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1. I n t r o d u c t i o n  

Let NCM be an inclusion of type 111 yon Neumann factors with finite Jones index. 

Let NcMcMIC. . .  be the associated tower of factors that  one gets by iterating the 

Jones basic construction [J1]. The lattice of inclusions of finite-dimensional algebras 

M~NMj obtained by considering the higher relative commutants  of the factors in the 

Jones tower, endowed with the trace inherited from [.J My, is a natural  invariant for the 

subfactor Nc  M. 

A standard lattice ~ is an abstract ion of such a system of higher relative commutants  

of a subfactor [P3]. Tha t  is to say, the relative commutants  of an arbi t rary finite index 

inclusion of II1 factors satisfy the axioms of a s tandard lattice and, conversely, any 

standard lattice ~ can be realized as the system of higher relative commutants  of some 

subfactor that  can be constructed in a functorial way out of 9 (see [P3]). 

The abstract  objects 9 carry a very rich symmetry  structure. They can be viewed 

as Jones'  planar algebras [J2]. They can also be viewed as group-like objects, serving 

as generalizations of finitely generated discrete groups and large classes of Hopf algebras 

and quantum groups. 

Along these lines, a subfactor N c M  can be viewed as encoding an "action" of the 

group-like object ~=~NcM. Given ~ it is thus important  to understand whether or not 

it can "act" on a given II1 factor M; i.e., whether ~ can be realized a s  ~NcM for soIlle 

subfactor N of the given algebra M. 

The functorial construction of a subfactor NC M with a given standard lattice ob- 

tained in [P3], as well as the one preceding it [P1], used amalgamated  free products 

and also depended on a choice of an algebra Q taken as "initial data".  However, it 

remained an open problem whether one can construct a "universal" II1 factor M that  

would contain subfactors with any given standard lattice as higher relative commutants ,  

i.e., a factor M on which any S can "act". It  also remained an open problem to identify 
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the isomorphism class of the algebras in the inclusions realizing a given standard lattice 

as constructed in [P3]. 

We solve both of these problems in this paper. The following theorems summarize 

our results: 

THEOREM 1.1. Any standard lattice ~ can be realized as the system of higher relative 

commutants of a type II1 subfactor P-1CPo,  where both P-1 and Po are isomorphic to 

the free group factor L(F~) .  

Moreover, the construction of sub factors P_ 1 C Po can be chosen to be a functor from 

the category of standard lattices (with commuting square inclusions as morphisms) to the 

category of subfactors (with commuting square inclusions as morphisms). 

THEOREM 1.2. The type II1 factors appearing in the inclusions constructed in 

[P1], [P3], [P5], for the initial data Q = L ( F ~ ) ,  are all isomorphic to the free group 

factor L(F~) .  

THEOREM 1.3. Given an arbitrary inclusion of II1 factors M_ICM0,  there exists 

an inclusion M - 1 C  Mo with the same standard lattice as M - 1 c M 0  and so that Mi ~- 

M * L ( F ~ ) .  

In other words, L (F~)  is the desired universal type II1 factor, whose subfactors 

realize all possible standard lattices; equivalently, any group-like 9 can "act" on L(F~) .  

Moreover, free products with L (F~)  do not "constrict" the set of allowable standard 

lattices of subfactors. 

We note that these results are generalizations of earlier results about realization 

of finite-depth subfactors inside free group factors [R2], [D3], irreducible subfactors in 

L(F~) [SU] and finite-depth subfactors of M*L(Foo), for M arbitrary [S3], as well 

as results on the fundamental group of L(Foo) [RI] and of arbitrary free products 

M , L ( F ~ )  [$2]. 

It should be noted that  free group factors L(Fn) cannot possess the universal prop- 

erty in Theorem 1.1 without being isomorphic to L(F~) .  Indeed, if the property in The- 

orem 1.1 holds, and standard lattices coming from elements of the fundamental group 

of a II1 factor can be realized as subfactors of L(Fn), n < + o c ,  then the fundamental 

group of L(Fn) would be non-trivial, and hence L(F~)~-L(F~)  (cf. [R2] and [D1]). Our 

constructions do not produce subfactors of L(Fn) for n finite. 

We give two proofs of Theorem 1.1. The first proof consists in identifying the factors 

constructed in [P3] as being isomorphic to L(F~) ,  when the initial data involved in that  

construction is taken to be L (F~)  itself. This proves Theorem 1.2 as well. The second 

proof that  we give to Theorem 1.1 also shows Theorem 1.3. 
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The principal technique underlying both proofs is a functorial construction associ- 

ating to a given standard lattice 9=  (Ai3) a pair of non-degenerate commuting squares 

CB_I c ~o A~ c A ~ 
u u u u (1.3.1) 

A-~ c Ao 1, A_~ c Ao 1 

in such a way that  ~B-1C~B0 is the infinite amplification of the standard model inclusion 

for 9, and A~ are type I yon Neumann algebras with discrete centers and with the inclu- 

sion matrices between them given by the graphs of 9. Most importantly, the commuting 

squares in (1.3.1)satisfy ( A ~  (:B,)'nA}-I=A,5. Thus, each one of them encodes 

the standard lattice 9=(Aij)i,j. To construct such canonical commuting squares out of 

a given standard lattice or a subfactor, we use inductive limits of non-unital embeddings 

naturally associated to the duality isomorphisms in the Jones tower. 

We then give the first proof of Theorem 1.1 by showing that  the inclusion (compare 

[P1], [P3], [P5], [R2]) 

~0~1~ A I (Q@A~_~) C ~O:~A01 (Q@Ao 1 ) (1.3.2) 

is isomorphic to (the infinite amplification of) the one constructed in [P3], for any ar- 

bitrary initial data Q. Then we prove that  if Q = L ( F ~ )  then both amalgamated free 

product algebras in (1.3.2) are isomorphic to L(F~)| This, of course, also proves 

Theorem 1.2. 

The techniques needed for the identification of such amalgamated free products 

come from free probability theory pioneered by Voiculescu ([VDN]). The main obser- 

vation is that the amalgamated free product algebra ~[05~(1 (Q@Ai -1 ) is generated by 

F A ~ and Q=L( o~); furthermore, Q has as generators an infinite semicircular system 

X1, X2, ... [V]. The position of this family relative to A ~ is encoded in the statement 

that  {X~} form an operator-valued semicircular system over A ~ in the sense of [$2], [$3]. 

The rest of the proof involves manipulations with this semicircular system in ways that 

parallel earlier random-matrix techniques of Voiculescu [V], [VDN], and developed in 

the context of amalgamated free products by F. R~dulescu [R1], JR2] (we mention also 

[D2], [D1], [D3], [DR]). 

Our second proof considers the inclusion 

~- I*A-I  (Q@,A-~) C ~0*Ao I (O@,.r 1) (1.3.3) 

(notice that ~Bi are hyperfinite). Since the first commuting square in (1.3.1) encodes 9, 

this inclusion has ~ as its system of higher relative commutants. We then use free prob- 

ability techniques to prove that each of the algebras in this inclusion is isomorphic to 
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'~.L(Foo)| if Q=L(Foo),  where ~ is hyperfinite. By the results of Ken Dykema, 

each of these algebras is isomorphic to L(Foo)| giving another proof of Theo- 

rem 1.1. 

More generally, if we are given an inclusion of Il l  factors M - 1 c M 0  with standard 

lattice ~ = (M~ A My), then the non-degenerate commuting square 

M_I| C MoQB(H) 

U U 

~-1 c ~o 

together with the first commuting square in (1.3.1) give rise to a non-degenerate com- 

muting square 
M_~176 C MoQB(H)=M~ 

U U 

A:] c Ao 1 

Once again this commuting square encodes 9, and the inclusion 

M~I = M_~ *A-~ (Q@A-~) c M~ ~ *Ao, (Q@Ao 1) -- ~t0 (1.3.4) 

has the standard lattice g. Using free probability again, we prove that  

A 

Mi ~- (M*L(Foo))| 

thus showing Theorem 1.3. 

The rest of the paper is organized as follows. w describes the construction of the 

commuting squares (1.3.1). w deals with the necessary free probability techniques nec- 

essary in the identification of the various free product algebras. w presents the proofs of 

the main results of the paper. Thus Theorem 1.1 is proved in Theorem 4.3; Theorem 1.2 

is proved in Theorems 4.2 and 4.3 (first proof); Theorem 1.3 is proved in Theorem 4.5. 

Acknowledgement. The second author would like to thank the Wiley W. Manuel 

Courthouse in Oakland, CA, where an early part of the work was carried out while on 

breaks from jury duty. The authors would also like to thank MSRI and the organizers 

of the stimulating program on operator algebras. Research supported in part by NSF 

Grant DMS-9801324, for the first author, and by an NSF postdoctoral fellowship, for the 

second author. 

2. S o m e  c a n o n i c a l  c o m m u t i n g  s q u a r e s  a s s o c i a t e d  t o  a s u b f a c t o r  

Let M-1  c M0 be an inclusion of type II1 factors with fn i te  Jones index. In this section we 

will associate to it a system of A-Markov commuting squares of semifinite yon Neumann 
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algebras with trace-preserving expectations 

~/[--1 C J']~[O 
U u 

T,_ I  c No 
C O = u u 

r c ~4o ~ 

u u 

in which the upper commuting square is the oc-amplification of 

M _ l C  Mo 
u u 

MS_t 1 C M~ t, 

st st M ~ I c M  ~ being the standard model associated with M - 1 c M 0 ,  and in which 

~o_~ c 4 8 
u u 

,A~] C 401 

is a commuting square of inclusions of type I v o n  Neumann algebras with atomic cen- 

ters and inclusion matrices given by the graphs of M-1CM0.  The construction of the 

commuting square 

~-1  C ~o 

U U 

4~ c 4 0 
u u 

.A,--] C AO 1 

will in fact only depend on the standard invariant g = g M  1,Mo of M-1CMo and will be 

functorial in 9. Each one of the commuting squares 

'~--1 C '~0 J~O_ 1 C 40 
U U U U 

A-~ c 4o -~, A~] c 4o  ~ 

will completely encode 9, as they  will satisfy (Jt ~ 06~71 = (~ i ) t n  A 71 = ~[~ n "s _M~n,-o t 

Mj in the Jones towers for C O and M-1CMo,  respectively. 
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The commuting square e ~ will be constructed as an inductive limit of non-unital 

trace-preserving embeddings of the commuting squares 

M2~ 1 C M2n 

U U 

A - o o , 2 n - 1  C A-oo ,2n  

u u 

A 2,2~ 1 C A 2,2n 
u u 

A-1,2n-1 C A-1,2n 

where Aij = M~ A Mj,  i, j E Z, are the higher relative commutants in some tunnel-tower 

e--1  e0  e l  d2 
. . . c  M_2 c M_~ C M o C  M~ C M2C. . .  

for M - 1 C M o  and A_~,j=Uk<~ j Akj. 

k be the map from M2n+k into M2n+k+2 LEMMA 2.1. For each k>~O, n )O ,  let oL n 

given by 

Ctkn (X) = / \ - k - l e 2 n + l  e 2 n + 2  -.- e2n+k+le2n+k+2 Xe2n+k+2 ... e2~+1, 

k xEM2n+k. Then c~ n are non-unital .- isomorphisms and they satisfy: 
(1) k c~n(M2~+j-1)=e2~+lM2n+j+le2n+l, j = 0 ,  1, ..., k + l ,  with m~'~'k+ll, M2~+j =O~,~,k if 

j ~ k + l .  
(2) k Ctn(Ai,2n+j-1) =e2n+lAi,2n+j+le2n+l, j = 0 ,  1, ..., k + l ,  -oc<~i~<- l .  

(3) c~(x)=cr'(x)e2n+l, xeM~n_lAM2n+k , where or' is the duality isomorphism on 

Ui , j c zA i j  (see e.g. [P51). 

(4) I f  Trn is the rescaled trace on Uk M2n+k given by Trn =A -n T  then we have 

Tr~+~(a~(x))=Trn(X),  for all xeM2~+k, for all k>O. 

Proof. Since for all x E M 2 n + k  w e  have [x, e2~+k+2]=0, and since the element 

k i s  a .-isomorphism. /~-k-1/2e2n+l . . .  e2n+k+2 is a partial isometry, it follows that  c~ 

For the properties (1) (4) we have: 

(1) Since 

e2n+j+ l M 2 n + j _  l e2n+j+ l ~ M 2 n + j _  l e2n+j+ l ~ e2n+j+ l M 2 n +j +  l e2n+j+ l 

it follows that  

e2n+l ... e2n+k+2 M 2 n + j - l e 2 n + k + 2  ... C2n+1 ~-- C2n+1 ... C2n+j+l M 2 n + j - l e 2 n + j + l  ... e 2 n + l  

= e 2 n + l  ... e2n+j+lM2n4- j+ le2n+j+l  ... e 2 n + l  

e2n+ l M 2 n +j +  l e2n+ l . 
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(2) B e c a u s e  e2n+l ,  e2n+2, ,  ..., e2n+k+2 EA-1,2n+k+2 a n d  s ince  Ai,2n+j_le2n+j+l = 

e2n+j+lAi,2n+j+le2n+j+l for each j = 0 ,  1 , . . . , k + l  and -oc~<i~<-1, this part follows 

by (1). 

(3) This is trivial by the definition of a~. 

(4) Since T(xe2~+k+2)=A~-(x) for xEM2n+k, one gets r(akn(X))=;~T(X) SO that  

Trn+l (akn(x) )=Trn(x) .  [] 

Notation 2.2. To simplify the notation we will denote by en the system of commuting 

squares 

M2n-1 C M2n C ... C M2n+k C ... 

U U U 

A-cx~,2n-1 C A-ec,2n C ... C A-ec,2n+k C ... 

U U U 

A 2,2n-1 C A-2,2n C ... C A 2,2n+k C ... 

U U U 

A-1,2n-1 Q A-1,2n C ... C A-1,2n+k C ... 

with C~ denoting its truncation up to k, k=0,1 ,  .... Thus, with this notation 
e k k identifies the commuting square ( n, Trn) with the "corner" Lemma 2.1 states that  a n 

e k 2n+lCn+le2n+X of the comnmting square k (Cn+ 1, Trn+x), endowed with the restriction of 

the trace Tr~+z on it. 

Moreover, since by Lemma 2.1 (1) we have ,~k+ll _ ~ k  for 0~<j~<k+l, with ~n ]M2n+j_l--~n' 
the sequence {a~(x)} k being constant from a certain point on, for each xCM2n+j,  for 

all j ,  we immediately get the following: 

COROLLARY 2.3. For each n>~O and xEUj>~oM2n+j let 

OLn(x) deflinlakn(X ) . 

Then we have: 

(1) an(en)=e2n+l~n+lB2n+l . 

(2) an(X)=cr'(x)e2n+x, xC Uj  A2n-l,2n+j = Uj (M2n-1NM2n+j) ,  where or' is the du- 

ality endomorphism on Uj Aoj that sends A~j onto Ai+2,j+2, for  all j>~i>~O (as defined 

in [Ph]) 
(3) Trn+lOan=Trn and an takes the Trn-preserving expectations (='c-preserving 

expectations) in Cn into the restrictions to e2n+lCn+le2n+l of the Trn+i-preserving 

expectations in Cn+l. 

(4) The top row of commuting squares in Cn is a sequence of basic constructions of 
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the initial homogeneous A-Markov commuting square of inclusions 

M2n-1 C M2n 
C ~  u u 

A-~,2n-1  C A-~,2n.  

Moreover, a,(len)=a~(1M2,)=e2~+lCA_oo,2,+l has scalar central trace in A-~,2~+l  

(which is regarded as an algebra in e~ so that e,~+x~ is the A-Lamplification of ~o. 

Proof. a,, is well defined because for each x and k large enough one has a, (x)=a~(x)  

(by Lemma 2.1 (1)). Then properties (1)-(3) are just reformulations of Lemma 2.1 

(1)-(4). The last property (4) is well known (see e.g. [P4]). [] 

Definition 2.4. We define C to be the system of inclusions of von Neumann algebras 

~/[-1 C 2Ko C ... C ~Y[k C 

U U U 

'~--1 C '~0 C ... C '~k C 
u u u 

4 ~  c 4 0 c ... c 4 0 c 

u u u 

,,'~Z~ C A o  1 C ... C s C 

obtained as the inductive limit of the sequence of non-unital trace-preserving embeddings 

of commuting squares 

(~0 rl~0)(:~0> (~1 rl~l ) (~i> (~2; Tr2)  r ) . . . .  

By this we mean the following: 

(2.4.1) We first take the (non-unital!) algebraic inductive limit JV[ ~ of 

M i � 9  Mi+2 �9 Mi+4 , > . . . .  

We note that  JK~176 in a natural way. 

(2.4.2) For each n ) 0 ,  j ) - i  and xEMi+2n we denote by 8n(X) . . . . .  C~n+loC~,~(X) 

~  Una,~(M,+2~), the image of x in JK ~ With this notation, we clearly have H i - 

(2.4.3) On ~K ~ we take the C*-norm defined by [[~n(x)]t=][Z[[M~+2n, if xEMi+2n. 
(2.4.4) We define a positive tracial functional Tr on the algebras ~v[ ~ by Tr (5~(x ) )=  

Trn(x), if zEMi+2~. 

(2.4.5) We define ~IKi to be the completion of JK ~ in the topology of convergence in 

the norm [Ix[[2,Tr=Tr(x*x) 1/2 on bounded sets (in C*-norm) (note that  JKi can also be 

defined through the GNS construction for (~[0, Tr)). 
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(2.4.6) We note that  Tr extends to a normal semifinite faithful trace on :JV[i, still 

denoted Tr. Moreover, the algebras J~4i defined in this way clearly satisfy :JV[i C :h4i+l with 

Tra4~+~la4~ =Trjv~ (the notation being self-explanatory). 

(2.4.7) We define Ni, A (  1 and A ~ i>~-1, as the closure in the same topology of 

I1" 112,Tr-COnvergence on bounded sets of the .-subalgebras U ~ ( A - ~ , i + 2 n )  (for ~i),  

Un~n(A_l,i+2n) (for A~ -1) and Un~n(A_2,i+2n) (for A~ respectively, all taken as sub- 

algebras of :h4 ~ 

(2.4.8) We note that the trace Tr on 3/[i restricts to semifinite traces on A~ -1 (and 

thus on ~Bi and A ~ too), for each i~>-l .  

(2.4.9) If for each n we choose an inclusion Q~C~Pn between two of the algebras in 

the commuting square en, but so that for each n the algebras are chosen at the same 

"spot", and if we denote by ~ the unique Tr-preserving expectation of the inductive 

limit ~pdef [ _ j ~ ( p ~ )  onto the inductive l imi t  Qdef U n ~ n ( Q n )  ' then by Corollary 2.3 we 

have for xep . 

In particular, by Corollary 2.3 (3), the properties (2.4.8) and (2.4.9) above show that  

the system of inclusions e, endowed with the corresponding Tr-preserving expectations 

between its algebras, is a system of commuting squares. 

We now examine more closely the main properties of e. 

LEMMA 2.5. If  for each n>~O we let in be the identity in en, i.e. ln=lM2n 1---- 

1A-1.2~-I=IM2n+k=IA 1,2n+k, for all k>~O, and define pn=~n(ln) then we have: 

(1) p,~ belong to A-~, Trpn=)~ -'~ for all n, and po<~pl<.p2<..., with pn//~lA-I 

(= l e ) .  

(2) For each n, pnepn is naturally isomorphic to en, via ~n (as commuting squares 

of trace-preserving expectations). 

(3) Pn has scalar central trace in Pn+l~-lPn+l, for all n>~O. 
(4) For each j>~i>>.-1 and xEA~j there exists a unique element a(x) in Uk 3/[k such 

that [a(x),p~]=O, for all n, a(x)pn=~n(a'~(x)), where ~r' is the duality isomorphism as 

in Corolla  2.3(3). Moreover, is a *-isomorphism and o~(A~j)=3/[~NJKj=JV[~NAj, 

for all j ) i > ~ - l .  

(5)  (ej) belongs to A2 for all j>>.l, and  (eo) belongs to Jt ~ AZso, 
implements the Tr-preserving conditional expectation of 2 ~  onto 2~ -1 ,  for all n>~O. 

Proof. (1) is clear by the definitions, and so is the equality pnePn=~n(en) of con- 

dition (2). Then Pn have scalar central trace in Pn+l(g_lPn+l because e2n+l has scalar 

central trace in A-~,2n+l  (see e.g. [P4]). This proves (3). 

The first part in (4) follows by property (2) in Corollary 2.3. Then the equality 

a ( A i j ) = 2 ~  n3~j is immediate by the definitions of a, 2V[~, JV[j. 
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Further on, by the way it is defined, a(Aij) is clearly contained in A5 -1, so that we 

have  (A j)c n  ;-1c (A~ 
To prove the opposite inclusion note that, since A'_2,~AA_I,j=Aij, it follows 

that A'_2,~+2nNA_l,y+2n=a'~(Aij) so that ~(A_2,i+2n)'A~(A-l,y+>~)=~n(er'~(Aij)), 

which gives that Pn ((A~ 'A A ;  1 )P~ = (Pn A~ p~ A ;  lpn = a (dij)Pn. Since p~//~ 1, this 

proves the last part of (4). 

Since ej lies in A-x,y for j>~l, it follows by (4) that c~(ey) lies in A~ ~, j~>l. Similarly, 

since e0 lies in A-2,j for all j>~0, it follows that a(e0) lies in A0 ~ 

Since e2k+i implements the expectation of M2k onto M2k-1, it follows that ~k (e2k+l) 

implements the conditional expectation of pk3V[oPk o n t o  p k ~ - l p k .  Since pk/~l  and 

a(el)p~=~(e~k+~), we get the last part of (5) as well. [] 

The next lemma clarifies the structure of the inclusions A~_~CA~ o C ... for k = - l ,  0. 

To state it, let us denote by F=FM_~,Mo=(akl)k~K, leL the standard graph of 

M ~ C M 0  (or, equivalently, of 9=9M 1,M0), which describes the sequence of inclu- 

sions A ~ - I C A - ~ , 0 c A - I , I C  .... Thus, if *~K denotes the initial vertex of P and 

K~=(rr~)~({.}) ,  nn=(r r~)~r ({ .} ) ,  then K=U K , Ln=[_JnLn, with the sets Kn, nn 

having the following significance: 

The set of simple summands of Z(A-I,~n-~) (resp. Z(A-1,2n)) naturally identifies 

with the set K~ (resp. L~), with the inclusion Kn C K~+ 1 (resp. L~ C Ln+l) corresponding 

to the embedding of Z(A-1,2n-1) into Z(A-12n+~) (resp. of Z(A-I,~,~) into Z(A-la~+=)) 

given by the applications 

Z(A_I,j) ~ z ~+ z'E Z(A-I,j+2), 

with z' the unique element in Z(A 1,j+2) such that ze j+2=z le j+2  . 

Moreover, the inclusion graphs of A-1,2n-1C A-1,2n (resp. A_L2nCA_lan+l) are 

given by ,z.F (resp. L F t). 

Also, there exists a unique vector g=(Sk)kcg such that s . = l ,  FFtg=A lg and such 

that if t '--(tl)leL=Xrtg then (AnSk)k~K,~ (resp. (Antl)leLn) give the traces of the minimal 

projections in A-1,2n-1 (resp. A-1,2n). 
~' F In' ~ the standard graph of Similarly, we denote by i = M_2,M 1:~ k ' I ' ) M C K ~ , I ' E L  ~ 

M - 2 c M _ I  (or, equivalently, tile "second" standard graph of M-1cM0;  note that by 

duality F'=FM0,M1 as well), with its standard vectors g'=(sk')k'eK', ~=(tz')t'eL'. 
With this notation at hand we have: 

LEMMA 2.6. Ak_lCA0kC... are inclusions of atomic yon Neumann algebras, for 
each k = - l , 0 .  More precisely, for each n>~O the reduced sequence of inclusions 

pn(Ak_lCAkoC...)pn is isomorphic via ~ 1  to the sequence of inclusions (A-l+k,2n-lC 
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A-I+k,2~C...), with the trace Tr on the former corresponding to the trace Tr~ on the 
latter. 

Moreover, if one identifies the set of factor summands of AT_~ (resp. N~ which 

contain non-zero parts of the projection pn with the set of factor summands of A-1,2~-I 

(resp. A-2,2n-~), i.e., with I ~  (resp. L$), via the identification of p n A ~ p ~  with 

A-1,2,~-1 (resp. A 2,2~-1), then the inclusion matrix for A 1CA 0 - 1  -1 (resp. ,fl[0_ICAOo) 

is given by F (resp. (F')t), while the trace Tr is given on the minimal projections of A_~ 

(resp. Jr~ by the eigenvector g=(sk)k~K (resp. t ' )  and on the minimal projections 

of No I (resp. A ~ by the vector t (resp. Ag'). 

Similarly, the inclusion graph for A;1CA~-_~l (resp. A~ 1 7 6  ) is given by F if i is 
odd and by F t if i is even (resp. (F') t if i is odd and by F' if i is even), with the trace 

vector for the minimal projections of A~1_1 and Jt~ 1 (resp. A~ and Not) being given 
by Xk~ and Ak~ (resp. A'kt ' and Atk+l~). 

Proof. We have already noted in Lemma 2.5 that  the non-unital isomorphism ~n 

takes the sequence of inclusions (A-1 , -1cA-I ,oCA-I , �92  onto the sequence of in- 

clusions pn(A-1CAoC. . . )pm with Tro~n=Trn.  Since Aij are all atomic and p~/~l ,  it 

follows that  Jlk are all atomic. 

From the above and the discussion preceding Lemma 2.6, the last part now follows 

trivially. [] 

LEMMA 2.7. The sequence of inclusions 

1 a(e~) 1 A--I c N o  c 

is a Jones tower of A-Markov inclusions. 

Proof. By Lemma 2.5 (5), a(en+l) belongs to A ~  1, and by commuting squares with 

:~V[~_ 1 C :~V[n, it implements the Tr-preserving expectation of A~ 1 onto A~_ 11. 

By the definitions, we see that  pnAFXpn is contained in the linear span 

sPP(Pn+lAolpn+l)OZ(el)(Pn+l~olpn+l). 

Since p n f f l ,  this shows that ~ppAola(el)Aol=A~ 1. 

But by Lemma 2.6 the traces of the minimal projections in AT_ICAo I satisfy the 
--i --i e 

conditions in [Jl]. Thus, the basic construction A 1CA0 C (JIo 1, e}, where e=eA-~, has 

a A-Markov trace that extends Tr. 

Altogether, this shows that JtoZ~x~+xEAo I and e~->~(el) extends to a trace- 
~--I -- ~--Ic~(el) ~--I e 

preserving isomorphism of ~_ l t_~ t  0 C ~t 1 onto A ~ C A o l C ( A o l ,  e). [] 
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Let us summarize all the properties of the commuting square e emphasized thus far. 

To state it, recall from [P2], [P4] that  an inclusion of yon Neumann algebras :NC :J~ with 

a conditional expectation ~ of finite index is called a A-Markov inclusion if there exists 

an orthonormal basis (abbreviated hereafter as ONB) of :J~ over 2 / (wi th  respect to s 

{mj}j, such that  E j  rnjm~ =)~ - l l -  

Also, recall from [P2] tha t  in the case tha t  :N, :J~ are semifinite von Neumann algebras 

and the expectation ~ preserves a semifinite trace Tr on :M, then the above condition is 

equivalent to the existence of a semifinite trace T r ~  1 on :MI= (2~, e~,r} that  extends the 

trace Tr on :~ and satisfies Tr(xe)~y)=ATr(xy), for all x, yC3/[. 

Definition 2.8. Let Qi, Ti, i = - 1 ,  0, be arbi trary semifinite von Neumann algebras 

with inclusions 
9~ t C 9~o 

U U 

Q-1 c Q0 

with a normal semifinite faithful trace Tr on 9~0 which is semifinite on each of the smaller 

algebras and such that  the corresponding Tr-preserving expectations make the above 

into a commuting square with bo th  row inclusions of finite index. Then the commuting 

square is non-degenerate if any ONB of the bo t tom row is an ONB for the top row. The 

commuting square is l-Markov if it is non-degenerate and the bo t tom (equivalently, the 

top) row inclusion is l -Markov,  in the sense explained above. 

Note tha t  if a commuting square is A-Markov then both of its row inclusions must  

be A-Markov. Conversely, if both  row inclusions of a commuting square are A-Markov, 

then the commuting square is automatical ly non-degenerate, hence l -Markov  itself. The 

same conclusion is true if only the bo t tom row is assumed to be t -Markov,  with the top 

one having index ~<A -1. 

Note also tha t  if one has a l -Markov  commuting square denoted as in Definition 2.8 

then the projection e =  e~~ 1 implements the basic construction for Q_ 1 C Q0 as well. More- 

over, the resulting system of inclusions 

T0 C ~1 

O U 

Q0 C Q1, 

where Q1 is the algebra generated by Q0 and e, is itself a t -Markov  commuting square 

(with respect to the Tr-preserving expectations). Thus, one can iterate the basic con- 

struction and obtain from the initial t -Markov commuting square a whole Jones tower 

of l -Markov commuting squares. 
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THEOREM 2.9. (1) The commuting squares in the initial inclusion 

[~[- t C [~'[o 

U U 

23_1 c iBo 
(~o= U U 

4 %  c ..4~ 
u u 

4_-~ c 4 o  ~ 

of C, with its Tr-preserving expectations, are all MMarkov. 

(2) C is obtained by iterating the basic construction for C ~ with a(e~), i~  l, being 

the corresponding Jones projection. 

(3) The commuting square 
3K_ ~ C 2rio 

U U 

Ib_ l C !go 

is isomorphic to the oc-amplification of the commuting square 

M_I c Mo 
u u 

A-oc,-1 C A-~,0,  

i.e., it is obtained by tensoring the latter by B(12(N)). 
(4) The commuting square 

4 %  c 4 ~ 
u u 

4 -  ~ C 4 o  1 

consists of infinite type I yon Neumann algebras with discrete centers. The bottom inclu- 

sion has graph given by F--FM 1,Mo, and the top inclusion is given by the graph (F~) t, 
! ! 

where F =FM_i,Mo=FMo,M1. The trace Tr is given on the minimal projections of 4Z~ 

by Y, on 4o  1 by ~=s on 4~ by ~t, and on 4 ~ by ~ .  

(5) ~ n ~ j = ~ n A ; i = ( ~ i ) ' n A T l = ( A ; 1 ) ' n A  ~ and a gives a natural isomor- 

phism from 

onto 

.4-1 = ([AovAA-I~ ( ~ i n  j )j~>i~>-i ( ( ~ ) ' nX j~ ) j ~>~> - l= ,~  i ]  j ~3~>~>-1. 
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The  last result in this section describes the functorial i ty propert ies of the commut ing  

squares appear ing in C ~ To state  it, recall from [P3], [P5] tha t  given two s tandard  A- 

lattices 0 _  0 g -(Aij)j>~i>_l, g=(Aij)j>~i>~-l, an embedding of go into g is a t race-preserving 

isomorphism ~ from UnA~ into UnA_l,n such tha t  ~(A~ for all j>~i>~-l, and 

such tha t  ~ takes the Jones A-sequence of project ions o go {en}n>~l of into a Jones sequence 

of project ions for g, satisfying the smoothness  condit ion 

EAoI (~(el)) = ~(EA~I(cO)). (2.9.1) 

Thus,  one should keep in mind tha t  a "morphism" between two s t andard  lattices 

implicitly requires t ha t  bo th  lattices have the same index (i.e., bo th  be A-lattices, with 

the same A). 

Note  tha t  by  [P5], if ~ is an embedding of a s t andard  A-lattice go into a s tandard  

lattice g, then for any - 1~< i ~ k ~< 1 ~< j one has commut ing  squares: 

Akt c A~j 

U U 

ffA~ C ffA~ 

THEOREM 2.10. (1) The object ~M-1,Mo consisting of the commuting square 

:M._ ~ C 3rio 

U U 

4-~ c Ao ~ 

together with the fixed projection Po E A : ~ is canonically associated with M_ 1 C Mo. 

(2) The object C~9 t consisting of the commuting square 

~ - 1  c ~Bo 

U U 

X -  ~ c 4o ~ 

together with the fixed projection poC A-~ is canonically associated with the standard A- 

lattice g, and it is functorial in g: If  g 0 C g  is a standard A-lattice embedded in g then 
e st is naturally non-degenerately embedded(1) in C~9 t with commuting squares and with 90 
the corresponding projections Po coinciding. 

(3) The object C9 consisting of the commuting square 

A~ c A ~ 
u u 

AZ~ c A o  1 

(1) This means that all the sides of the commuting "cube" arising from the inclusion of the two 
commuting squares are all non-degenerate commuting squares, with respect to the trace-preserving 
conditional expectations. 
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together with the fixed projection poEAT_~ is canonically associated with the standard 

A-lattice 9, and it is functorial in 9, in the same sense as in (2). 

Proof. (1) This part is clear by the construction of 

~-1  C 230 

O O 

A-1 , c  A0 

as the inductive limit of the canonical commuting squares 

M2n-1 C M2~ 

O O 

A-1,2n-1 C A-1,2n 

via embeddings which are canonical as well (being defined by using only the Jones pro- 

jections in the tower el, e2, ...). Also, p0=~0(1) so that  the position of P0 inside A-~ is 

canonical as well. 

(2) The fact that  C~ t is canonically associated with 9 follows by first noticing that  

the extended standard lattice ~=(A~j)<j~z, associated with g as in [P5], is canonically 

constructed from g by repeated basic constructions starting from the inclusion A0,oo C 

A - I , ~  (see the second paragraph in the proof of 2.2 in [P5]). In particular, the sequence 

of inclusions A-m, 1 c A-~,0  C ..., with the whole system of inclusions of higher relative 

commutants into it, is therefore canonical. From this, an argument similar to the one in 

part (1) ends the proof. 

If g0 c g in an embedding of standard A-lattices with the same Jones projections then 

by the definition of the embeddings in the inductive limits of Definition 2.4, which only 

depends on the Jones projections, it follows that  the inductive limit algebras involved 
in C St 9o are naturally embedded into the corresponding algebras of C~ t, with commuting 

squares. To see that  the embedding of the two commuting squares is non-degenerate note 

that  the embedding g~ implements a natural embedding between the corresponding 

extended standard lattices 9 ~ g (thus, with commuting squares!). This fact in turn is 

an immediate consequence of the definitions, taking into account the smoothness condi- 

tion (2.9.1). 

(3) By the remarks following Definition 2.8, since the bottom row of eg is A-Markov 

and the top row has index ~<A -1, Cg is therefore A-Markov as well. 

The functoriality is trivial, by the definition of Cg, since the construction of , / [0  1 C ./t 0 

only depends on the Jones projections in g. Also, the commuting square conditions 

involved in the embedding g0C g and the definition of the inductive limit, show that  C9 o 

sits inside C s with non-degenerate commuting squares. [] 
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3. Amalgamated free products  over type  I algebras 

We start with an easy lemma about compressions of amalgamated free products. 

LEMMA 3.1. Let :NC3/[ i, i=1,  2, be inclusions of yon Neumann algebras with normal 

faithful conditional expectations ~i. Assume that the projection pc  N has central support 1 

in ~ .  Then 

p ( (~ l ,  s  ( ~ ,  E~))p = ( ( p ~ p ,  ~ ) , p ~ p  (p~2p,  s 

where 8p denotes conditional expectation of pJV[ip onto p:N'p obtained by reducing E i by p, 

i=1 ,2 .  

Proof. Since p has central support 1 in N, there exists a family of partial isometries 

V * - -  v~E:N so that  for all i, v~vi<~p, and so that  ~ ~v~ - 1  (in the sense of strong operator 
k , topology). Let qk=~i=lV~Vi. 

Let wEp((:~V[ 1, ~l),N(:TV[2 , ~2))p be an element. Then given a strong neighborhood 

U of w, one can find a k large enough so that  a finite linear combination w t = ~  w~ of 

words w~ each of the form 

! ! 
pqkmlqkmlqkm2qkm2 ... qkP, mi E 2~1, miC3/[! 2, 

belongs to U. But such a word can be rewritten as 

:p  EViV*)?T~I ViV;) . . . .  

Since each * - * v i mjv j  - p v  i m jv jp  belongs either to pJV[tp or pJK~p, we deduce that  

p ((~/[1 ~1) *N ( 3~[2, ~ 2 ) ) p  = W* (p~/[lp, p~/[2p), 

as subalgebras of ((3/[ 1, 81) ,~  (JV[2, s 

We now note that  the algebras p?v~lp and p3Vi2p are free with amalgamation over 

p2gp with respect to the reduced conditional expectation. This is immediate from the 

freeness condition. Since E~ are faithful, it follows that  this yon Neumann algebra is 

isomorphic to the free product ((p?~lp, E lp),pjqp (p~[2p, E p2)), as claimed. [] 

COROLLARY 3.2. I f  Ei:iMi--+NCJV[i are faithful conditional expectations, we have 

the isomorphism 

((~1, 8~) ,~  (3~2, E2))|  ) ~ (N2|  Et|174 ) ( ~ 2 |  E2| 

We now turn to identification of amalgamated free products with the free group 

factor L(F~) .  
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THEOREM 3.3. Let B be a v o n  Neumann algebra, and A c B  be a subalgebra. Let 

E: B - + A  be a normal faithful conditional expectation. Assume that there exists a normal 

faithful semifinite trace Tr on A,  so that TroE is a trace on B.  Assume lastly that A is 

of type I and has discrete center. 

Let 

M = (B, E)*A (A|  id| 

I f  B is of type IIoo and p ~ B  is a projection, Tr(p )= l ,  so that there is a system of matrix 

units { e i j } c B  with e l l=p,  }-~.eii=l, then 

M ~- [(pBp, Tr(p-) ) .  (L(F~) ,  ~-)] |  

The proof of the theorem will consist of a sequence of lemmas. The notation and 

assumptions of the first paragraph of the theorem remain fixed throughout this section. 

It is convenient to omit mentioning the specific conditional expectations in expres- 

sions for reduced amalgamated free products. It will always be clear from the context 

what conditional expectations are understood. Moreover, note that  all of the conditional 

expectations in this paper are trace-preserving. 

LEMMA 3.4. M is a factor if and only if the centers Z ( A ) A Z ( B )  have trivial inter- 

section. 

Proof. By IF1], the relative commutant of L (F~)  inside M is equal to A. It follows 

that  Z ( M ) c A ,  hence Z ( M ) c Z ( A ) .  Since A c B ,  also Z ( M ) c Z ( A ) A Z ( B ) .  The other 

inclusion is trivial. [] 

Let Q be avon  Neumann algebra with a semifinite normal trace Tr, and let ~]i: Q-+Q 

be normal completely positive maps. Assume that each ~i is self-adjoint, i.e., Tr(7]~ (x)y)= 

Tr(x~i(y)) for all x, y trace class in Q. 

Define ~(Q, ~1, ~2, ..., ~n), where n = l ,  2, ... or §  to be the von Neumann algebra 

generated by Q and the Q-semicircular family X1, X2, ..., Xn,  SO that 

(i) Xi are free with amalgamation over Q; 

(ii) each Xi has covariance ~i- 

Denote by EQ the canonical conditional expectation from O(Q,~l,*]2,...,~n) onto Q. 

By [$3], TroEQ is a trace on ~(Q,~l,...,~]n ). Moreover, EQ(XiqXj)=hij~l(q) ,  for all 

qcQ.  Recall [$2] that  Xi  satisfy the inequality 

IIX~ll ~< 211~ (1)111/2. 

Recall [$2] that  if qi, ri E Q are elements, X is Q-semicircular of covariance ~/, then 

Y i  * ~" = qi Xr i  + ri Xqi 
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is again Q-semicircular, of covariance 

In addition, {Y~} are free with amalgamation over Q if and only if EQ(Y~qYj)=O for all 

qEQ and iCj.  

LEMMA 3.5. M~-q~(B, E, E, E, ...) (infinite number of copies). 

Pro@ By [$3], 

�9 (B, E, E, ...) ~- (B, E)*ArP(A, id, id, id, ...) 

(B, E)*~t (A| id, id, ...)) 

(B, E)** (~tCL(F~))  = M .  [] 

We need a slight modification of the construction �9 which works for semifinite com- 

pletely positive maps, like Tr: B--+B. 

LEMMA 3.6. Let 7]i:Q-+Q, #i:Q-+Q be normal self-adjoint completely positive 

maps. Assume that for each i, there exist (possibly unbounded) operators xi affiliated 
with Q, with (possibly unbounded) inverses, so that 

#i(q) =x*~]i(xiqx~)xi for all qeQ.  

Then ~(Q, 711 , 7]2 , . . . ) ~ ( Q ,  #1, ~2, ...) in a way that preserves Q and EQ. (The equation 
means that Pi is the closure of the densely defined operator q~-+x~7]i(xiqx~)xi.) 

Proof. By definition, 

(~(Q, 711,7]2, ...) = W*(Q, 21, x2 ,  ...), 

where Xi are Q-semicircular, of covariance 7]i. We claim that  x*XixiEdp(Q,7]I,7]2, ...) 
(a priori, it may not be defined, since xi may be unbounded). It is sufficient, by passing 

to the polar decomposition xi=u~bi, u icQ unitary, to consider only the case that  xi are 

self-adjoint. Denote by x~ the value of the cut-off function {x~x}l[_t,t  ] applied to x~. 
Let t t Yt=xiXixi .  Then Yt is again @semicircular, of eovariance 

In particular, 

I1~ II ~< 2 IIx~dx~x~)x~ II ~/2 
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Since t t.< 2 XtX i-.~ X i we get that  

t t t t ~  t 2 t 

Hence we have that  

IIYt II ~< 211/t(1)111/2. 

Note that  Y~t=X[_~,t](xi)xiXixix[_t,t](xi)s ~ if t<s. Hence Y~ are bounded, and moreover 

X[_~x](xi)YtX[_%,.j(xi) does not depend on t once t>r. It follows that  also the weak 

limit of Yt exists and is bounded. We denote the limit by xiXixi .  It is clear that  

xiXix~ is Q-semicircular of eovariance q~-~XiT(x~qxi)xi. Note that  XiEW*(Q, xiX~x~) 

(one simply applies the same construction, starting with xiXixi  and using x~ -1 in the 

place of xi). 

Now~ 

~ ( Q ,  T]I, 72, ".-) = W *  (Q, Xl X l  Xl,  x 2 X 2 x 2 ,  ...) ~ (~((~, [.tl, ~2, ...), 

since xiX.~xi has covariance q~-+XiT(xiqx~)xi=#~(x~i). [] 

Definition 3.7. q~(Q, Tr, Tr,...)=O(Q,~],7,...), where 7 is any normal completely 

positive map from Q to Q, so that  7(q)=x*Tr(xqx*)x for some xEQ, having a (possibly 

unbounded) inverse. 

It is not hard to see, from Lemma 3.6, that  this definition does not depend on the 

choice of 7. Moreover, if the trace Tr is actually finite, then this coincides with the 

previous definition of ~(Q, Tr). 

Remark 3.8. The "unbounded semicircular element" of R~dulescu [R1] (see also 

[DR]) is precisely the "operator" one would get if in the construction of O(Q, Tr) one 

were to use a semifinite trace, but completely ignore the fact that  Tr(1) is infinite. If 

7( ' )=xTr(x 'x )x  is as above, and X is Q-semicircular of covariance 7, then R~dulescu's 

element would correspond to the operator x - l X x  -1, which does not make sense as an 

operator', because Tr is not a normM self-adjoint map from Q to itself. Note that,  as used 

in R~dulescu's work, the finite compressions ~[-t,t] ( x ) x - l X x - 1 ) ( [ - t , t ]  (x)  do make sense 

as operators in ~(Q, Tr). In particular, O(Q, Tr) is exactly the algebra Q . S X  described 

in [DR]. 

PROPOSITION 3.9. Let M be a yon Neumann algebra with a semifinite faithful nor- 

real trace Tr. Then dfl(M, Tr, Tr, . . .)  is a factor of type IIoo. 

Proof. Choose pkEM to be an increasing family of projections of finite trace, and 

so that  pk--+l strongly. Let d=y'~(1/2k)pk and 7 = d T r ( d - ) .  Then ~(M,  Tr, T r , . . . )~  
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�9 (M,~,~, . . . ) ,  and is generated by M and M-semicircular elements X I , X 2 ,  ... of co- 

variance 7. Consider the subalgebra Bk c O( M,  Tr, Tr,...), generated by pkMpk and 

pkXlpk,pkX2pk, . . . .  Note that  each pkXiPk is pkrl(pk.pk)pk=pkTr(dpk')-semieircular 

over pkMepk, and the restriction of the canonical semifinite trace on iI)(M, ~, 7,-.-) to Bk 

is a finite trace (having value Tr(pk) on the identity of Bk). Moreover, 

B k ~ (~(Bk, TrlBk, TriBe, ...) ~ (Bk, 1/Tr(pk))*L(F~) ,  

and hence is a II1 factor. Since ~(M,~,~ , . . . )  is the closure of I.J~Bk, it follows that  

�9 (M, 7, 7, ...) ~ q)(M, Tr, Tr, ...) is a factor. Since it has a semifinite faithful normal trace, 

it must be a factor of type I I~ .  [] 

LEMMA 3.10. Let N=q~(Q,~,~12 ,...,#~,#~,...). Denote by 

~ n  : N---} (I) ((~, ?]1, ?]2, ... ) = N~, and ~]tt : N---} (~(Q, #1,  #2,  .. .) = N/t  

the canonical conditional expectations. Then 

N ~ (:V~, EQ).Q (X. ,  EQ) ~ 4(N~,  . loEb,  .~oE, ,  ...) 

in a way that preserves Nn, Q and En, EQ. 

Pro@ By definition, 

N =  W*(Q, X1,X2, ..., Y1,Y2, ...), 

where Xi and Y~ are free over Q, and Xi is ~i-semicircular over Q, Yi is #i-semicircular 

over Q. The claimed decomposition as an amalgamated free product follows. The second 

isomorphism follows from the fact that  Y~, being free from W* (Q, X1, X2, ...) = N ,  over Q, 

is #ioEn-semicireular over N n (see [$2]). [] 

LEMMa 3.11. Assume that Q is a factor of type I I~ ,  and rh, 72, ... are normal self- 

adjoint completely positive maps from Q to itself. Assume that ~i r  for all i, and that 

for each i, there exist subalgebras Ai, each of type I with discrete center, so that 

~i = EQ .Ai" 

Then ~(Q, ~1, ~1, ..., ~J2, ~2, . . . ) ~ ( Q ,  Tr, T~, Tr, ...) (each ~ is repeated an infinite num- 

ber of times), in a way that maps Q to Q, and preserves EQ. 

Pro@ Since 

�9 (0,  nl, ..., n~, ...) = O(Q, nl, ~ll, ...)*Q o(Q,  n2, n2, ...)*Q ..., 
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it is sufficient to prove the result in the case that  all rli are the same. We can then clearly 

assume that all Ai=A, and ~i=EA. 

Let ql, q2, ... be the minimal central projections of A, ~ q i = l .  Then A=~qiAq i ,  
and each qiAqi is a type I factor; let n iENU{+oc}  be the rank (square root of the 

dimension) of qiAqi. Let est , i  l<~s, t<<.ni be a system of matrix units for qiAqi; that  is, 

i j i 
e s t  St ,  M ~ (~ij (~tU esM , 

i i �9 
e s t  = ( e t s )  , 

E qi = ess .  
l <~ s<~ n~ 

CLAIM 3.12. Let P be an algebra of type I I~ ,  P c P  be a unital subalgebra of 

type II~ so that P is a factor, and pEP be a projection of finite trace. Let u: Q--+Q be 
given by 

u(q)=pTr(pqp)p, qcP. 

Then q)(P, Tr, Tr, ...)~q)(P, u, u, ...) in a way that preserves P and Ep. 

Proof. Choose matrix units fo E P so that  f l l  ---- P, E f i i  : 1, f i j  f j~ i '  ~-- (~ j j ' f i iG  f i~  ~-- f j i .  

Let x = E i  fii/2/,  and let p(p)=xTr(xpx)x, pEP, be a completely positive map from P 

to itself. Then (I)(P, Tr, Tr, . . .)~(I)(P,p,p, ...). Let Xi be a P-semicircular family of co- 

variance p; thus ~(P, Tr, Tr, . . . )=W*(P, X1, X2, ...). Let X~ =Ref l iXkf j l ,  i<.j, Yi~= 
Imfl iXkf j l ,  i<j. Then (I)(P, Tr, Tr, ...) is generated by P and {X~}k,~<~jU{Yi~}k,i<j. 
A straightforward computation shows that  E(XkpX~},)=const.SieSjFSkk,pTr(pqp), 

k k' E(YijPYvj,):const.Sii, Sjy,Skk,pTr(pqp) and E(X~pyik;,)=O. Hence, upon proper re- 

scaling, {Xi~}k,i~<jU{Yi~lk,i<j form a P-semicircular family of covariance u. Hence 

(I) (P, ~Iu Tr, ...) ~ ( P ,  u, u, ...), as claimed. [] 

CLAIM 3.13. ~(Q, Tr, Tr, ...)~-~(Q,~],~, ...,Tr, Tr, Tr,...), in a way that preserves 

Q and EQ. 

Proof. Let pi=e~lEQ. Let ui(q)=piTr(piqpi)pi. We first notice that, in view of 

C1Mm 3.12, 

O(Q, ~ ,  Tr, ...) ~_ (o(O, Tr, ~ ,  ...),Q (O(Q, ~ ,  T~, ...),Q . . .)) 

= (~(Q, Tr, Tr,..., ui, ul, ...) *Q (4) (Q, Tr, ..., u2,...))) *Q... 

�9 (Q, Tr, Tr, ..., ul, ul, ..., u2, u2, ...) 

�9 (Q,-1,-~, ...,-2,-2, ...)*o O(Q, ~ ,  Tr, ...). 
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Let X~ be Q-semicircular variables, free with amalgamat ion  over Q, and so tha t  the 

covariance of X~ is ui. Note tha t  X j -  i g k  i - e l l ~  j e11. Let  

= e~ lX je l s  Tr(e~l) l /2 .  
i !~<s~<n~ 

This  sum converges strongly, since X is diagonal relative to the or thogonal  family of 

project ions e i { 8~}, and 

eslX~els 1 1/2. Tr(%)l/~ ~<211a(1)11 T r ( e ~ l )  1/2 
= 2 .  

It is not hard  to see tha t  {Yj} form a Q-semicircular family of covariance E x = r  b More- 

over, aS(Q, Ul, ul, ..., u2, u2, ...) is genera ted  by Q and {Yi}i, since X} is, up to a constant ,  
i i e11YJe11 . H e n c e  (I)(Q,/21, l / l ,  ..., p2, 2, . . . ) = ( I ) ( Q ,  ?], ?], . . .) .  T h u s  

(12(Q, Tr, Tr, ...) ~- (~(Q, l]l, 1]l, ..., p2, P2, ..')*Q (I~(Q, Tf, Tr, ...) 

~-~(Q, rj,~, . . . ) .Q~(Q,  Tr, Tr, ...) 

~ (I)(Q, , ,  ~], ..., Tr, Tr, . . .).  [] 

We now finish the proof  of the lemma. By Lemma  3.10, we get tha t  

(I)(Q, Tr, Tr, ...)~-(I)(Q, r], ~, ..., Tr, Tr, . . . ) ~  ~(qb(Q, r], ~1, ...), Tr, Tr, ...). 

Noticing tha t  P = O ( Q ,  rl, Tb...) contains a I I ~  factor P = Q ,  and sett ing p = e ~ E Q ,  

u ( x ) = p T r ( p x p ) p ,  zcrP(Q,  r], r], ...), we get 

~((I)(Q, r], r]), Tr, Tr, ...)~_ (I)((I)(Q, ~, rh ...), u, u , ...)~-O2(Q, rl, r b - ,~IQ,"IQ,-  -), 

the  last isomorphism because 

�9 -e(Q n n ")o o "o(Q n n,--.) p = / ~ Q  ' ' ' p /7,Q ' ' 

since p E Q  (see Lemma  3.10). 

Now, the algebra (I)(Q, 7, rl, ..., UlQ, UlQ, ...) is genera ted  by Q and a Q-semicircular 

sys tem X1,3[2, ..., Y1, Y2, ..., where {Xi, Y,}~ are free with amalgamat ion  over Q, Xi has 

covariance 7! and ! / /has  covariance u. Note tha t  Xi commutes  with A (containing p = e ~ l ) ,  

and Y~ =pYip,  because of the form of u. In part icular ,  Xi=~i,l<~,<~ne~sXieiss.  It follows 

tha t  ~5(Q, 7, ~?, ..., ulQ, UlQ, ...) is generated by 

{qlXiql} i ,  { ( 1 - q l ) X i ( 1 - q l ) } i ,  1 1 {e115<1}~, Q. 
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~-hrthermore, ~(Q, 7], U, ...) is generated by 

{qlXiql}i, {(1-ql)Xi(1-ql)}i ,  Q. 

Note that  the three families {qlXiql}i, {(1-ql)Xi (1 -q l )} i ,  {pYip}i are free with amal- 

gamation over Q; this is because for all qEQ, 

EQ(qlXiqlq(1-ql)Xj ( 1 - q l ) )  = 5ijqlE~a(qlq(1-ql)) ( 1 - q l )  = O, 

since ql is a central projection in A. 

Next, since Xi commutes with A, we get that 

qlXiql = E 1 1 essXiess = Z 1 1 1 1 eslelsXieslels = E 1 1 eslpXipels. 
l <~ s<~ n l  l <~ s<~ n l  l <~ s ~ n l  

It follows that  qS(Q,~, 7,-.., U]Q, U[Q, ...) is generated by 

{pXiP}i, {(1-ql)Xi(1-ql)}i ,  {pYip}i, Q, 

and the families 

{pXip}i, {(1-ql)Xi(1-ql)}i,  {p~p} 

are free with amalgamation over Q. Moreover, ~(Q, ~l, r/, ...) is generated by 

{pXip}i, {(1-ql)Xi(1-ql)}i ,  Q. 

Now, {pXip}i are free with amalgamation over Q, and pXip is Q-semicircular with 

eovariance 

q ~-~ EQ (pXipqpXip) = pE~ (pqp)p = const .pTr(pqp)p = const, u(q). 

It follows that  {pXip}i (upon rescaling by some non-zero constant) form an infinite 

Q-semicircular family of covariance ulQ. Hence, by renumbering, we can join 

{pXip}i U {PYiP}i 

into a single semicircular family of covarianee u. It follows that  the algebras 

W*( {pXip}i, { ( l - q l ) X i  ( 1 -  ql)}i, {PgiP}i, Q) 

and 

W*( {pXip}i, { (1-ql)Xi(1-ql)  }i, Q) 
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are isomorphic to each other, in a way that maps Q to Q, and preserves EQ. But we saw 

before that the first of these algebras is isomorphic to (I)(Q, rl,~, ..., ulQ, ulQ, ...), while 

the second is isomorphic to ~(Q, ~, rh ...). [] 

LEMMA 3.14. If B is of type II~ and pCB is a projection, Tr(p)=l ,  so that there 

is a system of matrix units { e i j } c B  with exl=P, ~ eii=l, then 

(O(B, Tr, Tr, ...) ~ [(pBp, Tr(p.))* (L(Fo~), r)] |  

Proof. Let pi=eii be a family of orthogonal projections in B, Tr(pi)=l ,  ~ p ~ = l .  

Let x = ~ p n / 2  ~, and let ~: B ~ B  be given by rl(b)=xTr(xbx)x. Then ~(B,r],r/, ...)~ 

�9 (B, Tr, Tr, ...), by definition. Hence (P(B, Tr, Tr, ...)~-W*(B, X1,X2, ...), where Xi are 

B-semicircular, each of covariance r b Then 

PleP(B, Tr, Tr, ...)Pl ~ W*(plBpl,  {X.~ }~,<j), 

where X~.=eziXrejl.  It is not hard to see that 

{X~}U{Re XO : i>j}U{ImX~j:  i > j }  

are free over pzBpl and are again a plBpI-semicircular family, each having covariance 

2-i-J.Tr(pl.pl). Denoting P=Pl and T(.)=Tr(p.p),  we get (see [$3]) 

pq~( B, Tr, Tr, ...)p ~- q)(pBp, r, r, ...) ~- ( B, r )*L(F~) .  [] 

The following corollary, together with Lemma 3.14, implies Theorem 3.3. 

COROLLARY 3.15. Let B be a W*-algebra with a semifinitc normal faithful trace Tr. 

Let A c B  be a type I subalgebra with discrete center. Set M=q~(B,E,E,. . . ) ,  where 

E: B--+A is the Tr-preserving conditional expectation. Then if M is a factor, 

e(B, ,Tr, Wr, ...). 

Proof. Let F: O(B, E, E, ...)-->A denote the composition of 

E:B--~A and EB:O(B,E ,E , . . . ) -+B.  

Let N=R~(B, Tr, Tr,...), and denote by G : N ~ A  the composition of EB:N--+B and 

E: B--+A. Note that F, G and E all satisfy the hypothesis of Lemma 3.11; moreover, by 
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Proposition 3.9, N is a factor. We have 

M ~ - ' f ( B , E , E ,  ...) 

~-r 

~-O(M,F,F, ...) 

~ ~(M,  Tr, Tr, ...) 

E, E, ...), Tr, ...) 

-~O(B ,E ,E ,E ,  ..., Tr, Tr, ...) 

~ ~(B,  Tr, Tr, ..., E, E, ...) 

~ ~ (~ (B ,  Tr, Tr, ...), G, G, ...) 

~ ~(N,  Tr, 1~', ...) 

~ (I)(~(B, Tr, Tr, ...), Tr, Tr, ...) ~ (I)(B, Tr, Tr, ...). 

This completes the proof. [] 

We shall also need the following theorem: 

THEOREM 3.16. Let ACfB be an inclusion of type I yon Neumann algebras with 

discrete centers. Let Tr be a semifinite normal trace on ~, and let E: ~B-+A be the 

Tr-preserving conditional expectation. Let 

M = (~B, E)*A (A |  id@T). 

Then if M is a factor, M~-L(Foo)| 

Proof. By tensoring B with B(H), and noting that 

(~B| E|174174174 id |174  

~- ( ({B, E)*.4 (A| L(Foo ), i d | 1 7 4  

(see Corollary 3.2), we may assume that [B~-,s174 Assume that M is a factor. By 

Corollary 3.15 we obtain the isomorphism 

M ~ (P(~B, Tr, Tr, ...); 

it is therefore sufficient to prove that the latter algebra is isomorphic to L(Foo)| 

It is not hard to see that (P(~B, Tr, Tr, . . .)| ~- ~(~B| Tr, Tr, ...); hence we 

may replace { B = ~ B ( H )  with ( ~ C ,  i.e., to assume that ~B is commutative. 
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We also have (arguing as before) that  

~(~B,Tr, Tr, . . .)~q)(N, id, id .... ,Tr, Tr,...). 

Setting/~=q5(~3, id, id, . . .)=~B| gives that  

Tr, Tr, ...) --- Tr, Tr, ...). 

Note that  B = I ~ L ( F ~ ) .  Tensoring with B(H) again allows us to replace B with B =  

B| It thus remains to be proved that  ~(B,  Tr, Tr, . . . ) ~ L ( F ~ ) |  

Denote by ~P a choice of the semifinite trace on L(F~)| Then there exist 

numbers ),i>0 so that  (B,Tr)~]~i(L(F~)| Choose in each direct sum- 

mand in B a projection Pi of trace 1. Let p=~pi. Then B contains a set of matrix 

units eij with e t l = p  and ~ eii = 1. Compressing to p gives that  r Tr, Tr, . . . ) |  ~= 
(P(A, Tr', Tr', ...), where A = ( ~ L ( F ~ ) ,  and Tr' is the direct sum of the traces 9.  

It follows that  we may assume that  the value of Tr on the minimal central projections 

of ~B is the same. It follows that  the isomorphism class of ~(~B, Tr, Tr, ...) does not depend 

on the choice of the normal faithful semifinite trace on ~B; furthermore, it is sufficient to 

consider the case that  ~3 is commutative. 

We now make a specific choice of ~3~/~(Z)  and the trace Tr: 

Tr( f )=E2nf(n  ). 
n E Z  

The translation action of Z on N gives rise to a trace-scaling action c~ of Z on 

(I)(~B,Tr, Tr, ...) (by naturality of the construction ~5 and the fact that  Tr is scaled by 

the action of Z). Since O(~B, Tr, Tr, ...) is generated by a ~B-semicircular family, it is eas- 

ily seen that  N=~(:B, Tr, Tr, . . . ) ~  Z is generated by a B(H)~-~B ~ Z-semicircular family, 

hence isomorphic to ~(B(H),~l,r],rl,...) for some r]: B(H)~B(H). Note that  N is a 

factor of type I I~ ,  since (I)(~B, Tr, Tr,...) is a III1/2 factor. By Theorem 2.1 of [SU], 

N~(I)(C, #, #, #)| for some it: C--+B(H). Note that  

e ( c ,  , ,  , ,  . . . ) :  4 ( c ,  , ) ,  , ) ,  ... 

and is a a free Araki-Woods factor [S2], [S1]. Being type III1/2, it must be that  (I)(C, #) 

is isomorphic to the unique type III1/2 free Araki-Woods factor. Hence ~(~B, Tr, Tr, ...) 

L(F~)| being the core of this factor. [] 
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4. Functorial  cons truc t ions  of  subfactors  via free products  

Let us begin by recording the following general result (which is well known for semifinite 
inclusions with trace-preserving conditional expectations). 

PROPOSITION 4.1. (a) Let 

9`0 
~- -1  C T 0 

U~ 1 U~0 
9" 1 

Q--1 C QO 

(4.1.1) 

be a commuting square, and assume that ~ are faithful normal conditional expectations. 

Let Q be a diffuse finite yon Neumann algebra with a normal finite faithful trace % and 

set 

= 

:7 
~--1 C ~/[0 

u u 
9`o 

9~_1 c 9~o 

Us UE:o 
9"_ 1 

Q - 1  C Qo 

Then 

(4.1.2) 

forms a commuting diagram of inclusions of yon Neumann algebras. Moreover, 

~'_in~[o= T ' iNQo. 

(b) Assume that (4.1.1) fo~ns a commuting square, and 5:~ are finite-index condi- 

tional expectations. Assume also that (4.1.1) is non-degenerate, i.e., any ONB {m~} for 

the inclusion 

forms an ONB for the inclusion 

9~-1C [Po 

(equivalently, ~pp(QoT_l)=To). 
Then all the commuting squares in (4.1.2) are non-degenerate. 

index of 
:7 

:~[-1C :~[o 

In particular, the 

is given by ~ mjm~. 
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(c) Assume that 
~)~ C ~01 ~)0_ 1 C ~)o 

U U C U U 

is a non-degenerate inclusion of non-degenerate commuting squares (non-degeneracy here 

means that all of the 6 commuting squares obtained by combining the inclusions of [Pr 

and Q~, are non-degenerate). Set 

Then 

j _ _  i . i ~ - ~} *~; (~j |  

:~0~ c ~o 
u u 

~ -  ~ c ~ o  1 

is again a non-degenerate commuting square. 

Proof. (a) Note that  the algebra generated by T-1 and Q inside 3Y[0 is isomorphic 

to :JV[1; this is because Q and T-1 are free with amalgamation over Q-l ,  and the condi- 

tional expectations involved in the amalgamated free products are faithful. 

(b) By the non-degeneracy and commuting square condition, an orthonormal basis 

{mi} for Q - - 1 C  Q0 "pulls out" to become an orthonormal basis for ~ / [ - 1 C  ~/[0- 

(c) By arguing as in part (a), we get the vertical inclusions in 

~ 0  c ~0 
u u 

~_-~ c ~ o  ~- 

Using the commuting square conditions and non-degeneracy, we see that an ONB for 

:J~-~C3V[o 1 (coming from an ONB for Q_-ICQo 1) is an ONB for :J~~ 1C2~~ [] 

We now turn to the algebras constructed in [P3]. 

THEOREM 4.2. Let ~ be a standard lattice, and let 

AO_l C A 0 

Cg = u u 

A-~ C Ao 1 

be the commuting square associated to g in Theorem 2.10, and let Po be the canonical 

projection in A-~C[P-1. Let Q be a tracial yon Neumann algebra with diffuse center. 

Consider the inclusion of algebras 

[P-1 = A~ ~(Q |  c [Po = -4o >~o 1 (Q| (4.2.1) 
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Then the inclusion 

poT-  l Po C po[Po Po (4.2.2) 

is isomorphic to the inclusion constructed in [P3]. 

Proof. Let us denote by C0 I the bo t tom sequence of commuting squares in eo, i.e., 

corresponding to the case n = 0  in Notation 2.2: 

A-2,-1  C A-2,0 C ... C A-2,k C ... 

U U U 

A-1,-1  C A-l,O C ... C A_ L k  C . . . .  

Note that  this sequence of commuting squares coincides with the s tandard lattice associ- 

ated to the subfactor M-2  C M-L, which by duality is isomorphic to the s tandard lattice 

associated to M0 C M1. 

Also, denote by e I  the bo t tom sequence of commuting squares in C: 

4 %  c ~o  ~ c ... c ~ o  c ... 

u U U 

fl[--~ C J:[O 1 C ... C A k  I C . . . .  

k _  Ak Finally, denote by JLoo-Un n, for k = - - l ,  O, the closure being taken with respect to the 
A 0 strong topology implemented by the semifinite trace Tr on Un n. 

Note that  by Lemma 2.5, C / is natural ly isomorphic to poCIpo, via ~0. Let us denote 

by 8 this (trace-preserving) isomorphism. Thus we have 

A - 2 , ~  c A - I , ~  ~ (poA~lpo C p o A ~  po) 

as well. Also, by the irreducibility of the inclusion matr ix  for J t - 1 c  A o 1 it follows that  the 

central support  of p0 in A ~  1 is equal to 1. Thus, by Lemma 3.1, we have an isomorphism 

(Q|  ~*A 1 ~ A - 2  ~ )  ~ -1 o , , , - p o ( Q O A ~  * ~ A ~ ) p o ,  

that  we still denote by ~. 

Moreover, inside of the algebra p 0 ( Q |  1 , ~ ; 1 N ~  we have the Jones tower of 

type II1 factors 

Po (Q| *A-~ A~  c po(Q|  l *Aol A~ c . . . .  

Denote by M1 c M0 c ... this Jones tower of type II1 factors. Also, denote by N - 1 C  No C ... 

the Jones tower of factors constructed in [P3], [P5]. Thus, N ~  = Q|  A_ 1,~ *A 1,~ A_2,~ 

and each of the factors Nk, k~>- l ,  is defined as the smallest von Neumann subalgebra 
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which contains Q as well as all the vector spaces ~ ( Q V A - 2 , n ) ,  n>~k, where ~ are the 

completely positive maps defined inside N ~  out of the Jones projections, as in [P3], [P5]. 

Since ~ ( N ~ ) = M ~  and ~ takes Q onto Q, A-2 n onto 0 , poAnpo, for all n, and Jones 

projections onto Jones projections, it follows that  ~(Nk) is a subfactor inside Mk and 

that  the system of inclusions 

M-1 c Mo C ... C Mk C ... 

0 0 0 

5 (N-1 )  C ~(No) C ... C ~(Nk) C ... 

has all squares commuting. Since ~ ( N ~ ) = M ~ ,  by commuting squares, the isomorphism 

takes Nk onto Mk, for all k~>-l .  [] 

We now have all the necessary ingredients to obtain the functorial constructions of 

subfactors in L (F~) .  We denote by G the category whose objects are standard lattices. 

The morphisms in this category are by definition embeddings of standard lattices with 

the same index (i.e., embeddings of A-lattices with the same A), satisfying the smoothness 

condition (2.9.1). 

THEOREM 4.3. Let G be the category of standard lattices, with embeddings as mot- 

phisms. Let S = S ( L ( F ~ ) )  be the category of subfactors ( P - 1 c P 0 ) ,  P 0 = L ( F ~ ) ,  P-I-~Po 

of L(Foo) with morphisms z: ( P - 1 c  Po) -+ ( Q - 1 c  Q0) given by non-degenerate commuting 

square inclusions 
O_~ c Qo 

u u 

P-1 C P0. 

Denote by ~ the functor ~: S--+G assigning to an inclusion its standard lattice, 

~ ( P - 1 c  P0) = 9~P-1cPo' 

Then there exists a functor 9": G--+S which is a right inverse for 9: 

909" = id. 

Proof. We give two proofs to this theorem. 

For the first proof, let Q = L ( F ~ )  and define 9"(9) to be the inclusion (4.2.2) con- 

structed in Theorem 4.2. By Theorem 4.2, 

9 ---- 9[JJ_IC~O : 9 (9" (9 ) ) ,  

so that  9" is the right inverse to ~. Moreover, by Proposition 4.1, 9" has the proper 

functorial properties. In fact, now that  we have established that  the construction of the 
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subfactor :Y(9) coincides with the construction of subfactors in [P3], [P5], the functoriality 

of �9 also follows from the functoriality of the construction in those papers. 

It remains to show that po{Pipo~L(Foo), or, equivalently, that ~Pi~L(Fo~)| 

Recall that :P~ are given as amalgamated free products (4.2.1), with Q=L(Foo). Thus by 

Theorem 3.16, T i ~ L ( F ~ ) |  This ends the first proof. 

Now, for the second proof of the theorem, for a given standard A-lattice S consider 

the A-Markov commuting square 

g~t= u u 

A--~ C ~[O 1 

as in Theorems 2.9 and 2.10. Recall that A-I ,  Ao 1 are type Ivon Neumann algebras with 

discrete center. Moreover, each one of the algebras ~-1, 23o is isomorphic to an algebra 

of the form RoQB(H), where R0 is hyperfinite of type IIi (possibly with non-trivial 

center). Let Q=L(F~) .  Denote by $(9) the compression of the inclusion 

( Q @ A ~ )  g./l.Z { ~--1 C (Q@as 1 ) >gd~o 1 ~0 

to the canonical trace 1 projection in YtzI (denoted by P0 in Theorem 2.9). By Proposi- 

tion 4.1, we get that the standard lattice of this inclusion is 9, i.e., 9otr(9)=9. Propo- 

sition 4.1 implies that IF is a functor between the categories G and S. Theorem 3.3 

implies that each of the algebras involved is isomorphic to an algebra of the form 

(Ro*L(Fo~))|174 where R is hyperfinite of type II1 (the last iso- 

morphism follows from the results of Dykema [D1]). It follows that the compressed 

inclusion ~(S) consists of algebras isomorphic to L(F~).  [] 

COROLLARY 4.4. Let ~ be any standard lattice. Then there exists an inclusion 

P-1CPo having S as its system of higher relative commutants, and so that P_I~Po ~ 

L(Foo). 

We now describe some further universal properties of L(Foo). 

THEOREM 4.5. Let M-1cM0 be an inclusion of II1 factors with finite index. Then 

there exists an inclusion M-1CMo functorially associated to M-1CMo, with M - I ~  

M_I*L(Foo), Mo~--Mo*L(Foo), so that M 1 c M  0 has the same index and the same 

standard lattice of higher relative commutants as M-1CMo. 

Proof. By Theorems 2.9 and 2.10, there exists a non-degenerate conmmting square 

M_I|  C Mo| 

U U 

A - I  C N o  1 
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with A - ~  and A o  1 type  I with discrete centers. Let t ing 

~ - - 1  = (M_I|  (L(F~|  

3rio = (Mo|  *~o' ( L ( F ~ | 1 7 6  

we see tha t  ~K-1CJK0 has the same higher relative commutan t s  as M-1CMo.  Compress-  

ing by a finite project ion and noticing tha t  in view of Theorem 3.3, 

JK-1 ~- (M_I * L (F~)  ) |  

3Ko ~ (Mo* L (F~)  ) QB( H) ,  

gives the result. [] 
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