)E Q then (X, w) 

arises via a torus and the trace field of SL(X, w) is Q, contrary to assumption. Thus 

K = O ( t r ( A ) ) .  

As remarked in w w has a pair of periods Pl,P2 that  are linearly independent 

over R.  By Theorem 9.5, the rational periods span a 2-dimensional vector space over K, 

and thus 

V =  Per(w)QQ = Kpl| C C. 

By Theorem 9.4, w has relative periods in V. 

Now let BEGL~(R)  be a real-linear map sending {Pl,P2} to {1, i}, and let 

( x . ,  = B .  ( x ,  

Then by equation (3.2), the relative periods of wB lie in B ( V ) = K ( i ) .  The group 

SL(XB, WB) is simply a conjugate of SL(X, w), so it still contains a hyperbolic element 

whose trace generates K. Thus wB has vanishing complex flux by Theorem 9.7. [] 

Genus two. Using Theorem 8.4, similar arguments establish: 

THEOaEM 9.9. For any (X,w)Ef~A42 and real quadratic field K, the following 

conditions are equivalent: 

(1) The trace field of SL(X, w) is K. 

(2) The Jacobian of X admits real multiplication by K with w as an eigenform, and 

the zeros (zl, z2) of w satisfy fZl~WEPer(w)| Q. 

(3) After replacing (X,w) by B-(X,w)  for suitable BEG L~(R) ,  w has relative pe- 

riods in K(i)  and zero complex flux. 
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COROLLARY 9.10. Suppose that ( X , w ) C ~ 4 2  has periods in K( i ) ,  zero complex 

flux, and that w has a double zero. Then SL(X,w) is a lattice. 

Proof. By the preceding theorem, Jac(X) admits real multiplication with co as an 

eigenform. Since co also has a double zero, SL(X, ~) is a lattice by Theorems 1.3 and 7.2 

of [Me]. [] 

Notes. See [Me] for more on Jaeobians with real multiplication, and [GJ], [EO] for 

the case where (X, w) arises via a torus. Theorems 9.4 and 9.5 above also appear in 

[KS, Appendix]. 

10. Limit sets  and infinitely generated  groups 

We can now establish our main result on the possible limit sets for SL(X, w) in genus 

two, and give examples where this group is infinitely generated. 

THEOREM 10.1. For any (X,w)f f~JM2, the limit set of SL(X,~)  is either the 

empty set, a singleton, or the full circle at infinity. 

Proof. Suppose that  the limit set contains two or more points. Then SL(X, w) is 

an infinite group, containing a hyperbolic element A. If the trace of A is rational, then 

(X, w) arises from a torus (Theorem 9.8), so SL(X, w) is commensurable to a conjugate 

of SL2(Z) and its limit set is the full circle. 

On the other hand, if tr(A) is irrational, then the trace field of SL2(X,w) is a real 

quadratic field K, and the limit set of SL(X, w) is the full circle by Theorem 9.2. [] 

Lattices. A discrete group PcSL2(R) is a lattice if SL2(R)/P has finite volume. 

It is known that  F is lattice if and only if r is finitely generated and its limit set is the 

full circle. By [V3, 2.11] we have: 

THEOREM 10.2 (Veech). If SL(X,a~) is a lattice, then for any acC* the foliation 

J:YRe aw is either periodic or uniquely ergodic. 

If X has genus two and the limit set of SL(X, w) is the full circle, then SL(X, ~v) is 

finitely generated (and hence a lattice), provided 

�9 its trace field is Q (Theorem 9.8), or 

�9 w has exactly one zero [Mc, Corollary 1.4]. 

Infinitely generated groups. We now show that  when X has genus two and w has 

a pair of distinct zeros, it may happen that  SL(X, w) is an infinitely generated group. 



218 C.T. MCMULLEN 
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B 

D 

l + a  I A  

B D 
Fig. 6. The polygon S(a) and its gluing pattern. 

E 

E 

That  is, SL(X, co) may fail to be a lattice, even though its limit set is the full circle at 

infinity. The construction we give admits many variations. 

Consider the S-shaped polygon S ( a ) c C  shown in Figure 6. This polygon can be 

cut into three squares of side lengths 1, l + a  and a. 

Let X be the Riemann surface obtained by gluing together opposite sides of S(a) 

in the pat tern indicated by capital letters in Figure 6. The form dzlS(a ) descends to a 

form wE~(X) .  The ten 'vertices' of S(a), shown as round dots in Figure 6, descend in 

two groups of five to yield the two distinct zeros of w on X. 

THEOREM 10.3. Let bEQ+ be a positive rational such that 

a = b - l +  b2~-b+l 

is irrational. Construct (X, w) E ~ M 2  from (S(a), dz ) by identifying opposite sides. Then 

SL(X, w) is an infinitely generated group whose limit set is the full circle. 

Proof. The foliation of S(a) by vertical lines covers the foliation Fae~  of X. This 

foliation is periodic, with three cylinders of modulus one coming from the three squares 

forming S(a). Thus we have 

by Lemma 8.1. 

SimilarIy, S(a) splits into a pair of horizontal rectangles with dimensions 1 x (2+a) 

and a • (1+2a).  Thus the horizontal foliation ~Im~ of X is periodic with two cylinders, 

satisfying mod(A1)= (2+a )  -1 and mod(A2)=a(l+2a) -1. The value of a is chosen so 

that  
rood(A2) _ a (2+a)  _ b 
rood(A1) 1+2a  
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1 ~a 

l + a  
1 Fig. 7. The foliation with slope ~ gives the connected sum of a pair of tori with irrational 

foliations. 

is rational. By Lemma 8.1 again, we have 

( 1  n(2~a) )ESL(X ,w)  
P2---- 0 

for some integer n>0 .  

The product P1P2 is hyperbolic, so the limit set of SL(X,w) is the full circle by 

Theorem 10.1. 

To see that  SL(X, w) is infinitely generated, consider the foliation of S(a) by lines 

1 This foliation covers $-v, ~=Re( ( l+2 i )w) .  of slope 5' 

As shown in Figure 7, $rQ has a pair of saddle connections that  cut X into a pair of 

tori, shaded white and black in the figure. The dotted lines in the figure give cycles on 

the white torus T, with periods p l = ( l + 2 a ,  a) and p 2 = ( 2 + a ,  l + a )  in R 2 = C .  We have 

Per(cz I T)  | Q = Qpl  G Qp2. 

By a direct computation, we find y/x = 1/a for the solution to the equation xpl + YP2 = 

1 Thus 3c e re- (2, 1). Since a is irrational, this shows that  wiT has no period of slope 5" 

stricts to an irrational foliation of the subtorus T. Since the leaves in T are neither closed 

nor dense in X, ) r  e is neither periodic nor uniquely ergodic. 

By virtue of the Veech dichotomy (Theorem 10.2), SL(X,w) cannot be a lattice. 

But its limit set is the full circle, so SL(X, w) is infinitely generated. [] 

1 1 and 1. The foliations of (X, w) as above exhibit a variety Dynamics at slopes 5, 5 
of behaviors as their slopes vary. 

1 the preceding proof shows that (X, 5 r )  is the connected sum of a pair �9 For slope ~, 

of tori with irrational foliations. 

�9 For slope 1 5, one can check that  5 r is periodic, with three cylinders whose moduli 

have irrational ratios. This provides another proof that  SL(X, w) is not a lattice. 
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Fig. 8. T h e  spine of the  foliation of slope 1 con ta ins  a pair  of  Weie rs t rass  points .  

�9 Finally for slope 1 there is a saddle connection through a Weierstrass point, and 

thus ~" is a periodic foliation with two cylinders of rational ratio. (In fact, rood(A1)= 

2mod(A2).) The spine of this foliation, lifted to S(a), is shown in Figure 8. The lifts of 

the six Weierstrass points on X are marked by *'s. 

The regular lO-gon. In conclusion we remark that  examples where SL(X, w) is in- 

finitely generated appear to be ubiquitous in genus two. 

In fact, suppose that  w has two distinct zeros and that  the trace field of SL(X, aJ) is 

irrational. Then either SL(X, ~) is a lattice, or it is infinitely generated. But at present, 

the only known cases where a lattice arises are those associated to the regular 10-gon as 

in [V3]. 

A. Appendix: Cusps of triangle groups 

In this section we apply the dynamics of measured foliations to determine the cusps of 

certain triangle groups. The two discussions are connected by the following result. 

THEOREM A.1. If  SL(X,w) is a lattice with real quadratic trace field K, then the 

set of cross-ratios of its cusps coincides with P Z ( K ) - { 0 ,  1, oc}. 

Proof. By Theorem 9.1 we may assume that  w has relative periods in K(i) and zero 

complex flux. Then the slopes of periods of w coincide with P I ( K ) .  To complete the 

proof, we will show that  the cusps of SL(X, w) also coincide with p i ( K ) .  

Let s be a cusp. Then (X, Iwl) has a closed geodesic of slope 1/s [V3, 2.4], and thus 

1/s is the slope of a period of w. Therefore the cusps are contained in P I ( K ) .  

Conversely, let s--kl/k2 E p I ( K ) .  Then the form ~=Re(kl+ik2)w has periods in K 

and zero flux. By Corollary 4.2, the foliation ~ of X by geodesics of slope 1/s is not 
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uniquely ergodic. By the Veech dichotomy, 9cQ is actually periodic, and by [V3, 2.11], 

s is a cusp. [] 

Triangle groups. Let T c H  be a triangle with internal angles (Tr/a, 7r/b, 7r/c). Let 

FC SL2(R) be the orientation-preserving subgroup of the group generated by reflections 

in the sides of T. Then F is a triangle group with signature (a, b, c). 

We allow T to have one or more vertices at infinity, in which case the corresponding 

entry in the signature is oo. The cusps of F coincide with the orbits of the ideal vertices 

of T. 

It is known that  many triangle groups are commensurable to groups of the form 

SL(X, w). Using this fact we will show: 

THEOREM A.2. Let FcSL2(R)  be a triangle group with signature 

(2, 2n, oo) or (3, n, oo), where n = 4, 5, 6, 

o r  

(2, n, oo), where n = 5 .  

Then the set of cross-ratios of cusps of F coincides with P l ( K n ) - { 0 ,  1, c~}, where Kn 

is the field 

Proof. By IV3], the group SL(X, w) associated to billiards in a regular 2n-gon is a 

triangle group of signature (n, ~ ,  oo). These groups have trace field K~=Q(cos (~ /n ) ) ,  

which is real quadratic for n=4,  5, 6. Since the (n, oo, oc) triangle group has index two in 

the (2, 2n, c~) triangle group, we conclude by Theorem A.1 that  the cusps of the latter 

are P1 (/(n). 

Similarly, by considering billiards in certain triangles, [Wa] shows that  the (3, n, c~) 

triangle groups with n~>4 arise in the form SL(X,w). For n = 4 , 5 , 6  these groups also 

have trace field/x2~, and the same argument applies. 

Finally IV3] shows that  the (2, 5, oo) triangle group, with trace field/(5, arises from 

billiards in a regular pentagon. [] 
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